1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/classLoaderDataGraph.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "jvmtifiles/jvmtiEnv.hpp" 32 #include "logging/log.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/access.inline.hpp" 37 #include "oops/arrayOop.hpp" 38 #include "oops/constantPool.inline.hpp" 39 #include "oops/instanceMirrorKlass.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "oops/objArrayOop.inline.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/typeArrayOop.inline.hpp" 45 #include "prims/jvmtiEventController.hpp" 46 #include "prims/jvmtiEventController.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/jvmtiImpl.hpp" 49 #include "prims/jvmtiTagMap.hpp" 50 #include "prims/jvmtiTagMapTable.hpp" 51 #include "prims/jvmtiThreadState.hpp" 52 #include "runtime/continuationWrapper.inline.hpp" 53 #include "runtime/deoptimization.hpp" 54 #include "runtime/frame.inline.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/interfaceSupport.inline.hpp" 57 #include "runtime/javaCalls.hpp" 58 #include "runtime/javaThread.inline.hpp" 59 #include "runtime/jniHandles.inline.hpp" 60 #include "runtime/mutex.hpp" 61 #include "runtime/mutexLocker.hpp" 62 #include "runtime/reflectionUtils.hpp" 63 #include "runtime/safepoint.hpp" 64 #include "runtime/timerTrace.hpp" 65 #include "runtime/threadSMR.hpp" 66 #include "runtime/vframe.hpp" 67 #include "runtime/vmThread.hpp" 68 #include "runtime/vmOperations.hpp" 69 #include "utilities/objectBitSet.inline.hpp" 70 #include "utilities/macros.hpp" 71 72 typedef ObjectBitSet<mtServiceability> JVMTIBitSet; 73 74 bool JvmtiTagMap::_has_object_free_events = false; 75 76 // create a JvmtiTagMap 77 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) : 78 _env(env), 79 _lock(Mutex::nosafepoint, "JvmtiTagMap_lock"), 80 _needs_cleaning(false), 81 _posting_events(false) { 82 83 assert(JvmtiThreadState_lock->is_locked(), "sanity check"); 84 assert(((JvmtiEnvBase *)env)->tag_map() == nullptr, "tag map already exists for environment"); 85 86 _hashmap = new JvmtiTagMapTable(); 87 88 // finally add us to the environment 89 ((JvmtiEnvBase *)env)->release_set_tag_map(this); 90 } 91 92 // destroy a JvmtiTagMap 93 JvmtiTagMap::~JvmtiTagMap() { 94 95 // no lock acquired as we assume the enclosing environment is 96 // also being destroyed. 97 ((JvmtiEnvBase *)_env)->set_tag_map(nullptr); 98 99 // finally destroy the hashmap 100 delete _hashmap; 101 _hashmap = nullptr; 102 } 103 104 // Called by env_dispose() to reclaim memory before deallocation. 105 // Remove all the entries but keep the empty table intact. 106 // This needs the table lock. 107 void JvmtiTagMap::clear() { 108 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 109 _hashmap->clear(); 110 } 111 112 // returns the tag map for the given environments. If the tag map 113 // doesn't exist then it is created. 114 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) { 115 JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire(); 116 if (tag_map == nullptr) { 117 MutexLocker mu(JvmtiThreadState_lock); 118 tag_map = ((JvmtiEnvBase*)env)->tag_map(); 119 if (tag_map == nullptr) { 120 tag_map = new JvmtiTagMap(env); 121 } 122 } else { 123 DEBUG_ONLY(JavaThread::current()->check_possible_safepoint()); 124 } 125 return tag_map; 126 } 127 128 // iterate over all entries in the tag map. 129 void JvmtiTagMap::entry_iterate(JvmtiTagMapKeyClosure* closure) { 130 hashmap()->entry_iterate(closure); 131 } 132 133 // returns true if the hashmaps are empty 134 bool JvmtiTagMap::is_empty() { 135 assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking"); 136 return hashmap()->is_empty(); 137 } 138 139 // This checks for posting before operations that use 140 // this tagmap table. 141 void JvmtiTagMap::check_hashmap(GrowableArray<jlong>* objects) { 142 assert(is_locked(), "checking"); 143 144 if (is_empty()) { return; } 145 146 if (_needs_cleaning && 147 objects != nullptr && 148 env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 149 remove_dead_entries_locked(objects); 150 } 151 } 152 153 // This checks for posting and is called from the heap walks. 154 void JvmtiTagMap::check_hashmaps_for_heapwalk(GrowableArray<jlong>* objects) { 155 assert(SafepointSynchronize::is_at_safepoint(), "called from safepoints"); 156 157 // Verify that the tag map tables are valid and unconditionally post events 158 // that are expected to be posted before gc_notification. 159 JvmtiEnvIterator it; 160 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 161 JvmtiTagMap* tag_map = env->tag_map_acquire(); 162 if (tag_map != nullptr) { 163 // The ZDriver may be walking the hashmaps concurrently so this lock is needed. 164 MutexLocker ml(tag_map->lock(), Mutex::_no_safepoint_check_flag); 165 tag_map->check_hashmap(objects); 166 } 167 } 168 } 169 170 // Return the tag value for an object, or 0 if the object is 171 // not tagged 172 // 173 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) { 174 return tag_map->hashmap()->find(o); 175 } 176 177 // A CallbackWrapper is a support class for querying and tagging an object 178 // around a callback to a profiler. The constructor does pre-callback 179 // work to get the tag value, klass tag value, ... and the destructor 180 // does the post-callback work of tagging or untagging the object. 181 // 182 // { 183 // CallbackWrapper wrapper(tag_map, o); 184 // 185 // (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...) 186 // 187 // } 188 // wrapper goes out of scope here which results in the destructor 189 // checking to see if the object has been tagged, untagged, or the 190 // tag value has changed. 191 // 192 class CallbackWrapper : public StackObj { 193 private: 194 JvmtiTagMap* _tag_map; 195 JvmtiTagMapTable* _hashmap; 196 oop _o; 197 jlong _obj_size; 198 jlong _obj_tag; 199 jlong _klass_tag; 200 201 protected: 202 JvmtiTagMap* tag_map() const { return _tag_map; } 203 204 // invoked post-callback to tag, untag, or update the tag of an object 205 void inline post_callback_tag_update(oop o, JvmtiTagMapTable* hashmap, 206 jlong obj_tag); 207 public: 208 CallbackWrapper(JvmtiTagMap* tag_map, oop o) { 209 assert(Thread::current()->is_VM_thread() || tag_map->is_locked(), 210 "MT unsafe or must be VM thread"); 211 212 // object to tag 213 _o = o; 214 215 // object size 216 _obj_size = (jlong)_o->size() * wordSize; 217 218 // record the context 219 _tag_map = tag_map; 220 _hashmap = tag_map->hashmap(); 221 222 // get object tag 223 _obj_tag = _hashmap->find(_o); 224 225 // get the class and the class's tag value 226 assert(vmClasses::Class_klass()->is_mirror_instance_klass(), "Is not?"); 227 228 _klass_tag = tag_for(tag_map, _o->klass()->java_mirror()); 229 } 230 231 ~CallbackWrapper() { 232 post_callback_tag_update(_o, _hashmap, _obj_tag); 233 } 234 235 inline jlong* obj_tag_p() { return &_obj_tag; } 236 inline jlong obj_size() const { return _obj_size; } 237 inline jlong obj_tag() const { return _obj_tag; } 238 inline jlong klass_tag() const { return _klass_tag; } 239 }; 240 241 // callback post-callback to tag, untag, or update the tag of an object 242 void inline CallbackWrapper::post_callback_tag_update(oop o, 243 JvmtiTagMapTable* hashmap, 244 jlong obj_tag) { 245 if (obj_tag == 0) { 246 // callback has untagged the object, remove the entry if present 247 hashmap->remove(o); 248 } else { 249 // object was previously tagged or not present - the callback may have 250 // changed the tag value 251 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 252 hashmap->add(o, obj_tag); 253 } 254 } 255 256 // An extended CallbackWrapper used when reporting an object reference 257 // to the agent. 258 // 259 // { 260 // TwoOopCallbackWrapper wrapper(tag_map, referrer, o); 261 // 262 // (*callback)(wrapper.klass_tag(), 263 // wrapper.obj_size(), 264 // wrapper.obj_tag_p() 265 // wrapper.referrer_tag_p(), ...) 266 // 267 // } 268 // wrapper goes out of scope here which results in the destructor 269 // checking to see if the referrer object has been tagged, untagged, 270 // or the tag value has changed. 271 // 272 class TwoOopCallbackWrapper : public CallbackWrapper { 273 private: 274 bool _is_reference_to_self; 275 JvmtiTagMapTable* _referrer_hashmap; 276 oop _referrer; 277 jlong _referrer_obj_tag; 278 jlong _referrer_klass_tag; 279 jlong* _referrer_tag_p; 280 281 bool is_reference_to_self() const { return _is_reference_to_self; } 282 283 public: 284 TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) : 285 CallbackWrapper(tag_map, o) 286 { 287 // self reference needs to be handled in a special way 288 _is_reference_to_self = (referrer == o); 289 290 if (_is_reference_to_self) { 291 _referrer_klass_tag = klass_tag(); 292 _referrer_tag_p = obj_tag_p(); 293 } else { 294 _referrer = referrer; 295 // record the context 296 _referrer_hashmap = tag_map->hashmap(); 297 298 // get object tag 299 _referrer_obj_tag = _referrer_hashmap->find(_referrer); 300 301 _referrer_tag_p = &_referrer_obj_tag; 302 303 // get referrer class tag. 304 _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror()); 305 } 306 } 307 308 ~TwoOopCallbackWrapper() { 309 if (!is_reference_to_self()) { 310 post_callback_tag_update(_referrer, 311 _referrer_hashmap, 312 _referrer_obj_tag); 313 } 314 } 315 316 // address of referrer tag 317 // (for a self reference this will return the same thing as obj_tag_p()) 318 inline jlong* referrer_tag_p() { return _referrer_tag_p; } 319 320 // referrer's class tag 321 inline jlong referrer_klass_tag() { return _referrer_klass_tag; } 322 }; 323 324 // tag an object 325 // 326 // This function is performance critical. If many threads attempt to tag objects 327 // around the same time then it's possible that the Mutex associated with the 328 // tag map will be a hot lock. 329 void JvmtiTagMap::set_tag(jobject object, jlong tag) { 330 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 331 332 // SetTag should not post events because the JavaThread has to 333 // transition to native for the callback and this cannot stop for 334 // safepoints with the hashmap lock held. 335 check_hashmap(nullptr); /* don't collect dead objects */ 336 337 // resolve the object 338 oop o = JNIHandles::resolve_non_null(object); 339 340 // see if the object is already tagged 341 JvmtiTagMapTable* hashmap = _hashmap; 342 343 if (tag == 0) { 344 // remove the entry if present 345 hashmap->remove(o); 346 } else { 347 // if the object is already tagged or not present then we add/update 348 // the tag 349 hashmap->add(o, tag); 350 } 351 } 352 353 // get the tag for an object 354 jlong JvmtiTagMap::get_tag(jobject object) { 355 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 356 357 // GetTag should not post events because the JavaThread has to 358 // transition to native for the callback and this cannot stop for 359 // safepoints with the hashmap lock held. 360 check_hashmap(nullptr); /* don't collect dead objects */ 361 362 // resolve the object 363 oop o = JNIHandles::resolve_non_null(object); 364 365 return tag_for(this, o); 366 } 367 368 369 // Helper class used to describe the static or instance fields of a class. 370 // For each field it holds the field index (as defined by the JVMTI specification), 371 // the field type, and the offset. 372 373 class ClassFieldDescriptor: public CHeapObj<mtInternal> { 374 private: 375 int _field_index; 376 int _field_offset; 377 char _field_type; 378 public: 379 ClassFieldDescriptor(int index, char type, int offset) : 380 _field_index(index), _field_offset(offset), _field_type(type) { 381 } 382 int field_index() const { return _field_index; } 383 char field_type() const { return _field_type; } 384 int field_offset() const { return _field_offset; } 385 }; 386 387 class ClassFieldMap: public CHeapObj<mtInternal> { 388 private: 389 enum { 390 initial_field_count = 5 391 }; 392 393 // list of field descriptors 394 GrowableArray<ClassFieldDescriptor*>* _fields; 395 396 // constructor 397 ClassFieldMap(); 398 399 // calculates number of fields in all interfaces 400 static int interfaces_field_count(InstanceKlass* ik); 401 402 // add a field 403 void add(int index, char type, int offset); 404 405 public: 406 ~ClassFieldMap(); 407 408 // access 409 int field_count() { return _fields->length(); } 410 ClassFieldDescriptor* field_at(int i) { return _fields->at(i); } 411 412 // functions to create maps of static or instance fields 413 static ClassFieldMap* create_map_of_static_fields(Klass* k); 414 static ClassFieldMap* create_map_of_instance_fields(oop obj); 415 }; 416 417 ClassFieldMap::ClassFieldMap() { 418 _fields = new (mtServiceability) 419 GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability); 420 } 421 422 ClassFieldMap::~ClassFieldMap() { 423 for (int i=0; i<_fields->length(); i++) { 424 delete _fields->at(i); 425 } 426 delete _fields; 427 } 428 429 int ClassFieldMap::interfaces_field_count(InstanceKlass* ik) { 430 const Array<InstanceKlass*>* interfaces = ik->transitive_interfaces(); 431 int count = 0; 432 for (int i = 0; i < interfaces->length(); i++) { 433 FilteredJavaFieldStream fld(interfaces->at(i)); 434 count += fld.field_count(); 435 } 436 return count; 437 } 438 439 void ClassFieldMap::add(int index, char type, int offset) { 440 ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset); 441 _fields->append(field); 442 } 443 444 // Returns a heap allocated ClassFieldMap to describe the static fields 445 // of the given class. 446 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) { 447 InstanceKlass* ik = InstanceKlass::cast(k); 448 449 // create the field map 450 ClassFieldMap* field_map = new ClassFieldMap(); 451 452 // Static fields of interfaces and superclasses are reported as references from the interfaces/superclasses. 453 // Need to calculate start index of this class fields: number of fields in all interfaces and superclasses. 454 int index = interfaces_field_count(ik); 455 for (InstanceKlass* super_klass = ik->java_super(); super_klass != nullptr; super_klass = super_klass->java_super()) { 456 FilteredJavaFieldStream super_fld(super_klass); 457 index += super_fld.field_count(); 458 } 459 460 for (FilteredJavaFieldStream fld(ik); !fld.done(); fld.next(), index++) { 461 // ignore instance fields 462 if (!fld.access_flags().is_static()) { 463 continue; 464 } 465 field_map->add(index, fld.signature()->char_at(0), fld.offset()); 466 } 467 468 return field_map; 469 } 470 471 // Returns a heap allocated ClassFieldMap to describe the instance fields 472 // of the given class. All instance fields are included (this means public 473 // and private fields declared in superclasses too). 474 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) { 475 InstanceKlass* ik = InstanceKlass::cast(obj->klass()); 476 477 // create the field map 478 ClassFieldMap* field_map = new ClassFieldMap(); 479 480 // fields of the superclasses are reported first, so need to know total field number to calculate field indices 481 int total_field_number = interfaces_field_count(ik); 482 for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) { 483 FilteredJavaFieldStream fld(klass); 484 total_field_number += fld.field_count(); 485 } 486 487 for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) { 488 FilteredJavaFieldStream fld(klass); 489 int start_index = total_field_number - fld.field_count(); 490 for (int index = 0; !fld.done(); fld.next(), index++) { 491 // ignore static fields 492 if (fld.access_flags().is_static()) { 493 continue; 494 } 495 field_map->add(start_index + index, fld.signature()->char_at(0), fld.offset()); 496 } 497 // update total_field_number for superclass (decrease by the field count in the current class) 498 total_field_number = start_index; 499 } 500 501 return field_map; 502 } 503 504 // Helper class used to cache a ClassFileMap for the instance fields of 505 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during 506 // heap iteration and avoid creating a field map for each object in the heap 507 // (only need to create the map when the first instance of a class is encountered). 508 // 509 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> { 510 private: 511 enum { 512 initial_class_count = 200 513 }; 514 ClassFieldMap* _field_map; 515 516 ClassFieldMap* field_map() const { return _field_map; } 517 518 JvmtiCachedClassFieldMap(ClassFieldMap* field_map); 519 ~JvmtiCachedClassFieldMap(); 520 521 static GrowableArray<InstanceKlass*>* _class_list; 522 static void add_to_class_list(InstanceKlass* ik); 523 524 public: 525 // returns the field map for a given object (returning map cached 526 // by InstanceKlass if possible 527 static ClassFieldMap* get_map_of_instance_fields(oop obj); 528 529 // removes the field map from all instanceKlasses - should be 530 // called before VM operation completes 531 static void clear_cache(); 532 533 // returns the number of ClassFieldMap cached by instanceKlasses 534 static int cached_field_map_count(); 535 }; 536 537 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list; 538 539 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) { 540 _field_map = field_map; 541 } 542 543 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() { 544 if (_field_map != nullptr) { 545 delete _field_map; 546 } 547 } 548 549 // Marker class to ensure that the class file map cache is only used in a defined 550 // scope. 551 class ClassFieldMapCacheMark : public StackObj { 552 private: 553 static bool _is_active; 554 public: 555 ClassFieldMapCacheMark() { 556 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 557 assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty"); 558 assert(!_is_active, "ClassFieldMapCacheMark cannot be nested"); 559 _is_active = true; 560 } 561 ~ClassFieldMapCacheMark() { 562 JvmtiCachedClassFieldMap::clear_cache(); 563 _is_active = false; 564 } 565 static bool is_active() { return _is_active; } 566 }; 567 568 bool ClassFieldMapCacheMark::_is_active; 569 570 // record that the given InstanceKlass is caching a field map 571 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) { 572 if (_class_list == nullptr) { 573 _class_list = new (mtServiceability) 574 GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability); 575 } 576 _class_list->push(ik); 577 } 578 579 // returns the instance field map for the given object 580 // (returns field map cached by the InstanceKlass if possible) 581 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) { 582 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 583 assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active"); 584 585 Klass* k = obj->klass(); 586 InstanceKlass* ik = InstanceKlass::cast(k); 587 588 // return cached map if possible 589 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); 590 if (cached_map != nullptr) { 591 assert(cached_map->field_map() != nullptr, "missing field list"); 592 return cached_map->field_map(); 593 } else { 594 ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj); 595 cached_map = new JvmtiCachedClassFieldMap(field_map); 596 ik->set_jvmti_cached_class_field_map(cached_map); 597 add_to_class_list(ik); 598 return field_map; 599 } 600 } 601 602 // remove the fields maps cached from all instanceKlasses 603 void JvmtiCachedClassFieldMap::clear_cache() { 604 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 605 if (_class_list != nullptr) { 606 for (int i = 0; i < _class_list->length(); i++) { 607 InstanceKlass* ik = _class_list->at(i); 608 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); 609 assert(cached_map != nullptr, "should not be null"); 610 ik->set_jvmti_cached_class_field_map(nullptr); 611 delete cached_map; // deletes the encapsulated field map 612 } 613 delete _class_list; 614 _class_list = nullptr; 615 } 616 } 617 618 // returns the number of ClassFieldMap cached by instanceKlasses 619 int JvmtiCachedClassFieldMap::cached_field_map_count() { 620 return (_class_list == nullptr) ? 0 : _class_list->length(); 621 } 622 623 // helper function to indicate if an object is filtered by its tag or class tag 624 static inline bool is_filtered_by_heap_filter(jlong obj_tag, 625 jlong klass_tag, 626 int heap_filter) { 627 // apply the heap filter 628 if (obj_tag != 0) { 629 // filter out tagged objects 630 if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true; 631 } else { 632 // filter out untagged objects 633 if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true; 634 } 635 if (klass_tag != 0) { 636 // filter out objects with tagged classes 637 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true; 638 } else { 639 // filter out objects with untagged classes. 640 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true; 641 } 642 return false; 643 } 644 645 // helper function to indicate if an object is filtered by a klass filter 646 static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) { 647 if (klass_filter != nullptr) { 648 if (obj->klass() != klass_filter) { 649 return true; 650 } 651 } 652 return false; 653 } 654 655 // helper function to tell if a field is a primitive field or not 656 static inline bool is_primitive_field_type(char type) { 657 return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY); 658 } 659 660 // helper function to copy the value from location addr to jvalue. 661 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) { 662 switch (value_type) { 663 case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; } 664 case JVMTI_PRIMITIVE_TYPE_BYTE : { v->b = *(jbyte*)addr; break; } 665 case JVMTI_PRIMITIVE_TYPE_CHAR : { v->c = *(jchar*)addr; break; } 666 case JVMTI_PRIMITIVE_TYPE_SHORT : { v->s = *(jshort*)addr; break; } 667 case JVMTI_PRIMITIVE_TYPE_INT : { v->i = *(jint*)addr; break; } 668 case JVMTI_PRIMITIVE_TYPE_LONG : { v->j = *(jlong*)addr; break; } 669 case JVMTI_PRIMITIVE_TYPE_FLOAT : { v->f = *(jfloat*)addr; break; } 670 case JVMTI_PRIMITIVE_TYPE_DOUBLE : { v->d = *(jdouble*)addr; break; } 671 default: ShouldNotReachHere(); 672 } 673 } 674 675 // helper function to invoke string primitive value callback 676 // returns visit control flags 677 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb, 678 CallbackWrapper* wrapper, 679 oop str, 680 void* user_data) 681 { 682 assert(str->klass() == vmClasses::String_klass(), "not a string"); 683 684 typeArrayOop s_value = java_lang_String::value(str); 685 686 // JDK-6584008: the value field may be null if a String instance is 687 // partially constructed. 688 if (s_value == nullptr) { 689 return 0; 690 } 691 // get the string value and length 692 // (string value may be offset from the base) 693 int s_len = java_lang_String::length(str); 694 bool is_latin1 = java_lang_String::is_latin1(str); 695 jchar* value; 696 if (s_len > 0) { 697 if (!is_latin1) { 698 value = s_value->char_at_addr(0); 699 } else { 700 // Inflate latin1 encoded string to UTF16 701 jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal); 702 for (int i = 0; i < s_len; i++) { 703 buf[i] = ((jchar) s_value->byte_at(i)) & 0xff; 704 } 705 value = &buf[0]; 706 } 707 } else { 708 // Don't use char_at_addr(0) if length is 0 709 value = (jchar*) s_value->base(T_CHAR); 710 } 711 712 // invoke the callback 713 jint res = (*cb)(wrapper->klass_tag(), 714 wrapper->obj_size(), 715 wrapper->obj_tag_p(), 716 value, 717 (jint)s_len, 718 user_data); 719 720 if (is_latin1 && s_len > 0) { 721 FREE_C_HEAP_ARRAY(jchar, value); 722 } 723 return res; 724 } 725 726 // helper function to invoke string primitive value callback 727 // returns visit control flags 728 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb, 729 CallbackWrapper* wrapper, 730 oop obj, 731 void* user_data) 732 { 733 assert(obj->is_typeArray(), "not a primitive array"); 734 735 // get base address of first element 736 typeArrayOop array = typeArrayOop(obj); 737 BasicType type = TypeArrayKlass::cast(array->klass())->element_type(); 738 void* elements = array->base(type); 739 740 // jvmtiPrimitiveType is defined so this mapping is always correct 741 jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type); 742 743 return (*cb)(wrapper->klass_tag(), 744 wrapper->obj_size(), 745 wrapper->obj_tag_p(), 746 (jint)array->length(), 747 elem_type, 748 elements, 749 user_data); 750 } 751 752 // helper function to invoke the primitive field callback for all static fields 753 // of a given class 754 static jint invoke_primitive_field_callback_for_static_fields 755 (CallbackWrapper* wrapper, 756 oop obj, 757 jvmtiPrimitiveFieldCallback cb, 758 void* user_data) 759 { 760 // for static fields only the index will be set 761 static jvmtiHeapReferenceInfo reference_info = { 0 }; 762 763 assert(obj->klass() == vmClasses::Class_klass(), "not a class"); 764 if (java_lang_Class::is_primitive(obj)) { 765 return 0; 766 } 767 Klass* klass = java_lang_Class::as_Klass(obj); 768 769 // ignore classes for object and type arrays 770 if (!klass->is_instance_klass()) { 771 return 0; 772 } 773 774 // ignore classes which aren't linked yet 775 InstanceKlass* ik = InstanceKlass::cast(klass); 776 if (!ik->is_linked()) { 777 return 0; 778 } 779 780 // get the field map 781 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); 782 783 // invoke the callback for each static primitive field 784 for (int i=0; i<field_map->field_count(); i++) { 785 ClassFieldDescriptor* field = field_map->field_at(i); 786 787 // ignore non-primitive fields 788 char type = field->field_type(); 789 if (!is_primitive_field_type(type)) { 790 continue; 791 } 792 // one-to-one mapping 793 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 794 795 // get offset and field value 796 int offset = field->field_offset(); 797 address addr = cast_from_oop<address>(klass->java_mirror()) + offset; 798 jvalue value; 799 copy_to_jvalue(&value, addr, value_type); 800 801 // field index 802 reference_info.field.index = field->field_index(); 803 804 // invoke the callback 805 jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD, 806 &reference_info, 807 wrapper->klass_tag(), 808 wrapper->obj_tag_p(), 809 value, 810 value_type, 811 user_data); 812 if (res & JVMTI_VISIT_ABORT) { 813 delete field_map; 814 return res; 815 } 816 } 817 818 delete field_map; 819 return 0; 820 } 821 822 // helper function to invoke the primitive field callback for all instance fields 823 // of a given object 824 static jint invoke_primitive_field_callback_for_instance_fields( 825 CallbackWrapper* wrapper, 826 oop obj, 827 jvmtiPrimitiveFieldCallback cb, 828 void* user_data) 829 { 830 // for instance fields only the index will be set 831 static jvmtiHeapReferenceInfo reference_info = { 0 }; 832 833 // get the map of the instance fields 834 ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj); 835 836 // invoke the callback for each instance primitive field 837 for (int i=0; i<fields->field_count(); i++) { 838 ClassFieldDescriptor* field = fields->field_at(i); 839 840 // ignore non-primitive fields 841 char type = field->field_type(); 842 if (!is_primitive_field_type(type)) { 843 continue; 844 } 845 // one-to-one mapping 846 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 847 848 // get offset and field value 849 int offset = field->field_offset(); 850 address addr = cast_from_oop<address>(obj) + offset; 851 jvalue value; 852 copy_to_jvalue(&value, addr, value_type); 853 854 // field index 855 reference_info.field.index = field->field_index(); 856 857 // invoke the callback 858 jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD, 859 &reference_info, 860 wrapper->klass_tag(), 861 wrapper->obj_tag_p(), 862 value, 863 value_type, 864 user_data); 865 if (res & JVMTI_VISIT_ABORT) { 866 return res; 867 } 868 } 869 return 0; 870 } 871 872 873 // VM operation to iterate over all objects in the heap (both reachable 874 // and unreachable) 875 class VM_HeapIterateOperation: public VM_Operation { 876 private: 877 ObjectClosure* _blk; 878 GrowableArray<jlong>* const _dead_objects; 879 public: 880 VM_HeapIterateOperation(ObjectClosure* blk, GrowableArray<jlong>* objects) : 881 _blk(blk), _dead_objects(objects) { } 882 883 VMOp_Type type() const { return VMOp_HeapIterateOperation; } 884 void doit() { 885 // allows class files maps to be cached during iteration 886 ClassFieldMapCacheMark cm; 887 888 JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects); 889 890 // make sure that heap is parsable (fills TLABs with filler objects) 891 Universe::heap()->ensure_parsability(false); // no need to retire TLABs 892 893 // Verify heap before iteration - if the heap gets corrupted then 894 // JVMTI's IterateOverHeap will crash. 895 if (VerifyBeforeIteration) { 896 Universe::verify(); 897 } 898 899 // do the iteration 900 Universe::heap()->object_iterate(_blk); 901 } 902 }; 903 904 905 // An ObjectClosure used to support the deprecated IterateOverHeap and 906 // IterateOverInstancesOfClass functions 907 class IterateOverHeapObjectClosure: public ObjectClosure { 908 private: 909 JvmtiTagMap* _tag_map; 910 Klass* _klass; 911 jvmtiHeapObjectFilter _object_filter; 912 jvmtiHeapObjectCallback _heap_object_callback; 913 const void* _user_data; 914 915 // accessors 916 JvmtiTagMap* tag_map() const { return _tag_map; } 917 jvmtiHeapObjectFilter object_filter() const { return _object_filter; } 918 jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; } 919 Klass* klass() const { return _klass; } 920 const void* user_data() const { return _user_data; } 921 922 // indicates if iteration has been aborted 923 bool _iteration_aborted; 924 bool is_iteration_aborted() const { return _iteration_aborted; } 925 void set_iteration_aborted(bool aborted) { _iteration_aborted = aborted; } 926 927 public: 928 IterateOverHeapObjectClosure(JvmtiTagMap* tag_map, 929 Klass* klass, 930 jvmtiHeapObjectFilter object_filter, 931 jvmtiHeapObjectCallback heap_object_callback, 932 const void* user_data) : 933 _tag_map(tag_map), 934 _klass(klass), 935 _object_filter(object_filter), 936 _heap_object_callback(heap_object_callback), 937 _user_data(user_data), 938 _iteration_aborted(false) 939 { 940 } 941 942 void do_object(oop o); 943 }; 944 945 // invoked for each object in the heap 946 void IterateOverHeapObjectClosure::do_object(oop o) { 947 // check if iteration has been halted 948 if (is_iteration_aborted()) return; 949 950 // instanceof check when filtering by klass 951 if (klass() != nullptr && !o->is_a(klass())) { 952 return; 953 } 954 955 // skip if object is a dormant shared object whose mirror hasn't been loaded 956 if (o != nullptr && o->klass()->java_mirror() == nullptr) { 957 log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(o), 958 o->klass()->external_name()); 959 return; 960 } 961 962 // prepare for the calllback 963 CallbackWrapper wrapper(tag_map(), o); 964 965 // if the object is tagged and we're only interested in untagged objects 966 // then don't invoke the callback. Similarly, if the object is untagged 967 // and we're only interested in tagged objects we skip the callback. 968 if (wrapper.obj_tag() != 0) { 969 if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return; 970 } else { 971 if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return; 972 } 973 974 // invoke the agent's callback 975 jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(), 976 wrapper.obj_size(), 977 wrapper.obj_tag_p(), 978 (void*)user_data()); 979 if (control == JVMTI_ITERATION_ABORT) { 980 set_iteration_aborted(true); 981 } 982 } 983 984 // An ObjectClosure used to support the IterateThroughHeap function 985 class IterateThroughHeapObjectClosure: public ObjectClosure { 986 private: 987 JvmtiTagMap* _tag_map; 988 Klass* _klass; 989 int _heap_filter; 990 const jvmtiHeapCallbacks* _callbacks; 991 const void* _user_data; 992 993 // accessor functions 994 JvmtiTagMap* tag_map() const { return _tag_map; } 995 int heap_filter() const { return _heap_filter; } 996 const jvmtiHeapCallbacks* callbacks() const { return _callbacks; } 997 Klass* klass() const { return _klass; } 998 const void* user_data() const { return _user_data; } 999 1000 // indicates if the iteration has been aborted 1001 bool _iteration_aborted; 1002 bool is_iteration_aborted() const { return _iteration_aborted; } 1003 1004 // used to check the visit control flags. If the abort flag is set 1005 // then we set the iteration aborted flag so that the iteration completes 1006 // without processing any further objects 1007 bool check_flags_for_abort(jint flags) { 1008 bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0; 1009 if (is_abort) { 1010 _iteration_aborted = true; 1011 } 1012 return is_abort; 1013 } 1014 1015 public: 1016 IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map, 1017 Klass* klass, 1018 int heap_filter, 1019 const jvmtiHeapCallbacks* heap_callbacks, 1020 const void* user_data) : 1021 _tag_map(tag_map), 1022 _klass(klass), 1023 _heap_filter(heap_filter), 1024 _callbacks(heap_callbacks), 1025 _user_data(user_data), 1026 _iteration_aborted(false) 1027 { 1028 } 1029 1030 void do_object(oop o); 1031 }; 1032 1033 // invoked for each object in the heap 1034 void IterateThroughHeapObjectClosure::do_object(oop obj) { 1035 // check if iteration has been halted 1036 if (is_iteration_aborted()) return; 1037 1038 // apply class filter 1039 if (is_filtered_by_klass_filter(obj, klass())) return; 1040 1041 // skip if object is a dormant shared object whose mirror hasn't been loaded 1042 if (obj != nullptr && obj->klass()->java_mirror() == nullptr) { 1043 log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(obj), 1044 obj->klass()->external_name()); 1045 return; 1046 } 1047 1048 // prepare for callback 1049 CallbackWrapper wrapper(tag_map(), obj); 1050 1051 // check if filtered by the heap filter 1052 if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) { 1053 return; 1054 } 1055 1056 // for arrays we need the length, otherwise -1 1057 bool is_array = obj->is_array(); 1058 int len = is_array ? arrayOop(obj)->length() : -1; 1059 1060 // invoke the object callback (if callback is provided) 1061 if (callbacks()->heap_iteration_callback != nullptr) { 1062 jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback; 1063 jint res = (*cb)(wrapper.klass_tag(), 1064 wrapper.obj_size(), 1065 wrapper.obj_tag_p(), 1066 (jint)len, 1067 (void*)user_data()); 1068 if (check_flags_for_abort(res)) return; 1069 } 1070 1071 // for objects and classes we report primitive fields if callback provided 1072 if (callbacks()->primitive_field_callback != nullptr && obj->is_instance()) { 1073 jint res; 1074 jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback; 1075 if (obj->klass() == vmClasses::Class_klass()) { 1076 res = invoke_primitive_field_callback_for_static_fields(&wrapper, 1077 obj, 1078 cb, 1079 (void*)user_data()); 1080 } else { 1081 res = invoke_primitive_field_callback_for_instance_fields(&wrapper, 1082 obj, 1083 cb, 1084 (void*)user_data()); 1085 } 1086 if (check_flags_for_abort(res)) return; 1087 } 1088 1089 // string callback 1090 if (!is_array && 1091 callbacks()->string_primitive_value_callback != nullptr && 1092 obj->klass() == vmClasses::String_klass()) { 1093 jint res = invoke_string_value_callback( 1094 callbacks()->string_primitive_value_callback, 1095 &wrapper, 1096 obj, 1097 (void*)user_data() ); 1098 if (check_flags_for_abort(res)) return; 1099 } 1100 1101 // array callback 1102 if (is_array && 1103 callbacks()->array_primitive_value_callback != nullptr && 1104 obj->is_typeArray()) { 1105 jint res = invoke_array_primitive_value_callback( 1106 callbacks()->array_primitive_value_callback, 1107 &wrapper, 1108 obj, 1109 (void*)user_data() ); 1110 if (check_flags_for_abort(res)) return; 1111 } 1112 }; 1113 1114 1115 // Deprecated function to iterate over all objects in the heap 1116 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter, 1117 Klass* klass, 1118 jvmtiHeapObjectCallback heap_object_callback, 1119 const void* user_data) 1120 { 1121 // EA based optimizations on tagged objects are already reverted. 1122 EscapeBarrier eb(object_filter == JVMTI_HEAP_OBJECT_UNTAGGED || 1123 object_filter == JVMTI_HEAP_OBJECT_EITHER, 1124 JavaThread::current()); 1125 eb.deoptimize_objects_all_threads(); 1126 Arena dead_object_arena(mtServiceability); 1127 GrowableArray <jlong> dead_objects(&dead_object_arena, 10, 0, 0); 1128 { 1129 MutexLocker ml(Heap_lock); 1130 IterateOverHeapObjectClosure blk(this, 1131 klass, 1132 object_filter, 1133 heap_object_callback, 1134 user_data); 1135 VM_HeapIterateOperation op(&blk, &dead_objects); 1136 VMThread::execute(&op); 1137 } 1138 // Post events outside of Heap_lock 1139 post_dead_objects(&dead_objects); 1140 } 1141 1142 1143 // Iterates over all objects in the heap 1144 void JvmtiTagMap::iterate_through_heap(jint heap_filter, 1145 Klass* klass, 1146 const jvmtiHeapCallbacks* callbacks, 1147 const void* user_data) 1148 { 1149 // EA based optimizations on tagged objects are already reverted. 1150 EscapeBarrier eb(!(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), JavaThread::current()); 1151 eb.deoptimize_objects_all_threads(); 1152 1153 Arena dead_object_arena(mtServiceability); 1154 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 1155 { 1156 MutexLocker ml(Heap_lock); 1157 IterateThroughHeapObjectClosure blk(this, 1158 klass, 1159 heap_filter, 1160 callbacks, 1161 user_data); 1162 VM_HeapIterateOperation op(&blk, &dead_objects); 1163 VMThread::execute(&op); 1164 } 1165 // Post events outside of Heap_lock 1166 post_dead_objects(&dead_objects); 1167 } 1168 1169 void JvmtiTagMap::remove_dead_entries_locked(GrowableArray<jlong>* objects) { 1170 assert(is_locked(), "precondition"); 1171 if (_needs_cleaning) { 1172 // Recheck whether to post object free events under the lock. 1173 if (!env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 1174 objects = nullptr; 1175 } 1176 log_info(jvmti, table)("TagMap table needs cleaning%s", 1177 ((objects != nullptr) ? " and posting" : "")); 1178 hashmap()->remove_dead_entries(objects); 1179 _needs_cleaning = false; 1180 } 1181 } 1182 1183 void JvmtiTagMap::remove_dead_entries(GrowableArray<jlong>* objects) { 1184 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1185 remove_dead_entries_locked(objects); 1186 } 1187 1188 void JvmtiTagMap::post_dead_objects(GrowableArray<jlong>* const objects) { 1189 assert(Thread::current()->is_Java_thread(), "Must post from JavaThread"); 1190 if (objects != nullptr && objects->length() > 0) { 1191 JvmtiExport::post_object_free(env(), objects); 1192 log_info(jvmti, table)("%d free object posted", objects->length()); 1193 } 1194 } 1195 1196 void JvmtiTagMap::remove_and_post_dead_objects() { 1197 ResourceMark rm; 1198 GrowableArray<jlong> objects; 1199 remove_dead_entries(&objects); 1200 post_dead_objects(&objects); 1201 } 1202 1203 void JvmtiTagMap::flush_object_free_events() { 1204 assert_not_at_safepoint(); 1205 if (env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 1206 { 1207 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1208 // If another thread is posting events, let it finish 1209 while (_posting_events) { 1210 ml.wait(); 1211 } 1212 1213 if (!_needs_cleaning || is_empty()) { 1214 _needs_cleaning = false; 1215 return; 1216 } 1217 _posting_events = true; 1218 } // Drop the lock so we can do the cleaning on the VM thread. 1219 // Needs both cleaning and event posting (up to some other thread 1220 // getting there first after we dropped the lock). 1221 remove_and_post_dead_objects(); 1222 { 1223 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1224 _posting_events = false; 1225 ml.notify_all(); 1226 } 1227 } else { 1228 remove_dead_entries(nullptr); 1229 } 1230 } 1231 1232 // support class for get_objects_with_tags 1233 1234 class TagObjectCollector : public JvmtiTagMapKeyClosure { 1235 private: 1236 JvmtiEnv* _env; 1237 JavaThread* _thread; 1238 jlong* _tags; 1239 jint _tag_count; 1240 bool _some_dead_found; 1241 1242 GrowableArray<jobject>* _object_results; // collected objects (JNI weak refs) 1243 GrowableArray<uint64_t>* _tag_results; // collected tags 1244 1245 public: 1246 TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) : 1247 _env(env), 1248 _thread(JavaThread::current()), 1249 _tags((jlong*)tags), 1250 _tag_count(tag_count), 1251 _some_dead_found(false), 1252 _object_results(new (mtServiceability) GrowableArray<jobject>(1, mtServiceability)), 1253 _tag_results(new (mtServiceability) GrowableArray<uint64_t>(1, mtServiceability)) { } 1254 1255 ~TagObjectCollector() { 1256 delete _object_results; 1257 delete _tag_results; 1258 } 1259 1260 bool some_dead_found() const { return _some_dead_found; } 1261 1262 // for each tagged object check if the tag value matches 1263 // - if it matches then we create a JNI local reference to the object 1264 // and record the reference and tag value. 1265 // Always return true so the iteration continues. 1266 bool do_entry(JvmtiTagMapKey& key, jlong& value) { 1267 for (int i = 0; i < _tag_count; i++) { 1268 if (_tags[i] == value) { 1269 // The reference in this tag map could be the only (implicitly weak) 1270 // reference to that object. If we hand it out, we need to keep it live wrt 1271 // SATB marking similar to other j.l.ref.Reference referents. This is 1272 // achieved by using a phantom load in the object() accessor. 1273 oop o = key.object(); 1274 if (o == nullptr) { 1275 _some_dead_found = true; 1276 // skip this whole entry 1277 return true; 1278 } 1279 assert(o != nullptr && Universe::heap()->is_in(o), "sanity check"); 1280 jobject ref = JNIHandles::make_local(_thread, o); 1281 _object_results->append(ref); 1282 _tag_results->append(value); 1283 } 1284 } 1285 return true; 1286 } 1287 1288 // return the results from the collection 1289 // 1290 jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { 1291 jvmtiError error; 1292 int count = _object_results->length(); 1293 assert(count >= 0, "sanity check"); 1294 1295 // if object_result_ptr is not null then allocate the result and copy 1296 // in the object references. 1297 if (object_result_ptr != nullptr) { 1298 error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr); 1299 if (error != JVMTI_ERROR_NONE) { 1300 return error; 1301 } 1302 for (int i=0; i<count; i++) { 1303 (*object_result_ptr)[i] = _object_results->at(i); 1304 } 1305 } 1306 1307 // if tag_result_ptr is not null then allocate the result and copy 1308 // in the tag values. 1309 if (tag_result_ptr != nullptr) { 1310 error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr); 1311 if (error != JVMTI_ERROR_NONE) { 1312 if (object_result_ptr != nullptr) { 1313 _env->Deallocate((unsigned char*)object_result_ptr); 1314 } 1315 return error; 1316 } 1317 for (int i=0; i<count; i++) { 1318 (*tag_result_ptr)[i] = (jlong)_tag_results->at(i); 1319 } 1320 } 1321 1322 *count_ptr = count; 1323 return JVMTI_ERROR_NONE; 1324 } 1325 }; 1326 1327 // return the list of objects with the specified tags 1328 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags, 1329 jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { 1330 1331 TagObjectCollector collector(env(), tags, count); 1332 { 1333 // iterate over all tagged objects 1334 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1335 // Can't post ObjectFree events here from a JavaThread, so this 1336 // will race with the gc_notification thread in the tiny 1337 // window where the object is not marked but hasn't been notified that 1338 // it is collected yet. 1339 entry_iterate(&collector); 1340 } 1341 return collector.result(count_ptr, object_result_ptr, tag_result_ptr); 1342 } 1343 1344 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind 1345 // (not performance critical as only used for roots) 1346 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) { 1347 switch (kind) { 1348 case JVMTI_HEAP_REFERENCE_JNI_GLOBAL: return JVMTI_HEAP_ROOT_JNI_GLOBAL; 1349 case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS; 1350 case JVMTI_HEAP_REFERENCE_STACK_LOCAL: return JVMTI_HEAP_ROOT_STACK_LOCAL; 1351 case JVMTI_HEAP_REFERENCE_JNI_LOCAL: return JVMTI_HEAP_ROOT_JNI_LOCAL; 1352 case JVMTI_HEAP_REFERENCE_THREAD: return JVMTI_HEAP_ROOT_THREAD; 1353 case JVMTI_HEAP_REFERENCE_OTHER: return JVMTI_HEAP_ROOT_OTHER; 1354 default: ShouldNotReachHere(); return JVMTI_HEAP_ROOT_OTHER; 1355 } 1356 } 1357 1358 // Base class for all heap walk contexts. The base class maintains a flag 1359 // to indicate if the context is valid or not. 1360 class HeapWalkContext { 1361 private: 1362 bool _valid; 1363 public: 1364 HeapWalkContext(bool valid) { _valid = valid; } 1365 void invalidate() { _valid = false; } 1366 bool is_valid() const { return _valid; } 1367 }; 1368 1369 // A basic heap walk context for the deprecated heap walking functions. 1370 // The context for a basic heap walk are the callbacks and fields used by 1371 // the referrer caching scheme. 1372 class BasicHeapWalkContext: public HeapWalkContext { 1373 private: 1374 jvmtiHeapRootCallback _heap_root_callback; 1375 jvmtiStackReferenceCallback _stack_ref_callback; 1376 jvmtiObjectReferenceCallback _object_ref_callback; 1377 1378 // used for caching 1379 oop _last_referrer; 1380 jlong _last_referrer_tag; 1381 1382 public: 1383 BasicHeapWalkContext() : HeapWalkContext(false) { } 1384 1385 BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback, 1386 jvmtiStackReferenceCallback stack_ref_callback, 1387 jvmtiObjectReferenceCallback object_ref_callback) : 1388 HeapWalkContext(true), 1389 _heap_root_callback(heap_root_callback), 1390 _stack_ref_callback(stack_ref_callback), 1391 _object_ref_callback(object_ref_callback), 1392 _last_referrer(nullptr), 1393 _last_referrer_tag(0) { 1394 } 1395 1396 // accessors 1397 jvmtiHeapRootCallback heap_root_callback() const { return _heap_root_callback; } 1398 jvmtiStackReferenceCallback stack_ref_callback() const { return _stack_ref_callback; } 1399 jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback; } 1400 1401 oop last_referrer() const { return _last_referrer; } 1402 void set_last_referrer(oop referrer) { _last_referrer = referrer; } 1403 jlong last_referrer_tag() const { return _last_referrer_tag; } 1404 void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; } 1405 }; 1406 1407 // The advanced heap walk context for the FollowReferences functions. 1408 // The context is the callbacks, and the fields used for filtering. 1409 class AdvancedHeapWalkContext: public HeapWalkContext { 1410 private: 1411 jint _heap_filter; 1412 Klass* _klass_filter; 1413 const jvmtiHeapCallbacks* _heap_callbacks; 1414 1415 public: 1416 AdvancedHeapWalkContext() : HeapWalkContext(false) { } 1417 1418 AdvancedHeapWalkContext(jint heap_filter, 1419 Klass* klass_filter, 1420 const jvmtiHeapCallbacks* heap_callbacks) : 1421 HeapWalkContext(true), 1422 _heap_filter(heap_filter), 1423 _klass_filter(klass_filter), 1424 _heap_callbacks(heap_callbacks) { 1425 } 1426 1427 // accessors 1428 jint heap_filter() const { return _heap_filter; } 1429 Klass* klass_filter() const { return _klass_filter; } 1430 1431 jvmtiHeapReferenceCallback heap_reference_callback() const { 1432 return _heap_callbacks->heap_reference_callback; 1433 }; 1434 jvmtiPrimitiveFieldCallback primitive_field_callback() const { 1435 return _heap_callbacks->primitive_field_callback; 1436 } 1437 jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const { 1438 return _heap_callbacks->array_primitive_value_callback; 1439 } 1440 jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const { 1441 return _heap_callbacks->string_primitive_value_callback; 1442 } 1443 }; 1444 1445 // The CallbackInvoker is a class with static functions that the heap walk can call 1446 // into to invoke callbacks. It works in one of two modes. The "basic" mode is 1447 // used for the deprecated IterateOverReachableObjects functions. The "advanced" 1448 // mode is for the newer FollowReferences function which supports a lot of 1449 // additional callbacks. 1450 class CallbackInvoker : AllStatic { 1451 private: 1452 // heap walk styles 1453 enum { basic, advanced }; 1454 static int _heap_walk_type; 1455 static bool is_basic_heap_walk() { return _heap_walk_type == basic; } 1456 static bool is_advanced_heap_walk() { return _heap_walk_type == advanced; } 1457 1458 // context for basic style heap walk 1459 static BasicHeapWalkContext _basic_context; 1460 static BasicHeapWalkContext* basic_context() { 1461 assert(_basic_context.is_valid(), "invalid"); 1462 return &_basic_context; 1463 } 1464 1465 // context for advanced style heap walk 1466 static AdvancedHeapWalkContext _advanced_context; 1467 static AdvancedHeapWalkContext* advanced_context() { 1468 assert(_advanced_context.is_valid(), "invalid"); 1469 return &_advanced_context; 1470 } 1471 1472 // context needed for all heap walks 1473 static JvmtiTagMap* _tag_map; 1474 static const void* _user_data; 1475 static GrowableArray<oop>* _visit_stack; 1476 static JVMTIBitSet* _bitset; 1477 1478 // accessors 1479 static JvmtiTagMap* tag_map() { return _tag_map; } 1480 static const void* user_data() { return _user_data; } 1481 static GrowableArray<oop>* visit_stack() { return _visit_stack; } 1482 1483 // if the object hasn't been visited then push it onto the visit stack 1484 // so that it will be visited later 1485 static inline bool check_for_visit(oop obj) { 1486 if (!_bitset->is_marked(obj)) visit_stack()->push(obj); 1487 return true; 1488 } 1489 1490 // invoke basic style callbacks 1491 static inline bool invoke_basic_heap_root_callback 1492 (jvmtiHeapRootKind root_kind, oop obj); 1493 static inline bool invoke_basic_stack_ref_callback 1494 (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method, 1495 int slot, oop obj); 1496 static inline bool invoke_basic_object_reference_callback 1497 (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index); 1498 1499 // invoke advanced style callbacks 1500 static inline bool invoke_advanced_heap_root_callback 1501 (jvmtiHeapReferenceKind ref_kind, oop obj); 1502 static inline bool invoke_advanced_stack_ref_callback 1503 (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth, 1504 jmethodID method, jlocation bci, jint slot, oop obj); 1505 static inline bool invoke_advanced_object_reference_callback 1506 (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index); 1507 1508 // used to report the value of primitive fields 1509 static inline bool report_primitive_field 1510 (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type); 1511 1512 public: 1513 // initialize for basic mode 1514 static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, 1515 GrowableArray<oop>* visit_stack, 1516 const void* user_data, 1517 BasicHeapWalkContext context, 1518 JVMTIBitSet* bitset); 1519 1520 // initialize for advanced mode 1521 static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, 1522 GrowableArray<oop>* visit_stack, 1523 const void* user_data, 1524 AdvancedHeapWalkContext context, 1525 JVMTIBitSet* bitset); 1526 1527 // functions to report roots 1528 static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o); 1529 static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth, 1530 jmethodID m, oop o); 1531 static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth, 1532 jmethodID method, jlocation bci, jint slot, oop o); 1533 1534 // functions to report references 1535 static inline bool report_array_element_reference(oop referrer, oop referree, jint index); 1536 static inline bool report_class_reference(oop referrer, oop referree); 1537 static inline bool report_class_loader_reference(oop referrer, oop referree); 1538 static inline bool report_signers_reference(oop referrer, oop referree); 1539 static inline bool report_protection_domain_reference(oop referrer, oop referree); 1540 static inline bool report_superclass_reference(oop referrer, oop referree); 1541 static inline bool report_interface_reference(oop referrer, oop referree); 1542 static inline bool report_static_field_reference(oop referrer, oop referree, jint slot); 1543 static inline bool report_field_reference(oop referrer, oop referree, jint slot); 1544 static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index); 1545 static inline bool report_primitive_array_values(oop array); 1546 static inline bool report_string_value(oop str); 1547 static inline bool report_primitive_instance_field(oop o, jint index, address value, char type); 1548 static inline bool report_primitive_static_field(oop o, jint index, address value, char type); 1549 }; 1550 1551 // statics 1552 int CallbackInvoker::_heap_walk_type; 1553 BasicHeapWalkContext CallbackInvoker::_basic_context; 1554 AdvancedHeapWalkContext CallbackInvoker::_advanced_context; 1555 JvmtiTagMap* CallbackInvoker::_tag_map; 1556 const void* CallbackInvoker::_user_data; 1557 GrowableArray<oop>* CallbackInvoker::_visit_stack; 1558 JVMTIBitSet* CallbackInvoker::_bitset; 1559 1560 // initialize for basic heap walk (IterateOverReachableObjects et al) 1561 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, 1562 GrowableArray<oop>* visit_stack, 1563 const void* user_data, 1564 BasicHeapWalkContext context, 1565 JVMTIBitSet* bitset) { 1566 _tag_map = tag_map; 1567 _visit_stack = visit_stack; 1568 _user_data = user_data; 1569 _basic_context = context; 1570 _advanced_context.invalidate(); // will trigger assertion if used 1571 _heap_walk_type = basic; 1572 _bitset = bitset; 1573 } 1574 1575 // initialize for advanced heap walk (FollowReferences) 1576 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, 1577 GrowableArray<oop>* visit_stack, 1578 const void* user_data, 1579 AdvancedHeapWalkContext context, 1580 JVMTIBitSet* bitset) { 1581 _tag_map = tag_map; 1582 _visit_stack = visit_stack; 1583 _user_data = user_data; 1584 _advanced_context = context; 1585 _basic_context.invalidate(); // will trigger assertion if used 1586 _heap_walk_type = advanced; 1587 _bitset = bitset; 1588 } 1589 1590 1591 // invoke basic style heap root callback 1592 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) { 1593 // if we heap roots should be reported 1594 jvmtiHeapRootCallback cb = basic_context()->heap_root_callback(); 1595 if (cb == nullptr) { 1596 return check_for_visit(obj); 1597 } 1598 1599 CallbackWrapper wrapper(tag_map(), obj); 1600 jvmtiIterationControl control = (*cb)(root_kind, 1601 wrapper.klass_tag(), 1602 wrapper.obj_size(), 1603 wrapper.obj_tag_p(), 1604 (void*)user_data()); 1605 // push root to visit stack when following references 1606 if (control == JVMTI_ITERATION_CONTINUE && 1607 basic_context()->object_ref_callback() != nullptr) { 1608 visit_stack()->push(obj); 1609 } 1610 return control != JVMTI_ITERATION_ABORT; 1611 } 1612 1613 // invoke basic style stack ref callback 1614 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind, 1615 jlong thread_tag, 1616 jint depth, 1617 jmethodID method, 1618 int slot, 1619 oop obj) { 1620 // if we stack refs should be reported 1621 jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback(); 1622 if (cb == nullptr) { 1623 return check_for_visit(obj); 1624 } 1625 1626 CallbackWrapper wrapper(tag_map(), obj); 1627 jvmtiIterationControl control = (*cb)(root_kind, 1628 wrapper.klass_tag(), 1629 wrapper.obj_size(), 1630 wrapper.obj_tag_p(), 1631 thread_tag, 1632 depth, 1633 method, 1634 slot, 1635 (void*)user_data()); 1636 // push root to visit stack when following references 1637 if (control == JVMTI_ITERATION_CONTINUE && 1638 basic_context()->object_ref_callback() != nullptr) { 1639 visit_stack()->push(obj); 1640 } 1641 return control != JVMTI_ITERATION_ABORT; 1642 } 1643 1644 // invoke basic style object reference callback 1645 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind, 1646 oop referrer, 1647 oop referree, 1648 jint index) { 1649 1650 BasicHeapWalkContext* context = basic_context(); 1651 1652 // callback requires the referrer's tag. If it's the same referrer 1653 // as the last call then we use the cached value. 1654 jlong referrer_tag; 1655 if (referrer == context->last_referrer()) { 1656 referrer_tag = context->last_referrer_tag(); 1657 } else { 1658 referrer_tag = tag_for(tag_map(), referrer); 1659 } 1660 1661 // do the callback 1662 CallbackWrapper wrapper(tag_map(), referree); 1663 jvmtiObjectReferenceCallback cb = context->object_ref_callback(); 1664 jvmtiIterationControl control = (*cb)(ref_kind, 1665 wrapper.klass_tag(), 1666 wrapper.obj_size(), 1667 wrapper.obj_tag_p(), 1668 referrer_tag, 1669 index, 1670 (void*)user_data()); 1671 1672 // record referrer and referrer tag. For self-references record the 1673 // tag value from the callback as this might differ from referrer_tag. 1674 context->set_last_referrer(referrer); 1675 if (referrer == referree) { 1676 context->set_last_referrer_tag(*wrapper.obj_tag_p()); 1677 } else { 1678 context->set_last_referrer_tag(referrer_tag); 1679 } 1680 1681 if (control == JVMTI_ITERATION_CONTINUE) { 1682 return check_for_visit(referree); 1683 } else { 1684 return control != JVMTI_ITERATION_ABORT; 1685 } 1686 } 1687 1688 // invoke advanced style heap root callback 1689 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind, 1690 oop obj) { 1691 AdvancedHeapWalkContext* context = advanced_context(); 1692 1693 // check that callback is provided 1694 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 1695 if (cb == nullptr) { 1696 return check_for_visit(obj); 1697 } 1698 1699 // apply class filter 1700 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 1701 return check_for_visit(obj); 1702 } 1703 1704 // setup the callback wrapper 1705 CallbackWrapper wrapper(tag_map(), obj); 1706 1707 // apply tag filter 1708 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1709 wrapper.klass_tag(), 1710 context->heap_filter())) { 1711 return check_for_visit(obj); 1712 } 1713 1714 // for arrays we need the length, otherwise -1 1715 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); 1716 1717 // invoke the callback 1718 jint res = (*cb)(ref_kind, 1719 nullptr, // referrer info 1720 wrapper.klass_tag(), 1721 0, // referrer_class_tag is 0 for heap root 1722 wrapper.obj_size(), 1723 wrapper.obj_tag_p(), 1724 nullptr, // referrer_tag_p 1725 len, 1726 (void*)user_data()); 1727 if (res & JVMTI_VISIT_ABORT) { 1728 return false;// referrer class tag 1729 } 1730 if (res & JVMTI_VISIT_OBJECTS) { 1731 check_for_visit(obj); 1732 } 1733 return true; 1734 } 1735 1736 // report a reference from a thread stack to an object 1737 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind, 1738 jlong thread_tag, 1739 jlong tid, 1740 int depth, 1741 jmethodID method, 1742 jlocation bci, 1743 jint slot, 1744 oop obj) { 1745 AdvancedHeapWalkContext* context = advanced_context(); 1746 1747 // check that callback is provider 1748 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 1749 if (cb == nullptr) { 1750 return check_for_visit(obj); 1751 } 1752 1753 // apply class filter 1754 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 1755 return check_for_visit(obj); 1756 } 1757 1758 // setup the callback wrapper 1759 CallbackWrapper wrapper(tag_map(), obj); 1760 1761 // apply tag filter 1762 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1763 wrapper.klass_tag(), 1764 context->heap_filter())) { 1765 return check_for_visit(obj); 1766 } 1767 1768 // setup the referrer info 1769 jvmtiHeapReferenceInfo reference_info; 1770 reference_info.stack_local.thread_tag = thread_tag; 1771 reference_info.stack_local.thread_id = tid; 1772 reference_info.stack_local.depth = depth; 1773 reference_info.stack_local.method = method; 1774 reference_info.stack_local.location = bci; 1775 reference_info.stack_local.slot = slot; 1776 1777 // for arrays we need the length, otherwise -1 1778 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); 1779 1780 // call into the agent 1781 int res = (*cb)(ref_kind, 1782 &reference_info, 1783 wrapper.klass_tag(), 1784 0, // referrer_class_tag is 0 for heap root (stack) 1785 wrapper.obj_size(), 1786 wrapper.obj_tag_p(), 1787 nullptr, // referrer_tag is 0 for root 1788 len, 1789 (void*)user_data()); 1790 1791 if (res & JVMTI_VISIT_ABORT) { 1792 return false; 1793 } 1794 if (res & JVMTI_VISIT_OBJECTS) { 1795 check_for_visit(obj); 1796 } 1797 return true; 1798 } 1799 1800 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback 1801 // only for ref_kinds defined by the JVM TI spec. Otherwise, null is passed. 1802 #define REF_INFO_MASK ((1 << JVMTI_HEAP_REFERENCE_FIELD) \ 1803 | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD) \ 1804 | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \ 1805 | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \ 1806 | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL) \ 1807 | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL)) 1808 1809 // invoke the object reference callback to report a reference 1810 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind, 1811 oop referrer, 1812 oop obj, 1813 jint index) 1814 { 1815 // field index is only valid field in reference_info 1816 static jvmtiHeapReferenceInfo reference_info = { 0 }; 1817 1818 AdvancedHeapWalkContext* context = advanced_context(); 1819 1820 // check that callback is provider 1821 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 1822 if (cb == nullptr) { 1823 return check_for_visit(obj); 1824 } 1825 1826 // apply class filter 1827 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 1828 return check_for_visit(obj); 1829 } 1830 1831 // setup the callback wrapper 1832 TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj); 1833 1834 // apply tag filter 1835 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1836 wrapper.klass_tag(), 1837 context->heap_filter())) { 1838 return check_for_visit(obj); 1839 } 1840 1841 // field index is only valid field in reference_info 1842 reference_info.field.index = index; 1843 1844 // for arrays we need the length, otherwise -1 1845 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1); 1846 1847 // invoke the callback 1848 int res = (*cb)(ref_kind, 1849 (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : nullptr, 1850 wrapper.klass_tag(), 1851 wrapper.referrer_klass_tag(), 1852 wrapper.obj_size(), 1853 wrapper.obj_tag_p(), 1854 wrapper.referrer_tag_p(), 1855 len, 1856 (void*)user_data()); 1857 1858 if (res & JVMTI_VISIT_ABORT) { 1859 return false; 1860 } 1861 if (res & JVMTI_VISIT_OBJECTS) { 1862 check_for_visit(obj); 1863 } 1864 return true; 1865 } 1866 1867 // report a "simple root" 1868 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) { 1869 assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL && 1870 kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root"); 1871 1872 if (is_basic_heap_walk()) { 1873 // map to old style root kind 1874 jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind); 1875 return invoke_basic_heap_root_callback(root_kind, obj); 1876 } else { 1877 assert(is_advanced_heap_walk(), "wrong heap walk type"); 1878 return invoke_advanced_heap_root_callback(kind, obj); 1879 } 1880 } 1881 1882 1883 // invoke the primitive array values 1884 inline bool CallbackInvoker::report_primitive_array_values(oop obj) { 1885 assert(obj->is_typeArray(), "not a primitive array"); 1886 1887 AdvancedHeapWalkContext* context = advanced_context(); 1888 assert(context->array_primitive_value_callback() != nullptr, "no callback"); 1889 1890 // apply class filter 1891 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 1892 return true; 1893 } 1894 1895 CallbackWrapper wrapper(tag_map(), obj); 1896 1897 // apply tag filter 1898 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1899 wrapper.klass_tag(), 1900 context->heap_filter())) { 1901 return true; 1902 } 1903 1904 // invoke the callback 1905 int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(), 1906 &wrapper, 1907 obj, 1908 (void*)user_data()); 1909 return (!(res & JVMTI_VISIT_ABORT)); 1910 } 1911 1912 // invoke the string value callback 1913 inline bool CallbackInvoker::report_string_value(oop str) { 1914 assert(str->klass() == vmClasses::String_klass(), "not a string"); 1915 1916 AdvancedHeapWalkContext* context = advanced_context(); 1917 assert(context->string_primitive_value_callback() != nullptr, "no callback"); 1918 1919 // apply class filter 1920 if (is_filtered_by_klass_filter(str, context->klass_filter())) { 1921 return true; 1922 } 1923 1924 CallbackWrapper wrapper(tag_map(), str); 1925 1926 // apply tag filter 1927 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1928 wrapper.klass_tag(), 1929 context->heap_filter())) { 1930 return true; 1931 } 1932 1933 // invoke the callback 1934 int res = invoke_string_value_callback(context->string_primitive_value_callback(), 1935 &wrapper, 1936 str, 1937 (void*)user_data()); 1938 return (!(res & JVMTI_VISIT_ABORT)); 1939 } 1940 1941 // invoke the primitive field callback 1942 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind, 1943 oop obj, 1944 jint index, 1945 address addr, 1946 char type) 1947 { 1948 // for primitive fields only the index will be set 1949 static jvmtiHeapReferenceInfo reference_info = { 0 }; 1950 1951 AdvancedHeapWalkContext* context = advanced_context(); 1952 assert(context->primitive_field_callback() != nullptr, "no callback"); 1953 1954 // apply class filter 1955 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 1956 return true; 1957 } 1958 1959 CallbackWrapper wrapper(tag_map(), obj); 1960 1961 // apply tag filter 1962 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 1963 wrapper.klass_tag(), 1964 context->heap_filter())) { 1965 return true; 1966 } 1967 1968 // the field index in the referrer 1969 reference_info.field.index = index; 1970 1971 // map the type 1972 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 1973 1974 // setup the jvalue 1975 jvalue value; 1976 copy_to_jvalue(&value, addr, value_type); 1977 1978 jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback(); 1979 int res = (*cb)(ref_kind, 1980 &reference_info, 1981 wrapper.klass_tag(), 1982 wrapper.obj_tag_p(), 1983 value, 1984 value_type, 1985 (void*)user_data()); 1986 return (!(res & JVMTI_VISIT_ABORT)); 1987 } 1988 1989 1990 // instance field 1991 inline bool CallbackInvoker::report_primitive_instance_field(oop obj, 1992 jint index, 1993 address value, 1994 char type) { 1995 return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD, 1996 obj, 1997 index, 1998 value, 1999 type); 2000 } 2001 2002 // static field 2003 inline bool CallbackInvoker::report_primitive_static_field(oop obj, 2004 jint index, 2005 address value, 2006 char type) { 2007 return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD, 2008 obj, 2009 index, 2010 value, 2011 type); 2012 } 2013 2014 // report a JNI local (root object) to the profiler 2015 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) { 2016 if (is_basic_heap_walk()) { 2017 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL, 2018 thread_tag, 2019 depth, 2020 m, 2021 -1, 2022 obj); 2023 } else { 2024 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL, 2025 thread_tag, tid, 2026 depth, 2027 m, 2028 (jlocation)-1, 2029 -1, 2030 obj); 2031 } 2032 } 2033 2034 2035 // report a local (stack reference, root object) 2036 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag, 2037 jlong tid, 2038 jint depth, 2039 jmethodID method, 2040 jlocation bci, 2041 jint slot, 2042 oop obj) { 2043 if (is_basic_heap_walk()) { 2044 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL, 2045 thread_tag, 2046 depth, 2047 method, 2048 slot, 2049 obj); 2050 } else { 2051 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL, 2052 thread_tag, 2053 tid, 2054 depth, 2055 method, 2056 bci, 2057 slot, 2058 obj); 2059 } 2060 } 2061 2062 // report an object referencing a class. 2063 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) { 2064 if (is_basic_heap_walk()) { 2065 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); 2066 } else { 2067 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1); 2068 } 2069 } 2070 2071 // report a class referencing its class loader. 2072 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) { 2073 if (is_basic_heap_walk()) { 2074 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1); 2075 } else { 2076 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1); 2077 } 2078 } 2079 2080 // report a class referencing its signers. 2081 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) { 2082 if (is_basic_heap_walk()) { 2083 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1); 2084 } else { 2085 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1); 2086 } 2087 } 2088 2089 // report a class referencing its protection domain.. 2090 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) { 2091 if (is_basic_heap_walk()) { 2092 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); 2093 } else { 2094 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); 2095 } 2096 } 2097 2098 // report a class referencing its superclass. 2099 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) { 2100 if (is_basic_heap_walk()) { 2101 // Send this to be consistent with past implementation 2102 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); 2103 } else { 2104 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1); 2105 } 2106 } 2107 2108 // report a class referencing one of its interfaces. 2109 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) { 2110 if (is_basic_heap_walk()) { 2111 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1); 2112 } else { 2113 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1); 2114 } 2115 } 2116 2117 // report a class referencing one of its static fields. 2118 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) { 2119 if (is_basic_heap_walk()) { 2120 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot); 2121 } else { 2122 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot); 2123 } 2124 } 2125 2126 // report an array referencing an element object 2127 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) { 2128 if (is_basic_heap_walk()) { 2129 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); 2130 } else { 2131 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); 2132 } 2133 } 2134 2135 // report an object referencing an instance field object 2136 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) { 2137 if (is_basic_heap_walk()) { 2138 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot); 2139 } else { 2140 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot); 2141 } 2142 } 2143 2144 // report an array referencing an element object 2145 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) { 2146 if (is_basic_heap_walk()) { 2147 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index); 2148 } else { 2149 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index); 2150 } 2151 } 2152 2153 // A supporting closure used to process simple roots 2154 class SimpleRootsClosure : public OopClosure { 2155 private: 2156 jvmtiHeapReferenceKind _kind; 2157 bool _continue; 2158 2159 jvmtiHeapReferenceKind root_kind() { return _kind; } 2160 2161 public: 2162 void set_kind(jvmtiHeapReferenceKind kind) { 2163 _kind = kind; 2164 _continue = true; 2165 } 2166 2167 inline bool stopped() { 2168 return !_continue; 2169 } 2170 2171 void do_oop(oop* obj_p) { 2172 // iteration has terminated 2173 if (stopped()) { 2174 return; 2175 } 2176 2177 oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p); 2178 // ignore null 2179 if (o == nullptr) { 2180 return; 2181 } 2182 2183 assert(Universe::heap()->is_in(o), "should be impossible"); 2184 2185 jvmtiHeapReferenceKind kind = root_kind(); 2186 2187 // invoke the callback 2188 _continue = CallbackInvoker::report_simple_root(kind, o); 2189 2190 } 2191 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2192 }; 2193 2194 // A supporting closure used to process JNI locals 2195 class JNILocalRootsClosure : public OopClosure { 2196 private: 2197 jlong _thread_tag; 2198 jlong _tid; 2199 jint _depth; 2200 jmethodID _method; 2201 bool _continue; 2202 public: 2203 void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) { 2204 _thread_tag = thread_tag; 2205 _tid = tid; 2206 _depth = depth; 2207 _method = method; 2208 _continue = true; 2209 } 2210 2211 inline bool stopped() { 2212 return !_continue; 2213 } 2214 2215 void do_oop(oop* obj_p) { 2216 // iteration has terminated 2217 if (stopped()) { 2218 return; 2219 } 2220 2221 oop o = *obj_p; 2222 // ignore null 2223 if (o == nullptr) { 2224 return; 2225 } 2226 2227 // invoke the callback 2228 _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o); 2229 } 2230 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2231 }; 2232 2233 // Helper class to collect/report stack references. 2234 class StackRefCollector { 2235 private: 2236 JvmtiTagMap* _tag_map; 2237 JNILocalRootsClosure* _blk; 2238 // java_thread is needed only to report JNI local on top native frame; 2239 // I.e. it's required only for platform/carrier threads or mounted virtual threads. 2240 JavaThread* _java_thread; 2241 2242 oop _threadObj; 2243 jlong _thread_tag; 2244 jlong _tid; 2245 2246 bool _is_top_frame; 2247 int _depth; 2248 frame* _last_entry_frame; 2249 2250 bool report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset); 2251 bool report_native_stack_refs(jmethodID method); 2252 2253 public: 2254 StackRefCollector(JvmtiTagMap* tag_map, JNILocalRootsClosure* blk, JavaThread* java_thread) 2255 : _tag_map(tag_map), _blk(blk), _java_thread(java_thread), 2256 _threadObj(nullptr), _thread_tag(0), _tid(0), 2257 _is_top_frame(true), _depth(0), _last_entry_frame(nullptr) 2258 { 2259 } 2260 2261 bool set_thread(oop o); 2262 // Sets the thread and reports the reference to it with the specified kind. 2263 bool set_thread(jvmtiHeapReferenceKind kind, oop o); 2264 2265 bool do_frame(vframe* vf); 2266 // Handles frames until vf->sender() is null. 2267 bool process_frames(vframe* vf); 2268 }; 2269 2270 bool StackRefCollector::set_thread(oop o) { 2271 _threadObj = o; 2272 _thread_tag = tag_for(_tag_map, _threadObj); 2273 _tid = java_lang_Thread::thread_id(_threadObj); 2274 2275 _is_top_frame = true; 2276 _depth = 0; 2277 _last_entry_frame = nullptr; 2278 2279 return true; 2280 } 2281 2282 bool StackRefCollector::set_thread(jvmtiHeapReferenceKind kind, oop o) { 2283 return set_thread(o) 2284 && CallbackInvoker::report_simple_root(kind, _threadObj); 2285 } 2286 2287 bool StackRefCollector::report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset) { 2288 for (int index = 0; index < values->size(); index++) { 2289 if (values->at(index)->type() == T_OBJECT) { 2290 oop obj = values->obj_at(index)(); 2291 if (obj == nullptr) { 2292 continue; 2293 } 2294 // stack reference 2295 if (!CallbackInvoker::report_stack_ref_root(_thread_tag, _tid, _depth, method, 2296 bci, slot_offset + index, obj)) { 2297 return false; 2298 } 2299 } 2300 } 2301 return true; 2302 } 2303 2304 bool StackRefCollector::report_native_stack_refs(jmethodID method) { 2305 _blk->set_context(_thread_tag, _tid, _depth, method); 2306 if (_is_top_frame) { 2307 // JNI locals for the top frame. 2308 if (_java_thread != nullptr) { 2309 _java_thread->active_handles()->oops_do(_blk); 2310 if (_blk->stopped()) { 2311 return false; 2312 } 2313 } 2314 } else { 2315 if (_last_entry_frame != nullptr) { 2316 // JNI locals for the entry frame. 2317 assert(_last_entry_frame->is_entry_frame(), "checking"); 2318 _last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(_blk); 2319 if (_blk->stopped()) { 2320 return false; 2321 } 2322 } 2323 } 2324 return true; 2325 } 2326 2327 bool StackRefCollector::do_frame(vframe* vf) { 2328 if (vf->is_java_frame()) { 2329 // java frame (interpreted, compiled, ...) 2330 javaVFrame* jvf = javaVFrame::cast(vf); 2331 2332 jmethodID method = jvf->method()->jmethod_id(); 2333 2334 if (!(jvf->method()->is_native())) { 2335 jlocation bci = (jlocation)jvf->bci(); 2336 StackValueCollection* locals = jvf->locals(); 2337 if (!report_java_stack_refs(locals, method, bci, 0)) { 2338 return false; 2339 } 2340 if (!report_java_stack_refs(jvf->expressions(), method, bci, locals->size())) { 2341 return false; 2342 } 2343 2344 // Follow oops from compiled nmethod. 2345 if (jvf->cb() != nullptr && jvf->cb()->is_nmethod()) { 2346 _blk->set_context(_thread_tag, _tid, _depth, method); 2347 // Need to apply load barriers for unmounted vthreads. 2348 nmethod* nm = jvf->cb()->as_nmethod(); 2349 nm->run_nmethod_entry_barrier(); 2350 nm->oops_do(_blk); 2351 if (_blk->stopped()) { 2352 return false; 2353 } 2354 } 2355 } else { 2356 // native frame 2357 if (!report_native_stack_refs(method)) { 2358 return false; 2359 } 2360 } 2361 _last_entry_frame = nullptr; 2362 _depth++; 2363 } else { 2364 // externalVFrame - for an entry frame then we report the JNI locals 2365 // when we find the corresponding javaVFrame 2366 frame* fr = vf->frame_pointer(); 2367 assert(fr != nullptr, "sanity check"); 2368 if (fr->is_entry_frame()) { 2369 _last_entry_frame = fr; 2370 } 2371 } 2372 2373 _is_top_frame = false; 2374 2375 return true; 2376 } 2377 2378 bool StackRefCollector::process_frames(vframe* vf) { 2379 while (vf != nullptr) { 2380 if (!do_frame(vf)) { 2381 return false; 2382 } 2383 vf = vf->sender(); 2384 } 2385 return true; 2386 } 2387 2388 2389 // A VM operation to iterate over objects that are reachable from 2390 // a set of roots or an initial object. 2391 // 2392 // For VM_HeapWalkOperation the set of roots used is :- 2393 // 2394 // - All JNI global references 2395 // - All inflated monitors 2396 // - All classes loaded by the boot class loader (or all classes 2397 // in the event that class unloading is disabled) 2398 // - All java threads 2399 // - For each java thread then all locals and JNI local references 2400 // on the thread's execution stack 2401 // - All visible/explainable objects from Universes::oops_do 2402 // 2403 class VM_HeapWalkOperation: public VM_Operation { 2404 private: 2405 enum { 2406 initial_visit_stack_size = 4000 2407 }; 2408 2409 bool _is_advanced_heap_walk; // indicates FollowReferences 2410 JvmtiTagMap* _tag_map; 2411 Handle _initial_object; 2412 GrowableArray<oop>* _visit_stack; // the visit stack 2413 2414 JVMTIBitSet _bitset; 2415 2416 // Dead object tags in JvmtiTagMap 2417 GrowableArray<jlong>* _dead_objects; 2418 2419 bool _following_object_refs; // are we following object references 2420 2421 bool _reporting_primitive_fields; // optional reporting 2422 bool _reporting_primitive_array_values; 2423 bool _reporting_string_values; 2424 2425 GrowableArray<oop>* create_visit_stack() { 2426 return new (mtServiceability) GrowableArray<oop>(initial_visit_stack_size, mtServiceability); 2427 } 2428 2429 // accessors 2430 bool is_advanced_heap_walk() const { return _is_advanced_heap_walk; } 2431 JvmtiTagMap* tag_map() const { return _tag_map; } 2432 Handle initial_object() const { return _initial_object; } 2433 2434 bool is_following_references() const { return _following_object_refs; } 2435 2436 bool is_reporting_primitive_fields() const { return _reporting_primitive_fields; } 2437 bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; } 2438 bool is_reporting_string_values() const { return _reporting_string_values; } 2439 2440 GrowableArray<oop>* visit_stack() const { return _visit_stack; } 2441 2442 // iterate over the various object types 2443 inline bool iterate_over_array(oop o); 2444 inline bool iterate_over_type_array(oop o); 2445 inline bool iterate_over_class(oop o); 2446 inline bool iterate_over_object(oop o); 2447 2448 // root collection 2449 inline bool collect_simple_roots(); 2450 inline bool collect_stack_roots(); 2451 inline bool collect_stack_refs(JavaThread* java_thread, JNILocalRootsClosure* blk); 2452 inline bool collect_vthread_stack_refs(oop vt); 2453 2454 // visit an object 2455 inline bool visit(oop o); 2456 2457 public: 2458 VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2459 Handle initial_object, 2460 BasicHeapWalkContext callbacks, 2461 const void* user_data, 2462 GrowableArray<jlong>* objects); 2463 2464 VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2465 Handle initial_object, 2466 AdvancedHeapWalkContext callbacks, 2467 const void* user_data, 2468 GrowableArray<jlong>* objects); 2469 2470 ~VM_HeapWalkOperation(); 2471 2472 VMOp_Type type() const { return VMOp_HeapWalkOperation; } 2473 void doit(); 2474 }; 2475 2476 2477 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2478 Handle initial_object, 2479 BasicHeapWalkContext callbacks, 2480 const void* user_data, 2481 GrowableArray<jlong>* objects) { 2482 _is_advanced_heap_walk = false; 2483 _tag_map = tag_map; 2484 _initial_object = initial_object; 2485 _following_object_refs = (callbacks.object_ref_callback() != nullptr); 2486 _reporting_primitive_fields = false; 2487 _reporting_primitive_array_values = false; 2488 _reporting_string_values = false; 2489 _visit_stack = create_visit_stack(); 2490 _dead_objects = objects; 2491 2492 CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks, &_bitset); 2493 } 2494 2495 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2496 Handle initial_object, 2497 AdvancedHeapWalkContext callbacks, 2498 const void* user_data, 2499 GrowableArray<jlong>* objects) { 2500 _is_advanced_heap_walk = true; 2501 _tag_map = tag_map; 2502 _initial_object = initial_object; 2503 _following_object_refs = true; 2504 _reporting_primitive_fields = (callbacks.primitive_field_callback() != nullptr);; 2505 _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != nullptr);; 2506 _reporting_string_values = (callbacks.string_primitive_value_callback() != nullptr);; 2507 _visit_stack = create_visit_stack(); 2508 _dead_objects = objects; 2509 CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks, &_bitset); 2510 } 2511 2512 VM_HeapWalkOperation::~VM_HeapWalkOperation() { 2513 if (_following_object_refs) { 2514 assert(_visit_stack != nullptr, "checking"); 2515 delete _visit_stack; 2516 _visit_stack = nullptr; 2517 } 2518 } 2519 2520 // an array references its class and has a reference to 2521 // each element in the array 2522 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) { 2523 objArrayOop array = objArrayOop(o); 2524 2525 // array reference to its class 2526 oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror(); 2527 if (!CallbackInvoker::report_class_reference(o, mirror)) { 2528 return false; 2529 } 2530 2531 // iterate over the array and report each reference to a 2532 // non-null element 2533 for (int index=0; index<array->length(); index++) { 2534 oop elem = array->obj_at(index); 2535 if (elem == nullptr) { 2536 continue; 2537 } 2538 2539 // report the array reference o[index] = elem 2540 if (!CallbackInvoker::report_array_element_reference(o, elem, index)) { 2541 return false; 2542 } 2543 } 2544 return true; 2545 } 2546 2547 // a type array references its class 2548 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) { 2549 Klass* k = o->klass(); 2550 oop mirror = k->java_mirror(); 2551 if (!CallbackInvoker::report_class_reference(o, mirror)) { 2552 return false; 2553 } 2554 2555 // report the array contents if required 2556 if (is_reporting_primitive_array_values()) { 2557 if (!CallbackInvoker::report_primitive_array_values(o)) { 2558 return false; 2559 } 2560 } 2561 return true; 2562 } 2563 2564 #ifdef ASSERT 2565 // verify that a static oop field is in range 2566 static inline bool verify_static_oop(InstanceKlass* ik, 2567 oop mirror, int offset) { 2568 address obj_p = cast_from_oop<address>(mirror) + offset; 2569 address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror); 2570 address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize); 2571 assert(end >= start, "sanity check"); 2572 2573 if (obj_p >= start && obj_p < end) { 2574 return true; 2575 } else { 2576 return false; 2577 } 2578 } 2579 #endif // #ifdef ASSERT 2580 2581 // a class references its super class, interfaces, class loader, ... 2582 // and finally its static fields 2583 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) { 2584 int i; 2585 Klass* klass = java_lang_Class::as_Klass(java_class); 2586 2587 if (klass->is_instance_klass()) { 2588 InstanceKlass* ik = InstanceKlass::cast(klass); 2589 2590 // Ignore the class if it hasn't been initialized yet 2591 if (!ik->is_linked()) { 2592 return true; 2593 } 2594 2595 // get the java mirror 2596 oop mirror = klass->java_mirror(); 2597 2598 // super (only if something more interesting than java.lang.Object) 2599 InstanceKlass* java_super = ik->java_super(); 2600 if (java_super != nullptr && java_super != vmClasses::Object_klass()) { 2601 oop super = java_super->java_mirror(); 2602 if (!CallbackInvoker::report_superclass_reference(mirror, super)) { 2603 return false; 2604 } 2605 } 2606 2607 // class loader 2608 oop cl = ik->class_loader(); 2609 if (cl != nullptr) { 2610 if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) { 2611 return false; 2612 } 2613 } 2614 2615 // protection domain 2616 oop pd = ik->protection_domain(); 2617 if (pd != nullptr) { 2618 if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) { 2619 return false; 2620 } 2621 } 2622 2623 // signers 2624 oop signers = ik->signers(); 2625 if (signers != nullptr) { 2626 if (!CallbackInvoker::report_signers_reference(mirror, signers)) { 2627 return false; 2628 } 2629 } 2630 2631 // references from the constant pool 2632 { 2633 ConstantPool* pool = ik->constants(); 2634 for (int i = 1; i < pool->length(); i++) { 2635 constantTag tag = pool->tag_at(i).value(); 2636 if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) { 2637 oop entry; 2638 if (tag.is_string()) { 2639 entry = pool->resolved_string_at(i); 2640 // If the entry is non-null it is resolved. 2641 if (entry == nullptr) { 2642 continue; 2643 } 2644 } else if (tag.is_klass()) { 2645 entry = pool->resolved_klass_at(i)->java_mirror(); 2646 } else { 2647 // Code generated by JIT compilers might not resolve constant 2648 // pool entries. Treat them as resolved if they are loaded. 2649 assert(tag.is_unresolved_klass(), "must be"); 2650 constantPoolHandle cp(Thread::current(), pool); 2651 Klass* klass = ConstantPool::klass_at_if_loaded(cp, i); 2652 if (klass == nullptr) { 2653 continue; 2654 } 2655 entry = klass->java_mirror(); 2656 } 2657 if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) { 2658 return false; 2659 } 2660 } 2661 } 2662 } 2663 2664 // interfaces 2665 // (These will already have been reported as references from the constant pool 2666 // but are specified by IterateOverReachableObjects and must be reported). 2667 Array<InstanceKlass*>* interfaces = ik->local_interfaces(); 2668 for (i = 0; i < interfaces->length(); i++) { 2669 oop interf = interfaces->at(i)->java_mirror(); 2670 if (interf == nullptr) { 2671 continue; 2672 } 2673 if (!CallbackInvoker::report_interface_reference(mirror, interf)) { 2674 return false; 2675 } 2676 } 2677 2678 // iterate over the static fields 2679 2680 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); 2681 for (i=0; i<field_map->field_count(); i++) { 2682 ClassFieldDescriptor* field = field_map->field_at(i); 2683 char type = field->field_type(); 2684 if (!is_primitive_field_type(type)) { 2685 oop fld_o = mirror->obj_field(field->field_offset()); 2686 assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check"); 2687 if (fld_o != nullptr) { 2688 int slot = field->field_index(); 2689 if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) { 2690 delete field_map; 2691 return false; 2692 } 2693 } 2694 } else { 2695 if (is_reporting_primitive_fields()) { 2696 address addr = cast_from_oop<address>(mirror) + field->field_offset(); 2697 int slot = field->field_index(); 2698 if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) { 2699 delete field_map; 2700 return false; 2701 } 2702 } 2703 } 2704 } 2705 delete field_map; 2706 2707 return true; 2708 } 2709 2710 return true; 2711 } 2712 2713 // an object references a class and its instance fields 2714 // (static fields are ignored here as we report these as 2715 // references from the class). 2716 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) { 2717 // reference to the class 2718 if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) { 2719 return false; 2720 } 2721 2722 // iterate over instance fields 2723 ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o); 2724 for (int i=0; i<field_map->field_count(); i++) { 2725 ClassFieldDescriptor* field = field_map->field_at(i); 2726 char type = field->field_type(); 2727 if (!is_primitive_field_type(type)) { 2728 oop fld_o = o->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field->field_offset()); 2729 // ignore any objects that aren't visible to profiler 2730 if (fld_o != nullptr) { 2731 assert(Universe::heap()->is_in(fld_o), "unsafe code should not " 2732 "have references to Klass* anymore"); 2733 int slot = field->field_index(); 2734 if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) { 2735 return false; 2736 } 2737 } 2738 } else { 2739 if (is_reporting_primitive_fields()) { 2740 // primitive instance field 2741 address addr = cast_from_oop<address>(o) + field->field_offset(); 2742 int slot = field->field_index(); 2743 if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) { 2744 return false; 2745 } 2746 } 2747 } 2748 } 2749 2750 // if the object is a java.lang.String 2751 if (is_reporting_string_values() && 2752 o->klass() == vmClasses::String_klass()) { 2753 if (!CallbackInvoker::report_string_value(o)) { 2754 return false; 2755 } 2756 } 2757 return true; 2758 } 2759 2760 2761 // Collects all simple (non-stack) roots except for threads; 2762 // threads are handled in collect_stack_roots() as an optimization. 2763 // if there's a heap root callback provided then the callback is 2764 // invoked for each simple root. 2765 // if an object reference callback is provided then all simple 2766 // roots are pushed onto the marking stack so that they can be 2767 // processed later 2768 // 2769 inline bool VM_HeapWalkOperation::collect_simple_roots() { 2770 SimpleRootsClosure blk; 2771 2772 // JNI globals 2773 blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL); 2774 JNIHandles::oops_do(&blk); 2775 if (blk.stopped()) { 2776 return false; 2777 } 2778 2779 // Preloaded classes and loader from the system dictionary 2780 blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS); 2781 CLDToOopClosure cld_closure(&blk, false); 2782 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 2783 if (blk.stopped()) { 2784 return false; 2785 } 2786 2787 // threads are now handled in collect_stack_roots() 2788 2789 // Other kinds of roots maintained by HotSpot 2790 // Many of these won't be visible but others (such as instances of important 2791 // exceptions) will be visible. 2792 blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER); 2793 Universe::vm_global()->oops_do(&blk); 2794 if (blk.stopped()) { 2795 return false; 2796 } 2797 2798 return true; 2799 } 2800 2801 // Reports the thread as JVMTI_HEAP_REFERENCE_THREAD, 2802 // walks the stack of the thread, finds all references (locals 2803 // and JNI calls) and reports these as stack references. 2804 inline bool VM_HeapWalkOperation::collect_stack_refs(JavaThread* java_thread, 2805 JNILocalRootsClosure* blk) 2806 { 2807 oop threadObj = java_thread->threadObj(); 2808 oop mounted_vt = java_thread->is_vthread_mounted() ? java_thread->vthread() : nullptr; 2809 if (mounted_vt != nullptr && !JvmtiEnvBase::is_vthread_alive(mounted_vt)) { 2810 mounted_vt = nullptr; 2811 } 2812 assert(threadObj != nullptr, "sanity check"); 2813 2814 StackRefCollector stack_collector(tag_map(), blk, java_thread); 2815 2816 if (!java_thread->has_last_Java_frame()) { 2817 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) { 2818 return false; 2819 } 2820 // no last java frame but there may be JNI locals 2821 blk->set_context(tag_for(_tag_map, threadObj), java_lang_Thread::thread_id(threadObj), 0, (jmethodID)nullptr); 2822 java_thread->active_handles()->oops_do(blk); 2823 return !blk->stopped(); 2824 } 2825 // vframes are resource allocated 2826 Thread* current_thread = Thread::current(); 2827 ResourceMark rm(current_thread); 2828 HandleMark hm(current_thread); 2829 2830 RegisterMap reg_map(java_thread, 2831 RegisterMap::UpdateMap::include, 2832 RegisterMap::ProcessFrames::include, 2833 RegisterMap::WalkContinuation::include); 2834 2835 // first handle mounted vthread (if any) 2836 if (mounted_vt != nullptr) { 2837 frame f = java_thread->last_frame(); 2838 vframe* vf = vframe::new_vframe(&f, ®_map, java_thread); 2839 // report virtual thread as JVMTI_HEAP_REFERENCE_OTHER 2840 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_OTHER, mounted_vt)) { 2841 return false; 2842 } 2843 // split virtual thread and carrier thread stacks by vthread entry ("enterSpecial") frame, 2844 // consider vthread entry frame as the last vthread stack frame 2845 while (vf != nullptr) { 2846 if (!stack_collector.do_frame(vf)) { 2847 return false; 2848 } 2849 if (vf->is_vthread_entry()) { 2850 break; 2851 } 2852 vf = vf->sender(); 2853 } 2854 } 2855 // Platform or carrier thread. 2856 vframe* vf = JvmtiEnvBase::get_cthread_last_java_vframe(java_thread, ®_map); 2857 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) { 2858 return false; 2859 } 2860 return stack_collector.process_frames(vf); 2861 } 2862 2863 2864 // Collects the simple roots for all threads and collects all 2865 // stack roots - for each thread it walks the execution 2866 // stack to find all references and local JNI refs. 2867 inline bool VM_HeapWalkOperation::collect_stack_roots() { 2868 JNILocalRootsClosure blk; 2869 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { 2870 oop threadObj = thread->threadObj(); 2871 if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) { 2872 if (!collect_stack_refs(thread, &blk)) { 2873 return false; 2874 } 2875 } 2876 } 2877 return true; 2878 } 2879 2880 // Reports stack references for the unmounted virtual thread. 2881 inline bool VM_HeapWalkOperation::collect_vthread_stack_refs(oop vt) { 2882 if (!JvmtiEnvBase::is_vthread_alive(vt)) { 2883 return true; 2884 } 2885 ContinuationWrapper cont(java_lang_VirtualThread::continuation(vt)); 2886 if (cont.is_empty()) { 2887 return true; 2888 } 2889 assert(!cont.is_mounted(), "sanity check"); 2890 2891 stackChunkOop chunk = cont.last_nonempty_chunk(); 2892 if (chunk == nullptr || chunk->is_empty()) { 2893 return true; 2894 } 2895 2896 // vframes are resource allocated 2897 Thread* current_thread = Thread::current(); 2898 ResourceMark rm(current_thread); 2899 HandleMark hm(current_thread); 2900 2901 RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include); 2902 2903 JNILocalRootsClosure blk; 2904 // JavaThread is not required for unmounted virtual threads 2905 StackRefCollector stack_collector(tag_map(), &blk, nullptr); 2906 // reference to the vthread is already reported 2907 if (!stack_collector.set_thread(vt)) { 2908 return false; 2909 } 2910 2911 frame fr = chunk->top_frame(®_map); 2912 vframe* vf = vframe::new_vframe(&fr, ®_map, nullptr); 2913 return stack_collector.process_frames(vf); 2914 } 2915 2916 // visit an object 2917 // first mark the object as visited 2918 // second get all the outbound references from this object (in other words, all 2919 // the objects referenced by this object). 2920 // 2921 bool VM_HeapWalkOperation::visit(oop o) { 2922 // mark object as visited 2923 assert(!_bitset.is_marked(o), "can't visit same object more than once"); 2924 _bitset.mark_obj(o); 2925 2926 // instance 2927 if (o->is_instance()) { 2928 if (o->klass() == vmClasses::Class_klass()) { 2929 if (!java_lang_Class::is_primitive(o)) { 2930 // a java.lang.Class 2931 return iterate_over_class(o); 2932 } 2933 } else { 2934 // we report stack references only when initial object is not specified 2935 // (in the case we start from heap roots which include platform thread stack references) 2936 if (initial_object().is_null() && java_lang_VirtualThread::is_subclass(o->klass())) { 2937 if (!collect_vthread_stack_refs(o)) { 2938 return false; 2939 } 2940 } 2941 return iterate_over_object(o); 2942 } 2943 } 2944 2945 // object array 2946 if (o->is_objArray()) { 2947 return iterate_over_array(o); 2948 } 2949 2950 // type array 2951 if (o->is_typeArray()) { 2952 return iterate_over_type_array(o); 2953 } 2954 2955 return true; 2956 } 2957 2958 void VM_HeapWalkOperation::doit() { 2959 ResourceMark rm; 2960 ClassFieldMapCacheMark cm; 2961 2962 JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects); 2963 2964 assert(visit_stack()->is_empty(), "visit stack must be empty"); 2965 2966 // the heap walk starts with an initial object or the heap roots 2967 if (initial_object().is_null()) { 2968 // can result in a big performance boost for an agent that is 2969 // focused on analyzing references in the thread stacks. 2970 if (!collect_stack_roots()) return; 2971 2972 if (!collect_simple_roots()) return; 2973 } else { 2974 visit_stack()->push(initial_object()()); 2975 } 2976 2977 // object references required 2978 if (is_following_references()) { 2979 2980 // visit each object until all reachable objects have been 2981 // visited or the callback asked to terminate the iteration. 2982 while (!visit_stack()->is_empty()) { 2983 oop o = visit_stack()->pop(); 2984 if (!_bitset.is_marked(o)) { 2985 if (!visit(o)) { 2986 break; 2987 } 2988 } 2989 } 2990 } 2991 } 2992 2993 // iterate over all objects that are reachable from a set of roots 2994 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback, 2995 jvmtiStackReferenceCallback stack_ref_callback, 2996 jvmtiObjectReferenceCallback object_ref_callback, 2997 const void* user_data) { 2998 // VTMS transitions must be disabled before the EscapeBarrier. 2999 JvmtiVTMSTransitionDisabler disabler; 3000 3001 JavaThread* jt = JavaThread::current(); 3002 EscapeBarrier eb(true, jt); 3003 eb.deoptimize_objects_all_threads(); 3004 Arena dead_object_arena(mtServiceability); 3005 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3006 3007 { 3008 MutexLocker ml(Heap_lock); 3009 BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback); 3010 VM_HeapWalkOperation op(this, Handle(), context, user_data, &dead_objects); 3011 VMThread::execute(&op); 3012 } 3013 // Post events outside of Heap_lock 3014 post_dead_objects(&dead_objects); 3015 } 3016 3017 // iterate over all objects that are reachable from a given object 3018 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object, 3019 jvmtiObjectReferenceCallback object_ref_callback, 3020 const void* user_data) { 3021 oop obj = JNIHandles::resolve(object); 3022 Handle initial_object(Thread::current(), obj); 3023 3024 Arena dead_object_arena(mtServiceability); 3025 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3026 3027 JvmtiVTMSTransitionDisabler disabler; 3028 3029 { 3030 MutexLocker ml(Heap_lock); 3031 BasicHeapWalkContext context(nullptr, nullptr, object_ref_callback); 3032 VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects); 3033 VMThread::execute(&op); 3034 } 3035 // Post events outside of Heap_lock 3036 post_dead_objects(&dead_objects); 3037 } 3038 3039 // follow references from an initial object or the GC roots 3040 void JvmtiTagMap::follow_references(jint heap_filter, 3041 Klass* klass, 3042 jobject object, 3043 const jvmtiHeapCallbacks* callbacks, 3044 const void* user_data) 3045 { 3046 // VTMS transitions must be disabled before the EscapeBarrier. 3047 JvmtiVTMSTransitionDisabler disabler; 3048 3049 oop obj = JNIHandles::resolve(object); 3050 JavaThread* jt = JavaThread::current(); 3051 Handle initial_object(jt, obj); 3052 // EA based optimizations that are tagged or reachable from initial_object are already reverted. 3053 EscapeBarrier eb(initial_object.is_null() && 3054 !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), 3055 jt); 3056 eb.deoptimize_objects_all_threads(); 3057 3058 Arena dead_object_arena(mtServiceability); 3059 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3060 3061 { 3062 MutexLocker ml(Heap_lock); 3063 AdvancedHeapWalkContext context(heap_filter, klass, callbacks); 3064 VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects); 3065 VMThread::execute(&op); 3066 } 3067 // Post events outside of Heap_lock 3068 post_dead_objects(&dead_objects); 3069 } 3070 3071 // Verify gc_notification follows set_needs_cleaning. 3072 DEBUG_ONLY(static bool notified_needs_cleaning = false;) 3073 3074 void JvmtiTagMap::set_needs_cleaning() { 3075 assert(SafepointSynchronize::is_at_safepoint(), "called in gc pause"); 3076 assert(Thread::current()->is_VM_thread(), "should be the VM thread"); 3077 // Can't assert !notified_needs_cleaning; a partial GC might be upgraded 3078 // to a full GC and do this twice without intervening gc_notification. 3079 DEBUG_ONLY(notified_needs_cleaning = true;) 3080 3081 JvmtiEnvIterator it; 3082 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3083 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3084 if (tag_map != nullptr) { 3085 tag_map->_needs_cleaning = !tag_map->is_empty(); 3086 } 3087 } 3088 } 3089 3090 void JvmtiTagMap::gc_notification(size_t num_dead_entries) { 3091 assert(notified_needs_cleaning, "missing GC notification"); 3092 DEBUG_ONLY(notified_needs_cleaning = false;) 3093 3094 // Notify ServiceThread if there's work to do. 3095 { 3096 MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); 3097 _has_object_free_events = (num_dead_entries != 0); 3098 if (_has_object_free_events) ml.notify_all(); 3099 } 3100 3101 // If no dead entries then cancel cleaning requests. 3102 if (num_dead_entries == 0) { 3103 JvmtiEnvIterator it; 3104 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3105 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3106 if (tag_map != nullptr) { 3107 MutexLocker ml (tag_map->lock(), Mutex::_no_safepoint_check_flag); 3108 tag_map->_needs_cleaning = false; 3109 } 3110 } 3111 } 3112 } 3113 3114 // Used by ServiceThread to discover there is work to do. 3115 bool JvmtiTagMap::has_object_free_events_and_reset() { 3116 assert_lock_strong(Service_lock); 3117 bool result = _has_object_free_events; 3118 _has_object_free_events = false; 3119 return result; 3120 } 3121 3122 // Used by ServiceThread to clean up tagmaps. 3123 void JvmtiTagMap::flush_all_object_free_events() { 3124 JavaThread* thread = JavaThread::current(); 3125 JvmtiEnvIterator it; 3126 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3127 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3128 if (tag_map != nullptr) { 3129 tag_map->flush_object_free_events(); 3130 ThreadBlockInVM tbiv(thread); // Be safepoint-polite while looping. 3131 } 3132 } 3133 }