1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/constantPool.inline.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/typeArrayOop.inline.hpp"
  45 #include "prims/jvmtiEventController.hpp"
  46 #include "prims/jvmtiEventController.inline.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiImpl.hpp"
  49 #include "prims/jvmtiTagMap.hpp"
  50 #include "prims/jvmtiTagMapTable.hpp"
  51 #include "prims/jvmtiThreadState.hpp"
  52 #include "runtime/continuationWrapper.inline.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/interfaceSupport.inline.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/javaThread.inline.hpp"
  59 #include "runtime/jniHandles.inline.hpp"
  60 #include "runtime/mutex.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/reflectionUtils.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/timerTrace.hpp"
  65 #include "runtime/threadSMR.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "runtime/vmOperations.hpp"
  69 #include "utilities/objectBitSet.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 
  72 typedef ObjectBitSet<mtServiceability> JVMTIBitSet;
  73 
  74 bool JvmtiTagMap::_has_object_free_events = false;
  75 
  76 // create a JvmtiTagMap
  77 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
  78   _env(env),
  79   _lock(Mutex::nosafepoint, "JvmtiTagMap_lock"),
  80   _needs_cleaning(false),
  81   _posting_events(false) {
  82 
  83   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
  84   assert(((JvmtiEnvBase *)env)->tag_map() == nullptr, "tag map already exists for environment");
  85 
  86   _hashmap = new JvmtiTagMapTable();
  87 
  88   // finally add us to the environment
  89   ((JvmtiEnvBase *)env)->release_set_tag_map(this);
  90 }
  91 
  92 // destroy a JvmtiTagMap
  93 JvmtiTagMap::~JvmtiTagMap() {
  94 
  95   // no lock acquired as we assume the enclosing environment is
  96   // also being destroyed.
  97   ((JvmtiEnvBase *)_env)->set_tag_map(nullptr);
  98 
  99   // finally destroy the hashmap
 100   delete _hashmap;
 101   _hashmap = nullptr;
 102 }
 103 
 104 // Called by env_dispose() to reclaim memory before deallocation.
 105 // Remove all the entries but keep the empty table intact.
 106 // This needs the table lock.
 107 void JvmtiTagMap::clear() {
 108   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 109   _hashmap->clear();
 110 }
 111 
 112 // returns the tag map for the given environments. If the tag map
 113 // doesn't exist then it is created.
 114 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 115   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire();
 116   if (tag_map == nullptr) {
 117     MutexLocker mu(JvmtiThreadState_lock);
 118     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 119     if (tag_map == nullptr) {
 120       tag_map = new JvmtiTagMap(env);
 121     }
 122   } else {
 123     DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
 124   }
 125   return tag_map;
 126 }
 127 
 128 // iterate over all entries in the tag map.
 129 void JvmtiTagMap::entry_iterate(JvmtiTagMapKeyClosure* closure) {
 130   hashmap()->entry_iterate(closure);
 131 }
 132 
 133 // returns true if the hashmaps are empty
 134 bool JvmtiTagMap::is_empty() {
 135   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 136   return hashmap()->is_empty();
 137 }
 138 
 139 // This checks for posting before operations that use
 140 // this tagmap table.
 141 void JvmtiTagMap::check_hashmap(GrowableArray<jlong>* objects) {
 142   assert(is_locked(), "checking");
 143 
 144   if (is_empty()) { return; }
 145 
 146   if (_needs_cleaning &&
 147       objects != nullptr &&
 148       env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
 149     remove_dead_entries_locked(objects);
 150   }
 151 }
 152 
 153 // This checks for posting and is called from the heap walks.
 154 void JvmtiTagMap::check_hashmaps_for_heapwalk(GrowableArray<jlong>* objects) {
 155   assert(SafepointSynchronize::is_at_safepoint(), "called from safepoints");
 156 
 157   // Verify that the tag map tables are valid and unconditionally post events
 158   // that are expected to be posted before gc_notification.
 159   JvmtiEnvIterator it;
 160   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
 161     JvmtiTagMap* tag_map = env->tag_map_acquire();
 162     if (tag_map != nullptr) {
 163       // The ZDriver may be walking the hashmaps concurrently so this lock is needed.
 164       MutexLocker ml(tag_map->lock(), Mutex::_no_safepoint_check_flag);
 165       tag_map->check_hashmap(objects);
 166     }
 167   }
 168 }
 169 
 170 // Return the tag value for an object, or 0 if the object is
 171 // not tagged
 172 //
 173 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 174   return tag_map->hashmap()->find(o);
 175 }
 176 
 177 // A CallbackWrapper is a support class for querying and tagging an object
 178 // around a callback to a profiler. The constructor does pre-callback
 179 // work to get the tag value, klass tag value, ... and the destructor
 180 // does the post-callback work of tagging or untagging the object.
 181 //
 182 // {
 183 //   CallbackWrapper wrapper(tag_map, o);
 184 //
 185 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 186 //
 187 // }
 188 // wrapper goes out of scope here which results in the destructor
 189 // checking to see if the object has been tagged, untagged, or the
 190 // tag value has changed.
 191 //
 192 class CallbackWrapper : public StackObj {
 193  private:
 194   JvmtiTagMap* _tag_map;
 195   JvmtiTagMapTable* _hashmap;
 196   oop _o;
 197   jlong _obj_size;
 198   jlong _obj_tag;
 199   jlong _klass_tag;
 200 
 201  protected:
 202   JvmtiTagMap* tag_map() const { return _tag_map; }
 203 
 204   // invoked post-callback to tag, untag, or update the tag of an object
 205   void inline post_callback_tag_update(oop o, JvmtiTagMapTable* hashmap,
 206                                        jlong obj_tag);
 207  public:
 208   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 209     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 210            "MT unsafe or must be VM thread");
 211 
 212     // object to tag
 213     _o = o;
 214 
 215     // object size
 216     _obj_size = (jlong)_o->size() * wordSize;
 217 
 218     // record the context
 219     _tag_map = tag_map;
 220     _hashmap = tag_map->hashmap();
 221 
 222     // get object tag
 223     _obj_tag = _hashmap->find(_o);
 224 
 225     // get the class and the class's tag value
 226     assert(vmClasses::Class_klass()->is_mirror_instance_klass(), "Is not?");
 227 
 228     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
 229   }
 230 
 231   ~CallbackWrapper() {
 232     post_callback_tag_update(_o, _hashmap, _obj_tag);
 233   }
 234 
 235   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 236   inline jlong obj_size() const                 { return _obj_size; }
 237   inline jlong obj_tag() const                  { return _obj_tag; }
 238   inline jlong klass_tag() const                { return _klass_tag; }
 239 };
 240 
 241 // callback post-callback to tag, untag, or update the tag of an object
 242 void inline CallbackWrapper::post_callback_tag_update(oop o,
 243                                                       JvmtiTagMapTable* hashmap,
 244                                                       jlong obj_tag) {
 245   if (obj_tag == 0) {
 246     // callback has untagged the object, remove the entry if present
 247     hashmap->remove(o);
 248   } else {
 249     // object was previously tagged or not present - the callback may have
 250     // changed the tag value
 251     assert(Thread::current()->is_VM_thread(), "must be VMThread");
 252     hashmap->add(o, obj_tag);
 253   }
 254 }
 255 
 256 // An extended CallbackWrapper used when reporting an object reference
 257 // to the agent.
 258 //
 259 // {
 260 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 261 //
 262 //   (*callback)(wrapper.klass_tag(),
 263 //               wrapper.obj_size(),
 264 //               wrapper.obj_tag_p()
 265 //               wrapper.referrer_tag_p(), ...)
 266 //
 267 // }
 268 // wrapper goes out of scope here which results in the destructor
 269 // checking to see if the referrer object has been tagged, untagged,
 270 // or the tag value has changed.
 271 //
 272 class TwoOopCallbackWrapper : public CallbackWrapper {
 273  private:
 274   bool _is_reference_to_self;
 275   JvmtiTagMapTable* _referrer_hashmap;
 276   oop _referrer;
 277   jlong _referrer_obj_tag;
 278   jlong _referrer_klass_tag;
 279   jlong* _referrer_tag_p;
 280 
 281   bool is_reference_to_self() const             { return _is_reference_to_self; }
 282 
 283  public:
 284   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 285     CallbackWrapper(tag_map, o)
 286   {
 287     // self reference needs to be handled in a special way
 288     _is_reference_to_self = (referrer == o);
 289 
 290     if (_is_reference_to_self) {
 291       _referrer_klass_tag = klass_tag();
 292       _referrer_tag_p = obj_tag_p();
 293     } else {
 294       _referrer = referrer;
 295       // record the context
 296       _referrer_hashmap = tag_map->hashmap();
 297 
 298       // get object tag
 299       _referrer_obj_tag = _referrer_hashmap->find(_referrer);
 300 
 301       _referrer_tag_p = &_referrer_obj_tag;
 302 
 303       // get referrer class tag.
 304       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
 305     }
 306   }
 307 
 308   ~TwoOopCallbackWrapper() {
 309     if (!is_reference_to_self()) {
 310       post_callback_tag_update(_referrer,
 311                                _referrer_hashmap,
 312                                _referrer_obj_tag);
 313     }
 314   }
 315 
 316   // address of referrer tag
 317   // (for a self reference this will return the same thing as obj_tag_p())
 318   inline jlong* referrer_tag_p() { return _referrer_tag_p; }
 319 
 320   // referrer's class tag
 321   inline jlong referrer_klass_tag() { return _referrer_klass_tag; }
 322 };
 323 
 324 // tag an object
 325 //
 326 // This function is performance critical. If many threads attempt to tag objects
 327 // around the same time then it's possible that the Mutex associated with the
 328 // tag map will be a hot lock.
 329 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 330   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 331 
 332   // SetTag should not post events because the JavaThread has to
 333   // transition to native for the callback and this cannot stop for
 334   // safepoints with the hashmap lock held.
 335   check_hashmap(nullptr);  /* don't collect dead objects */
 336 
 337   // resolve the object
 338   oop o = JNIHandles::resolve_non_null(object);
 339 
 340   // see if the object is already tagged
 341   JvmtiTagMapTable* hashmap = _hashmap;
 342 
 343   if (tag == 0) {
 344     // remove the entry if present
 345     hashmap->remove(o);
 346   } else {
 347     // if the object is already tagged or not present then we add/update
 348     // the tag
 349     hashmap->add(o, tag);
 350   }
 351 }
 352 
 353 // get the tag for an object
 354 jlong JvmtiTagMap::get_tag(jobject object) {
 355   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 356 
 357   // GetTag should not post events because the JavaThread has to
 358   // transition to native for the callback and this cannot stop for
 359   // safepoints with the hashmap lock held.
 360   check_hashmap(nullptr); /* don't collect dead objects */
 361 
 362   // resolve the object
 363   oop o = JNIHandles::resolve_non_null(object);
 364 
 365   return tag_for(this, o);
 366 }
 367 
 368 
 369 // Helper class used to describe the static or instance fields of a class.
 370 // For each field it holds the field index (as defined by the JVMTI specification),
 371 // the field type, and the offset.
 372 
 373 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 374  private:
 375   int _field_index;
 376   int _field_offset;
 377   char _field_type;
 378  public:
 379   ClassFieldDescriptor(int index, char type, int offset) :
 380     _field_index(index), _field_offset(offset), _field_type(type) {
 381   }
 382   int field_index()  const  { return _field_index; }
 383   char field_type()  const  { return _field_type; }
 384   int field_offset() const  { return _field_offset; }
 385 };
 386 
 387 class ClassFieldMap: public CHeapObj<mtInternal> {
 388  private:
 389   enum {
 390     initial_field_count = 5
 391   };
 392 
 393   // list of field descriptors
 394   GrowableArray<ClassFieldDescriptor*>* _fields;
 395 
 396   // constructor
 397   ClassFieldMap();
 398 
 399   // calculates number of fields in all interfaces
 400   static int interfaces_field_count(InstanceKlass* ik);
 401 
 402   // add a field
 403   void add(int index, char type, int offset);
 404 
 405  public:
 406   ~ClassFieldMap();
 407 
 408   // access
 409   int field_count()                     { return _fields->length(); }
 410   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 411 
 412   // functions to create maps of static or instance fields
 413   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 414   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 415 };
 416 
 417 ClassFieldMap::ClassFieldMap() {
 418   _fields = new (mtServiceability)
 419     GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability);
 420 }
 421 
 422 ClassFieldMap::~ClassFieldMap() {
 423   for (int i=0; i<_fields->length(); i++) {
 424     delete _fields->at(i);
 425   }
 426   delete _fields;
 427 }
 428 
 429 int ClassFieldMap::interfaces_field_count(InstanceKlass* ik) {
 430   const Array<InstanceKlass*>* interfaces = ik->transitive_interfaces();
 431   int count = 0;
 432   for (int i = 0; i < interfaces->length(); i++) {
 433     FilteredJavaFieldStream fld(interfaces->at(i));
 434     count += fld.field_count();
 435   }
 436   return count;
 437 }
 438 
 439 void ClassFieldMap::add(int index, char type, int offset) {
 440   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 441   _fields->append(field);
 442 }
 443 
 444 // Returns a heap allocated ClassFieldMap to describe the static fields
 445 // of the given class.
 446 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 447   InstanceKlass* ik = InstanceKlass::cast(k);
 448 
 449   // create the field map
 450   ClassFieldMap* field_map = new ClassFieldMap();
 451 
 452   // Static fields of interfaces and superclasses are reported as references from the interfaces/superclasses.
 453   // Need to calculate start index of this class fields: number of fields in all interfaces and superclasses.
 454   int index = interfaces_field_count(ik);
 455   for (InstanceKlass* super_klass = ik->java_super(); super_klass != nullptr; super_klass = super_klass->java_super()) {
 456     FilteredJavaFieldStream super_fld(super_klass);
 457     index += super_fld.field_count();
 458   }
 459 
 460   for (FilteredJavaFieldStream fld(ik); !fld.done(); fld.next(), index++) {
 461     // ignore instance fields
 462     if (!fld.access_flags().is_static()) {
 463       continue;
 464     }
 465     field_map->add(index, fld.signature()->char_at(0), fld.offset());
 466   }
 467 
 468   return field_map;
 469 }
 470 
 471 // Returns a heap allocated ClassFieldMap to describe the instance fields
 472 // of the given class. All instance fields are included (this means public
 473 // and private fields declared in superclasses too).
 474 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 475   InstanceKlass* ik = InstanceKlass::cast(obj->klass());
 476 
 477   // create the field map
 478   ClassFieldMap* field_map = new ClassFieldMap();
 479 
 480   // fields of the superclasses are reported first, so need to know total field number to calculate field indices
 481   int total_field_number = interfaces_field_count(ik);
 482   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 483     FilteredJavaFieldStream fld(klass);
 484     total_field_number += fld.field_count();
 485   }
 486 
 487   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 488     FilteredJavaFieldStream fld(klass);
 489     int start_index = total_field_number - fld.field_count();
 490     for (int index = 0; !fld.done(); fld.next(), index++) {
 491       // ignore static fields
 492       if (fld.access_flags().is_static()) {
 493         continue;
 494       }
 495       field_map->add(start_index + index, fld.signature()->char_at(0), fld.offset());
 496     }
 497     // update total_field_number for superclass (decrease by the field count in the current class)
 498     total_field_number = start_index;
 499   }
 500 
 501   return field_map;
 502 }
 503 
 504 // Helper class used to cache a ClassFileMap for the instance fields of
 505 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 506 // heap iteration and avoid creating a field map for each object in the heap
 507 // (only need to create the map when the first instance of a class is encountered).
 508 //
 509 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 510  private:
 511   enum {
 512      initial_class_count = 200
 513   };
 514   ClassFieldMap* _field_map;
 515 
 516   ClassFieldMap* field_map() const { return _field_map; }
 517 
 518   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 519   ~JvmtiCachedClassFieldMap();
 520 
 521   static GrowableArray<InstanceKlass*>* _class_list;
 522   static void add_to_class_list(InstanceKlass* ik);
 523 
 524  public:
 525   // returns the field map for a given object (returning map cached
 526   // by InstanceKlass if possible
 527   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 528 
 529   // removes the field map from all instanceKlasses - should be
 530   // called before VM operation completes
 531   static void clear_cache();
 532 
 533   // returns the number of ClassFieldMap cached by instanceKlasses
 534   static int cached_field_map_count();
 535 };
 536 
 537 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 538 
 539 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 540   _field_map = field_map;
 541 }
 542 
 543 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 544   if (_field_map != nullptr) {
 545     delete _field_map;
 546   }
 547 }
 548 
 549 // Marker class to ensure that the class file map cache is only used in a defined
 550 // scope.
 551 class ClassFieldMapCacheMark : public StackObj {
 552  private:
 553    static bool _is_active;
 554  public:
 555    ClassFieldMapCacheMark() {
 556      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 557      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 558      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 559      _is_active = true;
 560    }
 561    ~ClassFieldMapCacheMark() {
 562      JvmtiCachedClassFieldMap::clear_cache();
 563      _is_active = false;
 564    }
 565    static bool is_active() { return _is_active; }
 566 };
 567 
 568 bool ClassFieldMapCacheMark::_is_active;
 569 
 570 // record that the given InstanceKlass is caching a field map
 571 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 572   if (_class_list == nullptr) {
 573     _class_list = new (mtServiceability)
 574       GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability);
 575   }
 576   _class_list->push(ik);
 577 }
 578 
 579 // returns the instance field map for the given object
 580 // (returns field map cached by the InstanceKlass if possible)
 581 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 582   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 583   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 584 
 585   Klass* k = obj->klass();
 586   InstanceKlass* ik = InstanceKlass::cast(k);
 587 
 588   // return cached map if possible
 589   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 590   if (cached_map != nullptr) {
 591     assert(cached_map->field_map() != nullptr, "missing field list");
 592     return cached_map->field_map();
 593   } else {
 594     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 595     cached_map = new JvmtiCachedClassFieldMap(field_map);
 596     ik->set_jvmti_cached_class_field_map(cached_map);
 597     add_to_class_list(ik);
 598     return field_map;
 599   }
 600 }
 601 
 602 // remove the fields maps cached from all instanceKlasses
 603 void JvmtiCachedClassFieldMap::clear_cache() {
 604   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 605   if (_class_list != nullptr) {
 606     for (int i = 0; i < _class_list->length(); i++) {
 607       InstanceKlass* ik = _class_list->at(i);
 608       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 609       assert(cached_map != nullptr, "should not be null");
 610       ik->set_jvmti_cached_class_field_map(nullptr);
 611       delete cached_map;  // deletes the encapsulated field map
 612     }
 613     delete _class_list;
 614     _class_list = nullptr;
 615   }
 616 }
 617 
 618 // returns the number of ClassFieldMap cached by instanceKlasses
 619 int JvmtiCachedClassFieldMap::cached_field_map_count() {
 620   return (_class_list == nullptr) ? 0 : _class_list->length();
 621 }
 622 
 623 // helper function to indicate if an object is filtered by its tag or class tag
 624 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
 625                                               jlong klass_tag,
 626                                               int heap_filter) {
 627   // apply the heap filter
 628   if (obj_tag != 0) {
 629     // filter out tagged objects
 630     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
 631   } else {
 632     // filter out untagged objects
 633     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
 634   }
 635   if (klass_tag != 0) {
 636     // filter out objects with tagged classes
 637     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
 638   } else {
 639     // filter out objects with untagged classes.
 640     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
 641   }
 642   return false;
 643 }
 644 
 645 // helper function to indicate if an object is filtered by a klass filter
 646 static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) {
 647   if (klass_filter != nullptr) {
 648     if (obj->klass() != klass_filter) {
 649       return true;
 650     }
 651   }
 652   return false;
 653 }
 654 
 655 // helper function to tell if a field is a primitive field or not
 656 static inline bool is_primitive_field_type(char type) {
 657   return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY);
 658 }
 659 
 660 // helper function to copy the value from location addr to jvalue.
 661 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
 662   switch (value_type) {
 663     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
 664     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
 665     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
 666     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
 667     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
 668     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
 669     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
 670     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
 671     default: ShouldNotReachHere();
 672   }
 673 }
 674 
 675 // helper function to invoke string primitive value callback
 676 // returns visit control flags
 677 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
 678                                          CallbackWrapper* wrapper,
 679                                          oop str,
 680                                          void* user_data)
 681 {
 682   assert(str->klass() == vmClasses::String_klass(), "not a string");
 683 
 684   typeArrayOop s_value = java_lang_String::value(str);
 685 
 686   // JDK-6584008: the value field may be null if a String instance is
 687   // partially constructed.
 688   if (s_value == nullptr) {
 689     return 0;
 690   }
 691   // get the string value and length
 692   // (string value may be offset from the base)
 693   int s_len = java_lang_String::length(str);
 694   bool is_latin1 = java_lang_String::is_latin1(str);
 695   jchar* value;
 696   if (s_len > 0) {
 697     if (!is_latin1) {
 698       value = s_value->char_at_addr(0);
 699     } else {
 700       // Inflate latin1 encoded string to UTF16
 701       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
 702       for (int i = 0; i < s_len; i++) {
 703         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
 704       }
 705       value = &buf[0];
 706     }
 707   } else {
 708     // Don't use char_at_addr(0) if length is 0
 709     value = (jchar*) s_value->base(T_CHAR);
 710   }
 711 
 712   // invoke the callback
 713   jint res = (*cb)(wrapper->klass_tag(),
 714                    wrapper->obj_size(),
 715                    wrapper->obj_tag_p(),
 716                    value,
 717                    (jint)s_len,
 718                    user_data);
 719 
 720   if (is_latin1 && s_len > 0) {
 721     FREE_C_HEAP_ARRAY(jchar, value);
 722   }
 723   return res;
 724 }
 725 
 726 // helper function to invoke string primitive value callback
 727 // returns visit control flags
 728 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
 729                                                   CallbackWrapper* wrapper,
 730                                                   oop obj,
 731                                                   void* user_data)
 732 {
 733   assert(obj->is_typeArray(), "not a primitive array");
 734 
 735   // get base address of first element
 736   typeArrayOop array = typeArrayOop(obj);
 737   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
 738   void* elements = array->base(type);
 739 
 740   // jvmtiPrimitiveType is defined so this mapping is always correct
 741   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
 742 
 743   return (*cb)(wrapper->klass_tag(),
 744                wrapper->obj_size(),
 745                wrapper->obj_tag_p(),
 746                (jint)array->length(),
 747                elem_type,
 748                elements,
 749                user_data);
 750 }
 751 
 752 // helper function to invoke the primitive field callback for all static fields
 753 // of a given class
 754 static jint invoke_primitive_field_callback_for_static_fields
 755   (CallbackWrapper* wrapper,
 756    oop obj,
 757    jvmtiPrimitiveFieldCallback cb,
 758    void* user_data)
 759 {
 760   // for static fields only the index will be set
 761   static jvmtiHeapReferenceInfo reference_info = { 0 };
 762 
 763   assert(obj->klass() == vmClasses::Class_klass(), "not a class");
 764   if (java_lang_Class::is_primitive(obj)) {
 765     return 0;
 766   }
 767   Klass* klass = java_lang_Class::as_Klass(obj);
 768 
 769   // ignore classes for object and type arrays
 770   if (!klass->is_instance_klass()) {
 771     return 0;
 772   }
 773 
 774   // ignore classes which aren't linked yet
 775   InstanceKlass* ik = InstanceKlass::cast(klass);
 776   if (!ik->is_linked()) {
 777     return 0;
 778   }
 779 
 780   // get the field map
 781   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
 782 
 783   // invoke the callback for each static primitive field
 784   for (int i=0; i<field_map->field_count(); i++) {
 785     ClassFieldDescriptor* field = field_map->field_at(i);
 786 
 787     // ignore non-primitive fields
 788     char type = field->field_type();
 789     if (!is_primitive_field_type(type)) {
 790       continue;
 791     }
 792     // one-to-one mapping
 793     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
 794 
 795     // get offset and field value
 796     int offset = field->field_offset();
 797     address addr = cast_from_oop<address>(klass->java_mirror()) + offset;
 798     jvalue value;
 799     copy_to_jvalue(&value, addr, value_type);
 800 
 801     // field index
 802     reference_info.field.index = field->field_index();
 803 
 804     // invoke the callback
 805     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
 806                      &reference_info,
 807                      wrapper->klass_tag(),
 808                      wrapper->obj_tag_p(),
 809                      value,
 810                      value_type,
 811                      user_data);
 812     if (res & JVMTI_VISIT_ABORT) {
 813       delete field_map;
 814       return res;
 815     }
 816   }
 817 
 818   delete field_map;
 819   return 0;
 820 }
 821 
 822 // helper function to invoke the primitive field callback for all instance fields
 823 // of a given object
 824 static jint invoke_primitive_field_callback_for_instance_fields(
 825   CallbackWrapper* wrapper,
 826   oop obj,
 827   jvmtiPrimitiveFieldCallback cb,
 828   void* user_data)
 829 {
 830   // for instance fields only the index will be set
 831   static jvmtiHeapReferenceInfo reference_info = { 0 };
 832 
 833   // get the map of the instance fields
 834   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
 835 
 836   // invoke the callback for each instance primitive field
 837   for (int i=0; i<fields->field_count(); i++) {
 838     ClassFieldDescriptor* field = fields->field_at(i);
 839 
 840     // ignore non-primitive fields
 841     char type = field->field_type();
 842     if (!is_primitive_field_type(type)) {
 843       continue;
 844     }
 845     // one-to-one mapping
 846     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
 847 
 848     // get offset and field value
 849     int offset = field->field_offset();
 850     address addr = cast_from_oop<address>(obj) + offset;
 851     jvalue value;
 852     copy_to_jvalue(&value, addr, value_type);
 853 
 854     // field index
 855     reference_info.field.index = field->field_index();
 856 
 857     // invoke the callback
 858     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
 859                      &reference_info,
 860                      wrapper->klass_tag(),
 861                      wrapper->obj_tag_p(),
 862                      value,
 863                      value_type,
 864                      user_data);
 865     if (res & JVMTI_VISIT_ABORT) {
 866       return res;
 867     }
 868   }
 869   return 0;
 870 }
 871 
 872 
 873 // VM operation to iterate over all objects in the heap (both reachable
 874 // and unreachable)
 875 class VM_HeapIterateOperation: public VM_Operation {
 876  private:
 877   ObjectClosure* _blk;
 878   GrowableArray<jlong>* const _dead_objects;
 879  public:
 880   VM_HeapIterateOperation(ObjectClosure* blk, GrowableArray<jlong>* objects) :
 881     _blk(blk), _dead_objects(objects) { }
 882 
 883   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
 884   void doit() {
 885     // allows class files maps to be cached during iteration
 886     ClassFieldMapCacheMark cm;
 887 
 888     JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
 889 
 890     // make sure that heap is parsable (fills TLABs with filler objects)
 891     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
 892 
 893     // Verify heap before iteration - if the heap gets corrupted then
 894     // JVMTI's IterateOverHeap will crash.
 895     if (VerifyBeforeIteration) {
 896       Universe::verify();
 897     }
 898 
 899     // do the iteration
 900     Universe::heap()->object_iterate(_blk);
 901   }
 902 };
 903 
 904 
 905 // An ObjectClosure used to support the deprecated IterateOverHeap and
 906 // IterateOverInstancesOfClass functions
 907 class IterateOverHeapObjectClosure: public ObjectClosure {
 908  private:
 909   JvmtiTagMap* _tag_map;
 910   Klass* _klass;
 911   jvmtiHeapObjectFilter _object_filter;
 912   jvmtiHeapObjectCallback _heap_object_callback;
 913   const void* _user_data;
 914 
 915   // accessors
 916   JvmtiTagMap* tag_map() const                    { return _tag_map; }
 917   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
 918   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
 919   Klass* klass() const                            { return _klass; }
 920   const void* user_data() const                   { return _user_data; }
 921 
 922   // indicates if iteration has been aborted
 923   bool _iteration_aborted;
 924   bool is_iteration_aborted() const               { return _iteration_aborted; }
 925   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
 926 
 927  public:
 928   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
 929                                Klass* klass,
 930                                jvmtiHeapObjectFilter object_filter,
 931                                jvmtiHeapObjectCallback heap_object_callback,
 932                                const void* user_data) :
 933     _tag_map(tag_map),
 934     _klass(klass),
 935     _object_filter(object_filter),
 936     _heap_object_callback(heap_object_callback),
 937     _user_data(user_data),
 938     _iteration_aborted(false)
 939   {
 940   }
 941 
 942   void do_object(oop o);
 943 };
 944 
 945 // invoked for each object in the heap
 946 void IterateOverHeapObjectClosure::do_object(oop o) {
 947   assert(o != nullptr, "Heap iteration should never produce null!");
 948   // check if iteration has been halted
 949   if (is_iteration_aborted()) return;
 950 
 951   // instanceof check when filtering by klass
 952   if (klass() != nullptr && !o->is_a(klass())) {
 953     return;
 954   }
 955 
 956   // skip if object is a dormant shared object whose mirror hasn't been loaded
 957   if (o->klass()->java_mirror() == nullptr) {
 958     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(o),
 959                          o->klass()->external_name());
 960     return;
 961   }
 962 
 963   // prepare for the calllback
 964   CallbackWrapper wrapper(tag_map(), o);
 965 
 966   // if the object is tagged and we're only interested in untagged objects
 967   // then don't invoke the callback. Similarly, if the object is untagged
 968   // and we're only interested in tagged objects we skip the callback.
 969   if (wrapper.obj_tag() != 0) {
 970     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
 971   } else {
 972     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
 973   }
 974 
 975   // invoke the agent's callback
 976   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
 977                                                        wrapper.obj_size(),
 978                                                        wrapper.obj_tag_p(),
 979                                                        (void*)user_data());
 980   if (control == JVMTI_ITERATION_ABORT) {
 981     set_iteration_aborted(true);
 982   }
 983 }
 984 
 985 // An ObjectClosure used to support the IterateThroughHeap function
 986 class IterateThroughHeapObjectClosure: public ObjectClosure {
 987  private:
 988   JvmtiTagMap* _tag_map;
 989   Klass* _klass;
 990   int _heap_filter;
 991   const jvmtiHeapCallbacks* _callbacks;
 992   const void* _user_data;
 993 
 994   // accessor functions
 995   JvmtiTagMap* tag_map() const                     { return _tag_map; }
 996   int heap_filter() const                          { return _heap_filter; }
 997   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
 998   Klass* klass() const                             { return _klass; }
 999   const void* user_data() const                    { return _user_data; }
1000 
1001   // indicates if the iteration has been aborted
1002   bool _iteration_aborted;
1003   bool is_iteration_aborted() const                { return _iteration_aborted; }
1004 
1005   // used to check the visit control flags. If the abort flag is set
1006   // then we set the iteration aborted flag so that the iteration completes
1007   // without processing any further objects
1008   bool check_flags_for_abort(jint flags) {
1009     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1010     if (is_abort) {
1011       _iteration_aborted = true;
1012     }
1013     return is_abort;
1014   }
1015 
1016  public:
1017   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1018                                   Klass* klass,
1019                                   int heap_filter,
1020                                   const jvmtiHeapCallbacks* heap_callbacks,
1021                                   const void* user_data) :
1022     _tag_map(tag_map),
1023     _klass(klass),
1024     _heap_filter(heap_filter),
1025     _callbacks(heap_callbacks),
1026     _user_data(user_data),
1027     _iteration_aborted(false)
1028   {
1029   }
1030 
1031   void do_object(oop o);
1032 };
1033 
1034 // invoked for each object in the heap
1035 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1036   assert(obj != nullptr, "Heap iteration should never produce null!");
1037   // check if iteration has been halted
1038   if (is_iteration_aborted()) return;
1039 
1040   // apply class filter
1041   if (is_filtered_by_klass_filter(obj, klass())) return;
1042 
1043   // skip if object is a dormant shared object whose mirror hasn't been loaded
1044   if (obj->klass()->java_mirror() == nullptr) {
1045     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(obj),
1046                          obj->klass()->external_name());
1047     return;
1048   }
1049 
1050   // prepare for callback
1051   CallbackWrapper wrapper(tag_map(), obj);
1052 
1053   // check if filtered by the heap filter
1054   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1055     return;
1056   }
1057 
1058   // for arrays we need the length, otherwise -1
1059   bool is_array = obj->is_array();
1060   int len = is_array ? arrayOop(obj)->length() : -1;
1061 
1062   // invoke the object callback (if callback is provided)
1063   if (callbacks()->heap_iteration_callback != nullptr) {
1064     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1065     jint res = (*cb)(wrapper.klass_tag(),
1066                      wrapper.obj_size(),
1067                      wrapper.obj_tag_p(),
1068                      (jint)len,
1069                      (void*)user_data());
1070     if (check_flags_for_abort(res)) return;
1071   }
1072 
1073   // for objects and classes we report primitive fields if callback provided
1074   if (callbacks()->primitive_field_callback != nullptr && obj->is_instance()) {
1075     jint res;
1076     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1077     if (obj->klass() == vmClasses::Class_klass()) {
1078       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1079                                                                     obj,
1080                                                                     cb,
1081                                                                     (void*)user_data());
1082     } else {
1083       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1084                                                                       obj,
1085                                                                       cb,
1086                                                                       (void*)user_data());
1087     }
1088     if (check_flags_for_abort(res)) return;
1089   }
1090 
1091   // string callback
1092   if (!is_array &&
1093       callbacks()->string_primitive_value_callback != nullptr &&
1094       obj->klass() == vmClasses::String_klass()) {
1095     jint res = invoke_string_value_callback(
1096                 callbacks()->string_primitive_value_callback,
1097                 &wrapper,
1098                 obj,
1099                 (void*)user_data() );
1100     if (check_flags_for_abort(res)) return;
1101   }
1102 
1103   // array callback
1104   if (is_array &&
1105       callbacks()->array_primitive_value_callback != nullptr &&
1106       obj->is_typeArray()) {
1107     jint res = invoke_array_primitive_value_callback(
1108                callbacks()->array_primitive_value_callback,
1109                &wrapper,
1110                obj,
1111                (void*)user_data() );
1112     if (check_flags_for_abort(res)) return;
1113   }
1114 };
1115 
1116 
1117 // Deprecated function to iterate over all objects in the heap
1118 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1119                                     Klass* klass,
1120                                     jvmtiHeapObjectCallback heap_object_callback,
1121                                     const void* user_data)
1122 {
1123   // EA based optimizations on tagged objects are already reverted.
1124   EscapeBarrier eb(object_filter == JVMTI_HEAP_OBJECT_UNTAGGED ||
1125                    object_filter == JVMTI_HEAP_OBJECT_EITHER,
1126                    JavaThread::current());
1127   eb.deoptimize_objects_all_threads();
1128   Arena dead_object_arena(mtServiceability);
1129   GrowableArray <jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1130   {
1131     MutexLocker ml(Heap_lock);
1132     IterateOverHeapObjectClosure blk(this,
1133                                      klass,
1134                                      object_filter,
1135                                      heap_object_callback,
1136                                      user_data);
1137     VM_HeapIterateOperation op(&blk, &dead_objects);
1138     VMThread::execute(&op);
1139   }
1140   // Post events outside of Heap_lock
1141   post_dead_objects(&dead_objects);
1142 }
1143 
1144 
1145 // Iterates over all objects in the heap
1146 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1147                                        Klass* klass,
1148                                        const jvmtiHeapCallbacks* callbacks,
1149                                        const void* user_data)
1150 {
1151   // EA based optimizations on tagged objects are already reverted.
1152   EscapeBarrier eb(!(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), JavaThread::current());
1153   eb.deoptimize_objects_all_threads();
1154 
1155   Arena dead_object_arena(mtServiceability);
1156   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1157   {
1158     MutexLocker ml(Heap_lock);
1159     IterateThroughHeapObjectClosure blk(this,
1160                                         klass,
1161                                         heap_filter,
1162                                         callbacks,
1163                                         user_data);
1164     VM_HeapIterateOperation op(&blk, &dead_objects);
1165     VMThread::execute(&op);
1166   }
1167   // Post events outside of Heap_lock
1168   post_dead_objects(&dead_objects);
1169 }
1170 
1171 void JvmtiTagMap::remove_dead_entries_locked(GrowableArray<jlong>* objects) {
1172   assert(is_locked(), "precondition");
1173   if (_needs_cleaning) {
1174     // Recheck whether to post object free events under the lock.
1175     if (!env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1176       objects = nullptr;
1177     }
1178     log_info(jvmti, table)("TagMap table needs cleaning%s",
1179                            ((objects != nullptr) ? " and posting" : ""));
1180     hashmap()->remove_dead_entries(objects);
1181     _needs_cleaning = false;
1182   }
1183 }
1184 
1185 void JvmtiTagMap::remove_dead_entries(GrowableArray<jlong>* objects) {
1186   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1187   remove_dead_entries_locked(objects);
1188 }
1189 
1190 void JvmtiTagMap::post_dead_objects(GrowableArray<jlong>* const objects) {
1191   assert(Thread::current()->is_Java_thread(), "Must post from JavaThread");
1192   if (objects != nullptr && objects->length() > 0) {
1193     JvmtiExport::post_object_free(env(), objects);
1194     log_info(jvmti, table)("%d free object posted", objects->length());
1195   }
1196 }
1197 
1198 void JvmtiTagMap::remove_and_post_dead_objects() {
1199   ResourceMark rm;
1200   GrowableArray<jlong> objects;
1201   remove_dead_entries(&objects);
1202   post_dead_objects(&objects);
1203 }
1204 
1205 void JvmtiTagMap::flush_object_free_events() {
1206   assert_not_at_safepoint();
1207   if (env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1208     {
1209       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1210       // If another thread is posting events, let it finish
1211       while (_posting_events) {
1212         ml.wait();
1213       }
1214 
1215       if (!_needs_cleaning || is_empty()) {
1216         _needs_cleaning = false;
1217         return;
1218       }
1219       _posting_events = true;
1220     } // Drop the lock so we can do the cleaning on the VM thread.
1221     // Needs both cleaning and event posting (up to some other thread
1222     // getting there first after we dropped the lock).
1223     remove_and_post_dead_objects();
1224     {
1225       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1226       _posting_events = false;
1227       ml.notify_all();
1228     }
1229   } else {
1230     remove_dead_entries(nullptr);
1231   }
1232 }
1233 
1234 // support class for get_objects_with_tags
1235 
1236 class TagObjectCollector : public JvmtiTagMapKeyClosure {
1237  private:
1238   JvmtiEnv* _env;
1239   JavaThread* _thread;
1240   jlong* _tags;
1241   jint _tag_count;
1242   bool _some_dead_found;
1243 
1244   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1245   GrowableArray<uint64_t>* _tag_results;    // collected tags
1246 
1247  public:
1248   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) :
1249     _env(env),
1250     _thread(JavaThread::current()),
1251     _tags((jlong*)tags),
1252     _tag_count(tag_count),
1253     _some_dead_found(false),
1254     _object_results(new (mtServiceability) GrowableArray<jobject>(1, mtServiceability)),
1255     _tag_results(new (mtServiceability) GrowableArray<uint64_t>(1, mtServiceability)) { }
1256 
1257   ~TagObjectCollector() {
1258     delete _object_results;
1259     delete _tag_results;
1260   }
1261 
1262   bool some_dead_found() const { return _some_dead_found; }
1263 
1264   // for each tagged object check if the tag value matches
1265   // - if it matches then we create a JNI local reference to the object
1266   // and record the reference and tag value.
1267   // Always return true so the iteration continues.
1268   bool do_entry(JvmtiTagMapKey& key, jlong& value) {
1269     for (int i = 0; i < _tag_count; i++) {
1270       if (_tags[i] == value) {
1271         // The reference in this tag map could be the only (implicitly weak)
1272         // reference to that object. If we hand it out, we need to keep it live wrt
1273         // SATB marking similar to other j.l.ref.Reference referents. This is
1274         // achieved by using a phantom load in the object() accessor.
1275         oop o = key.object();
1276         if (o == nullptr) {
1277           _some_dead_found = true;
1278           // skip this whole entry
1279           return true;
1280         }
1281         assert(o != nullptr && Universe::heap()->is_in(o), "sanity check");
1282         jobject ref = JNIHandles::make_local(_thread, o);
1283         _object_results->append(ref);
1284         _tag_results->append(value);
1285       }
1286     }
1287     return true;
1288   }
1289 
1290   // return the results from the collection
1291   //
1292   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1293     jvmtiError error;
1294     int count = _object_results->length();
1295     assert(count >= 0, "sanity check");
1296 
1297     // if object_result_ptr is not null then allocate the result and copy
1298     // in the object references.
1299     if (object_result_ptr != nullptr) {
1300       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1301       if (error != JVMTI_ERROR_NONE) {
1302         return error;
1303       }
1304       for (int i=0; i<count; i++) {
1305         (*object_result_ptr)[i] = _object_results->at(i);
1306       }
1307     }
1308 
1309     // if tag_result_ptr is not null then allocate the result and copy
1310     // in the tag values.
1311     if (tag_result_ptr != nullptr) {
1312       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1313       if (error != JVMTI_ERROR_NONE) {
1314         if (object_result_ptr != nullptr) {
1315           _env->Deallocate((unsigned char*)object_result_ptr);
1316         }
1317         return error;
1318       }
1319       for (int i=0; i<count; i++) {
1320         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1321       }
1322     }
1323 
1324     *count_ptr = count;
1325     return JVMTI_ERROR_NONE;
1326   }
1327 };
1328 
1329 // return the list of objects with the specified tags
1330 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1331   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1332 
1333   TagObjectCollector collector(env(), tags, count);
1334   {
1335     // iterate over all tagged objects
1336     MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1337     // Can't post ObjectFree events here from a JavaThread, so this
1338     // will race with the gc_notification thread in the tiny
1339     // window where the object is not marked but hasn't been notified that
1340     // it is collected yet.
1341     entry_iterate(&collector);
1342   }
1343   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1344 }
1345 
1346 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1347 // (not performance critical as only used for roots)
1348 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1349   switch (kind) {
1350     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1351     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1352     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1353     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1354     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1355     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1356     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1357   }
1358 }
1359 
1360 // Base class for all heap walk contexts. The base class maintains a flag
1361 // to indicate if the context is valid or not.
1362 class HeapWalkContext {
1363  private:
1364   bool _valid;
1365  public:
1366   HeapWalkContext(bool valid)                   { _valid = valid; }
1367   void invalidate()                             { _valid = false; }
1368   bool is_valid() const                         { return _valid; }
1369 };
1370 
1371 // A basic heap walk context for the deprecated heap walking functions.
1372 // The context for a basic heap walk are the callbacks and fields used by
1373 // the referrer caching scheme.
1374 class BasicHeapWalkContext: public HeapWalkContext {
1375  private:
1376   jvmtiHeapRootCallback _heap_root_callback;
1377   jvmtiStackReferenceCallback _stack_ref_callback;
1378   jvmtiObjectReferenceCallback _object_ref_callback;
1379 
1380   // used for caching
1381   oop _last_referrer;
1382   jlong _last_referrer_tag;
1383 
1384  public:
1385   BasicHeapWalkContext() : HeapWalkContext(false) { }
1386 
1387   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1388                        jvmtiStackReferenceCallback stack_ref_callback,
1389                        jvmtiObjectReferenceCallback object_ref_callback) :
1390     HeapWalkContext(true),
1391     _heap_root_callback(heap_root_callback),
1392     _stack_ref_callback(stack_ref_callback),
1393     _object_ref_callback(object_ref_callback),
1394     _last_referrer(nullptr),
1395     _last_referrer_tag(0) {
1396   }
1397 
1398   // accessors
1399   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1400   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1401   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1402 
1403   oop last_referrer() const               { return _last_referrer; }
1404   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1405   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1406   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1407 };
1408 
1409 // The advanced heap walk context for the FollowReferences functions.
1410 // The context is the callbacks, and the fields used for filtering.
1411 class AdvancedHeapWalkContext: public HeapWalkContext {
1412  private:
1413   jint _heap_filter;
1414   Klass* _klass_filter;
1415   const jvmtiHeapCallbacks* _heap_callbacks;
1416 
1417  public:
1418   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1419 
1420   AdvancedHeapWalkContext(jint heap_filter,
1421                            Klass* klass_filter,
1422                            const jvmtiHeapCallbacks* heap_callbacks) :
1423     HeapWalkContext(true),
1424     _heap_filter(heap_filter),
1425     _klass_filter(klass_filter),
1426     _heap_callbacks(heap_callbacks) {
1427   }
1428 
1429   // accessors
1430   jint heap_filter() const         { return _heap_filter; }
1431   Klass* klass_filter() const      { return _klass_filter; }
1432 
1433   jvmtiHeapReferenceCallback heap_reference_callback() const {
1434     return _heap_callbacks->heap_reference_callback;
1435   };
1436   jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1437     return _heap_callbacks->primitive_field_callback;
1438   }
1439   jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1440     return _heap_callbacks->array_primitive_value_callback;
1441   }
1442   jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1443     return _heap_callbacks->string_primitive_value_callback;
1444   }
1445 };
1446 
1447 // The CallbackInvoker is a class with static functions that the heap walk can call
1448 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1449 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1450 // mode is for the newer FollowReferences function which supports a lot of
1451 // additional callbacks.
1452 class CallbackInvoker : AllStatic {
1453  private:
1454   // heap walk styles
1455   enum { basic, advanced };
1456   static int _heap_walk_type;
1457   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1458   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1459 
1460   // context for basic style heap walk
1461   static BasicHeapWalkContext _basic_context;
1462   static BasicHeapWalkContext* basic_context() {
1463     assert(_basic_context.is_valid(), "invalid");
1464     return &_basic_context;
1465   }
1466 
1467   // context for advanced style heap walk
1468   static AdvancedHeapWalkContext _advanced_context;
1469   static AdvancedHeapWalkContext* advanced_context() {
1470     assert(_advanced_context.is_valid(), "invalid");
1471     return &_advanced_context;
1472   }
1473 
1474   // context needed for all heap walks
1475   static JvmtiTagMap* _tag_map;
1476   static const void* _user_data;
1477   static GrowableArray<oop>* _visit_stack;
1478   static JVMTIBitSet* _bitset;
1479 
1480   // accessors
1481   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1482   static const void* user_data()                       { return _user_data; }
1483   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1484 
1485   // if the object hasn't been visited then push it onto the visit stack
1486   // so that it will be visited later
1487   static inline bool check_for_visit(oop obj) {
1488     if (!_bitset->is_marked(obj)) visit_stack()->push(obj);
1489     return true;
1490   }
1491 
1492   // invoke basic style callbacks
1493   static inline bool invoke_basic_heap_root_callback
1494     (jvmtiHeapRootKind root_kind, oop obj);
1495   static inline bool invoke_basic_stack_ref_callback
1496     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1497      int slot, oop obj);
1498   static inline bool invoke_basic_object_reference_callback
1499     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1500 
1501   // invoke advanced style callbacks
1502   static inline bool invoke_advanced_heap_root_callback
1503     (jvmtiHeapReferenceKind ref_kind, oop obj);
1504   static inline bool invoke_advanced_stack_ref_callback
1505     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1506      jmethodID method, jlocation bci, jint slot, oop obj);
1507   static inline bool invoke_advanced_object_reference_callback
1508     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1509 
1510   // used to report the value of primitive fields
1511   static inline bool report_primitive_field
1512     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1513 
1514  public:
1515   // initialize for basic mode
1516   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1517                                              GrowableArray<oop>* visit_stack,
1518                                              const void* user_data,
1519                                              BasicHeapWalkContext context,
1520                                              JVMTIBitSet* bitset);
1521 
1522   // initialize for advanced mode
1523   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1524                                                 GrowableArray<oop>* visit_stack,
1525                                                 const void* user_data,
1526                                                 AdvancedHeapWalkContext context,
1527                                                 JVMTIBitSet* bitset);
1528 
1529    // functions to report roots
1530   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1531   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1532     jmethodID m, oop o);
1533   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1534     jmethodID method, jlocation bci, jint slot, oop o);
1535 
1536   // functions to report references
1537   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1538   static inline bool report_class_reference(oop referrer, oop referree);
1539   static inline bool report_class_loader_reference(oop referrer, oop referree);
1540   static inline bool report_signers_reference(oop referrer, oop referree);
1541   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1542   static inline bool report_superclass_reference(oop referrer, oop referree);
1543   static inline bool report_interface_reference(oop referrer, oop referree);
1544   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1545   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1546   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1547   static inline bool report_primitive_array_values(oop array);
1548   static inline bool report_string_value(oop str);
1549   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1550   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1551 };
1552 
1553 // statics
1554 int CallbackInvoker::_heap_walk_type;
1555 BasicHeapWalkContext CallbackInvoker::_basic_context;
1556 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1557 JvmtiTagMap* CallbackInvoker::_tag_map;
1558 const void* CallbackInvoker::_user_data;
1559 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1560 JVMTIBitSet* CallbackInvoker::_bitset;
1561 
1562 // initialize for basic heap walk (IterateOverReachableObjects et al)
1563 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1564                                                      GrowableArray<oop>* visit_stack,
1565                                                      const void* user_data,
1566                                                      BasicHeapWalkContext context,
1567                                                      JVMTIBitSet* bitset) {
1568   _tag_map = tag_map;
1569   _visit_stack = visit_stack;
1570   _user_data = user_data;
1571   _basic_context = context;
1572   _advanced_context.invalidate();       // will trigger assertion if used
1573   _heap_walk_type = basic;
1574   _bitset = bitset;
1575 }
1576 
1577 // initialize for advanced heap walk (FollowReferences)
1578 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1579                                                         GrowableArray<oop>* visit_stack,
1580                                                         const void* user_data,
1581                                                         AdvancedHeapWalkContext context,
1582                                                         JVMTIBitSet* bitset) {
1583   _tag_map = tag_map;
1584   _visit_stack = visit_stack;
1585   _user_data = user_data;
1586   _advanced_context = context;
1587   _basic_context.invalidate();      // will trigger assertion if used
1588   _heap_walk_type = advanced;
1589   _bitset = bitset;
1590 }
1591 
1592 
1593 // invoke basic style heap root callback
1594 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
1595   // if we heap roots should be reported
1596   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1597   if (cb == nullptr) {
1598     return check_for_visit(obj);
1599   }
1600 
1601   CallbackWrapper wrapper(tag_map(), obj);
1602   jvmtiIterationControl control = (*cb)(root_kind,
1603                                         wrapper.klass_tag(),
1604                                         wrapper.obj_size(),
1605                                         wrapper.obj_tag_p(),
1606                                         (void*)user_data());
1607   // push root to visit stack when following references
1608   if (control == JVMTI_ITERATION_CONTINUE &&
1609       basic_context()->object_ref_callback() != nullptr) {
1610     visit_stack()->push(obj);
1611   }
1612   return control != JVMTI_ITERATION_ABORT;
1613 }
1614 
1615 // invoke basic style stack ref callback
1616 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
1617                                                              jlong thread_tag,
1618                                                              jint depth,
1619                                                              jmethodID method,
1620                                                              int slot,
1621                                                              oop obj) {
1622   // if we stack refs should be reported
1623   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
1624   if (cb == nullptr) {
1625     return check_for_visit(obj);
1626   }
1627 
1628   CallbackWrapper wrapper(tag_map(), obj);
1629   jvmtiIterationControl control = (*cb)(root_kind,
1630                                         wrapper.klass_tag(),
1631                                         wrapper.obj_size(),
1632                                         wrapper.obj_tag_p(),
1633                                         thread_tag,
1634                                         depth,
1635                                         method,
1636                                         slot,
1637                                         (void*)user_data());
1638   // push root to visit stack when following references
1639   if (control == JVMTI_ITERATION_CONTINUE &&
1640       basic_context()->object_ref_callback() != nullptr) {
1641     visit_stack()->push(obj);
1642   }
1643   return control != JVMTI_ITERATION_ABORT;
1644 }
1645 
1646 // invoke basic style object reference callback
1647 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
1648                                                                     oop referrer,
1649                                                                     oop referree,
1650                                                                     jint index) {
1651 
1652   BasicHeapWalkContext* context = basic_context();
1653 
1654   // callback requires the referrer's tag. If it's the same referrer
1655   // as the last call then we use the cached value.
1656   jlong referrer_tag;
1657   if (referrer == context->last_referrer()) {
1658     referrer_tag = context->last_referrer_tag();
1659   } else {
1660     referrer_tag = tag_for(tag_map(), referrer);
1661   }
1662 
1663   // do the callback
1664   CallbackWrapper wrapper(tag_map(), referree);
1665   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
1666   jvmtiIterationControl control = (*cb)(ref_kind,
1667                                         wrapper.klass_tag(),
1668                                         wrapper.obj_size(),
1669                                         wrapper.obj_tag_p(),
1670                                         referrer_tag,
1671                                         index,
1672                                         (void*)user_data());
1673 
1674   // record referrer and referrer tag. For self-references record the
1675   // tag value from the callback as this might differ from referrer_tag.
1676   context->set_last_referrer(referrer);
1677   if (referrer == referree) {
1678     context->set_last_referrer_tag(*wrapper.obj_tag_p());
1679   } else {
1680     context->set_last_referrer_tag(referrer_tag);
1681   }
1682 
1683   if (control == JVMTI_ITERATION_CONTINUE) {
1684     return check_for_visit(referree);
1685   } else {
1686     return control != JVMTI_ITERATION_ABORT;
1687   }
1688 }
1689 
1690 // invoke advanced style heap root callback
1691 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
1692                                                                 oop obj) {
1693   AdvancedHeapWalkContext* context = advanced_context();
1694 
1695   // check that callback is provided
1696   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
1697   if (cb == nullptr) {
1698     return check_for_visit(obj);
1699   }
1700 
1701   // apply class filter
1702   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
1703     return check_for_visit(obj);
1704   }
1705 
1706   // setup the callback wrapper
1707   CallbackWrapper wrapper(tag_map(), obj);
1708 
1709   // apply tag filter
1710   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1711                                  wrapper.klass_tag(),
1712                                  context->heap_filter())) {
1713     return check_for_visit(obj);
1714   }
1715 
1716   // for arrays we need the length, otherwise -1
1717   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
1718 
1719   // invoke the callback
1720   jint res  = (*cb)(ref_kind,
1721                     nullptr, // referrer info
1722                     wrapper.klass_tag(),
1723                     0,    // referrer_class_tag is 0 for heap root
1724                     wrapper.obj_size(),
1725                     wrapper.obj_tag_p(),
1726                     nullptr, // referrer_tag_p
1727                     len,
1728                     (void*)user_data());
1729   if (res & JVMTI_VISIT_ABORT) {
1730     return false;// referrer class tag
1731   }
1732   if (res & JVMTI_VISIT_OBJECTS) {
1733     check_for_visit(obj);
1734   }
1735   return true;
1736 }
1737 
1738 // report a reference from a thread stack to an object
1739 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
1740                                                                 jlong thread_tag,
1741                                                                 jlong tid,
1742                                                                 int depth,
1743                                                                 jmethodID method,
1744                                                                 jlocation bci,
1745                                                                 jint slot,
1746                                                                 oop obj) {
1747   AdvancedHeapWalkContext* context = advanced_context();
1748 
1749   // check that callback is provider
1750   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
1751   if (cb == nullptr) {
1752     return check_for_visit(obj);
1753   }
1754 
1755   // apply class filter
1756   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
1757     return check_for_visit(obj);
1758   }
1759 
1760   // setup the callback wrapper
1761   CallbackWrapper wrapper(tag_map(), obj);
1762 
1763   // apply tag filter
1764   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1765                                  wrapper.klass_tag(),
1766                                  context->heap_filter())) {
1767     return check_for_visit(obj);
1768   }
1769 
1770   // setup the referrer info
1771   jvmtiHeapReferenceInfo reference_info;
1772   reference_info.stack_local.thread_tag = thread_tag;
1773   reference_info.stack_local.thread_id = tid;
1774   reference_info.stack_local.depth = depth;
1775   reference_info.stack_local.method = method;
1776   reference_info.stack_local.location = bci;
1777   reference_info.stack_local.slot = slot;
1778 
1779   // for arrays we need the length, otherwise -1
1780   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
1781 
1782   // call into the agent
1783   int res = (*cb)(ref_kind,
1784                   &reference_info,
1785                   wrapper.klass_tag(),
1786                   0,    // referrer_class_tag is 0 for heap root (stack)
1787                   wrapper.obj_size(),
1788                   wrapper.obj_tag_p(),
1789                   nullptr, // referrer_tag is 0 for root
1790                   len,
1791                   (void*)user_data());
1792 
1793   if (res & JVMTI_VISIT_ABORT) {
1794     return false;
1795   }
1796   if (res & JVMTI_VISIT_OBJECTS) {
1797     check_for_visit(obj);
1798   }
1799   return true;
1800 }
1801 
1802 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
1803 // only for ref_kinds defined by the JVM TI spec. Otherwise, null is passed.
1804 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
1805                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
1806                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
1807                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
1808                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
1809                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
1810 
1811 // invoke the object reference callback to report a reference
1812 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
1813                                                                        oop referrer,
1814                                                                        oop obj,
1815                                                                        jint index)
1816 {
1817   // field index is only valid field in reference_info
1818   static jvmtiHeapReferenceInfo reference_info = { 0 };
1819 
1820   AdvancedHeapWalkContext* context = advanced_context();
1821 
1822   // check that callback is provider
1823   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
1824   if (cb == nullptr) {
1825     return check_for_visit(obj);
1826   }
1827 
1828   // apply class filter
1829   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
1830     return check_for_visit(obj);
1831   }
1832 
1833   // setup the callback wrapper
1834   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
1835 
1836   // apply tag filter
1837   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1838                                  wrapper.klass_tag(),
1839                                  context->heap_filter())) {
1840     return check_for_visit(obj);
1841   }
1842 
1843   // field index is only valid field in reference_info
1844   reference_info.field.index = index;
1845 
1846   // for arrays we need the length, otherwise -1
1847   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
1848 
1849   // invoke the callback
1850   int res = (*cb)(ref_kind,
1851                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : nullptr,
1852                   wrapper.klass_tag(),
1853                   wrapper.referrer_klass_tag(),
1854                   wrapper.obj_size(),
1855                   wrapper.obj_tag_p(),
1856                   wrapper.referrer_tag_p(),
1857                   len,
1858                   (void*)user_data());
1859 
1860   if (res & JVMTI_VISIT_ABORT) {
1861     return false;
1862   }
1863   if (res & JVMTI_VISIT_OBJECTS) {
1864     check_for_visit(obj);
1865   }
1866   return true;
1867 }
1868 
1869 // report a "simple root"
1870 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
1871   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
1872          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
1873 
1874   if (is_basic_heap_walk()) {
1875     // map to old style root kind
1876     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
1877     return invoke_basic_heap_root_callback(root_kind, obj);
1878   } else {
1879     assert(is_advanced_heap_walk(), "wrong heap walk type");
1880     return invoke_advanced_heap_root_callback(kind, obj);
1881   }
1882 }
1883 
1884 
1885 // invoke the primitive array values
1886 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
1887   assert(obj->is_typeArray(), "not a primitive array");
1888 
1889   AdvancedHeapWalkContext* context = advanced_context();
1890   assert(context->array_primitive_value_callback() != nullptr, "no callback");
1891 
1892   // apply class filter
1893   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
1894     return true;
1895   }
1896 
1897   CallbackWrapper wrapper(tag_map(), obj);
1898 
1899   // apply tag filter
1900   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1901                                  wrapper.klass_tag(),
1902                                  context->heap_filter())) {
1903     return true;
1904   }
1905 
1906   // invoke the callback
1907   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
1908                                                   &wrapper,
1909                                                   obj,
1910                                                   (void*)user_data());
1911   return (!(res & JVMTI_VISIT_ABORT));
1912 }
1913 
1914 // invoke the string value callback
1915 inline bool CallbackInvoker::report_string_value(oop str) {
1916   assert(str->klass() == vmClasses::String_klass(), "not a string");
1917 
1918   AdvancedHeapWalkContext* context = advanced_context();
1919   assert(context->string_primitive_value_callback() != nullptr, "no callback");
1920 
1921   // apply class filter
1922   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
1923     return true;
1924   }
1925 
1926   CallbackWrapper wrapper(tag_map(), str);
1927 
1928   // apply tag filter
1929   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1930                                  wrapper.klass_tag(),
1931                                  context->heap_filter())) {
1932     return true;
1933   }
1934 
1935   // invoke the callback
1936   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
1937                                          &wrapper,
1938                                          str,
1939                                          (void*)user_data());
1940   return (!(res & JVMTI_VISIT_ABORT));
1941 }
1942 
1943 // invoke the primitive field callback
1944 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
1945                                                     oop obj,
1946                                                     jint index,
1947                                                     address addr,
1948                                                     char type)
1949 {
1950   // for primitive fields only the index will be set
1951   static jvmtiHeapReferenceInfo reference_info = { 0 };
1952 
1953   AdvancedHeapWalkContext* context = advanced_context();
1954   assert(context->primitive_field_callback() != nullptr, "no callback");
1955 
1956   // apply class filter
1957   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
1958     return true;
1959   }
1960 
1961   CallbackWrapper wrapper(tag_map(), obj);
1962 
1963   // apply tag filter
1964   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
1965                                  wrapper.klass_tag(),
1966                                  context->heap_filter())) {
1967     return true;
1968   }
1969 
1970   // the field index in the referrer
1971   reference_info.field.index = index;
1972 
1973   // map the type
1974   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1975 
1976   // setup the jvalue
1977   jvalue value;
1978   copy_to_jvalue(&value, addr, value_type);
1979 
1980   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
1981   int res = (*cb)(ref_kind,
1982                   &reference_info,
1983                   wrapper.klass_tag(),
1984                   wrapper.obj_tag_p(),
1985                   value,
1986                   value_type,
1987                   (void*)user_data());
1988   return (!(res & JVMTI_VISIT_ABORT));
1989 }
1990 
1991 
1992 // instance field
1993 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
1994                                                              jint index,
1995                                                              address value,
1996                                                              char type) {
1997   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
1998                                 obj,
1999                                 index,
2000                                 value,
2001                                 type);
2002 }
2003 
2004 // static field
2005 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2006                                                            jint index,
2007                                                            address value,
2008                                                            char type) {
2009   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2010                                 obj,
2011                                 index,
2012                                 value,
2013                                 type);
2014 }
2015 
2016 // report a JNI local (root object) to the profiler
2017 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2018   if (is_basic_heap_walk()) {
2019     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2020                                            thread_tag,
2021                                            depth,
2022                                            m,
2023                                            -1,
2024                                            obj);
2025   } else {
2026     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2027                                               thread_tag, tid,
2028                                               depth,
2029                                               m,
2030                                               (jlocation)-1,
2031                                               -1,
2032                                               obj);
2033   }
2034 }
2035 
2036 
2037 // report a local (stack reference, root object)
2038 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2039                                                    jlong tid,
2040                                                    jint depth,
2041                                                    jmethodID method,
2042                                                    jlocation bci,
2043                                                    jint slot,
2044                                                    oop obj) {
2045   if (is_basic_heap_walk()) {
2046     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2047                                            thread_tag,
2048                                            depth,
2049                                            method,
2050                                            slot,
2051                                            obj);
2052   } else {
2053     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2054                                               thread_tag,
2055                                               tid,
2056                                               depth,
2057                                               method,
2058                                               bci,
2059                                               slot,
2060                                               obj);
2061   }
2062 }
2063 
2064 // report an object referencing a class.
2065 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2066   if (is_basic_heap_walk()) {
2067     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2068   } else {
2069     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2070   }
2071 }
2072 
2073 // report a class referencing its class loader.
2074 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2075   if (is_basic_heap_walk()) {
2076     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2077   } else {
2078     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2079   }
2080 }
2081 
2082 // report a class referencing its signers.
2083 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2084   if (is_basic_heap_walk()) {
2085     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2086   } else {
2087     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2088   }
2089 }
2090 
2091 // report a class referencing its protection domain..
2092 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2093   if (is_basic_heap_walk()) {
2094     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2095   } else {
2096     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2097   }
2098 }
2099 
2100 // report a class referencing its superclass.
2101 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2102   if (is_basic_heap_walk()) {
2103     // Send this to be consistent with past implementation
2104     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2105   } else {
2106     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2107   }
2108 }
2109 
2110 // report a class referencing one of its interfaces.
2111 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2112   if (is_basic_heap_walk()) {
2113     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2114   } else {
2115     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2116   }
2117 }
2118 
2119 // report a class referencing one of its static fields.
2120 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2121   if (is_basic_heap_walk()) {
2122     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2123   } else {
2124     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2125   }
2126 }
2127 
2128 // report an array referencing an element object
2129 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2130   if (is_basic_heap_walk()) {
2131     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2132   } else {
2133     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2134   }
2135 }
2136 
2137 // report an object referencing an instance field object
2138 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2139   if (is_basic_heap_walk()) {
2140     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2141   } else {
2142     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2143   }
2144 }
2145 
2146 // report an array referencing an element object
2147 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2148   if (is_basic_heap_walk()) {
2149     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2150   } else {
2151     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2152   }
2153 }
2154 
2155 // A supporting closure used to process simple roots
2156 class SimpleRootsClosure : public OopClosure {
2157  private:
2158   jvmtiHeapReferenceKind _kind;
2159   bool _continue;
2160 
2161   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2162 
2163  public:
2164   void set_kind(jvmtiHeapReferenceKind kind) {
2165     _kind = kind;
2166     _continue = true;
2167   }
2168 
2169   inline bool stopped() {
2170     return !_continue;
2171   }
2172 
2173   void do_oop(oop* obj_p) {
2174     // iteration has terminated
2175     if (stopped()) {
2176       return;
2177     }
2178 
2179     oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
2180     // ignore null
2181     if (o == nullptr) {
2182       return;
2183     }
2184 
2185     assert(Universe::heap()->is_in(o), "should be impossible");
2186 
2187     jvmtiHeapReferenceKind kind = root_kind();
2188 
2189     // invoke the callback
2190     _continue = CallbackInvoker::report_simple_root(kind, o);
2191 
2192   }
2193   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2194 };
2195 
2196 // A supporting closure used to process JNI locals
2197 class JNILocalRootsClosure : public OopClosure {
2198  private:
2199   jlong _thread_tag;
2200   jlong _tid;
2201   jint _depth;
2202   jmethodID _method;
2203   bool _continue;
2204  public:
2205   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2206     _thread_tag = thread_tag;
2207     _tid = tid;
2208     _depth = depth;
2209     _method = method;
2210     _continue = true;
2211   }
2212 
2213   inline bool stopped() {
2214     return !_continue;
2215   }
2216 
2217   void do_oop(oop* obj_p) {
2218     // iteration has terminated
2219     if (stopped()) {
2220       return;
2221     }
2222 
2223     oop o = *obj_p;
2224     // ignore null
2225     if (o == nullptr) {
2226       return;
2227     }
2228 
2229     // invoke the callback
2230     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2231   }
2232   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2233 };
2234 
2235 // Helper class to collect/report stack references.
2236 class StackRefCollector {
2237 private:
2238   JvmtiTagMap* _tag_map;
2239   JNILocalRootsClosure* _blk;
2240   // java_thread is needed only to report JNI local on top native frame;
2241   // I.e. it's required only for platform/carrier threads or mounted virtual threads.
2242   JavaThread* _java_thread;
2243 
2244   oop _threadObj;
2245   jlong _thread_tag;
2246   jlong _tid;
2247 
2248   bool _is_top_frame;
2249   int _depth;
2250   frame* _last_entry_frame;
2251 
2252   bool report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset);
2253   bool report_native_stack_refs(jmethodID method);
2254 
2255 public:
2256   StackRefCollector(JvmtiTagMap* tag_map, JNILocalRootsClosure* blk, JavaThread* java_thread)
2257     : _tag_map(tag_map), _blk(blk), _java_thread(java_thread),
2258       _threadObj(nullptr), _thread_tag(0), _tid(0),
2259       _is_top_frame(true), _depth(0), _last_entry_frame(nullptr)
2260   {
2261   }
2262 
2263   bool set_thread(oop o);
2264   // Sets the thread and reports the reference to it with the specified kind.
2265   bool set_thread(jvmtiHeapReferenceKind kind, oop o);
2266 
2267   bool do_frame(vframe* vf);
2268   // Handles frames until vf->sender() is null.
2269   bool process_frames(vframe* vf);
2270 };
2271 
2272 bool StackRefCollector::set_thread(oop o) {
2273   _threadObj = o;
2274   _thread_tag = tag_for(_tag_map, _threadObj);
2275   _tid = java_lang_Thread::thread_id(_threadObj);
2276 
2277   _is_top_frame = true;
2278   _depth = 0;
2279   _last_entry_frame = nullptr;
2280 
2281   return true;
2282 }
2283 
2284 bool StackRefCollector::set_thread(jvmtiHeapReferenceKind kind, oop o) {
2285   return set_thread(o)
2286          && CallbackInvoker::report_simple_root(kind, _threadObj);
2287 }
2288 
2289 bool StackRefCollector::report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset) {
2290   for (int index = 0; index < values->size(); index++) {
2291     if (values->at(index)->type() == T_OBJECT) {
2292       oop obj = values->obj_at(index)();
2293       if (obj == nullptr) {
2294         continue;
2295       }
2296       // stack reference
2297       if (!CallbackInvoker::report_stack_ref_root(_thread_tag, _tid, _depth, method,
2298                                                   bci, slot_offset + index, obj)) {
2299         return false;
2300       }
2301     }
2302   }
2303   return true;
2304 }
2305 
2306 bool StackRefCollector::report_native_stack_refs(jmethodID method) {
2307   _blk->set_context(_thread_tag, _tid, _depth, method);
2308   if (_is_top_frame) {
2309     // JNI locals for the top frame.
2310     if (_java_thread != nullptr) {
2311       _java_thread->active_handles()->oops_do(_blk);
2312       if (_blk->stopped()) {
2313         return false;
2314       }
2315     }
2316   } else {
2317     if (_last_entry_frame != nullptr) {
2318       // JNI locals for the entry frame.
2319       assert(_last_entry_frame->is_entry_frame(), "checking");
2320       _last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(_blk);
2321       if (_blk->stopped()) {
2322         return false;
2323       }
2324     }
2325   }
2326   return true;
2327 }
2328 
2329 bool StackRefCollector::do_frame(vframe* vf) {
2330   if (vf->is_java_frame()) {
2331     // java frame (interpreted, compiled, ...)
2332     javaVFrame* jvf = javaVFrame::cast(vf);
2333 
2334     jmethodID method = jvf->method()->jmethod_id();
2335 
2336     if (!(jvf->method()->is_native())) {
2337       jlocation bci = (jlocation)jvf->bci();
2338       StackValueCollection* locals = jvf->locals();
2339       if (!report_java_stack_refs(locals, method, bci, 0)) {
2340         return false;
2341       }
2342       if (!report_java_stack_refs(jvf->expressions(), method, bci, locals->size())) {
2343         return false;
2344       }
2345 
2346       // Follow oops from compiled nmethod.
2347       if (jvf->cb() != nullptr && jvf->cb()->is_nmethod()) {
2348         _blk->set_context(_thread_tag, _tid, _depth, method);
2349         // Need to apply load barriers for unmounted vthreads.
2350         nmethod* nm = jvf->cb()->as_nmethod();
2351         nm->run_nmethod_entry_barrier();
2352         nm->oops_do(_blk);
2353         if (_blk->stopped()) {
2354           return false;
2355         }
2356       }
2357     } else {
2358       // native frame
2359       if (!report_native_stack_refs(method)) {
2360         return false;
2361       }
2362     }
2363     _last_entry_frame = nullptr;
2364     _depth++;
2365   } else {
2366     // externalVFrame - for an entry frame then we report the JNI locals
2367     // when we find the corresponding javaVFrame
2368     frame* fr = vf->frame_pointer();
2369     assert(fr != nullptr, "sanity check");
2370     if (fr->is_entry_frame()) {
2371       _last_entry_frame = fr;
2372     }
2373   }
2374 
2375   _is_top_frame = false;
2376 
2377   return true;
2378 }
2379 
2380 bool StackRefCollector::process_frames(vframe* vf) {
2381   while (vf != nullptr) {
2382     if (!do_frame(vf)) {
2383       return false;
2384     }
2385     vf = vf->sender();
2386   }
2387   return true;
2388 }
2389 
2390 
2391 // A VM operation to iterate over objects that are reachable from
2392 // a set of roots or an initial object.
2393 //
2394 // For VM_HeapWalkOperation the set of roots used is :-
2395 //
2396 // - All JNI global references
2397 // - All inflated monitors
2398 // - All classes loaded by the boot class loader (or all classes
2399 //     in the event that class unloading is disabled)
2400 // - All java threads
2401 // - For each java thread then all locals and JNI local references
2402 //      on the thread's execution stack
2403 // - All visible/explainable objects from Universes::oops_do
2404 //
2405 class VM_HeapWalkOperation: public VM_Operation {
2406  private:
2407   enum {
2408     initial_visit_stack_size = 4000
2409   };
2410 
2411   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2412   JvmtiTagMap* _tag_map;
2413   Handle _initial_object;
2414   GrowableArray<oop>* _visit_stack;                 // the visit stack
2415 
2416   JVMTIBitSet _bitset;
2417 
2418   // Dead object tags in JvmtiTagMap
2419   GrowableArray<jlong>* _dead_objects;
2420 
2421   bool _following_object_refs;                      // are we following object references
2422 
2423   bool _reporting_primitive_fields;                 // optional reporting
2424   bool _reporting_primitive_array_values;
2425   bool _reporting_string_values;
2426 
2427   GrowableArray<oop>* create_visit_stack() {
2428     return new (mtServiceability) GrowableArray<oop>(initial_visit_stack_size, mtServiceability);
2429   }
2430 
2431   // accessors
2432   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2433   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2434   Handle initial_object() const                    { return _initial_object; }
2435 
2436   bool is_following_references() const             { return _following_object_refs; }
2437 
2438   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2439   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2440   bool is_reporting_string_values() const          { return _reporting_string_values; }
2441 
2442   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2443 
2444   // iterate over the various object types
2445   inline bool iterate_over_array(oop o);
2446   inline bool iterate_over_type_array(oop o);
2447   inline bool iterate_over_class(oop o);
2448   inline bool iterate_over_object(oop o);
2449 
2450   // root collection
2451   inline bool collect_simple_roots();
2452   inline bool collect_stack_roots();
2453   inline bool collect_stack_refs(JavaThread* java_thread, JNILocalRootsClosure* blk);
2454   inline bool collect_vthread_stack_refs(oop vt);
2455 
2456   // visit an object
2457   inline bool visit(oop o);
2458 
2459  public:
2460   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2461                        Handle initial_object,
2462                        BasicHeapWalkContext callbacks,
2463                        const void* user_data,
2464                        GrowableArray<jlong>* objects);
2465 
2466   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2467                        Handle initial_object,
2468                        AdvancedHeapWalkContext callbacks,
2469                        const void* user_data,
2470                        GrowableArray<jlong>* objects);
2471 
2472   ~VM_HeapWalkOperation();
2473 
2474   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2475   void doit();
2476 };
2477 
2478 
2479 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2480                                            Handle initial_object,
2481                                            BasicHeapWalkContext callbacks,
2482                                            const void* user_data,
2483                                            GrowableArray<jlong>* objects) {
2484   _is_advanced_heap_walk = false;
2485   _tag_map = tag_map;
2486   _initial_object = initial_object;
2487   _following_object_refs = (callbacks.object_ref_callback() != nullptr);
2488   _reporting_primitive_fields = false;
2489   _reporting_primitive_array_values = false;
2490   _reporting_string_values = false;
2491   _visit_stack = create_visit_stack();
2492   _dead_objects = objects;
2493 
2494   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks, &_bitset);
2495 }
2496 
2497 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2498                                            Handle initial_object,
2499                                            AdvancedHeapWalkContext callbacks,
2500                                            const void* user_data,
2501                                            GrowableArray<jlong>* objects) {
2502   _is_advanced_heap_walk = true;
2503   _tag_map = tag_map;
2504   _initial_object = initial_object;
2505   _following_object_refs = true;
2506   _reporting_primitive_fields = (callbacks.primitive_field_callback() != nullptr);;
2507   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != nullptr);;
2508   _reporting_string_values = (callbacks.string_primitive_value_callback() != nullptr);;
2509   _visit_stack = create_visit_stack();
2510   _dead_objects = objects;
2511   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks, &_bitset);
2512 }
2513 
2514 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2515   if (_following_object_refs) {
2516     assert(_visit_stack != nullptr, "checking");
2517     delete _visit_stack;
2518     _visit_stack = nullptr;
2519   }
2520 }
2521 
2522 // an array references its class and has a reference to
2523 // each element in the array
2524 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2525   objArrayOop array = objArrayOop(o);
2526 
2527   // array reference to its class
2528   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2529   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2530     return false;
2531   }
2532 
2533   // iterate over the array and report each reference to a
2534   // non-null element
2535   for (int index=0; index<array->length(); index++) {
2536     oop elem = array->obj_at(index);
2537     if (elem == nullptr) {
2538       continue;
2539     }
2540 
2541     // report the array reference o[index] = elem
2542     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2543       return false;
2544     }
2545   }
2546   return true;
2547 }
2548 
2549 // a type array references its class
2550 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2551   Klass* k = o->klass();
2552   oop mirror = k->java_mirror();
2553   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2554     return false;
2555   }
2556 
2557   // report the array contents if required
2558   if (is_reporting_primitive_array_values()) {
2559     if (!CallbackInvoker::report_primitive_array_values(o)) {
2560       return false;
2561     }
2562   }
2563   return true;
2564 }
2565 
2566 #ifdef ASSERT
2567 // verify that a static oop field is in range
2568 static inline bool verify_static_oop(InstanceKlass* ik,
2569                                      oop mirror, int offset) {
2570   address obj_p = cast_from_oop<address>(mirror) + offset;
2571   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2572   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2573   assert(end >= start, "sanity check");
2574 
2575   if (obj_p >= start && obj_p < end) {
2576     return true;
2577   } else {
2578     return false;
2579   }
2580 }
2581 #endif // #ifdef ASSERT
2582 
2583 // a class references its super class, interfaces, class loader, ...
2584 // and finally its static fields
2585 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
2586   int i;
2587   Klass* klass = java_lang_Class::as_Klass(java_class);
2588 
2589   if (klass->is_instance_klass()) {
2590     InstanceKlass* ik = InstanceKlass::cast(klass);
2591 
2592     // Ignore the class if it hasn't been initialized yet
2593     if (!ik->is_linked()) {
2594       return true;
2595     }
2596 
2597     // get the java mirror
2598     oop mirror = klass->java_mirror();
2599 
2600     // super (only if something more interesting than java.lang.Object)
2601     InstanceKlass* java_super = ik->java_super();
2602     if (java_super != nullptr && java_super != vmClasses::Object_klass()) {
2603       oop super = java_super->java_mirror();
2604       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2605         return false;
2606       }
2607     }
2608 
2609     // class loader
2610     oop cl = ik->class_loader();
2611     if (cl != nullptr) {
2612       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2613         return false;
2614       }
2615     }
2616 
2617     // protection domain
2618     oop pd = ik->protection_domain();
2619     if (pd != nullptr) {
2620       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2621         return false;
2622       }
2623     }
2624 
2625     // signers
2626     oop signers = ik->signers();
2627     if (signers != nullptr) {
2628       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2629         return false;
2630       }
2631     }
2632 
2633     // references from the constant pool
2634     {
2635       ConstantPool* pool = ik->constants();
2636       for (int i = 1; i < pool->length(); i++) {
2637         constantTag tag = pool->tag_at(i).value();
2638         if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) {
2639           oop entry;
2640           if (tag.is_string()) {
2641             entry = pool->resolved_string_at(i);
2642             // If the entry is non-null it is resolved.
2643             if (entry == nullptr) {
2644               continue;
2645             }
2646           } else if (tag.is_klass()) {
2647             entry = pool->resolved_klass_at(i)->java_mirror();
2648           } else {
2649             // Code generated by JIT compilers might not resolve constant
2650             // pool entries.  Treat them as resolved if they are loaded.
2651             assert(tag.is_unresolved_klass(), "must be");
2652             constantPoolHandle cp(Thread::current(), pool);
2653             Klass* klass = ConstantPool::klass_at_if_loaded(cp, i);
2654             if (klass == nullptr) {
2655               continue;
2656             }
2657             entry = klass->java_mirror();
2658           }
2659           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2660             return false;
2661           }
2662         }
2663       }
2664     }
2665 
2666     // interfaces
2667     // (These will already have been reported as references from the constant pool
2668     //  but are specified by IterateOverReachableObjects and must be reported).
2669     Array<InstanceKlass*>* interfaces = ik->local_interfaces();
2670     for (i = 0; i < interfaces->length(); i++) {
2671       oop interf = interfaces->at(i)->java_mirror();
2672       if (interf == nullptr) {
2673         continue;
2674       }
2675       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2676         return false;
2677       }
2678     }
2679 
2680     // iterate over the static fields
2681 
2682     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
2683     for (i=0; i<field_map->field_count(); i++) {
2684       ClassFieldDescriptor* field = field_map->field_at(i);
2685       char type = field->field_type();
2686       if (!is_primitive_field_type(type)) {
2687         oop fld_o = mirror->obj_field(field->field_offset());
2688         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2689         if (fld_o != nullptr) {
2690           int slot = field->field_index();
2691           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2692             delete field_map;
2693             return false;
2694           }
2695         }
2696       } else {
2697          if (is_reporting_primitive_fields()) {
2698            address addr = cast_from_oop<address>(mirror) + field->field_offset();
2699            int slot = field->field_index();
2700            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2701              delete field_map;
2702              return false;
2703           }
2704         }
2705       }
2706     }
2707     delete field_map;
2708 
2709     return true;
2710   }
2711 
2712   return true;
2713 }
2714 
2715 // an object references a class and its instance fields
2716 // (static fields are ignored here as we report these as
2717 // references from the class).
2718 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2719   // reference to the class
2720   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
2721     return false;
2722   }
2723 
2724   // iterate over instance fields
2725   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2726   for (int i=0; i<field_map->field_count(); i++) {
2727     ClassFieldDescriptor* field = field_map->field_at(i);
2728     char type = field->field_type();
2729     if (!is_primitive_field_type(type)) {
2730       oop fld_o = o->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field->field_offset());
2731       // ignore any objects that aren't visible to profiler
2732       if (fld_o != nullptr) {
2733         assert(Universe::heap()->is_in(fld_o), "unsafe code should not "
2734                "have references to Klass* anymore");
2735         int slot = field->field_index();
2736         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
2737           return false;
2738         }
2739       }
2740     } else {
2741       if (is_reporting_primitive_fields()) {
2742         // primitive instance field
2743         address addr = cast_from_oop<address>(o) + field->field_offset();
2744         int slot = field->field_index();
2745         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
2746           return false;
2747         }
2748       }
2749     }
2750   }
2751 
2752   // if the object is a java.lang.String
2753   if (is_reporting_string_values() &&
2754       o->klass() == vmClasses::String_klass()) {
2755     if (!CallbackInvoker::report_string_value(o)) {
2756       return false;
2757     }
2758   }
2759   return true;
2760 }
2761 
2762 
2763 // Collects all simple (non-stack) roots except for threads;
2764 // threads are handled in collect_stack_roots() as an optimization.
2765 // if there's a heap root callback provided then the callback is
2766 // invoked for each simple root.
2767 // if an object reference callback is provided then all simple
2768 // roots are pushed onto the marking stack so that they can be
2769 // processed later
2770 //
2771 inline bool VM_HeapWalkOperation::collect_simple_roots() {
2772   SimpleRootsClosure blk;
2773 
2774   // JNI globals
2775   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
2776   JNIHandles::oops_do(&blk);
2777   if (blk.stopped()) {
2778     return false;
2779   }
2780 
2781   // Preloaded classes and loader from the system dictionary
2782   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
2783   CLDToOopClosure cld_closure(&blk, ClassLoaderData::_claim_none);
2784   ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
2785   if (blk.stopped()) {
2786     return false;
2787   }
2788 
2789   // threads are now handled in collect_stack_roots()
2790 
2791   // Other kinds of roots maintained by HotSpot
2792   // Many of these won't be visible but others (such as instances of important
2793   // exceptions) will be visible.
2794   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
2795   Universe::vm_global()->oops_do(&blk);
2796   if (blk.stopped()) {
2797     return false;
2798   }
2799 
2800   return true;
2801 }
2802 
2803 // Reports the thread as JVMTI_HEAP_REFERENCE_THREAD,
2804 // walks the stack of the thread, finds all references (locals
2805 // and JNI calls) and reports these as stack references.
2806 inline bool VM_HeapWalkOperation::collect_stack_refs(JavaThread* java_thread,
2807                                                      JNILocalRootsClosure* blk)
2808 {
2809   oop threadObj = java_thread->threadObj();
2810   oop mounted_vt = java_thread->is_vthread_mounted() ? java_thread->vthread() : nullptr;
2811   if (mounted_vt != nullptr && !JvmtiEnvBase::is_vthread_alive(mounted_vt)) {
2812     mounted_vt = nullptr;
2813   }
2814   assert(threadObj != nullptr, "sanity check");
2815 
2816   StackRefCollector stack_collector(tag_map(), blk, java_thread);
2817 
2818   if (!java_thread->has_last_Java_frame()) {
2819     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
2820       return false;
2821     }
2822     // no last java frame but there may be JNI locals
2823     blk->set_context(tag_for(_tag_map, threadObj), java_lang_Thread::thread_id(threadObj), 0, (jmethodID)nullptr);
2824     java_thread->active_handles()->oops_do(blk);
2825     return !blk->stopped();
2826   }
2827   // vframes are resource allocated
2828   Thread* current_thread = Thread::current();
2829   ResourceMark rm(current_thread);
2830   HandleMark hm(current_thread);
2831 
2832   RegisterMap reg_map(java_thread,
2833                       RegisterMap::UpdateMap::include,
2834                       RegisterMap::ProcessFrames::include,
2835                       RegisterMap::WalkContinuation::include);
2836 
2837   // first handle mounted vthread (if any)
2838   if (mounted_vt != nullptr) {
2839     frame f = java_thread->last_frame();
2840     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
2841     // report virtual thread as JVMTI_HEAP_REFERENCE_OTHER
2842     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_OTHER, mounted_vt)) {
2843       return false;
2844     }
2845     // split virtual thread and carrier thread stacks by vthread entry ("enterSpecial") frame,
2846     // consider vthread entry frame as the last vthread stack frame
2847     while (vf != nullptr) {
2848       if (!stack_collector.do_frame(vf)) {
2849         return false;
2850       }
2851       if (vf->is_vthread_entry()) {
2852         break;
2853       }
2854       vf = vf->sender();
2855     }
2856   }
2857   // Platform or carrier thread.
2858   vframe* vf = JvmtiEnvBase::get_cthread_last_java_vframe(java_thread, &reg_map);
2859   if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
2860     return false;
2861   }
2862   return stack_collector.process_frames(vf);
2863 }
2864 
2865 
2866 // Collects the simple roots for all threads and collects all
2867 // stack roots - for each thread it walks the execution
2868 // stack to find all references and local JNI refs.
2869 inline bool VM_HeapWalkOperation::collect_stack_roots() {
2870   JNILocalRootsClosure blk;
2871   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
2872     oop threadObj = thread->threadObj();
2873     if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
2874       if (!collect_stack_refs(thread, &blk)) {
2875         return false;
2876       }
2877     }
2878   }
2879   return true;
2880 }
2881 
2882 // Reports stack references for the unmounted virtual thread.
2883 inline bool VM_HeapWalkOperation::collect_vthread_stack_refs(oop vt) {
2884   if (!JvmtiEnvBase::is_vthread_alive(vt)) {
2885     return true;
2886   }
2887   ContinuationWrapper cont(java_lang_VirtualThread::continuation(vt));
2888   if (cont.is_empty()) {
2889     return true;
2890   }
2891   assert(!cont.is_mounted(), "sanity check");
2892 
2893   stackChunkOop chunk = cont.last_nonempty_chunk();
2894   if (chunk == nullptr || chunk->is_empty()) {
2895     return true;
2896   }
2897 
2898   // vframes are resource allocated
2899   Thread* current_thread = Thread::current();
2900   ResourceMark rm(current_thread);
2901   HandleMark hm(current_thread);
2902 
2903   RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include);
2904 
2905   JNILocalRootsClosure blk;
2906   // JavaThread is not required for unmounted virtual threads
2907   StackRefCollector stack_collector(tag_map(), &blk, nullptr);
2908   // reference to the vthread is already reported
2909   if (!stack_collector.set_thread(vt)) {
2910     return false;
2911   }
2912 
2913   frame fr = chunk->top_frame(&reg_map);
2914   vframe* vf = vframe::new_vframe(&fr, &reg_map, nullptr);
2915   return stack_collector.process_frames(vf);
2916 }
2917 
2918 // visit an object
2919 // first mark the object as visited
2920 // second get all the outbound references from this object (in other words, all
2921 // the objects referenced by this object).
2922 //
2923 bool VM_HeapWalkOperation::visit(oop o) {
2924   // mark object as visited
2925   assert(!_bitset.is_marked(o), "can't visit same object more than once");
2926   _bitset.mark_obj(o);
2927 
2928   // instance
2929   if (o->is_instance()) {
2930     if (o->klass() == vmClasses::Class_klass()) {
2931       if (!java_lang_Class::is_primitive(o)) {
2932         // a java.lang.Class
2933         return iterate_over_class(o);
2934       }
2935     } else {
2936       // we report stack references only when initial object is not specified
2937       // (in the case we start from heap roots which include platform thread stack references)
2938       if (initial_object().is_null() && java_lang_VirtualThread::is_subclass(o->klass())) {
2939         if (!collect_vthread_stack_refs(o)) {
2940           return false;
2941         }
2942       }
2943       return iterate_over_object(o);
2944     }
2945   }
2946 
2947   // object array
2948   if (o->is_objArray()) {
2949     return iterate_over_array(o);
2950   }
2951 
2952   // type array
2953   if (o->is_typeArray()) {
2954     return iterate_over_type_array(o);
2955   }
2956 
2957   return true;
2958 }
2959 
2960 void VM_HeapWalkOperation::doit() {
2961   ResourceMark rm;
2962   ClassFieldMapCacheMark cm;
2963 
2964   JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
2965 
2966   assert(visit_stack()->is_empty(), "visit stack must be empty");
2967 
2968   // the heap walk starts with an initial object or the heap roots
2969   if (initial_object().is_null()) {
2970     // can result in a big performance boost for an agent that is
2971     // focused on analyzing references in the thread stacks.
2972     if (!collect_stack_roots()) return;
2973 
2974     if (!collect_simple_roots()) return;
2975   } else {
2976     visit_stack()->push(initial_object()());
2977   }
2978 
2979   // object references required
2980   if (is_following_references()) {
2981 
2982     // visit each object until all reachable objects have been
2983     // visited or the callback asked to terminate the iteration.
2984     while (!visit_stack()->is_empty()) {
2985       oop o = visit_stack()->pop();
2986       if (!_bitset.is_marked(o)) {
2987         if (!visit(o)) {
2988           break;
2989         }
2990       }
2991     }
2992   }
2993 }
2994 
2995 // iterate over all objects that are reachable from a set of roots
2996 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
2997                                                  jvmtiStackReferenceCallback stack_ref_callback,
2998                                                  jvmtiObjectReferenceCallback object_ref_callback,
2999                                                  const void* user_data) {
3000   // VTMS transitions must be disabled before the EscapeBarrier.
3001   JvmtiVTMSTransitionDisabler disabler;
3002 
3003   JavaThread* jt = JavaThread::current();
3004   EscapeBarrier eb(true, jt);
3005   eb.deoptimize_objects_all_threads();
3006   Arena dead_object_arena(mtServiceability);
3007   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3008 
3009   {
3010     MutexLocker ml(Heap_lock);
3011     BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3012     VM_HeapWalkOperation op(this, Handle(), context, user_data, &dead_objects);
3013     VMThread::execute(&op);
3014   }
3015   // Post events outside of Heap_lock
3016   post_dead_objects(&dead_objects);
3017 }
3018 
3019 // iterate over all objects that are reachable from a given object
3020 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3021                                                              jvmtiObjectReferenceCallback object_ref_callback,
3022                                                              const void* user_data) {
3023   oop obj = JNIHandles::resolve(object);
3024   Handle initial_object(Thread::current(), obj);
3025 
3026   Arena dead_object_arena(mtServiceability);
3027   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3028 
3029   JvmtiVTMSTransitionDisabler disabler;
3030 
3031   {
3032     MutexLocker ml(Heap_lock);
3033     BasicHeapWalkContext context(nullptr, nullptr, object_ref_callback);
3034     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3035     VMThread::execute(&op);
3036   }
3037   // Post events outside of Heap_lock
3038   post_dead_objects(&dead_objects);
3039 }
3040 
3041 // follow references from an initial object or the GC roots
3042 void JvmtiTagMap::follow_references(jint heap_filter,
3043                                     Klass* klass,
3044                                     jobject object,
3045                                     const jvmtiHeapCallbacks* callbacks,
3046                                     const void* user_data)
3047 {
3048   // VTMS transitions must be disabled before the EscapeBarrier.
3049   JvmtiVTMSTransitionDisabler disabler;
3050 
3051   oop obj = JNIHandles::resolve(object);
3052   JavaThread* jt = JavaThread::current();
3053   Handle initial_object(jt, obj);
3054   // EA based optimizations that are tagged or reachable from initial_object are already reverted.
3055   EscapeBarrier eb(initial_object.is_null() &&
3056                    !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED),
3057                    jt);
3058   eb.deoptimize_objects_all_threads();
3059 
3060   Arena dead_object_arena(mtServiceability);
3061   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3062 
3063   {
3064     MutexLocker ml(Heap_lock);
3065     AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3066     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3067     VMThread::execute(&op);
3068   }
3069   // Post events outside of Heap_lock
3070   post_dead_objects(&dead_objects);
3071 }
3072 
3073 // Verify gc_notification follows set_needs_cleaning.
3074 DEBUG_ONLY(static bool notified_needs_cleaning = false;)
3075 
3076 void JvmtiTagMap::set_needs_cleaning() {
3077   assert(SafepointSynchronize::is_at_safepoint(), "called in gc pause");
3078   assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3079   // Can't assert !notified_needs_cleaning; a partial GC might be upgraded
3080   // to a full GC and do this twice without intervening gc_notification.
3081   DEBUG_ONLY(notified_needs_cleaning = true;)
3082 
3083   JvmtiEnvIterator it;
3084   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3085     JvmtiTagMap* tag_map = env->tag_map_acquire();
3086     if (tag_map != nullptr) {
3087       tag_map->_needs_cleaning = !tag_map->is_empty();
3088     }
3089   }
3090 }
3091 
3092 void JvmtiTagMap::gc_notification(size_t num_dead_entries) {
3093   assert(notified_needs_cleaning, "missing GC notification");
3094   DEBUG_ONLY(notified_needs_cleaning = false;)
3095 
3096   // Notify ServiceThread if there's work to do.
3097   {
3098     MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
3099     _has_object_free_events = (num_dead_entries != 0);
3100     if (_has_object_free_events) ml.notify_all();
3101   }
3102 
3103   // If no dead entries then cancel cleaning requests.
3104   if (num_dead_entries == 0) {
3105     JvmtiEnvIterator it;
3106     for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3107       JvmtiTagMap* tag_map = env->tag_map_acquire();
3108       if (tag_map != nullptr) {
3109         MutexLocker ml (tag_map->lock(), Mutex::_no_safepoint_check_flag);
3110         tag_map->_needs_cleaning = false;
3111       }
3112     }
3113   }
3114 }
3115 
3116 // Used by ServiceThread to discover there is work to do.
3117 bool JvmtiTagMap::has_object_free_events_and_reset() {
3118   assert_lock_strong(Service_lock);
3119   bool result = _has_object_free_events;
3120   _has_object_free_events = false;
3121   return result;
3122 }
3123 
3124 // Used by ServiceThread to clean up tagmaps.
3125 void JvmtiTagMap::flush_all_object_free_events() {
3126   JavaThread* thread = JavaThread::current();
3127   JvmtiEnvIterator it;
3128   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3129     JvmtiTagMap* tag_map = env->tag_map_acquire();
3130     if (tag_map != nullptr) {
3131       tag_map->flush_object_free_events();
3132       ThreadBlockInVM tbiv(thread); // Be safepoint-polite while looping.
3133     }
3134   }
3135 }