1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/classLoaderDataGraph.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "jvmtifiles/jvmtiEnv.hpp" 32 #include "logging/log.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/access.inline.hpp" 37 #include "oops/arrayOop.hpp" 38 #include "oops/constantPool.inline.hpp" 39 #include "oops/instanceMirrorKlass.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "oops/objArrayOop.inline.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/typeArrayOop.inline.hpp" 45 #include "prims/jvmtiEventController.hpp" 46 #include "prims/jvmtiEventController.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/jvmtiImpl.hpp" 49 #include "prims/jvmtiTagMap.hpp" 50 #include "prims/jvmtiTagMapTable.hpp" 51 #include "prims/jvmtiThreadState.hpp" 52 #include "runtime/continuationWrapper.inline.hpp" 53 #include "runtime/deoptimization.hpp" 54 #include "runtime/frame.inline.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/interfaceSupport.inline.hpp" 57 #include "runtime/javaCalls.hpp" 58 #include "runtime/javaThread.inline.hpp" 59 #include "runtime/jniHandles.inline.hpp" 60 #include "runtime/mutex.hpp" 61 #include "runtime/mutexLocker.hpp" 62 #include "runtime/reflectionUtils.hpp" 63 #include "runtime/safepoint.hpp" 64 #include "runtime/timerTrace.hpp" 65 #include "runtime/threadSMR.hpp" 66 #include "runtime/vframe.hpp" 67 #include "runtime/vmThread.hpp" 68 #include "runtime/vmOperations.hpp" 69 #include "utilities/objectBitSet.inline.hpp" 70 #include "utilities/macros.hpp" 71 72 typedef ObjectBitSet<mtServiceability> JVMTIBitSet; 73 74 75 // Helper class to store objects to visit. 76 class JvmtiHeapwalkVisitStack { 77 private: 78 enum { 79 initial_visit_stack_size = 4000 80 }; 81 82 GrowableArray<JvmtiHeapwalkObject>* _visit_stack; 83 JVMTIBitSet _bitset; 84 85 static GrowableArray<JvmtiHeapwalkObject>* create_visit_stack() { 86 return new (mtServiceability) GrowableArray<JvmtiHeapwalkObject>(initial_visit_stack_size, mtServiceability); 87 } 88 89 public: 90 JvmtiHeapwalkVisitStack(): _visit_stack(create_visit_stack()) { 91 } 92 ~JvmtiHeapwalkVisitStack() { 93 if (_visit_stack != nullptr) { 94 delete _visit_stack; 95 } 96 } 97 98 bool is_empty() const { 99 return _visit_stack->is_empty(); 100 } 101 102 void push(const JvmtiHeapwalkObject& obj) { 103 _visit_stack->push(obj); 104 } 105 106 // If the object hasn't been visited then push it onto the visit stack 107 // so that it will be visited later. 108 void check_for_visit(const JvmtiHeapwalkObject& obj) { 109 if (!is_visited(obj)) { 110 _visit_stack->push(obj); 111 } 112 } 113 114 JvmtiHeapwalkObject pop() { 115 return _visit_stack->pop(); 116 } 117 118 bool is_visited(const JvmtiHeapwalkObject& obj) /*const*/ { // TODO: _bitset.is_marked() should be const 119 // The method is called only for objects from visit_stack to ensure an object is not visited twice. 120 // Flat objects can be added to visit_stack only when we visit their holder object, so we cannot get duplicate reference to it. 121 if (obj.is_flat()) { 122 return false; 123 } 124 return _bitset.is_marked(obj.obj()); 125 } 126 127 void mark_visited(const JvmtiHeapwalkObject& obj) { 128 if (!obj.is_flat()) { 129 _bitset.mark_obj(obj.obj()); 130 } 131 } 132 }; 133 134 135 bool JvmtiTagMap::_has_object_free_events = false; 136 137 // create a JvmtiTagMap 138 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) : 139 _env(env), 140 _lock(Mutex::nosafepoint, "JvmtiTagMap_lock"), 141 _needs_cleaning(false), 142 _posting_events(false), 143 _converting_flat_object(false) { 144 145 assert(JvmtiThreadState_lock->is_locked(), "sanity check"); 146 assert(((JvmtiEnvBase *)env)->tag_map() == nullptr, "tag map already exists for environment"); 147 148 _hashmap = new JvmtiTagMapTable(); 149 _flat_hashmap = new JvmtiFlatTagMapTable(); 150 151 // finally add us to the environment 152 ((JvmtiEnvBase *)env)->release_set_tag_map(this); 153 } 154 155 // destroy a JvmtiTagMap 156 JvmtiTagMap::~JvmtiTagMap() { 157 158 // no lock acquired as we assume the enclosing environment is 159 // also being destroyed. 160 ((JvmtiEnvBase *)_env)->set_tag_map(nullptr); 161 162 // finally destroy the hashmap 163 delete _hashmap; 164 _hashmap = nullptr; 165 delete _flat_hashmap; 166 } 167 168 // Called by env_dispose() to reclaim memory before deallocation. 169 // Remove all the entries but keep the empty table intact. 170 // This needs the table lock. 171 void JvmtiTagMap::clear() { 172 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 173 _hashmap->clear(); 174 _flat_hashmap->clear(); 175 } 176 177 // returns the tag map for the given environments. If the tag map 178 // doesn't exist then it is created. 179 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) { 180 JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire(); 181 if (tag_map == nullptr) { 182 MutexLocker mu(JvmtiThreadState_lock); 183 tag_map = ((JvmtiEnvBase*)env)->tag_map(); 184 if (tag_map == nullptr) { 185 tag_map = new JvmtiTagMap(env); 186 } 187 } else { 188 DEBUG_ONLY(JavaThread::current()->check_possible_safepoint()); 189 } 190 return tag_map; 191 } 192 193 // returns true if the hashmaps are empty 194 bool JvmtiTagMap::is_empty() const { 195 assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking"); 196 return _hashmap->is_empty() && _flat_hashmap->is_empty(); 197 } 198 199 // This checks for posting before operations that use 200 // this tagmap table. 201 void JvmtiTagMap::check_hashmap(GrowableArray<jlong>* objects) { 202 assert(is_locked(), "checking"); 203 204 if (is_empty()) { return; } 205 206 if (_needs_cleaning && 207 objects != nullptr && 208 env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 209 remove_dead_entries_locked(objects); 210 } 211 } 212 213 // This checks for posting and is called from the heap walks. 214 void JvmtiTagMap::check_hashmaps_for_heapwalk(GrowableArray<jlong>* objects) { 215 assert(SafepointSynchronize::is_at_safepoint(), "called from safepoints"); 216 217 // Verify that the tag map tables are valid and unconditionally post events 218 // that are expected to be posted before gc_notification. 219 JvmtiEnvIterator it; 220 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 221 JvmtiTagMap* tag_map = env->tag_map_acquire(); 222 if (tag_map != nullptr) { 223 // The ZDriver may be walking the hashmaps concurrently so this lock is needed. 224 MutexLocker ml(tag_map->lock(), Mutex::_no_safepoint_check_flag); 225 tag_map->check_hashmap(objects); 226 } 227 } 228 } 229 230 // Converts entries from JvmtiFlatTagMapTable to JvmtiTagMapTable in batches. 231 // 1. (JvmtiTagMap is locked) 232 // reads entries from JvmtiFlatTagMapTable (describe flat value objects); 233 // 2. (JvmtiTagMap is unlocked) 234 // creates heap-allocated copies of the flat object; 235 // 3. (JvmtiTagMap is locked) 236 // ensures source entry still exists, removes it from JvmtiFlatTagMapTable, adds new entry to JvmtiTagMapTable. 237 // If some error occurs in step 2 (OOM?), the process stops. 238 class JvmtiTagMapFlatEntryConverter: public StackObj { 239 private: 240 struct Entry { 241 // source flat value object 242 Handle holder; 243 int offset; 244 InlineKlass* inline_klass; 245 LayoutKind layout_kind; 246 // converted heap-allocated object 247 Handle dst; 248 249 Entry(): holder(), offset(0), inline_klass(nullptr), dst() {} 250 Entry(Handle holder, int offset, InlineKlass* inline_klass, LayoutKind lk) 251 : holder(holder), offset(offset), inline_klass(inline_klass), layout_kind(lk), dst() {} 252 }; 253 254 int _batch_size; 255 GrowableArray<Entry> _entries; 256 bool _has_error; 257 258 public: 259 JvmtiTagMapFlatEntryConverter(int batch_size): _batch_size(batch_size), _entries(batch_size, mtServiceability), _has_error(false) { } 260 ~JvmtiTagMapFlatEntryConverter() {} 261 262 // returns false if there is nothing to convert 263 bool import_entries(JvmtiFlatTagMapTable* table) { 264 if (_has_error) { 265 // stop the process to avoid infinite loop 266 return false; 267 } 268 269 class Importer: public JvmtiFlatTagMapKeyClosure { 270 private: 271 GrowableArray<Entry>& _entries; 272 int _batch_size; 273 public: 274 Importer(GrowableArray<Entry>& entries, int batch_size): _entries(entries), _batch_size(batch_size) {} 275 276 bool do_entry(JvmtiFlatTagMapKey& key, jlong& tag) { 277 Entry entry(Handle(Thread::current(), key.holder()), key.offset(), key.inline_klass(), key.layout_kind()); 278 _entries.append(entry); 279 280 return _entries.length() < _batch_size; 281 } 282 } importer(_entries, _batch_size); 283 table->entry_iterate(&importer); 284 285 return !_entries.is_empty(); 286 } 287 288 void convert() { 289 for (int i = 0; i < _entries.length(); i++) { 290 EXCEPTION_MARK; 291 Entry& entry = _entries.at(i); 292 oop obj = entry.inline_klass->read_payload_from_addr(entry.holder(), entry.offset, entry.layout_kind, JavaThread::current()); 293 294 if (HAS_PENDING_EXCEPTION) { 295 tty->print_cr("Exception in JvmtiTagMapFlatEntryConverter: "); 296 java_lang_Throwable::print(PENDING_EXCEPTION, tty); 297 tty->cr(); 298 CLEAR_PENDING_EXCEPTION; 299 // stop the conversion 300 _has_error = true; 301 } else { 302 entry.dst = Handle(Thread::current(), obj); 303 } 304 } 305 } 306 307 // returns number of converted entries 308 int move(JvmtiFlatTagMapTable* src_table, JvmtiTagMapTable* dst_table) { 309 int count = 0; 310 for (int i = 0; i < _entries.length(); i++) { 311 Entry& entry = _entries.at(i); 312 if (entry.dst() == nullptr) { 313 // some error during conversion, skip the entry 314 continue; 315 } 316 JvmtiHeapwalkObject obj(entry.holder(), entry.offset, entry.inline_klass, entry.layout_kind); 317 jlong tag = src_table->remove(obj); 318 319 if (tag != 0) { // ensure the entry is still in the src_table 320 dst_table->add(entry.dst(), tag); 321 count++; 322 } else { 323 324 } 325 } 326 // and clean the array 327 _entries.clear(); 328 return count; 329 } 330 }; 331 332 333 void JvmtiTagMap::convert_flat_object_entries() { 334 Thread* current = Thread::current(); 335 assert(current->is_Java_thread(), "must be executed on JavaThread"); 336 337 log_debug(jvmti, table)("convert_flat_object_entries, main table size = %d, flat table size = %d", 338 _hashmap->number_of_entries(), _flat_hashmap->number_of_entries()); 339 340 { 341 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 342 // If another thread is converting, let it finish. 343 while (_converting_flat_object) { 344 ml.wait(); 345 } 346 if (_flat_hashmap->is_empty()) { 347 // nothing to convert 348 return; 349 } 350 _converting_flat_object = true; 351 } 352 353 const int BATCH_SIZE = 1024; 354 JvmtiTagMapFlatEntryConverter converter(BATCH_SIZE); 355 356 int count = 0; 357 while (true) { 358 HandleMark hm(current); 359 { 360 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 361 if (!converter.import_entries(_flat_hashmap)) { 362 break; 363 } 364 } 365 // Convert flat objects to heap-allocated without table lock (so agent callbacks can get/set tags). 366 converter.convert(); 367 { 368 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 369 count += converter.move(_flat_hashmap, _hashmap); 370 } 371 } 372 373 log_info(jvmti, table)("%d flat value objects are converted, flat table size = %d", 374 count, _flat_hashmap->number_of_entries()); 375 { 376 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 377 _converting_flat_object = false; 378 ml.notify_all(); 379 } 380 } 381 382 jlong JvmtiTagMap::find(const JvmtiHeapwalkObject& obj) const { 383 jlong tag = _hashmap->find(obj); 384 if (tag == 0 && obj.is_value()) { 385 tag = _flat_hashmap->find(obj); 386 } 387 return tag; 388 } 389 390 void JvmtiTagMap::add(const JvmtiHeapwalkObject& obj, jlong tag) { 391 if (obj.is_flat()) { 392 // we may have tag for equal (non-flat) object in _hashmap, try to update it 1st 393 if (!_hashmap->update(obj, tag)) { 394 // no entry in _hashmap, add to _flat_hashmap 395 _flat_hashmap->add(obj, tag); 396 } 397 } else { 398 _hashmap->add(obj, tag); 399 } 400 } 401 402 void JvmtiTagMap::remove(const JvmtiHeapwalkObject& obj) { 403 if (!_hashmap->remove(obj)) { 404 if (obj.is_value()) { 405 _flat_hashmap->remove(obj); 406 } 407 } 408 } 409 410 411 // A CallbackWrapper is a support class for querying and tagging an object 412 // around a callback to a profiler. The constructor does pre-callback 413 // work to get the tag value, klass tag value, ... and the destructor 414 // does the post-callback work of tagging or untagging the object. 415 // 416 // { 417 // CallbackWrapper wrapper(tag_map, o); 418 // 419 // (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...) 420 // 421 // } 422 // wrapper goes out of scope here which results in the destructor 423 // checking to see if the object has been tagged, untagged, or the 424 // tag value has changed. 425 // 426 class CallbackWrapper : public StackObj { 427 private: 428 JvmtiTagMap* _tag_map; 429 const JvmtiHeapwalkObject& _o; 430 jlong _obj_size; 431 jlong _obj_tag; 432 jlong _klass_tag; 433 434 protected: 435 JvmtiTagMap* tag_map() const { return _tag_map; } 436 437 // invoked post-callback to tag, untag, or update the tag of an object 438 void inline post_callback_tag_update(const JvmtiHeapwalkObject& o, JvmtiTagMap* tag_map, jlong obj_tag); 439 440 public: 441 CallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& o) 442 : _tag_map(tag_map), _o(o) 443 { 444 assert(Thread::current()->is_VM_thread() || tag_map->is_locked(), 445 "MT unsafe or must be VM thread"); 446 447 // object size 448 if (!o.is_flat()) { 449 // common case: we have oop 450 _obj_size = (jlong)o.obj()->size() * wordSize; 451 } else { 452 // flat value object, we know its InstanceKlass 453 assert(_o.inline_klass() != nullptr, "must be"); 454 _obj_size = _o.inline_klass()->size() * wordSize;; 455 } 456 457 // get object tag 458 _obj_tag = _tag_map->find(_o); 459 460 // get the class and the class's tag value 461 assert(vmClasses::Class_klass()->is_mirror_instance_klass(), "Is not?"); 462 463 _klass_tag = _tag_map->find(_o.klass()->java_mirror()); 464 } 465 466 ~CallbackWrapper() { 467 post_callback_tag_update(_o, _tag_map, _obj_tag); 468 } 469 470 inline jlong* obj_tag_p() { return &_obj_tag; } 471 inline jlong obj_size() const { return _obj_size; } 472 inline jlong obj_tag() const { return _obj_tag; } 473 inline jlong klass_tag() const { return _klass_tag; } 474 }; 475 476 // callback post-callback to tag, untag, or update the tag of an object 477 void inline CallbackWrapper::post_callback_tag_update(const JvmtiHeapwalkObject& o, 478 JvmtiTagMap* tag_map, 479 jlong obj_tag) { 480 if (obj_tag == 0) { 481 // callback has untagged the object, remove the entry if present 482 tag_map->remove(o); 483 } else { 484 // object was previously tagged or not present - the callback may have 485 // changed the tag value 486 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 487 tag_map->add(o, obj_tag); 488 } 489 } 490 491 // An extended CallbackWrapper used when reporting an object reference 492 // to the agent. 493 // 494 // { 495 // TwoOopCallbackWrapper wrapper(tag_map, referrer, o); 496 // 497 // (*callback)(wrapper.klass_tag(), 498 // wrapper.obj_size(), 499 // wrapper.obj_tag_p() 500 // wrapper.referrer_tag_p(), ...) 501 // 502 // } 503 // wrapper goes out of scope here which results in the destructor 504 // checking to see if the referrer object has been tagged, untagged, 505 // or the tag value has changed. 506 // 507 class TwoOopCallbackWrapper : public CallbackWrapper { 508 private: 509 const JvmtiHeapwalkObject& _referrer; 510 bool _is_reference_to_self; 511 jlong _referrer_obj_tag; 512 jlong _referrer_klass_tag; 513 jlong* _referrer_tag_p; 514 515 bool is_reference_to_self() const { return _is_reference_to_self; } 516 517 public: 518 TwoOopCallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& o) : 519 CallbackWrapper(tag_map, o), _referrer(referrer) 520 { 521 // self reference needs to be handled in a special way 522 _is_reference_to_self = (referrer == o); 523 524 if (_is_reference_to_self) { 525 _referrer_klass_tag = klass_tag(); 526 _referrer_tag_p = obj_tag_p(); 527 } else { 528 // get object tag 529 _referrer_obj_tag = tag_map->find(_referrer); 530 531 _referrer_tag_p = &_referrer_obj_tag; 532 533 // get referrer class tag. 534 _referrer_klass_tag = tag_map->find(_referrer.klass()->java_mirror()); 535 } 536 } 537 538 ~TwoOopCallbackWrapper() { 539 if (!is_reference_to_self()) { 540 post_callback_tag_update(_referrer, 541 tag_map(), 542 _referrer_obj_tag); 543 } 544 } 545 546 // address of referrer tag 547 // (for a self reference this will return the same thing as obj_tag_p()) 548 inline jlong* referrer_tag_p() { return _referrer_tag_p; } 549 550 // referrer's class tag 551 inline jlong referrer_klass_tag() { return _referrer_klass_tag; } 552 }; 553 554 // tag an object 555 // 556 // This function is performance critical. If many threads attempt to tag objects 557 // around the same time then it's possible that the Mutex associated with the 558 // tag map will be a hot lock. 559 void JvmtiTagMap::set_tag(jobject object, jlong tag) { 560 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 561 562 // SetTag should not post events because the JavaThread has to 563 // transition to native for the callback and this cannot stop for 564 // safepoints with the hashmap lock held. 565 check_hashmap(nullptr); /* don't collect dead objects */ 566 567 // resolve the object 568 oop o = JNIHandles::resolve_non_null(object); 569 // see if the object is already tagged 570 JvmtiHeapwalkObject obj(o); 571 if (tag == 0) { 572 // remove the entry if present 573 _hashmap->remove(obj); 574 } else { 575 // if the object is already tagged or not present then we add/update 576 // the tag 577 add(obj, tag); 578 } 579 } 580 581 // get the tag for an object 582 jlong JvmtiTagMap::get_tag(jobject object) { 583 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 584 585 // GetTag should not post events because the JavaThread has to 586 // transition to native for the callback and this cannot stop for 587 // safepoints with the hashmap lock held. 588 check_hashmap(nullptr); /* don't collect dead objects */ 589 590 // resolve the object 591 oop o = JNIHandles::resolve_non_null(object); 592 593 return find(o); 594 } 595 596 597 // Helper class used to describe the static or instance fields of a class. 598 // For each field it holds the field index (as defined by the JVMTI specification), 599 // the field type, and the offset. 600 601 class ClassFieldDescriptor: public CHeapObj<mtInternal> { 602 private: 603 int _field_index; 604 int _field_offset; 605 char _field_type; 606 InlineKlass* _inline_klass; // nullptr for heap object 607 LayoutKind _layout_kind; 608 public: 609 ClassFieldDescriptor(int index, const FieldStreamBase& fld) : 610 _field_index(index), _field_offset(fld.offset()), _field_type(fld.signature()->char_at(0)) { 611 if (fld.is_flat()) { 612 const fieldDescriptor& fd = fld.field_descriptor(); 613 InstanceKlass* holder_klass = fd.field_holder(); 614 InlineLayoutInfo* layout_info = holder_klass->inline_layout_info_adr(fd.index()); 615 _inline_klass = layout_info->klass(); 616 _layout_kind = layout_info->kind(); 617 } else { 618 _inline_klass = nullptr; 619 _layout_kind = LayoutKind::REFERENCE; 620 } 621 } 622 int field_index() const { return _field_index; } 623 char field_type() const { return _field_type; } 624 int field_offset() const { return _field_offset; } 625 bool is_flat() const { return _inline_klass != nullptr; } 626 InlineKlass* inline_klass() const { return _inline_klass; } 627 LayoutKind layout_kind() const { return _layout_kind; } 628 }; 629 630 class ClassFieldMap: public CHeapObj<mtInternal> { 631 private: 632 enum { 633 initial_field_count = 5 634 }; 635 636 // list of field descriptors 637 GrowableArray<ClassFieldDescriptor*>* _fields; 638 639 // constructor 640 ClassFieldMap(); 641 642 // calculates number of fields in all interfaces 643 static int interfaces_field_count(InstanceKlass* ik); 644 645 // add a field 646 void add(int index, const FieldStreamBase& fld); 647 648 public: 649 ~ClassFieldMap(); 650 651 // access 652 int field_count() { return _fields->length(); } 653 ClassFieldDescriptor* field_at(int i) { return _fields->at(i); } 654 655 // functions to create maps of static or instance fields 656 static ClassFieldMap* create_map_of_static_fields(Klass* k); 657 static ClassFieldMap* create_map_of_instance_fields(Klass* k); 658 }; 659 660 ClassFieldMap::ClassFieldMap() { 661 _fields = new (mtServiceability) 662 GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability); 663 } 664 665 ClassFieldMap::~ClassFieldMap() { 666 for (int i=0; i<_fields->length(); i++) { 667 delete _fields->at(i); 668 } 669 delete _fields; 670 } 671 672 int ClassFieldMap::interfaces_field_count(InstanceKlass* ik) { 673 const Array<InstanceKlass*>* interfaces = ik->transitive_interfaces(); 674 int count = 0; 675 for (int i = 0; i < interfaces->length(); i++) { 676 FilteredJavaFieldStream fld(interfaces->at(i)); 677 count += fld.field_count(); 678 } 679 return count; 680 } 681 682 void ClassFieldMap::add(int index, const FieldStreamBase& fld) { 683 ClassFieldDescriptor* field = new ClassFieldDescriptor(index, fld); 684 _fields->append(field); 685 } 686 687 // Returns a heap allocated ClassFieldMap to describe the static fields 688 // of the given class. 689 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) { 690 InstanceKlass* ik = InstanceKlass::cast(k); 691 692 // create the field map 693 ClassFieldMap* field_map = new ClassFieldMap(); 694 695 // Static fields of interfaces and superclasses are reported as references from the interfaces/superclasses. 696 // Need to calculate start index of this class fields: number of fields in all interfaces and superclasses. 697 int index = interfaces_field_count(ik); 698 for (InstanceKlass* super_klass = ik->java_super(); super_klass != nullptr; super_klass = super_klass->java_super()) { 699 FilteredJavaFieldStream super_fld(super_klass); 700 index += super_fld.field_count(); 701 } 702 703 for (FilteredJavaFieldStream fld(ik); !fld.done(); fld.next(), index++) { 704 // ignore instance fields 705 if (!fld.access_flags().is_static()) { 706 continue; 707 } 708 field_map->add(index, fld); 709 } 710 711 return field_map; 712 } 713 714 // Returns a heap allocated ClassFieldMap to describe the instance fields 715 // of the given class. All instance fields are included (this means public 716 // and private fields declared in superclasses too). 717 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(Klass* k) { 718 InstanceKlass* ik = InstanceKlass::cast(k); 719 720 // create the field map 721 ClassFieldMap* field_map = new ClassFieldMap(); 722 723 // fields of the superclasses are reported first, so need to know total field number to calculate field indices 724 int total_field_number = interfaces_field_count(ik); 725 for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) { 726 FilteredJavaFieldStream fld(klass); 727 total_field_number += fld.field_count(); 728 } 729 730 for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) { 731 FilteredJavaFieldStream fld(klass); 732 int start_index = total_field_number - fld.field_count(); 733 for (int index = 0; !fld.done(); fld.next(), index++) { 734 // ignore static fields 735 if (fld.access_flags().is_static()) { 736 continue; 737 } 738 field_map->add(start_index + index, fld); 739 } 740 // update total_field_number for superclass (decrease by the field count in the current class) 741 total_field_number = start_index; 742 } 743 744 return field_map; 745 } 746 747 // Helper class used to cache a ClassFileMap for the instance fields of 748 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during 749 // heap iteration and avoid creating a field map for each object in the heap 750 // (only need to create the map when the first instance of a class is encountered). 751 // 752 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> { 753 private: 754 enum { 755 initial_class_count = 200 756 }; 757 ClassFieldMap* _field_map; 758 759 ClassFieldMap* field_map() const { return _field_map; } 760 761 JvmtiCachedClassFieldMap(ClassFieldMap* field_map); 762 ~JvmtiCachedClassFieldMap(); 763 764 static GrowableArray<InstanceKlass*>* _class_list; 765 static void add_to_class_list(InstanceKlass* ik); 766 767 public: 768 // returns the field map for a given klass (returning map cached 769 // by InstanceKlass if possible 770 static ClassFieldMap* get_map_of_instance_fields(Klass* k); 771 772 // removes the field map from all instanceKlasses - should be 773 // called before VM operation completes 774 static void clear_cache(); 775 776 // returns the number of ClassFieldMap cached by instanceKlasses 777 static int cached_field_map_count(); 778 }; 779 780 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list; 781 782 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) { 783 _field_map = field_map; 784 } 785 786 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() { 787 if (_field_map != nullptr) { 788 delete _field_map; 789 } 790 } 791 792 // Marker class to ensure that the class file map cache is only used in a defined 793 // scope. 794 class ClassFieldMapCacheMark : public StackObj { 795 private: 796 static bool _is_active; 797 public: 798 ClassFieldMapCacheMark() { 799 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 800 assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty"); 801 assert(!_is_active, "ClassFieldMapCacheMark cannot be nested"); 802 _is_active = true; 803 } 804 ~ClassFieldMapCacheMark() { 805 JvmtiCachedClassFieldMap::clear_cache(); 806 _is_active = false; 807 } 808 static bool is_active() { return _is_active; } 809 }; 810 811 bool ClassFieldMapCacheMark::_is_active; 812 813 // record that the given InstanceKlass is caching a field map 814 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) { 815 if (_class_list == nullptr) { 816 _class_list = new (mtServiceability) 817 GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability); 818 } 819 _class_list->push(ik); 820 } 821 822 // returns the instance field map for the given klass 823 // (returns field map cached by the InstanceKlass if possible) 824 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(Klass *k) { 825 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 826 assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active"); 827 828 InstanceKlass* ik = InstanceKlass::cast(k); 829 830 // return cached map if possible 831 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); 832 if (cached_map != nullptr) { 833 assert(cached_map->field_map() != nullptr, "missing field list"); 834 return cached_map->field_map(); 835 } else { 836 ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(k); 837 cached_map = new JvmtiCachedClassFieldMap(field_map); 838 ik->set_jvmti_cached_class_field_map(cached_map); 839 add_to_class_list(ik); 840 return field_map; 841 } 842 } 843 844 // remove the fields maps cached from all instanceKlasses 845 void JvmtiCachedClassFieldMap::clear_cache() { 846 assert(Thread::current()->is_VM_thread(), "must be VMThread"); 847 if (_class_list != nullptr) { 848 for (int i = 0; i < _class_list->length(); i++) { 849 InstanceKlass* ik = _class_list->at(i); 850 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map(); 851 assert(cached_map != nullptr, "should not be null"); 852 ik->set_jvmti_cached_class_field_map(nullptr); 853 delete cached_map; // deletes the encapsulated field map 854 } 855 delete _class_list; 856 _class_list = nullptr; 857 } 858 } 859 860 // returns the number of ClassFieldMap cached by instanceKlasses 861 int JvmtiCachedClassFieldMap::cached_field_map_count() { 862 return (_class_list == nullptr) ? 0 : _class_list->length(); 863 } 864 865 // helper function to indicate if an object is filtered by its tag or class tag 866 static inline bool is_filtered_by_heap_filter(jlong obj_tag, 867 jlong klass_tag, 868 int heap_filter) { 869 // apply the heap filter 870 if (obj_tag != 0) { 871 // filter out tagged objects 872 if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true; 873 } else { 874 // filter out untagged objects 875 if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true; 876 } 877 if (klass_tag != 0) { 878 // filter out objects with tagged classes 879 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true; 880 } else { 881 // filter out objects with untagged classes. 882 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true; 883 } 884 return false; 885 } 886 887 // helper function to indicate if an object is filtered by a klass filter 888 static inline bool is_filtered_by_klass_filter(const JvmtiHeapwalkObject& obj, Klass* klass_filter) { 889 if (klass_filter != nullptr) { 890 if (obj.klass() != klass_filter) { 891 return true; 892 } 893 } 894 return false; 895 } 896 897 // helper function to tell if a field is a primitive field or not 898 static inline bool is_primitive_field_type(char type) { 899 return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY); 900 } 901 902 // helper function to copy the value from location addr to jvalue. 903 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) { 904 switch (value_type) { 905 case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; } 906 case JVMTI_PRIMITIVE_TYPE_BYTE : { v->b = *(jbyte*)addr; break; } 907 case JVMTI_PRIMITIVE_TYPE_CHAR : { v->c = *(jchar*)addr; break; } 908 case JVMTI_PRIMITIVE_TYPE_SHORT : { v->s = *(jshort*)addr; break; } 909 case JVMTI_PRIMITIVE_TYPE_INT : { v->i = *(jint*)addr; break; } 910 case JVMTI_PRIMITIVE_TYPE_LONG : { v->j = *(jlong*)addr; break; } 911 case JVMTI_PRIMITIVE_TYPE_FLOAT : { v->f = *(jfloat*)addr; break; } 912 case JVMTI_PRIMITIVE_TYPE_DOUBLE : { v->d = *(jdouble*)addr; break; } 913 default: ShouldNotReachHere(); 914 } 915 } 916 917 // helper function to invoke string primitive value callback 918 // returns visit control flags 919 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb, 920 CallbackWrapper* wrapper, 921 const JvmtiHeapwalkObject& obj, 922 void* user_data) 923 { 924 assert(!obj.is_flat(), "cannot be flat"); 925 oop str = obj.obj(); 926 assert(str->klass() == vmClasses::String_klass(), "not a string"); 927 928 typeArrayOop s_value = java_lang_String::value(str); 929 930 // JDK-6584008: the value field may be null if a String instance is 931 // partially constructed. 932 if (s_value == nullptr) { 933 return 0; 934 } 935 // get the string value and length 936 // (string value may be offset from the base) 937 int s_len = java_lang_String::length(str); 938 bool is_latin1 = java_lang_String::is_latin1(str); 939 jchar* value; 940 if (s_len > 0) { 941 if (!is_latin1) { 942 value = s_value->char_at_addr(0); 943 } else { 944 // Inflate latin1 encoded string to UTF16 945 jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal); 946 for (int i = 0; i < s_len; i++) { 947 buf[i] = ((jchar) s_value->byte_at(i)) & 0xff; 948 } 949 value = &buf[0]; 950 } 951 } else { 952 // Don't use char_at_addr(0) if length is 0 953 value = (jchar*) s_value->base(T_CHAR); 954 } 955 956 // invoke the callback 957 jint res = (*cb)(wrapper->klass_tag(), 958 wrapper->obj_size(), 959 wrapper->obj_tag_p(), 960 value, 961 (jint)s_len, 962 user_data); 963 964 if (is_latin1 && s_len > 0) { 965 FREE_C_HEAP_ARRAY(jchar, value); 966 } 967 return res; 968 } 969 970 // helper function to invoke string primitive value callback 971 // returns visit control flags 972 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb, 973 CallbackWrapper* wrapper, 974 const JvmtiHeapwalkObject& obj, 975 void* user_data) 976 { 977 assert(!obj.is_flat(), "cannot be flat"); 978 assert(obj.obj()->is_typeArray(), "not a primitive array"); 979 980 // get base address of first element 981 typeArrayOop array = typeArrayOop(obj.obj()); 982 BasicType type = TypeArrayKlass::cast(array->klass())->element_type(); 983 void* elements = array->base(type); 984 985 // jvmtiPrimitiveType is defined so this mapping is always correct 986 jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type); 987 988 return (*cb)(wrapper->klass_tag(), 989 wrapper->obj_size(), 990 wrapper->obj_tag_p(), 991 (jint)array->length(), 992 elem_type, 993 elements, 994 user_data); 995 } 996 997 // helper function to invoke the primitive field callback for all static fields 998 // of a given class 999 static jint invoke_primitive_field_callback_for_static_fields 1000 (CallbackWrapper* wrapper, 1001 oop obj, 1002 jvmtiPrimitiveFieldCallback cb, 1003 void* user_data) 1004 { 1005 // for static fields only the index will be set 1006 static jvmtiHeapReferenceInfo reference_info = { 0 }; 1007 1008 assert(obj->klass() == vmClasses::Class_klass(), "not a class"); 1009 if (java_lang_Class::is_primitive(obj)) { 1010 return 0; 1011 } 1012 Klass* klass = java_lang_Class::as_Klass(obj); 1013 1014 // ignore classes for object and type arrays 1015 if (!klass->is_instance_klass()) { 1016 return 0; 1017 } 1018 1019 // ignore classes which aren't linked yet 1020 InstanceKlass* ik = InstanceKlass::cast(klass); 1021 if (!ik->is_linked()) { 1022 return 0; 1023 } 1024 1025 // get the field map 1026 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); 1027 1028 // invoke the callback for each static primitive field 1029 for (int i=0; i<field_map->field_count(); i++) { 1030 ClassFieldDescriptor* field = field_map->field_at(i); 1031 1032 // ignore non-primitive fields 1033 char type = field->field_type(); 1034 if (!is_primitive_field_type(type)) { 1035 continue; 1036 } 1037 // one-to-one mapping 1038 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 1039 1040 // get offset and field value 1041 int offset = field->field_offset(); 1042 address addr = cast_from_oop<address>(klass->java_mirror()) + offset; 1043 jvalue value; 1044 copy_to_jvalue(&value, addr, value_type); 1045 1046 // field index 1047 reference_info.field.index = field->field_index(); 1048 1049 // invoke the callback 1050 jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD, 1051 &reference_info, 1052 wrapper->klass_tag(), 1053 wrapper->obj_tag_p(), 1054 value, 1055 value_type, 1056 user_data); 1057 if (res & JVMTI_VISIT_ABORT) { 1058 delete field_map; 1059 return res; 1060 } 1061 } 1062 1063 delete field_map; 1064 return 0; 1065 } 1066 1067 // helper function to invoke the primitive field callback for all instance fields 1068 // of a given object 1069 static jint invoke_primitive_field_callback_for_instance_fields( 1070 CallbackWrapper* wrapper, 1071 const JvmtiHeapwalkObject& obj, 1072 jvmtiPrimitiveFieldCallback cb, 1073 void* user_data) 1074 { 1075 // for instance fields only the index will be set 1076 static jvmtiHeapReferenceInfo reference_info = { 0 }; 1077 1078 // get the map of the instance fields 1079 ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass()); 1080 1081 // invoke the callback for each instance primitive field 1082 for (int i=0; i<fields->field_count(); i++) { 1083 ClassFieldDescriptor* field = fields->field_at(i); 1084 1085 // ignore non-primitive fields 1086 char type = field->field_type(); 1087 if (!is_primitive_field_type(type)) { 1088 continue; 1089 } 1090 // one-to-one mapping 1091 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 1092 1093 // get field value 1094 address addr = cast_from_oop<address>(obj.obj()) + obj.offset() + field->field_offset(); 1095 jvalue value; 1096 copy_to_jvalue(&value, addr, value_type); 1097 1098 // field index 1099 reference_info.field.index = field->field_index(); 1100 1101 // invoke the callback 1102 jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD, 1103 &reference_info, 1104 wrapper->klass_tag(), 1105 wrapper->obj_tag_p(), 1106 value, 1107 value_type, 1108 user_data); 1109 if (res & JVMTI_VISIT_ABORT) { 1110 return res; 1111 } 1112 } 1113 return 0; 1114 } 1115 1116 1117 // VM operation to iterate over all objects in the heap (both reachable 1118 // and unreachable) 1119 class VM_HeapIterateOperation: public VM_Operation { 1120 private: 1121 ObjectClosure* _blk; 1122 GrowableArray<jlong>* const _dead_objects; 1123 public: 1124 VM_HeapIterateOperation(ObjectClosure* blk, GrowableArray<jlong>* objects) : 1125 _blk(blk), _dead_objects(objects) { } 1126 1127 VMOp_Type type() const { return VMOp_HeapIterateOperation; } 1128 void doit() { 1129 // allows class files maps to be cached during iteration 1130 ClassFieldMapCacheMark cm; 1131 1132 JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects); 1133 1134 // make sure that heap is parsable (fills TLABs with filler objects) 1135 Universe::heap()->ensure_parsability(false); // no need to retire TLABs 1136 1137 // Verify heap before iteration - if the heap gets corrupted then 1138 // JVMTI's IterateOverHeap will crash. 1139 if (VerifyBeforeIteration) { 1140 Universe::verify(); 1141 } 1142 1143 // do the iteration 1144 Universe::heap()->object_iterate(_blk); 1145 } 1146 }; 1147 1148 1149 // An ObjectClosure used to support the deprecated IterateOverHeap and 1150 // IterateOverInstancesOfClass functions 1151 class IterateOverHeapObjectClosure: public ObjectClosure { 1152 private: 1153 JvmtiTagMap* _tag_map; 1154 Klass* _klass; 1155 jvmtiHeapObjectFilter _object_filter; 1156 jvmtiHeapObjectCallback _heap_object_callback; 1157 const void* _user_data; 1158 1159 // accessors 1160 JvmtiTagMap* tag_map() const { return _tag_map; } 1161 jvmtiHeapObjectFilter object_filter() const { return _object_filter; } 1162 jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; } 1163 Klass* klass() const { return _klass; } 1164 const void* user_data() const { return _user_data; } 1165 1166 // indicates if iteration has been aborted 1167 bool _iteration_aborted; 1168 bool is_iteration_aborted() const { return _iteration_aborted; } 1169 void set_iteration_aborted(bool aborted) { _iteration_aborted = aborted; } 1170 1171 public: 1172 IterateOverHeapObjectClosure(JvmtiTagMap* tag_map, 1173 Klass* klass, 1174 jvmtiHeapObjectFilter object_filter, 1175 jvmtiHeapObjectCallback heap_object_callback, 1176 const void* user_data) : 1177 _tag_map(tag_map), 1178 _klass(klass), 1179 _object_filter(object_filter), 1180 _heap_object_callback(heap_object_callback), 1181 _user_data(user_data), 1182 _iteration_aborted(false) 1183 { 1184 } 1185 1186 void do_object(oop o); 1187 }; 1188 1189 // invoked for each object in the heap 1190 void IterateOverHeapObjectClosure::do_object(oop o) { 1191 // check if iteration has been halted 1192 if (is_iteration_aborted()) return; 1193 1194 // instanceof check when filtering by klass 1195 if (klass() != nullptr && !o->is_a(klass())) { 1196 return; 1197 } 1198 1199 // skip if object is a dormant shared object whose mirror hasn't been loaded 1200 if (o != nullptr && o->klass()->java_mirror() == nullptr) { 1201 log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(o), 1202 o->klass()->external_name()); 1203 return; 1204 } 1205 1206 // prepare for the calllback 1207 JvmtiHeapwalkObject wrapper_obj(o); 1208 CallbackWrapper wrapper(tag_map(), wrapper_obj); 1209 1210 // if the object is tagged and we're only interested in untagged objects 1211 // then don't invoke the callback. Similarly, if the object is untagged 1212 // and we're only interested in tagged objects we skip the callback. 1213 if (wrapper.obj_tag() != 0) { 1214 if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return; 1215 } else { 1216 if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return; 1217 } 1218 1219 // invoke the agent's callback 1220 jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(), 1221 wrapper.obj_size(), 1222 wrapper.obj_tag_p(), 1223 (void*)user_data()); 1224 if (control == JVMTI_ITERATION_ABORT) { 1225 set_iteration_aborted(true); 1226 } 1227 } 1228 1229 // An ObjectClosure used to support the IterateThroughHeap function 1230 class IterateThroughHeapObjectClosure: public ObjectClosure { 1231 private: 1232 JvmtiTagMap* _tag_map; 1233 Klass* _klass; 1234 int _heap_filter; 1235 const jvmtiHeapCallbacks* _callbacks; 1236 const void* _user_data; 1237 1238 // accessor functions 1239 JvmtiTagMap* tag_map() const { return _tag_map; } 1240 int heap_filter() const { return _heap_filter; } 1241 const jvmtiHeapCallbacks* callbacks() const { return _callbacks; } 1242 Klass* klass() const { return _klass; } 1243 const void* user_data() const { return _user_data; } 1244 1245 // indicates if the iteration has been aborted 1246 bool _iteration_aborted; 1247 bool is_iteration_aborted() const { return _iteration_aborted; } 1248 1249 // used to check the visit control flags. If the abort flag is set 1250 // then we set the iteration aborted flag so that the iteration completes 1251 // without processing any further objects 1252 bool check_flags_for_abort(jint flags) { 1253 bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0; 1254 if (is_abort) { 1255 _iteration_aborted = true; 1256 } 1257 return is_abort; 1258 } 1259 1260 void visit_object(const JvmtiHeapwalkObject& obj); 1261 void visit_flat_fields(const JvmtiHeapwalkObject& obj); 1262 void visit_flat_array_elements(const JvmtiHeapwalkObject& obj); 1263 1264 public: 1265 IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map, 1266 Klass* klass, 1267 int heap_filter, 1268 const jvmtiHeapCallbacks* heap_callbacks, 1269 const void* user_data) : 1270 _tag_map(tag_map), 1271 _klass(klass), 1272 _heap_filter(heap_filter), 1273 _callbacks(heap_callbacks), 1274 _user_data(user_data), 1275 _iteration_aborted(false) 1276 { 1277 } 1278 1279 void do_object(oop obj); 1280 }; 1281 1282 // invoked for each object in the heap 1283 void IterateThroughHeapObjectClosure::do_object(oop obj) { 1284 // check if iteration has been halted 1285 if (is_iteration_aborted()) return; 1286 1287 // skip if object is a dormant shared object whose mirror hasn't been loaded 1288 if (obj != nullptr && obj->klass()->java_mirror() == nullptr) { 1289 log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(obj), 1290 obj->klass()->external_name()); 1291 return; 1292 } 1293 1294 visit_object(obj); 1295 } 1296 1297 void IterateThroughHeapObjectClosure::visit_object(const JvmtiHeapwalkObject& obj) { 1298 // apply class filter 1299 if (is_filtered_by_klass_filter(obj, klass())) return; 1300 1301 // prepare for callback 1302 CallbackWrapper wrapper(tag_map(), obj); 1303 1304 // check if filtered by the heap filter 1305 if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) { 1306 return; 1307 } 1308 1309 // for arrays we need the length, otherwise -1 1310 bool is_array = obj.klass()->is_array_klass(); 1311 int len = is_array ? arrayOop(obj.obj())->length() : -1; 1312 1313 // invoke the object callback (if callback is provided) 1314 if (callbacks()->heap_iteration_callback != nullptr) { 1315 jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback; 1316 jint res = (*cb)(wrapper.klass_tag(), 1317 wrapper.obj_size(), 1318 wrapper.obj_tag_p(), 1319 (jint)len, 1320 (void*)user_data()); 1321 if (check_flags_for_abort(res)) return; 1322 } 1323 1324 // for objects and classes we report primitive fields if callback provided 1325 if (callbacks()->primitive_field_callback != nullptr && obj.klass()->is_instance_klass()) { 1326 jint res; 1327 jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback; 1328 if (obj.klass() == vmClasses::Class_klass()) { 1329 assert(!obj.is_flat(), "Class object cannot be flattened"); 1330 res = invoke_primitive_field_callback_for_static_fields(&wrapper, 1331 obj.obj(), 1332 cb, 1333 (void*)user_data()); 1334 } else { 1335 res = invoke_primitive_field_callback_for_instance_fields(&wrapper, 1336 obj, 1337 cb, 1338 (void*)user_data()); 1339 } 1340 if (check_flags_for_abort(res)) return; 1341 } 1342 1343 // string callback 1344 if (!is_array && 1345 callbacks()->string_primitive_value_callback != nullptr && 1346 obj.klass() == vmClasses::String_klass()) { 1347 jint res = invoke_string_value_callback( 1348 callbacks()->string_primitive_value_callback, 1349 &wrapper, 1350 obj, 1351 (void*)user_data()); 1352 if (check_flags_for_abort(res)) return; 1353 } 1354 1355 // array callback 1356 if (is_array && 1357 callbacks()->array_primitive_value_callback != nullptr && 1358 obj.klass()->is_typeArray_klass()) { 1359 jint res = invoke_array_primitive_value_callback( 1360 callbacks()->array_primitive_value_callback, 1361 &wrapper, 1362 obj, 1363 (void*)user_data()); 1364 if (check_flags_for_abort(res)) return; 1365 } 1366 1367 // All info for the object is reported. 1368 1369 // If the object has flat fields, report them as heap objects. 1370 if (obj.klass()->is_instance_klass()) { 1371 if (InstanceKlass::cast(obj.klass())->has_inline_type_fields()) { 1372 visit_flat_fields(obj); 1373 // check if iteration has been halted 1374 if (is_iteration_aborted()) { 1375 return; 1376 } 1377 } 1378 } 1379 // If the object is flat array, report all elements as heap objects. 1380 if (is_array && obj.obj()->is_flatArray()) { 1381 assert(!obj.is_flat(), "Array object cannot be flattened"); 1382 visit_flat_array_elements(obj); 1383 } 1384 } 1385 1386 void IterateThroughHeapObjectClosure::visit_flat_fields(const JvmtiHeapwalkObject& obj) { 1387 // iterate over instance fields 1388 ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass()); 1389 for (int i = 0; i < fields->field_count(); i++) { 1390 ClassFieldDescriptor* field = fields->field_at(i); 1391 // skip non-flat and (for safety) primitive fields 1392 if (!field->is_flat() || is_primitive_field_type(field->field_type())) { 1393 continue; 1394 } 1395 1396 int field_offset = field->field_offset(); 1397 if (obj.is_flat()) { 1398 // the object is inlined, its fields are stored without the header 1399 field_offset += obj.offset() - obj.inline_klass()->payload_offset(); 1400 } 1401 // check for possible nulls 1402 bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT; 1403 if (can_be_null) { 1404 address payload = cast_from_oop<address>(obj.obj()) + field_offset; 1405 if (field->inline_klass()->is_payload_marked_as_null(payload)) { 1406 continue; 1407 } 1408 } 1409 JvmtiHeapwalkObject field_obj(obj.obj(), field_offset, field->inline_klass(), field->layout_kind()); 1410 1411 visit_object(field_obj); 1412 1413 // check if iteration has been halted 1414 if (is_iteration_aborted()) { 1415 return; 1416 } 1417 } 1418 } 1419 1420 void IterateThroughHeapObjectClosure::visit_flat_array_elements(const JvmtiHeapwalkObject& obj) { 1421 assert(!obj.is_flat() && obj.obj()->is_flatArray() , "sanity check"); 1422 flatArrayOop array = flatArrayOop(obj.obj()); 1423 FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass()); 1424 InlineKlass* vk = InlineKlass::cast(faklass->element_klass()); 1425 bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT; 1426 1427 for (int index = 0; index < array->length(); index++) { 1428 address addr = (address)array->value_at_addr(index, faklass->layout_helper()); 1429 // check for null 1430 if (need_null_check) { 1431 if (vk->is_payload_marked_as_null(addr)) { 1432 continue; 1433 } 1434 } 1435 1436 // offset in the array oop 1437 int offset = (int)(addr - cast_from_oop<address>(array)); 1438 JvmtiHeapwalkObject elem(obj.obj(), offset, vk, faklass->layout_kind()); 1439 1440 visit_object(elem); 1441 1442 // check if iteration has been halted 1443 if (is_iteration_aborted()) { 1444 return; 1445 } 1446 } 1447 } 1448 1449 // Deprecated function to iterate over all objects in the heap 1450 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter, 1451 Klass* klass, 1452 jvmtiHeapObjectCallback heap_object_callback, 1453 const void* user_data) 1454 { 1455 // EA based optimizations on tagged objects are already reverted. 1456 EscapeBarrier eb(object_filter == JVMTI_HEAP_OBJECT_UNTAGGED || 1457 object_filter == JVMTI_HEAP_OBJECT_EITHER, 1458 JavaThread::current()); 1459 eb.deoptimize_objects_all_threads(); 1460 Arena dead_object_arena(mtServiceability); 1461 GrowableArray <jlong> dead_objects(&dead_object_arena, 10, 0, 0); 1462 { 1463 MutexLocker ml(Heap_lock); 1464 IterateOverHeapObjectClosure blk(this, 1465 klass, 1466 object_filter, 1467 heap_object_callback, 1468 user_data); 1469 VM_HeapIterateOperation op(&blk, &dead_objects); 1470 VMThread::execute(&op); 1471 } 1472 convert_flat_object_entries(); 1473 1474 // Post events outside of Heap_lock 1475 post_dead_objects(&dead_objects); 1476 } 1477 1478 1479 // Iterates over all objects in the heap 1480 void JvmtiTagMap::iterate_through_heap(jint heap_filter, 1481 Klass* klass, 1482 const jvmtiHeapCallbacks* callbacks, 1483 const void* user_data) 1484 { 1485 // EA based optimizations on tagged objects are already reverted. 1486 EscapeBarrier eb(!(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), JavaThread::current()); 1487 eb.deoptimize_objects_all_threads(); 1488 1489 Arena dead_object_arena(mtServiceability); 1490 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 1491 { 1492 MutexLocker ml(Heap_lock); 1493 IterateThroughHeapObjectClosure blk(this, 1494 klass, 1495 heap_filter, 1496 callbacks, 1497 user_data); 1498 VM_HeapIterateOperation op(&blk, &dead_objects); 1499 VMThread::execute(&op); 1500 } 1501 convert_flat_object_entries(); 1502 1503 // Post events outside of Heap_lock 1504 post_dead_objects(&dead_objects); 1505 } 1506 1507 void JvmtiTagMap::remove_dead_entries_locked(GrowableArray<jlong>* objects) { 1508 assert(is_locked(), "precondition"); 1509 if (_needs_cleaning) { 1510 // Recheck whether to post object free events under the lock. 1511 if (!env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 1512 objects = nullptr; 1513 } 1514 log_info(jvmti, table)("TagMap table needs cleaning%s", 1515 ((objects != nullptr) ? " and posting" : "")); 1516 _hashmap->remove_dead_entries(objects); 1517 _needs_cleaning = false; 1518 } 1519 } 1520 1521 void JvmtiTagMap::remove_dead_entries(GrowableArray<jlong>* objects) { 1522 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1523 remove_dead_entries_locked(objects); 1524 } 1525 1526 void JvmtiTagMap::post_dead_objects(GrowableArray<jlong>* const objects) { 1527 assert(Thread::current()->is_Java_thread(), "Must post from JavaThread"); 1528 if (objects != nullptr && objects->length() > 0) { 1529 JvmtiExport::post_object_free(env(), objects); 1530 log_info(jvmti, table)("%d free object posted", objects->length()); 1531 } 1532 } 1533 1534 void JvmtiTagMap::remove_and_post_dead_objects() { 1535 ResourceMark rm; 1536 GrowableArray<jlong> objects; 1537 remove_dead_entries(&objects); 1538 post_dead_objects(&objects); 1539 } 1540 1541 void JvmtiTagMap::flush_object_free_events() { 1542 assert_not_at_safepoint(); 1543 if (env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) { 1544 { 1545 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1546 // If another thread is posting events, let it finish 1547 while (_posting_events) { 1548 ml.wait(); 1549 } 1550 1551 if (!_needs_cleaning || is_empty()) { 1552 _needs_cleaning = false; 1553 return; 1554 } 1555 _posting_events = true; 1556 } // Drop the lock so we can do the cleaning on the VM thread. 1557 // Needs both cleaning and event posting (up to some other thread 1558 // getting there first after we dropped the lock). 1559 remove_and_post_dead_objects(); 1560 { 1561 MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1562 _posting_events = false; 1563 ml.notify_all(); 1564 } 1565 } else { 1566 remove_dead_entries(nullptr); 1567 } 1568 } 1569 1570 // support class for get_objects_with_tags 1571 1572 class TagObjectCollector : public JvmtiTagMapKeyClosure { 1573 private: 1574 JvmtiEnv* _env; 1575 JavaThread* _thread; 1576 jlong* _tags; 1577 jint _tag_count; 1578 bool _some_dead_found; 1579 1580 GrowableArray<jobject>* _object_results; // collected objects (JNI weak refs) 1581 GrowableArray<uint64_t>* _tag_results; // collected tags 1582 1583 public: 1584 TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) : 1585 _env(env), 1586 _thread(JavaThread::current()), 1587 _tags((jlong*)tags), 1588 _tag_count(tag_count), 1589 _some_dead_found(false), 1590 _object_results(new (mtServiceability) GrowableArray<jobject>(1, mtServiceability)), 1591 _tag_results(new (mtServiceability) GrowableArray<uint64_t>(1, mtServiceability)) { } 1592 1593 ~TagObjectCollector() { 1594 delete _object_results; 1595 delete _tag_results; 1596 } 1597 1598 bool some_dead_found() const { return _some_dead_found; } 1599 1600 // for each tagged object check if the tag value matches 1601 // - if it matches then we create a JNI local reference to the object 1602 // and record the reference and tag value. 1603 // Always return true so the iteration continues. 1604 bool do_entry(JvmtiTagMapKey& key, jlong& value) { 1605 for (int i = 0; i < _tag_count; i++) { 1606 if (_tags[i] == value) { 1607 // The reference in this tag map could be the only (implicitly weak) 1608 // reference to that object. If we hand it out, we need to keep it live wrt 1609 // SATB marking similar to other j.l.ref.Reference referents. This is 1610 // achieved by using a phantom load in the object() accessor. 1611 oop o = key.object(); 1612 if (o == nullptr) { 1613 _some_dead_found = true; 1614 // skip this whole entry 1615 return true; 1616 } 1617 assert(o != nullptr && Universe::heap()->is_in(o), "sanity check"); 1618 jobject ref = JNIHandles::make_local(_thread, o); 1619 _object_results->append(ref); 1620 _tag_results->append(value); 1621 } 1622 } 1623 return true; 1624 } 1625 1626 // return the results from the collection 1627 // 1628 jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { 1629 jvmtiError error; 1630 int count = _object_results->length(); 1631 assert(count >= 0, "sanity check"); 1632 1633 // if object_result_ptr is not null then allocate the result and copy 1634 // in the object references. 1635 if (object_result_ptr != nullptr) { 1636 error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr); 1637 if (error != JVMTI_ERROR_NONE) { 1638 return error; 1639 } 1640 for (int i=0; i<count; i++) { 1641 (*object_result_ptr)[i] = _object_results->at(i); 1642 } 1643 } 1644 1645 // if tag_result_ptr is not null then allocate the result and copy 1646 // in the tag values. 1647 if (tag_result_ptr != nullptr) { 1648 error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr); 1649 if (error != JVMTI_ERROR_NONE) { 1650 if (object_result_ptr != nullptr) { 1651 _env->Deallocate((unsigned char*)object_result_ptr); 1652 } 1653 return error; 1654 } 1655 for (int i=0; i<count; i++) { 1656 (*tag_result_ptr)[i] = (jlong)_tag_results->at(i); 1657 } 1658 } 1659 1660 *count_ptr = count; 1661 return JVMTI_ERROR_NONE; 1662 } 1663 }; 1664 1665 // return the list of objects with the specified tags 1666 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags, 1667 jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) { 1668 1669 // ensure flat object conversion is completed 1670 convert_flat_object_entries(); 1671 1672 TagObjectCollector collector(env(), tags, count); 1673 { 1674 // iterate over all tagged objects 1675 MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag); 1676 // Can't post ObjectFree events here from a JavaThread, so this 1677 // will race with the gc_notification thread in the tiny 1678 // window where the object is not marked but hasn't been notified that 1679 // it is collected yet. 1680 _hashmap->entry_iterate(&collector); 1681 } 1682 return collector.result(count_ptr, object_result_ptr, tag_result_ptr); 1683 } 1684 1685 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind 1686 // (not performance critical as only used for roots) 1687 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) { 1688 switch (kind) { 1689 case JVMTI_HEAP_REFERENCE_JNI_GLOBAL: return JVMTI_HEAP_ROOT_JNI_GLOBAL; 1690 case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS; 1691 case JVMTI_HEAP_REFERENCE_STACK_LOCAL: return JVMTI_HEAP_ROOT_STACK_LOCAL; 1692 case JVMTI_HEAP_REFERENCE_JNI_LOCAL: return JVMTI_HEAP_ROOT_JNI_LOCAL; 1693 case JVMTI_HEAP_REFERENCE_THREAD: return JVMTI_HEAP_ROOT_THREAD; 1694 case JVMTI_HEAP_REFERENCE_OTHER: return JVMTI_HEAP_ROOT_OTHER; 1695 default: ShouldNotReachHere(); return JVMTI_HEAP_ROOT_OTHER; 1696 } 1697 } 1698 1699 // Base class for all heap walk contexts. The base class maintains a flag 1700 // to indicate if the context is valid or not. 1701 class HeapWalkContext { 1702 private: 1703 bool _valid; 1704 public: 1705 HeapWalkContext(bool valid) { _valid = valid; } 1706 void invalidate() { _valid = false; } 1707 bool is_valid() const { return _valid; } 1708 }; 1709 1710 // A basic heap walk context for the deprecated heap walking functions. 1711 // The context for a basic heap walk are the callbacks and fields used by 1712 // the referrer caching scheme. 1713 class BasicHeapWalkContext: public HeapWalkContext { 1714 private: 1715 jvmtiHeapRootCallback _heap_root_callback; 1716 jvmtiStackReferenceCallback _stack_ref_callback; 1717 jvmtiObjectReferenceCallback _object_ref_callback; 1718 1719 // used for caching 1720 JvmtiHeapwalkObject _last_referrer; 1721 jlong _last_referrer_tag; 1722 1723 public: 1724 BasicHeapWalkContext() : HeapWalkContext(false) { } 1725 1726 BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback, 1727 jvmtiStackReferenceCallback stack_ref_callback, 1728 jvmtiObjectReferenceCallback object_ref_callback) : 1729 HeapWalkContext(true), 1730 _heap_root_callback(heap_root_callback), 1731 _stack_ref_callback(stack_ref_callback), 1732 _object_ref_callback(object_ref_callback), 1733 _last_referrer(), 1734 _last_referrer_tag(0) { 1735 } 1736 1737 // accessors 1738 jvmtiHeapRootCallback heap_root_callback() const { return _heap_root_callback; } 1739 jvmtiStackReferenceCallback stack_ref_callback() const { return _stack_ref_callback; } 1740 jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback; } 1741 1742 JvmtiHeapwalkObject last_referrer() const { return _last_referrer; } 1743 void set_last_referrer(const JvmtiHeapwalkObject& referrer) { _last_referrer = referrer; } 1744 jlong last_referrer_tag() const { return _last_referrer_tag; } 1745 void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; } 1746 }; 1747 1748 // The advanced heap walk context for the FollowReferences functions. 1749 // The context is the callbacks, and the fields used for filtering. 1750 class AdvancedHeapWalkContext: public HeapWalkContext { 1751 private: 1752 jint _heap_filter; 1753 Klass* _klass_filter; 1754 const jvmtiHeapCallbacks* _heap_callbacks; 1755 1756 public: 1757 AdvancedHeapWalkContext() : HeapWalkContext(false) { } 1758 1759 AdvancedHeapWalkContext(jint heap_filter, 1760 Klass* klass_filter, 1761 const jvmtiHeapCallbacks* heap_callbacks) : 1762 HeapWalkContext(true), 1763 _heap_filter(heap_filter), 1764 _klass_filter(klass_filter), 1765 _heap_callbacks(heap_callbacks) { 1766 } 1767 1768 // accessors 1769 jint heap_filter() const { return _heap_filter; } 1770 Klass* klass_filter() const { return _klass_filter; } 1771 1772 jvmtiHeapReferenceCallback heap_reference_callback() const { 1773 return _heap_callbacks->heap_reference_callback; 1774 }; 1775 jvmtiPrimitiveFieldCallback primitive_field_callback() const { 1776 return _heap_callbacks->primitive_field_callback; 1777 } 1778 jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const { 1779 return _heap_callbacks->array_primitive_value_callback; 1780 } 1781 jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const { 1782 return _heap_callbacks->string_primitive_value_callback; 1783 } 1784 }; 1785 1786 // The CallbackInvoker is a class with static functions that the heap walk can call 1787 // into to invoke callbacks. It works in one of two modes. The "basic" mode is 1788 // used for the deprecated IterateOverReachableObjects functions. The "advanced" 1789 // mode is for the newer FollowReferences function which supports a lot of 1790 // additional callbacks. 1791 class CallbackInvoker : AllStatic { 1792 private: 1793 // heap walk styles 1794 enum { basic, advanced }; 1795 static int _heap_walk_type; 1796 static bool is_basic_heap_walk() { return _heap_walk_type == basic; } 1797 static bool is_advanced_heap_walk() { return _heap_walk_type == advanced; } 1798 1799 // context for basic style heap walk 1800 static BasicHeapWalkContext _basic_context; 1801 static BasicHeapWalkContext* basic_context() { 1802 assert(_basic_context.is_valid(), "invalid"); 1803 return &_basic_context; 1804 } 1805 1806 // context for advanced style heap walk 1807 static AdvancedHeapWalkContext _advanced_context; 1808 static AdvancedHeapWalkContext* advanced_context() { 1809 assert(_advanced_context.is_valid(), "invalid"); 1810 return &_advanced_context; 1811 } 1812 1813 // context needed for all heap walks 1814 static JvmtiTagMap* _tag_map; 1815 static const void* _user_data; 1816 static JvmtiHeapwalkVisitStack* _visit_stack; 1817 1818 // accessors 1819 static JvmtiTagMap* tag_map() { return _tag_map; } 1820 static const void* user_data() { return _user_data; } 1821 static JvmtiHeapwalkVisitStack* visit_stack() { return _visit_stack; } 1822 1823 // if the object hasn't been visited then push it onto the visit stack 1824 // so that it will be visited later 1825 static inline bool check_for_visit(const JvmtiHeapwalkObject&obj) { 1826 visit_stack()->check_for_visit(obj); 1827 return true; 1828 } 1829 1830 // return element count if the obj is array, -1 otherwise 1831 static jint get_array_length(const JvmtiHeapwalkObject& obj) { 1832 if (!obj.klass()->is_array_klass()) { 1833 return -1; 1834 } 1835 assert(!obj.is_flat(), "array cannot be flat"); 1836 return (jint)arrayOop(obj.obj())->length(); 1837 } 1838 1839 1840 // invoke basic style callbacks 1841 static inline bool invoke_basic_heap_root_callback 1842 (jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj); 1843 static inline bool invoke_basic_stack_ref_callback 1844 (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method, 1845 int slot, const JvmtiHeapwalkObject& obj); 1846 static inline bool invoke_basic_object_reference_callback 1847 (jvmtiObjectReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index); 1848 1849 // invoke advanced style callbacks 1850 static inline bool invoke_advanced_heap_root_callback 1851 (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj); 1852 static inline bool invoke_advanced_stack_ref_callback 1853 (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth, 1854 jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& obj); 1855 static inline bool invoke_advanced_object_reference_callback 1856 (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index); 1857 1858 // used to report the value of primitive fields 1859 static inline bool report_primitive_field 1860 (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj, jint index, address addr, char type); 1861 1862 public: 1863 // initialize for basic mode 1864 static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, 1865 const void* user_data, 1866 BasicHeapWalkContext context, 1867 JvmtiHeapwalkVisitStack* visit_stack); 1868 1869 // initialize for advanced mode 1870 static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, 1871 const void* user_data, 1872 AdvancedHeapWalkContext context, 1873 JvmtiHeapwalkVisitStack* visit_stack); 1874 1875 // functions to report roots 1876 static inline bool report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& o); 1877 static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth, 1878 jmethodID m, const JvmtiHeapwalkObject& o); 1879 static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth, 1880 jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& o); 1881 1882 // functions to report references 1883 static inline bool report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index); 1884 static inline bool report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1885 static inline bool report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1886 static inline bool report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1887 static inline bool report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1888 static inline bool report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1889 static inline bool report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree); 1890 static inline bool report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot); 1891 static inline bool report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot); 1892 static inline bool report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index); 1893 static inline bool report_primitive_array_values(const JvmtiHeapwalkObject& array); 1894 static inline bool report_string_value(const JvmtiHeapwalkObject& str); 1895 static inline bool report_primitive_instance_field(const JvmtiHeapwalkObject& o, jint index, address value, char type); 1896 static inline bool report_primitive_static_field(const JvmtiHeapwalkObject& o, jint index, address value, char type); 1897 }; 1898 1899 // statics 1900 int CallbackInvoker::_heap_walk_type; 1901 BasicHeapWalkContext CallbackInvoker::_basic_context; 1902 AdvancedHeapWalkContext CallbackInvoker::_advanced_context; 1903 JvmtiTagMap* CallbackInvoker::_tag_map; 1904 const void* CallbackInvoker::_user_data; 1905 JvmtiHeapwalkVisitStack* CallbackInvoker::_visit_stack; 1906 1907 // initialize for basic heap walk (IterateOverReachableObjects et al) 1908 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map, 1909 const void* user_data, 1910 BasicHeapWalkContext context, 1911 JvmtiHeapwalkVisitStack* visit_stack) { 1912 _tag_map = tag_map; 1913 _user_data = user_data; 1914 _basic_context = context; 1915 _advanced_context.invalidate(); // will trigger assertion if used 1916 _heap_walk_type = basic; 1917 _visit_stack = visit_stack; 1918 } 1919 1920 // initialize for advanced heap walk (FollowReferences) 1921 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map, 1922 const void* user_data, 1923 AdvancedHeapWalkContext context, 1924 JvmtiHeapwalkVisitStack* visit_stack) { 1925 _tag_map = tag_map; 1926 _user_data = user_data; 1927 _advanced_context = context; 1928 _basic_context.invalidate(); // will trigger assertion if used 1929 _heap_walk_type = advanced; 1930 _visit_stack = visit_stack; 1931 } 1932 1933 1934 // invoke basic style heap root callback 1935 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj) { 1936 // if we heap roots should be reported 1937 jvmtiHeapRootCallback cb = basic_context()->heap_root_callback(); 1938 if (cb == nullptr) { 1939 return check_for_visit(obj); 1940 } 1941 1942 CallbackWrapper wrapper(tag_map(), obj); 1943 jvmtiIterationControl control = (*cb)(root_kind, 1944 wrapper.klass_tag(), 1945 wrapper.obj_size(), 1946 wrapper.obj_tag_p(), 1947 (void*)user_data()); 1948 // push root to visit stack when following references 1949 if (control == JVMTI_ITERATION_CONTINUE && 1950 basic_context()->object_ref_callback() != nullptr) { 1951 visit_stack()->push(obj); 1952 } 1953 return control != JVMTI_ITERATION_ABORT; 1954 } 1955 1956 // invoke basic style stack ref callback 1957 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind, 1958 jlong thread_tag, 1959 jint depth, 1960 jmethodID method, 1961 int slot, 1962 const JvmtiHeapwalkObject& obj) { 1963 // if we stack refs should be reported 1964 jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback(); 1965 if (cb == nullptr) { 1966 return check_for_visit(obj); 1967 } 1968 1969 CallbackWrapper wrapper(tag_map(), obj); 1970 jvmtiIterationControl control = (*cb)(root_kind, 1971 wrapper.klass_tag(), 1972 wrapper.obj_size(), 1973 wrapper.obj_tag_p(), 1974 thread_tag, 1975 depth, 1976 method, 1977 slot, 1978 (void*)user_data()); 1979 // push root to visit stack when following references 1980 if (control == JVMTI_ITERATION_CONTINUE && 1981 basic_context()->object_ref_callback() != nullptr) { 1982 visit_stack()->push(obj); 1983 } 1984 return control != JVMTI_ITERATION_ABORT; 1985 } 1986 1987 // invoke basic style object reference callback 1988 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind, 1989 const JvmtiHeapwalkObject& referrer, 1990 const JvmtiHeapwalkObject& referree, 1991 jint index) { 1992 1993 BasicHeapWalkContext* context = basic_context(); 1994 1995 // callback requires the referrer's tag. If it's the same referrer 1996 // as the last call then we use the cached value. 1997 jlong referrer_tag; 1998 if (referrer == context->last_referrer()) { 1999 referrer_tag = context->last_referrer_tag(); 2000 } else { 2001 referrer_tag = tag_map()->find(referrer); 2002 } 2003 2004 // do the callback 2005 CallbackWrapper wrapper(tag_map(), referree); 2006 jvmtiObjectReferenceCallback cb = context->object_ref_callback(); 2007 jvmtiIterationControl control = (*cb)(ref_kind, 2008 wrapper.klass_tag(), 2009 wrapper.obj_size(), 2010 wrapper.obj_tag_p(), 2011 referrer_tag, 2012 index, 2013 (void*)user_data()); 2014 2015 // record referrer and referrer tag. For self-references record the 2016 // tag value from the callback as this might differ from referrer_tag. 2017 context->set_last_referrer(referrer); 2018 if (referrer == referree) { 2019 context->set_last_referrer_tag(*wrapper.obj_tag_p()); 2020 } else { 2021 context->set_last_referrer_tag(referrer_tag); 2022 } 2023 2024 if (control == JVMTI_ITERATION_CONTINUE) { 2025 return check_for_visit(referree); 2026 } else { 2027 return control != JVMTI_ITERATION_ABORT; 2028 } 2029 } 2030 2031 // invoke advanced style heap root callback 2032 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind, 2033 const JvmtiHeapwalkObject& obj) { 2034 AdvancedHeapWalkContext* context = advanced_context(); 2035 2036 // check that callback is provided 2037 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 2038 if (cb == nullptr) { 2039 return check_for_visit(obj); 2040 } 2041 2042 // apply class filter 2043 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 2044 return check_for_visit(obj); 2045 } 2046 2047 // setup the callback wrapper 2048 CallbackWrapper wrapper(tag_map(), obj); 2049 2050 // apply tag filter 2051 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2052 wrapper.klass_tag(), 2053 context->heap_filter())) { 2054 return check_for_visit(obj); 2055 } 2056 2057 // for arrays we need the length, otherwise -1 2058 jint len = get_array_length(obj); 2059 2060 // invoke the callback 2061 jint res = (*cb)(ref_kind, 2062 nullptr, // referrer info 2063 wrapper.klass_tag(), 2064 0, // referrer_class_tag is 0 for heap root 2065 wrapper.obj_size(), 2066 wrapper.obj_tag_p(), 2067 nullptr, // referrer_tag_p 2068 len, 2069 (void*)user_data()); 2070 if (res & JVMTI_VISIT_ABORT) { 2071 return false;// referrer class tag 2072 } 2073 if (res & JVMTI_VISIT_OBJECTS) { 2074 check_for_visit(obj); 2075 } 2076 return true; 2077 } 2078 2079 // report a reference from a thread stack to an object 2080 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind, 2081 jlong thread_tag, 2082 jlong tid, 2083 int depth, 2084 jmethodID method, 2085 jlocation bci, 2086 jint slot, 2087 const JvmtiHeapwalkObject& obj) { 2088 AdvancedHeapWalkContext* context = advanced_context(); 2089 2090 // check that callback is provider 2091 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 2092 if (cb == nullptr) { 2093 return check_for_visit(obj); 2094 } 2095 2096 // apply class filter 2097 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 2098 return check_for_visit(obj); 2099 } 2100 2101 // setup the callback wrapper 2102 CallbackWrapper wrapper(tag_map(), obj); 2103 2104 // apply tag filter 2105 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2106 wrapper.klass_tag(), 2107 context->heap_filter())) { 2108 return check_for_visit(obj); 2109 } 2110 2111 // setup the referrer info 2112 jvmtiHeapReferenceInfo reference_info; 2113 reference_info.stack_local.thread_tag = thread_tag; 2114 reference_info.stack_local.thread_id = tid; 2115 reference_info.stack_local.depth = depth; 2116 reference_info.stack_local.method = method; 2117 reference_info.stack_local.location = bci; 2118 reference_info.stack_local.slot = slot; 2119 2120 // for arrays we need the length, otherwise -1 2121 jint len = get_array_length(obj); 2122 2123 // call into the agent 2124 int res = (*cb)(ref_kind, 2125 &reference_info, 2126 wrapper.klass_tag(), 2127 0, // referrer_class_tag is 0 for heap root (stack) 2128 wrapper.obj_size(), 2129 wrapper.obj_tag_p(), 2130 nullptr, // referrer_tag is 0 for root 2131 len, 2132 (void*)user_data()); 2133 2134 if (res & JVMTI_VISIT_ABORT) { 2135 return false; 2136 } 2137 if (res & JVMTI_VISIT_OBJECTS) { 2138 check_for_visit(obj); 2139 } 2140 return true; 2141 } 2142 2143 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback 2144 // only for ref_kinds defined by the JVM TI spec. Otherwise, null is passed. 2145 #define REF_INFO_MASK ((1 << JVMTI_HEAP_REFERENCE_FIELD) \ 2146 | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD) \ 2147 | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \ 2148 | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \ 2149 | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL) \ 2150 | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL)) 2151 2152 // invoke the object reference callback to report a reference 2153 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind, 2154 const JvmtiHeapwalkObject& referrer, 2155 const JvmtiHeapwalkObject& obj, 2156 jint index) 2157 { 2158 // field index is only valid field in reference_info 2159 static jvmtiHeapReferenceInfo reference_info = { 0 }; 2160 2161 AdvancedHeapWalkContext* context = advanced_context(); 2162 2163 // check that callback is provider 2164 jvmtiHeapReferenceCallback cb = context->heap_reference_callback(); 2165 if (cb == nullptr) { 2166 return check_for_visit(obj); 2167 } 2168 2169 // apply class filter 2170 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 2171 return check_for_visit(obj); 2172 } 2173 2174 // setup the callback wrapper 2175 TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj); 2176 2177 // apply tag filter 2178 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2179 wrapper.klass_tag(), 2180 context->heap_filter())) { 2181 return check_for_visit(obj); 2182 } 2183 2184 // field index is only valid field in reference_info 2185 reference_info.field.index = index; 2186 2187 // for arrays we need the length, otherwise -1 2188 jint len = get_array_length(obj); 2189 2190 // invoke the callback 2191 int res = (*cb)(ref_kind, 2192 (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : nullptr, 2193 wrapper.klass_tag(), 2194 wrapper.referrer_klass_tag(), 2195 wrapper.obj_size(), 2196 wrapper.obj_tag_p(), 2197 wrapper.referrer_tag_p(), 2198 len, 2199 (void*)user_data()); 2200 2201 if (res & JVMTI_VISIT_ABORT) { 2202 return false; 2203 } 2204 if (res & JVMTI_VISIT_OBJECTS) { 2205 check_for_visit(obj); 2206 } 2207 return true; 2208 } 2209 2210 // report a "simple root" 2211 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& obj) { 2212 assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL && 2213 kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root"); 2214 2215 if (is_basic_heap_walk()) { 2216 // map to old style root kind 2217 jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind); 2218 return invoke_basic_heap_root_callback(root_kind, obj); 2219 } else { 2220 assert(is_advanced_heap_walk(), "wrong heap walk type"); 2221 return invoke_advanced_heap_root_callback(kind, obj); 2222 } 2223 } 2224 2225 2226 // invoke the primitive array values 2227 inline bool CallbackInvoker::report_primitive_array_values(const JvmtiHeapwalkObject& obj) { 2228 assert(obj.klass()->is_typeArray_klass(), "not a primitive array"); 2229 2230 AdvancedHeapWalkContext* context = advanced_context(); 2231 assert(context->array_primitive_value_callback() != nullptr, "no callback"); 2232 2233 // apply class filter 2234 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 2235 return true; 2236 } 2237 2238 CallbackWrapper wrapper(tag_map(), obj); 2239 2240 // apply tag filter 2241 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2242 wrapper.klass_tag(), 2243 context->heap_filter())) { 2244 return true; 2245 } 2246 2247 // invoke the callback 2248 int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(), 2249 &wrapper, 2250 obj, 2251 (void*)user_data()); 2252 return (!(res & JVMTI_VISIT_ABORT)); 2253 } 2254 2255 // invoke the string value callback 2256 inline bool CallbackInvoker::report_string_value(const JvmtiHeapwalkObject& str) { 2257 assert(str.klass() == vmClasses::String_klass(), "not a string"); 2258 2259 AdvancedHeapWalkContext* context = advanced_context(); 2260 assert(context->string_primitive_value_callback() != nullptr, "no callback"); 2261 2262 // apply class filter 2263 if (is_filtered_by_klass_filter(str, context->klass_filter())) { 2264 return true; 2265 } 2266 2267 CallbackWrapper wrapper(tag_map(), str); 2268 2269 // apply tag filter 2270 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2271 wrapper.klass_tag(), 2272 context->heap_filter())) { 2273 return true; 2274 } 2275 2276 // invoke the callback 2277 int res = invoke_string_value_callback(context->string_primitive_value_callback(), 2278 &wrapper, 2279 str, 2280 (void*)user_data()); 2281 return (!(res & JVMTI_VISIT_ABORT)); 2282 } 2283 2284 // invoke the primitive field callback 2285 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind, 2286 const JvmtiHeapwalkObject& obj, 2287 jint index, 2288 address addr, 2289 char type) 2290 { 2291 // for primitive fields only the index will be set 2292 static jvmtiHeapReferenceInfo reference_info = { 0 }; 2293 2294 AdvancedHeapWalkContext* context = advanced_context(); 2295 assert(context->primitive_field_callback() != nullptr, "no callback"); 2296 2297 // apply class filter 2298 if (is_filtered_by_klass_filter(obj, context->klass_filter())) { 2299 return true; 2300 } 2301 2302 CallbackWrapper wrapper(tag_map(), obj); 2303 2304 // apply tag filter 2305 if (is_filtered_by_heap_filter(wrapper.obj_tag(), 2306 wrapper.klass_tag(), 2307 context->heap_filter())) { 2308 return true; 2309 } 2310 2311 // the field index in the referrer 2312 reference_info.field.index = index; 2313 2314 // map the type 2315 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type; 2316 2317 // setup the jvalue 2318 jvalue value; 2319 copy_to_jvalue(&value, addr, value_type); 2320 2321 jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback(); 2322 int res = (*cb)(ref_kind, 2323 &reference_info, 2324 wrapper.klass_tag(), 2325 wrapper.obj_tag_p(), 2326 value, 2327 value_type, 2328 (void*)user_data()); 2329 return (!(res & JVMTI_VISIT_ABORT)); 2330 } 2331 2332 2333 // instance field 2334 inline bool CallbackInvoker::report_primitive_instance_field(const JvmtiHeapwalkObject& obj, 2335 jint index, 2336 address value, 2337 char type) { 2338 return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD, 2339 obj, 2340 index, 2341 value, 2342 type); 2343 } 2344 2345 // static field 2346 inline bool CallbackInvoker::report_primitive_static_field(const JvmtiHeapwalkObject& obj, 2347 jint index, 2348 address value, 2349 char type) { 2350 return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD, 2351 obj, 2352 index, 2353 value, 2354 type); 2355 } 2356 2357 // report a JNI local (root object) to the profiler 2358 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, const JvmtiHeapwalkObject& obj) { 2359 if (is_basic_heap_walk()) { 2360 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL, 2361 thread_tag, 2362 depth, 2363 m, 2364 -1, 2365 obj); 2366 } else { 2367 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL, 2368 thread_tag, tid, 2369 depth, 2370 m, 2371 (jlocation)-1, 2372 -1, 2373 obj); 2374 } 2375 } 2376 2377 2378 // report a local (stack reference, root object) 2379 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag, 2380 jlong tid, 2381 jint depth, 2382 jmethodID method, 2383 jlocation bci, 2384 jint slot, 2385 const JvmtiHeapwalkObject& obj) { 2386 if (is_basic_heap_walk()) { 2387 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL, 2388 thread_tag, 2389 depth, 2390 method, 2391 slot, 2392 obj); 2393 } else { 2394 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL, 2395 thread_tag, 2396 tid, 2397 depth, 2398 method, 2399 bci, 2400 slot, 2401 obj); 2402 } 2403 } 2404 2405 // report an object referencing a class. 2406 inline bool CallbackInvoker::report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2407 if (is_basic_heap_walk()) { 2408 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); 2409 } else { 2410 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1); 2411 } 2412 } 2413 2414 // report a class referencing its class loader. 2415 inline bool CallbackInvoker::report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2416 if (is_basic_heap_walk()) { 2417 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1); 2418 } else { 2419 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1); 2420 } 2421 } 2422 2423 // report a class referencing its signers. 2424 inline bool CallbackInvoker::report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2425 if (is_basic_heap_walk()) { 2426 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1); 2427 } else { 2428 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1); 2429 } 2430 } 2431 2432 // report a class referencing its protection domain.. 2433 inline bool CallbackInvoker::report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2434 if (is_basic_heap_walk()) { 2435 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); 2436 } else { 2437 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1); 2438 } 2439 } 2440 2441 // report a class referencing its superclass. 2442 inline bool CallbackInvoker::report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2443 if (is_basic_heap_walk()) { 2444 // Send this to be consistent with past implementation 2445 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1); 2446 } else { 2447 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1); 2448 } 2449 } 2450 2451 // report a class referencing one of its interfaces. 2452 inline bool CallbackInvoker::report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) { 2453 if (is_basic_heap_walk()) { 2454 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1); 2455 } else { 2456 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1); 2457 } 2458 } 2459 2460 // report a class referencing one of its static fields. 2461 inline bool CallbackInvoker::report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) { 2462 if (is_basic_heap_walk()) { 2463 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot); 2464 } else { 2465 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot); 2466 } 2467 } 2468 2469 // report an array referencing an element object 2470 inline bool CallbackInvoker::report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) { 2471 if (is_basic_heap_walk()) { 2472 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); 2473 } else { 2474 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index); 2475 } 2476 } 2477 2478 // report an object referencing an instance field object 2479 inline bool CallbackInvoker::report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) { 2480 if (is_basic_heap_walk()) { 2481 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot); 2482 } else { 2483 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot); 2484 } 2485 } 2486 2487 // report an array referencing an element object 2488 inline bool CallbackInvoker::report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) { 2489 if (is_basic_heap_walk()) { 2490 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index); 2491 } else { 2492 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index); 2493 } 2494 } 2495 2496 // A supporting closure used to process simple roots 2497 class SimpleRootsClosure : public OopClosure { 2498 private: 2499 jvmtiHeapReferenceKind _kind; 2500 bool _continue; 2501 2502 jvmtiHeapReferenceKind root_kind() { return _kind; } 2503 2504 public: 2505 void set_kind(jvmtiHeapReferenceKind kind) { 2506 _kind = kind; 2507 _continue = true; 2508 } 2509 2510 inline bool stopped() { 2511 return !_continue; 2512 } 2513 2514 void do_oop(oop* obj_p) { 2515 // iteration has terminated 2516 if (stopped()) { 2517 return; 2518 } 2519 2520 oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p); 2521 // ignore null 2522 if (o == nullptr) { 2523 return; 2524 } 2525 2526 assert(Universe::heap()->is_in(o), "should be impossible"); 2527 2528 jvmtiHeapReferenceKind kind = root_kind(); 2529 2530 // invoke the callback 2531 _continue = CallbackInvoker::report_simple_root(kind, o); 2532 2533 } 2534 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2535 }; 2536 2537 // A supporting closure used to process JNI locals 2538 class JNILocalRootsClosure : public OopClosure { 2539 private: 2540 jlong _thread_tag; 2541 jlong _tid; 2542 jint _depth; 2543 jmethodID _method; 2544 bool _continue; 2545 public: 2546 void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) { 2547 _thread_tag = thread_tag; 2548 _tid = tid; 2549 _depth = depth; 2550 _method = method; 2551 _continue = true; 2552 } 2553 2554 inline bool stopped() { 2555 return !_continue; 2556 } 2557 2558 void do_oop(oop* obj_p) { 2559 // iteration has terminated 2560 if (stopped()) { 2561 return; 2562 } 2563 2564 oop o = *obj_p; 2565 // ignore null 2566 if (o == nullptr) { 2567 return; 2568 } 2569 2570 // invoke the callback 2571 _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o); 2572 } 2573 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2574 }; 2575 2576 // Helper class to collect/report stack references. 2577 class StackRefCollector { 2578 private: 2579 JvmtiTagMap* _tag_map; 2580 JNILocalRootsClosure* _blk; 2581 // java_thread is needed only to report JNI local on top native frame; 2582 // I.e. it's required only for platform/carrier threads or mounted virtual threads. 2583 JavaThread* _java_thread; 2584 2585 oop _threadObj; 2586 jlong _thread_tag; 2587 jlong _tid; 2588 2589 bool _is_top_frame; 2590 int _depth; 2591 frame* _last_entry_frame; 2592 2593 bool report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset); 2594 bool report_native_stack_refs(jmethodID method); 2595 2596 public: 2597 StackRefCollector(JvmtiTagMap* tag_map, JNILocalRootsClosure* blk, JavaThread* java_thread) 2598 : _tag_map(tag_map), _blk(blk), _java_thread(java_thread), 2599 _threadObj(nullptr), _thread_tag(0), _tid(0), 2600 _is_top_frame(true), _depth(0), _last_entry_frame(nullptr) 2601 { 2602 } 2603 2604 bool set_thread(oop o); 2605 // Sets the thread and reports the reference to it with the specified kind. 2606 bool set_thread(jvmtiHeapReferenceKind kind, oop o); 2607 2608 bool do_frame(vframe* vf); 2609 // Handles frames until vf->sender() is null. 2610 bool process_frames(vframe* vf); 2611 }; 2612 2613 bool StackRefCollector::set_thread(oop o) { 2614 _threadObj = o; 2615 _thread_tag = _tag_map->find(_threadObj); 2616 _tid = java_lang_Thread::thread_id(_threadObj); 2617 2618 _is_top_frame = true; 2619 _depth = 0; 2620 _last_entry_frame = nullptr; 2621 2622 return true; 2623 } 2624 2625 bool StackRefCollector::set_thread(jvmtiHeapReferenceKind kind, oop o) { 2626 return set_thread(o) 2627 && CallbackInvoker::report_simple_root(kind, _threadObj); 2628 } 2629 2630 bool StackRefCollector::report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset) { 2631 for (int index = 0; index < values->size(); index++) { 2632 if (values->at(index)->type() == T_OBJECT) { 2633 oop obj = values->obj_at(index)(); 2634 if (obj == nullptr) { 2635 continue; 2636 } 2637 // stack reference 2638 if (!CallbackInvoker::report_stack_ref_root(_thread_tag, _tid, _depth, method, 2639 bci, slot_offset + index, obj)) { 2640 return false; 2641 } 2642 } 2643 } 2644 return true; 2645 } 2646 2647 bool StackRefCollector::report_native_stack_refs(jmethodID method) { 2648 _blk->set_context(_thread_tag, _tid, _depth, method); 2649 if (_is_top_frame) { 2650 // JNI locals for the top frame. 2651 if (_java_thread != nullptr) { 2652 _java_thread->active_handles()->oops_do(_blk); 2653 if (_blk->stopped()) { 2654 return false; 2655 } 2656 } 2657 } else { 2658 if (_last_entry_frame != nullptr) { 2659 // JNI locals for the entry frame. 2660 assert(_last_entry_frame->is_entry_frame(), "checking"); 2661 _last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(_blk); 2662 if (_blk->stopped()) { 2663 return false; 2664 } 2665 } 2666 } 2667 return true; 2668 } 2669 2670 bool StackRefCollector::do_frame(vframe* vf) { 2671 if (vf->is_java_frame()) { 2672 // java frame (interpreted, compiled, ...) 2673 javaVFrame* jvf = javaVFrame::cast(vf); 2674 2675 jmethodID method = jvf->method()->jmethod_id(); 2676 2677 if (!(jvf->method()->is_native())) { 2678 jlocation bci = (jlocation)jvf->bci(); 2679 StackValueCollection* locals = jvf->locals(); 2680 if (!report_java_stack_refs(locals, method, bci, 0)) { 2681 return false; 2682 } 2683 if (!report_java_stack_refs(jvf->expressions(), method, bci, locals->size())) { 2684 return false; 2685 } 2686 2687 // Follow oops from compiled nmethod. 2688 if (jvf->cb() != nullptr && jvf->cb()->is_nmethod()) { 2689 _blk->set_context(_thread_tag, _tid, _depth, method); 2690 // Need to apply load barriers for unmounted vthreads. 2691 nmethod* nm = jvf->cb()->as_nmethod(); 2692 nm->run_nmethod_entry_barrier(); 2693 nm->oops_do(_blk); 2694 if (_blk->stopped()) { 2695 return false; 2696 } 2697 } 2698 } else { 2699 // native frame 2700 if (!report_native_stack_refs(method)) { 2701 return false; 2702 } 2703 } 2704 _last_entry_frame = nullptr; 2705 _depth++; 2706 } else { 2707 // externalVFrame - for an entry frame then we report the JNI locals 2708 // when we find the corresponding javaVFrame 2709 frame* fr = vf->frame_pointer(); 2710 assert(fr != nullptr, "sanity check"); 2711 if (fr->is_entry_frame()) { 2712 _last_entry_frame = fr; 2713 } 2714 } 2715 2716 _is_top_frame = false; 2717 2718 return true; 2719 } 2720 2721 bool StackRefCollector::process_frames(vframe* vf) { 2722 while (vf != nullptr) { 2723 if (!do_frame(vf)) { 2724 return false; 2725 } 2726 vf = vf->sender(); 2727 } 2728 return true; 2729 } 2730 2731 2732 // A VM operation to iterate over objects that are reachable from 2733 // a set of roots or an initial object. 2734 // 2735 // For VM_HeapWalkOperation the set of roots used is :- 2736 // 2737 // - All JNI global references 2738 // - All inflated monitors 2739 // - All classes loaded by the boot class loader (or all classes 2740 // in the event that class unloading is disabled) 2741 // - All java threads 2742 // - For each java thread then all locals and JNI local references 2743 // on the thread's execution stack 2744 // - All visible/explainable objects from Universes::oops_do 2745 // 2746 class VM_HeapWalkOperation: public VM_Operation { 2747 private: 2748 bool _is_advanced_heap_walk; // indicates FollowReferences 2749 JvmtiTagMap* _tag_map; 2750 Handle _initial_object; 2751 JvmtiHeapwalkVisitStack _visit_stack; 2752 2753 // Dead object tags in JvmtiTagMap 2754 GrowableArray<jlong>* _dead_objects; 2755 2756 bool _following_object_refs; // are we following object references 2757 2758 bool _reporting_primitive_fields; // optional reporting 2759 bool _reporting_primitive_array_values; 2760 bool _reporting_string_values; 2761 2762 // accessors 2763 bool is_advanced_heap_walk() const { return _is_advanced_heap_walk; } 2764 JvmtiTagMap* tag_map() const { return _tag_map; } 2765 Handle initial_object() const { return _initial_object; } 2766 2767 bool is_following_references() const { return _following_object_refs; } 2768 2769 bool is_reporting_primitive_fields() const { return _reporting_primitive_fields; } 2770 bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; } 2771 bool is_reporting_string_values() const { return _reporting_string_values; } 2772 2773 JvmtiHeapwalkVisitStack* visit_stack() { return &_visit_stack; } 2774 2775 // iterate over the various object types 2776 inline bool iterate_over_array(const JvmtiHeapwalkObject& o); 2777 inline bool iterate_over_flat_array(const JvmtiHeapwalkObject& o); 2778 inline bool iterate_over_type_array(const JvmtiHeapwalkObject& o); 2779 inline bool iterate_over_class(const JvmtiHeapwalkObject& o); 2780 inline bool iterate_over_object(const JvmtiHeapwalkObject& o); 2781 2782 // root collection 2783 inline bool collect_simple_roots(); 2784 inline bool collect_stack_roots(); 2785 inline bool collect_stack_refs(JavaThread* java_thread, JNILocalRootsClosure* blk); 2786 inline bool collect_vthread_stack_refs(oop vt); 2787 2788 // visit an object 2789 inline bool visit(const JvmtiHeapwalkObject& o); 2790 2791 public: 2792 VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2793 Handle initial_object, 2794 BasicHeapWalkContext callbacks, 2795 const void* user_data, 2796 GrowableArray<jlong>* objects); 2797 2798 VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2799 Handle initial_object, 2800 AdvancedHeapWalkContext callbacks, 2801 const void* user_data, 2802 GrowableArray<jlong>* objects); 2803 2804 ~VM_HeapWalkOperation(); 2805 2806 VMOp_Type type() const { return VMOp_HeapWalkOperation; } 2807 void doit(); 2808 }; 2809 2810 2811 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2812 Handle initial_object, 2813 BasicHeapWalkContext callbacks, 2814 const void* user_data, 2815 GrowableArray<jlong>* objects) { 2816 _is_advanced_heap_walk = false; 2817 _tag_map = tag_map; 2818 _initial_object = initial_object; 2819 _following_object_refs = (callbacks.object_ref_callback() != nullptr); 2820 _reporting_primitive_fields = false; 2821 _reporting_primitive_array_values = false; 2822 _reporting_string_values = false; 2823 _dead_objects = objects; 2824 CallbackInvoker::initialize_for_basic_heap_walk(tag_map, user_data, callbacks, &_visit_stack); 2825 } 2826 2827 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map, 2828 Handle initial_object, 2829 AdvancedHeapWalkContext callbacks, 2830 const void* user_data, 2831 GrowableArray<jlong>* objects) { 2832 _is_advanced_heap_walk = true; 2833 _tag_map = tag_map; 2834 _initial_object = initial_object; 2835 _following_object_refs = true; 2836 _reporting_primitive_fields = (callbacks.primitive_field_callback() != nullptr);; 2837 _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != nullptr);; 2838 _reporting_string_values = (callbacks.string_primitive_value_callback() != nullptr);; 2839 _dead_objects = objects; 2840 CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, user_data, callbacks, &_visit_stack); 2841 } 2842 2843 VM_HeapWalkOperation::~VM_HeapWalkOperation() { 2844 } 2845 2846 // an array references its class and has a reference to 2847 // each element in the array 2848 inline bool VM_HeapWalkOperation::iterate_over_array(const JvmtiHeapwalkObject& o) { 2849 assert(!o.is_flat(), "Array object cannot be flattened"); 2850 objArrayOop array = objArrayOop(o.obj()); 2851 2852 // array reference to its class 2853 oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror(); 2854 if (!CallbackInvoker::report_class_reference(o, mirror)) { 2855 return false; 2856 } 2857 2858 // iterate over the array and report each reference to a 2859 // non-null element 2860 for (int index=0; index<array->length(); index++) { 2861 oop elem = array->obj_at(index); 2862 if (elem == nullptr) { 2863 continue; 2864 } 2865 2866 // report the array reference o[index] = elem 2867 if (!CallbackInvoker::report_array_element_reference(o, elem, index)) { 2868 return false; 2869 } 2870 } 2871 return true; 2872 } 2873 2874 // similar to iterate_over_array(), but itrates over flat array 2875 inline bool VM_HeapWalkOperation::iterate_over_flat_array(const JvmtiHeapwalkObject& o) { 2876 assert(!o.is_flat(), "Array object cannot be flattened"); 2877 flatArrayOop array = flatArrayOop(o.obj()); 2878 FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass()); 2879 InlineKlass* vk = InlineKlass::cast(faklass->element_klass()); 2880 bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT; 2881 2882 // array reference to its class 2883 oop mirror = faklass->java_mirror(); 2884 if (!CallbackInvoker::report_class_reference(o, mirror)) { 2885 return false; 2886 } 2887 2888 // iterate over the array and report each reference to a 2889 // non-null element 2890 for (int index = 0; index < array->length(); index++) { 2891 address addr = (address)array->value_at_addr(index, faklass->layout_helper()); 2892 2893 // check for null 2894 if (need_null_check) { 2895 if (vk->is_payload_marked_as_null(addr)) { 2896 continue; 2897 } 2898 } 2899 2900 // offset in the array oop 2901 int offset = (int)(addr - cast_from_oop<address>(array)); 2902 JvmtiHeapwalkObject elem(o.obj(), offset, vk, faklass->layout_kind()); 2903 2904 // report the array reference 2905 if (!CallbackInvoker::report_array_element_reference(o, elem, index)) { 2906 return false; 2907 } 2908 } 2909 return true; 2910 } 2911 2912 // a type array references its class 2913 inline bool VM_HeapWalkOperation::iterate_over_type_array(const JvmtiHeapwalkObject& o) { 2914 assert(!o.is_flat(), "Array object cannot be flattened"); 2915 Klass* k = o.klass(); 2916 oop mirror = k->java_mirror(); 2917 if (!CallbackInvoker::report_class_reference(o, mirror)) { 2918 return false; 2919 } 2920 2921 // report the array contents if required 2922 if (is_reporting_primitive_array_values()) { 2923 if (!CallbackInvoker::report_primitive_array_values(o)) { 2924 return false; 2925 } 2926 } 2927 return true; 2928 } 2929 2930 #ifdef ASSERT 2931 // verify that a static oop field is in range 2932 static inline bool verify_static_oop(InstanceKlass* ik, 2933 oop mirror, int offset) { 2934 address obj_p = cast_from_oop<address>(mirror) + offset; 2935 address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror); 2936 address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize); 2937 assert(end >= start, "sanity check"); 2938 2939 if (obj_p >= start && obj_p < end) { 2940 return true; 2941 } else { 2942 return false; 2943 } 2944 } 2945 #endif // #ifdef ASSERT 2946 2947 // a class references its super class, interfaces, class loader, ... 2948 // and finally its static fields 2949 inline bool VM_HeapWalkOperation::iterate_over_class(const JvmtiHeapwalkObject& o) { 2950 assert(!o.is_flat(), "Klass object cannot be flattened"); 2951 Klass* klass = java_lang_Class::as_Klass(o.obj()); 2952 int i; 2953 2954 if (klass->is_instance_klass()) { 2955 InstanceKlass* ik = InstanceKlass::cast(klass); 2956 2957 // Ignore the class if it hasn't been initialized yet 2958 if (!ik->is_linked()) { 2959 return true; 2960 } 2961 2962 // get the java mirror 2963 oop mirror_oop = klass->java_mirror(); 2964 JvmtiHeapwalkObject mirror(mirror_oop); 2965 2966 // super (only if something more interesting than java.lang.Object) 2967 InstanceKlass* java_super = ik->java_super(); 2968 if (java_super != nullptr && java_super != vmClasses::Object_klass()) { 2969 oop super = java_super->java_mirror(); 2970 if (!CallbackInvoker::report_superclass_reference(mirror, super)) { 2971 return false; 2972 } 2973 } 2974 2975 // class loader 2976 oop cl = ik->class_loader(); 2977 if (cl != nullptr) { 2978 if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) { 2979 return false; 2980 } 2981 } 2982 2983 // protection domain 2984 oop pd = ik->protection_domain(); 2985 if (pd != nullptr) { 2986 if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) { 2987 return false; 2988 } 2989 } 2990 2991 // signers 2992 oop signers = ik->signers(); 2993 if (signers != nullptr) { 2994 if (!CallbackInvoker::report_signers_reference(mirror, signers)) { 2995 return false; 2996 } 2997 } 2998 2999 // references from the constant pool 3000 { 3001 ConstantPool* pool = ik->constants(); 3002 for (int i = 1; i < pool->length(); i++) { 3003 constantTag tag = pool->tag_at(i).value(); 3004 if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) { 3005 oop entry; 3006 if (tag.is_string()) { 3007 entry = pool->resolved_string_at(i); 3008 // If the entry is non-null it is resolved. 3009 if (entry == nullptr) { 3010 continue; 3011 } 3012 } else if (tag.is_klass()) { 3013 entry = pool->resolved_klass_at(i)->java_mirror(); 3014 } else { 3015 // Code generated by JIT compilers might not resolve constant 3016 // pool entries. Treat them as resolved if they are loaded. 3017 assert(tag.is_unresolved_klass(), "must be"); 3018 constantPoolHandle cp(Thread::current(), pool); 3019 Klass* klass = ConstantPool::klass_at_if_loaded(cp, i); 3020 if (klass == nullptr) { 3021 continue; 3022 } 3023 entry = klass->java_mirror(); 3024 } 3025 if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) { 3026 return false; 3027 } 3028 } 3029 } 3030 } 3031 3032 // interfaces 3033 // (These will already have been reported as references from the constant pool 3034 // but are specified by IterateOverReachableObjects and must be reported). 3035 Array<InstanceKlass*>* interfaces = ik->local_interfaces(); 3036 for (i = 0; i < interfaces->length(); i++) { 3037 oop interf = interfaces->at(i)->java_mirror(); 3038 if (interf == nullptr) { 3039 continue; 3040 } 3041 if (!CallbackInvoker::report_interface_reference(mirror, interf)) { 3042 return false; 3043 } 3044 } 3045 3046 // iterate over the static fields 3047 3048 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass); 3049 for (i=0; i<field_map->field_count(); i++) { 3050 ClassFieldDescriptor* field = field_map->field_at(i); 3051 char type = field->field_type(); 3052 if (!is_primitive_field_type(type)) { 3053 oop fld_o = mirror_oop->obj_field(field->field_offset()); 3054 assert(verify_static_oop(ik, mirror_oop, field->field_offset()), "sanity check"); 3055 if (fld_o != nullptr) { 3056 int slot = field->field_index(); 3057 if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) { 3058 delete field_map; 3059 return false; 3060 } 3061 } 3062 } else { 3063 if (is_reporting_primitive_fields()) { 3064 address addr = cast_from_oop<address>(mirror_oop) + field->field_offset(); 3065 int slot = field->field_index(); 3066 if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) { 3067 delete field_map; 3068 return false; 3069 } 3070 } 3071 } 3072 } 3073 delete field_map; 3074 3075 return true; 3076 } 3077 3078 return true; 3079 } 3080 3081 // an object references a class and its instance fields 3082 // (static fields are ignored here as we report these as 3083 // references from the class). 3084 inline bool VM_HeapWalkOperation::iterate_over_object(const JvmtiHeapwalkObject& o) { 3085 // reference to the class 3086 if (!CallbackInvoker::report_class_reference(o, o.klass()->java_mirror())) { 3087 return false; 3088 } 3089 3090 // iterate over instance fields 3091 ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o.klass()); 3092 for (int i=0; i<field_map->field_count(); i++) { 3093 ClassFieldDescriptor* field = field_map->field_at(i); 3094 char type = field->field_type(); 3095 int slot = field->field_index(); 3096 int field_offset = field->field_offset(); 3097 if (o.is_flat()) { 3098 // the object is inlined, its fields are stored without the header 3099 field_offset += o.offset() - o.inline_klass()->payload_offset(); 3100 } 3101 if (!is_primitive_field_type(type)) { 3102 if (field->is_flat()) { 3103 // check for possible nulls 3104 bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT; 3105 if (can_be_null) { 3106 address payload = cast_from_oop<address>(o.obj()) + field_offset; 3107 if (field->inline_klass()->is_payload_marked_as_null(payload)) { 3108 continue; 3109 } 3110 } 3111 JvmtiHeapwalkObject field_obj(o.obj(), field_offset, field->inline_klass(), field->layout_kind()); 3112 if (!CallbackInvoker::report_field_reference(o, field_obj, slot)) { 3113 return false; 3114 } 3115 } else { 3116 oop fld_o = o.obj()->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field_offset); 3117 // ignore any objects that aren't visible to profiler 3118 if (fld_o != nullptr) { 3119 assert(Universe::heap()->is_in(fld_o), "unsafe code should not have references to Klass* anymore"); 3120 if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) { 3121 return false; 3122 } 3123 } 3124 } 3125 } else { 3126 if (is_reporting_primitive_fields()) { 3127 // primitive instance field 3128 address addr = cast_from_oop<address>(o.obj()) + field_offset; 3129 if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) { 3130 return false; 3131 } 3132 } 3133 } 3134 } 3135 3136 // if the object is a java.lang.String 3137 if (is_reporting_string_values() && 3138 o.klass() == vmClasses::String_klass()) { 3139 if (!CallbackInvoker::report_string_value(o)) { 3140 return false; 3141 } 3142 } 3143 return true; 3144 } 3145 3146 3147 // Collects all simple (non-stack) roots except for threads; 3148 // threads are handled in collect_stack_roots() as an optimization. 3149 // if there's a heap root callback provided then the callback is 3150 // invoked for each simple root. 3151 // if an object reference callback is provided then all simple 3152 // roots are pushed onto the marking stack so that they can be 3153 // processed later 3154 // 3155 inline bool VM_HeapWalkOperation::collect_simple_roots() { 3156 SimpleRootsClosure blk; 3157 3158 // JNI globals 3159 blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL); 3160 JNIHandles::oops_do(&blk); 3161 if (blk.stopped()) { 3162 return false; 3163 } 3164 3165 // Preloaded classes and loader from the system dictionary 3166 blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS); 3167 CLDToOopClosure cld_closure(&blk, false); 3168 ClassLoaderDataGraph::always_strong_cld_do(&cld_closure); 3169 if (blk.stopped()) { 3170 return false; 3171 } 3172 3173 // threads are now handled in collect_stack_roots() 3174 3175 // Other kinds of roots maintained by HotSpot 3176 // Many of these won't be visible but others (such as instances of important 3177 // exceptions) will be visible. 3178 blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER); 3179 Universe::vm_global()->oops_do(&blk); 3180 if (blk.stopped()) { 3181 return false; 3182 } 3183 3184 return true; 3185 } 3186 3187 // Reports the thread as JVMTI_HEAP_REFERENCE_THREAD, 3188 // walks the stack of the thread, finds all references (locals 3189 // and JNI calls) and reports these as stack references. 3190 inline bool VM_HeapWalkOperation::collect_stack_refs(JavaThread* java_thread, 3191 JNILocalRootsClosure* blk) 3192 { 3193 oop threadObj = java_thread->threadObj(); 3194 oop mounted_vt = java_thread->is_vthread_mounted() ? java_thread->vthread() : nullptr; 3195 if (mounted_vt != nullptr && !JvmtiEnvBase::is_vthread_alive(mounted_vt)) { 3196 mounted_vt = nullptr; 3197 } 3198 assert(threadObj != nullptr, "sanity check"); 3199 3200 StackRefCollector stack_collector(tag_map(), blk, java_thread); 3201 3202 if (!java_thread->has_last_Java_frame()) { 3203 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) { 3204 return false; 3205 } 3206 // no last java frame but there may be JNI locals 3207 blk->set_context(_tag_map->find(threadObj), java_lang_Thread::thread_id(threadObj), 0, (jmethodID)nullptr); 3208 java_thread->active_handles()->oops_do(blk); 3209 return !blk->stopped(); 3210 } 3211 // vframes are resource allocated 3212 Thread* current_thread = Thread::current(); 3213 ResourceMark rm(current_thread); 3214 HandleMark hm(current_thread); 3215 3216 RegisterMap reg_map(java_thread, 3217 RegisterMap::UpdateMap::include, 3218 RegisterMap::ProcessFrames::include, 3219 RegisterMap::WalkContinuation::include); 3220 3221 // first handle mounted vthread (if any) 3222 if (mounted_vt != nullptr) { 3223 frame f = java_thread->last_frame(); 3224 vframe* vf = vframe::new_vframe(&f, ®_map, java_thread); 3225 // report virtual thread as JVMTI_HEAP_REFERENCE_OTHER 3226 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_OTHER, mounted_vt)) { 3227 return false; 3228 } 3229 // split virtual thread and carrier thread stacks by vthread entry ("enterSpecial") frame, 3230 // consider vthread entry frame as the last vthread stack frame 3231 while (vf != nullptr) { 3232 if (!stack_collector.do_frame(vf)) { 3233 return false; 3234 } 3235 if (vf->is_vthread_entry()) { 3236 break; 3237 } 3238 vf = vf->sender(); 3239 } 3240 } 3241 // Platform or carrier thread. 3242 vframe* vf = JvmtiEnvBase::get_cthread_last_java_vframe(java_thread, ®_map); 3243 if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) { 3244 return false; 3245 } 3246 return stack_collector.process_frames(vf); 3247 } 3248 3249 3250 // Collects the simple roots for all threads and collects all 3251 // stack roots - for each thread it walks the execution 3252 // stack to find all references and local JNI refs. 3253 inline bool VM_HeapWalkOperation::collect_stack_roots() { 3254 JNILocalRootsClosure blk; 3255 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { 3256 oop threadObj = thread->threadObj(); 3257 if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) { 3258 if (!collect_stack_refs(thread, &blk)) { 3259 return false; 3260 } 3261 } 3262 } 3263 return true; 3264 } 3265 3266 // Reports stack references for the unmounted virtual thread. 3267 inline bool VM_HeapWalkOperation::collect_vthread_stack_refs(oop vt) { 3268 if (!JvmtiEnvBase::is_vthread_alive(vt)) { 3269 return true; 3270 } 3271 ContinuationWrapper cont(java_lang_VirtualThread::continuation(vt)); 3272 if (cont.is_empty()) { 3273 return true; 3274 } 3275 assert(!cont.is_mounted(), "sanity check"); 3276 3277 stackChunkOop chunk = cont.last_nonempty_chunk(); 3278 if (chunk == nullptr || chunk->is_empty()) { 3279 return true; 3280 } 3281 3282 // vframes are resource allocated 3283 Thread* current_thread = Thread::current(); 3284 ResourceMark rm(current_thread); 3285 HandleMark hm(current_thread); 3286 3287 RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include); 3288 3289 JNILocalRootsClosure blk; 3290 // JavaThread is not required for unmounted virtual threads 3291 StackRefCollector stack_collector(tag_map(), &blk, nullptr); 3292 // reference to the vthread is already reported 3293 if (!stack_collector.set_thread(vt)) { 3294 return false; 3295 } 3296 3297 frame fr = chunk->top_frame(®_map); 3298 vframe* vf = vframe::new_vframe(&fr, ®_map, nullptr); 3299 return stack_collector.process_frames(vf); 3300 } 3301 3302 // visit an object 3303 // first mark the object as visited 3304 // second get all the outbound references from this object (in other words, all 3305 // the objects referenced by this object). 3306 // 3307 bool VM_HeapWalkOperation::visit(const JvmtiHeapwalkObject& o) { 3308 // mark object as visited 3309 assert(!visit_stack()->is_visited(o), "can't visit same object more than once"); 3310 visit_stack()->mark_visited(o); 3311 3312 Klass* klass = o.klass(); 3313 // instance 3314 if (klass->is_instance_klass()) { 3315 if (klass == vmClasses::Class_klass()) { 3316 assert(!o.is_flat(), "Class object cannot be flattened"); 3317 if (!java_lang_Class::is_primitive(o.obj())) { 3318 // a java.lang.Class 3319 return iterate_over_class(o); 3320 } 3321 } else { 3322 // we report stack references only when initial object is not specified 3323 // (in the case we start from heap roots which include platform thread stack references) 3324 if (initial_object().is_null() && java_lang_VirtualThread::is_subclass(klass)) { 3325 assert(!o.is_flat(), "VirtualThread object cannot be flattened"); 3326 if (!collect_vthread_stack_refs(o.obj())) { 3327 return false; 3328 } 3329 } 3330 return iterate_over_object(o); 3331 } 3332 } 3333 3334 // flat object array 3335 if (klass->is_flatArray_klass()) { 3336 return iterate_over_flat_array(o); 3337 } 3338 3339 // object array 3340 if (klass->is_objArray_klass()) { 3341 return iterate_over_array(o); 3342 } 3343 3344 // type array 3345 if (klass->is_typeArray_klass()) { 3346 return iterate_over_type_array(o); 3347 } 3348 3349 return true; 3350 } 3351 3352 void VM_HeapWalkOperation::doit() { 3353 ResourceMark rm; 3354 ClassFieldMapCacheMark cm; 3355 3356 JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects); 3357 3358 assert(visit_stack()->is_empty(), "visit stack must be empty"); 3359 3360 // the heap walk starts with an initial object or the heap roots 3361 if (initial_object().is_null()) { 3362 // can result in a big performance boost for an agent that is 3363 // focused on analyzing references in the thread stacks. 3364 if (!collect_stack_roots()) return; 3365 3366 if (!collect_simple_roots()) return; 3367 } else { 3368 visit_stack()->push(initial_object()()); 3369 } 3370 3371 // object references required 3372 if (is_following_references()) { 3373 3374 // visit each object until all reachable objects have been 3375 // visited or the callback asked to terminate the iteration. 3376 while (!visit_stack()->is_empty()) { 3377 const JvmtiHeapwalkObject o = visit_stack()->pop(); 3378 if (!visit_stack()->is_visited(o)) { 3379 if (!visit(o)) { 3380 break; 3381 } 3382 } 3383 } 3384 } 3385 } 3386 3387 // iterate over all objects that are reachable from a set of roots 3388 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback, 3389 jvmtiStackReferenceCallback stack_ref_callback, 3390 jvmtiObjectReferenceCallback object_ref_callback, 3391 const void* user_data) { 3392 // VTMS transitions must be disabled before the EscapeBarrier. 3393 JvmtiVTMSTransitionDisabler disabler; 3394 3395 JavaThread* jt = JavaThread::current(); 3396 EscapeBarrier eb(true, jt); 3397 eb.deoptimize_objects_all_threads(); 3398 Arena dead_object_arena(mtServiceability); 3399 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3400 3401 { 3402 MutexLocker ml(Heap_lock); 3403 BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback); 3404 VM_HeapWalkOperation op(this, Handle(), context, user_data, &dead_objects); 3405 VMThread::execute(&op); 3406 } 3407 convert_flat_object_entries(); 3408 3409 // Post events outside of Heap_lock 3410 post_dead_objects(&dead_objects); 3411 } 3412 3413 // iterate over all objects that are reachable from a given object 3414 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object, 3415 jvmtiObjectReferenceCallback object_ref_callback, 3416 const void* user_data) { 3417 oop obj = JNIHandles::resolve(object); 3418 Handle initial_object(Thread::current(), obj); 3419 3420 Arena dead_object_arena(mtServiceability); 3421 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3422 3423 JvmtiVTMSTransitionDisabler disabler; 3424 3425 { 3426 MutexLocker ml(Heap_lock); 3427 BasicHeapWalkContext context(nullptr, nullptr, object_ref_callback); 3428 VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects); 3429 VMThread::execute(&op); 3430 } 3431 convert_flat_object_entries(); 3432 3433 // Post events outside of Heap_lock 3434 post_dead_objects(&dead_objects); 3435 } 3436 3437 // follow references from an initial object or the GC roots 3438 void JvmtiTagMap::follow_references(jint heap_filter, 3439 Klass* klass, 3440 jobject object, 3441 const jvmtiHeapCallbacks* callbacks, 3442 const void* user_data) 3443 { 3444 // VTMS transitions must be disabled before the EscapeBarrier. 3445 JvmtiVTMSTransitionDisabler disabler; 3446 3447 oop obj = JNIHandles::resolve(object); 3448 JavaThread* jt = JavaThread::current(); 3449 Handle initial_object(jt, obj); 3450 // EA based optimizations that are tagged or reachable from initial_object are already reverted. 3451 EscapeBarrier eb(initial_object.is_null() && 3452 !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), 3453 jt); 3454 eb.deoptimize_objects_all_threads(); 3455 3456 Arena dead_object_arena(mtServiceability); 3457 GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0); 3458 3459 { 3460 MutexLocker ml(Heap_lock); 3461 AdvancedHeapWalkContext context(heap_filter, klass, callbacks); 3462 VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects); 3463 VMThread::execute(&op); 3464 } 3465 convert_flat_object_entries(); 3466 3467 // Post events outside of Heap_lock 3468 post_dead_objects(&dead_objects); 3469 } 3470 3471 // Verify gc_notification follows set_needs_cleaning. 3472 DEBUG_ONLY(static bool notified_needs_cleaning = false;) 3473 3474 void JvmtiTagMap::set_needs_cleaning() { 3475 assert(SafepointSynchronize::is_at_safepoint(), "called in gc pause"); 3476 assert(Thread::current()->is_VM_thread(), "should be the VM thread"); 3477 // Can't assert !notified_needs_cleaning; a partial GC might be upgraded 3478 // to a full GC and do this twice without intervening gc_notification. 3479 DEBUG_ONLY(notified_needs_cleaning = true;) 3480 3481 JvmtiEnvIterator it; 3482 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3483 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3484 if (tag_map != nullptr) { 3485 tag_map->_needs_cleaning = !tag_map->is_empty(); 3486 } 3487 } 3488 } 3489 3490 void JvmtiTagMap::gc_notification(size_t num_dead_entries) { 3491 assert(notified_needs_cleaning, "missing GC notification"); 3492 DEBUG_ONLY(notified_needs_cleaning = false;) 3493 3494 // Notify ServiceThread if there's work to do. 3495 { 3496 MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); 3497 _has_object_free_events = (num_dead_entries != 0); 3498 if (_has_object_free_events) ml.notify_all(); 3499 } 3500 3501 // If no dead entries then cancel cleaning requests. 3502 if (num_dead_entries == 0) { 3503 JvmtiEnvIterator it; 3504 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3505 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3506 if (tag_map != nullptr) { 3507 MutexLocker ml (tag_map->lock(), Mutex::_no_safepoint_check_flag); 3508 tag_map->_needs_cleaning = false; 3509 } 3510 } 3511 } 3512 } 3513 3514 // Used by ServiceThread to discover there is work to do. 3515 bool JvmtiTagMap::has_object_free_events_and_reset() { 3516 assert_lock_strong(Service_lock); 3517 bool result = _has_object_free_events; 3518 _has_object_free_events = false; 3519 return result; 3520 } 3521 3522 // Used by ServiceThread to clean up tagmaps. 3523 void JvmtiTagMap::flush_all_object_free_events() { 3524 JavaThread* thread = JavaThread::current(); 3525 JvmtiEnvIterator it; 3526 for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) { 3527 JvmtiTagMap* tag_map = env->tag_map_acquire(); 3528 if (tag_map != nullptr) { 3529 tag_map->flush_object_free_events(); 3530 ThreadBlockInVM tbiv(thread); // Be safepoint-polite while looping. 3531 } 3532 } 3533 }