1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/constantPool.inline.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/typeArrayOop.inline.hpp"
  45 #include "prims/jvmtiEventController.hpp"
  46 #include "prims/jvmtiEventController.inline.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiImpl.hpp"
  49 #include "prims/jvmtiTagMap.hpp"
  50 #include "prims/jvmtiTagMapTable.hpp"
  51 #include "prims/jvmtiThreadState.hpp"
  52 #include "runtime/continuationWrapper.inline.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/interfaceSupport.inline.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/javaThread.inline.hpp"
  59 #include "runtime/jniHandles.inline.hpp"
  60 #include "runtime/mutex.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/reflectionUtils.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/timerTrace.hpp"
  65 #include "runtime/threadSMR.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "runtime/vmOperations.hpp"
  69 #include "utilities/objectBitSet.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 
  72 typedef ObjectBitSet<mtServiceability> JVMTIBitSet;
  73 
  74 
  75 // Helper class to store objects to visit.
  76 class JvmtiHeapwalkVisitStack {
  77 private:
  78   enum {
  79     initial_visit_stack_size = 4000
  80   };
  81 
  82   GrowableArray<JvmtiHeapwalkObject>* _visit_stack;
  83   JVMTIBitSet _bitset;
  84 
  85   static GrowableArray<JvmtiHeapwalkObject>* create_visit_stack() {
  86     return new (mtServiceability) GrowableArray<JvmtiHeapwalkObject>(initial_visit_stack_size, mtServiceability);
  87   }
  88 
  89 public:
  90   JvmtiHeapwalkVisitStack(): _visit_stack(create_visit_stack()) {
  91   }
  92   ~JvmtiHeapwalkVisitStack() {
  93     if (_visit_stack != nullptr) {
  94       delete _visit_stack;
  95     }
  96   }
  97 
  98   bool is_empty() const {
  99     return _visit_stack->is_empty();
 100   }
 101 
 102   void push(const JvmtiHeapwalkObject& obj) {
 103     _visit_stack->push(obj);
 104   }
 105 
 106   // If the object hasn't been visited then push it onto the visit stack
 107   // so that it will be visited later.
 108   void check_for_visit(const JvmtiHeapwalkObject& obj) {
 109     if (!is_visited(obj)) {
 110       _visit_stack->push(obj);
 111     }
 112   }
 113 
 114   JvmtiHeapwalkObject pop() {
 115     return _visit_stack->pop();
 116   }
 117 
 118   bool is_visited(const JvmtiHeapwalkObject& obj) /*const*/ { // TODO: _bitset.is_marked() should be const
 119     // The method is called only for objects from visit_stack to ensure an object is not visited twice.
 120     // Flat objects can be added to visit_stack only when we visit their holder object, so we cannot get duplicate reference to it.
 121     if (obj.is_flat()) {
 122       return false;
 123     }
 124     return _bitset.is_marked(obj.obj());
 125   }
 126 
 127   void mark_visited(const JvmtiHeapwalkObject& obj) {
 128     if (!obj.is_flat()) {
 129       _bitset.mark_obj(obj.obj());
 130     }
 131   }
 132 };
 133 
 134 
 135 bool JvmtiTagMap::_has_object_free_events = false;
 136 
 137 // create a JvmtiTagMap
 138 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 139   _env(env),
 140   _lock(Mutex::nosafepoint, "JvmtiTagMap_lock"),
 141   _needs_cleaning(false),
 142   _posting_events(false),
 143   _converting_flat_object(false) {
 144 
 145   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 146   assert(((JvmtiEnvBase *)env)->tag_map() == nullptr, "tag map already exists for environment");
 147 
 148   _hashmap = new JvmtiTagMapTable();
 149   _flat_hashmap = new JvmtiFlatTagMapTable();
 150 
 151   // finally add us to the environment
 152   ((JvmtiEnvBase *)env)->release_set_tag_map(this);
 153 }
 154 
 155 // destroy a JvmtiTagMap
 156 JvmtiTagMap::~JvmtiTagMap() {
 157 
 158   // no lock acquired as we assume the enclosing environment is
 159   // also being destroyed.
 160   ((JvmtiEnvBase *)_env)->set_tag_map(nullptr);
 161 
 162   // finally destroy the hashmap
 163   delete _hashmap;
 164   _hashmap = nullptr;
 165   delete _flat_hashmap;
 166 }
 167 
 168 // Called by env_dispose() to reclaim memory before deallocation.
 169 // Remove all the entries but keep the empty table intact.
 170 // This needs the table lock.
 171 void JvmtiTagMap::clear() {
 172   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 173   _hashmap->clear();
 174   _flat_hashmap->clear();
 175 }
 176 
 177 // returns the tag map for the given environments. If the tag map
 178 // doesn't exist then it is created.
 179 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 180   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire();
 181   if (tag_map == nullptr) {
 182     MutexLocker mu(JvmtiThreadState_lock);
 183     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 184     if (tag_map == nullptr) {
 185       tag_map = new JvmtiTagMap(env);
 186     }
 187   } else {
 188     DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
 189   }
 190   return tag_map;
 191 }
 192 
 193 // returns true if the hashmaps are empty
 194 bool JvmtiTagMap::is_empty() const {
 195   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 196   return _hashmap->is_empty() && _flat_hashmap->is_empty();
 197 }
 198 
 199 // This checks for posting before operations that use
 200 // this tagmap table.
 201 void JvmtiTagMap::check_hashmap(GrowableArray<jlong>* objects) {
 202   assert(is_locked(), "checking");
 203 
 204   if (is_empty()) { return; }
 205 
 206   if (_needs_cleaning &&
 207       objects != nullptr &&
 208       env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
 209     remove_dead_entries_locked(objects);
 210   }
 211 }
 212 
 213 // This checks for posting and is called from the heap walks.
 214 void JvmtiTagMap::check_hashmaps_for_heapwalk(GrowableArray<jlong>* objects) {
 215   assert(SafepointSynchronize::is_at_safepoint(), "called from safepoints");
 216 
 217   // Verify that the tag map tables are valid and unconditionally post events
 218   // that are expected to be posted before gc_notification.
 219   JvmtiEnvIterator it;
 220   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
 221     JvmtiTagMap* tag_map = env->tag_map_acquire();
 222     if (tag_map != nullptr) {
 223       // The ZDriver may be walking the hashmaps concurrently so this lock is needed.
 224       MutexLocker ml(tag_map->lock(), Mutex::_no_safepoint_check_flag);
 225       tag_map->check_hashmap(objects);
 226     }
 227   }
 228 }
 229 
 230 // Converts entries from JvmtiFlatTagMapTable to JvmtiTagMapTable in batches.
 231 //   1. (JvmtiTagMap is locked)
 232 //      reads entries from JvmtiFlatTagMapTable (describe flat value objects);
 233 //   2. (JvmtiTagMap is unlocked)
 234 //      creates heap-allocated copies of the flat object;
 235 //   3. (JvmtiTagMap is locked)
 236 //      ensures source entry still exists, removes it from JvmtiFlatTagMapTable, adds new entry to JvmtiTagMapTable.
 237 // If some error occurs in step 2 (OOM?), the process stops.
 238 class JvmtiTagMapFlatEntryConverter: public StackObj {
 239 private:
 240   struct Entry {
 241     // source flat value object
 242     Handle holder;
 243     int offset;
 244     InlineKlass* inline_klass;
 245     LayoutKind layout_kind;
 246     // converted heap-allocated object
 247     Handle dst;
 248 
 249     Entry(): holder(), offset(0), inline_klass(nullptr), dst() {}
 250     Entry(Handle holder, int offset, InlineKlass* inline_klass, LayoutKind lk)
 251       : holder(holder), offset(offset), inline_klass(inline_klass), layout_kind(lk), dst() {}
 252   };
 253 
 254   int _batch_size;
 255   GrowableArray<Entry> _entries;
 256   bool _has_error;
 257 
 258 public:
 259   JvmtiTagMapFlatEntryConverter(int batch_size): _batch_size(batch_size), _entries(batch_size, mtServiceability), _has_error(false) { }
 260   ~JvmtiTagMapFlatEntryConverter() {}
 261 
 262   // returns false if there is nothing to convert
 263   bool import_entries(JvmtiFlatTagMapTable* table) {
 264     if (_has_error) {
 265       // stop the process to avoid infinite loop
 266       return false;
 267     }
 268 
 269     class Importer: public JvmtiFlatTagMapKeyClosure {
 270     private:
 271       GrowableArray<Entry>& _entries;
 272       int _batch_size;
 273     public:
 274       Importer(GrowableArray<Entry>& entries, int batch_size): _entries(entries), _batch_size(batch_size) {}
 275 
 276       bool do_entry(JvmtiFlatTagMapKey& key, jlong& tag) {
 277         Entry entry(Handle(Thread::current(), key.holder()), key.offset(), key.inline_klass(), key.layout_kind());
 278         _entries.append(entry);
 279 
 280         return _entries.length() < _batch_size;
 281       }
 282     } importer(_entries, _batch_size);
 283     table->entry_iterate(&importer);
 284 
 285     return !_entries.is_empty();
 286   }
 287 
 288   void convert() {
 289     for (int i = 0; i < _entries.length(); i++) {
 290       EXCEPTION_MARK;
 291       Entry& entry = _entries.at(i);
 292       oop obj = entry.inline_klass->read_payload_from_addr(entry.holder(), entry.offset, entry.layout_kind, JavaThread::current());
 293 
 294       if (HAS_PENDING_EXCEPTION) {
 295         tty->print_cr("Exception in JvmtiTagMapFlatEntryConverter: ");
 296         java_lang_Throwable::print(PENDING_EXCEPTION, tty);
 297         tty->cr();
 298         CLEAR_PENDING_EXCEPTION;
 299         // stop the conversion
 300         _has_error = true;
 301       } else {
 302         entry.dst = Handle(Thread::current(), obj);
 303       }
 304     }
 305   }
 306 
 307   // returns number of converted entries
 308   int move(JvmtiFlatTagMapTable* src_table, JvmtiTagMapTable* dst_table) {
 309     int count = 0;
 310     for (int i = 0; i < _entries.length(); i++) {
 311       Entry& entry = _entries.at(i);
 312       if (entry.dst() == nullptr) {
 313         // some error during conversion, skip the entry
 314         continue;
 315       }
 316       JvmtiHeapwalkObject obj(entry.holder(), entry.offset, entry.inline_klass, entry.layout_kind);
 317       jlong tag = src_table->remove(obj);
 318 
 319       if (tag != 0) { // ensure the entry is still in the src_table
 320         dst_table->add(entry.dst(), tag);
 321         count++;
 322       } else {
 323 
 324       }
 325     }
 326     // and clean the array
 327     _entries.clear();
 328     return count;
 329   }
 330 };
 331 
 332 
 333 void JvmtiTagMap::convert_flat_object_entries() {
 334   Thread* current = Thread::current();
 335   assert(current->is_Java_thread(), "must be executed on JavaThread");
 336 
 337   log_debug(jvmti, table)("convert_flat_object_entries, main table size = %d, flat table size = %d",
 338                           _hashmap->number_of_entries(), _flat_hashmap->number_of_entries());
 339 
 340   {
 341     MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 342     // If another thread is converting, let it finish.
 343     while (_converting_flat_object) {
 344       ml.wait();
 345     }
 346     if (_flat_hashmap->is_empty()) {
 347       // nothing to convert
 348       return;
 349     }
 350     _converting_flat_object = true;
 351   }
 352 
 353   const int BATCH_SIZE = 1024;
 354   JvmtiTagMapFlatEntryConverter converter(BATCH_SIZE);
 355 
 356   int count = 0;
 357   while (true) {
 358     HandleMark hm(current);
 359     {
 360       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 361       if (!converter.import_entries(_flat_hashmap)) {
 362         break;
 363       }
 364     }
 365     // Convert flat objects to heap-allocated without table lock (so agent callbacks can get/set tags).
 366     converter.convert();
 367     {
 368       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 369       count += converter.move(_flat_hashmap, _hashmap);
 370     }
 371   }
 372 
 373   log_info(jvmti, table)("%d flat value objects are converted, flat table size = %d",
 374                          count, _flat_hashmap->number_of_entries());
 375   {
 376     MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 377     _converting_flat_object = false;
 378     ml.notify_all();
 379   }
 380 }
 381 
 382 jlong JvmtiTagMap::find(const JvmtiHeapwalkObject& obj) const {
 383   jlong tag = _hashmap->find(obj);
 384   if (tag == 0 && obj.is_value()) {
 385     tag = _flat_hashmap->find(obj);
 386   }
 387   return tag;
 388 }
 389 
 390 void JvmtiTagMap::add(const JvmtiHeapwalkObject& obj, jlong tag) {
 391   if (obj.is_flat()) {
 392     // we may have tag for equal (non-flat) object in _hashmap, try to update it 1st
 393     if (!_hashmap->update(obj, tag)) {
 394       // no entry in _hashmap, add to _flat_hashmap
 395       _flat_hashmap->add(obj, tag);
 396     }
 397   } else {
 398     _hashmap->add(obj, tag);
 399   }
 400 }
 401 
 402 void JvmtiTagMap::remove(const JvmtiHeapwalkObject& obj) {
 403   if (!_hashmap->remove(obj)) {
 404     if (obj.is_value()) {
 405       _flat_hashmap->remove(obj);
 406     }
 407   }
 408 }
 409 
 410 
 411 // A CallbackWrapper is a support class for querying and tagging an object
 412 // around a callback to a profiler. The constructor does pre-callback
 413 // work to get the tag value, klass tag value, ... and the destructor
 414 // does the post-callback work of tagging or untagging the object.
 415 //
 416 // {
 417 //   CallbackWrapper wrapper(tag_map, o);
 418 //
 419 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 420 //
 421 // }
 422 // wrapper goes out of scope here which results in the destructor
 423 // checking to see if the object has been tagged, untagged, or the
 424 // tag value has changed.
 425 //
 426 class CallbackWrapper : public StackObj {
 427  private:
 428   JvmtiTagMap* _tag_map;
 429   const JvmtiHeapwalkObject& _o;
 430   jlong _obj_size;
 431   jlong _obj_tag;
 432   jlong _klass_tag;
 433 
 434  protected:
 435   JvmtiTagMap* tag_map() const { return _tag_map; }
 436 
 437   // invoked post-callback to tag, untag, or update the tag of an object
 438   void inline post_callback_tag_update(const JvmtiHeapwalkObject& o, JvmtiTagMap* tag_map, jlong obj_tag);
 439 
 440  public:
 441   CallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& o)
 442     : _tag_map(tag_map), _o(o)
 443   {
 444     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 445            "MT unsafe or must be VM thread");
 446 
 447     // object size
 448     if (!o.is_flat()) {
 449       // common case: we have oop
 450       _obj_size = (jlong)o.obj()->size() * wordSize;
 451     } else {
 452       // flat value object, we know its InstanceKlass
 453       assert(_o.inline_klass() != nullptr, "must be");
 454       _obj_size = _o.inline_klass()->size() * wordSize;;
 455     }
 456 
 457     // get object tag
 458     _obj_tag = _tag_map->find(_o);
 459 
 460     // get the class and the class's tag value
 461     assert(vmClasses::Class_klass()->is_mirror_instance_klass(), "Is not?");
 462 
 463     _klass_tag = _tag_map->find(_o.klass()->java_mirror());
 464   }
 465 
 466   ~CallbackWrapper() {
 467     post_callback_tag_update(_o, _tag_map, _obj_tag);
 468   }
 469 
 470   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 471   inline jlong obj_size() const                 { return _obj_size; }
 472   inline jlong obj_tag() const                  { return _obj_tag; }
 473   inline jlong klass_tag() const                { return _klass_tag; }
 474 };
 475 
 476 // callback post-callback to tag, untag, or update the tag of an object
 477 void inline CallbackWrapper::post_callback_tag_update(const JvmtiHeapwalkObject& o,
 478                                                       JvmtiTagMap* tag_map,
 479                                                       jlong obj_tag) {
 480   if (obj_tag == 0) {
 481     // callback has untagged the object, remove the entry if present
 482     tag_map->remove(o);
 483   } else {
 484     // object was previously tagged or not present - the callback may have
 485     // changed the tag value
 486     assert(Thread::current()->is_VM_thread(), "must be VMThread");
 487     tag_map->add(o, obj_tag);
 488   }
 489 }
 490 
 491 // An extended CallbackWrapper used when reporting an object reference
 492 // to the agent.
 493 //
 494 // {
 495 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 496 //
 497 //   (*callback)(wrapper.klass_tag(),
 498 //               wrapper.obj_size(),
 499 //               wrapper.obj_tag_p()
 500 //               wrapper.referrer_tag_p(), ...)
 501 //
 502 // }
 503 // wrapper goes out of scope here which results in the destructor
 504 // checking to see if the referrer object has been tagged, untagged,
 505 // or the tag value has changed.
 506 //
 507 class TwoOopCallbackWrapper : public CallbackWrapper {
 508  private:
 509   const JvmtiHeapwalkObject& _referrer;
 510   bool _is_reference_to_self;
 511   jlong _referrer_obj_tag;
 512   jlong _referrer_klass_tag;
 513   jlong* _referrer_tag_p;
 514 
 515   bool is_reference_to_self() const             { return _is_reference_to_self; }
 516 
 517  public:
 518   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& o) :
 519     CallbackWrapper(tag_map, o), _referrer(referrer)
 520   {
 521     // self reference needs to be handled in a special way
 522     _is_reference_to_self = (referrer == o);
 523 
 524     if (_is_reference_to_self) {
 525       _referrer_klass_tag = klass_tag();
 526       _referrer_tag_p = obj_tag_p();
 527     } else {
 528       // get object tag
 529       _referrer_obj_tag = tag_map->find(_referrer);
 530 
 531       _referrer_tag_p = &_referrer_obj_tag;
 532 
 533       // get referrer class tag.
 534       _referrer_klass_tag = tag_map->find(_referrer.klass()->java_mirror());
 535     }
 536   }
 537 
 538   ~TwoOopCallbackWrapper() {
 539     if (!is_reference_to_self()) {
 540       post_callback_tag_update(_referrer,
 541                                tag_map(),
 542                                _referrer_obj_tag);
 543     }
 544   }
 545 
 546   // address of referrer tag
 547   // (for a self reference this will return the same thing as obj_tag_p())
 548   inline jlong* referrer_tag_p() { return _referrer_tag_p; }
 549 
 550   // referrer's class tag
 551   inline jlong referrer_klass_tag() { return _referrer_klass_tag; }
 552 };
 553 
 554 // tag an object
 555 //
 556 // This function is performance critical. If many threads attempt to tag objects
 557 // around the same time then it's possible that the Mutex associated with the
 558 // tag map will be a hot lock.
 559 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 560   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 561 
 562   // SetTag should not post events because the JavaThread has to
 563   // transition to native for the callback and this cannot stop for
 564   // safepoints with the hashmap lock held.
 565   check_hashmap(nullptr);  /* don't collect dead objects */
 566 
 567   // resolve the object
 568   oop o = JNIHandles::resolve_non_null(object);
 569   // see if the object is already tagged
 570   JvmtiHeapwalkObject obj(o);
 571   if (tag == 0) {
 572     // remove the entry if present
 573     _hashmap->remove(obj);
 574   } else {
 575     // if the object is already tagged or not present then we add/update
 576     // the tag
 577     add(obj, tag);
 578   }
 579 }
 580 
 581 // get the tag for an object
 582 jlong JvmtiTagMap::get_tag(jobject object) {
 583   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 584 
 585   // GetTag should not post events because the JavaThread has to
 586   // transition to native for the callback and this cannot stop for
 587   // safepoints with the hashmap lock held.
 588   check_hashmap(nullptr); /* don't collect dead objects */
 589 
 590   // resolve the object
 591   oop o = JNIHandles::resolve_non_null(object);
 592 
 593   return find(o);
 594 }
 595 
 596 
 597 // Helper class used to describe the static or instance fields of a class.
 598 // For each field it holds the field index (as defined by the JVMTI specification),
 599 // the field type, and the offset.
 600 
 601 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 602  private:
 603   int _field_index;
 604   int _field_offset;
 605   char _field_type;
 606   InlineKlass* _inline_klass; // nullptr for heap object
 607   LayoutKind _layout_kind;
 608  public:
 609   ClassFieldDescriptor(int index, const FieldStreamBase& fld) :
 610       _field_index(index), _field_offset(fld.offset()), _field_type(fld.signature()->char_at(0)) {
 611     if (fld.is_flat()) {
 612       const fieldDescriptor& fd = fld.field_descriptor();
 613       InstanceKlass* holder_klass = fd.field_holder();
 614       InlineLayoutInfo* layout_info = holder_klass->inline_layout_info_adr(fd.index());
 615       _inline_klass = layout_info->klass();
 616       _layout_kind = layout_info->kind();
 617     } else {
 618       _inline_klass = nullptr;
 619       _layout_kind = LayoutKind::REFERENCE;
 620     }
 621   }
 622   int field_index()  const  { return _field_index; }
 623   char field_type()  const  { return _field_type; }
 624   int field_offset() const  { return _field_offset; }
 625   bool is_flat()     const  { return _inline_klass != nullptr; }
 626   InlineKlass* inline_klass() const { return _inline_klass; }
 627   LayoutKind layout_kind() const { return _layout_kind; }
 628 };
 629 
 630 class ClassFieldMap: public CHeapObj<mtInternal> {
 631  private:
 632   enum {
 633     initial_field_count = 5
 634   };
 635 
 636   // list of field descriptors
 637   GrowableArray<ClassFieldDescriptor*>* _fields;
 638 
 639   // constructor
 640   ClassFieldMap();
 641 
 642   // calculates number of fields in all interfaces
 643   static int interfaces_field_count(InstanceKlass* ik);
 644 
 645   // add a field
 646   void add(int index, const FieldStreamBase& fld);
 647 
 648  public:
 649   ~ClassFieldMap();
 650 
 651   // access
 652   int field_count()                     { return _fields->length(); }
 653   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 654 
 655   // functions to create maps of static or instance fields
 656   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 657   static ClassFieldMap* create_map_of_instance_fields(Klass* k);
 658 };
 659 
 660 ClassFieldMap::ClassFieldMap() {
 661   _fields = new (mtServiceability)
 662     GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability);
 663 }
 664 
 665 ClassFieldMap::~ClassFieldMap() {
 666   for (int i=0; i<_fields->length(); i++) {
 667     delete _fields->at(i);
 668   }
 669   delete _fields;
 670 }
 671 
 672 int ClassFieldMap::interfaces_field_count(InstanceKlass* ik) {
 673   const Array<InstanceKlass*>* interfaces = ik->transitive_interfaces();
 674   int count = 0;
 675   for (int i = 0; i < interfaces->length(); i++) {
 676     FilteredJavaFieldStream fld(interfaces->at(i));
 677     count += fld.field_count();
 678   }
 679   return count;
 680 }
 681 
 682 void ClassFieldMap::add(int index, const FieldStreamBase& fld) {
 683   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, fld);
 684   _fields->append(field);
 685 }
 686 
 687 // Returns a heap allocated ClassFieldMap to describe the static fields
 688 // of the given class.
 689 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 690   InstanceKlass* ik = InstanceKlass::cast(k);
 691 
 692   // create the field map
 693   ClassFieldMap* field_map = new ClassFieldMap();
 694 
 695   // Static fields of interfaces and superclasses are reported as references from the interfaces/superclasses.
 696   // Need to calculate start index of this class fields: number of fields in all interfaces and superclasses.
 697   int index = interfaces_field_count(ik);
 698   for (InstanceKlass* super_klass = ik->java_super(); super_klass != nullptr; super_klass = super_klass->java_super()) {
 699     FilteredJavaFieldStream super_fld(super_klass);
 700     index += super_fld.field_count();
 701   }
 702 
 703   for (FilteredJavaFieldStream fld(ik); !fld.done(); fld.next(), index++) {
 704     // ignore instance fields
 705     if (!fld.access_flags().is_static()) {
 706       continue;
 707     }
 708     field_map->add(index, fld);
 709   }
 710 
 711   return field_map;
 712 }
 713 
 714 // Returns a heap allocated ClassFieldMap to describe the instance fields
 715 // of the given class. All instance fields are included (this means public
 716 // and private fields declared in superclasses too).
 717 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(Klass* k) {
 718   InstanceKlass* ik = InstanceKlass::cast(k);
 719 
 720   // create the field map
 721   ClassFieldMap* field_map = new ClassFieldMap();
 722 
 723   // fields of the superclasses are reported first, so need to know total field number to calculate field indices
 724   int total_field_number = interfaces_field_count(ik);
 725   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 726     FilteredJavaFieldStream fld(klass);
 727     total_field_number += fld.field_count();
 728   }
 729 
 730   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 731     FilteredJavaFieldStream fld(klass);
 732     int start_index = total_field_number - fld.field_count();
 733     for (int index = 0; !fld.done(); fld.next(), index++) {
 734       // ignore static fields
 735       if (fld.access_flags().is_static()) {
 736         continue;
 737       }
 738       field_map->add(start_index + index, fld);
 739     }
 740     // update total_field_number for superclass (decrease by the field count in the current class)
 741     total_field_number = start_index;
 742   }
 743 
 744   return field_map;
 745 }
 746 
 747 // Helper class used to cache a ClassFileMap for the instance fields of
 748 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 749 // heap iteration and avoid creating a field map for each object in the heap
 750 // (only need to create the map when the first instance of a class is encountered).
 751 //
 752 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 753  private:
 754   enum {
 755      initial_class_count = 200
 756   };
 757   ClassFieldMap* _field_map;
 758 
 759   ClassFieldMap* field_map() const { return _field_map; }
 760 
 761   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 762   ~JvmtiCachedClassFieldMap();
 763 
 764   static GrowableArray<InstanceKlass*>* _class_list;
 765   static void add_to_class_list(InstanceKlass* ik);
 766 
 767  public:
 768   // returns the field map for a given klass (returning map cached
 769   // by InstanceKlass if possible
 770   static ClassFieldMap* get_map_of_instance_fields(Klass* k);
 771 
 772   // removes the field map from all instanceKlasses - should be
 773   // called before VM operation completes
 774   static void clear_cache();
 775 
 776   // returns the number of ClassFieldMap cached by instanceKlasses
 777   static int cached_field_map_count();
 778 };
 779 
 780 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 781 
 782 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 783   _field_map = field_map;
 784 }
 785 
 786 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 787   if (_field_map != nullptr) {
 788     delete _field_map;
 789   }
 790 }
 791 
 792 // Marker class to ensure that the class file map cache is only used in a defined
 793 // scope.
 794 class ClassFieldMapCacheMark : public StackObj {
 795  private:
 796    static bool _is_active;
 797  public:
 798    ClassFieldMapCacheMark() {
 799      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 800      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 801      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 802      _is_active = true;
 803    }
 804    ~ClassFieldMapCacheMark() {
 805      JvmtiCachedClassFieldMap::clear_cache();
 806      _is_active = false;
 807    }
 808    static bool is_active() { return _is_active; }
 809 };
 810 
 811 bool ClassFieldMapCacheMark::_is_active;
 812 
 813 // record that the given InstanceKlass is caching a field map
 814 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 815   if (_class_list == nullptr) {
 816     _class_list = new (mtServiceability)
 817       GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability);
 818   }
 819   _class_list->push(ik);
 820 }
 821 
 822 // returns the instance field map for the given klass
 823 // (returns field map cached by the InstanceKlass if possible)
 824 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(Klass *k) {
 825   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 826   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 827 
 828   InstanceKlass* ik = InstanceKlass::cast(k);
 829 
 830   // return cached map if possible
 831   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 832   if (cached_map != nullptr) {
 833     assert(cached_map->field_map() != nullptr, "missing field list");
 834     return cached_map->field_map();
 835   } else {
 836     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(k);
 837     cached_map = new JvmtiCachedClassFieldMap(field_map);
 838     ik->set_jvmti_cached_class_field_map(cached_map);
 839     add_to_class_list(ik);
 840     return field_map;
 841   }
 842 }
 843 
 844 // remove the fields maps cached from all instanceKlasses
 845 void JvmtiCachedClassFieldMap::clear_cache() {
 846   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 847   if (_class_list != nullptr) {
 848     for (int i = 0; i < _class_list->length(); i++) {
 849       InstanceKlass* ik = _class_list->at(i);
 850       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 851       assert(cached_map != nullptr, "should not be null");
 852       ik->set_jvmti_cached_class_field_map(nullptr);
 853       delete cached_map;  // deletes the encapsulated field map
 854     }
 855     delete _class_list;
 856     _class_list = nullptr;
 857   }
 858 }
 859 
 860 // returns the number of ClassFieldMap cached by instanceKlasses
 861 int JvmtiCachedClassFieldMap::cached_field_map_count() {
 862   return (_class_list == nullptr) ? 0 : _class_list->length();
 863 }
 864 
 865 // helper function to indicate if an object is filtered by its tag or class tag
 866 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
 867                                               jlong klass_tag,
 868                                               int heap_filter) {
 869   // apply the heap filter
 870   if (obj_tag != 0) {
 871     // filter out tagged objects
 872     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
 873   } else {
 874     // filter out untagged objects
 875     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
 876   }
 877   if (klass_tag != 0) {
 878     // filter out objects with tagged classes
 879     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
 880   } else {
 881     // filter out objects with untagged classes.
 882     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
 883   }
 884   return false;
 885 }
 886 
 887 // helper function to indicate if an object is filtered by a klass filter
 888 static inline bool is_filtered_by_klass_filter(const JvmtiHeapwalkObject& obj, Klass* klass_filter) {
 889   if (klass_filter != nullptr) {
 890     if (obj.klass() != klass_filter) {
 891       return true;
 892     }
 893   }
 894   return false;
 895 }
 896 
 897 // helper function to tell if a field is a primitive field or not
 898 static inline bool is_primitive_field_type(char type) {
 899   return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY);
 900 }
 901 
 902 // helper function to copy the value from location addr to jvalue.
 903 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
 904   switch (value_type) {
 905     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
 906     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
 907     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
 908     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
 909     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
 910     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
 911     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
 912     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
 913     default: ShouldNotReachHere();
 914   }
 915 }
 916 
 917 // helper function to invoke string primitive value callback
 918 // returns visit control flags
 919 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
 920                                          CallbackWrapper* wrapper,
 921                                          const JvmtiHeapwalkObject& obj,
 922                                          void* user_data)
 923 {
 924   assert(!obj.is_flat(), "cannot be flat");
 925   oop str = obj.obj();
 926   assert(str->klass() == vmClasses::String_klass(), "not a string");
 927 
 928   typeArrayOop s_value = java_lang_String::value(str);
 929 
 930   // JDK-6584008: the value field may be null if a String instance is
 931   // partially constructed.
 932   if (s_value == nullptr) {
 933     return 0;
 934   }
 935   // get the string value and length
 936   // (string value may be offset from the base)
 937   int s_len = java_lang_String::length(str);
 938   bool is_latin1 = java_lang_String::is_latin1(str);
 939   jchar* value;
 940   if (s_len > 0) {
 941     if (!is_latin1) {
 942       value = s_value->char_at_addr(0);
 943     } else {
 944       // Inflate latin1 encoded string to UTF16
 945       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
 946       for (int i = 0; i < s_len; i++) {
 947         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
 948       }
 949       value = &buf[0];
 950     }
 951   } else {
 952     // Don't use char_at_addr(0) if length is 0
 953     value = (jchar*) s_value->base(T_CHAR);
 954   }
 955 
 956   // invoke the callback
 957   jint res = (*cb)(wrapper->klass_tag(),
 958                    wrapper->obj_size(),
 959                    wrapper->obj_tag_p(),
 960                    value,
 961                    (jint)s_len,
 962                    user_data);
 963 
 964   if (is_latin1 && s_len > 0) {
 965     FREE_C_HEAP_ARRAY(jchar, value);
 966   }
 967   return res;
 968 }
 969 
 970 // helper function to invoke string primitive value callback
 971 // returns visit control flags
 972 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
 973                                                   CallbackWrapper* wrapper,
 974                                                   const JvmtiHeapwalkObject& obj,
 975                                                   void* user_data)
 976 {
 977   assert(!obj.is_flat(), "cannot be flat");
 978   assert(obj.obj()->is_typeArray(), "not a primitive array");
 979 
 980   // get base address of first element
 981   typeArrayOop array = typeArrayOop(obj.obj());
 982   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
 983   void* elements = array->base(type);
 984 
 985   // jvmtiPrimitiveType is defined so this mapping is always correct
 986   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
 987 
 988   return (*cb)(wrapper->klass_tag(),
 989                wrapper->obj_size(),
 990                wrapper->obj_tag_p(),
 991                (jint)array->length(),
 992                elem_type,
 993                elements,
 994                user_data);
 995 }
 996 
 997 // helper function to invoke the primitive field callback for all static fields
 998 // of a given class
 999 static jint invoke_primitive_field_callback_for_static_fields
1000   (CallbackWrapper* wrapper,
1001    oop obj,
1002    jvmtiPrimitiveFieldCallback cb,
1003    void* user_data)
1004 {
1005   // for static fields only the index will be set
1006   static jvmtiHeapReferenceInfo reference_info = { 0 };
1007 
1008   assert(obj->klass() == vmClasses::Class_klass(), "not a class");
1009   if (java_lang_Class::is_primitive(obj)) {
1010     return 0;
1011   }
1012   Klass* klass = java_lang_Class::as_Klass(obj);
1013 
1014   // ignore classes for object and type arrays
1015   if (!klass->is_instance_klass()) {
1016     return 0;
1017   }
1018 
1019   // ignore classes which aren't linked yet
1020   InstanceKlass* ik = InstanceKlass::cast(klass);
1021   if (!ik->is_linked()) {
1022     return 0;
1023   }
1024 
1025   // get the field map
1026   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1027 
1028   // invoke the callback for each static primitive field
1029   for (int i=0; i<field_map->field_count(); i++) {
1030     ClassFieldDescriptor* field = field_map->field_at(i);
1031 
1032     // ignore non-primitive fields
1033     char type = field->field_type();
1034     if (!is_primitive_field_type(type)) {
1035       continue;
1036     }
1037     // one-to-one mapping
1038     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1039 
1040     // get offset and field value
1041     int offset = field->field_offset();
1042     address addr = cast_from_oop<address>(klass->java_mirror()) + offset;
1043     jvalue value;
1044     copy_to_jvalue(&value, addr, value_type);
1045 
1046     // field index
1047     reference_info.field.index = field->field_index();
1048 
1049     // invoke the callback
1050     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1051                      &reference_info,
1052                      wrapper->klass_tag(),
1053                      wrapper->obj_tag_p(),
1054                      value,
1055                      value_type,
1056                      user_data);
1057     if (res & JVMTI_VISIT_ABORT) {
1058       delete field_map;
1059       return res;
1060     }
1061   }
1062 
1063   delete field_map;
1064   return 0;
1065 }
1066 
1067 // helper function to invoke the primitive field callback for all instance fields
1068 // of a given object
1069 static jint invoke_primitive_field_callback_for_instance_fields(
1070   CallbackWrapper* wrapper,
1071   const JvmtiHeapwalkObject& obj,
1072   jvmtiPrimitiveFieldCallback cb,
1073   void* user_data)
1074 {
1075   // for instance fields only the index will be set
1076   static jvmtiHeapReferenceInfo reference_info = { 0 };
1077 
1078   // get the map of the instance fields
1079   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass());
1080 
1081   // invoke the callback for each instance primitive field
1082   for (int i=0; i<fields->field_count(); i++) {
1083     ClassFieldDescriptor* field = fields->field_at(i);
1084 
1085     // ignore non-primitive fields
1086     char type = field->field_type();
1087     if (!is_primitive_field_type(type)) {
1088       continue;
1089     }
1090     // one-to-one mapping
1091     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1092 
1093     // get field value
1094     address addr = cast_from_oop<address>(obj.obj()) + obj.offset() + field->field_offset();
1095     jvalue value;
1096     copy_to_jvalue(&value, addr, value_type);
1097 
1098     // field index
1099     reference_info.field.index = field->field_index();
1100 
1101     // invoke the callback
1102     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1103                      &reference_info,
1104                      wrapper->klass_tag(),
1105                      wrapper->obj_tag_p(),
1106                      value,
1107                      value_type,
1108                      user_data);
1109     if (res & JVMTI_VISIT_ABORT) {
1110       return res;
1111     }
1112   }
1113   return 0;
1114 }
1115 
1116 
1117 // VM operation to iterate over all objects in the heap (both reachable
1118 // and unreachable)
1119 class VM_HeapIterateOperation: public VM_Operation {
1120  private:
1121   ObjectClosure* _blk;
1122   GrowableArray<jlong>* const _dead_objects;
1123  public:
1124   VM_HeapIterateOperation(ObjectClosure* blk, GrowableArray<jlong>* objects) :
1125     _blk(blk), _dead_objects(objects) { }
1126 
1127   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1128   void doit() {
1129     // allows class files maps to be cached during iteration
1130     ClassFieldMapCacheMark cm;
1131 
1132     JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
1133 
1134     // make sure that heap is parsable (fills TLABs with filler objects)
1135     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1136 
1137     // Verify heap before iteration - if the heap gets corrupted then
1138     // JVMTI's IterateOverHeap will crash.
1139     if (VerifyBeforeIteration) {
1140       Universe::verify();
1141     }
1142 
1143     // do the iteration
1144     Universe::heap()->object_iterate(_blk);
1145   }
1146 };
1147 
1148 
1149 // An ObjectClosure used to support the deprecated IterateOverHeap and
1150 // IterateOverInstancesOfClass functions
1151 class IterateOverHeapObjectClosure: public ObjectClosure {
1152  private:
1153   JvmtiTagMap* _tag_map;
1154   Klass* _klass;
1155   jvmtiHeapObjectFilter _object_filter;
1156   jvmtiHeapObjectCallback _heap_object_callback;
1157   const void* _user_data;
1158 
1159   // accessors
1160   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1161   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1162   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1163   Klass* klass() const                            { return _klass; }
1164   const void* user_data() const                   { return _user_data; }
1165 
1166   // indicates if iteration has been aborted
1167   bool _iteration_aborted;
1168   bool is_iteration_aborted() const               { return _iteration_aborted; }
1169   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1170 
1171  public:
1172   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1173                                Klass* klass,
1174                                jvmtiHeapObjectFilter object_filter,
1175                                jvmtiHeapObjectCallback heap_object_callback,
1176                                const void* user_data) :
1177     _tag_map(tag_map),
1178     _klass(klass),
1179     _object_filter(object_filter),
1180     _heap_object_callback(heap_object_callback),
1181     _user_data(user_data),
1182     _iteration_aborted(false)
1183   {
1184   }
1185 
1186   void do_object(oop o);
1187 };
1188 
1189 // invoked for each object in the heap
1190 void IterateOverHeapObjectClosure::do_object(oop o) {
1191   assert(o != nullptr, "Heap iteration should never produce null!");
1192   // check if iteration has been halted
1193   if (is_iteration_aborted()) return;
1194 
1195   // instanceof check when filtering by klass
1196   if (klass() != nullptr && !o->is_a(klass())) {
1197     return;
1198   }
1199 
1200   // skip if object is a dormant shared object whose mirror hasn't been loaded
1201   if (o->klass()->java_mirror() == nullptr) {
1202     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(o),
1203                          o->klass()->external_name());
1204     return;
1205   }
1206 
1207   // prepare for the calllback
1208   JvmtiHeapwalkObject wrapper_obj(o);
1209   CallbackWrapper wrapper(tag_map(), wrapper_obj);
1210 
1211   // if the object is tagged and we're only interested in untagged objects
1212   // then don't invoke the callback. Similarly, if the object is untagged
1213   // and we're only interested in tagged objects we skip the callback.
1214   if (wrapper.obj_tag() != 0) {
1215     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1216   } else {
1217     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1218   }
1219 
1220   // invoke the agent's callback
1221   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1222                                                        wrapper.obj_size(),
1223                                                        wrapper.obj_tag_p(),
1224                                                        (void*)user_data());
1225   if (control == JVMTI_ITERATION_ABORT) {
1226     set_iteration_aborted(true);
1227   }
1228 }
1229 
1230 // An ObjectClosure used to support the IterateThroughHeap function
1231 class IterateThroughHeapObjectClosure: public ObjectClosure {
1232  private:
1233   JvmtiTagMap* _tag_map;
1234   Klass* _klass;
1235   int _heap_filter;
1236   const jvmtiHeapCallbacks* _callbacks;
1237   const void* _user_data;
1238 
1239   // accessor functions
1240   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1241   int heap_filter() const                          { return _heap_filter; }
1242   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1243   Klass* klass() const                             { return _klass; }
1244   const void* user_data() const                    { return _user_data; }
1245 
1246   // indicates if the iteration has been aborted
1247   bool _iteration_aborted;
1248   bool is_iteration_aborted() const                { return _iteration_aborted; }
1249 
1250   // used to check the visit control flags. If the abort flag is set
1251   // then we set the iteration aborted flag so that the iteration completes
1252   // without processing any further objects
1253   bool check_flags_for_abort(jint flags) {
1254     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1255     if (is_abort) {
1256       _iteration_aborted = true;
1257     }
1258     return is_abort;
1259   }
1260 
1261   void visit_object(const JvmtiHeapwalkObject& obj);
1262   void visit_flat_fields(const JvmtiHeapwalkObject& obj);
1263   void visit_flat_array_elements(const JvmtiHeapwalkObject& obj);
1264 
1265  public:
1266   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1267                                   Klass* klass,
1268                                   int heap_filter,
1269                                   const jvmtiHeapCallbacks* heap_callbacks,
1270                                   const void* user_data) :
1271     _tag_map(tag_map),
1272     _klass(klass),
1273     _heap_filter(heap_filter),
1274     _callbacks(heap_callbacks),
1275     _user_data(user_data),
1276     _iteration_aborted(false)
1277   {
1278   }
1279 
1280   void do_object(oop obj);
1281 };
1282 
1283 // invoked for each object in the heap
1284 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1285   assert(obj != nullptr, "Heap iteration should never produce null!");
1286   // check if iteration has been halted
1287   if (is_iteration_aborted()) return;
1288 
1289   // skip if object is a dormant shared object whose mirror hasn't been loaded
1290   if (obj != nullptr && obj->klass()->java_mirror() == nullptr) {
1291     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(obj),
1292                          obj->klass()->external_name());
1293     return;
1294   }
1295 
1296   visit_object(obj);
1297 }
1298 
1299 void IterateThroughHeapObjectClosure::visit_object(const JvmtiHeapwalkObject& obj) {
1300   // apply class filter
1301   if (is_filtered_by_klass_filter(obj, klass())) return;
1302 
1303   // prepare for callback
1304   CallbackWrapper wrapper(tag_map(), obj);
1305 
1306   // check if filtered by the heap filter
1307   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1308     return;
1309   }
1310 
1311   // for arrays we need the length, otherwise -1
1312   bool is_array = obj.klass()->is_array_klass();
1313   int len = is_array ? arrayOop(obj.obj())->length() : -1;
1314 
1315   // invoke the object callback (if callback is provided)
1316   if (callbacks()->heap_iteration_callback != nullptr) {
1317     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1318     jint res = (*cb)(wrapper.klass_tag(),
1319                      wrapper.obj_size(),
1320                      wrapper.obj_tag_p(),
1321                      (jint)len,
1322                      (void*)user_data());
1323     if (check_flags_for_abort(res)) return;
1324   }
1325 
1326   // for objects and classes we report primitive fields if callback provided
1327   if (callbacks()->primitive_field_callback != nullptr && obj.klass()->is_instance_klass()) {
1328     jint res;
1329     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1330     if (obj.klass() == vmClasses::Class_klass()) {
1331       assert(!obj.is_flat(), "Class object cannot be flattened");
1332       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1333                                                               obj.obj(),
1334                                                               cb,
1335                                                               (void*)user_data());
1336     } else {
1337       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1338                                                                 obj,
1339                                                                 cb,
1340                                                                 (void*)user_data());
1341     }
1342     if (check_flags_for_abort(res)) return;
1343   }
1344 
1345   // string callback
1346   if (!is_array &&
1347       callbacks()->string_primitive_value_callback != nullptr &&
1348       obj.klass() == vmClasses::String_klass()) {
1349     jint res = invoke_string_value_callback(
1350                 callbacks()->string_primitive_value_callback,
1351                 &wrapper,
1352                 obj,
1353                 (void*)user_data());
1354     if (check_flags_for_abort(res)) return;
1355   }
1356 
1357   // array callback
1358   if (is_array &&
1359       callbacks()->array_primitive_value_callback != nullptr &&
1360       obj.klass()->is_typeArray_klass()) {
1361     jint res = invoke_array_primitive_value_callback(
1362                callbacks()->array_primitive_value_callback,
1363                &wrapper,
1364                obj,
1365                (void*)user_data());
1366     if (check_flags_for_abort(res)) return;
1367   }
1368 
1369   // All info for the object is reported.
1370 
1371   // If the object has flat fields, report them as heap objects.
1372   if (obj.klass()->is_instance_klass()) {
1373     if (InstanceKlass::cast(obj.klass())->has_inline_type_fields()) {
1374       visit_flat_fields(obj);
1375       // check if iteration has been halted
1376       if (is_iteration_aborted()) {
1377         return;
1378       }
1379     }
1380   }
1381   // If the object is flat array, report all elements as heap objects.
1382   if (is_array && obj.obj()->is_flatArray()) {
1383     assert(!obj.is_flat(), "Array object cannot be flattened");
1384     visit_flat_array_elements(obj);
1385   }
1386 }
1387 
1388 void IterateThroughHeapObjectClosure::visit_flat_fields(const JvmtiHeapwalkObject& obj) {
1389   // iterate over instance fields
1390   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass());
1391   for (int i = 0; i < fields->field_count(); i++) {
1392     ClassFieldDescriptor* field = fields->field_at(i);
1393     // skip non-flat and (for safety) primitive fields
1394     if (!field->is_flat() || is_primitive_field_type(field->field_type())) {
1395       continue;
1396     }
1397 
1398     int field_offset = field->field_offset();
1399     if (obj.is_flat()) {
1400       // the object is inlined, its fields are stored without the header
1401       field_offset += obj.offset() - obj.inline_klass()->payload_offset();
1402     }
1403     // check for possible nulls
1404     bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
1405     if (can_be_null) {
1406       address payload = cast_from_oop<address>(obj.obj()) + field_offset;
1407       if (field->inline_klass()->is_payload_marked_as_null(payload)) {
1408         continue;
1409       }
1410     }
1411     JvmtiHeapwalkObject field_obj(obj.obj(), field_offset, field->inline_klass(), field->layout_kind());
1412 
1413     visit_object(field_obj);
1414 
1415     // check if iteration has been halted
1416     if (is_iteration_aborted()) {
1417       return;
1418     }
1419   }
1420 }
1421 
1422 void IterateThroughHeapObjectClosure::visit_flat_array_elements(const JvmtiHeapwalkObject& obj) {
1423   assert(!obj.is_flat() && obj.obj()->is_flatArray() , "sanity check");
1424   flatArrayOop array = flatArrayOop(obj.obj());
1425   FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass());
1426   InlineKlass* vk = InlineKlass::cast(faklass->element_klass());
1427   bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
1428 
1429   for (int index = 0; index < array->length(); index++) {
1430     address addr = (address)array->value_at_addr(index, faklass->layout_helper());
1431     // check for null
1432     if (need_null_check) {
1433       if (vk->is_payload_marked_as_null(addr)) {
1434         continue;
1435       }
1436     }
1437 
1438     // offset in the array oop
1439     int offset = (int)(addr - cast_from_oop<address>(array));
1440     JvmtiHeapwalkObject elem(obj.obj(), offset, vk, faklass->layout_kind());
1441 
1442     visit_object(elem);
1443 
1444     // check if iteration has been halted
1445     if (is_iteration_aborted()) {
1446       return;
1447     }
1448   }
1449 }
1450 
1451 // Deprecated function to iterate over all objects in the heap
1452 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1453                                     Klass* klass,
1454                                     jvmtiHeapObjectCallback heap_object_callback,
1455                                     const void* user_data)
1456 {
1457   // EA based optimizations on tagged objects are already reverted.
1458   EscapeBarrier eb(object_filter == JVMTI_HEAP_OBJECT_UNTAGGED ||
1459                    object_filter == JVMTI_HEAP_OBJECT_EITHER,
1460                    JavaThread::current());
1461   eb.deoptimize_objects_all_threads();
1462   Arena dead_object_arena(mtServiceability);
1463   GrowableArray <jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1464   {
1465     MutexLocker ml(Heap_lock);
1466     IterateOverHeapObjectClosure blk(this,
1467                                      klass,
1468                                      object_filter,
1469                                      heap_object_callback,
1470                                      user_data);
1471     VM_HeapIterateOperation op(&blk, &dead_objects);
1472     VMThread::execute(&op);
1473   }
1474   convert_flat_object_entries();
1475 
1476   // Post events outside of Heap_lock
1477   post_dead_objects(&dead_objects);
1478 }
1479 
1480 
1481 // Iterates over all objects in the heap
1482 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1483                                        Klass* klass,
1484                                        const jvmtiHeapCallbacks* callbacks,
1485                                        const void* user_data)
1486 {
1487   // EA based optimizations on tagged objects are already reverted.
1488   EscapeBarrier eb(!(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), JavaThread::current());
1489   eb.deoptimize_objects_all_threads();
1490 
1491   Arena dead_object_arena(mtServiceability);
1492   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1493   {
1494     MutexLocker ml(Heap_lock);
1495     IterateThroughHeapObjectClosure blk(this,
1496                                         klass,
1497                                         heap_filter,
1498                                         callbacks,
1499                                         user_data);
1500     VM_HeapIterateOperation op(&blk, &dead_objects);
1501     VMThread::execute(&op);
1502   }
1503   convert_flat_object_entries();
1504 
1505   // Post events outside of Heap_lock
1506   post_dead_objects(&dead_objects);
1507 }
1508 
1509 void JvmtiTagMap::remove_dead_entries_locked(GrowableArray<jlong>* objects) {
1510   assert(is_locked(), "precondition");
1511   if (_needs_cleaning) {
1512     // Recheck whether to post object free events under the lock.
1513     if (!env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1514       objects = nullptr;
1515     }
1516     log_info(jvmti, table)("TagMap table needs cleaning%s",
1517                            ((objects != nullptr) ? " and posting" : ""));
1518     _hashmap->remove_dead_entries(objects);
1519     _needs_cleaning = false;
1520   }
1521 }
1522 
1523 void JvmtiTagMap::remove_dead_entries(GrowableArray<jlong>* objects) {
1524   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1525   remove_dead_entries_locked(objects);
1526 }
1527 
1528 void JvmtiTagMap::post_dead_objects(GrowableArray<jlong>* const objects) {
1529   assert(Thread::current()->is_Java_thread(), "Must post from JavaThread");
1530   if (objects != nullptr && objects->length() > 0) {
1531     JvmtiExport::post_object_free(env(), objects);
1532     log_info(jvmti, table)("%d free object posted", objects->length());
1533   }
1534 }
1535 
1536 void JvmtiTagMap::remove_and_post_dead_objects() {
1537   ResourceMark rm;
1538   GrowableArray<jlong> objects;
1539   remove_dead_entries(&objects);
1540   post_dead_objects(&objects);
1541 }
1542 
1543 void JvmtiTagMap::flush_object_free_events() {
1544   assert_not_at_safepoint();
1545   if (env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1546     {
1547       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1548       // If another thread is posting events, let it finish
1549       while (_posting_events) {
1550         ml.wait();
1551       }
1552 
1553       if (!_needs_cleaning || is_empty()) {
1554         _needs_cleaning = false;
1555         return;
1556       }
1557       _posting_events = true;
1558     } // Drop the lock so we can do the cleaning on the VM thread.
1559     // Needs both cleaning and event posting (up to some other thread
1560     // getting there first after we dropped the lock).
1561     remove_and_post_dead_objects();
1562     {
1563       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1564       _posting_events = false;
1565       ml.notify_all();
1566     }
1567   } else {
1568     remove_dead_entries(nullptr);
1569   }
1570 }
1571 
1572 // support class for get_objects_with_tags
1573 
1574 class TagObjectCollector : public JvmtiTagMapKeyClosure {
1575  private:
1576   JvmtiEnv* _env;
1577   JavaThread* _thread;
1578   jlong* _tags;
1579   jint _tag_count;
1580   bool _some_dead_found;
1581 
1582   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1583   GrowableArray<uint64_t>* _tag_results;    // collected tags
1584 
1585  public:
1586   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) :
1587     _env(env),
1588     _thread(JavaThread::current()),
1589     _tags((jlong*)tags),
1590     _tag_count(tag_count),
1591     _some_dead_found(false),
1592     _object_results(new (mtServiceability) GrowableArray<jobject>(1, mtServiceability)),
1593     _tag_results(new (mtServiceability) GrowableArray<uint64_t>(1, mtServiceability)) { }
1594 
1595   ~TagObjectCollector() {
1596     delete _object_results;
1597     delete _tag_results;
1598   }
1599 
1600   bool some_dead_found() const { return _some_dead_found; }
1601 
1602   // for each tagged object check if the tag value matches
1603   // - if it matches then we create a JNI local reference to the object
1604   // and record the reference and tag value.
1605   // Always return true so the iteration continues.
1606   bool do_entry(JvmtiTagMapKey& key, jlong& value) {
1607     for (int i = 0; i < _tag_count; i++) {
1608       if (_tags[i] == value) {
1609         // The reference in this tag map could be the only (implicitly weak)
1610         // reference to that object. If we hand it out, we need to keep it live wrt
1611         // SATB marking similar to other j.l.ref.Reference referents. This is
1612         // achieved by using a phantom load in the object() accessor.
1613         oop o = key.object();
1614         if (o == nullptr) {
1615           _some_dead_found = true;
1616           // skip this whole entry
1617           return true;
1618         }
1619         assert(o != nullptr && Universe::heap()->is_in(o), "sanity check");
1620         jobject ref = JNIHandles::make_local(_thread, o);
1621         _object_results->append(ref);
1622         _tag_results->append(value);
1623       }
1624     }
1625     return true;
1626   }
1627 
1628   // return the results from the collection
1629   //
1630   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1631     jvmtiError error;
1632     int count = _object_results->length();
1633     assert(count >= 0, "sanity check");
1634 
1635     // if object_result_ptr is not null then allocate the result and copy
1636     // in the object references.
1637     if (object_result_ptr != nullptr) {
1638       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1639       if (error != JVMTI_ERROR_NONE) {
1640         return error;
1641       }
1642       for (int i=0; i<count; i++) {
1643         (*object_result_ptr)[i] = _object_results->at(i);
1644       }
1645     }
1646 
1647     // if tag_result_ptr is not null then allocate the result and copy
1648     // in the tag values.
1649     if (tag_result_ptr != nullptr) {
1650       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1651       if (error != JVMTI_ERROR_NONE) {
1652         if (object_result_ptr != nullptr) {
1653           _env->Deallocate((unsigned char*)object_result_ptr);
1654         }
1655         return error;
1656       }
1657       for (int i=0; i<count; i++) {
1658         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1659       }
1660     }
1661 
1662     *count_ptr = count;
1663     return JVMTI_ERROR_NONE;
1664   }
1665 };
1666 
1667 // return the list of objects with the specified tags
1668 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1669   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1670 
1671   // ensure flat object conversion is completed
1672   convert_flat_object_entries();
1673 
1674   TagObjectCollector collector(env(), tags, count);
1675   {
1676     // iterate over all tagged objects
1677     MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1678     // Can't post ObjectFree events here from a JavaThread, so this
1679     // will race with the gc_notification thread in the tiny
1680     // window where the object is not marked but hasn't been notified that
1681     // it is collected yet.
1682     _hashmap->entry_iterate(&collector);
1683   }
1684   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1685 }
1686 
1687 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1688 // (not performance critical as only used for roots)
1689 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1690   switch (kind) {
1691     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1692     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1693     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1694     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1695     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1696     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1697     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1698   }
1699 }
1700 
1701 // Base class for all heap walk contexts. The base class maintains a flag
1702 // to indicate if the context is valid or not.
1703 class HeapWalkContext {
1704  private:
1705   bool _valid;
1706  public:
1707   HeapWalkContext(bool valid)                   { _valid = valid; }
1708   void invalidate()                             { _valid = false; }
1709   bool is_valid() const                         { return _valid; }
1710 };
1711 
1712 // A basic heap walk context for the deprecated heap walking functions.
1713 // The context for a basic heap walk are the callbacks and fields used by
1714 // the referrer caching scheme.
1715 class BasicHeapWalkContext: public HeapWalkContext {
1716  private:
1717   jvmtiHeapRootCallback _heap_root_callback;
1718   jvmtiStackReferenceCallback _stack_ref_callback;
1719   jvmtiObjectReferenceCallback _object_ref_callback;
1720 
1721   // used for caching
1722   JvmtiHeapwalkObject _last_referrer;
1723   jlong _last_referrer_tag;
1724 
1725  public:
1726   BasicHeapWalkContext() : HeapWalkContext(false) { }
1727 
1728   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1729                        jvmtiStackReferenceCallback stack_ref_callback,
1730                        jvmtiObjectReferenceCallback object_ref_callback) :
1731     HeapWalkContext(true),
1732     _heap_root_callback(heap_root_callback),
1733     _stack_ref_callback(stack_ref_callback),
1734     _object_ref_callback(object_ref_callback),
1735     _last_referrer(),
1736     _last_referrer_tag(0) {
1737   }
1738 
1739   // accessors
1740   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1741   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1742   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1743 
1744   JvmtiHeapwalkObject last_referrer() const    { return _last_referrer; }
1745   void set_last_referrer(const JvmtiHeapwalkObject& referrer) { _last_referrer = referrer; }
1746   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1747   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1748 };
1749 
1750 // The advanced heap walk context for the FollowReferences functions.
1751 // The context is the callbacks, and the fields used for filtering.
1752 class AdvancedHeapWalkContext: public HeapWalkContext {
1753  private:
1754   jint _heap_filter;
1755   Klass* _klass_filter;
1756   const jvmtiHeapCallbacks* _heap_callbacks;
1757 
1758  public:
1759   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1760 
1761   AdvancedHeapWalkContext(jint heap_filter,
1762                            Klass* klass_filter,
1763                            const jvmtiHeapCallbacks* heap_callbacks) :
1764     HeapWalkContext(true),
1765     _heap_filter(heap_filter),
1766     _klass_filter(klass_filter),
1767     _heap_callbacks(heap_callbacks) {
1768   }
1769 
1770   // accessors
1771   jint heap_filter() const         { return _heap_filter; }
1772   Klass* klass_filter() const      { return _klass_filter; }
1773 
1774   jvmtiHeapReferenceCallback heap_reference_callback() const {
1775     return _heap_callbacks->heap_reference_callback;
1776   };
1777   jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1778     return _heap_callbacks->primitive_field_callback;
1779   }
1780   jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1781     return _heap_callbacks->array_primitive_value_callback;
1782   }
1783   jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1784     return _heap_callbacks->string_primitive_value_callback;
1785   }
1786 };
1787 
1788 // The CallbackInvoker is a class with static functions that the heap walk can call
1789 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1790 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1791 // mode is for the newer FollowReferences function which supports a lot of
1792 // additional callbacks.
1793 class CallbackInvoker : AllStatic {
1794  private:
1795   // heap walk styles
1796   enum { basic, advanced };
1797   static int _heap_walk_type;
1798   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1799   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1800 
1801   // context for basic style heap walk
1802   static BasicHeapWalkContext _basic_context;
1803   static BasicHeapWalkContext* basic_context() {
1804     assert(_basic_context.is_valid(), "invalid");
1805     return &_basic_context;
1806   }
1807 
1808   // context for advanced style heap walk
1809   static AdvancedHeapWalkContext _advanced_context;
1810   static AdvancedHeapWalkContext* advanced_context() {
1811     assert(_advanced_context.is_valid(), "invalid");
1812     return &_advanced_context;
1813   }
1814 
1815   // context needed for all heap walks
1816   static JvmtiTagMap* _tag_map;
1817   static const void* _user_data;
1818   static JvmtiHeapwalkVisitStack* _visit_stack;
1819 
1820   // accessors
1821   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1822   static const void* user_data()                       { return _user_data; }
1823   static JvmtiHeapwalkVisitStack* visit_stack()        { return _visit_stack; }
1824 
1825   // if the object hasn't been visited then push it onto the visit stack
1826   // so that it will be visited later
1827   static inline bool check_for_visit(const JvmtiHeapwalkObject&obj) {
1828     visit_stack()->check_for_visit(obj);
1829     return true;
1830   }
1831 
1832   // return element count if the obj is array, -1 otherwise
1833   static jint get_array_length(const JvmtiHeapwalkObject& obj) {
1834     if (!obj.klass()->is_array_klass()) {
1835       return -1;
1836     }
1837     assert(!obj.is_flat(), "array cannot be flat");
1838     return (jint)arrayOop(obj.obj())->length();
1839   }
1840 
1841 
1842   // invoke basic style callbacks
1843   static inline bool invoke_basic_heap_root_callback
1844     (jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj);
1845   static inline bool invoke_basic_stack_ref_callback
1846     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1847      int slot, const JvmtiHeapwalkObject& obj);
1848   static inline bool invoke_basic_object_reference_callback
1849     (jvmtiObjectReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1850 
1851   // invoke advanced style callbacks
1852   static inline bool invoke_advanced_heap_root_callback
1853     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj);
1854   static inline bool invoke_advanced_stack_ref_callback
1855     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1856      jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& obj);
1857   static inline bool invoke_advanced_object_reference_callback
1858     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1859 
1860   // used to report the value of primitive fields
1861   static inline bool report_primitive_field
1862     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj, jint index, address addr, char type);
1863 
1864  public:
1865   // initialize for basic mode
1866   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1867                                              const void* user_data,
1868                                              BasicHeapWalkContext context,
1869                                              JvmtiHeapwalkVisitStack* visit_stack);
1870 
1871   // initialize for advanced mode
1872   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1873                                                 const void* user_data,
1874                                                 AdvancedHeapWalkContext context,
1875                                                 JvmtiHeapwalkVisitStack* visit_stack);
1876 
1877    // functions to report roots
1878   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& o);
1879   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1880     jmethodID m, const JvmtiHeapwalkObject& o);
1881   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1882     jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& o);
1883 
1884   // functions to report references
1885   static inline bool report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1886   static inline bool report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1887   static inline bool report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1888   static inline bool report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1889   static inline bool report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1890   static inline bool report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1891   static inline bool report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1892   static inline bool report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot);
1893   static inline bool report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot);
1894   static inline bool report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1895   static inline bool report_primitive_array_values(const JvmtiHeapwalkObject& array);
1896   static inline bool report_string_value(const JvmtiHeapwalkObject& str);
1897   static inline bool report_primitive_instance_field(const JvmtiHeapwalkObject& o, jint index, address value, char type);
1898   static inline bool report_primitive_static_field(const JvmtiHeapwalkObject& o, jint index, address value, char type);
1899 };
1900 
1901 // statics
1902 int CallbackInvoker::_heap_walk_type;
1903 BasicHeapWalkContext CallbackInvoker::_basic_context;
1904 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1905 JvmtiTagMap* CallbackInvoker::_tag_map;
1906 const void* CallbackInvoker::_user_data;
1907 JvmtiHeapwalkVisitStack* CallbackInvoker::_visit_stack;
1908 
1909 // initialize for basic heap walk (IterateOverReachableObjects et al)
1910 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1911                                                      const void* user_data,
1912                                                      BasicHeapWalkContext context,
1913                                                      JvmtiHeapwalkVisitStack* visit_stack) {
1914   _tag_map = tag_map;
1915   _user_data = user_data;
1916   _basic_context = context;
1917   _advanced_context.invalidate();       // will trigger assertion if used
1918   _heap_walk_type = basic;
1919   _visit_stack = visit_stack;
1920 }
1921 
1922 // initialize for advanced heap walk (FollowReferences)
1923 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1924                                                         const void* user_data,
1925                                                         AdvancedHeapWalkContext context,
1926                                                         JvmtiHeapwalkVisitStack* visit_stack) {
1927   _tag_map = tag_map;
1928   _user_data = user_data;
1929   _advanced_context = context;
1930   _basic_context.invalidate();      // will trigger assertion if used
1931   _heap_walk_type = advanced;
1932   _visit_stack = visit_stack;
1933 }
1934 
1935 
1936 // invoke basic style heap root callback
1937 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj) {
1938   // if we heap roots should be reported
1939   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1940   if (cb == nullptr) {
1941     return check_for_visit(obj);
1942   }
1943 
1944   CallbackWrapper wrapper(tag_map(), obj);
1945   jvmtiIterationControl control = (*cb)(root_kind,
1946                                         wrapper.klass_tag(),
1947                                         wrapper.obj_size(),
1948                                         wrapper.obj_tag_p(),
1949                                         (void*)user_data());
1950   // push root to visit stack when following references
1951   if (control == JVMTI_ITERATION_CONTINUE &&
1952       basic_context()->object_ref_callback() != nullptr) {
1953     visit_stack()->push(obj);
1954   }
1955   return control != JVMTI_ITERATION_ABORT;
1956 }
1957 
1958 // invoke basic style stack ref callback
1959 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
1960                                                              jlong thread_tag,
1961                                                              jint depth,
1962                                                              jmethodID method,
1963                                                              int slot,
1964                                                              const JvmtiHeapwalkObject& obj) {
1965   // if we stack refs should be reported
1966   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
1967   if (cb == nullptr) {
1968     return check_for_visit(obj);
1969   }
1970 
1971   CallbackWrapper wrapper(tag_map(), obj);
1972   jvmtiIterationControl control = (*cb)(root_kind,
1973                                         wrapper.klass_tag(),
1974                                         wrapper.obj_size(),
1975                                         wrapper.obj_tag_p(),
1976                                         thread_tag,
1977                                         depth,
1978                                         method,
1979                                         slot,
1980                                         (void*)user_data());
1981   // push root to visit stack when following references
1982   if (control == JVMTI_ITERATION_CONTINUE &&
1983       basic_context()->object_ref_callback() != nullptr) {
1984     visit_stack()->push(obj);
1985   }
1986   return control != JVMTI_ITERATION_ABORT;
1987 }
1988 
1989 // invoke basic style object reference callback
1990 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
1991                                                                     const JvmtiHeapwalkObject& referrer,
1992                                                                     const JvmtiHeapwalkObject& referree,
1993                                                                     jint index) {
1994 
1995   BasicHeapWalkContext* context = basic_context();
1996 
1997   // callback requires the referrer's tag. If it's the same referrer
1998   // as the last call then we use the cached value.
1999   jlong referrer_tag;
2000   if (referrer == context->last_referrer()) {
2001     referrer_tag = context->last_referrer_tag();
2002   } else {
2003     referrer_tag = tag_map()->find(referrer);
2004   }
2005 
2006   // do the callback
2007   CallbackWrapper wrapper(tag_map(), referree);
2008   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2009   jvmtiIterationControl control = (*cb)(ref_kind,
2010                                         wrapper.klass_tag(),
2011                                         wrapper.obj_size(),
2012                                         wrapper.obj_tag_p(),
2013                                         referrer_tag,
2014                                         index,
2015                                         (void*)user_data());
2016 
2017   // record referrer and referrer tag. For self-references record the
2018   // tag value from the callback as this might differ from referrer_tag.
2019   context->set_last_referrer(referrer);
2020   if (referrer == referree) {
2021     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2022   } else {
2023     context->set_last_referrer_tag(referrer_tag);
2024   }
2025 
2026   if (control == JVMTI_ITERATION_CONTINUE) {
2027     return check_for_visit(referree);
2028   } else {
2029     return control != JVMTI_ITERATION_ABORT;
2030   }
2031 }
2032 
2033 // invoke advanced style heap root callback
2034 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2035                                                                 const JvmtiHeapwalkObject& obj) {
2036   AdvancedHeapWalkContext* context = advanced_context();
2037 
2038   // check that callback is provided
2039   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2040   if (cb == nullptr) {
2041     return check_for_visit(obj);
2042   }
2043 
2044   // apply class filter
2045   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2046     return check_for_visit(obj);
2047   }
2048 
2049   // setup the callback wrapper
2050   CallbackWrapper wrapper(tag_map(), obj);
2051 
2052   // apply tag filter
2053   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2054                                  wrapper.klass_tag(),
2055                                  context->heap_filter())) {
2056     return check_for_visit(obj);
2057   }
2058 
2059   // for arrays we need the length, otherwise -1
2060   jint len = get_array_length(obj);
2061 
2062   // invoke the callback
2063   jint res  = (*cb)(ref_kind,
2064                     nullptr, // referrer info
2065                     wrapper.klass_tag(),
2066                     0,    // referrer_class_tag is 0 for heap root
2067                     wrapper.obj_size(),
2068                     wrapper.obj_tag_p(),
2069                     nullptr, // referrer_tag_p
2070                     len,
2071                     (void*)user_data());
2072   if (res & JVMTI_VISIT_ABORT) {
2073     return false;// referrer class tag
2074   }
2075   if (res & JVMTI_VISIT_OBJECTS) {
2076     check_for_visit(obj);
2077   }
2078   return true;
2079 }
2080 
2081 // report a reference from a thread stack to an object
2082 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2083                                                                 jlong thread_tag,
2084                                                                 jlong tid,
2085                                                                 int depth,
2086                                                                 jmethodID method,
2087                                                                 jlocation bci,
2088                                                                 jint slot,
2089                                                                 const JvmtiHeapwalkObject& obj) {
2090   AdvancedHeapWalkContext* context = advanced_context();
2091 
2092   // check that callback is provider
2093   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2094   if (cb == nullptr) {
2095     return check_for_visit(obj);
2096   }
2097 
2098   // apply class filter
2099   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2100     return check_for_visit(obj);
2101   }
2102 
2103   // setup the callback wrapper
2104   CallbackWrapper wrapper(tag_map(), obj);
2105 
2106   // apply tag filter
2107   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2108                                  wrapper.klass_tag(),
2109                                  context->heap_filter())) {
2110     return check_for_visit(obj);
2111   }
2112 
2113   // setup the referrer info
2114   jvmtiHeapReferenceInfo reference_info;
2115   reference_info.stack_local.thread_tag = thread_tag;
2116   reference_info.stack_local.thread_id = tid;
2117   reference_info.stack_local.depth = depth;
2118   reference_info.stack_local.method = method;
2119   reference_info.stack_local.location = bci;
2120   reference_info.stack_local.slot = slot;
2121 
2122   // for arrays we need the length, otherwise -1
2123   jint len = get_array_length(obj);
2124 
2125   // call into the agent
2126   int res = (*cb)(ref_kind,
2127                   &reference_info,
2128                   wrapper.klass_tag(),
2129                   0,    // referrer_class_tag is 0 for heap root (stack)
2130                   wrapper.obj_size(),
2131                   wrapper.obj_tag_p(),
2132                   nullptr, // referrer_tag is 0 for root
2133                   len,
2134                   (void*)user_data());
2135 
2136   if (res & JVMTI_VISIT_ABORT) {
2137     return false;
2138   }
2139   if (res & JVMTI_VISIT_OBJECTS) {
2140     check_for_visit(obj);
2141   }
2142   return true;
2143 }
2144 
2145 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2146 // only for ref_kinds defined by the JVM TI spec. Otherwise, null is passed.
2147 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2148                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2149                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2150                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2151                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2152                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2153 
2154 // invoke the object reference callback to report a reference
2155 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2156                                                                        const JvmtiHeapwalkObject& referrer,
2157                                                                        const JvmtiHeapwalkObject& obj,
2158                                                                        jint index)
2159 {
2160   // field index is only valid field in reference_info
2161   static jvmtiHeapReferenceInfo reference_info = { 0 };
2162 
2163   AdvancedHeapWalkContext* context = advanced_context();
2164 
2165   // check that callback is provider
2166   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2167   if (cb == nullptr) {
2168     return check_for_visit(obj);
2169   }
2170 
2171   // apply class filter
2172   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2173     return check_for_visit(obj);
2174   }
2175 
2176   // setup the callback wrapper
2177   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2178 
2179   // apply tag filter
2180   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2181                                  wrapper.klass_tag(),
2182                                  context->heap_filter())) {
2183     return check_for_visit(obj);
2184   }
2185 
2186   // field index is only valid field in reference_info
2187   reference_info.field.index = index;
2188 
2189   // for arrays we need the length, otherwise -1
2190   jint len = get_array_length(obj);
2191 
2192   // invoke the callback
2193   int res = (*cb)(ref_kind,
2194                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : nullptr,
2195                   wrapper.klass_tag(),
2196                   wrapper.referrer_klass_tag(),
2197                   wrapper.obj_size(),
2198                   wrapper.obj_tag_p(),
2199                   wrapper.referrer_tag_p(),
2200                   len,
2201                   (void*)user_data());
2202 
2203   if (res & JVMTI_VISIT_ABORT) {
2204     return false;
2205   }
2206   if (res & JVMTI_VISIT_OBJECTS) {
2207     check_for_visit(obj);
2208   }
2209   return true;
2210 }
2211 
2212 // report a "simple root"
2213 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& obj) {
2214   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2215          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2216 
2217   if (is_basic_heap_walk()) {
2218     // map to old style root kind
2219     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2220     return invoke_basic_heap_root_callback(root_kind, obj);
2221   } else {
2222     assert(is_advanced_heap_walk(), "wrong heap walk type");
2223     return invoke_advanced_heap_root_callback(kind, obj);
2224   }
2225 }
2226 
2227 
2228 // invoke the primitive array values
2229 inline bool CallbackInvoker::report_primitive_array_values(const JvmtiHeapwalkObject& obj) {
2230   assert(obj.klass()->is_typeArray_klass(), "not a primitive array");
2231 
2232   AdvancedHeapWalkContext* context = advanced_context();
2233   assert(context->array_primitive_value_callback() != nullptr, "no callback");
2234 
2235   // apply class filter
2236   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2237     return true;
2238   }
2239 
2240   CallbackWrapper wrapper(tag_map(), obj);
2241 
2242   // apply tag filter
2243   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2244                                  wrapper.klass_tag(),
2245                                  context->heap_filter())) {
2246     return true;
2247   }
2248 
2249   // invoke the callback
2250   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2251                                                   &wrapper,
2252                                                   obj,
2253                                                   (void*)user_data());
2254   return (!(res & JVMTI_VISIT_ABORT));
2255 }
2256 
2257 // invoke the string value callback
2258 inline bool CallbackInvoker::report_string_value(const JvmtiHeapwalkObject& str) {
2259   assert(str.klass() == vmClasses::String_klass(), "not a string");
2260 
2261   AdvancedHeapWalkContext* context = advanced_context();
2262   assert(context->string_primitive_value_callback() != nullptr, "no callback");
2263 
2264   // apply class filter
2265   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2266     return true;
2267   }
2268 
2269   CallbackWrapper wrapper(tag_map(), str);
2270 
2271   // apply tag filter
2272   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2273                                  wrapper.klass_tag(),
2274                                  context->heap_filter())) {
2275     return true;
2276   }
2277 
2278   // invoke the callback
2279   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2280                                          &wrapper,
2281                                          str,
2282                                          (void*)user_data());
2283   return (!(res & JVMTI_VISIT_ABORT));
2284 }
2285 
2286 // invoke the primitive field callback
2287 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2288                                                     const JvmtiHeapwalkObject& obj,
2289                                                     jint index,
2290                                                     address addr,
2291                                                     char type)
2292 {
2293   // for primitive fields only the index will be set
2294   static jvmtiHeapReferenceInfo reference_info = { 0 };
2295 
2296   AdvancedHeapWalkContext* context = advanced_context();
2297   assert(context->primitive_field_callback() != nullptr, "no callback");
2298 
2299   // apply class filter
2300   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2301     return true;
2302   }
2303 
2304   CallbackWrapper wrapper(tag_map(), obj);
2305 
2306   // apply tag filter
2307   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2308                                  wrapper.klass_tag(),
2309                                  context->heap_filter())) {
2310     return true;
2311   }
2312 
2313   // the field index in the referrer
2314   reference_info.field.index = index;
2315 
2316   // map the type
2317   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2318 
2319   // setup the jvalue
2320   jvalue value;
2321   copy_to_jvalue(&value, addr, value_type);
2322 
2323   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2324   int res = (*cb)(ref_kind,
2325                   &reference_info,
2326                   wrapper.klass_tag(),
2327                   wrapper.obj_tag_p(),
2328                   value,
2329                   value_type,
2330                   (void*)user_data());
2331   return (!(res & JVMTI_VISIT_ABORT));
2332 }
2333 
2334 
2335 // instance field
2336 inline bool CallbackInvoker::report_primitive_instance_field(const JvmtiHeapwalkObject& obj,
2337                                                              jint index,
2338                                                              address value,
2339                                                              char type) {
2340   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2341                                 obj,
2342                                 index,
2343                                 value,
2344                                 type);
2345 }
2346 
2347 // static field
2348 inline bool CallbackInvoker::report_primitive_static_field(const JvmtiHeapwalkObject& obj,
2349                                                            jint index,
2350                                                            address value,
2351                                                            char type) {
2352   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2353                                 obj,
2354                                 index,
2355                                 value,
2356                                 type);
2357 }
2358 
2359 // report a JNI local (root object) to the profiler
2360 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, const JvmtiHeapwalkObject& obj) {
2361   if (is_basic_heap_walk()) {
2362     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2363                                            thread_tag,
2364                                            depth,
2365                                            m,
2366                                            -1,
2367                                            obj);
2368   } else {
2369     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2370                                               thread_tag, tid,
2371                                               depth,
2372                                               m,
2373                                               (jlocation)-1,
2374                                               -1,
2375                                               obj);
2376   }
2377 }
2378 
2379 
2380 // report a local (stack reference, root object)
2381 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2382                                                    jlong tid,
2383                                                    jint depth,
2384                                                    jmethodID method,
2385                                                    jlocation bci,
2386                                                    jint slot,
2387                                                    const JvmtiHeapwalkObject& obj) {
2388   if (is_basic_heap_walk()) {
2389     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2390                                            thread_tag,
2391                                            depth,
2392                                            method,
2393                                            slot,
2394                                            obj);
2395   } else {
2396     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2397                                               thread_tag,
2398                                               tid,
2399                                               depth,
2400                                               method,
2401                                               bci,
2402                                               slot,
2403                                               obj);
2404   }
2405 }
2406 
2407 // report an object referencing a class.
2408 inline bool CallbackInvoker::report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2409   if (is_basic_heap_walk()) {
2410     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2411   } else {
2412     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2413   }
2414 }
2415 
2416 // report a class referencing its class loader.
2417 inline bool CallbackInvoker::report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2418   if (is_basic_heap_walk()) {
2419     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2420   } else {
2421     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2422   }
2423 }
2424 
2425 // report a class referencing its signers.
2426 inline bool CallbackInvoker::report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2427   if (is_basic_heap_walk()) {
2428     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2429   } else {
2430     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2431   }
2432 }
2433 
2434 // report a class referencing its protection domain..
2435 inline bool CallbackInvoker::report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2436   if (is_basic_heap_walk()) {
2437     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2438   } else {
2439     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2440   }
2441 }
2442 
2443 // report a class referencing its superclass.
2444 inline bool CallbackInvoker::report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2445   if (is_basic_heap_walk()) {
2446     // Send this to be consistent with past implementation
2447     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2448   } else {
2449     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2450   }
2451 }
2452 
2453 // report a class referencing one of its interfaces.
2454 inline bool CallbackInvoker::report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2455   if (is_basic_heap_walk()) {
2456     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2457   } else {
2458     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2459   }
2460 }
2461 
2462 // report a class referencing one of its static fields.
2463 inline bool CallbackInvoker::report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) {
2464   if (is_basic_heap_walk()) {
2465     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2466   } else {
2467     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2468   }
2469 }
2470 
2471 // report an array referencing an element object
2472 inline bool CallbackInvoker::report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) {
2473   if (is_basic_heap_walk()) {
2474     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2475   } else {
2476     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2477   }
2478 }
2479 
2480 // report an object referencing an instance field object
2481 inline bool CallbackInvoker::report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) {
2482   if (is_basic_heap_walk()) {
2483     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2484   } else {
2485     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2486   }
2487 }
2488 
2489 // report an array referencing an element object
2490 inline bool CallbackInvoker::report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) {
2491   if (is_basic_heap_walk()) {
2492     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2493   } else {
2494     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2495   }
2496 }
2497 
2498 // A supporting closure used to process simple roots
2499 class SimpleRootsClosure : public OopClosure {
2500  private:
2501   jvmtiHeapReferenceKind _kind;
2502   bool _continue;
2503 
2504   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2505 
2506  public:
2507   void set_kind(jvmtiHeapReferenceKind kind) {
2508     _kind = kind;
2509     _continue = true;
2510   }
2511 
2512   inline bool stopped() {
2513     return !_continue;
2514   }
2515 
2516   void do_oop(oop* obj_p) {
2517     // iteration has terminated
2518     if (stopped()) {
2519       return;
2520     }
2521 
2522     oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
2523     // ignore null
2524     if (o == nullptr) {
2525       return;
2526     }
2527 
2528     assert(Universe::heap()->is_in(o), "should be impossible");
2529 
2530     jvmtiHeapReferenceKind kind = root_kind();
2531 
2532     // invoke the callback
2533     _continue = CallbackInvoker::report_simple_root(kind, o);
2534 
2535   }
2536   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2537 };
2538 
2539 // A supporting closure used to process JNI locals
2540 class JNILocalRootsClosure : public OopClosure {
2541  private:
2542   jlong _thread_tag;
2543   jlong _tid;
2544   jint _depth;
2545   jmethodID _method;
2546   bool _continue;
2547  public:
2548   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2549     _thread_tag = thread_tag;
2550     _tid = tid;
2551     _depth = depth;
2552     _method = method;
2553     _continue = true;
2554   }
2555 
2556   inline bool stopped() {
2557     return !_continue;
2558   }
2559 
2560   void do_oop(oop* obj_p) {
2561     // iteration has terminated
2562     if (stopped()) {
2563       return;
2564     }
2565 
2566     oop o = *obj_p;
2567     // ignore null
2568     if (o == nullptr) {
2569       return;
2570     }
2571 
2572     // invoke the callback
2573     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2574   }
2575   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2576 };
2577 
2578 // Helper class to collect/report stack references.
2579 class StackRefCollector {
2580 private:
2581   JvmtiTagMap* _tag_map;
2582   JNILocalRootsClosure* _blk;
2583   // java_thread is needed only to report JNI local on top native frame;
2584   // I.e. it's required only for platform/carrier threads or mounted virtual threads.
2585   JavaThread* _java_thread;
2586 
2587   oop _threadObj;
2588   jlong _thread_tag;
2589   jlong _tid;
2590 
2591   bool _is_top_frame;
2592   int _depth;
2593   frame* _last_entry_frame;
2594 
2595   bool report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset);
2596   bool report_native_stack_refs(jmethodID method);
2597 
2598 public:
2599   StackRefCollector(JvmtiTagMap* tag_map, JNILocalRootsClosure* blk, JavaThread* java_thread)
2600     : _tag_map(tag_map), _blk(blk), _java_thread(java_thread),
2601       _threadObj(nullptr), _thread_tag(0), _tid(0),
2602       _is_top_frame(true), _depth(0), _last_entry_frame(nullptr)
2603   {
2604   }
2605 
2606   bool set_thread(oop o);
2607   // Sets the thread and reports the reference to it with the specified kind.
2608   bool set_thread(jvmtiHeapReferenceKind kind, oop o);
2609 
2610   bool do_frame(vframe* vf);
2611   // Handles frames until vf->sender() is null.
2612   bool process_frames(vframe* vf);
2613 };
2614 
2615 bool StackRefCollector::set_thread(oop o) {
2616   _threadObj = o;
2617   _thread_tag = _tag_map->find(_threadObj);
2618   _tid = java_lang_Thread::thread_id(_threadObj);
2619 
2620   _is_top_frame = true;
2621   _depth = 0;
2622   _last_entry_frame = nullptr;
2623 
2624   return true;
2625 }
2626 
2627 bool StackRefCollector::set_thread(jvmtiHeapReferenceKind kind, oop o) {
2628   return set_thread(o)
2629          && CallbackInvoker::report_simple_root(kind, _threadObj);
2630 }
2631 
2632 bool StackRefCollector::report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset) {
2633   for (int index = 0; index < values->size(); index++) {
2634     if (values->at(index)->type() == T_OBJECT) {
2635       oop obj = values->obj_at(index)();
2636       if (obj == nullptr) {
2637         continue;
2638       }
2639       // stack reference
2640       if (!CallbackInvoker::report_stack_ref_root(_thread_tag, _tid, _depth, method,
2641                                                   bci, slot_offset + index, obj)) {
2642         return false;
2643       }
2644     }
2645   }
2646   return true;
2647 }
2648 
2649 bool StackRefCollector::report_native_stack_refs(jmethodID method) {
2650   _blk->set_context(_thread_tag, _tid, _depth, method);
2651   if (_is_top_frame) {
2652     // JNI locals for the top frame.
2653     if (_java_thread != nullptr) {
2654       _java_thread->active_handles()->oops_do(_blk);
2655       if (_blk->stopped()) {
2656         return false;
2657       }
2658     }
2659   } else {
2660     if (_last_entry_frame != nullptr) {
2661       // JNI locals for the entry frame.
2662       assert(_last_entry_frame->is_entry_frame(), "checking");
2663       _last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(_blk);
2664       if (_blk->stopped()) {
2665         return false;
2666       }
2667     }
2668   }
2669   return true;
2670 }
2671 
2672 bool StackRefCollector::do_frame(vframe* vf) {
2673   if (vf->is_java_frame()) {
2674     // java frame (interpreted, compiled, ...)
2675     javaVFrame* jvf = javaVFrame::cast(vf);
2676 
2677     jmethodID method = jvf->method()->jmethod_id();
2678 
2679     if (!(jvf->method()->is_native())) {
2680       jlocation bci = (jlocation)jvf->bci();
2681       StackValueCollection* locals = jvf->locals();
2682       if (!report_java_stack_refs(locals, method, bci, 0)) {
2683         return false;
2684       }
2685       if (!report_java_stack_refs(jvf->expressions(), method, bci, locals->size())) {
2686         return false;
2687       }
2688 
2689       // Follow oops from compiled nmethod.
2690       if (jvf->cb() != nullptr && jvf->cb()->is_nmethod()) {
2691         _blk->set_context(_thread_tag, _tid, _depth, method);
2692         // Need to apply load barriers for unmounted vthreads.
2693         nmethod* nm = jvf->cb()->as_nmethod();
2694         nm->run_nmethod_entry_barrier();
2695         nm->oops_do(_blk);
2696         if (_blk->stopped()) {
2697           return false;
2698         }
2699       }
2700     } else {
2701       // native frame
2702       if (!report_native_stack_refs(method)) {
2703         return false;
2704       }
2705     }
2706     _last_entry_frame = nullptr;
2707     _depth++;
2708   } else {
2709     // externalVFrame - for an entry frame then we report the JNI locals
2710     // when we find the corresponding javaVFrame
2711     frame* fr = vf->frame_pointer();
2712     assert(fr != nullptr, "sanity check");
2713     if (fr->is_entry_frame()) {
2714       _last_entry_frame = fr;
2715     }
2716   }
2717 
2718   _is_top_frame = false;
2719 
2720   return true;
2721 }
2722 
2723 bool StackRefCollector::process_frames(vframe* vf) {
2724   while (vf != nullptr) {
2725     if (!do_frame(vf)) {
2726       return false;
2727     }
2728     vf = vf->sender();
2729   }
2730   return true;
2731 }
2732 
2733 
2734 // A VM operation to iterate over objects that are reachable from
2735 // a set of roots or an initial object.
2736 //
2737 // For VM_HeapWalkOperation the set of roots used is :-
2738 //
2739 // - All JNI global references
2740 // - All inflated monitors
2741 // - All classes loaded by the boot class loader (or all classes
2742 //     in the event that class unloading is disabled)
2743 // - All java threads
2744 // - For each java thread then all locals and JNI local references
2745 //      on the thread's execution stack
2746 // - All visible/explainable objects from Universes::oops_do
2747 //
2748 class VM_HeapWalkOperation: public VM_Operation {
2749  private:
2750   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2751   JvmtiTagMap* _tag_map;
2752   Handle _initial_object;
2753   JvmtiHeapwalkVisitStack _visit_stack;
2754 
2755   // Dead object tags in JvmtiTagMap
2756   GrowableArray<jlong>* _dead_objects;
2757 
2758   bool _following_object_refs;                      // are we following object references
2759 
2760   bool _reporting_primitive_fields;                 // optional reporting
2761   bool _reporting_primitive_array_values;
2762   bool _reporting_string_values;
2763 
2764   // accessors
2765   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2766   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2767   Handle initial_object() const                    { return _initial_object; }
2768 
2769   bool is_following_references() const             { return _following_object_refs; }
2770 
2771   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2772   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2773   bool is_reporting_string_values() const          { return _reporting_string_values; }
2774 
2775   JvmtiHeapwalkVisitStack* visit_stack()           { return &_visit_stack; }
2776 
2777   // iterate over the various object types
2778   inline bool iterate_over_array(const JvmtiHeapwalkObject& o);
2779   inline bool iterate_over_flat_array(const JvmtiHeapwalkObject& o);
2780   inline bool iterate_over_type_array(const JvmtiHeapwalkObject& o);
2781   inline bool iterate_over_class(const JvmtiHeapwalkObject& o);
2782   inline bool iterate_over_object(const JvmtiHeapwalkObject& o);
2783 
2784   // root collection
2785   inline bool collect_simple_roots();
2786   inline bool collect_stack_roots();
2787   inline bool collect_stack_refs(JavaThread* java_thread, JNILocalRootsClosure* blk);
2788   inline bool collect_vthread_stack_refs(oop vt);
2789 
2790   // visit an object
2791   inline bool visit(const JvmtiHeapwalkObject& o);
2792 
2793  public:
2794   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2795                        Handle initial_object,
2796                        BasicHeapWalkContext callbacks,
2797                        const void* user_data,
2798                        GrowableArray<jlong>* objects);
2799 
2800   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2801                        Handle initial_object,
2802                        AdvancedHeapWalkContext callbacks,
2803                        const void* user_data,
2804                        GrowableArray<jlong>* objects);
2805 
2806   ~VM_HeapWalkOperation();
2807 
2808   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2809   void doit();
2810 };
2811 
2812 
2813 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2814                                            Handle initial_object,
2815                                            BasicHeapWalkContext callbacks,
2816                                            const void* user_data,
2817                                            GrowableArray<jlong>* objects) {
2818   _is_advanced_heap_walk = false;
2819   _tag_map = tag_map;
2820   _initial_object = initial_object;
2821   _following_object_refs = (callbacks.object_ref_callback() != nullptr);
2822   _reporting_primitive_fields = false;
2823   _reporting_primitive_array_values = false;
2824   _reporting_string_values = false;
2825   _dead_objects = objects;
2826   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, user_data, callbacks, &_visit_stack);
2827 }
2828 
2829 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2830                                            Handle initial_object,
2831                                            AdvancedHeapWalkContext callbacks,
2832                                            const void* user_data,
2833                                            GrowableArray<jlong>* objects) {
2834   _is_advanced_heap_walk = true;
2835   _tag_map = tag_map;
2836   _initial_object = initial_object;
2837   _following_object_refs = true;
2838   _reporting_primitive_fields = (callbacks.primitive_field_callback() != nullptr);;
2839   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != nullptr);;
2840   _reporting_string_values = (callbacks.string_primitive_value_callback() != nullptr);;
2841   _dead_objects = objects;
2842   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, user_data, callbacks, &_visit_stack);
2843 }
2844 
2845 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2846 }
2847 
2848 // an array references its class and has a reference to
2849 // each element in the array
2850 inline bool VM_HeapWalkOperation::iterate_over_array(const JvmtiHeapwalkObject& o) {
2851   assert(!o.is_flat(), "Array object cannot be flattened");
2852   objArrayOop array = objArrayOop(o.obj());
2853 
2854   // array reference to its class
2855   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2856   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2857     return false;
2858   }
2859 
2860   // iterate over the array and report each reference to a
2861   // non-null element
2862   for (int index=0; index<array->length(); index++) {
2863     oop elem = array->obj_at(index);
2864     if (elem == nullptr) {
2865       continue;
2866     }
2867 
2868     // report the array reference o[index] = elem
2869     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2870       return false;
2871     }
2872   }
2873   return true;
2874 }
2875 
2876 // similar to iterate_over_array(), but itrates over flat array
2877 inline bool VM_HeapWalkOperation::iterate_over_flat_array(const JvmtiHeapwalkObject& o) {
2878   assert(!o.is_flat(), "Array object cannot be flattened");
2879   flatArrayOop array = flatArrayOop(o.obj());
2880   FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass());
2881   InlineKlass* vk = InlineKlass::cast(faklass->element_klass());
2882   bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
2883 
2884   // array reference to its class
2885   oop mirror = faklass->java_mirror();
2886   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2887     return false;
2888   }
2889 
2890   // iterate over the array and report each reference to a
2891   // non-null element
2892   for (int index = 0; index < array->length(); index++) {
2893     address addr = (address)array->value_at_addr(index, faklass->layout_helper());
2894 
2895     // check for null
2896     if (need_null_check) {
2897       if (vk->is_payload_marked_as_null(addr)) {
2898         continue;
2899       }
2900     }
2901 
2902     // offset in the array oop
2903     int offset = (int)(addr - cast_from_oop<address>(array));
2904     JvmtiHeapwalkObject elem(o.obj(), offset, vk, faklass->layout_kind());
2905 
2906     // report the array reference
2907     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2908       return false;
2909     }
2910   }
2911   return true;
2912 }
2913 
2914 // a type array references its class
2915 inline bool VM_HeapWalkOperation::iterate_over_type_array(const JvmtiHeapwalkObject& o) {
2916   assert(!o.is_flat(), "Array object cannot be flattened");
2917   Klass* k = o.klass();
2918   oop mirror = k->java_mirror();
2919   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2920     return false;
2921   }
2922 
2923   // report the array contents if required
2924   if (is_reporting_primitive_array_values()) {
2925     if (!CallbackInvoker::report_primitive_array_values(o)) {
2926       return false;
2927     }
2928   }
2929   return true;
2930 }
2931 
2932 #ifdef ASSERT
2933 // verify that a static oop field is in range
2934 static inline bool verify_static_oop(InstanceKlass* ik,
2935                                      oop mirror, int offset) {
2936   address obj_p = cast_from_oop<address>(mirror) + offset;
2937   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2938   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2939   assert(end >= start, "sanity check");
2940 
2941   if (obj_p >= start && obj_p < end) {
2942     return true;
2943   } else {
2944     return false;
2945   }
2946 }
2947 #endif // #ifdef ASSERT
2948 
2949 // a class references its super class, interfaces, class loader, ...
2950 // and finally its static fields
2951 inline bool VM_HeapWalkOperation::iterate_over_class(const JvmtiHeapwalkObject& o) {
2952   assert(!o.is_flat(), "Klass object cannot be flattened");
2953   Klass* klass = java_lang_Class::as_Klass(o.obj());
2954   int i;
2955 
2956   if (klass->is_instance_klass()) {
2957     InstanceKlass* ik = InstanceKlass::cast(klass);
2958 
2959     // Ignore the class if it hasn't been initialized yet
2960     if (!ik->is_linked()) {
2961       return true;
2962     }
2963 
2964     // get the java mirror
2965     oop mirror_oop = klass->java_mirror();
2966     JvmtiHeapwalkObject mirror(mirror_oop);
2967 
2968     // super (only if something more interesting than java.lang.Object)
2969     InstanceKlass* java_super = ik->java_super();
2970     if (java_super != nullptr && java_super != vmClasses::Object_klass()) {
2971       oop super = java_super->java_mirror();
2972       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2973         return false;
2974       }
2975     }
2976 
2977     // class loader
2978     oop cl = ik->class_loader();
2979     if (cl != nullptr) {
2980       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2981         return false;
2982       }
2983     }
2984 
2985     // protection domain
2986     oop pd = ik->protection_domain();
2987     if (pd != nullptr) {
2988       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2989         return false;
2990       }
2991     }
2992 
2993     // signers
2994     oop signers = ik->signers();
2995     if (signers != nullptr) {
2996       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2997         return false;
2998       }
2999     }
3000 
3001     // references from the constant pool
3002     {
3003       ConstantPool* pool = ik->constants();
3004       for (int i = 1; i < pool->length(); i++) {
3005         constantTag tag = pool->tag_at(i).value();
3006         if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) {
3007           oop entry;
3008           if (tag.is_string()) {
3009             entry = pool->resolved_string_at(i);
3010             // If the entry is non-null it is resolved.
3011             if (entry == nullptr) {
3012               continue;
3013             }
3014           } else if (tag.is_klass()) {
3015             entry = pool->resolved_klass_at(i)->java_mirror();
3016           } else {
3017             // Code generated by JIT compilers might not resolve constant
3018             // pool entries.  Treat them as resolved if they are loaded.
3019             assert(tag.is_unresolved_klass(), "must be");
3020             constantPoolHandle cp(Thread::current(), pool);
3021             Klass* klass = ConstantPool::klass_at_if_loaded(cp, i);
3022             if (klass == nullptr) {
3023               continue;
3024             }
3025             entry = klass->java_mirror();
3026           }
3027           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
3028             return false;
3029           }
3030         }
3031       }
3032     }
3033 
3034     // interfaces
3035     // (These will already have been reported as references from the constant pool
3036     //  but are specified by IterateOverReachableObjects and must be reported).
3037     Array<InstanceKlass*>* interfaces = ik->local_interfaces();
3038     for (i = 0; i < interfaces->length(); i++) {
3039       oop interf = interfaces->at(i)->java_mirror();
3040       if (interf == nullptr) {
3041         continue;
3042       }
3043       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
3044         return false;
3045       }
3046     }
3047 
3048     // iterate over the static fields
3049 
3050     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
3051     for (i=0; i<field_map->field_count(); i++) {
3052       ClassFieldDescriptor* field = field_map->field_at(i);
3053       char type = field->field_type();
3054       if (!is_primitive_field_type(type)) {
3055         oop fld_o = mirror_oop->obj_field(field->field_offset());
3056         assert(verify_static_oop(ik, mirror_oop, field->field_offset()), "sanity check");
3057         if (fld_o != nullptr) {
3058           int slot = field->field_index();
3059           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
3060             delete field_map;
3061             return false;
3062           }
3063         }
3064       } else {
3065          if (is_reporting_primitive_fields()) {
3066            address addr = cast_from_oop<address>(mirror_oop) + field->field_offset();
3067            int slot = field->field_index();
3068            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
3069              delete field_map;
3070              return false;
3071           }
3072         }
3073       }
3074     }
3075     delete field_map;
3076 
3077     return true;
3078   }
3079 
3080   return true;
3081 }
3082 
3083 // an object references a class and its instance fields
3084 // (static fields are ignored here as we report these as
3085 // references from the class).
3086 inline bool VM_HeapWalkOperation::iterate_over_object(const JvmtiHeapwalkObject& o) {
3087   // reference to the class
3088   if (!CallbackInvoker::report_class_reference(o, o.klass()->java_mirror())) {
3089     return false;
3090   }
3091 
3092   // iterate over instance fields
3093   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o.klass());
3094   for (int i=0; i<field_map->field_count(); i++) {
3095     ClassFieldDescriptor* field = field_map->field_at(i);
3096     char type = field->field_type();
3097     int slot = field->field_index();
3098     int field_offset = field->field_offset();
3099     if (o.is_flat()) {
3100       // the object is inlined, its fields are stored without the header
3101       field_offset += o.offset() - o.inline_klass()->payload_offset();
3102     }
3103     if (!is_primitive_field_type(type)) {
3104       if (field->is_flat()) {
3105         // check for possible nulls
3106         bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
3107         if (can_be_null) {
3108           address payload = cast_from_oop<address>(o.obj()) + field_offset;
3109           if (field->inline_klass()->is_payload_marked_as_null(payload)) {
3110             continue;
3111           }
3112         }
3113         JvmtiHeapwalkObject field_obj(o.obj(), field_offset, field->inline_klass(), field->layout_kind());
3114         if (!CallbackInvoker::report_field_reference(o, field_obj, slot)) {
3115           return false;
3116         }
3117       } else {
3118         oop fld_o = o.obj()->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field_offset);
3119         // ignore any objects that aren't visible to profiler
3120         if (fld_o != nullptr) {
3121           assert(Universe::heap()->is_in(fld_o), "unsafe code should not have references to Klass* anymore");
3122           if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3123             return false;
3124           }
3125         }
3126       }
3127     } else {
3128       if (is_reporting_primitive_fields()) {
3129         // primitive instance field
3130         address addr = cast_from_oop<address>(o.obj()) + field_offset;
3131         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3132           return false;
3133         }
3134       }
3135     }
3136   }
3137 
3138   // if the object is a java.lang.String
3139   if (is_reporting_string_values() &&
3140       o.klass() == vmClasses::String_klass()) {
3141     if (!CallbackInvoker::report_string_value(o)) {
3142       return false;
3143     }
3144   }
3145   return true;
3146 }
3147 
3148 
3149 // Collects all simple (non-stack) roots except for threads;
3150 // threads are handled in collect_stack_roots() as an optimization.
3151 // if there's a heap root callback provided then the callback is
3152 // invoked for each simple root.
3153 // if an object reference callback is provided then all simple
3154 // roots are pushed onto the marking stack so that they can be
3155 // processed later
3156 //
3157 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3158   SimpleRootsClosure blk;
3159 
3160   // JNI globals
3161   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3162   JNIHandles::oops_do(&blk);
3163   if (blk.stopped()) {
3164     return false;
3165   }
3166 
3167   // Preloaded classes and loader from the system dictionary
3168   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3169   CLDToOopClosure cld_closure(&blk, ClassLoaderData::_claim_none);
3170   ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
3171   if (blk.stopped()) {
3172     return false;
3173   }
3174 
3175   // threads are now handled in collect_stack_roots()
3176 
3177   // Other kinds of roots maintained by HotSpot
3178   // Many of these won't be visible but others (such as instances of important
3179   // exceptions) will be visible.
3180   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3181   Universe::vm_global()->oops_do(&blk);
3182   if (blk.stopped()) {
3183     return false;
3184   }
3185 
3186   return true;
3187 }
3188 
3189 // Reports the thread as JVMTI_HEAP_REFERENCE_THREAD,
3190 // walks the stack of the thread, finds all references (locals
3191 // and JNI calls) and reports these as stack references.
3192 inline bool VM_HeapWalkOperation::collect_stack_refs(JavaThread* java_thread,
3193                                                      JNILocalRootsClosure* blk)
3194 {
3195   oop threadObj = java_thread->threadObj();
3196   oop mounted_vt = java_thread->is_vthread_mounted() ? java_thread->vthread() : nullptr;
3197   if (mounted_vt != nullptr && !JvmtiEnvBase::is_vthread_alive(mounted_vt)) {
3198     mounted_vt = nullptr;
3199   }
3200   assert(threadObj != nullptr, "sanity check");
3201 
3202   StackRefCollector stack_collector(tag_map(), blk, java_thread);
3203 
3204   if (!java_thread->has_last_Java_frame()) {
3205     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
3206       return false;
3207     }
3208     // no last java frame but there may be JNI locals
3209     blk->set_context(_tag_map->find(threadObj), java_lang_Thread::thread_id(threadObj), 0, (jmethodID)nullptr);
3210     java_thread->active_handles()->oops_do(blk);
3211     return !blk->stopped();
3212   }
3213   // vframes are resource allocated
3214   Thread* current_thread = Thread::current();
3215   ResourceMark rm(current_thread);
3216   HandleMark hm(current_thread);
3217 
3218   RegisterMap reg_map(java_thread,
3219                       RegisterMap::UpdateMap::include,
3220                       RegisterMap::ProcessFrames::include,
3221                       RegisterMap::WalkContinuation::include);
3222 
3223   // first handle mounted vthread (if any)
3224   if (mounted_vt != nullptr) {
3225     frame f = java_thread->last_frame();
3226     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3227     // report virtual thread as JVMTI_HEAP_REFERENCE_OTHER
3228     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_OTHER, mounted_vt)) {
3229       return false;
3230     }
3231     // split virtual thread and carrier thread stacks by vthread entry ("enterSpecial") frame,
3232     // consider vthread entry frame as the last vthread stack frame
3233     while (vf != nullptr) {
3234       if (!stack_collector.do_frame(vf)) {
3235         return false;
3236       }
3237       if (vf->is_vthread_entry()) {
3238         break;
3239       }
3240       vf = vf->sender();
3241     }
3242   }
3243   // Platform or carrier thread.
3244   vframe* vf = JvmtiEnvBase::get_cthread_last_java_vframe(java_thread, &reg_map);
3245   if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
3246     return false;
3247   }
3248   return stack_collector.process_frames(vf);
3249 }
3250 
3251 
3252 // Collects the simple roots for all threads and collects all
3253 // stack roots - for each thread it walks the execution
3254 // stack to find all references and local JNI refs.
3255 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3256   JNILocalRootsClosure blk;
3257   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
3258     oop threadObj = thread->threadObj();
3259     if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3260       if (!collect_stack_refs(thread, &blk)) {
3261         return false;
3262       }
3263     }
3264   }
3265   return true;
3266 }
3267 
3268 // Reports stack references for the unmounted virtual thread.
3269 inline bool VM_HeapWalkOperation::collect_vthread_stack_refs(oop vt) {
3270   if (!JvmtiEnvBase::is_vthread_alive(vt)) {
3271     return true;
3272   }
3273   ContinuationWrapper cont(java_lang_VirtualThread::continuation(vt));
3274   if (cont.is_empty()) {
3275     return true;
3276   }
3277   assert(!cont.is_mounted(), "sanity check");
3278 
3279   stackChunkOop chunk = cont.last_nonempty_chunk();
3280   if (chunk == nullptr || chunk->is_empty()) {
3281     return true;
3282   }
3283 
3284   // vframes are resource allocated
3285   Thread* current_thread = Thread::current();
3286   ResourceMark rm(current_thread);
3287   HandleMark hm(current_thread);
3288 
3289   RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include);
3290 
3291   JNILocalRootsClosure blk;
3292   // JavaThread is not required for unmounted virtual threads
3293   StackRefCollector stack_collector(tag_map(), &blk, nullptr);
3294   // reference to the vthread is already reported
3295   if (!stack_collector.set_thread(vt)) {
3296     return false;
3297   }
3298 
3299   frame fr = chunk->top_frame(&reg_map);
3300   vframe* vf = vframe::new_vframe(&fr, &reg_map, nullptr);
3301   return stack_collector.process_frames(vf);
3302 }
3303 
3304 // visit an object
3305 // first mark the object as visited
3306 // second get all the outbound references from this object (in other words, all
3307 // the objects referenced by this object).
3308 //
3309 bool VM_HeapWalkOperation::visit(const JvmtiHeapwalkObject& o) {
3310   // mark object as visited
3311   assert(!visit_stack()->is_visited(o), "can't visit same object more than once");
3312   visit_stack()->mark_visited(o);
3313 
3314   Klass* klass = o.klass();
3315   // instance
3316   if (klass->is_instance_klass()) {
3317     if (klass == vmClasses::Class_klass()) {
3318       assert(!o.is_flat(), "Class object cannot be flattened");
3319       if (!java_lang_Class::is_primitive(o.obj())) {
3320         // a java.lang.Class
3321         return iterate_over_class(o);
3322       }
3323     } else {
3324       // we report stack references only when initial object is not specified
3325       // (in the case we start from heap roots which include platform thread stack references)
3326       if (initial_object().is_null() && java_lang_VirtualThread::is_subclass(klass)) {
3327         assert(!o.is_flat(), "VirtualThread object cannot be flattened");
3328         if (!collect_vthread_stack_refs(o.obj())) {
3329           return false;
3330         }
3331       }
3332       return iterate_over_object(o);
3333     }
3334   }
3335 
3336   // flat object array
3337   if (klass->is_flatArray_klass()) {
3338       return iterate_over_flat_array(o);
3339   }
3340 
3341   // object array
3342   if (klass->is_objArray_klass()) {
3343     return iterate_over_array(o);
3344   }
3345 
3346   // type array
3347   if (klass->is_typeArray_klass()) {
3348     return iterate_over_type_array(o);
3349   }
3350 
3351   return true;
3352 }
3353 
3354 void VM_HeapWalkOperation::doit() {
3355   ResourceMark rm;
3356   ClassFieldMapCacheMark cm;
3357 
3358   JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
3359 
3360   assert(visit_stack()->is_empty(), "visit stack must be empty");
3361 
3362   // the heap walk starts with an initial object or the heap roots
3363   if (initial_object().is_null()) {
3364     // can result in a big performance boost for an agent that is
3365     // focused on analyzing references in the thread stacks.
3366     if (!collect_stack_roots()) return;
3367 
3368     if (!collect_simple_roots()) return;
3369   } else {
3370     visit_stack()->push(initial_object()());
3371   }
3372 
3373   // object references required
3374   if (is_following_references()) {
3375 
3376     // visit each object until all reachable objects have been
3377     // visited or the callback asked to terminate the iteration.
3378     while (!visit_stack()->is_empty()) {
3379       const JvmtiHeapwalkObject o = visit_stack()->pop();
3380       if (!visit_stack()->is_visited(o)) {
3381         if (!visit(o)) {
3382           break;
3383         }
3384       }
3385     }
3386   }
3387 }
3388 
3389 // iterate over all objects that are reachable from a set of roots
3390 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3391                                                  jvmtiStackReferenceCallback stack_ref_callback,
3392                                                  jvmtiObjectReferenceCallback object_ref_callback,
3393                                                  const void* user_data) {
3394   // VTMS transitions must be disabled before the EscapeBarrier.
3395   JvmtiVTMSTransitionDisabler disabler;
3396 
3397   JavaThread* jt = JavaThread::current();
3398   EscapeBarrier eb(true, jt);
3399   eb.deoptimize_objects_all_threads();
3400   Arena dead_object_arena(mtServiceability);
3401   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3402 
3403   {
3404     MutexLocker ml(Heap_lock);
3405     BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3406     VM_HeapWalkOperation op(this, Handle(), context, user_data, &dead_objects);
3407     VMThread::execute(&op);
3408   }
3409   convert_flat_object_entries();
3410 
3411   // Post events outside of Heap_lock
3412   post_dead_objects(&dead_objects);
3413 }
3414 
3415 // iterate over all objects that are reachable from a given object
3416 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3417                                                              jvmtiObjectReferenceCallback object_ref_callback,
3418                                                              const void* user_data) {
3419   oop obj = JNIHandles::resolve(object);
3420   Handle initial_object(Thread::current(), obj);
3421 
3422   Arena dead_object_arena(mtServiceability);
3423   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3424 
3425   JvmtiVTMSTransitionDisabler disabler;
3426 
3427   {
3428     MutexLocker ml(Heap_lock);
3429     BasicHeapWalkContext context(nullptr, nullptr, object_ref_callback);
3430     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3431     VMThread::execute(&op);
3432   }
3433   convert_flat_object_entries();
3434 
3435   // Post events outside of Heap_lock
3436   post_dead_objects(&dead_objects);
3437 }
3438 
3439 // follow references from an initial object or the GC roots
3440 void JvmtiTagMap::follow_references(jint heap_filter,
3441                                     Klass* klass,
3442                                     jobject object,
3443                                     const jvmtiHeapCallbacks* callbacks,
3444                                     const void* user_data)
3445 {
3446   // VTMS transitions must be disabled before the EscapeBarrier.
3447   JvmtiVTMSTransitionDisabler disabler;
3448 
3449   oop obj = JNIHandles::resolve(object);
3450   JavaThread* jt = JavaThread::current();
3451   Handle initial_object(jt, obj);
3452   // EA based optimizations that are tagged or reachable from initial_object are already reverted.
3453   EscapeBarrier eb(initial_object.is_null() &&
3454                    !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED),
3455                    jt);
3456   eb.deoptimize_objects_all_threads();
3457 
3458   Arena dead_object_arena(mtServiceability);
3459   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3460 
3461   {
3462     MutexLocker ml(Heap_lock);
3463     AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3464     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3465     VMThread::execute(&op);
3466   }
3467   convert_flat_object_entries();
3468 
3469   // Post events outside of Heap_lock
3470   post_dead_objects(&dead_objects);
3471 }
3472 
3473 // Verify gc_notification follows set_needs_cleaning.
3474 DEBUG_ONLY(static bool notified_needs_cleaning = false;)
3475 
3476 void JvmtiTagMap::set_needs_cleaning() {
3477   assert(SafepointSynchronize::is_at_safepoint(), "called in gc pause");
3478   assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3479   // Can't assert !notified_needs_cleaning; a partial GC might be upgraded
3480   // to a full GC and do this twice without intervening gc_notification.
3481   DEBUG_ONLY(notified_needs_cleaning = true;)
3482 
3483   JvmtiEnvIterator it;
3484   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3485     JvmtiTagMap* tag_map = env->tag_map_acquire();
3486     if (tag_map != nullptr) {
3487       tag_map->_needs_cleaning = !tag_map->is_empty();
3488     }
3489   }
3490 }
3491 
3492 void JvmtiTagMap::gc_notification(size_t num_dead_entries) {
3493   assert(notified_needs_cleaning, "missing GC notification");
3494   DEBUG_ONLY(notified_needs_cleaning = false;)
3495 
3496   // Notify ServiceThread if there's work to do.
3497   {
3498     MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
3499     _has_object_free_events = (num_dead_entries != 0);
3500     if (_has_object_free_events) ml.notify_all();
3501   }
3502 
3503   // If no dead entries then cancel cleaning requests.
3504   if (num_dead_entries == 0) {
3505     JvmtiEnvIterator it;
3506     for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3507       JvmtiTagMap* tag_map = env->tag_map_acquire();
3508       if (tag_map != nullptr) {
3509         MutexLocker ml (tag_map->lock(), Mutex::_no_safepoint_check_flag);
3510         tag_map->_needs_cleaning = false;
3511       }
3512     }
3513   }
3514 }
3515 
3516 // Used by ServiceThread to discover there is work to do.
3517 bool JvmtiTagMap::has_object_free_events_and_reset() {
3518   assert_lock_strong(Service_lock);
3519   bool result = _has_object_free_events;
3520   _has_object_free_events = false;
3521   return result;
3522 }
3523 
3524 // Used by ServiceThread to clean up tagmaps.
3525 void JvmtiTagMap::flush_all_object_free_events() {
3526   JavaThread* thread = JavaThread::current();
3527   JvmtiEnvIterator it;
3528   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3529     JvmtiTagMap* tag_map = env->tag_map_acquire();
3530     if (tag_map != nullptr) {
3531       tag_map->flush_object_free_events();
3532       ThreadBlockInVM tbiv(thread); // Be safepoint-polite while looping.
3533     }
3534   }
3535 }