1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoaderDataGraph.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/constantPool.inline.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/typeArrayOop.inline.hpp"
  45 #include "prims/jvmtiEventController.hpp"
  46 #include "prims/jvmtiEventController.inline.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiImpl.hpp"
  49 #include "prims/jvmtiTagMap.hpp"
  50 #include "prims/jvmtiTagMapTable.hpp"
  51 #include "prims/jvmtiThreadState.hpp"
  52 #include "runtime/continuationWrapper.inline.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/interfaceSupport.inline.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/javaThread.inline.hpp"
  59 #include "runtime/jniHandles.inline.hpp"
  60 #include "runtime/mutex.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/reflectionUtils.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/timerTrace.hpp"
  65 #include "runtime/threadSMR.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "runtime/vmOperations.hpp"
  69 #include "utilities/objectBitSet.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 
  72 typedef ObjectBitSet<mtServiceability> JVMTIBitSet;
  73 
  74 
  75 // Helper class to store objects to visit.
  76 class JvmtiHeapwalkVisitStack {
  77 private:
  78   enum {
  79     initial_visit_stack_size = 4000
  80   };
  81 
  82   GrowableArray<JvmtiHeapwalkObject>* _visit_stack;
  83   JVMTIBitSet _bitset;
  84 
  85   static GrowableArray<JvmtiHeapwalkObject>* create_visit_stack() {
  86     return new (mtServiceability) GrowableArray<JvmtiHeapwalkObject>(initial_visit_stack_size, mtServiceability);
  87   }
  88 
  89 public:
  90   JvmtiHeapwalkVisitStack(): _visit_stack(create_visit_stack()) {
  91   }
  92   ~JvmtiHeapwalkVisitStack() {
  93     if (_visit_stack != nullptr) {
  94       delete _visit_stack;
  95     }
  96   }
  97 
  98   bool is_empty() const {
  99     return _visit_stack->is_empty();
 100   }
 101 
 102   void push(const JvmtiHeapwalkObject& obj) {
 103     _visit_stack->push(obj);
 104   }
 105 
 106   // If the object hasn't been visited then push it onto the visit stack
 107   // so that it will be visited later.
 108   void check_for_visit(const JvmtiHeapwalkObject& obj) {
 109     if (!is_visited(obj)) {
 110       _visit_stack->push(obj);
 111     }
 112   }
 113 
 114   JvmtiHeapwalkObject pop() {
 115     return _visit_stack->pop();
 116   }
 117 
 118   bool is_visited(const JvmtiHeapwalkObject& obj) /*const*/ { // TODO: _bitset.is_marked() should be const
 119     // The method is called only for objects from visit_stack to ensure an object is not visited twice.
 120     // Flat objects can be added to visit_stack only when we visit their holder object, so we cannot get duplicate reference to it.
 121     if (obj.is_flat()) {
 122       return false;
 123     }
 124     return _bitset.is_marked(obj.obj());
 125   }
 126 
 127   void mark_visited(const JvmtiHeapwalkObject& obj) {
 128     if (!obj.is_flat()) {
 129       _bitset.mark_obj(obj.obj());
 130     }
 131   }
 132 };
 133 
 134 
 135 bool JvmtiTagMap::_has_object_free_events = false;
 136 
 137 // create a JvmtiTagMap
 138 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 139   _env(env),
 140   _lock(Mutex::nosafepoint, "JvmtiTagMap_lock"),
 141   _needs_cleaning(false),
 142   _posting_events(false),
 143   _converting_flat_object(false) {
 144 
 145   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 146   assert(((JvmtiEnvBase *)env)->tag_map() == nullptr, "tag map already exists for environment");
 147 
 148   _hashmap = new JvmtiTagMapTable();
 149   _flat_hashmap = new JvmtiFlatTagMapTable();
 150 
 151   // finally add us to the environment
 152   ((JvmtiEnvBase *)env)->release_set_tag_map(this);
 153 }
 154 
 155 // destroy a JvmtiTagMap
 156 JvmtiTagMap::~JvmtiTagMap() {
 157 
 158   // no lock acquired as we assume the enclosing environment is
 159   // also being destroyed.
 160   ((JvmtiEnvBase *)_env)->set_tag_map(nullptr);
 161 
 162   // finally destroy the hashmap
 163   delete _hashmap;
 164   _hashmap = nullptr;
 165   delete _flat_hashmap;
 166 }
 167 
 168 // Called by env_dispose() to reclaim memory before deallocation.
 169 // Remove all the entries but keep the empty table intact.
 170 // This needs the table lock.
 171 void JvmtiTagMap::clear() {
 172   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 173   _hashmap->clear();
 174   _flat_hashmap->clear();
 175 }
 176 
 177 // returns the tag map for the given environments. If the tag map
 178 // doesn't exist then it is created.
 179 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 180   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire();
 181   if (tag_map == nullptr) {
 182     MutexLocker mu(JvmtiThreadState_lock);
 183     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 184     if (tag_map == nullptr) {
 185       tag_map = new JvmtiTagMap(env);
 186     }
 187   } else {
 188     DEBUG_ONLY(JavaThread::current()->check_possible_safepoint());
 189   }
 190   return tag_map;
 191 }
 192 
 193 // returns true if the hashmaps are empty
 194 bool JvmtiTagMap::is_empty() const {
 195   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 196   return _hashmap->is_empty() && _flat_hashmap->is_empty();
 197 }
 198 
 199 // This checks for posting before operations that use
 200 // this tagmap table.
 201 void JvmtiTagMap::check_hashmap(GrowableArray<jlong>* objects) {
 202   assert(is_locked(), "checking");
 203 
 204   if (is_empty()) { return; }
 205 
 206   if (_needs_cleaning &&
 207       objects != nullptr &&
 208       env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
 209     remove_dead_entries_locked(objects);
 210   }
 211 }
 212 
 213 // This checks for posting and is called from the heap walks.
 214 void JvmtiTagMap::check_hashmaps_for_heapwalk(GrowableArray<jlong>* objects) {
 215   assert(SafepointSynchronize::is_at_safepoint(), "called from safepoints");
 216 
 217   // Verify that the tag map tables are valid and unconditionally post events
 218   // that are expected to be posted before gc_notification.
 219   JvmtiEnvIterator it;
 220   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
 221     JvmtiTagMap* tag_map = env->tag_map_acquire();
 222     if (tag_map != nullptr) {
 223       // The ZDriver may be walking the hashmaps concurrently so this lock is needed.
 224       MutexLocker ml(tag_map->lock(), Mutex::_no_safepoint_check_flag);
 225       tag_map->check_hashmap(objects);
 226     }
 227   }
 228 }
 229 
 230 // Converts entries from JvmtiFlatTagMapTable to JvmtiTagMapTable in batches.
 231 //   1. (JvmtiTagMap is locked)
 232 //      reads entries from JvmtiFlatTagMapTable (describe flat value objects);
 233 //   2. (JvmtiTagMap is unlocked)
 234 //      creates heap-allocated copies of the flat object;
 235 //   3. (JvmtiTagMap is locked)
 236 //      ensures source entry still exists, removes it from JvmtiFlatTagMapTable, adds new entry to JvmtiTagMapTable.
 237 // If some error occurs in step 2 (OOM?), the process stops.
 238 class JvmtiTagMapFlatEntryConverter: public StackObj {
 239 private:
 240   struct Entry {
 241     // source flat value object
 242     Handle holder;
 243     int offset;
 244     InlineKlass* inline_klass;
 245     LayoutKind layout_kind;
 246     // converted heap-allocated object
 247     Handle dst;
 248 
 249     Entry(): holder(), offset(0), inline_klass(nullptr), dst() {}
 250     Entry(Handle holder, int offset, InlineKlass* inline_klass, LayoutKind lk)
 251       : holder(holder), offset(offset), inline_klass(inline_klass), layout_kind(lk), dst() {}
 252   };
 253 
 254   int _batch_size;
 255   GrowableArray<Entry> _entries;
 256   bool _has_error;
 257 
 258 public:
 259   JvmtiTagMapFlatEntryConverter(int batch_size): _batch_size(batch_size), _entries(batch_size, mtServiceability), _has_error(false) { }
 260   ~JvmtiTagMapFlatEntryConverter() {}
 261 
 262   // returns false if there is nothing to convert
 263   bool import_entries(JvmtiFlatTagMapTable* table) {
 264     if (_has_error) {
 265       // stop the process to avoid infinite loop
 266       return false;
 267     }
 268 
 269     class Importer: public JvmtiFlatTagMapKeyClosure {
 270     private:
 271       GrowableArray<Entry>& _entries;
 272       int _batch_size;
 273     public:
 274       Importer(GrowableArray<Entry>& entries, int batch_size): _entries(entries), _batch_size(batch_size) {}
 275 
 276       bool do_entry(JvmtiFlatTagMapKey& key, jlong& tag) {
 277         Entry entry(Handle(Thread::current(), key.holder()), key.offset(), key.inline_klass(), key.layout_kind());
 278         _entries.append(entry);
 279 
 280         return _entries.length() < _batch_size;
 281       }
 282     } importer(_entries, _batch_size);
 283     table->entry_iterate(&importer);
 284 
 285     return !_entries.is_empty();
 286   }
 287 
 288   void convert() {
 289     for (int i = 0; i < _entries.length(); i++) {
 290       EXCEPTION_MARK;
 291       Entry& entry = _entries.at(i);
 292       oop obj = entry.inline_klass->read_payload_from_addr(entry.holder(), entry.offset, entry.layout_kind, JavaThread::current());
 293 
 294       if (HAS_PENDING_EXCEPTION) {
 295         tty->print_cr("Exception in JvmtiTagMapFlatEntryConverter: ");
 296         java_lang_Throwable::print(PENDING_EXCEPTION, tty);
 297         tty->cr();
 298         CLEAR_PENDING_EXCEPTION;
 299         // stop the conversion
 300         _has_error = true;
 301       } else {
 302         entry.dst = Handle(Thread::current(), obj);
 303       }
 304     }
 305   }
 306 
 307   // returns number of converted entries
 308   int move(JvmtiFlatTagMapTable* src_table, JvmtiTagMapTable* dst_table) {
 309     int count = 0;
 310     for (int i = 0; i < _entries.length(); i++) {
 311       Entry& entry = _entries.at(i);
 312       if (entry.dst() == nullptr) {
 313         // some error during conversion, skip the entry
 314         continue;
 315       }
 316       JvmtiHeapwalkObject obj(entry.holder(), entry.offset, entry.inline_klass, entry.layout_kind);
 317       jlong tag = src_table->remove(obj);
 318 
 319       if (tag != 0) { // ensure the entry is still in the src_table
 320         dst_table->add(entry.dst(), tag);
 321         count++;
 322       } else {
 323 
 324       }
 325     }
 326     // and clean the array
 327     _entries.clear();
 328     return count;
 329   }
 330 };
 331 
 332 
 333 void JvmtiTagMap::convert_flat_object_entries() {
 334   Thread* current = Thread::current();
 335   assert(current->is_Java_thread(), "must be executed on JavaThread");
 336 
 337   log_debug(jvmti, table)("convert_flat_object_entries, main table size = %d, flat table size = %d",
 338                           _hashmap->number_of_entries(), _flat_hashmap->number_of_entries());
 339 
 340   {
 341     MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 342     // If another thread is converting, let it finish.
 343     while (_converting_flat_object) {
 344       ml.wait();
 345     }
 346     if (_flat_hashmap->is_empty()) {
 347       // nothing to convert
 348       return;
 349     }
 350     _converting_flat_object = true;
 351   }
 352 
 353   const int BATCH_SIZE = 1024;
 354   JvmtiTagMapFlatEntryConverter converter(BATCH_SIZE);
 355 
 356   int count = 0;
 357   while (true) {
 358     HandleMark hm(current);
 359     {
 360       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 361       if (!converter.import_entries(_flat_hashmap)) {
 362         break;
 363       }
 364     }
 365     // Convert flat objects to heap-allocated without table lock (so agent callbacks can get/set tags).
 366     converter.convert();
 367     {
 368       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 369       count += converter.move(_flat_hashmap, _hashmap);
 370     }
 371   }
 372 
 373   log_info(jvmti, table)("%d flat value objects are converted, flat table size = %d",
 374                          count, _flat_hashmap->number_of_entries());
 375   {
 376     MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 377     _converting_flat_object = false;
 378     ml.notify_all();
 379   }
 380 }
 381 
 382 jlong JvmtiTagMap::find(const JvmtiHeapwalkObject& obj) const {
 383   jlong tag = _hashmap->find(obj);
 384   if (tag == 0 && obj.is_value()) {
 385     tag = _flat_hashmap->find(obj);
 386   }
 387   return tag;
 388 }
 389 
 390 void JvmtiTagMap::add(const JvmtiHeapwalkObject& obj, jlong tag) {
 391   if (obj.is_flat()) {
 392     // we may have tag for equal (non-flat) object in _hashmap, try to update it 1st
 393     if (!_hashmap->update(obj, tag)) {
 394       // no entry in _hashmap, add to _flat_hashmap
 395       _flat_hashmap->add(obj, tag);
 396     }
 397   } else {
 398     _hashmap->add(obj, tag);
 399   }
 400 }
 401 
 402 void JvmtiTagMap::remove(const JvmtiHeapwalkObject& obj) {
 403   if (!_hashmap->remove(obj)) {
 404     if (obj.is_value()) {
 405       _flat_hashmap->remove(obj);
 406     }
 407   }
 408 }
 409 
 410 
 411 // A CallbackWrapper is a support class for querying and tagging an object
 412 // around a callback to a profiler. The constructor does pre-callback
 413 // work to get the tag value, klass tag value, ... and the destructor
 414 // does the post-callback work of tagging or untagging the object.
 415 //
 416 // {
 417 //   CallbackWrapper wrapper(tag_map, o);
 418 //
 419 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 420 //
 421 // }
 422 // wrapper goes out of scope here which results in the destructor
 423 // checking to see if the object has been tagged, untagged, or the
 424 // tag value has changed.
 425 //
 426 class CallbackWrapper : public StackObj {
 427  private:
 428   JvmtiTagMap* _tag_map;
 429   const JvmtiHeapwalkObject& _o;
 430   jlong _obj_size;
 431   jlong _obj_tag;
 432   jlong _klass_tag;
 433 
 434  protected:
 435   JvmtiTagMap* tag_map() const { return _tag_map; }
 436 
 437   // invoked post-callback to tag, untag, or update the tag of an object
 438   void inline post_callback_tag_update(const JvmtiHeapwalkObject& o, JvmtiTagMap* tag_map, jlong obj_tag);
 439 
 440  public:
 441   CallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& o)
 442     : _tag_map(tag_map), _o(o)
 443   {
 444     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 445            "MT unsafe or must be VM thread");
 446 
 447     // object size
 448     if (!o.is_flat()) {
 449       // common case: we have oop
 450       _obj_size = (jlong)o.obj()->size() * wordSize;
 451     } else {
 452       // flat value object, we know its InstanceKlass
 453       assert(_o.inline_klass() != nullptr, "must be");
 454       _obj_size = _o.inline_klass()->size() * wordSize;;
 455     }
 456 
 457     // get object tag
 458     _obj_tag = _tag_map->find(_o);
 459 
 460     // get the class and the class's tag value
 461     assert(vmClasses::Class_klass()->is_mirror_instance_klass(), "Is not?");
 462 
 463     _klass_tag = _tag_map->find(_o.klass()->java_mirror());
 464   }
 465 
 466   ~CallbackWrapper() {
 467     post_callback_tag_update(_o, _tag_map, _obj_tag);
 468   }
 469 
 470   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 471   inline jlong obj_size() const                 { return _obj_size; }
 472   inline jlong obj_tag() const                  { return _obj_tag; }
 473   inline jlong klass_tag() const                { return _klass_tag; }
 474 };
 475 
 476 // callback post-callback to tag, untag, or update the tag of an object
 477 void inline CallbackWrapper::post_callback_tag_update(const JvmtiHeapwalkObject& o,
 478                                                       JvmtiTagMap* tag_map,
 479                                                       jlong obj_tag) {
 480   if (obj_tag == 0) {
 481     // callback has untagged the object, remove the entry if present
 482     tag_map->remove(o);
 483   } else {
 484     // object was previously tagged or not present - the callback may have
 485     // changed the tag value
 486     assert(Thread::current()->is_VM_thread(), "must be VMThread");
 487     tag_map->add(o, obj_tag);
 488   }
 489 }
 490 
 491 // An extended CallbackWrapper used when reporting an object reference
 492 // to the agent.
 493 //
 494 // {
 495 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 496 //
 497 //   (*callback)(wrapper.klass_tag(),
 498 //               wrapper.obj_size(),
 499 //               wrapper.obj_tag_p()
 500 //               wrapper.referrer_tag_p(), ...)
 501 //
 502 // }
 503 // wrapper goes out of scope here which results in the destructor
 504 // checking to see if the referrer object has been tagged, untagged,
 505 // or the tag value has changed.
 506 //
 507 class TwoOopCallbackWrapper : public CallbackWrapper {
 508  private:
 509   const JvmtiHeapwalkObject& _referrer;
 510   bool _is_reference_to_self;
 511   jlong _referrer_obj_tag;
 512   jlong _referrer_klass_tag;
 513   jlong* _referrer_tag_p;
 514 
 515   bool is_reference_to_self() const             { return _is_reference_to_self; }
 516 
 517  public:
 518   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& o) :
 519     CallbackWrapper(tag_map, o), _referrer(referrer)
 520   {
 521     // self reference needs to be handled in a special way
 522     _is_reference_to_self = (referrer == o);
 523 
 524     if (_is_reference_to_self) {
 525       _referrer_klass_tag = klass_tag();
 526       _referrer_tag_p = obj_tag_p();
 527     } else {
 528       // get object tag
 529       _referrer_obj_tag = tag_map->find(_referrer);
 530 
 531       _referrer_tag_p = &_referrer_obj_tag;
 532 
 533       // get referrer class tag.
 534       _referrer_klass_tag = tag_map->find(_referrer.klass()->java_mirror());
 535     }
 536   }
 537 
 538   ~TwoOopCallbackWrapper() {
 539     if (!is_reference_to_self()) {
 540       post_callback_tag_update(_referrer,
 541                                tag_map(),
 542                                _referrer_obj_tag);
 543     }
 544   }
 545 
 546   // address of referrer tag
 547   // (for a self reference this will return the same thing as obj_tag_p())
 548   inline jlong* referrer_tag_p() { return _referrer_tag_p; }
 549 
 550   // referrer's class tag
 551   inline jlong referrer_klass_tag() { return _referrer_klass_tag; }
 552 };
 553 
 554 // tag an object
 555 //
 556 // This function is performance critical. If many threads attempt to tag objects
 557 // around the same time then it's possible that the Mutex associated with the
 558 // tag map will be a hot lock.
 559 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 560   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 561 
 562   // SetTag should not post events because the JavaThread has to
 563   // transition to native for the callback and this cannot stop for
 564   // safepoints with the hashmap lock held.
 565   check_hashmap(nullptr);  /* don't collect dead objects */
 566 
 567   // resolve the object
 568   oop o = JNIHandles::resolve_non_null(object);
 569   // see if the object is already tagged
 570   JvmtiHeapwalkObject obj(o);
 571   if (tag == 0) {
 572     // remove the entry if present
 573     _hashmap->remove(obj);
 574   } else {
 575     // if the object is already tagged or not present then we add/update
 576     // the tag
 577     add(obj, tag);
 578   }
 579 }
 580 
 581 // get the tag for an object
 582 jlong JvmtiTagMap::get_tag(jobject object) {
 583   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
 584 
 585   // GetTag should not post events because the JavaThread has to
 586   // transition to native for the callback and this cannot stop for
 587   // safepoints with the hashmap lock held.
 588   check_hashmap(nullptr); /* don't collect dead objects */
 589 
 590   // resolve the object
 591   oop o = JNIHandles::resolve_non_null(object);
 592 
 593   return find(o);
 594 }
 595 
 596 
 597 // Helper class used to describe the static or instance fields of a class.
 598 // For each field it holds the field index (as defined by the JVMTI specification),
 599 // the field type, and the offset.
 600 
 601 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 602  private:
 603   int _field_index;
 604   int _field_offset;
 605   char _field_type;
 606   InlineKlass* _inline_klass; // nullptr for heap object
 607   LayoutKind _layout_kind;
 608  public:
 609   ClassFieldDescriptor(int index, const FieldStreamBase& fld) :
 610       _field_index(index), _field_offset(fld.offset()), _field_type(fld.signature()->char_at(0)) {
 611     if (fld.is_flat()) {
 612       const fieldDescriptor& fd = fld.field_descriptor();
 613       InstanceKlass* holder_klass = fd.field_holder();
 614       InlineLayoutInfo* layout_info = holder_klass->inline_layout_info_adr(fd.index());
 615       _inline_klass = layout_info->klass();
 616       _layout_kind = layout_info->kind();
 617     } else {
 618       _inline_klass = nullptr;
 619       _layout_kind = LayoutKind::REFERENCE;
 620     }
 621   }
 622   int field_index()  const  { return _field_index; }
 623   char field_type()  const  { return _field_type; }
 624   int field_offset() const  { return _field_offset; }
 625   bool is_flat()     const  { return _inline_klass != nullptr; }
 626   InlineKlass* inline_klass() const { return _inline_klass; }
 627   LayoutKind layout_kind() const { return _layout_kind; }
 628 };
 629 
 630 class ClassFieldMap: public CHeapObj<mtInternal> {
 631  private:
 632   enum {
 633     initial_field_count = 5
 634   };
 635 
 636   // list of field descriptors
 637   GrowableArray<ClassFieldDescriptor*>* _fields;
 638 
 639   // constructor
 640   ClassFieldMap();
 641 
 642   // calculates number of fields in all interfaces
 643   static int interfaces_field_count(InstanceKlass* ik);
 644 
 645   // add a field
 646   void add(int index, const FieldStreamBase& fld);
 647 
 648  public:
 649   ~ClassFieldMap();
 650 
 651   // access
 652   int field_count()                     { return _fields->length(); }
 653   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 654 
 655   // functions to create maps of static or instance fields
 656   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 657   static ClassFieldMap* create_map_of_instance_fields(Klass* k);
 658 };
 659 
 660 ClassFieldMap::ClassFieldMap() {
 661   _fields = new (mtServiceability)
 662     GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability);
 663 }
 664 
 665 ClassFieldMap::~ClassFieldMap() {
 666   for (int i=0; i<_fields->length(); i++) {
 667     delete _fields->at(i);
 668   }
 669   delete _fields;
 670 }
 671 
 672 int ClassFieldMap::interfaces_field_count(InstanceKlass* ik) {
 673   const Array<InstanceKlass*>* interfaces = ik->transitive_interfaces();
 674   int count = 0;
 675   for (int i = 0; i < interfaces->length(); i++) {
 676     FilteredJavaFieldStream fld(interfaces->at(i));
 677     count += fld.field_count();
 678   }
 679   return count;
 680 }
 681 
 682 void ClassFieldMap::add(int index, const FieldStreamBase& fld) {
 683   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, fld);
 684   _fields->append(field);
 685 }
 686 
 687 // Returns a heap allocated ClassFieldMap to describe the static fields
 688 // of the given class.
 689 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 690   InstanceKlass* ik = InstanceKlass::cast(k);
 691 
 692   // create the field map
 693   ClassFieldMap* field_map = new ClassFieldMap();
 694 
 695   // Static fields of interfaces and superclasses are reported as references from the interfaces/superclasses.
 696   // Need to calculate start index of this class fields: number of fields in all interfaces and superclasses.
 697   int index = interfaces_field_count(ik);
 698   for (InstanceKlass* super_klass = ik->java_super(); super_klass != nullptr; super_klass = super_klass->java_super()) {
 699     FilteredJavaFieldStream super_fld(super_klass);
 700     index += super_fld.field_count();
 701   }
 702 
 703   for (FilteredJavaFieldStream fld(ik); !fld.done(); fld.next(), index++) {
 704     // ignore instance fields
 705     if (!fld.access_flags().is_static()) {
 706       continue;
 707     }
 708     field_map->add(index, fld);
 709   }
 710 
 711   return field_map;
 712 }
 713 
 714 // Returns a heap allocated ClassFieldMap to describe the instance fields
 715 // of the given class. All instance fields are included (this means public
 716 // and private fields declared in superclasses too).
 717 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(Klass* k) {
 718   InstanceKlass* ik = InstanceKlass::cast(k);
 719 
 720   // create the field map
 721   ClassFieldMap* field_map = new ClassFieldMap();
 722 
 723   // fields of the superclasses are reported first, so need to know total field number to calculate field indices
 724   int total_field_number = interfaces_field_count(ik);
 725   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 726     FilteredJavaFieldStream fld(klass);
 727     total_field_number += fld.field_count();
 728   }
 729 
 730   for (InstanceKlass* klass = ik; klass != nullptr; klass = klass->java_super()) {
 731     FilteredJavaFieldStream fld(klass);
 732     int start_index = total_field_number - fld.field_count();
 733     for (int index = 0; !fld.done(); fld.next(), index++) {
 734       // ignore static fields
 735       if (fld.access_flags().is_static()) {
 736         continue;
 737       }
 738       field_map->add(start_index + index, fld);
 739     }
 740     // update total_field_number for superclass (decrease by the field count in the current class)
 741     total_field_number = start_index;
 742   }
 743 
 744   return field_map;
 745 }
 746 
 747 // Helper class used to cache a ClassFileMap for the instance fields of
 748 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 749 // heap iteration and avoid creating a field map for each object in the heap
 750 // (only need to create the map when the first instance of a class is encountered).
 751 //
 752 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 753  private:
 754   enum {
 755      initial_class_count = 200
 756   };
 757   ClassFieldMap* _field_map;
 758 
 759   ClassFieldMap* field_map() const { return _field_map; }
 760 
 761   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 762   ~JvmtiCachedClassFieldMap();
 763 
 764   static GrowableArray<InstanceKlass*>* _class_list;
 765   static void add_to_class_list(InstanceKlass* ik);
 766 
 767  public:
 768   // returns the field map for a given klass (returning map cached
 769   // by InstanceKlass if possible
 770   static ClassFieldMap* get_map_of_instance_fields(Klass* k);
 771 
 772   // removes the field map from all instanceKlasses - should be
 773   // called before VM operation completes
 774   static void clear_cache();
 775 
 776   // returns the number of ClassFieldMap cached by instanceKlasses
 777   static int cached_field_map_count();
 778 };
 779 
 780 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 781 
 782 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 783   _field_map = field_map;
 784 }
 785 
 786 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 787   if (_field_map != nullptr) {
 788     delete _field_map;
 789   }
 790 }
 791 
 792 // Marker class to ensure that the class file map cache is only used in a defined
 793 // scope.
 794 class ClassFieldMapCacheMark : public StackObj {
 795  private:
 796    static bool _is_active;
 797  public:
 798    ClassFieldMapCacheMark() {
 799      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 800      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 801      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 802      _is_active = true;
 803    }
 804    ~ClassFieldMapCacheMark() {
 805      JvmtiCachedClassFieldMap::clear_cache();
 806      _is_active = false;
 807    }
 808    static bool is_active() { return _is_active; }
 809 };
 810 
 811 bool ClassFieldMapCacheMark::_is_active;
 812 
 813 // record that the given InstanceKlass is caching a field map
 814 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 815   if (_class_list == nullptr) {
 816     _class_list = new (mtServiceability)
 817       GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability);
 818   }
 819   _class_list->push(ik);
 820 }
 821 
 822 // returns the instance field map for the given klass
 823 // (returns field map cached by the InstanceKlass if possible)
 824 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(Klass *k) {
 825   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 826   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 827 
 828   InstanceKlass* ik = InstanceKlass::cast(k);
 829 
 830   // return cached map if possible
 831   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 832   if (cached_map != nullptr) {
 833     assert(cached_map->field_map() != nullptr, "missing field list");
 834     return cached_map->field_map();
 835   } else {
 836     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(k);
 837     cached_map = new JvmtiCachedClassFieldMap(field_map);
 838     ik->set_jvmti_cached_class_field_map(cached_map);
 839     add_to_class_list(ik);
 840     return field_map;
 841   }
 842 }
 843 
 844 // remove the fields maps cached from all instanceKlasses
 845 void JvmtiCachedClassFieldMap::clear_cache() {
 846   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 847   if (_class_list != nullptr) {
 848     for (int i = 0; i < _class_list->length(); i++) {
 849       InstanceKlass* ik = _class_list->at(i);
 850       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 851       assert(cached_map != nullptr, "should not be null");
 852       ik->set_jvmti_cached_class_field_map(nullptr);
 853       delete cached_map;  // deletes the encapsulated field map
 854     }
 855     delete _class_list;
 856     _class_list = nullptr;
 857   }
 858 }
 859 
 860 // returns the number of ClassFieldMap cached by instanceKlasses
 861 int JvmtiCachedClassFieldMap::cached_field_map_count() {
 862   return (_class_list == nullptr) ? 0 : _class_list->length();
 863 }
 864 
 865 // helper function to indicate if an object is filtered by its tag or class tag
 866 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
 867                                               jlong klass_tag,
 868                                               int heap_filter) {
 869   // apply the heap filter
 870   if (obj_tag != 0) {
 871     // filter out tagged objects
 872     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
 873   } else {
 874     // filter out untagged objects
 875     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
 876   }
 877   if (klass_tag != 0) {
 878     // filter out objects with tagged classes
 879     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
 880   } else {
 881     // filter out objects with untagged classes.
 882     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
 883   }
 884   return false;
 885 }
 886 
 887 // helper function to indicate if an object is filtered by a klass filter
 888 static inline bool is_filtered_by_klass_filter(const JvmtiHeapwalkObject& obj, Klass* klass_filter) {
 889   if (klass_filter != nullptr) {
 890     if (obj.klass() != klass_filter) {
 891       return true;
 892     }
 893   }
 894   return false;
 895 }
 896 
 897 // helper function to tell if a field is a primitive field or not
 898 static inline bool is_primitive_field_type(char type) {
 899   return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY);
 900 }
 901 
 902 // helper function to copy the value from location addr to jvalue.
 903 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
 904   switch (value_type) {
 905     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
 906     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
 907     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
 908     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
 909     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
 910     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
 911     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
 912     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
 913     default: ShouldNotReachHere();
 914   }
 915 }
 916 
 917 // helper function to invoke string primitive value callback
 918 // returns visit control flags
 919 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
 920                                          CallbackWrapper* wrapper,
 921                                          const JvmtiHeapwalkObject& obj,
 922                                          void* user_data)
 923 {
 924   assert(!obj.is_flat(), "cannot be flat");
 925   oop str = obj.obj();
 926   assert(str->klass() == vmClasses::String_klass(), "not a string");
 927 
 928   typeArrayOop s_value = java_lang_String::value(str);
 929 
 930   // JDK-6584008: the value field may be null if a String instance is
 931   // partially constructed.
 932   if (s_value == nullptr) {
 933     return 0;
 934   }
 935   // get the string value and length
 936   // (string value may be offset from the base)
 937   int s_len = java_lang_String::length(str);
 938   bool is_latin1 = java_lang_String::is_latin1(str);
 939   jchar* value;
 940   if (s_len > 0) {
 941     if (!is_latin1) {
 942       value = s_value->char_at_addr(0);
 943     } else {
 944       // Inflate latin1 encoded string to UTF16
 945       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
 946       for (int i = 0; i < s_len; i++) {
 947         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
 948       }
 949       value = &buf[0];
 950     }
 951   } else {
 952     // Don't use char_at_addr(0) if length is 0
 953     value = (jchar*) s_value->base(T_CHAR);
 954   }
 955 
 956   // invoke the callback
 957   jint res = (*cb)(wrapper->klass_tag(),
 958                    wrapper->obj_size(),
 959                    wrapper->obj_tag_p(),
 960                    value,
 961                    (jint)s_len,
 962                    user_data);
 963 
 964   if (is_latin1 && s_len > 0) {
 965     FREE_C_HEAP_ARRAY(jchar, value);
 966   }
 967   return res;
 968 }
 969 
 970 // helper function to invoke string primitive value callback
 971 // returns visit control flags
 972 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
 973                                                   CallbackWrapper* wrapper,
 974                                                   const JvmtiHeapwalkObject& obj,
 975                                                   void* user_data)
 976 {
 977   assert(!obj.is_flat(), "cannot be flat");
 978   assert(obj.obj()->is_typeArray(), "not a primitive array");
 979 
 980   // get base address of first element
 981   typeArrayOop array = typeArrayOop(obj.obj());
 982   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
 983   void* elements = array->base(type);
 984 
 985   // jvmtiPrimitiveType is defined so this mapping is always correct
 986   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
 987 
 988   return (*cb)(wrapper->klass_tag(),
 989                wrapper->obj_size(),
 990                wrapper->obj_tag_p(),
 991                (jint)array->length(),
 992                elem_type,
 993                elements,
 994                user_data);
 995 }
 996 
 997 // helper function to invoke the primitive field callback for all static fields
 998 // of a given class
 999 static jint invoke_primitive_field_callback_for_static_fields
1000   (CallbackWrapper* wrapper,
1001    oop obj,
1002    jvmtiPrimitiveFieldCallback cb,
1003    void* user_data)
1004 {
1005   // for static fields only the index will be set
1006   static jvmtiHeapReferenceInfo reference_info = { 0 };
1007 
1008   assert(obj->klass() == vmClasses::Class_klass(), "not a class");
1009   if (java_lang_Class::is_primitive(obj)) {
1010     return 0;
1011   }
1012   Klass* klass = java_lang_Class::as_Klass(obj);
1013 
1014   // ignore classes for object and type arrays
1015   if (!klass->is_instance_klass()) {
1016     return 0;
1017   }
1018 
1019   // ignore classes which aren't linked yet
1020   InstanceKlass* ik = InstanceKlass::cast(klass);
1021   if (!ik->is_linked()) {
1022     return 0;
1023   }
1024 
1025   // get the field map
1026   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1027 
1028   // invoke the callback for each static primitive field
1029   for (int i=0; i<field_map->field_count(); i++) {
1030     ClassFieldDescriptor* field = field_map->field_at(i);
1031 
1032     // ignore non-primitive fields
1033     char type = field->field_type();
1034     if (!is_primitive_field_type(type)) {
1035       continue;
1036     }
1037     // one-to-one mapping
1038     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1039 
1040     // get offset and field value
1041     int offset = field->field_offset();
1042     address addr = cast_from_oop<address>(klass->java_mirror()) + offset;
1043     jvalue value;
1044     copy_to_jvalue(&value, addr, value_type);
1045 
1046     // field index
1047     reference_info.field.index = field->field_index();
1048 
1049     // invoke the callback
1050     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1051                      &reference_info,
1052                      wrapper->klass_tag(),
1053                      wrapper->obj_tag_p(),
1054                      value,
1055                      value_type,
1056                      user_data);
1057     if (res & JVMTI_VISIT_ABORT) {
1058       delete field_map;
1059       return res;
1060     }
1061   }
1062 
1063   delete field_map;
1064   return 0;
1065 }
1066 
1067 // helper function to invoke the primitive field callback for all instance fields
1068 // of a given object
1069 static jint invoke_primitive_field_callback_for_instance_fields(
1070   CallbackWrapper* wrapper,
1071   const JvmtiHeapwalkObject& obj,
1072   jvmtiPrimitiveFieldCallback cb,
1073   void* user_data)
1074 {
1075   // for instance fields only the index will be set
1076   static jvmtiHeapReferenceInfo reference_info = { 0 };
1077 
1078   // get the map of the instance fields
1079   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass());
1080 
1081   // invoke the callback for each instance primitive field
1082   for (int i=0; i<fields->field_count(); i++) {
1083     ClassFieldDescriptor* field = fields->field_at(i);
1084 
1085     // ignore non-primitive fields
1086     char type = field->field_type();
1087     if (!is_primitive_field_type(type)) {
1088       continue;
1089     }
1090     // one-to-one mapping
1091     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1092 
1093     // get field value
1094     address addr = cast_from_oop<address>(obj.obj()) + obj.offset() + field->field_offset();
1095     jvalue value;
1096     copy_to_jvalue(&value, addr, value_type);
1097 
1098     // field index
1099     reference_info.field.index = field->field_index();
1100 
1101     // invoke the callback
1102     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1103                      &reference_info,
1104                      wrapper->klass_tag(),
1105                      wrapper->obj_tag_p(),
1106                      value,
1107                      value_type,
1108                      user_data);
1109     if (res & JVMTI_VISIT_ABORT) {
1110       return res;
1111     }
1112   }
1113   return 0;
1114 }
1115 
1116 
1117 // VM operation to iterate over all objects in the heap (both reachable
1118 // and unreachable)
1119 class VM_HeapIterateOperation: public VM_Operation {
1120  private:
1121   ObjectClosure* _blk;
1122   GrowableArray<jlong>* const _dead_objects;
1123  public:
1124   VM_HeapIterateOperation(ObjectClosure* blk, GrowableArray<jlong>* objects) :
1125     _blk(blk), _dead_objects(objects) { }
1126 
1127   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1128   void doit() {
1129     // allows class files maps to be cached during iteration
1130     ClassFieldMapCacheMark cm;
1131 
1132     JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
1133 
1134     // make sure that heap is parsable (fills TLABs with filler objects)
1135     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1136 
1137     // Verify heap before iteration - if the heap gets corrupted then
1138     // JVMTI's IterateOverHeap will crash.
1139     if (VerifyBeforeIteration) {
1140       Universe::verify();
1141     }
1142 
1143     // do the iteration
1144     Universe::heap()->object_iterate(_blk);
1145   }
1146 };
1147 
1148 
1149 // An ObjectClosure used to support the deprecated IterateOverHeap and
1150 // IterateOverInstancesOfClass functions
1151 class IterateOverHeapObjectClosure: public ObjectClosure {
1152  private:
1153   JvmtiTagMap* _tag_map;
1154   Klass* _klass;
1155   jvmtiHeapObjectFilter _object_filter;
1156   jvmtiHeapObjectCallback _heap_object_callback;
1157   const void* _user_data;
1158 
1159   // accessors
1160   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1161   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1162   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1163   Klass* klass() const                            { return _klass; }
1164   const void* user_data() const                   { return _user_data; }
1165 
1166   // indicates if iteration has been aborted
1167   bool _iteration_aborted;
1168   bool is_iteration_aborted() const               { return _iteration_aborted; }
1169   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1170 
1171  public:
1172   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1173                                Klass* klass,
1174                                jvmtiHeapObjectFilter object_filter,
1175                                jvmtiHeapObjectCallback heap_object_callback,
1176                                const void* user_data) :
1177     _tag_map(tag_map),
1178     _klass(klass),
1179     _object_filter(object_filter),
1180     _heap_object_callback(heap_object_callback),
1181     _user_data(user_data),
1182     _iteration_aborted(false)
1183   {
1184   }
1185 
1186   void do_object(oop o);
1187 };
1188 
1189 // invoked for each object in the heap
1190 void IterateOverHeapObjectClosure::do_object(oop o) {
1191   // check if iteration has been halted
1192   if (is_iteration_aborted()) return;
1193 
1194   // instanceof check when filtering by klass
1195   if (klass() != nullptr && !o->is_a(klass())) {
1196     return;
1197   }
1198 
1199   // skip if object is a dormant shared object whose mirror hasn't been loaded
1200   if (o != nullptr && o->klass()->java_mirror() == nullptr) {
1201     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(o),
1202                          o->klass()->external_name());
1203     return;
1204   }
1205 
1206   // prepare for the calllback
1207   JvmtiHeapwalkObject wrapper_obj(o);
1208   CallbackWrapper wrapper(tag_map(), wrapper_obj);
1209 
1210   // if the object is tagged and we're only interested in untagged objects
1211   // then don't invoke the callback. Similarly, if the object is untagged
1212   // and we're only interested in tagged objects we skip the callback.
1213   if (wrapper.obj_tag() != 0) {
1214     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1215   } else {
1216     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1217   }
1218 
1219   // invoke the agent's callback
1220   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1221                                                        wrapper.obj_size(),
1222                                                        wrapper.obj_tag_p(),
1223                                                        (void*)user_data());
1224   if (control == JVMTI_ITERATION_ABORT) {
1225     set_iteration_aborted(true);
1226   }
1227 }
1228 
1229 // An ObjectClosure used to support the IterateThroughHeap function
1230 class IterateThroughHeapObjectClosure: public ObjectClosure {
1231  private:
1232   JvmtiTagMap* _tag_map;
1233   Klass* _klass;
1234   int _heap_filter;
1235   const jvmtiHeapCallbacks* _callbacks;
1236   const void* _user_data;
1237 
1238   // accessor functions
1239   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1240   int heap_filter() const                          { return _heap_filter; }
1241   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1242   Klass* klass() const                             { return _klass; }
1243   const void* user_data() const                    { return _user_data; }
1244 
1245   // indicates if the iteration has been aborted
1246   bool _iteration_aborted;
1247   bool is_iteration_aborted() const                { return _iteration_aborted; }
1248 
1249   // used to check the visit control flags. If the abort flag is set
1250   // then we set the iteration aborted flag so that the iteration completes
1251   // without processing any further objects
1252   bool check_flags_for_abort(jint flags) {
1253     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1254     if (is_abort) {
1255       _iteration_aborted = true;
1256     }
1257     return is_abort;
1258   }
1259 
1260   void visit_object(const JvmtiHeapwalkObject& obj);
1261   void visit_flat_fields(const JvmtiHeapwalkObject& obj);
1262   void visit_flat_array_elements(const JvmtiHeapwalkObject& obj);
1263 
1264  public:
1265   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1266                                   Klass* klass,
1267                                   int heap_filter,
1268                                   const jvmtiHeapCallbacks* heap_callbacks,
1269                                   const void* user_data) :
1270     _tag_map(tag_map),
1271     _klass(klass),
1272     _heap_filter(heap_filter),
1273     _callbacks(heap_callbacks),
1274     _user_data(user_data),
1275     _iteration_aborted(false)
1276   {
1277   }
1278 
1279   void do_object(oop obj);
1280 };
1281 
1282 // invoked for each object in the heap
1283 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1284   // check if iteration has been halted
1285   if (is_iteration_aborted()) return;
1286 
1287   // skip if object is a dormant shared object whose mirror hasn't been loaded
1288   if (obj != nullptr && obj->klass()->java_mirror() == nullptr) {
1289     log_debug(aot, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", p2i(obj),
1290                          obj->klass()->external_name());
1291     return;
1292   }
1293 
1294   visit_object(obj);
1295 }
1296 
1297 void IterateThroughHeapObjectClosure::visit_object(const JvmtiHeapwalkObject& obj) {
1298   // apply class filter
1299   if (is_filtered_by_klass_filter(obj, klass())) return;
1300 
1301   // prepare for callback
1302   CallbackWrapper wrapper(tag_map(), obj);
1303 
1304   // check if filtered by the heap filter
1305   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1306     return;
1307   }
1308 
1309   // for arrays we need the length, otherwise -1
1310   bool is_array = obj.klass()->is_array_klass();
1311   int len = is_array ? arrayOop(obj.obj())->length() : -1;
1312 
1313   // invoke the object callback (if callback is provided)
1314   if (callbacks()->heap_iteration_callback != nullptr) {
1315     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1316     jint res = (*cb)(wrapper.klass_tag(),
1317                      wrapper.obj_size(),
1318                      wrapper.obj_tag_p(),
1319                      (jint)len,
1320                      (void*)user_data());
1321     if (check_flags_for_abort(res)) return;
1322   }
1323 
1324   // for objects and classes we report primitive fields if callback provided
1325   if (callbacks()->primitive_field_callback != nullptr && obj.klass()->is_instance_klass()) {
1326     jint res;
1327     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1328     if (obj.klass() == vmClasses::Class_klass()) {
1329       assert(!obj.is_flat(), "Class object cannot be flattened");
1330       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1331                                                               obj.obj(),
1332                                                               cb,
1333                                                               (void*)user_data());
1334     } else {
1335       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1336                                                                 obj,
1337                                                                 cb,
1338                                                                 (void*)user_data());
1339     }
1340     if (check_flags_for_abort(res)) return;
1341   }
1342 
1343   // string callback
1344   if (!is_array &&
1345       callbacks()->string_primitive_value_callback != nullptr &&
1346       obj.klass() == vmClasses::String_klass()) {
1347     jint res = invoke_string_value_callback(
1348                 callbacks()->string_primitive_value_callback,
1349                 &wrapper,
1350                 obj,
1351                 (void*)user_data());
1352     if (check_flags_for_abort(res)) return;
1353   }
1354 
1355   // array callback
1356   if (is_array &&
1357       callbacks()->array_primitive_value_callback != nullptr &&
1358       obj.klass()->is_typeArray_klass()) {
1359     jint res = invoke_array_primitive_value_callback(
1360                callbacks()->array_primitive_value_callback,
1361                &wrapper,
1362                obj,
1363                (void*)user_data());
1364     if (check_flags_for_abort(res)) return;
1365   }
1366 
1367   // All info for the object is reported.
1368 
1369   // If the object has flat fields, report them as heap objects.
1370   if (obj.klass()->is_instance_klass()) {
1371     if (InstanceKlass::cast(obj.klass())->has_inline_type_fields()) {
1372       visit_flat_fields(obj);
1373       // check if iteration has been halted
1374       if (is_iteration_aborted()) {
1375         return;
1376       }
1377     }
1378   }
1379   // If the object is flat array, report all elements as heap objects.
1380   if (is_array && obj.obj()->is_flatArray()) {
1381     assert(!obj.is_flat(), "Array object cannot be flattened");
1382     visit_flat_array_elements(obj);
1383   }
1384 }
1385 
1386 void IterateThroughHeapObjectClosure::visit_flat_fields(const JvmtiHeapwalkObject& obj) {
1387   // iterate over instance fields
1388   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj.klass());
1389   for (int i = 0; i < fields->field_count(); i++) {
1390     ClassFieldDescriptor* field = fields->field_at(i);
1391     // skip non-flat and (for safety) primitive fields
1392     if (!field->is_flat() || is_primitive_field_type(field->field_type())) {
1393       continue;
1394     }
1395 
1396     int field_offset = field->field_offset();
1397     if (obj.is_flat()) {
1398       // the object is inlined, its fields are stored without the header
1399       field_offset += obj.offset() - obj.inline_klass()->payload_offset();
1400     }
1401     // check for possible nulls
1402     bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
1403     if (can_be_null) {
1404       address payload = cast_from_oop<address>(obj.obj()) + field_offset;
1405       if (field->inline_klass()->is_payload_marked_as_null(payload)) {
1406         continue;
1407       }
1408     }
1409     JvmtiHeapwalkObject field_obj(obj.obj(), field_offset, field->inline_klass(), field->layout_kind());
1410 
1411     visit_object(field_obj);
1412 
1413     // check if iteration has been halted
1414     if (is_iteration_aborted()) {
1415       return;
1416     }
1417   }
1418 }
1419 
1420 void IterateThroughHeapObjectClosure::visit_flat_array_elements(const JvmtiHeapwalkObject& obj) {
1421   assert(!obj.is_flat() && obj.obj()->is_flatArray() , "sanity check");
1422   flatArrayOop array = flatArrayOop(obj.obj());
1423   FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass());
1424   InlineKlass* vk = InlineKlass::cast(faklass->element_klass());
1425   bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
1426 
1427   for (int index = 0; index < array->length(); index++) {
1428     address addr = (address)array->value_at_addr(index, faklass->layout_helper());
1429     // check for null
1430     if (need_null_check) {
1431       if (vk->is_payload_marked_as_null(addr)) {
1432         continue;
1433       }
1434     }
1435 
1436     // offset in the array oop
1437     int offset = (int)(addr - cast_from_oop<address>(array));
1438     JvmtiHeapwalkObject elem(obj.obj(), offset, vk, faklass->layout_kind());
1439 
1440     visit_object(elem);
1441 
1442     // check if iteration has been halted
1443     if (is_iteration_aborted()) {
1444       return;
1445     }
1446   }
1447 }
1448 
1449 // Deprecated function to iterate over all objects in the heap
1450 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1451                                     Klass* klass,
1452                                     jvmtiHeapObjectCallback heap_object_callback,
1453                                     const void* user_data)
1454 {
1455   // EA based optimizations on tagged objects are already reverted.
1456   EscapeBarrier eb(object_filter == JVMTI_HEAP_OBJECT_UNTAGGED ||
1457                    object_filter == JVMTI_HEAP_OBJECT_EITHER,
1458                    JavaThread::current());
1459   eb.deoptimize_objects_all_threads();
1460   Arena dead_object_arena(mtServiceability);
1461   GrowableArray <jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1462   {
1463     MutexLocker ml(Heap_lock);
1464     IterateOverHeapObjectClosure blk(this,
1465                                      klass,
1466                                      object_filter,
1467                                      heap_object_callback,
1468                                      user_data);
1469     VM_HeapIterateOperation op(&blk, &dead_objects);
1470     VMThread::execute(&op);
1471   }
1472   convert_flat_object_entries();
1473 
1474   // Post events outside of Heap_lock
1475   post_dead_objects(&dead_objects);
1476 }
1477 
1478 
1479 // Iterates over all objects in the heap
1480 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1481                                        Klass* klass,
1482                                        const jvmtiHeapCallbacks* callbacks,
1483                                        const void* user_data)
1484 {
1485   // EA based optimizations on tagged objects are already reverted.
1486   EscapeBarrier eb(!(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED), JavaThread::current());
1487   eb.deoptimize_objects_all_threads();
1488 
1489   Arena dead_object_arena(mtServiceability);
1490   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
1491   {
1492     MutexLocker ml(Heap_lock);
1493     IterateThroughHeapObjectClosure blk(this,
1494                                         klass,
1495                                         heap_filter,
1496                                         callbacks,
1497                                         user_data);
1498     VM_HeapIterateOperation op(&blk, &dead_objects);
1499     VMThread::execute(&op);
1500   }
1501   convert_flat_object_entries();
1502 
1503   // Post events outside of Heap_lock
1504   post_dead_objects(&dead_objects);
1505 }
1506 
1507 void JvmtiTagMap::remove_dead_entries_locked(GrowableArray<jlong>* objects) {
1508   assert(is_locked(), "precondition");
1509   if (_needs_cleaning) {
1510     // Recheck whether to post object free events under the lock.
1511     if (!env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1512       objects = nullptr;
1513     }
1514     log_info(jvmti, table)("TagMap table needs cleaning%s",
1515                            ((objects != nullptr) ? " and posting" : ""));
1516     _hashmap->remove_dead_entries(objects);
1517     _needs_cleaning = false;
1518   }
1519 }
1520 
1521 void JvmtiTagMap::remove_dead_entries(GrowableArray<jlong>* objects) {
1522   MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1523   remove_dead_entries_locked(objects);
1524 }
1525 
1526 void JvmtiTagMap::post_dead_objects(GrowableArray<jlong>* const objects) {
1527   assert(Thread::current()->is_Java_thread(), "Must post from JavaThread");
1528   if (objects != nullptr && objects->length() > 0) {
1529     JvmtiExport::post_object_free(env(), objects);
1530     log_info(jvmti, table)("%d free object posted", objects->length());
1531   }
1532 }
1533 
1534 void JvmtiTagMap::remove_and_post_dead_objects() {
1535   ResourceMark rm;
1536   GrowableArray<jlong> objects;
1537   remove_dead_entries(&objects);
1538   post_dead_objects(&objects);
1539 }
1540 
1541 void JvmtiTagMap::flush_object_free_events() {
1542   assert_not_at_safepoint();
1543   if (env()->is_enabled(JVMTI_EVENT_OBJECT_FREE)) {
1544     {
1545       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1546       // If another thread is posting events, let it finish
1547       while (_posting_events) {
1548         ml.wait();
1549       }
1550 
1551       if (!_needs_cleaning || is_empty()) {
1552         _needs_cleaning = false;
1553         return;
1554       }
1555       _posting_events = true;
1556     } // Drop the lock so we can do the cleaning on the VM thread.
1557     // Needs both cleaning and event posting (up to some other thread
1558     // getting there first after we dropped the lock).
1559     remove_and_post_dead_objects();
1560     {
1561       MonitorLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1562       _posting_events = false;
1563       ml.notify_all();
1564     }
1565   } else {
1566     remove_dead_entries(nullptr);
1567   }
1568 }
1569 
1570 // support class for get_objects_with_tags
1571 
1572 class TagObjectCollector : public JvmtiTagMapKeyClosure {
1573  private:
1574   JvmtiEnv* _env;
1575   JavaThread* _thread;
1576   jlong* _tags;
1577   jint _tag_count;
1578   bool _some_dead_found;
1579 
1580   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1581   GrowableArray<uint64_t>* _tag_results;    // collected tags
1582 
1583  public:
1584   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) :
1585     _env(env),
1586     _thread(JavaThread::current()),
1587     _tags((jlong*)tags),
1588     _tag_count(tag_count),
1589     _some_dead_found(false),
1590     _object_results(new (mtServiceability) GrowableArray<jobject>(1, mtServiceability)),
1591     _tag_results(new (mtServiceability) GrowableArray<uint64_t>(1, mtServiceability)) { }
1592 
1593   ~TagObjectCollector() {
1594     delete _object_results;
1595     delete _tag_results;
1596   }
1597 
1598   bool some_dead_found() const { return _some_dead_found; }
1599 
1600   // for each tagged object check if the tag value matches
1601   // - if it matches then we create a JNI local reference to the object
1602   // and record the reference and tag value.
1603   // Always return true so the iteration continues.
1604   bool do_entry(JvmtiTagMapKey& key, jlong& value) {
1605     for (int i = 0; i < _tag_count; i++) {
1606       if (_tags[i] == value) {
1607         // The reference in this tag map could be the only (implicitly weak)
1608         // reference to that object. If we hand it out, we need to keep it live wrt
1609         // SATB marking similar to other j.l.ref.Reference referents. This is
1610         // achieved by using a phantom load in the object() accessor.
1611         oop o = key.object();
1612         if (o == nullptr) {
1613           _some_dead_found = true;
1614           // skip this whole entry
1615           return true;
1616         }
1617         assert(o != nullptr && Universe::heap()->is_in(o), "sanity check");
1618         jobject ref = JNIHandles::make_local(_thread, o);
1619         _object_results->append(ref);
1620         _tag_results->append(value);
1621       }
1622     }
1623     return true;
1624   }
1625 
1626   // return the results from the collection
1627   //
1628   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1629     jvmtiError error;
1630     int count = _object_results->length();
1631     assert(count >= 0, "sanity check");
1632 
1633     // if object_result_ptr is not null then allocate the result and copy
1634     // in the object references.
1635     if (object_result_ptr != nullptr) {
1636       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1637       if (error != JVMTI_ERROR_NONE) {
1638         return error;
1639       }
1640       for (int i=0; i<count; i++) {
1641         (*object_result_ptr)[i] = _object_results->at(i);
1642       }
1643     }
1644 
1645     // if tag_result_ptr is not null then allocate the result and copy
1646     // in the tag values.
1647     if (tag_result_ptr != nullptr) {
1648       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1649       if (error != JVMTI_ERROR_NONE) {
1650         if (object_result_ptr != nullptr) {
1651           _env->Deallocate((unsigned char*)object_result_ptr);
1652         }
1653         return error;
1654       }
1655       for (int i=0; i<count; i++) {
1656         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1657       }
1658     }
1659 
1660     *count_ptr = count;
1661     return JVMTI_ERROR_NONE;
1662   }
1663 };
1664 
1665 // return the list of objects with the specified tags
1666 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1667   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1668 
1669   // ensure flat object conversion is completed
1670   convert_flat_object_entries();
1671 
1672   TagObjectCollector collector(env(), tags, count);
1673   {
1674     // iterate over all tagged objects
1675     MutexLocker ml(lock(), Mutex::_no_safepoint_check_flag);
1676     // Can't post ObjectFree events here from a JavaThread, so this
1677     // will race with the gc_notification thread in the tiny
1678     // window where the object is not marked but hasn't been notified that
1679     // it is collected yet.
1680     _hashmap->entry_iterate(&collector);
1681   }
1682   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1683 }
1684 
1685 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1686 // (not performance critical as only used for roots)
1687 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1688   switch (kind) {
1689     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1690     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1691     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1692     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1693     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1694     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1695     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1696   }
1697 }
1698 
1699 // Base class for all heap walk contexts. The base class maintains a flag
1700 // to indicate if the context is valid or not.
1701 class HeapWalkContext {
1702  private:
1703   bool _valid;
1704  public:
1705   HeapWalkContext(bool valid)                   { _valid = valid; }
1706   void invalidate()                             { _valid = false; }
1707   bool is_valid() const                         { return _valid; }
1708 };
1709 
1710 // A basic heap walk context for the deprecated heap walking functions.
1711 // The context for a basic heap walk are the callbacks and fields used by
1712 // the referrer caching scheme.
1713 class BasicHeapWalkContext: public HeapWalkContext {
1714  private:
1715   jvmtiHeapRootCallback _heap_root_callback;
1716   jvmtiStackReferenceCallback _stack_ref_callback;
1717   jvmtiObjectReferenceCallback _object_ref_callback;
1718 
1719   // used for caching
1720   JvmtiHeapwalkObject _last_referrer;
1721   jlong _last_referrer_tag;
1722 
1723  public:
1724   BasicHeapWalkContext() : HeapWalkContext(false) { }
1725 
1726   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1727                        jvmtiStackReferenceCallback stack_ref_callback,
1728                        jvmtiObjectReferenceCallback object_ref_callback) :
1729     HeapWalkContext(true),
1730     _heap_root_callback(heap_root_callback),
1731     _stack_ref_callback(stack_ref_callback),
1732     _object_ref_callback(object_ref_callback),
1733     _last_referrer(),
1734     _last_referrer_tag(0) {
1735   }
1736 
1737   // accessors
1738   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1739   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1740   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1741 
1742   JvmtiHeapwalkObject last_referrer() const    { return _last_referrer; }
1743   void set_last_referrer(const JvmtiHeapwalkObject& referrer) { _last_referrer = referrer; }
1744   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1745   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1746 };
1747 
1748 // The advanced heap walk context for the FollowReferences functions.
1749 // The context is the callbacks, and the fields used for filtering.
1750 class AdvancedHeapWalkContext: public HeapWalkContext {
1751  private:
1752   jint _heap_filter;
1753   Klass* _klass_filter;
1754   const jvmtiHeapCallbacks* _heap_callbacks;
1755 
1756  public:
1757   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1758 
1759   AdvancedHeapWalkContext(jint heap_filter,
1760                            Klass* klass_filter,
1761                            const jvmtiHeapCallbacks* heap_callbacks) :
1762     HeapWalkContext(true),
1763     _heap_filter(heap_filter),
1764     _klass_filter(klass_filter),
1765     _heap_callbacks(heap_callbacks) {
1766   }
1767 
1768   // accessors
1769   jint heap_filter() const         { return _heap_filter; }
1770   Klass* klass_filter() const      { return _klass_filter; }
1771 
1772   jvmtiHeapReferenceCallback heap_reference_callback() const {
1773     return _heap_callbacks->heap_reference_callback;
1774   };
1775   jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1776     return _heap_callbacks->primitive_field_callback;
1777   }
1778   jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1779     return _heap_callbacks->array_primitive_value_callback;
1780   }
1781   jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1782     return _heap_callbacks->string_primitive_value_callback;
1783   }
1784 };
1785 
1786 // The CallbackInvoker is a class with static functions that the heap walk can call
1787 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1788 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1789 // mode is for the newer FollowReferences function which supports a lot of
1790 // additional callbacks.
1791 class CallbackInvoker : AllStatic {
1792  private:
1793   // heap walk styles
1794   enum { basic, advanced };
1795   static int _heap_walk_type;
1796   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1797   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1798 
1799   // context for basic style heap walk
1800   static BasicHeapWalkContext _basic_context;
1801   static BasicHeapWalkContext* basic_context() {
1802     assert(_basic_context.is_valid(), "invalid");
1803     return &_basic_context;
1804   }
1805 
1806   // context for advanced style heap walk
1807   static AdvancedHeapWalkContext _advanced_context;
1808   static AdvancedHeapWalkContext* advanced_context() {
1809     assert(_advanced_context.is_valid(), "invalid");
1810     return &_advanced_context;
1811   }
1812 
1813   // context needed for all heap walks
1814   static JvmtiTagMap* _tag_map;
1815   static const void* _user_data;
1816   static JvmtiHeapwalkVisitStack* _visit_stack;
1817 
1818   // accessors
1819   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1820   static const void* user_data()                       { return _user_data; }
1821   static JvmtiHeapwalkVisitStack* visit_stack()        { return _visit_stack; }
1822 
1823   // if the object hasn't been visited then push it onto the visit stack
1824   // so that it will be visited later
1825   static inline bool check_for_visit(const JvmtiHeapwalkObject&obj) {
1826     visit_stack()->check_for_visit(obj);
1827     return true;
1828   }
1829 
1830   // return element count if the obj is array, -1 otherwise
1831   static jint get_array_length(const JvmtiHeapwalkObject& obj) {
1832     if (!obj.klass()->is_array_klass()) {
1833       return -1;
1834     }
1835     assert(!obj.is_flat(), "array cannot be flat");
1836     return (jint)arrayOop(obj.obj())->length();
1837   }
1838 
1839 
1840   // invoke basic style callbacks
1841   static inline bool invoke_basic_heap_root_callback
1842     (jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj);
1843   static inline bool invoke_basic_stack_ref_callback
1844     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1845      int slot, const JvmtiHeapwalkObject& obj);
1846   static inline bool invoke_basic_object_reference_callback
1847     (jvmtiObjectReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1848 
1849   // invoke advanced style callbacks
1850   static inline bool invoke_advanced_heap_root_callback
1851     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj);
1852   static inline bool invoke_advanced_stack_ref_callback
1853     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1854      jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& obj);
1855   static inline bool invoke_advanced_object_reference_callback
1856     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1857 
1858   // used to report the value of primitive fields
1859   static inline bool report_primitive_field
1860     (jvmtiHeapReferenceKind ref_kind, const JvmtiHeapwalkObject& obj, jint index, address addr, char type);
1861 
1862  public:
1863   // initialize for basic mode
1864   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1865                                              const void* user_data,
1866                                              BasicHeapWalkContext context,
1867                                              JvmtiHeapwalkVisitStack* visit_stack);
1868 
1869   // initialize for advanced mode
1870   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1871                                                 const void* user_data,
1872                                                 AdvancedHeapWalkContext context,
1873                                                 JvmtiHeapwalkVisitStack* visit_stack);
1874 
1875    // functions to report roots
1876   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& o);
1877   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1878     jmethodID m, const JvmtiHeapwalkObject& o);
1879   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1880     jmethodID method, jlocation bci, jint slot, const JvmtiHeapwalkObject& o);
1881 
1882   // functions to report references
1883   static inline bool report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1884   static inline bool report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1885   static inline bool report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1886   static inline bool report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1887   static inline bool report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1888   static inline bool report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1889   static inline bool report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree);
1890   static inline bool report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot);
1891   static inline bool report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot);
1892   static inline bool report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index);
1893   static inline bool report_primitive_array_values(const JvmtiHeapwalkObject& array);
1894   static inline bool report_string_value(const JvmtiHeapwalkObject& str);
1895   static inline bool report_primitive_instance_field(const JvmtiHeapwalkObject& o, jint index, address value, char type);
1896   static inline bool report_primitive_static_field(const JvmtiHeapwalkObject& o, jint index, address value, char type);
1897 };
1898 
1899 // statics
1900 int CallbackInvoker::_heap_walk_type;
1901 BasicHeapWalkContext CallbackInvoker::_basic_context;
1902 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1903 JvmtiTagMap* CallbackInvoker::_tag_map;
1904 const void* CallbackInvoker::_user_data;
1905 JvmtiHeapwalkVisitStack* CallbackInvoker::_visit_stack;
1906 
1907 // initialize for basic heap walk (IterateOverReachableObjects et al)
1908 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1909                                                      const void* user_data,
1910                                                      BasicHeapWalkContext context,
1911                                                      JvmtiHeapwalkVisitStack* visit_stack) {
1912   _tag_map = tag_map;
1913   _user_data = user_data;
1914   _basic_context = context;
1915   _advanced_context.invalidate();       // will trigger assertion if used
1916   _heap_walk_type = basic;
1917   _visit_stack = visit_stack;
1918 }
1919 
1920 // initialize for advanced heap walk (FollowReferences)
1921 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1922                                                         const void* user_data,
1923                                                         AdvancedHeapWalkContext context,
1924                                                         JvmtiHeapwalkVisitStack* visit_stack) {
1925   _tag_map = tag_map;
1926   _user_data = user_data;
1927   _advanced_context = context;
1928   _basic_context.invalidate();      // will trigger assertion if used
1929   _heap_walk_type = advanced;
1930   _visit_stack = visit_stack;
1931 }
1932 
1933 
1934 // invoke basic style heap root callback
1935 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, const JvmtiHeapwalkObject& obj) {
1936   // if we heap roots should be reported
1937   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1938   if (cb == nullptr) {
1939     return check_for_visit(obj);
1940   }
1941 
1942   CallbackWrapper wrapper(tag_map(), obj);
1943   jvmtiIterationControl control = (*cb)(root_kind,
1944                                         wrapper.klass_tag(),
1945                                         wrapper.obj_size(),
1946                                         wrapper.obj_tag_p(),
1947                                         (void*)user_data());
1948   // push root to visit stack when following references
1949   if (control == JVMTI_ITERATION_CONTINUE &&
1950       basic_context()->object_ref_callback() != nullptr) {
1951     visit_stack()->push(obj);
1952   }
1953   return control != JVMTI_ITERATION_ABORT;
1954 }
1955 
1956 // invoke basic style stack ref callback
1957 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
1958                                                              jlong thread_tag,
1959                                                              jint depth,
1960                                                              jmethodID method,
1961                                                              int slot,
1962                                                              const JvmtiHeapwalkObject& obj) {
1963   // if we stack refs should be reported
1964   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
1965   if (cb == nullptr) {
1966     return check_for_visit(obj);
1967   }
1968 
1969   CallbackWrapper wrapper(tag_map(), obj);
1970   jvmtiIterationControl control = (*cb)(root_kind,
1971                                         wrapper.klass_tag(),
1972                                         wrapper.obj_size(),
1973                                         wrapper.obj_tag_p(),
1974                                         thread_tag,
1975                                         depth,
1976                                         method,
1977                                         slot,
1978                                         (void*)user_data());
1979   // push root to visit stack when following references
1980   if (control == JVMTI_ITERATION_CONTINUE &&
1981       basic_context()->object_ref_callback() != nullptr) {
1982     visit_stack()->push(obj);
1983   }
1984   return control != JVMTI_ITERATION_ABORT;
1985 }
1986 
1987 // invoke basic style object reference callback
1988 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
1989                                                                     const JvmtiHeapwalkObject& referrer,
1990                                                                     const JvmtiHeapwalkObject& referree,
1991                                                                     jint index) {
1992 
1993   BasicHeapWalkContext* context = basic_context();
1994 
1995   // callback requires the referrer's tag. If it's the same referrer
1996   // as the last call then we use the cached value.
1997   jlong referrer_tag;
1998   if (referrer == context->last_referrer()) {
1999     referrer_tag = context->last_referrer_tag();
2000   } else {
2001     referrer_tag = tag_map()->find(referrer);
2002   }
2003 
2004   // do the callback
2005   CallbackWrapper wrapper(tag_map(), referree);
2006   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2007   jvmtiIterationControl control = (*cb)(ref_kind,
2008                                         wrapper.klass_tag(),
2009                                         wrapper.obj_size(),
2010                                         wrapper.obj_tag_p(),
2011                                         referrer_tag,
2012                                         index,
2013                                         (void*)user_data());
2014 
2015   // record referrer and referrer tag. For self-references record the
2016   // tag value from the callback as this might differ from referrer_tag.
2017   context->set_last_referrer(referrer);
2018   if (referrer == referree) {
2019     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2020   } else {
2021     context->set_last_referrer_tag(referrer_tag);
2022   }
2023 
2024   if (control == JVMTI_ITERATION_CONTINUE) {
2025     return check_for_visit(referree);
2026   } else {
2027     return control != JVMTI_ITERATION_ABORT;
2028   }
2029 }
2030 
2031 // invoke advanced style heap root callback
2032 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2033                                                                 const JvmtiHeapwalkObject& obj) {
2034   AdvancedHeapWalkContext* context = advanced_context();
2035 
2036   // check that callback is provided
2037   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2038   if (cb == nullptr) {
2039     return check_for_visit(obj);
2040   }
2041 
2042   // apply class filter
2043   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2044     return check_for_visit(obj);
2045   }
2046 
2047   // setup the callback wrapper
2048   CallbackWrapper wrapper(tag_map(), obj);
2049 
2050   // apply tag filter
2051   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2052                                  wrapper.klass_tag(),
2053                                  context->heap_filter())) {
2054     return check_for_visit(obj);
2055   }
2056 
2057   // for arrays we need the length, otherwise -1
2058   jint len = get_array_length(obj);
2059 
2060   // invoke the callback
2061   jint res  = (*cb)(ref_kind,
2062                     nullptr, // referrer info
2063                     wrapper.klass_tag(),
2064                     0,    // referrer_class_tag is 0 for heap root
2065                     wrapper.obj_size(),
2066                     wrapper.obj_tag_p(),
2067                     nullptr, // referrer_tag_p
2068                     len,
2069                     (void*)user_data());
2070   if (res & JVMTI_VISIT_ABORT) {
2071     return false;// referrer class tag
2072   }
2073   if (res & JVMTI_VISIT_OBJECTS) {
2074     check_for_visit(obj);
2075   }
2076   return true;
2077 }
2078 
2079 // report a reference from a thread stack to an object
2080 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2081                                                                 jlong thread_tag,
2082                                                                 jlong tid,
2083                                                                 int depth,
2084                                                                 jmethodID method,
2085                                                                 jlocation bci,
2086                                                                 jint slot,
2087                                                                 const JvmtiHeapwalkObject& obj) {
2088   AdvancedHeapWalkContext* context = advanced_context();
2089 
2090   // check that callback is provider
2091   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2092   if (cb == nullptr) {
2093     return check_for_visit(obj);
2094   }
2095 
2096   // apply class filter
2097   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2098     return check_for_visit(obj);
2099   }
2100 
2101   // setup the callback wrapper
2102   CallbackWrapper wrapper(tag_map(), obj);
2103 
2104   // apply tag filter
2105   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2106                                  wrapper.klass_tag(),
2107                                  context->heap_filter())) {
2108     return check_for_visit(obj);
2109   }
2110 
2111   // setup the referrer info
2112   jvmtiHeapReferenceInfo reference_info;
2113   reference_info.stack_local.thread_tag = thread_tag;
2114   reference_info.stack_local.thread_id = tid;
2115   reference_info.stack_local.depth = depth;
2116   reference_info.stack_local.method = method;
2117   reference_info.stack_local.location = bci;
2118   reference_info.stack_local.slot = slot;
2119 
2120   // for arrays we need the length, otherwise -1
2121   jint len = get_array_length(obj);
2122 
2123   // call into the agent
2124   int res = (*cb)(ref_kind,
2125                   &reference_info,
2126                   wrapper.klass_tag(),
2127                   0,    // referrer_class_tag is 0 for heap root (stack)
2128                   wrapper.obj_size(),
2129                   wrapper.obj_tag_p(),
2130                   nullptr, // referrer_tag is 0 for root
2131                   len,
2132                   (void*)user_data());
2133 
2134   if (res & JVMTI_VISIT_ABORT) {
2135     return false;
2136   }
2137   if (res & JVMTI_VISIT_OBJECTS) {
2138     check_for_visit(obj);
2139   }
2140   return true;
2141 }
2142 
2143 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2144 // only for ref_kinds defined by the JVM TI spec. Otherwise, null is passed.
2145 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2146                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2147                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2148                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2149                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2150                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2151 
2152 // invoke the object reference callback to report a reference
2153 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2154                                                                        const JvmtiHeapwalkObject& referrer,
2155                                                                        const JvmtiHeapwalkObject& obj,
2156                                                                        jint index)
2157 {
2158   // field index is only valid field in reference_info
2159   static jvmtiHeapReferenceInfo reference_info = { 0 };
2160 
2161   AdvancedHeapWalkContext* context = advanced_context();
2162 
2163   // check that callback is provider
2164   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2165   if (cb == nullptr) {
2166     return check_for_visit(obj);
2167   }
2168 
2169   // apply class filter
2170   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2171     return check_for_visit(obj);
2172   }
2173 
2174   // setup the callback wrapper
2175   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2176 
2177   // apply tag filter
2178   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2179                                  wrapper.klass_tag(),
2180                                  context->heap_filter())) {
2181     return check_for_visit(obj);
2182   }
2183 
2184   // field index is only valid field in reference_info
2185   reference_info.field.index = index;
2186 
2187   // for arrays we need the length, otherwise -1
2188   jint len = get_array_length(obj);
2189 
2190   // invoke the callback
2191   int res = (*cb)(ref_kind,
2192                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : nullptr,
2193                   wrapper.klass_tag(),
2194                   wrapper.referrer_klass_tag(),
2195                   wrapper.obj_size(),
2196                   wrapper.obj_tag_p(),
2197                   wrapper.referrer_tag_p(),
2198                   len,
2199                   (void*)user_data());
2200 
2201   if (res & JVMTI_VISIT_ABORT) {
2202     return false;
2203   }
2204   if (res & JVMTI_VISIT_OBJECTS) {
2205     check_for_visit(obj);
2206   }
2207   return true;
2208 }
2209 
2210 // report a "simple root"
2211 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, const JvmtiHeapwalkObject& obj) {
2212   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2213          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2214 
2215   if (is_basic_heap_walk()) {
2216     // map to old style root kind
2217     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2218     return invoke_basic_heap_root_callback(root_kind, obj);
2219   } else {
2220     assert(is_advanced_heap_walk(), "wrong heap walk type");
2221     return invoke_advanced_heap_root_callback(kind, obj);
2222   }
2223 }
2224 
2225 
2226 // invoke the primitive array values
2227 inline bool CallbackInvoker::report_primitive_array_values(const JvmtiHeapwalkObject& obj) {
2228   assert(obj.klass()->is_typeArray_klass(), "not a primitive array");
2229 
2230   AdvancedHeapWalkContext* context = advanced_context();
2231   assert(context->array_primitive_value_callback() != nullptr, "no callback");
2232 
2233   // apply class filter
2234   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2235     return true;
2236   }
2237 
2238   CallbackWrapper wrapper(tag_map(), obj);
2239 
2240   // apply tag filter
2241   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2242                                  wrapper.klass_tag(),
2243                                  context->heap_filter())) {
2244     return true;
2245   }
2246 
2247   // invoke the callback
2248   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2249                                                   &wrapper,
2250                                                   obj,
2251                                                   (void*)user_data());
2252   return (!(res & JVMTI_VISIT_ABORT));
2253 }
2254 
2255 // invoke the string value callback
2256 inline bool CallbackInvoker::report_string_value(const JvmtiHeapwalkObject& str) {
2257   assert(str.klass() == vmClasses::String_klass(), "not a string");
2258 
2259   AdvancedHeapWalkContext* context = advanced_context();
2260   assert(context->string_primitive_value_callback() != nullptr, "no callback");
2261 
2262   // apply class filter
2263   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2264     return true;
2265   }
2266 
2267   CallbackWrapper wrapper(tag_map(), str);
2268 
2269   // apply tag filter
2270   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2271                                  wrapper.klass_tag(),
2272                                  context->heap_filter())) {
2273     return true;
2274   }
2275 
2276   // invoke the callback
2277   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2278                                          &wrapper,
2279                                          str,
2280                                          (void*)user_data());
2281   return (!(res & JVMTI_VISIT_ABORT));
2282 }
2283 
2284 // invoke the primitive field callback
2285 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2286                                                     const JvmtiHeapwalkObject& obj,
2287                                                     jint index,
2288                                                     address addr,
2289                                                     char type)
2290 {
2291   // for primitive fields only the index will be set
2292   static jvmtiHeapReferenceInfo reference_info = { 0 };
2293 
2294   AdvancedHeapWalkContext* context = advanced_context();
2295   assert(context->primitive_field_callback() != nullptr, "no callback");
2296 
2297   // apply class filter
2298   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2299     return true;
2300   }
2301 
2302   CallbackWrapper wrapper(tag_map(), obj);
2303 
2304   // apply tag filter
2305   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2306                                  wrapper.klass_tag(),
2307                                  context->heap_filter())) {
2308     return true;
2309   }
2310 
2311   // the field index in the referrer
2312   reference_info.field.index = index;
2313 
2314   // map the type
2315   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2316 
2317   // setup the jvalue
2318   jvalue value;
2319   copy_to_jvalue(&value, addr, value_type);
2320 
2321   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2322   int res = (*cb)(ref_kind,
2323                   &reference_info,
2324                   wrapper.klass_tag(),
2325                   wrapper.obj_tag_p(),
2326                   value,
2327                   value_type,
2328                   (void*)user_data());
2329   return (!(res & JVMTI_VISIT_ABORT));
2330 }
2331 
2332 
2333 // instance field
2334 inline bool CallbackInvoker::report_primitive_instance_field(const JvmtiHeapwalkObject& obj,
2335                                                              jint index,
2336                                                              address value,
2337                                                              char type) {
2338   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2339                                 obj,
2340                                 index,
2341                                 value,
2342                                 type);
2343 }
2344 
2345 // static field
2346 inline bool CallbackInvoker::report_primitive_static_field(const JvmtiHeapwalkObject& obj,
2347                                                            jint index,
2348                                                            address value,
2349                                                            char type) {
2350   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2351                                 obj,
2352                                 index,
2353                                 value,
2354                                 type);
2355 }
2356 
2357 // report a JNI local (root object) to the profiler
2358 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, const JvmtiHeapwalkObject& obj) {
2359   if (is_basic_heap_walk()) {
2360     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2361                                            thread_tag,
2362                                            depth,
2363                                            m,
2364                                            -1,
2365                                            obj);
2366   } else {
2367     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2368                                               thread_tag, tid,
2369                                               depth,
2370                                               m,
2371                                               (jlocation)-1,
2372                                               -1,
2373                                               obj);
2374   }
2375 }
2376 
2377 
2378 // report a local (stack reference, root object)
2379 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2380                                                    jlong tid,
2381                                                    jint depth,
2382                                                    jmethodID method,
2383                                                    jlocation bci,
2384                                                    jint slot,
2385                                                    const JvmtiHeapwalkObject& obj) {
2386   if (is_basic_heap_walk()) {
2387     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2388                                            thread_tag,
2389                                            depth,
2390                                            method,
2391                                            slot,
2392                                            obj);
2393   } else {
2394     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2395                                               thread_tag,
2396                                               tid,
2397                                               depth,
2398                                               method,
2399                                               bci,
2400                                               slot,
2401                                               obj);
2402   }
2403 }
2404 
2405 // report an object referencing a class.
2406 inline bool CallbackInvoker::report_class_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2407   if (is_basic_heap_walk()) {
2408     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2409   } else {
2410     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2411   }
2412 }
2413 
2414 // report a class referencing its class loader.
2415 inline bool CallbackInvoker::report_class_loader_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2416   if (is_basic_heap_walk()) {
2417     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2418   } else {
2419     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2420   }
2421 }
2422 
2423 // report a class referencing its signers.
2424 inline bool CallbackInvoker::report_signers_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2425   if (is_basic_heap_walk()) {
2426     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2427   } else {
2428     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2429   }
2430 }
2431 
2432 // report a class referencing its protection domain..
2433 inline bool CallbackInvoker::report_protection_domain_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2434   if (is_basic_heap_walk()) {
2435     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2436   } else {
2437     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2438   }
2439 }
2440 
2441 // report a class referencing its superclass.
2442 inline bool CallbackInvoker::report_superclass_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2443   if (is_basic_heap_walk()) {
2444     // Send this to be consistent with past implementation
2445     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2446   } else {
2447     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2448   }
2449 }
2450 
2451 // report a class referencing one of its interfaces.
2452 inline bool CallbackInvoker::report_interface_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree) {
2453   if (is_basic_heap_walk()) {
2454     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2455   } else {
2456     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2457   }
2458 }
2459 
2460 // report a class referencing one of its static fields.
2461 inline bool CallbackInvoker::report_static_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) {
2462   if (is_basic_heap_walk()) {
2463     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2464   } else {
2465     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2466   }
2467 }
2468 
2469 // report an array referencing an element object
2470 inline bool CallbackInvoker::report_array_element_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) {
2471   if (is_basic_heap_walk()) {
2472     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2473   } else {
2474     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2475   }
2476 }
2477 
2478 // report an object referencing an instance field object
2479 inline bool CallbackInvoker::report_field_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint slot) {
2480   if (is_basic_heap_walk()) {
2481     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2482   } else {
2483     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2484   }
2485 }
2486 
2487 // report an array referencing an element object
2488 inline bool CallbackInvoker::report_constant_pool_reference(const JvmtiHeapwalkObject& referrer, const JvmtiHeapwalkObject& referree, jint index) {
2489   if (is_basic_heap_walk()) {
2490     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2491   } else {
2492     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2493   }
2494 }
2495 
2496 // A supporting closure used to process simple roots
2497 class SimpleRootsClosure : public OopClosure {
2498  private:
2499   jvmtiHeapReferenceKind _kind;
2500   bool _continue;
2501 
2502   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2503 
2504  public:
2505   void set_kind(jvmtiHeapReferenceKind kind) {
2506     _kind = kind;
2507     _continue = true;
2508   }
2509 
2510   inline bool stopped() {
2511     return !_continue;
2512   }
2513 
2514   void do_oop(oop* obj_p) {
2515     // iteration has terminated
2516     if (stopped()) {
2517       return;
2518     }
2519 
2520     oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
2521     // ignore null
2522     if (o == nullptr) {
2523       return;
2524     }
2525 
2526     assert(Universe::heap()->is_in(o), "should be impossible");
2527 
2528     jvmtiHeapReferenceKind kind = root_kind();
2529 
2530     // invoke the callback
2531     _continue = CallbackInvoker::report_simple_root(kind, o);
2532 
2533   }
2534   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2535 };
2536 
2537 // A supporting closure used to process JNI locals
2538 class JNILocalRootsClosure : public OopClosure {
2539  private:
2540   jlong _thread_tag;
2541   jlong _tid;
2542   jint _depth;
2543   jmethodID _method;
2544   bool _continue;
2545  public:
2546   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2547     _thread_tag = thread_tag;
2548     _tid = tid;
2549     _depth = depth;
2550     _method = method;
2551     _continue = true;
2552   }
2553 
2554   inline bool stopped() {
2555     return !_continue;
2556   }
2557 
2558   void do_oop(oop* obj_p) {
2559     // iteration has terminated
2560     if (stopped()) {
2561       return;
2562     }
2563 
2564     oop o = *obj_p;
2565     // ignore null
2566     if (o == nullptr) {
2567       return;
2568     }
2569 
2570     // invoke the callback
2571     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2572   }
2573   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2574 };
2575 
2576 // Helper class to collect/report stack references.
2577 class StackRefCollector {
2578 private:
2579   JvmtiTagMap* _tag_map;
2580   JNILocalRootsClosure* _blk;
2581   // java_thread is needed only to report JNI local on top native frame;
2582   // I.e. it's required only for platform/carrier threads or mounted virtual threads.
2583   JavaThread* _java_thread;
2584 
2585   oop _threadObj;
2586   jlong _thread_tag;
2587   jlong _tid;
2588 
2589   bool _is_top_frame;
2590   int _depth;
2591   frame* _last_entry_frame;
2592 
2593   bool report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset);
2594   bool report_native_stack_refs(jmethodID method);
2595 
2596 public:
2597   StackRefCollector(JvmtiTagMap* tag_map, JNILocalRootsClosure* blk, JavaThread* java_thread)
2598     : _tag_map(tag_map), _blk(blk), _java_thread(java_thread),
2599       _threadObj(nullptr), _thread_tag(0), _tid(0),
2600       _is_top_frame(true), _depth(0), _last_entry_frame(nullptr)
2601   {
2602   }
2603 
2604   bool set_thread(oop o);
2605   // Sets the thread and reports the reference to it with the specified kind.
2606   bool set_thread(jvmtiHeapReferenceKind kind, oop o);
2607 
2608   bool do_frame(vframe* vf);
2609   // Handles frames until vf->sender() is null.
2610   bool process_frames(vframe* vf);
2611 };
2612 
2613 bool StackRefCollector::set_thread(oop o) {
2614   _threadObj = o;
2615   _thread_tag = _tag_map->find(_threadObj);
2616   _tid = java_lang_Thread::thread_id(_threadObj);
2617 
2618   _is_top_frame = true;
2619   _depth = 0;
2620   _last_entry_frame = nullptr;
2621 
2622   return true;
2623 }
2624 
2625 bool StackRefCollector::set_thread(jvmtiHeapReferenceKind kind, oop o) {
2626   return set_thread(o)
2627          && CallbackInvoker::report_simple_root(kind, _threadObj);
2628 }
2629 
2630 bool StackRefCollector::report_java_stack_refs(StackValueCollection* values, jmethodID method, jlocation bci, jint slot_offset) {
2631   for (int index = 0; index < values->size(); index++) {
2632     if (values->at(index)->type() == T_OBJECT) {
2633       oop obj = values->obj_at(index)();
2634       if (obj == nullptr) {
2635         continue;
2636       }
2637       // stack reference
2638       if (!CallbackInvoker::report_stack_ref_root(_thread_tag, _tid, _depth, method,
2639                                                   bci, slot_offset + index, obj)) {
2640         return false;
2641       }
2642     }
2643   }
2644   return true;
2645 }
2646 
2647 bool StackRefCollector::report_native_stack_refs(jmethodID method) {
2648   _blk->set_context(_thread_tag, _tid, _depth, method);
2649   if (_is_top_frame) {
2650     // JNI locals for the top frame.
2651     if (_java_thread != nullptr) {
2652       _java_thread->active_handles()->oops_do(_blk);
2653       if (_blk->stopped()) {
2654         return false;
2655       }
2656     }
2657   } else {
2658     if (_last_entry_frame != nullptr) {
2659       // JNI locals for the entry frame.
2660       assert(_last_entry_frame->is_entry_frame(), "checking");
2661       _last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(_blk);
2662       if (_blk->stopped()) {
2663         return false;
2664       }
2665     }
2666   }
2667   return true;
2668 }
2669 
2670 bool StackRefCollector::do_frame(vframe* vf) {
2671   if (vf->is_java_frame()) {
2672     // java frame (interpreted, compiled, ...)
2673     javaVFrame* jvf = javaVFrame::cast(vf);
2674 
2675     jmethodID method = jvf->method()->jmethod_id();
2676 
2677     if (!(jvf->method()->is_native())) {
2678       jlocation bci = (jlocation)jvf->bci();
2679       StackValueCollection* locals = jvf->locals();
2680       if (!report_java_stack_refs(locals, method, bci, 0)) {
2681         return false;
2682       }
2683       if (!report_java_stack_refs(jvf->expressions(), method, bci, locals->size())) {
2684         return false;
2685       }
2686 
2687       // Follow oops from compiled nmethod.
2688       if (jvf->cb() != nullptr && jvf->cb()->is_nmethod()) {
2689         _blk->set_context(_thread_tag, _tid, _depth, method);
2690         // Need to apply load barriers for unmounted vthreads.
2691         nmethod* nm = jvf->cb()->as_nmethod();
2692         nm->run_nmethod_entry_barrier();
2693         nm->oops_do(_blk);
2694         if (_blk->stopped()) {
2695           return false;
2696         }
2697       }
2698     } else {
2699       // native frame
2700       if (!report_native_stack_refs(method)) {
2701         return false;
2702       }
2703     }
2704     _last_entry_frame = nullptr;
2705     _depth++;
2706   } else {
2707     // externalVFrame - for an entry frame then we report the JNI locals
2708     // when we find the corresponding javaVFrame
2709     frame* fr = vf->frame_pointer();
2710     assert(fr != nullptr, "sanity check");
2711     if (fr->is_entry_frame()) {
2712       _last_entry_frame = fr;
2713     }
2714   }
2715 
2716   _is_top_frame = false;
2717 
2718   return true;
2719 }
2720 
2721 bool StackRefCollector::process_frames(vframe* vf) {
2722   while (vf != nullptr) {
2723     if (!do_frame(vf)) {
2724       return false;
2725     }
2726     vf = vf->sender();
2727   }
2728   return true;
2729 }
2730 
2731 
2732 // A VM operation to iterate over objects that are reachable from
2733 // a set of roots or an initial object.
2734 //
2735 // For VM_HeapWalkOperation the set of roots used is :-
2736 //
2737 // - All JNI global references
2738 // - All inflated monitors
2739 // - All classes loaded by the boot class loader (or all classes
2740 //     in the event that class unloading is disabled)
2741 // - All java threads
2742 // - For each java thread then all locals and JNI local references
2743 //      on the thread's execution stack
2744 // - All visible/explainable objects from Universes::oops_do
2745 //
2746 class VM_HeapWalkOperation: public VM_Operation {
2747  private:
2748   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2749   JvmtiTagMap* _tag_map;
2750   Handle _initial_object;
2751   JvmtiHeapwalkVisitStack _visit_stack;
2752 
2753   // Dead object tags in JvmtiTagMap
2754   GrowableArray<jlong>* _dead_objects;
2755 
2756   bool _following_object_refs;                      // are we following object references
2757 
2758   bool _reporting_primitive_fields;                 // optional reporting
2759   bool _reporting_primitive_array_values;
2760   bool _reporting_string_values;
2761 
2762   // accessors
2763   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2764   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2765   Handle initial_object() const                    { return _initial_object; }
2766 
2767   bool is_following_references() const             { return _following_object_refs; }
2768 
2769   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2770   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2771   bool is_reporting_string_values() const          { return _reporting_string_values; }
2772 
2773   JvmtiHeapwalkVisitStack* visit_stack()           { return &_visit_stack; }
2774 
2775   // iterate over the various object types
2776   inline bool iterate_over_array(const JvmtiHeapwalkObject& o);
2777   inline bool iterate_over_flat_array(const JvmtiHeapwalkObject& o);
2778   inline bool iterate_over_type_array(const JvmtiHeapwalkObject& o);
2779   inline bool iterate_over_class(const JvmtiHeapwalkObject& o);
2780   inline bool iterate_over_object(const JvmtiHeapwalkObject& o);
2781 
2782   // root collection
2783   inline bool collect_simple_roots();
2784   inline bool collect_stack_roots();
2785   inline bool collect_stack_refs(JavaThread* java_thread, JNILocalRootsClosure* blk);
2786   inline bool collect_vthread_stack_refs(oop vt);
2787 
2788   // visit an object
2789   inline bool visit(const JvmtiHeapwalkObject& o);
2790 
2791  public:
2792   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2793                        Handle initial_object,
2794                        BasicHeapWalkContext callbacks,
2795                        const void* user_data,
2796                        GrowableArray<jlong>* objects);
2797 
2798   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2799                        Handle initial_object,
2800                        AdvancedHeapWalkContext callbacks,
2801                        const void* user_data,
2802                        GrowableArray<jlong>* objects);
2803 
2804   ~VM_HeapWalkOperation();
2805 
2806   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2807   void doit();
2808 };
2809 
2810 
2811 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2812                                            Handle initial_object,
2813                                            BasicHeapWalkContext callbacks,
2814                                            const void* user_data,
2815                                            GrowableArray<jlong>* objects) {
2816   _is_advanced_heap_walk = false;
2817   _tag_map = tag_map;
2818   _initial_object = initial_object;
2819   _following_object_refs = (callbacks.object_ref_callback() != nullptr);
2820   _reporting_primitive_fields = false;
2821   _reporting_primitive_array_values = false;
2822   _reporting_string_values = false;
2823   _dead_objects = objects;
2824   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, user_data, callbacks, &_visit_stack);
2825 }
2826 
2827 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2828                                            Handle initial_object,
2829                                            AdvancedHeapWalkContext callbacks,
2830                                            const void* user_data,
2831                                            GrowableArray<jlong>* objects) {
2832   _is_advanced_heap_walk = true;
2833   _tag_map = tag_map;
2834   _initial_object = initial_object;
2835   _following_object_refs = true;
2836   _reporting_primitive_fields = (callbacks.primitive_field_callback() != nullptr);;
2837   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != nullptr);;
2838   _reporting_string_values = (callbacks.string_primitive_value_callback() != nullptr);;
2839   _dead_objects = objects;
2840   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, user_data, callbacks, &_visit_stack);
2841 }
2842 
2843 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2844 }
2845 
2846 // an array references its class and has a reference to
2847 // each element in the array
2848 inline bool VM_HeapWalkOperation::iterate_over_array(const JvmtiHeapwalkObject& o) {
2849   assert(!o.is_flat(), "Array object cannot be flattened");
2850   objArrayOop array = objArrayOop(o.obj());
2851 
2852   // array reference to its class
2853   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2854   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2855     return false;
2856   }
2857 
2858   // iterate over the array and report each reference to a
2859   // non-null element
2860   for (int index=0; index<array->length(); index++) {
2861     oop elem = array->obj_at(index);
2862     if (elem == nullptr) {
2863       continue;
2864     }
2865 
2866     // report the array reference o[index] = elem
2867     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2868       return false;
2869     }
2870   }
2871   return true;
2872 }
2873 
2874 // similar to iterate_over_array(), but itrates over flat array
2875 inline bool VM_HeapWalkOperation::iterate_over_flat_array(const JvmtiHeapwalkObject& o) {
2876   assert(!o.is_flat(), "Array object cannot be flattened");
2877   flatArrayOop array = flatArrayOop(o.obj());
2878   FlatArrayKlass* faklass = FlatArrayKlass::cast(array->klass());
2879   InlineKlass* vk = InlineKlass::cast(faklass->element_klass());
2880   bool need_null_check = faklass->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
2881 
2882   // array reference to its class
2883   oop mirror = faklass->java_mirror();
2884   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2885     return false;
2886   }
2887 
2888   // iterate over the array and report each reference to a
2889   // non-null element
2890   for (int index = 0; index < array->length(); index++) {
2891     address addr = (address)array->value_at_addr(index, faklass->layout_helper());
2892 
2893     // check for null
2894     if (need_null_check) {
2895       if (vk->is_payload_marked_as_null(addr)) {
2896         continue;
2897       }
2898     }
2899 
2900     // offset in the array oop
2901     int offset = (int)(addr - cast_from_oop<address>(array));
2902     JvmtiHeapwalkObject elem(o.obj(), offset, vk, faklass->layout_kind());
2903 
2904     // report the array reference
2905     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2906       return false;
2907     }
2908   }
2909   return true;
2910 }
2911 
2912 // a type array references its class
2913 inline bool VM_HeapWalkOperation::iterate_over_type_array(const JvmtiHeapwalkObject& o) {
2914   assert(!o.is_flat(), "Array object cannot be flattened");
2915   Klass* k = o.klass();
2916   oop mirror = k->java_mirror();
2917   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2918     return false;
2919   }
2920 
2921   // report the array contents if required
2922   if (is_reporting_primitive_array_values()) {
2923     if (!CallbackInvoker::report_primitive_array_values(o)) {
2924       return false;
2925     }
2926   }
2927   return true;
2928 }
2929 
2930 #ifdef ASSERT
2931 // verify that a static oop field is in range
2932 static inline bool verify_static_oop(InstanceKlass* ik,
2933                                      oop mirror, int offset) {
2934   address obj_p = cast_from_oop<address>(mirror) + offset;
2935   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2936   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2937   assert(end >= start, "sanity check");
2938 
2939   if (obj_p >= start && obj_p < end) {
2940     return true;
2941   } else {
2942     return false;
2943   }
2944 }
2945 #endif // #ifdef ASSERT
2946 
2947 // a class references its super class, interfaces, class loader, ...
2948 // and finally its static fields
2949 inline bool VM_HeapWalkOperation::iterate_over_class(const JvmtiHeapwalkObject& o) {
2950   assert(!o.is_flat(), "Klass object cannot be flattened");
2951   Klass* klass = java_lang_Class::as_Klass(o.obj());
2952   int i;
2953 
2954   if (klass->is_instance_klass()) {
2955     InstanceKlass* ik = InstanceKlass::cast(klass);
2956 
2957     // Ignore the class if it hasn't been initialized yet
2958     if (!ik->is_linked()) {
2959       return true;
2960     }
2961 
2962     // get the java mirror
2963     oop mirror_oop = klass->java_mirror();
2964     JvmtiHeapwalkObject mirror(mirror_oop);
2965 
2966     // super (only if something more interesting than java.lang.Object)
2967     InstanceKlass* java_super = ik->java_super();
2968     if (java_super != nullptr && java_super != vmClasses::Object_klass()) {
2969       oop super = java_super->java_mirror();
2970       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2971         return false;
2972       }
2973     }
2974 
2975     // class loader
2976     oop cl = ik->class_loader();
2977     if (cl != nullptr) {
2978       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2979         return false;
2980       }
2981     }
2982 
2983     // protection domain
2984     oop pd = ik->protection_domain();
2985     if (pd != nullptr) {
2986       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2987         return false;
2988       }
2989     }
2990 
2991     // signers
2992     oop signers = ik->signers();
2993     if (signers != nullptr) {
2994       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2995         return false;
2996       }
2997     }
2998 
2999     // references from the constant pool
3000     {
3001       ConstantPool* pool = ik->constants();
3002       for (int i = 1; i < pool->length(); i++) {
3003         constantTag tag = pool->tag_at(i).value();
3004         if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) {
3005           oop entry;
3006           if (tag.is_string()) {
3007             entry = pool->resolved_string_at(i);
3008             // If the entry is non-null it is resolved.
3009             if (entry == nullptr) {
3010               continue;
3011             }
3012           } else if (tag.is_klass()) {
3013             entry = pool->resolved_klass_at(i)->java_mirror();
3014           } else {
3015             // Code generated by JIT compilers might not resolve constant
3016             // pool entries.  Treat them as resolved if they are loaded.
3017             assert(tag.is_unresolved_klass(), "must be");
3018             constantPoolHandle cp(Thread::current(), pool);
3019             Klass* klass = ConstantPool::klass_at_if_loaded(cp, i);
3020             if (klass == nullptr) {
3021               continue;
3022             }
3023             entry = klass->java_mirror();
3024           }
3025           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
3026             return false;
3027           }
3028         }
3029       }
3030     }
3031 
3032     // interfaces
3033     // (These will already have been reported as references from the constant pool
3034     //  but are specified by IterateOverReachableObjects and must be reported).
3035     Array<InstanceKlass*>* interfaces = ik->local_interfaces();
3036     for (i = 0; i < interfaces->length(); i++) {
3037       oop interf = interfaces->at(i)->java_mirror();
3038       if (interf == nullptr) {
3039         continue;
3040       }
3041       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
3042         return false;
3043       }
3044     }
3045 
3046     // iterate over the static fields
3047 
3048     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
3049     for (i=0; i<field_map->field_count(); i++) {
3050       ClassFieldDescriptor* field = field_map->field_at(i);
3051       char type = field->field_type();
3052       if (!is_primitive_field_type(type)) {
3053         oop fld_o = mirror_oop->obj_field(field->field_offset());
3054         assert(verify_static_oop(ik, mirror_oop, field->field_offset()), "sanity check");
3055         if (fld_o != nullptr) {
3056           int slot = field->field_index();
3057           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
3058             delete field_map;
3059             return false;
3060           }
3061         }
3062       } else {
3063          if (is_reporting_primitive_fields()) {
3064            address addr = cast_from_oop<address>(mirror_oop) + field->field_offset();
3065            int slot = field->field_index();
3066            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
3067              delete field_map;
3068              return false;
3069           }
3070         }
3071       }
3072     }
3073     delete field_map;
3074 
3075     return true;
3076   }
3077 
3078   return true;
3079 }
3080 
3081 // an object references a class and its instance fields
3082 // (static fields are ignored here as we report these as
3083 // references from the class).
3084 inline bool VM_HeapWalkOperation::iterate_over_object(const JvmtiHeapwalkObject& o) {
3085   // reference to the class
3086   if (!CallbackInvoker::report_class_reference(o, o.klass()->java_mirror())) {
3087     return false;
3088   }
3089 
3090   // iterate over instance fields
3091   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o.klass());
3092   for (int i=0; i<field_map->field_count(); i++) {
3093     ClassFieldDescriptor* field = field_map->field_at(i);
3094     char type = field->field_type();
3095     int slot = field->field_index();
3096     int field_offset = field->field_offset();
3097     if (o.is_flat()) {
3098       // the object is inlined, its fields are stored without the header
3099       field_offset += o.offset() - o.inline_klass()->payload_offset();
3100     }
3101     if (!is_primitive_field_type(type)) {
3102       if (field->is_flat()) {
3103         // check for possible nulls
3104         bool can_be_null = field->layout_kind() == LayoutKind::NULLABLE_ATOMIC_FLAT;
3105         if (can_be_null) {
3106           address payload = cast_from_oop<address>(o.obj()) + field_offset;
3107           if (field->inline_klass()->is_payload_marked_as_null(payload)) {
3108             continue;
3109           }
3110         }
3111         JvmtiHeapwalkObject field_obj(o.obj(), field_offset, field->inline_klass(), field->layout_kind());
3112         if (!CallbackInvoker::report_field_reference(o, field_obj, slot)) {
3113           return false;
3114         }
3115       } else {
3116         oop fld_o = o.obj()->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field_offset);
3117         // ignore any objects that aren't visible to profiler
3118         if (fld_o != nullptr) {
3119           assert(Universe::heap()->is_in(fld_o), "unsafe code should not have references to Klass* anymore");
3120           if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3121             return false;
3122           }
3123         }
3124       }
3125     } else {
3126       if (is_reporting_primitive_fields()) {
3127         // primitive instance field
3128         address addr = cast_from_oop<address>(o.obj()) + field_offset;
3129         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3130           return false;
3131         }
3132       }
3133     }
3134   }
3135 
3136   // if the object is a java.lang.String
3137   if (is_reporting_string_values() &&
3138       o.klass() == vmClasses::String_klass()) {
3139     if (!CallbackInvoker::report_string_value(o)) {
3140       return false;
3141     }
3142   }
3143   return true;
3144 }
3145 
3146 
3147 // Collects all simple (non-stack) roots except for threads;
3148 // threads are handled in collect_stack_roots() as an optimization.
3149 // if there's a heap root callback provided then the callback is
3150 // invoked for each simple root.
3151 // if an object reference callback is provided then all simple
3152 // roots are pushed onto the marking stack so that they can be
3153 // processed later
3154 //
3155 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3156   SimpleRootsClosure blk;
3157 
3158   // JNI globals
3159   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3160   JNIHandles::oops_do(&blk);
3161   if (blk.stopped()) {
3162     return false;
3163   }
3164 
3165   // Preloaded classes and loader from the system dictionary
3166   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3167   CLDToOopClosure cld_closure(&blk, false);
3168   ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
3169   if (blk.stopped()) {
3170     return false;
3171   }
3172 
3173   // threads are now handled in collect_stack_roots()
3174 
3175   // Other kinds of roots maintained by HotSpot
3176   // Many of these won't be visible but others (such as instances of important
3177   // exceptions) will be visible.
3178   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3179   Universe::vm_global()->oops_do(&blk);
3180   if (blk.stopped()) {
3181     return false;
3182   }
3183 
3184   return true;
3185 }
3186 
3187 // Reports the thread as JVMTI_HEAP_REFERENCE_THREAD,
3188 // walks the stack of the thread, finds all references (locals
3189 // and JNI calls) and reports these as stack references.
3190 inline bool VM_HeapWalkOperation::collect_stack_refs(JavaThread* java_thread,
3191                                                      JNILocalRootsClosure* blk)
3192 {
3193   oop threadObj = java_thread->threadObj();
3194   oop mounted_vt = java_thread->is_vthread_mounted() ? java_thread->vthread() : nullptr;
3195   if (mounted_vt != nullptr && !JvmtiEnvBase::is_vthread_alive(mounted_vt)) {
3196     mounted_vt = nullptr;
3197   }
3198   assert(threadObj != nullptr, "sanity check");
3199 
3200   StackRefCollector stack_collector(tag_map(), blk, java_thread);
3201 
3202   if (!java_thread->has_last_Java_frame()) {
3203     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
3204       return false;
3205     }
3206     // no last java frame but there may be JNI locals
3207     blk->set_context(_tag_map->find(threadObj), java_lang_Thread::thread_id(threadObj), 0, (jmethodID)nullptr);
3208     java_thread->active_handles()->oops_do(blk);
3209     return !blk->stopped();
3210   }
3211   // vframes are resource allocated
3212   Thread* current_thread = Thread::current();
3213   ResourceMark rm(current_thread);
3214   HandleMark hm(current_thread);
3215 
3216   RegisterMap reg_map(java_thread,
3217                       RegisterMap::UpdateMap::include,
3218                       RegisterMap::ProcessFrames::include,
3219                       RegisterMap::WalkContinuation::include);
3220 
3221   // first handle mounted vthread (if any)
3222   if (mounted_vt != nullptr) {
3223     frame f = java_thread->last_frame();
3224     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3225     // report virtual thread as JVMTI_HEAP_REFERENCE_OTHER
3226     if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_OTHER, mounted_vt)) {
3227       return false;
3228     }
3229     // split virtual thread and carrier thread stacks by vthread entry ("enterSpecial") frame,
3230     // consider vthread entry frame as the last vthread stack frame
3231     while (vf != nullptr) {
3232       if (!stack_collector.do_frame(vf)) {
3233         return false;
3234       }
3235       if (vf->is_vthread_entry()) {
3236         break;
3237       }
3238       vf = vf->sender();
3239     }
3240   }
3241   // Platform or carrier thread.
3242   vframe* vf = JvmtiEnvBase::get_cthread_last_java_vframe(java_thread, &reg_map);
3243   if (!stack_collector.set_thread(JVMTI_HEAP_REFERENCE_THREAD, threadObj)) {
3244     return false;
3245   }
3246   return stack_collector.process_frames(vf);
3247 }
3248 
3249 
3250 // Collects the simple roots for all threads and collects all
3251 // stack roots - for each thread it walks the execution
3252 // stack to find all references and local JNI refs.
3253 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3254   JNILocalRootsClosure blk;
3255   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
3256     oop threadObj = thread->threadObj();
3257     if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3258       if (!collect_stack_refs(thread, &blk)) {
3259         return false;
3260       }
3261     }
3262   }
3263   return true;
3264 }
3265 
3266 // Reports stack references for the unmounted virtual thread.
3267 inline bool VM_HeapWalkOperation::collect_vthread_stack_refs(oop vt) {
3268   if (!JvmtiEnvBase::is_vthread_alive(vt)) {
3269     return true;
3270   }
3271   ContinuationWrapper cont(java_lang_VirtualThread::continuation(vt));
3272   if (cont.is_empty()) {
3273     return true;
3274   }
3275   assert(!cont.is_mounted(), "sanity check");
3276 
3277   stackChunkOop chunk = cont.last_nonempty_chunk();
3278   if (chunk == nullptr || chunk->is_empty()) {
3279     return true;
3280   }
3281 
3282   // vframes are resource allocated
3283   Thread* current_thread = Thread::current();
3284   ResourceMark rm(current_thread);
3285   HandleMark hm(current_thread);
3286 
3287   RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include);
3288 
3289   JNILocalRootsClosure blk;
3290   // JavaThread is not required for unmounted virtual threads
3291   StackRefCollector stack_collector(tag_map(), &blk, nullptr);
3292   // reference to the vthread is already reported
3293   if (!stack_collector.set_thread(vt)) {
3294     return false;
3295   }
3296 
3297   frame fr = chunk->top_frame(&reg_map);
3298   vframe* vf = vframe::new_vframe(&fr, &reg_map, nullptr);
3299   return stack_collector.process_frames(vf);
3300 }
3301 
3302 // visit an object
3303 // first mark the object as visited
3304 // second get all the outbound references from this object (in other words, all
3305 // the objects referenced by this object).
3306 //
3307 bool VM_HeapWalkOperation::visit(const JvmtiHeapwalkObject& o) {
3308   // mark object as visited
3309   assert(!visit_stack()->is_visited(o), "can't visit same object more than once");
3310   visit_stack()->mark_visited(o);
3311 
3312   Klass* klass = o.klass();
3313   // instance
3314   if (klass->is_instance_klass()) {
3315     if (klass == vmClasses::Class_klass()) {
3316       assert(!o.is_flat(), "Class object cannot be flattened");
3317       if (!java_lang_Class::is_primitive(o.obj())) {
3318         // a java.lang.Class
3319         return iterate_over_class(o);
3320       }
3321     } else {
3322       // we report stack references only when initial object is not specified
3323       // (in the case we start from heap roots which include platform thread stack references)
3324       if (initial_object().is_null() && java_lang_VirtualThread::is_subclass(klass)) {
3325         assert(!o.is_flat(), "VirtualThread object cannot be flattened");
3326         if (!collect_vthread_stack_refs(o.obj())) {
3327           return false;
3328         }
3329       }
3330       return iterate_over_object(o);
3331     }
3332   }
3333 
3334   // flat object array
3335   if (klass->is_flatArray_klass()) {
3336       return iterate_over_flat_array(o);
3337   }
3338 
3339   // object array
3340   if (klass->is_objArray_klass()) {
3341     return iterate_over_array(o);
3342   }
3343 
3344   // type array
3345   if (klass->is_typeArray_klass()) {
3346     return iterate_over_type_array(o);
3347   }
3348 
3349   return true;
3350 }
3351 
3352 void VM_HeapWalkOperation::doit() {
3353   ResourceMark rm;
3354   ClassFieldMapCacheMark cm;
3355 
3356   JvmtiTagMap::check_hashmaps_for_heapwalk(_dead_objects);
3357 
3358   assert(visit_stack()->is_empty(), "visit stack must be empty");
3359 
3360   // the heap walk starts with an initial object or the heap roots
3361   if (initial_object().is_null()) {
3362     // can result in a big performance boost for an agent that is
3363     // focused on analyzing references in the thread stacks.
3364     if (!collect_stack_roots()) return;
3365 
3366     if (!collect_simple_roots()) return;
3367   } else {
3368     visit_stack()->push(initial_object()());
3369   }
3370 
3371   // object references required
3372   if (is_following_references()) {
3373 
3374     // visit each object until all reachable objects have been
3375     // visited or the callback asked to terminate the iteration.
3376     while (!visit_stack()->is_empty()) {
3377       const JvmtiHeapwalkObject o = visit_stack()->pop();
3378       if (!visit_stack()->is_visited(o)) {
3379         if (!visit(o)) {
3380           break;
3381         }
3382       }
3383     }
3384   }
3385 }
3386 
3387 // iterate over all objects that are reachable from a set of roots
3388 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3389                                                  jvmtiStackReferenceCallback stack_ref_callback,
3390                                                  jvmtiObjectReferenceCallback object_ref_callback,
3391                                                  const void* user_data) {
3392   // VTMS transitions must be disabled before the EscapeBarrier.
3393   JvmtiVTMSTransitionDisabler disabler;
3394 
3395   JavaThread* jt = JavaThread::current();
3396   EscapeBarrier eb(true, jt);
3397   eb.deoptimize_objects_all_threads();
3398   Arena dead_object_arena(mtServiceability);
3399   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3400 
3401   {
3402     MutexLocker ml(Heap_lock);
3403     BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3404     VM_HeapWalkOperation op(this, Handle(), context, user_data, &dead_objects);
3405     VMThread::execute(&op);
3406   }
3407   convert_flat_object_entries();
3408 
3409   // Post events outside of Heap_lock
3410   post_dead_objects(&dead_objects);
3411 }
3412 
3413 // iterate over all objects that are reachable from a given object
3414 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3415                                                              jvmtiObjectReferenceCallback object_ref_callback,
3416                                                              const void* user_data) {
3417   oop obj = JNIHandles::resolve(object);
3418   Handle initial_object(Thread::current(), obj);
3419 
3420   Arena dead_object_arena(mtServiceability);
3421   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3422 
3423   JvmtiVTMSTransitionDisabler disabler;
3424 
3425   {
3426     MutexLocker ml(Heap_lock);
3427     BasicHeapWalkContext context(nullptr, nullptr, object_ref_callback);
3428     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3429     VMThread::execute(&op);
3430   }
3431   convert_flat_object_entries();
3432 
3433   // Post events outside of Heap_lock
3434   post_dead_objects(&dead_objects);
3435 }
3436 
3437 // follow references from an initial object or the GC roots
3438 void JvmtiTagMap::follow_references(jint heap_filter,
3439                                     Klass* klass,
3440                                     jobject object,
3441                                     const jvmtiHeapCallbacks* callbacks,
3442                                     const void* user_data)
3443 {
3444   // VTMS transitions must be disabled before the EscapeBarrier.
3445   JvmtiVTMSTransitionDisabler disabler;
3446 
3447   oop obj = JNIHandles::resolve(object);
3448   JavaThread* jt = JavaThread::current();
3449   Handle initial_object(jt, obj);
3450   // EA based optimizations that are tagged or reachable from initial_object are already reverted.
3451   EscapeBarrier eb(initial_object.is_null() &&
3452                    !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED),
3453                    jt);
3454   eb.deoptimize_objects_all_threads();
3455 
3456   Arena dead_object_arena(mtServiceability);
3457   GrowableArray<jlong> dead_objects(&dead_object_arena, 10, 0, 0);
3458 
3459   {
3460     MutexLocker ml(Heap_lock);
3461     AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3462     VM_HeapWalkOperation op(this, initial_object, context, user_data, &dead_objects);
3463     VMThread::execute(&op);
3464   }
3465   convert_flat_object_entries();
3466 
3467   // Post events outside of Heap_lock
3468   post_dead_objects(&dead_objects);
3469 }
3470 
3471 // Verify gc_notification follows set_needs_cleaning.
3472 DEBUG_ONLY(static bool notified_needs_cleaning = false;)
3473 
3474 void JvmtiTagMap::set_needs_cleaning() {
3475   assert(SafepointSynchronize::is_at_safepoint(), "called in gc pause");
3476   assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3477   // Can't assert !notified_needs_cleaning; a partial GC might be upgraded
3478   // to a full GC and do this twice without intervening gc_notification.
3479   DEBUG_ONLY(notified_needs_cleaning = true;)
3480 
3481   JvmtiEnvIterator it;
3482   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3483     JvmtiTagMap* tag_map = env->tag_map_acquire();
3484     if (tag_map != nullptr) {
3485       tag_map->_needs_cleaning = !tag_map->is_empty();
3486     }
3487   }
3488 }
3489 
3490 void JvmtiTagMap::gc_notification(size_t num_dead_entries) {
3491   assert(notified_needs_cleaning, "missing GC notification");
3492   DEBUG_ONLY(notified_needs_cleaning = false;)
3493 
3494   // Notify ServiceThread if there's work to do.
3495   {
3496     MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
3497     _has_object_free_events = (num_dead_entries != 0);
3498     if (_has_object_free_events) ml.notify_all();
3499   }
3500 
3501   // If no dead entries then cancel cleaning requests.
3502   if (num_dead_entries == 0) {
3503     JvmtiEnvIterator it;
3504     for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3505       JvmtiTagMap* tag_map = env->tag_map_acquire();
3506       if (tag_map != nullptr) {
3507         MutexLocker ml (tag_map->lock(), Mutex::_no_safepoint_check_flag);
3508         tag_map->_needs_cleaning = false;
3509       }
3510     }
3511   }
3512 }
3513 
3514 // Used by ServiceThread to discover there is work to do.
3515 bool JvmtiTagMap::has_object_free_events_and_reset() {
3516   assert_lock_strong(Service_lock);
3517   bool result = _has_object_free_events;
3518   _has_object_free_events = false;
3519   return result;
3520 }
3521 
3522 // Used by ServiceThread to clean up tagmaps.
3523 void JvmtiTagMap::flush_all_object_free_events() {
3524   JavaThread* thread = JavaThread::current();
3525   JvmtiEnvIterator it;
3526   for (JvmtiEnv* env = it.first(); env != nullptr; env = it.next(env)) {
3527     JvmtiTagMap* tag_map = env->tag_map_acquire();
3528     if (tag_map != nullptr) {
3529       tag_map->flush_object_free_events();
3530       ThreadBlockInVM tbiv(thread); // Be safepoint-polite while looping.
3531     }
3532   }
3533 }