1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/bytecode.inline.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.hpp" 55 #include "oops/fieldStreams.inline.hpp" 56 #include "oops/method.hpp" 57 #include "oops/objArrayKlass.hpp" 58 #include "oops/objArrayOop.inline.hpp" 59 #include "oops/oop.inline.hpp" 60 #include "oops/inlineKlass.inline.hpp" 61 #include "oops/typeArrayOop.inline.hpp" 62 #include "oops/verifyOopClosure.hpp" 63 #include "prims/jvmtiDeferredUpdates.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "prims/jvmtiThreadState.hpp" 66 #include "prims/methodHandles.hpp" 67 #include "prims/vectorSupport.hpp" 68 #include "runtime/atomic.hpp" 69 #include "runtime/basicLock.inline.hpp" 70 #include "runtime/continuation.hpp" 71 #include "runtime/continuationEntry.inline.hpp" 72 #include "runtime/deoptimization.hpp" 73 #include "runtime/escapeBarrier.hpp" 74 #include "runtime/fieldDescriptor.hpp" 75 #include "runtime/fieldDescriptor.inline.hpp" 76 #include "runtime/frame.inline.hpp" 77 #include "runtime/handles.inline.hpp" 78 #include "runtime/interfaceSupport.inline.hpp" 79 #include "runtime/javaThread.hpp" 80 #include "runtime/jniHandles.inline.hpp" 81 #include "runtime/keepStackGCProcessed.hpp" 82 #include "runtime/lightweightSynchronizer.hpp" 83 #include "runtime/lockStack.inline.hpp" 84 #include "runtime/objectMonitor.inline.hpp" 85 #include "runtime/osThread.hpp" 86 #include "runtime/safepointVerifiers.hpp" 87 #include "runtime/sharedRuntime.hpp" 88 #include "runtime/signature.hpp" 89 #include "runtime/stackFrameStream.inline.hpp" 90 #include "runtime/stackValue.hpp" 91 #include "runtime/stackWatermarkSet.hpp" 92 #include "runtime/stubRoutines.hpp" 93 #include "runtime/synchronizer.inline.hpp" 94 #include "runtime/threadSMR.hpp" 95 #include "runtime/threadWXSetters.inline.hpp" 96 #include "runtime/vframe.hpp" 97 #include "runtime/vframeArray.hpp" 98 #include "runtime/vframe_hp.hpp" 99 #include "runtime/vmOperations.hpp" 100 #include "utilities/checkedCast.hpp" 101 #include "utilities/events.hpp" 102 #include "utilities/growableArray.hpp" 103 #include "utilities/macros.hpp" 104 #include "utilities/preserveException.hpp" 105 #include "utilities/xmlstream.hpp" 106 #if INCLUDE_JFR 107 #include "jfr/jfr.inline.hpp" 108 #include "jfr/jfrEvents.hpp" 109 #include "jfr/metadata/jfrSerializer.hpp" 110 #endif 111 112 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 113 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 114 bool DeoptimizationScope::_committing_in_progress = false; 115 116 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 117 DEBUG_ONLY(_deopted = false;) 118 119 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 120 // If there is nothing to deopt _required_gen is the same as comitted. 121 _required_gen = DeoptimizationScope::_committed_deopt_gen; 122 } 123 124 DeoptimizationScope::~DeoptimizationScope() { 125 assert(_deopted, "Deopt not executed"); 126 } 127 128 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 129 if (!nm->can_be_deoptimized()) { 130 return; 131 } 132 133 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 134 135 // If it's already marked but we still need it to be deopted. 136 if (nm->is_marked_for_deoptimization()) { 137 dependent(nm); 138 return; 139 } 140 141 nmethod::DeoptimizationStatus status = 142 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 143 Atomic::store(&nm->_deoptimization_status, status); 144 145 // Make sure active is not committed 146 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 147 assert(nm->_deoptimization_generation == 0, "Is already marked"); 148 149 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 150 _required_gen = DeoptimizationScope::_active_deopt_gen; 151 } 152 153 void DeoptimizationScope::dependent(nmethod* nm) { 154 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 155 156 // A method marked by someone else may have a _required_gen lower than what we marked with. 157 // Therefore only store it if it's higher than _required_gen. 158 if (_required_gen < nm->_deoptimization_generation) { 159 _required_gen = nm->_deoptimization_generation; 160 } 161 } 162 163 void DeoptimizationScope::deoptimize_marked() { 164 assert(!_deopted, "Already deopted"); 165 166 // We are not alive yet. 167 if (!Universe::is_fully_initialized()) { 168 DEBUG_ONLY(_deopted = true;) 169 return; 170 } 171 172 // Safepoints are a special case, handled here. 173 if (SafepointSynchronize::is_at_safepoint()) { 174 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 175 DeoptimizationScope::_active_deopt_gen++; 176 Deoptimization::deoptimize_all_marked(); 177 DEBUG_ONLY(_deopted = true;) 178 return; 179 } 180 181 uint64_t comitting = 0; 182 bool wait = false; 183 while (true) { 184 { 185 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 186 187 // First we check if we or someone else already deopted the gen we want. 188 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 189 DEBUG_ONLY(_deopted = true;) 190 return; 191 } 192 if (!_committing_in_progress) { 193 // The version we are about to commit. 194 comitting = DeoptimizationScope::_active_deopt_gen; 195 // Make sure new marks use a higher gen. 196 DeoptimizationScope::_active_deopt_gen++; 197 _committing_in_progress = true; 198 wait = false; 199 } else { 200 // Another thread is handshaking and committing a gen. 201 wait = true; 202 } 203 } 204 if (wait) { 205 // Wait and let the concurrent handshake be performed. 206 ThreadBlockInVM tbivm(JavaThread::current()); 207 os::naked_yield(); 208 } else { 209 // Performs the handshake. 210 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 211 DEBUG_ONLY(_deopted = true;) 212 { 213 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 214 215 // Make sure that committed doesn't go backwards. 216 // Should only happen if we did a deopt during a safepoint above. 217 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 218 DeoptimizationScope::_committed_deopt_gen = comitting; 219 } 220 _committing_in_progress = false; 221 222 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 223 224 return; 225 } 226 } 227 } 228 } 229 230 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 231 int caller_adjustment, 232 int caller_actual_parameters, 233 int number_of_frames, 234 intptr_t* frame_sizes, 235 address* frame_pcs, 236 BasicType return_type, 237 int exec_mode) { 238 _size_of_deoptimized_frame = size_of_deoptimized_frame; 239 _caller_adjustment = caller_adjustment; 240 _caller_actual_parameters = caller_actual_parameters; 241 _number_of_frames = number_of_frames; 242 _frame_sizes = frame_sizes; 243 _frame_pcs = frame_pcs; 244 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 245 _return_type = return_type; 246 _initial_info = 0; 247 // PD (x86 only) 248 _counter_temp = 0; 249 _unpack_kind = exec_mode; 250 _sender_sp_temp = 0; 251 252 _total_frame_sizes = size_of_frames(); 253 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 254 } 255 256 Deoptimization::UnrollBlock::~UnrollBlock() { 257 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 258 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 259 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 260 } 261 262 int Deoptimization::UnrollBlock::size_of_frames() const { 263 // Account first for the adjustment of the initial frame 264 intptr_t result = _caller_adjustment; 265 for (int index = 0; index < number_of_frames(); index++) { 266 result += frame_sizes()[index]; 267 } 268 return checked_cast<int>(result); 269 } 270 271 void Deoptimization::UnrollBlock::print() { 272 ResourceMark rm; 273 stringStream st; 274 st.print_cr("UnrollBlock"); 275 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 276 st.print( " frame_sizes: "); 277 for (int index = 0; index < number_of_frames(); index++) { 278 st.print("%zd ", frame_sizes()[index]); 279 } 280 st.cr(); 281 tty->print_raw(st.freeze()); 282 } 283 284 // In order to make fetch_unroll_info work properly with escape 285 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 286 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 287 // which is called from the method fetch_unroll_info_helper below. 288 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 289 // fetch_unroll_info() is called at the beginning of the deoptimization 290 // handler. Note this fact before we start generating temporary frames 291 // that can confuse an asynchronous stack walker. This counter is 292 // decremented at the end of unpack_frames(). 293 current->inc_in_deopt_handler(); 294 295 if (exec_mode == Unpack_exception) { 296 // When we get here, a callee has thrown an exception into a deoptimized 297 // frame. That throw might have deferred stack watermark checking until 298 // after unwinding. So we deal with such deferred requests here. 299 StackWatermarkSet::after_unwind(current); 300 } 301 302 return fetch_unroll_info_helper(current, exec_mode); 303 JRT_END 304 305 #if COMPILER2_OR_JVMCI 306 307 static Klass* get_refined_array_klass(Klass* k, frame* fr, RegisterMap* map, ObjectValue* sv, TRAPS) { 308 // If it's an array, get the properties 309 if (k->is_array_klass() && !k->is_typeArray_klass()) { 310 assert(!k->is_refArray_klass() && !k->is_flatArray_klass(), "Unexpected refined klass"); 311 nmethod* nm = fr->cb()->as_nmethod_or_null(); 312 if (nm->is_compiled_by_c2()) { 313 assert(sv->has_properties(), "Property information is missing"); 314 ArrayKlass::ArrayProperties props = static_cast<ArrayKlass::ArrayProperties>(StackValue::create_stack_value(fr, map, sv->properties())->get_jint()); 315 k = ObjArrayKlass::cast(k)->klass_with_properties(props, THREAD); 316 } else { 317 // TODO Graal needs to be fixed. Just go with the default properties for now 318 k = ObjArrayKlass::cast(k)->klass_with_properties(ArrayKlass::ArrayProperties::DEFAULT, THREAD); 319 } 320 } 321 return k; 322 } 323 324 // print information about reallocated objects 325 static void print_objects(JavaThread* deoptee_thread, frame* deoptee, RegisterMap* map, 326 GrowableArray<ScopeValue*>* objects, bool realloc_failures, TRAPS) { 327 ResourceMark rm; 328 stringStream st; // change to logStream with logging 329 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 330 fieldDescriptor fd; 331 332 for (int i = 0; i < objects->length(); i++) { 333 ObjectValue* sv = (ObjectValue*) objects->at(i); 334 Handle obj = sv->value(); 335 336 if (obj.is_null()) { 337 st.print_cr(" nullptr"); 338 continue; 339 } 340 341 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 342 k = get_refined_array_klass(k, deoptee, map, sv, THREAD); 343 344 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 345 k->print_value_on(&st); 346 st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize); 347 348 if (Verbose && k != nullptr) { 349 k->oop_print_on(obj(), &st); 350 } 351 } 352 tty->print_raw(st.freeze()); 353 } 354 355 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 356 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 357 bool& deoptimized_objects) { 358 bool realloc_failures = false; 359 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 360 361 JavaThread* deoptee_thread = chunk->at(0)->thread(); 362 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 363 "a frame can only be deoptimized by the owner thread"); 364 365 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 366 367 // The flag return_oop() indicates call sites which return oop 368 // in compiled code. Such sites include java method calls, 369 // runtime calls (for example, used to allocate new objects/arrays 370 // on slow code path) and any other calls generated in compiled code. 371 // It is not guaranteed that we can get such information here only 372 // by analyzing bytecode in deoptimized frames. This is why this flag 373 // is set during method compilation (see Compile::Process_OopMap_Node()). 374 // If the previous frame was popped or if we are dispatching an exception, 375 // we don't have an oop result. 376 ScopeDesc* scope = chunk->at(0)->scope(); 377 bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 378 // In case of the return of multiple values, we must take care 379 // of all oop return values. 380 GrowableArray<Handle> return_oops; 381 InlineKlass* vk = nullptr; 382 if (save_oop_result && scope->return_scalarized()) { 383 vk = InlineKlass::returned_inline_klass(map); 384 if (vk != nullptr) { 385 vk->save_oop_fields(map, return_oops); 386 save_oop_result = false; 387 } 388 } 389 if (save_oop_result) { 390 // Reallocation may trigger GC. If deoptimization happened on return from 391 // call which returns oop we need to save it since it is not in oopmap. 392 oop result = deoptee.saved_oop_result(&map); 393 assert(oopDesc::is_oop_or_null(result), "must be oop"); 394 return_oops.push(Handle(thread, result)); 395 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 396 if (TraceDeoptimization) { 397 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 398 tty->cr(); 399 } 400 } 401 if (objects != nullptr || vk != nullptr) { 402 if (exec_mode == Deoptimization::Unpack_none) { 403 assert(thread->thread_state() == _thread_in_vm, "assumption"); 404 JavaThread* THREAD = thread; // For exception macros. 405 // Clear pending OOM if reallocation fails and return true indicating allocation failure 406 if (vk != nullptr) { 407 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, CHECK_AND_CLEAR_(true)); 408 } 409 if (objects != nullptr) { 410 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 411 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 412 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 413 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, CHECK_AND_CLEAR_(true)); 414 } 415 deoptimized_objects = true; 416 } else { 417 JavaThread* current = thread; // For JRT_BLOCK 418 JRT_BLOCK 419 if (vk != nullptr) { 420 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, THREAD); 421 } 422 if (objects != nullptr) { 423 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 424 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 425 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 426 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, THREAD); 427 } 428 JRT_END 429 } 430 if (TraceDeoptimization && objects != nullptr) { 431 print_objects(deoptee_thread, &deoptee, &map, objects, realloc_failures, thread); 432 } 433 } 434 if (save_oop_result || vk != nullptr) { 435 // Restore result. 436 assert(return_oops.length() == 1, "no inline type"); 437 deoptee.set_saved_oop_result(&map, return_oops.pop()()); 438 } 439 return realloc_failures; 440 } 441 442 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 443 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 444 JavaThread* deoptee_thread = chunk->at(0)->thread(); 445 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 446 assert(thread == Thread::current(), "should be"); 447 HandleMark hm(thread); 448 #ifndef PRODUCT 449 bool first = true; 450 #endif // !PRODUCT 451 // Start locking from outermost/oldest frame 452 for (int i = (chunk->length() - 1); i >= 0; i--) { 453 compiledVFrame* cvf = chunk->at(i); 454 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 455 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 456 if (monitors->is_nonempty()) { 457 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 458 exec_mode, realloc_failures); 459 deoptimized_objects = deoptimized_objects || relocked; 460 #ifndef PRODUCT 461 if (PrintDeoptimizationDetails) { 462 ResourceMark rm; 463 stringStream st; 464 for (int j = 0; j < monitors->length(); j++) { 465 MonitorInfo* mi = monitors->at(j); 466 if (mi->eliminated()) { 467 if (first) { 468 first = false; 469 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 470 } 471 if (exec_mode == Deoptimization::Unpack_none) { 472 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 473 if (monitor != nullptr && monitor->object() == mi->owner()) { 474 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 475 continue; 476 } 477 } 478 if (mi->owner_is_scalar_replaced()) { 479 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 480 st.print_cr(" failed reallocation for klass %s", k->external_name()); 481 } else { 482 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 483 } 484 } 485 } 486 tty->print_raw(st.freeze()); 487 } 488 #endif // !PRODUCT 489 } 490 } 491 } 492 493 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 494 // The given vframes cover one physical frame. 495 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 496 bool& realloc_failures) { 497 frame deoptee = chunk->at(0)->fr(); 498 JavaThread* deoptee_thread = chunk->at(0)->thread(); 499 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 500 RegisterMap map(chunk->at(0)->register_map()); 501 bool deoptimized_objects = false; 502 503 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 504 505 // Reallocate the non-escaping objects and restore their fields. 506 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 507 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 508 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 509 } 510 511 // MonitorInfo structures used in eliminate_locks are not GC safe. 512 NoSafepointVerifier no_safepoint; 513 514 // Now relock objects if synchronization on them was eliminated. 515 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 516 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 517 } 518 return deoptimized_objects; 519 } 520 #endif // COMPILER2_OR_JVMCI 521 522 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 523 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 524 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 525 // When we get here we are about to unwind the deoptee frame. In order to 526 // catch not yet safe to use frames, the following stack watermark barrier 527 // poll will make such frames safe to use. 528 StackWatermarkSet::before_unwind(current); 529 530 // Note: there is a safepoint safety issue here. No matter whether we enter 531 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 532 // the vframeArray is created. 533 // 534 535 // Allocate our special deoptimization ResourceMark 536 DeoptResourceMark* dmark = new DeoptResourceMark(current); 537 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 538 current->set_deopt_mark(dmark); 539 540 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 541 RegisterMap map(current, 542 RegisterMap::UpdateMap::include, 543 RegisterMap::ProcessFrames::include, 544 RegisterMap::WalkContinuation::skip); 545 RegisterMap dummy_map(current, 546 RegisterMap::UpdateMap::skip, 547 RegisterMap::ProcessFrames::include, 548 RegisterMap::WalkContinuation::skip); 549 // Now get the deoptee with a valid map 550 frame deoptee = stub_frame.sender(&map); 551 // Set the deoptee nmethod 552 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 553 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 554 current->set_deopt_compiled_method(nm); 555 556 if (VerifyStack) { 557 current->validate_frame_layout(); 558 } 559 560 // Create a growable array of VFrames where each VFrame represents an inlined 561 // Java frame. This storage is allocated with the usual system arena. 562 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 563 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 564 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 565 while (!vf->is_top()) { 566 assert(vf->is_compiled_frame(), "Wrong frame type"); 567 chunk->push(compiledVFrame::cast(vf)); 568 vf = vf->sender(); 569 } 570 assert(vf->is_compiled_frame(), "Wrong frame type"); 571 chunk->push(compiledVFrame::cast(vf)); 572 573 bool realloc_failures = false; 574 575 #if COMPILER2_OR_JVMCI 576 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 577 578 // Reallocate the non-escaping objects and restore their fields. Then 579 // relock objects if synchronization on them was eliminated. 580 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 581 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 582 bool unused; 583 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 584 } 585 #endif // COMPILER2_OR_JVMCI 586 587 // Ensure that no safepoint is taken after pointers have been stored 588 // in fields of rematerialized objects. If a safepoint occurs from here on 589 // out the java state residing in the vframeArray will be missed. 590 // Locks may be rebaised in a safepoint. 591 NoSafepointVerifier no_safepoint; 592 593 #if COMPILER2_OR_JVMCI 594 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 595 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 596 bool unused = false; 597 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 598 } 599 #endif // COMPILER2_OR_JVMCI 600 601 ScopeDesc* trap_scope = chunk->at(0)->scope(); 602 Handle exceptionObject; 603 if (trap_scope->rethrow_exception()) { 604 #ifndef PRODUCT 605 if (PrintDeoptimizationDetails) { 606 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 607 } 608 #endif // !PRODUCT 609 610 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 611 guarantee(expressions != nullptr && expressions->length() == 1, "should have only exception on stack"); 612 guarantee(exec_mode != Unpack_exception, "rethrow_exception set with Unpack_exception"); 613 ScopeValue* topOfStack = expressions->top(); 614 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 615 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 616 } 617 618 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 619 #if COMPILER2_OR_JVMCI 620 if (realloc_failures) { 621 // This destroys all ScopedValue bindings. 622 current->clear_scopedValueBindings(); 623 pop_frames_failed_reallocs(current, array); 624 } 625 #endif 626 627 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 628 current->set_vframe_array_head(array); 629 630 // Now that the vframeArray has been created if we have any deferred local writes 631 // added by jvmti then we can free up that structure as the data is now in the 632 // vframeArray 633 634 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 635 636 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 637 CodeBlob* cb = stub_frame.cb(); 638 // Verify we have the right vframeArray 639 assert(cb->frame_size() >= 0, "Unexpected frame size"); 640 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 641 642 // If the deopt call site is a MethodHandle invoke call site we have 643 // to adjust the unpack_sp. 644 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 645 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 646 unpack_sp = deoptee.unextended_sp(); 647 648 #ifdef ASSERT 649 assert(cb->is_deoptimization_stub() || 650 cb->is_uncommon_trap_stub() || 651 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 652 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 653 "unexpected code blob: %s", cb->name()); 654 #endif 655 656 // This is a guarantee instead of an assert because if vframe doesn't match 657 // we will unpack the wrong deoptimized frame and wind up in strange places 658 // where it will be very difficult to figure out what went wrong. Better 659 // to die an early death here than some very obscure death later when the 660 // trail is cold. 661 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 662 663 int number_of_frames = array->frames(); 664 665 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 666 // virtual activation, which is the reverse of the elements in the vframes array. 667 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 668 // +1 because we always have an interpreter return address for the final slot. 669 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 670 int popframe_extra_args = 0; 671 // Create an interpreter return address for the stub to use as its return 672 // address so the skeletal frames are perfectly walkable 673 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 674 675 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 676 // activation be put back on the expression stack of the caller for reexecution 677 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 678 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 679 } 680 681 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 682 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 683 // than simply use array->sender.pc(). This requires us to walk the current set of frames 684 // 685 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 686 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 687 688 // It's possible that the number of parameters at the call site is 689 // different than number of arguments in the callee when method 690 // handles are used. If the caller is interpreted get the real 691 // value so that the proper amount of space can be added to it's 692 // frame. 693 bool caller_was_method_handle = false; 694 if (deopt_sender.is_interpreted_frame()) { 695 methodHandle method(current, deopt_sender.interpreter_frame_method()); 696 Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci()); 697 if (cur.has_member_arg()) { 698 // This should cover all real-world cases. One exception is a pathological chain of 699 // MH.linkToXXX() linker calls, which only trusted code could do anyway. To handle that case, we 700 // would need to get the size from the resolved method entry. Another exception would 701 // be an invokedynamic with an adapter that is really a MethodHandle linker. 702 caller_was_method_handle = true; 703 } 704 } 705 706 // 707 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 708 // frame_sizes/frame_pcs[1] next oldest frame (int) 709 // frame_sizes/frame_pcs[n] youngest frame (int) 710 // 711 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 712 // owns the space for the return address to it's caller). Confusing ain't it. 713 // 714 // The vframe array can address vframes with indices running from 715 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 716 // When we create the skeletal frames we need the oldest frame to be in the zero slot 717 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 718 // so things look a little strange in this loop. 719 // 720 int callee_parameters = 0; 721 int callee_locals = 0; 722 for (int index = 0; index < array->frames(); index++ ) { 723 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 724 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 725 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 726 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 727 callee_locals, 728 index == 0, 729 popframe_extra_args); 730 // This pc doesn't have to be perfect just good enough to identify the frame 731 // as interpreted so the skeleton frame will be walkable 732 // The correct pc will be set when the skeleton frame is completely filled out 733 // The final pc we store in the loop is wrong and will be overwritten below 734 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 735 736 callee_parameters = array->element(index)->method()->size_of_parameters(); 737 callee_locals = array->element(index)->method()->max_locals(); 738 popframe_extra_args = 0; 739 } 740 741 // Compute whether the root vframe returns a float or double value. 742 BasicType return_type; 743 { 744 methodHandle method(current, array->element(0)->method()); 745 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 746 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 747 } 748 749 // Compute information for handling adapters and adjusting the frame size of the caller. 750 int caller_adjustment = 0; 751 752 // Compute the amount the oldest interpreter frame will have to adjust 753 // its caller's stack by. If the caller is a compiled frame then 754 // we pretend that the callee has no parameters so that the 755 // extension counts for the full amount of locals and not just 756 // locals-parms. This is because without a c2i adapter the parm 757 // area as created by the compiled frame will not be usable by 758 // the interpreter. (Depending on the calling convention there 759 // may not even be enough space). 760 761 // QQQ I'd rather see this pushed down into last_frame_adjust 762 // and have it take the sender (aka caller). 763 764 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 765 caller_adjustment = last_frame_adjust(0, callee_locals); 766 } else if (callee_locals > callee_parameters) { 767 // The caller frame may need extending to accommodate 768 // non-parameter locals of the first unpacked interpreted frame. 769 // Compute that adjustment. 770 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 771 } 772 773 // If the sender is deoptimized we must retrieve the address of the handler 774 // since the frame will "magically" show the original pc before the deopt 775 // and we'd undo the deopt. 776 777 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 778 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 779 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 780 } 781 782 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 783 784 #if INCLUDE_JVMCI 785 if (exceptionObject() != nullptr) { 786 current->set_exception_oop(exceptionObject()); 787 exec_mode = Unpack_exception; 788 assert(array->element(0)->rethrow_exception(), "must be"); 789 } 790 #endif 791 792 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 793 assert(current->has_pending_exception(), "should have thrown OOME"); 794 current->set_exception_oop(current->pending_exception()); 795 current->clear_pending_exception(); 796 exec_mode = Unpack_exception; 797 } 798 799 #if INCLUDE_JVMCI 800 if (current->frames_to_pop_failed_realloc() > 0) { 801 current->set_pending_monitorenter(false); 802 } 803 #endif 804 805 int caller_actual_parameters = -1; // value not used except for interpreted frames, see below 806 if (deopt_sender.is_interpreted_frame()) { 807 caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0); 808 } 809 810 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 811 caller_adjustment * BytesPerWord, 812 caller_actual_parameters, 813 number_of_frames, 814 frame_sizes, 815 frame_pcs, 816 return_type, 817 exec_mode); 818 // On some platforms, we need a way to pass some platform dependent 819 // information to the unpacking code so the skeletal frames come out 820 // correct (initial fp value, unextended sp, ...) 821 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 822 823 if (array->frames() > 1) { 824 if (VerifyStack && TraceDeoptimization) { 825 tty->print_cr("Deoptimizing method containing inlining"); 826 } 827 } 828 829 array->set_unroll_block(info); 830 return info; 831 } 832 833 // Called to cleanup deoptimization data structures in normal case 834 // after unpacking to stack and when stack overflow error occurs 835 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 836 vframeArray *array) { 837 838 // Get array if coming from exception 839 if (array == nullptr) { 840 array = thread->vframe_array_head(); 841 } 842 thread->set_vframe_array_head(nullptr); 843 844 // Free the previous UnrollBlock 845 vframeArray* old_array = thread->vframe_array_last(); 846 thread->set_vframe_array_last(array); 847 848 if (old_array != nullptr) { 849 UnrollBlock* old_info = old_array->unroll_block(); 850 old_array->set_unroll_block(nullptr); 851 delete old_info; 852 delete old_array; 853 } 854 855 // Deallocate any resource creating in this routine and any ResourceObjs allocated 856 // inside the vframeArray (StackValueCollections) 857 858 delete thread->deopt_mark(); 859 thread->set_deopt_mark(nullptr); 860 thread->set_deopt_compiled_method(nullptr); 861 862 863 if (JvmtiExport::can_pop_frame()) { 864 // Regardless of whether we entered this routine with the pending 865 // popframe condition bit set, we should always clear it now 866 thread->clear_popframe_condition(); 867 } 868 869 // unpack_frames() is called at the end of the deoptimization handler 870 // and (in C2) at the end of the uncommon trap handler. Note this fact 871 // so that an asynchronous stack walker can work again. This counter is 872 // incremented at the beginning of fetch_unroll_info() and (in C2) at 873 // the beginning of uncommon_trap(). 874 thread->dec_in_deopt_handler(); 875 } 876 877 // Moved from cpu directories because none of the cpus has callee save values. 878 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 879 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 880 881 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 882 // the days we had adapter frames. When we deoptimize a situation where a 883 // compiled caller calls a compiled caller will have registers it expects 884 // to survive the call to the callee. If we deoptimize the callee the only 885 // way we can restore these registers is to have the oldest interpreter 886 // frame that we create restore these values. That is what this routine 887 // will accomplish. 888 889 // At the moment we have modified c2 to not have any callee save registers 890 // so this problem does not exist and this routine is just a place holder. 891 892 assert(f->is_interpreted_frame(), "must be interpreted"); 893 } 894 895 #ifndef PRODUCT 896 #ifdef ASSERT 897 // Return true if the execution after the provided bytecode continues at the 898 // next bytecode in the code. This is not the case for gotos, returns, and 899 // throws. 900 static bool falls_through(Bytecodes::Code bc) { 901 switch (bc) { 902 case Bytecodes::_goto: 903 case Bytecodes::_goto_w: 904 case Bytecodes::_athrow: 905 case Bytecodes::_areturn: 906 case Bytecodes::_dreturn: 907 case Bytecodes::_freturn: 908 case Bytecodes::_ireturn: 909 case Bytecodes::_lreturn: 910 case Bytecodes::_jsr: 911 case Bytecodes::_ret: 912 case Bytecodes::_return: 913 case Bytecodes::_lookupswitch: 914 case Bytecodes::_tableswitch: 915 return false; 916 default: 917 return true; 918 } 919 } 920 #endif 921 #endif 922 923 // Return BasicType of value being returned 924 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 925 assert(thread == JavaThread::current(), "pre-condition"); 926 927 // We are already active in the special DeoptResourceMark any ResourceObj's we 928 // allocate will be freed at the end of the routine. 929 930 // JRT_LEAF methods don't normally allocate handles and there is a 931 // NoHandleMark to enforce that. It is actually safe to use Handles 932 // in a JRT_LEAF method, and sometimes desirable, but to do so we 933 // must use ResetNoHandleMark to bypass the NoHandleMark, and 934 // then use a HandleMark to ensure any Handles we do create are 935 // cleaned up in this scope. 936 ResetNoHandleMark rnhm; 937 HandleMark hm(thread); 938 939 frame stub_frame = thread->last_frame(); 940 941 Continuation::notify_deopt(thread, stub_frame.sp()); 942 943 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 944 // must point to the vframeArray for the unpack frame. 945 vframeArray* array = thread->vframe_array_head(); 946 UnrollBlock* info = array->unroll_block(); 947 948 // We set the last_Java frame. But the stack isn't really parsable here. So we 949 // clear it to make sure JFR understands not to try and walk stacks from events 950 // in here. 951 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 952 thread->frame_anchor()->set_last_Java_sp(nullptr); 953 954 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 955 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 956 957 thread->frame_anchor()->set_last_Java_sp(sp); 958 959 BasicType bt = info->return_type(); 960 961 // If we have an exception pending, claim that the return type is an oop 962 // so the deopt_blob does not overwrite the exception_oop. 963 964 if (exec_mode == Unpack_exception) 965 bt = T_OBJECT; 966 967 // Cleanup thread deopt data 968 cleanup_deopt_info(thread, array); 969 970 #ifndef PRODUCT 971 if (VerifyStack) { 972 ResourceMark res_mark; 973 // Clear pending exception to not break verification code (restored afterwards) 974 PreserveExceptionMark pm(thread); 975 976 thread->validate_frame_layout(); 977 978 // Verify that the just-unpacked frames match the interpreter's 979 // notions of expression stack and locals 980 vframeArray* cur_array = thread->vframe_array_last(); 981 RegisterMap rm(thread, 982 RegisterMap::UpdateMap::skip, 983 RegisterMap::ProcessFrames::include, 984 RegisterMap::WalkContinuation::skip); 985 rm.set_include_argument_oops(false); 986 int callee_size_of_parameters = 0; 987 for (int frame_idx = 0; frame_idx < cur_array->frames(); frame_idx++) { 988 bool is_top_frame = (frame_idx == 0); 989 vframeArrayElement* el = cur_array->element(frame_idx); 990 frame* iframe = el->iframe(); 991 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 992 methodHandle mh(thread, iframe->interpreter_frame_method()); 993 bool reexecute = el->should_reexecute(); 994 995 int cur_invoke_parameter_size = 0; 996 int top_frame_expression_stack_adjustment = 0; 997 int max_bci = mh->code_size(); 998 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 999 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 1000 Bytecodes::Code cur_code = str.next(); 1001 1002 if (!reexecute && !Bytecodes::is_invoke(cur_code)) { 1003 // We can only compute OopMaps for the before state, so we need to roll forward 1004 // to the next bytecode. 1005 assert(is_top_frame, "must be"); 1006 assert(falls_through(cur_code), "must be"); 1007 assert(cur_code != Bytecodes::_illegal, "illegal bytecode"); 1008 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 1009 1010 // Need to subtract off the size of the result type of 1011 // the bytecode because this is not described in the 1012 // debug info but returned to the interpreter in the TOS 1013 // caching register 1014 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 1015 if (bytecode_result_type != T_ILLEGAL) { 1016 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 1017 } 1018 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 1019 1020 cur_code = str.next(); 1021 // Reflect the fact that we have rolled forward and now need 1022 // top_frame_expression_stack_adjustment 1023 reexecute = true; 1024 } 1025 1026 assert(cur_code != Bytecodes::_illegal, "illegal bytecode"); 1027 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 1028 1029 // Get the oop map for this bci 1030 InterpreterOopMap mask; 1031 OopMapCache::compute_one_oop_map(mh, str.bci(), &mask); 1032 // Check to see if we can grab the number of outgoing arguments 1033 // at an uncommon trap for an invoke (where the compiler 1034 // generates debug info before the invoke has executed) 1035 if (Bytecodes::is_invoke(cur_code)) { 1036 Bytecode_invoke invoke(mh, str.bci()); 1037 cur_invoke_parameter_size = invoke.size_of_parameters(); 1038 if (!is_top_frame && invoke.has_member_arg()) { 1039 callee_size_of_parameters++; 1040 } 1041 } 1042 1043 // Verify stack depth and oops in frame 1044 auto match = [&]() { 1045 int iframe_expr_ssize = iframe->interpreter_frame_expression_stack_size(); 1046 #if INCLUDE_JVMCI 1047 if (is_top_frame && el->rethrow_exception()) { 1048 return iframe_expr_ssize == 1; 1049 } 1050 #endif 1051 // This should only be needed for C1 1052 if (is_top_frame && exec_mode == Unpack_exception && iframe_expr_ssize == 0) { 1053 return true; 1054 } 1055 if (reexecute) { 1056 int expr_ssize_before = iframe_expr_ssize + top_frame_expression_stack_adjustment; 1057 int oopmap_expr_invoke_ssize = mask.expression_stack_size() + cur_invoke_parameter_size; 1058 return expr_ssize_before == oopmap_expr_invoke_ssize; 1059 } else { 1060 int oopmap_expr_callee_ssize = mask.expression_stack_size() + callee_size_of_parameters; 1061 return iframe_expr_ssize == oopmap_expr_callee_ssize; 1062 } 1063 }; 1064 if (!match()) { 1065 // Print out some information that will help us debug the problem 1066 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 1067 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", frame_idx, cur_array->frames() - 1); 1068 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1069 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1070 iframe->interpreter_frame_expression_stack_size()); 1071 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1072 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1073 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1074 tty->print_cr(" exec_mode = %d", exec_mode); 1075 tty->print_cr(" original should_reexecute = %s", el->should_reexecute() ? "true" : "false"); 1076 tty->print_cr(" reexecute = %s%s", reexecute ? "true" : "false", 1077 (reexecute != el->should_reexecute()) ? " (changed)" : ""); 1078 #if INCLUDE_JVMCI 1079 tty->print_cr(" rethrow_exception = %s", el->rethrow_exception() ? "true" : "false"); 1080 #endif 1081 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1082 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1083 tty->print_cr(" Interpreted frames:"); 1084 for (int k = 0; k < cur_array->frames(); k++) { 1085 vframeArrayElement* el = cur_array->element(k); 1086 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1087 } 1088 cur_array->print_on_2(tty); 1089 guarantee(false, "wrong number of expression stack elements during deopt"); 1090 } 1091 VerifyOopClosure verify; 1092 iframe->oops_interpreted_do(&verify, &rm, false); 1093 callee_size_of_parameters = mh->size_of_parameters(); 1094 } 1095 } 1096 #endif // !PRODUCT 1097 1098 return bt; 1099 JRT_END 1100 1101 class DeoptimizeMarkedHandshakeClosure : public HandshakeClosure { 1102 public: 1103 DeoptimizeMarkedHandshakeClosure() : HandshakeClosure("Deoptimize") {} 1104 void do_thread(Thread* thread) { 1105 JavaThread* jt = JavaThread::cast(thread); 1106 jt->deoptimize_marked_methods(); 1107 } 1108 }; 1109 1110 void Deoptimization::deoptimize_all_marked() { 1111 ResourceMark rm; 1112 1113 // Make the dependent methods not entrant 1114 CodeCache::make_marked_nmethods_deoptimized(); 1115 1116 DeoptimizeMarkedHandshakeClosure deopt; 1117 if (SafepointSynchronize::is_at_safepoint()) { 1118 Threads::java_threads_do(&deopt); 1119 } else { 1120 Handshake::execute(&deopt); 1121 } 1122 } 1123 1124 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1125 = Deoptimization::Action_reinterpret; 1126 1127 #if INCLUDE_JVMCI 1128 template<typename CacheType> 1129 class BoxCacheBase : public CHeapObj<mtCompiler> { 1130 protected: 1131 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1132 ResourceMark rm(thread); 1133 char* klass_name_str = klass_name->as_C_string(); 1134 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle()); 1135 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1136 if (!ik->is_in_error_state()) { 1137 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1138 CacheType::compute_offsets(ik); 1139 } 1140 return ik; 1141 } 1142 }; 1143 1144 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1145 PrimitiveType _low; 1146 PrimitiveType _high; 1147 jobject _cache; 1148 protected: 1149 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1150 BoxCache(Thread* thread) { 1151 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1152 if (ik->is_in_error_state()) { 1153 _low = 1; 1154 _high = 0; 1155 _cache = nullptr; 1156 } else { 1157 objArrayOop cache = CacheType::cache(ik); 1158 assert(cache->length() > 0, "Empty cache"); 1159 _low = BoxType::value(cache->obj_at(0)); 1160 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1161 _cache = JNIHandles::make_global(Handle(thread, cache)); 1162 } 1163 } 1164 ~BoxCache() { 1165 JNIHandles::destroy_global(_cache); 1166 } 1167 public: 1168 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1169 if (_singleton == nullptr) { 1170 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1171 if (!Atomic::replace_if_null(&_singleton, s)) { 1172 delete s; 1173 } 1174 } 1175 return _singleton; 1176 } 1177 oop lookup(PrimitiveType value) { 1178 if (_low <= value && value <= _high) { 1179 int offset = checked_cast<int>(value - _low); 1180 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1181 } 1182 return nullptr; 1183 } 1184 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1185 if (_cache == nullptr) { 1186 cache_init_error = true; 1187 return nullptr; 1188 } 1189 // Have to cast to avoid little/big-endian problems. 1190 if (sizeof(PrimitiveType) > sizeof(jint)) { 1191 jlong value = (jlong)raw_value; 1192 return lookup(value); 1193 } 1194 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1195 return lookup(value); 1196 } 1197 }; 1198 1199 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1200 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1201 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1202 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1203 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1204 1205 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1206 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1207 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1208 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1209 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1210 1211 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1212 jobject _true_cache; 1213 jobject _false_cache; 1214 protected: 1215 static BooleanBoxCache *_singleton; 1216 BooleanBoxCache(Thread *thread) { 1217 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1218 if (ik->is_in_error_state()) { 1219 _true_cache = nullptr; 1220 _false_cache = nullptr; 1221 } else { 1222 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1223 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1224 } 1225 } 1226 ~BooleanBoxCache() { 1227 JNIHandles::destroy_global(_true_cache); 1228 JNIHandles::destroy_global(_false_cache); 1229 } 1230 public: 1231 static BooleanBoxCache* singleton(Thread* thread) { 1232 if (_singleton == nullptr) { 1233 BooleanBoxCache* s = new BooleanBoxCache(thread); 1234 if (!Atomic::replace_if_null(&_singleton, s)) { 1235 delete s; 1236 } 1237 } 1238 return _singleton; 1239 } 1240 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1241 if (_true_cache == nullptr) { 1242 cache_in_error = true; 1243 return nullptr; 1244 } 1245 // Have to cast to avoid little/big-endian problems. 1246 jboolean value = (jboolean)*((jint*)&raw_value); 1247 return lookup(value); 1248 } 1249 oop lookup(jboolean value) { 1250 if (value != 0) { 1251 return JNIHandles::resolve_non_null(_true_cache); 1252 } 1253 return JNIHandles::resolve_non_null(_false_cache); 1254 } 1255 }; 1256 1257 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1258 1259 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1260 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1261 BasicType box_type = vmClasses::box_klass_type(k); 1262 if (box_type != T_OBJECT) { 1263 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1264 switch(box_type) { 1265 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1266 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1267 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1268 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1269 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1270 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1271 default:; 1272 } 1273 } 1274 return nullptr; 1275 } 1276 #endif // INCLUDE_JVMCI 1277 1278 #if COMPILER2_OR_JVMCI 1279 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1280 Handle pending_exception(THREAD, thread->pending_exception()); 1281 const char* exception_file = thread->exception_file(); 1282 int exception_line = thread->exception_line(); 1283 thread->clear_pending_exception(); 1284 1285 bool failures = false; 1286 1287 for (int i = 0; i < objects->length(); i++) { 1288 assert(objects->at(i)->is_object(), "invalid debug information"); 1289 ObjectValue* sv = (ObjectValue*) objects->at(i); 1290 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1291 k = get_refined_array_klass(k, fr, reg_map, sv, THREAD); 1292 1293 // Check if the object may be null and has an additional null_marker input that needs 1294 // to be checked before using the field values. Skip re-allocation if it is null. 1295 if (k->is_inline_klass() && sv->has_properties()) { 1296 jint null_marker = StackValue::create_stack_value(fr, reg_map, sv->properties())->get_jint(); 1297 if (null_marker == 0) { 1298 continue; 1299 } 1300 } 1301 1302 oop obj = nullptr; 1303 bool cache_init_error = false; 1304 if (k->is_instance_klass()) { 1305 #if INCLUDE_JVMCI 1306 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1307 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1308 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1309 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1310 if (obj != nullptr) { 1311 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1312 abv->set_cached(true); 1313 } else if (cache_init_error) { 1314 // Results in an OOME which is valid (as opposed to a class initialization error) 1315 // and is fine for the rare case a cache initialization failing. 1316 failures = true; 1317 } 1318 } 1319 #endif // INCLUDE_JVMCI 1320 1321 InstanceKlass* ik = InstanceKlass::cast(k); 1322 if (obj == nullptr && !cache_init_error) { 1323 InternalOOMEMark iom(THREAD); 1324 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1325 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1326 } else { 1327 obj = ik->allocate_instance(THREAD); 1328 } 1329 } 1330 } else if (k->is_flatArray_klass()) { 1331 FlatArrayKlass* ak = FlatArrayKlass::cast(k); 1332 // Inline type array must be zeroed because not all memory is reassigned 1333 obj = ak->allocate_instance(sv->field_size(), ak->properties(), THREAD); 1334 } else if (k->is_typeArray_klass()) { 1335 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1336 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1337 int len = sv->field_size() / type2size[ak->element_type()]; 1338 InternalOOMEMark iom(THREAD); 1339 obj = ak->allocate_instance(len, THREAD); 1340 } else if (k->is_refArray_klass()) { 1341 RefArrayKlass* ak = RefArrayKlass::cast(k); 1342 InternalOOMEMark iom(THREAD); 1343 obj = ak->allocate_instance(sv->field_size(), ak->properties(), THREAD); 1344 } 1345 1346 if (obj == nullptr) { 1347 failures = true; 1348 } 1349 1350 assert(sv->value().is_null(), "redundant reallocation"); 1351 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1352 CLEAR_PENDING_EXCEPTION; 1353 sv->set_value(obj); 1354 } 1355 1356 if (failures) { 1357 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1358 } else if (pending_exception.not_null()) { 1359 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1360 } 1361 1362 return failures; 1363 } 1364 1365 // We're deoptimizing at the return of a call, inline type fields are 1366 // in registers. When we go back to the interpreter, it will expect a 1367 // reference to an inline type instance. Allocate and initialize it from 1368 // the register values here. 1369 bool Deoptimization::realloc_inline_type_result(InlineKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) { 1370 oop new_vt = vk->realloc_result(map, return_oops, THREAD); 1371 if (new_vt == nullptr) { 1372 CLEAR_PENDING_EXCEPTION; 1373 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true); 1374 } 1375 return_oops.clear(); 1376 return_oops.push(Handle(THREAD, new_vt)); 1377 return false; 1378 } 1379 1380 #if INCLUDE_JVMCI 1381 /** 1382 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1383 * we need to somehow be able to recover the actual kind to be able to write the correct 1384 * amount of bytes. 1385 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1386 * the entries at index n + 1 to n + i are 'markers'. 1387 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1388 * expected form of the array would be: 1389 * 1390 * {b0, b1, b2, b3, INT, marker, b6, b7} 1391 * 1392 * Thus, in order to get back the size of the entry, we simply need to count the number 1393 * of marked entries 1394 * 1395 * @param virtualArray the virtualized byte array 1396 * @param i index of the virtual entry we are recovering 1397 * @return The number of bytes the entry spans 1398 */ 1399 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1400 int index = i; 1401 while (++index < virtualArray->field_size() && 1402 virtualArray->field_at(index)->is_marker()) {} 1403 return index - i; 1404 } 1405 1406 /** 1407 * If there was a guarantee for byte array to always start aligned to a long, we could 1408 * do a simple check on the parity of the index. Unfortunately, that is not always the 1409 * case. Thus, we check alignment of the actual address we are writing to. 1410 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1411 * write a long to index 3. 1412 */ 1413 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1414 jbyte* res = obj->byte_at_addr(index); 1415 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1416 return res; 1417 } 1418 1419 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1420 switch (byte_count) { 1421 case 1: 1422 obj->byte_at_put(index, (jbyte) value->get_jint()); 1423 break; 1424 case 2: 1425 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1426 break; 1427 case 4: 1428 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1429 break; 1430 case 8: 1431 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1432 break; 1433 default: 1434 ShouldNotReachHere(); 1435 } 1436 } 1437 #endif // INCLUDE_JVMCI 1438 1439 1440 // restore elements of an eliminated type array 1441 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1442 int index = 0; 1443 1444 for (int i = 0; i < sv->field_size(); i++) { 1445 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1446 switch(type) { 1447 case T_LONG: case T_DOUBLE: { 1448 assert(value->type() == T_INT, "Agreement."); 1449 StackValue* low = 1450 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1451 #ifdef _LP64 1452 jlong res = (jlong)low->get_intptr(); 1453 #else 1454 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1455 #endif 1456 obj->long_at_put(index, res); 1457 break; 1458 } 1459 1460 case T_INT: case T_FLOAT: { // 4 bytes. 1461 assert(value->type() == T_INT, "Agreement."); 1462 bool big_value = false; 1463 if (i + 1 < sv->field_size() && type == T_INT) { 1464 if (sv->field_at(i)->is_location()) { 1465 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1466 if (type == Location::dbl || type == Location::lng) { 1467 big_value = true; 1468 } 1469 } else if (sv->field_at(i)->is_constant_int()) { 1470 ScopeValue* next_scope_field = sv->field_at(i + 1); 1471 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1472 big_value = true; 1473 } 1474 } 1475 } 1476 1477 if (big_value) { 1478 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1479 #ifdef _LP64 1480 jlong res = (jlong)low->get_intptr(); 1481 #else 1482 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1483 #endif 1484 obj->int_at_put(index, *(jint*)&res); 1485 obj->int_at_put(++index, *((jint*)&res + 1)); 1486 } else { 1487 obj->int_at_put(index, value->get_jint()); 1488 } 1489 break; 1490 } 1491 1492 case T_SHORT: 1493 assert(value->type() == T_INT, "Agreement."); 1494 obj->short_at_put(index, (jshort)value->get_jint()); 1495 break; 1496 1497 case T_CHAR: 1498 assert(value->type() == T_INT, "Agreement."); 1499 obj->char_at_put(index, (jchar)value->get_jint()); 1500 break; 1501 1502 case T_BYTE: { 1503 assert(value->type() == T_INT, "Agreement."); 1504 #if INCLUDE_JVMCI 1505 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1506 int byte_count = count_number_of_bytes_for_entry(sv, i); 1507 byte_array_put(obj, value, index, byte_count); 1508 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1509 i += byte_count - 1; // Balance the loop counter. 1510 index += byte_count; 1511 // index has been updated so continue at top of loop 1512 continue; 1513 #else 1514 obj->byte_at_put(index, (jbyte)value->get_jint()); 1515 break; 1516 #endif // INCLUDE_JVMCI 1517 } 1518 1519 case T_BOOLEAN: { 1520 assert(value->type() == T_INT, "Agreement."); 1521 obj->bool_at_put(index, (jboolean)value->get_jint()); 1522 break; 1523 } 1524 1525 default: 1526 ShouldNotReachHere(); 1527 } 1528 index++; 1529 } 1530 } 1531 1532 // restore fields of an eliminated object array 1533 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1534 for (int i = 0; i < sv->field_size(); i++) { 1535 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1536 assert(value->type() == T_OBJECT, "object element expected"); 1537 obj->obj_at_put(i, value->get_obj()()); 1538 } 1539 } 1540 1541 class ReassignedField { 1542 public: 1543 int _offset; 1544 BasicType _type; 1545 InstanceKlass* _klass; 1546 bool _is_flat; 1547 bool _is_null_free; 1548 public: 1549 ReassignedField() : _offset(0), _type(T_ILLEGAL), _klass(nullptr), _is_flat(false), _is_null_free(false) { } 1550 }; 1551 1552 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned 1553 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) { 1554 InstanceKlass* super = klass->superklass(); 1555 if (super != nullptr) { 1556 get_reassigned_fields(super, fields, is_jvmci); 1557 } 1558 for (AllFieldStream fs(klass); !fs.done(); fs.next()) { 1559 if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) { 1560 ReassignedField field; 1561 field._offset = fs.offset(); 1562 field._type = Signature::basic_type(fs.signature()); 1563 if (fs.is_flat()) { 1564 field._is_flat = true; 1565 field._is_null_free = fs.is_null_free_inline_type(); 1566 // Resolve klass of flat inline type field 1567 field._klass = InlineKlass::cast(klass->get_inline_type_field_klass(fs.index())); 1568 } 1569 fields->append(field); 1570 } 1571 } 1572 return fields; 1573 } 1574 1575 // Restore fields of an eliminated instance object employing the same field order used by the 1576 // compiler when it scalarizes an object at safepoints. 1577 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci, int base_offset, TRAPS) { 1578 GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci); 1579 for (int i = 0; i < fields->length(); i++) { 1580 BasicType type = fields->at(i)._type; 1581 int offset = base_offset + fields->at(i)._offset; 1582 // Check for flat inline type field before accessing the ScopeValue because it might not have any fields 1583 if (fields->at(i)._is_flat) { 1584 // Recursively re-assign flat inline type fields 1585 InstanceKlass* vk = fields->at(i)._klass; 1586 assert(vk != nullptr, "must be resolved"); 1587 offset -= InlineKlass::cast(vk)->payload_offset(); // Adjust offset to omit oop header 1588 svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, is_jvmci, offset, CHECK_0); 1589 if (!fields->at(i)._is_null_free) { 1590 ScopeValue* scope_field = sv->field_at(svIndex); 1591 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1592 int nm_offset = offset + InlineKlass::cast(vk)->null_marker_offset(); 1593 obj->bool_field_put(nm_offset, value->get_jint() & 1); 1594 svIndex++; 1595 } 1596 continue; // Continue because we don't need to increment svIndex 1597 } 1598 1599 ScopeValue* scope_field = sv->field_at(svIndex); 1600 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1601 switch (type) { 1602 case T_OBJECT: 1603 case T_ARRAY: 1604 assert(value->type() == T_OBJECT, "Agreement."); 1605 obj->obj_field_put(offset, value->get_obj()()); 1606 break; 1607 1608 case T_INT: case T_FLOAT: { // 4 bytes. 1609 assert(value->type() == T_INT, "Agreement."); 1610 bool big_value = false; 1611 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1612 if (scope_field->is_location()) { 1613 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1614 if (type == Location::dbl || type == Location::lng) { 1615 big_value = true; 1616 } 1617 } 1618 if (scope_field->is_constant_int()) { 1619 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1620 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1621 big_value = true; 1622 } 1623 } 1624 } 1625 1626 if (big_value) { 1627 i++; 1628 assert(i < fields->length(), "second T_INT field needed"); 1629 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1630 } else { 1631 obj->int_field_put(offset, value->get_jint()); 1632 break; 1633 } 1634 } 1635 /* no break */ 1636 1637 case T_LONG: case T_DOUBLE: { 1638 assert(value->type() == T_INT, "Agreement."); 1639 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1640 #ifdef _LP64 1641 jlong res = (jlong)low->get_intptr(); 1642 #else 1643 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1644 #endif 1645 obj->long_field_put(offset, res); 1646 break; 1647 } 1648 1649 case T_SHORT: 1650 assert(value->type() == T_INT, "Agreement."); 1651 obj->short_field_put(offset, (jshort)value->get_jint()); 1652 break; 1653 1654 case T_CHAR: 1655 assert(value->type() == T_INT, "Agreement."); 1656 obj->char_field_put(offset, (jchar)value->get_jint()); 1657 break; 1658 1659 case T_BYTE: 1660 assert(value->type() == T_INT, "Agreement."); 1661 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1662 break; 1663 1664 case T_BOOLEAN: 1665 assert(value->type() == T_INT, "Agreement."); 1666 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1667 break; 1668 1669 default: 1670 ShouldNotReachHere(); 1671 } 1672 svIndex++; 1673 } 1674 1675 return svIndex; 1676 } 1677 1678 // restore fields of an eliminated inline type array 1679 void Deoptimization::reassign_flat_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, flatArrayOop obj, FlatArrayKlass* vak, bool is_jvmci, TRAPS) { 1680 InlineKlass* vk = vak->element_klass(); 1681 assert(vk->maybe_flat_in_array(), "should only be used for flat inline type arrays"); 1682 // Adjust offset to omit oop header 1683 int base_offset = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT) - InlineKlass::cast(vk)->payload_offset(); 1684 // Initialize all elements of the flat inline type array 1685 for (int i = 0; i < sv->field_size(); i++) { 1686 ScopeValue* val = sv->field_at(i); 1687 int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper())); 1688 reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, is_jvmci, offset, CHECK); 1689 } 1690 } 1691 1692 // restore fields of all eliminated objects and arrays 1693 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci, TRAPS) { 1694 for (int i = 0; i < objects->length(); i++) { 1695 assert(objects->at(i)->is_object(), "invalid debug information"); 1696 ObjectValue* sv = (ObjectValue*) objects->at(i); 1697 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1698 k = get_refined_array_klass(k, fr, reg_map, sv, THREAD); 1699 1700 Handle obj = sv->value(); 1701 assert(obj.not_null() || realloc_failures || sv->has_properties(), "reallocation was missed"); 1702 #ifndef PRODUCT 1703 if (PrintDeoptimizationDetails) { 1704 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1705 } 1706 #endif // !PRODUCT 1707 1708 if (obj.is_null()) { 1709 continue; 1710 } 1711 1712 #if INCLUDE_JVMCI 1713 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1714 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1715 continue; 1716 } 1717 #endif // INCLUDE_JVMCI 1718 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1719 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1720 ScopeValue* payload = sv->field_at(0); 1721 if (payload->is_location() && 1722 payload->as_LocationValue()->location().type() == Location::vector) { 1723 #ifndef PRODUCT 1724 if (PrintDeoptimizationDetails) { 1725 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1726 if (Verbose) { 1727 Handle obj = sv->value(); 1728 k->oop_print_on(obj(), tty); 1729 } 1730 } 1731 #endif // !PRODUCT 1732 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1733 } 1734 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1735 // which could be restored after vector object allocation. 1736 } 1737 if (k->is_instance_klass()) { 1738 InstanceKlass* ik = InstanceKlass::cast(k); 1739 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci, 0, CHECK); 1740 } else if (k->is_flatArray_klass()) { 1741 FlatArrayKlass* vak = FlatArrayKlass::cast(k); 1742 reassign_flat_array_elements(fr, reg_map, sv, (flatArrayOop) obj(), vak, is_jvmci, CHECK); 1743 } else if (k->is_typeArray_klass()) { 1744 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1745 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1746 } else if (k->is_refArray_klass()) { 1747 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1748 } 1749 } 1750 // These objects may escape when we return to Interpreter after deoptimization. 1751 // We need barrier so that stores that initialize these objects can't be reordered 1752 // with subsequent stores that make these objects accessible by other threads. 1753 OrderAccess::storestore(); 1754 } 1755 1756 1757 // relock objects for which synchronization was eliminated 1758 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1759 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1760 bool relocked_objects = false; 1761 for (int i = 0; i < monitors->length(); i++) { 1762 MonitorInfo* mon_info = monitors->at(i); 1763 if (mon_info->eliminated()) { 1764 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1765 relocked_objects = true; 1766 if (!mon_info->owner_is_scalar_replaced()) { 1767 Handle obj(thread, mon_info->owner()); 1768 markWord mark = obj->mark(); 1769 if (exec_mode == Unpack_none) { 1770 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1771 // With exec_mode == Unpack_none obj may be thread local and locked in 1772 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1773 markWord dmw = mark.displaced_mark_helper(); 1774 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1775 obj->set_mark(dmw); 1776 } 1777 if (mark.has_monitor()) { 1778 // defer relocking if the deoptee thread is currently waiting for obj 1779 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1780 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1781 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1782 if (LockingMode == LM_LEGACY) { 1783 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1784 } else if (UseObjectMonitorTable) { 1785 mon_info->lock()->clear_object_monitor_cache(); 1786 } 1787 #ifdef ASSERT 1788 else { 1789 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1790 mon_info->lock()->set_bad_metadata_deopt(); 1791 } 1792 #endif 1793 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1794 continue; 1795 } 1796 } 1797 } 1798 BasicLock* lock = mon_info->lock(); 1799 if (LockingMode == LM_LIGHTWEIGHT) { 1800 // We have lost information about the correct state of the lock stack. 1801 // Entering may create an invalid lock stack. Inflate the lock if it 1802 // was fast_locked to restore the valid lock stack. 1803 if (UseObjectMonitorTable) { 1804 // UseObjectMonitorTable expects the BasicLock cache to be either a 1805 // valid ObjectMonitor* or nullptr. Right now it is garbage, set it 1806 // to nullptr. 1807 lock->clear_object_monitor_cache(); 1808 } 1809 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1810 if (deoptee_thread->lock_stack().contains(obj())) { 1811 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1812 deoptee_thread, thread); 1813 } 1814 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1815 assert(obj->mark().has_monitor(), "must be"); 1816 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1817 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1818 } else { 1819 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1820 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1821 } 1822 } 1823 } 1824 } 1825 return relocked_objects; 1826 } 1827 #endif // COMPILER2_OR_JVMCI 1828 1829 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1830 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1831 1832 // Register map for next frame (used for stack crawl). We capture 1833 // the state of the deopt'ing frame's caller. Thus if we need to 1834 // stuff a C2I adapter we can properly fill in the callee-save 1835 // register locations. 1836 frame caller = fr.sender(reg_map); 1837 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1838 1839 frame sender = caller; 1840 1841 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1842 // the vframeArray containing the unpacking information is allocated in the C heap. 1843 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1844 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1845 1846 // Compare the vframeArray to the collected vframes 1847 assert(array->structural_compare(thread, chunk), "just checking"); 1848 1849 if (TraceDeoptimization) { 1850 ResourceMark rm; 1851 stringStream st; 1852 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1853 st.print(" "); 1854 fr.print_on(&st); 1855 st.print_cr(" Virtual frames (innermost/newest first):"); 1856 for (int index = 0; index < chunk->length(); index++) { 1857 compiledVFrame* vf = chunk->at(index); 1858 int bci = vf->raw_bci(); 1859 const char* code_name; 1860 if (bci == SynchronizationEntryBCI) { 1861 code_name = "sync entry"; 1862 } else { 1863 Bytecodes::Code code = vf->method()->code_at(bci); 1864 code_name = Bytecodes::name(code); 1865 } 1866 1867 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1868 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1869 st.print(" - %s", code_name); 1870 st.print_cr(" @ bci=%d ", bci); 1871 } 1872 tty->print_raw(st.freeze()); 1873 tty->cr(); 1874 } 1875 1876 return array; 1877 } 1878 1879 #if COMPILER2_OR_JVMCI 1880 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1881 // Reallocation of some scalar replaced objects failed. Record 1882 // that we need to pop all the interpreter frames for the 1883 // deoptimized compiled frame. 1884 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1885 thread->set_frames_to_pop_failed_realloc(array->frames()); 1886 // Unlock all monitors here otherwise the interpreter will see a 1887 // mix of locked and unlocked monitors (because of failed 1888 // reallocations of synchronized objects) and be confused. 1889 for (int i = 0; i < array->frames(); i++) { 1890 MonitorChunk* monitors = array->element(i)->monitors(); 1891 if (monitors != nullptr) { 1892 // Unlock in reverse order starting from most nested monitor. 1893 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1894 BasicObjectLock* src = monitors->at(j); 1895 if (src->obj() != nullptr) { 1896 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1897 } 1898 } 1899 array->element(i)->free_monitors(); 1900 #ifdef ASSERT 1901 array->element(i)->set_removed_monitors(); 1902 #endif 1903 } 1904 } 1905 } 1906 #endif 1907 1908 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1909 assert(fr.can_be_deoptimized(), "checking frame type"); 1910 1911 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1912 1913 if (LogCompilation && xtty != nullptr) { 1914 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1915 assert(nm != nullptr, "only compiled methods can deopt"); 1916 1917 ttyLocker ttyl; 1918 xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1919 nm->log_identity(xtty); 1920 xtty->end_head(); 1921 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1922 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1923 xtty->method(sd->method()); 1924 xtty->end_elem(); 1925 if (sd->is_top()) break; 1926 } 1927 xtty->tail("deoptimized"); 1928 } 1929 1930 Continuation::notify_deopt(thread, fr.sp()); 1931 1932 // Patch the compiled method so that when execution returns to it we will 1933 // deopt the execution state and return to the interpreter. 1934 fr.deoptimize(thread); 1935 } 1936 1937 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1938 // Deoptimize only if the frame comes from compiled code. 1939 // Do not deoptimize the frame which is already patched 1940 // during the execution of the loops below. 1941 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1942 return; 1943 } 1944 ResourceMark rm; 1945 deoptimize_single_frame(thread, fr, reason); 1946 } 1947 1948 #if INCLUDE_JVMCI 1949 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1950 // there is no exception handler for this pc => deoptimize 1951 nm->make_not_entrant(nmethod::InvalidationReason::MISSING_EXCEPTION_HANDLER); 1952 1953 // Use Deoptimization::deoptimize for all of its side-effects: 1954 // gathering traps statistics, logging... 1955 // it also patches the return pc but we do not care about that 1956 // since we return a continuation to the deopt_blob below. 1957 JavaThread* thread = JavaThread::current(); 1958 RegisterMap reg_map(thread, 1959 RegisterMap::UpdateMap::skip, 1960 RegisterMap::ProcessFrames::include, 1961 RegisterMap::WalkContinuation::skip); 1962 frame runtime_frame = thread->last_frame(); 1963 frame caller_frame = runtime_frame.sender(®_map); 1964 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1965 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1966 compiledVFrame* cvf = compiledVFrame::cast(vf); 1967 ScopeDesc* imm_scope = cvf->scope(); 1968 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1969 if (imm_mdo != nullptr) { 1970 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1971 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1972 1973 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1974 if (pdata != nullptr && pdata->is_BitData()) { 1975 BitData* bit_data = (BitData*) pdata; 1976 bit_data->set_exception_seen(); 1977 } 1978 } 1979 1980 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1981 1982 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1983 if (trap_mdo != nullptr) { 1984 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1985 } 1986 1987 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1988 } 1989 #endif 1990 1991 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1992 assert(thread == Thread::current() || 1993 thread->is_handshake_safe_for(Thread::current()) || 1994 SafepointSynchronize::is_at_safepoint(), 1995 "can only deoptimize other thread at a safepoint/handshake"); 1996 // Compute frame and register map based on thread and sp. 1997 RegisterMap reg_map(thread, 1998 RegisterMap::UpdateMap::skip, 1999 RegisterMap::ProcessFrames::include, 2000 RegisterMap::WalkContinuation::skip); 2001 frame fr = thread->last_frame(); 2002 while (fr.id() != id) { 2003 fr = fr.sender(®_map); 2004 } 2005 deoptimize(thread, fr, reason); 2006 } 2007 2008 2009 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 2010 Thread* current = Thread::current(); 2011 if (thread == current || thread->is_handshake_safe_for(current)) { 2012 Deoptimization::deoptimize_frame_internal(thread, id, reason); 2013 } else { 2014 VM_DeoptimizeFrame deopt(thread, id, reason); 2015 VMThread::execute(&deopt); 2016 } 2017 } 2018 2019 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 2020 deoptimize_frame(thread, id, Reason_constraint); 2021 } 2022 2023 // JVMTI PopFrame support 2024 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 2025 { 2026 assert(thread == JavaThread::current(), "pre-condition"); 2027 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 2028 } 2029 JRT_END 2030 2031 MethodData* 2032 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 2033 bool create_if_missing) { 2034 JavaThread* THREAD = thread; // For exception macros. 2035 MethodData* mdo = m()->method_data(); 2036 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 2037 // Build an MDO. Ignore errors like OutOfMemory; 2038 // that simply means we won't have an MDO to update. 2039 Method::build_profiling_method_data(m, THREAD); 2040 if (HAS_PENDING_EXCEPTION) { 2041 // Only metaspace OOM is expected. No Java code executed. 2042 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 2043 CLEAR_PENDING_EXCEPTION; 2044 } 2045 mdo = m()->method_data(); 2046 } 2047 return mdo; 2048 } 2049 2050 #if COMPILER2_OR_JVMCI 2051 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 2052 // In case of an unresolved klass entry, load the class. 2053 // This path is exercised from case _ldc in Parse::do_one_bytecode, 2054 // and probably nowhere else. 2055 // Even that case would benefit from simply re-interpreting the 2056 // bytecode, without paying special attention to the class index. 2057 // So this whole "class index" feature should probably be removed. 2058 2059 if (constant_pool->tag_at(index).is_unresolved_klass()) { 2060 Klass* tk = constant_pool->klass_at(index, THREAD); 2061 if (HAS_PENDING_EXCEPTION) { 2062 // Exception happened during classloading. We ignore the exception here, since it 2063 // is going to be rethrown since the current activation is going to be deoptimized and 2064 // the interpreter will re-execute the bytecode. 2065 // Do not clear probable Async Exceptions. 2066 CLEAR_PENDING_NONASYNC_EXCEPTION; 2067 // Class loading called java code which may have caused a stack 2068 // overflow. If the exception was thrown right before the return 2069 // to the runtime the stack is no longer guarded. Reguard the 2070 // stack otherwise if we return to the uncommon trap blob and the 2071 // stack bang causes a stack overflow we crash. 2072 JavaThread* jt = THREAD; 2073 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 2074 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 2075 } 2076 return; 2077 } 2078 2079 assert(!constant_pool->tag_at(index).is_symbol(), 2080 "no symbolic names here, please"); 2081 } 2082 2083 #if INCLUDE_JFR 2084 2085 class DeoptReasonSerializer : public JfrSerializer { 2086 public: 2087 void serialize(JfrCheckpointWriter& writer) { 2088 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 2089 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 2090 writer.write_key((u8)i); 2091 writer.write(Deoptimization::trap_reason_name(i)); 2092 } 2093 } 2094 }; 2095 2096 class DeoptActionSerializer : public JfrSerializer { 2097 public: 2098 void serialize(JfrCheckpointWriter& writer) { 2099 static const u4 nof_actions = Deoptimization::Action_LIMIT; 2100 writer.write_count(nof_actions); 2101 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 2102 writer.write_key(i); 2103 writer.write(Deoptimization::trap_action_name((int)i)); 2104 } 2105 } 2106 }; 2107 2108 static void register_serializers() { 2109 static int critical_section = 0; 2110 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 2111 return; 2112 } 2113 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 2114 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 2115 } 2116 2117 static void post_deoptimization_event(nmethod* nm, 2118 const Method* method, 2119 int trap_bci, 2120 int instruction, 2121 Deoptimization::DeoptReason reason, 2122 Deoptimization::DeoptAction action) { 2123 assert(nm != nullptr, "invariant"); 2124 assert(method != nullptr, "invariant"); 2125 if (EventDeoptimization::is_enabled()) { 2126 static bool serializers_registered = false; 2127 if (!serializers_registered) { 2128 register_serializers(); 2129 serializers_registered = true; 2130 } 2131 EventDeoptimization event; 2132 event.set_compileId(nm->compile_id()); 2133 event.set_compiler(nm->compiler_type()); 2134 event.set_method(method); 2135 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 2136 event.set_bci(trap_bci); 2137 event.set_instruction(instruction); 2138 event.set_reason(reason); 2139 event.set_action(action); 2140 event.commit(); 2141 } 2142 } 2143 2144 #endif // INCLUDE_JFR 2145 2146 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2147 const char* reason_name, const char* reason_action) { 2148 LogTarget(Debug, deoptimization) lt; 2149 if (lt.is_enabled()) { 2150 LogStream ls(lt); 2151 bool is_osr = nm->is_osr_method(); 2152 ls.print("cid=%4d %s level=%d", 2153 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2154 ls.print(" %s", tm->name_and_sig_as_C_string()); 2155 ls.print(" trap_bci=%d ", trap_bci); 2156 if (is_osr) { 2157 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2158 } 2159 ls.print("%s ", reason_name); 2160 ls.print("%s ", reason_action); 2161 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2162 pc, fr.pc() - nm->code_begin()); 2163 } 2164 } 2165 2166 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2167 HandleMark hm(current); 2168 2169 // uncommon_trap() is called at the beginning of the uncommon trap 2170 // handler. Note this fact before we start generating temporary frames 2171 // that can confuse an asynchronous stack walker. This counter is 2172 // decremented at the end of unpack_frames(). 2173 2174 current->inc_in_deopt_handler(); 2175 2176 #if INCLUDE_JVMCI 2177 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2178 RegisterMap reg_map(current, 2179 RegisterMap::UpdateMap::include, 2180 RegisterMap::ProcessFrames::include, 2181 RegisterMap::WalkContinuation::skip); 2182 #else 2183 RegisterMap reg_map(current, 2184 RegisterMap::UpdateMap::skip, 2185 RegisterMap::ProcessFrames::include, 2186 RegisterMap::WalkContinuation::skip); 2187 #endif 2188 frame stub_frame = current->last_frame(); 2189 frame fr = stub_frame.sender(®_map); 2190 2191 // Log a message 2192 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2193 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2194 2195 { 2196 ResourceMark rm; 2197 2198 DeoptReason reason = trap_request_reason(trap_request); 2199 DeoptAction action = trap_request_action(trap_request); 2200 #if INCLUDE_JVMCI 2201 int debug_id = trap_request_debug_id(trap_request); 2202 #endif 2203 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2204 2205 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2206 compiledVFrame* cvf = compiledVFrame::cast(vf); 2207 2208 nmethod* nm = cvf->code(); 2209 2210 ScopeDesc* trap_scope = cvf->scope(); 2211 2212 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2213 2214 if (is_receiver_constraint_failure) { 2215 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2216 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2217 JVMCI_ONLY(COMMA debug_id)); 2218 } 2219 2220 methodHandle trap_method(current, trap_scope->method()); 2221 int trap_bci = trap_scope->bci(); 2222 #if INCLUDE_JVMCI 2223 jlong speculation = current->pending_failed_speculation(); 2224 if (nm->is_compiled_by_jvmci()) { 2225 nm->update_speculation(current); 2226 } else { 2227 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2228 } 2229 2230 if (trap_bci == SynchronizationEntryBCI) { 2231 trap_bci = 0; 2232 current->set_pending_monitorenter(true); 2233 } 2234 2235 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2236 current->set_pending_transfer_to_interpreter(true); 2237 } 2238 #endif 2239 2240 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2241 // Record this event in the histogram. 2242 gather_statistics(reason, action, trap_bc); 2243 2244 // Ensure that we can record deopt. history: 2245 bool create_if_missing = ProfileTraps; 2246 2247 methodHandle profiled_method; 2248 #if INCLUDE_JVMCI 2249 if (nm->is_compiled_by_jvmci()) { 2250 profiled_method = methodHandle(current, nm->method()); 2251 } else { 2252 profiled_method = trap_method; 2253 } 2254 #else 2255 profiled_method = trap_method; 2256 #endif 2257 2258 MethodData* trap_mdo = 2259 get_method_data(current, profiled_method, create_if_missing); 2260 2261 { // Log Deoptimization event for JFR, UL and event system 2262 Method* tm = trap_method(); 2263 const char* reason_name = trap_reason_name(reason); 2264 const char* reason_action = trap_action_name(action); 2265 intptr_t pc = p2i(fr.pc()); 2266 2267 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2268 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2269 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2270 reason_name, reason_action, pc, 2271 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2272 } 2273 2274 // Print a bunch of diagnostics, if requested. 2275 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2276 ResourceMark rm; 2277 2278 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2279 // We must do this already now, since we cannot acquire this lock while 2280 // holding the tty lock (lock ordering by rank). 2281 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2282 2283 ttyLocker ttyl; 2284 2285 char buf[100]; 2286 if (xtty != nullptr) { 2287 xtty->begin_head("uncommon_trap thread='%zu' %s", 2288 os::current_thread_id(), 2289 format_trap_request(buf, sizeof(buf), trap_request)); 2290 #if INCLUDE_JVMCI 2291 if (speculation != 0) { 2292 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2293 } 2294 #endif 2295 nm->log_identity(xtty); 2296 } 2297 Symbol* class_name = nullptr; 2298 bool unresolved = false; 2299 if (unloaded_class_index >= 0) { 2300 constantPoolHandle constants (current, trap_method->constants()); 2301 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2302 class_name = constants->klass_name_at(unloaded_class_index); 2303 unresolved = true; 2304 if (xtty != nullptr) 2305 xtty->print(" unresolved='1'"); 2306 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2307 class_name = constants->symbol_at(unloaded_class_index); 2308 } 2309 if (xtty != nullptr) 2310 xtty->name(class_name); 2311 } 2312 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2313 // Dump the relevant MDO state. 2314 // This is the deopt count for the current reason, any previous 2315 // reasons or recompiles seen at this point. 2316 int dcnt = trap_mdo->trap_count(reason); 2317 if (dcnt != 0) 2318 xtty->print(" count='%d'", dcnt); 2319 2320 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2321 // lock extra_data_lock before the tty lock. 2322 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2323 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2324 if (dos != 0) { 2325 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2326 if (trap_state_is_recompiled(dos)) { 2327 int recnt2 = trap_mdo->overflow_recompile_count(); 2328 if (recnt2 != 0) 2329 xtty->print(" recompiles2='%d'", recnt2); 2330 } 2331 } 2332 } 2333 if (xtty != nullptr) { 2334 xtty->stamp(); 2335 xtty->end_head(); 2336 } 2337 if (TraceDeoptimization) { // make noise on the tty 2338 stringStream st; 2339 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2340 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2341 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2342 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2343 #if INCLUDE_JVMCI 2344 if (nm->is_compiled_by_jvmci()) { 2345 const char* installed_code_name = nm->jvmci_name(); 2346 if (installed_code_name != nullptr) { 2347 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2348 } 2349 } 2350 #endif 2351 st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2352 p2i(fr.pc()), 2353 os::current_thread_id(), 2354 trap_reason_name(reason), 2355 trap_action_name(action), 2356 unloaded_class_index 2357 #if INCLUDE_JVMCI 2358 , debug_id 2359 #endif 2360 ); 2361 if (class_name != nullptr) { 2362 st.print(unresolved ? " unresolved class: " : " symbol: "); 2363 class_name->print_symbol_on(&st); 2364 } 2365 st.cr(); 2366 tty->print_raw(st.freeze()); 2367 } 2368 if (xtty != nullptr) { 2369 // Log the precise location of the trap. 2370 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2371 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2372 xtty->method(sd->method()); 2373 xtty->end_elem(); 2374 if (sd->is_top()) break; 2375 } 2376 xtty->tail("uncommon_trap"); 2377 } 2378 } 2379 // (End diagnostic printout.) 2380 2381 if (is_receiver_constraint_failure) { 2382 fatal("missing receiver type check"); 2383 } 2384 2385 // Load class if necessary 2386 if (unloaded_class_index >= 0) { 2387 constantPoolHandle constants(current, trap_method->constants()); 2388 load_class_by_index(constants, unloaded_class_index, THREAD); 2389 } 2390 2391 // Flush the nmethod if necessary and desirable. 2392 // 2393 // We need to avoid situations where we are re-flushing the nmethod 2394 // because of a hot deoptimization site. Repeated flushes at the same 2395 // point need to be detected by the compiler and avoided. If the compiler 2396 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2397 // module must take measures to avoid an infinite cycle of recompilation 2398 // and deoptimization. There are several such measures: 2399 // 2400 // 1. If a recompilation is ordered a second time at some site X 2401 // and for the same reason R, the action is adjusted to 'reinterpret', 2402 // to give the interpreter time to exercise the method more thoroughly. 2403 // If this happens, the method's overflow_recompile_count is incremented. 2404 // 2405 // 2. If the compiler fails to reduce the deoptimization rate, then 2406 // the method's overflow_recompile_count will begin to exceed the set 2407 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2408 // is adjusted to 'make_not_compilable', and the method is abandoned 2409 // to the interpreter. This is a performance hit for hot methods, 2410 // but is better than a disastrous infinite cycle of recompilations. 2411 // (Actually, only the method containing the site X is abandoned.) 2412 // 2413 // 3. In parallel with the previous measures, if the total number of 2414 // recompilations of a method exceeds the much larger set limit 2415 // PerMethodRecompilationCutoff, the method is abandoned. 2416 // This should only happen if the method is very large and has 2417 // many "lukewarm" deoptimizations. The code which enforces this 2418 // limit is elsewhere (class nmethod, class Method). 2419 // 2420 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2421 // to recompile at each bytecode independently of the per-BCI cutoff. 2422 // 2423 // The decision to update code is up to the compiler, and is encoded 2424 // in the Action_xxx code. If the compiler requests Action_none 2425 // no trap state is changed, no compiled code is changed, and the 2426 // computation suffers along in the interpreter. 2427 // 2428 // The other action codes specify various tactics for decompilation 2429 // and recompilation. Action_maybe_recompile is the loosest, and 2430 // allows the compiled code to stay around until enough traps are seen, 2431 // and until the compiler gets around to recompiling the trapping method. 2432 // 2433 // The other actions cause immediate removal of the present code. 2434 2435 // Traps caused by injected profile shouldn't pollute trap counts. 2436 bool injected_profile_trap = trap_method->has_injected_profile() && 2437 (reason == Reason_intrinsic || reason == Reason_unreached); 2438 2439 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2440 bool make_not_entrant = false; 2441 bool make_not_compilable = false; 2442 bool reprofile = false; 2443 switch (action) { 2444 case Action_none: 2445 // Keep the old code. 2446 update_trap_state = false; 2447 break; 2448 case Action_maybe_recompile: 2449 // Do not need to invalidate the present code, but we can 2450 // initiate another 2451 // Start compiler without (necessarily) invalidating the nmethod. 2452 // The system will tolerate the old code, but new code should be 2453 // generated when possible. 2454 break; 2455 case Action_reinterpret: 2456 // Go back into the interpreter for a while, and then consider 2457 // recompiling form scratch. 2458 make_not_entrant = true; 2459 // Reset invocation counter for outer most method. 2460 // This will allow the interpreter to exercise the bytecodes 2461 // for a while before recompiling. 2462 // By contrast, Action_make_not_entrant is immediate. 2463 // 2464 // Note that the compiler will track null_check, null_assert, 2465 // range_check, and class_check events and log them as if they 2466 // had been traps taken from compiled code. This will update 2467 // the MDO trap history so that the next compilation will 2468 // properly detect hot trap sites. 2469 reprofile = true; 2470 break; 2471 case Action_make_not_entrant: 2472 // Request immediate recompilation, and get rid of the old code. 2473 // Make them not entrant, so next time they are called they get 2474 // recompiled. Unloaded classes are loaded now so recompile before next 2475 // time they are called. Same for uninitialized. The interpreter will 2476 // link the missing class, if any. 2477 make_not_entrant = true; 2478 break; 2479 case Action_make_not_compilable: 2480 // Give up on compiling this method at all. 2481 make_not_entrant = true; 2482 make_not_compilable = true; 2483 break; 2484 default: 2485 ShouldNotReachHere(); 2486 } 2487 2488 #if INCLUDE_JVMCI 2489 // Deoptimization count is used by the CompileBroker to reason about compilations 2490 // it requests so do not pollute the count for deoptimizations in non-default (i.e. 2491 // non-CompilerBroker) compilations. 2492 if (nm->jvmci_skip_profile_deopt()) { 2493 update_trap_state = false; 2494 } 2495 #endif 2496 // Setting +ProfileTraps fixes the following, on all platforms: 2497 // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2498 // recompile relies on a MethodData* to record heroic opt failures. 2499 2500 // Whether the interpreter is producing MDO data or not, we also need 2501 // to use the MDO to detect hot deoptimization points and control 2502 // aggressive optimization. 2503 bool inc_recompile_count = false; 2504 2505 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2506 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2507 (trap_mdo != nullptr), 2508 Mutex::_no_safepoint_check_flag); 2509 ProfileData* pdata = nullptr; 2510 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2511 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2512 uint this_trap_count = 0; 2513 bool maybe_prior_trap = false; 2514 bool maybe_prior_recompile = false; 2515 2516 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2517 #if INCLUDE_JVMCI 2518 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2519 #endif 2520 nm->method(), 2521 //outputs: 2522 this_trap_count, 2523 maybe_prior_trap, 2524 maybe_prior_recompile); 2525 // Because the interpreter also counts null, div0, range, and class 2526 // checks, these traps from compiled code are double-counted. 2527 // This is harmless; it just means that the PerXTrapLimit values 2528 // are in effect a little smaller than they look. 2529 2530 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2531 if (per_bc_reason != Reason_none) { 2532 // Now take action based on the partially known per-BCI history. 2533 if (maybe_prior_trap 2534 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2535 // If there are too many traps at this BCI, force a recompile. 2536 // This will allow the compiler to see the limit overflow, and 2537 // take corrective action, if possible. The compiler generally 2538 // does not use the exact PerBytecodeTrapLimit value, but instead 2539 // changes its tactics if it sees any traps at all. This provides 2540 // a little hysteresis, delaying a recompile until a trap happens 2541 // several times. 2542 // 2543 // Actually, since there is only one bit of counter per BCI, 2544 // the possible per-BCI counts are {0,1,(per-method count)}. 2545 // This produces accurate results if in fact there is only 2546 // one hot trap site, but begins to get fuzzy if there are 2547 // many sites. For example, if there are ten sites each 2548 // trapping two or more times, they each get the blame for 2549 // all of their traps. 2550 make_not_entrant = true; 2551 } 2552 2553 // Detect repeated recompilation at the same BCI, and enforce a limit. 2554 if (make_not_entrant && maybe_prior_recompile) { 2555 // More than one recompile at this point. 2556 inc_recompile_count = maybe_prior_trap; 2557 } 2558 } else { 2559 // For reasons which are not recorded per-bytecode, we simply 2560 // force recompiles unconditionally. 2561 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2562 make_not_entrant = true; 2563 } 2564 2565 // Go back to the compiler if there are too many traps in this method. 2566 if (this_trap_count >= per_method_trap_limit(reason)) { 2567 // If there are too many traps in this method, force a recompile. 2568 // This will allow the compiler to see the limit overflow, and 2569 // take corrective action, if possible. 2570 // (This condition is an unlikely backstop only, because the 2571 // PerBytecodeTrapLimit is more likely to take effect first, 2572 // if it is applicable.) 2573 make_not_entrant = true; 2574 } 2575 2576 // Here's more hysteresis: If there has been a recompile at 2577 // this trap point already, run the method in the interpreter 2578 // for a while to exercise it more thoroughly. 2579 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2580 reprofile = true; 2581 } 2582 } 2583 2584 // Take requested actions on the method: 2585 2586 // Recompile 2587 if (make_not_entrant) { 2588 if (!nm->make_not_entrant(nmethod::InvalidationReason::UNCOMMON_TRAP)) { 2589 return; // the call did not change nmethod's state 2590 } 2591 2592 if (pdata != nullptr) { 2593 // Record the recompilation event, if any. 2594 int tstate0 = pdata->trap_state(); 2595 int tstate1 = trap_state_set_recompiled(tstate0, true); 2596 if (tstate1 != tstate0) 2597 pdata->set_trap_state(tstate1); 2598 } 2599 2600 // For code aging we count traps separately here, using make_not_entrant() 2601 // as a guard against simultaneous deopts in multiple threads. 2602 if (reason == Reason_tenured && trap_mdo != nullptr) { 2603 trap_mdo->inc_tenure_traps(); 2604 } 2605 } 2606 if (inc_recompile_count) { 2607 trap_mdo->inc_overflow_recompile_count(); 2608 if ((uint)trap_mdo->overflow_recompile_count() > 2609 (uint)PerBytecodeRecompilationCutoff) { 2610 // Give up on the method containing the bad BCI. 2611 if (trap_method() == nm->method()) { 2612 make_not_compilable = true; 2613 } else { 2614 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2615 // But give grace to the enclosing nm->method(). 2616 } 2617 } 2618 } 2619 2620 // Reprofile 2621 if (reprofile) { 2622 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2623 } 2624 2625 // Give up compiling 2626 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2627 assert(make_not_entrant, "consistent"); 2628 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2629 } 2630 2631 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2632 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2633 if (exception_handler_data != nullptr) { 2634 // uncommon trap at the start of an exception handler. 2635 // C2 generates these for un-entered exception handlers. 2636 // mark the handler as entered to avoid generating 2637 // another uncommon trap the next time the handler is compiled 2638 exception_handler_data->set_exception_handler_entered(); 2639 } 2640 } 2641 2642 } // Free marked resources 2643 2644 } 2645 JRT_END 2646 2647 ProfileData* 2648 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2649 int trap_bci, 2650 Deoptimization::DeoptReason reason, 2651 bool update_total_trap_count, 2652 #if INCLUDE_JVMCI 2653 bool is_osr, 2654 #endif 2655 Method* compiled_method, 2656 //outputs: 2657 uint& ret_this_trap_count, 2658 bool& ret_maybe_prior_trap, 2659 bool& ret_maybe_prior_recompile) { 2660 trap_mdo->check_extra_data_locked(); 2661 2662 bool maybe_prior_trap = false; 2663 bool maybe_prior_recompile = false; 2664 uint this_trap_count = 0; 2665 if (update_total_trap_count) { 2666 uint idx = reason; 2667 #if INCLUDE_JVMCI 2668 if (is_osr) { 2669 // Upper half of history array used for traps in OSR compilations 2670 idx += Reason_TRAP_HISTORY_LENGTH; 2671 } 2672 #endif 2673 uint prior_trap_count = trap_mdo->trap_count(idx); 2674 this_trap_count = trap_mdo->inc_trap_count(idx); 2675 2676 // If the runtime cannot find a place to store trap history, 2677 // it is estimated based on the general condition of the method. 2678 // If the method has ever been recompiled, or has ever incurred 2679 // a trap with the present reason , then this BCI is assumed 2680 // (pessimistically) to be the culprit. 2681 maybe_prior_trap = (prior_trap_count != 0); 2682 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2683 } 2684 ProfileData* pdata = nullptr; 2685 2686 2687 // For reasons which are recorded per bytecode, we check per-BCI data. 2688 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2689 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2690 if (per_bc_reason != Reason_none) { 2691 // Find the profile data for this BCI. If there isn't one, 2692 // try to allocate one from the MDO's set of spares. 2693 // This will let us detect a repeated trap at this point. 2694 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2695 2696 if (pdata != nullptr) { 2697 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2698 if (LogCompilation && xtty != nullptr) { 2699 ttyLocker ttyl; 2700 // no more room for speculative traps in this MDO 2701 xtty->elem("speculative_traps_oom"); 2702 } 2703 } 2704 // Query the trap state of this profile datum. 2705 int tstate0 = pdata->trap_state(); 2706 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2707 maybe_prior_trap = false; 2708 if (!trap_state_is_recompiled(tstate0)) 2709 maybe_prior_recompile = false; 2710 2711 // Update the trap state of this profile datum. 2712 int tstate1 = tstate0; 2713 // Record the reason. 2714 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2715 // Store the updated state on the MDO, for next time. 2716 if (tstate1 != tstate0) 2717 pdata->set_trap_state(tstate1); 2718 } else { 2719 if (LogCompilation && xtty != nullptr) { 2720 ttyLocker ttyl; 2721 // Missing MDP? Leave a small complaint in the log. 2722 xtty->elem("missing_mdp bci='%d'", trap_bci); 2723 } 2724 } 2725 } 2726 2727 // Return results: 2728 ret_this_trap_count = this_trap_count; 2729 ret_maybe_prior_trap = maybe_prior_trap; 2730 ret_maybe_prior_recompile = maybe_prior_recompile; 2731 return pdata; 2732 } 2733 2734 void 2735 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2736 ResourceMark rm; 2737 // Ignored outputs: 2738 uint ignore_this_trap_count; 2739 bool ignore_maybe_prior_trap; 2740 bool ignore_maybe_prior_recompile; 2741 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2742 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2743 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2744 2745 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2746 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2747 2748 query_update_method_data(trap_mdo, trap_bci, 2749 (DeoptReason)reason, 2750 update_total_counts, 2751 #if INCLUDE_JVMCI 2752 false, 2753 #endif 2754 nullptr, 2755 ignore_this_trap_count, 2756 ignore_maybe_prior_trap, 2757 ignore_maybe_prior_recompile); 2758 } 2759 2760 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2761 // Enable WXWrite: current function is called from methods compiled by C2 directly 2762 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2763 2764 // Still in Java no safepoints 2765 { 2766 // This enters VM and may safepoint 2767 uncommon_trap_inner(current, trap_request); 2768 } 2769 HandleMark hm(current); 2770 return fetch_unroll_info_helper(current, exec_mode); 2771 } 2772 2773 // Local derived constants. 2774 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2775 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2776 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2777 2778 //---------------------------trap_state_reason--------------------------------- 2779 Deoptimization::DeoptReason 2780 Deoptimization::trap_state_reason(int trap_state) { 2781 // This assert provides the link between the width of DataLayout::trap_bits 2782 // and the encoding of "recorded" reasons. It ensures there are enough 2783 // bits to store all needed reasons in the per-BCI MDO profile. 2784 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2785 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2786 trap_state -= recompile_bit; 2787 if (trap_state == DS_REASON_MASK) { 2788 return Reason_many; 2789 } else { 2790 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2791 return (DeoptReason)trap_state; 2792 } 2793 } 2794 //-------------------------trap_state_has_reason------------------------------- 2795 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2796 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2797 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2798 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2799 trap_state -= recompile_bit; 2800 if (trap_state == DS_REASON_MASK) { 2801 return -1; // true, unspecifically (bottom of state lattice) 2802 } else if (trap_state == reason) { 2803 return 1; // true, definitely 2804 } else if (trap_state == 0) { 2805 return 0; // false, definitely (top of state lattice) 2806 } else { 2807 return 0; // false, definitely 2808 } 2809 } 2810 //-------------------------trap_state_add_reason------------------------------- 2811 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2812 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2813 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2814 trap_state -= recompile_bit; 2815 if (trap_state == DS_REASON_MASK) { 2816 return trap_state + recompile_bit; // already at state lattice bottom 2817 } else if (trap_state == reason) { 2818 return trap_state + recompile_bit; // the condition is already true 2819 } else if (trap_state == 0) { 2820 return reason + recompile_bit; // no condition has yet been true 2821 } else { 2822 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2823 } 2824 } 2825 //-----------------------trap_state_is_recompiled------------------------------ 2826 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2827 return (trap_state & DS_RECOMPILE_BIT) != 0; 2828 } 2829 //-----------------------trap_state_set_recompiled----------------------------- 2830 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2831 if (z) return trap_state | DS_RECOMPILE_BIT; 2832 else return trap_state & ~DS_RECOMPILE_BIT; 2833 } 2834 //---------------------------format_trap_state--------------------------------- 2835 // This is used for debugging and diagnostics, including LogFile output. 2836 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2837 int trap_state) { 2838 assert(buflen > 0, "sanity"); 2839 DeoptReason reason = trap_state_reason(trap_state); 2840 bool recomp_flag = trap_state_is_recompiled(trap_state); 2841 // Re-encode the state from its decoded components. 2842 int decoded_state = 0; 2843 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2844 decoded_state = trap_state_add_reason(decoded_state, reason); 2845 if (recomp_flag) 2846 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2847 // If the state re-encodes properly, format it symbolically. 2848 // Because this routine is used for debugging and diagnostics, 2849 // be robust even if the state is a strange value. 2850 size_t len; 2851 if (decoded_state != trap_state) { 2852 // Random buggy state that doesn't decode?? 2853 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2854 } else { 2855 len = jio_snprintf(buf, buflen, "%s%s", 2856 trap_reason_name(reason), 2857 recomp_flag ? " recompiled" : ""); 2858 } 2859 return buf; 2860 } 2861 2862 2863 //--------------------------------statics-------------------------------------- 2864 const char* Deoptimization::_trap_reason_name[] = { 2865 // Note: Keep this in sync. with enum DeoptReason. 2866 "none", 2867 "null_check", 2868 "null_assert" JVMCI_ONLY("_or_unreached0"), 2869 "range_check", 2870 "class_check", 2871 "array_check", 2872 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2873 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2874 "profile_predicate", 2875 "auto_vectorization_check", 2876 "unloaded", 2877 "uninitialized", 2878 "initialized", 2879 "unreached", 2880 "unhandled", 2881 "constraint", 2882 "div0_check", 2883 "age", 2884 "predicate", 2885 "loop_limit_check", 2886 "speculate_class_check", 2887 "speculate_null_check", 2888 "speculate_null_assert", 2889 "unstable_if", 2890 "unstable_fused_if", 2891 "receiver_constraint", 2892 "short_running_loop" JVMCI_ONLY("_or_aliasing"), 2893 #if INCLUDE_JVMCI 2894 "transfer_to_interpreter", 2895 "not_compiled_exception_handler", 2896 "unresolved", 2897 "jsr_mismatch", 2898 #endif 2899 "tenured" 2900 }; 2901 const char* Deoptimization::_trap_action_name[] = { 2902 // Note: Keep this in sync. with enum DeoptAction. 2903 "none", 2904 "maybe_recompile", 2905 "reinterpret", 2906 "make_not_entrant", 2907 "make_not_compilable" 2908 }; 2909 2910 const char* Deoptimization::trap_reason_name(int reason) { 2911 // Check that every reason has a name 2912 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2913 2914 if (reason == Reason_many) return "many"; 2915 if ((uint)reason < Reason_LIMIT) 2916 return _trap_reason_name[reason]; 2917 static char buf[20]; 2918 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2919 return buf; 2920 } 2921 const char* Deoptimization::trap_action_name(int action) { 2922 // Check that every action has a name 2923 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2924 2925 if ((uint)action < Action_LIMIT) 2926 return _trap_action_name[action]; 2927 static char buf[20]; 2928 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2929 return buf; 2930 } 2931 2932 // This is used for debugging and diagnostics, including LogFile output. 2933 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2934 int trap_request) { 2935 jint unloaded_class_index = trap_request_index(trap_request); 2936 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2937 const char* action = trap_action_name(trap_request_action(trap_request)); 2938 #if INCLUDE_JVMCI 2939 int debug_id = trap_request_debug_id(trap_request); 2940 #endif 2941 size_t len; 2942 if (unloaded_class_index < 0) { 2943 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2944 reason, action 2945 #if INCLUDE_JVMCI 2946 ,debug_id 2947 #endif 2948 ); 2949 } else { 2950 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2951 reason, action, unloaded_class_index 2952 #if INCLUDE_JVMCI 2953 ,debug_id 2954 #endif 2955 ); 2956 } 2957 return buf; 2958 } 2959 2960 juint Deoptimization::_deoptimization_hist 2961 [Deoptimization::Reason_LIMIT] 2962 [1 + Deoptimization::Action_LIMIT] 2963 [Deoptimization::BC_CASE_LIMIT] 2964 = {0}; 2965 2966 enum { 2967 LSB_BITS = 8, 2968 LSB_MASK = right_n_bits(LSB_BITS) 2969 }; 2970 2971 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2972 Bytecodes::Code bc) { 2973 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2974 assert(action >= 0 && action < Action_LIMIT, "oob"); 2975 _deoptimization_hist[Reason_none][0][0] += 1; // total 2976 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2977 juint* cases = _deoptimization_hist[reason][1+action]; 2978 juint* bc_counter_addr = nullptr; 2979 juint bc_counter = 0; 2980 // Look for an unused counter, or an exact match to this BC. 2981 if (bc != Bytecodes::_illegal) { 2982 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2983 juint* counter_addr = &cases[bc_case]; 2984 juint counter = *counter_addr; 2985 if ((counter == 0 && bc_counter_addr == nullptr) 2986 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2987 // this counter is either free or is already devoted to this BC 2988 bc_counter_addr = counter_addr; 2989 bc_counter = counter | bc; 2990 } 2991 } 2992 } 2993 if (bc_counter_addr == nullptr) { 2994 // Overflow, or no given bytecode. 2995 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2996 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2997 } 2998 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2999 } 3000 3001 jint Deoptimization::total_deoptimization_count() { 3002 return _deoptimization_hist[Reason_none][0][0]; 3003 } 3004 3005 // Get the deopt count for a specific reason and a specific action. If either 3006 // one of 'reason' or 'action' is null, the method returns the sum of all 3007 // deoptimizations with the specific 'action' or 'reason' respectively. 3008 // If both arguments are null, the method returns the total deopt count. 3009 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3010 if (reason_str == nullptr && action_str == nullptr) { 3011 return total_deoptimization_count(); 3012 } 3013 juint counter = 0; 3014 for (int reason = 0; reason < Reason_LIMIT; reason++) { 3015 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 3016 for (int action = 0; action < Action_LIMIT; action++) { 3017 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 3018 juint* cases = _deoptimization_hist[reason][1+action]; 3019 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 3020 counter += cases[bc_case] >> LSB_BITS; 3021 } 3022 } 3023 } 3024 } 3025 } 3026 return counter; 3027 } 3028 3029 void Deoptimization::print_statistics() { 3030 juint total = total_deoptimization_count(); 3031 juint account = total; 3032 if (total != 0) { 3033 ttyLocker ttyl; 3034 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 3035 tty->print_cr("Deoptimization traps recorded:"); 3036 #define PRINT_STAT_LINE(name, r) \ 3037 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 3038 PRINT_STAT_LINE("total", total); 3039 // For each non-zero entry in the histogram, print the reason, 3040 // the action, and (if specifically known) the type of bytecode. 3041 for (int reason = 0; reason < Reason_LIMIT; reason++) { 3042 for (int action = 0; action < Action_LIMIT; action++) { 3043 juint* cases = _deoptimization_hist[reason][1+action]; 3044 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 3045 juint counter = cases[bc_case]; 3046 if (counter != 0) { 3047 char name[1*K]; 3048 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 3049 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 3050 bc = Bytecodes::_illegal; 3051 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 3052 trap_reason_name(reason), 3053 trap_action_name(action), 3054 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 3055 juint r = counter >> LSB_BITS; 3056 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 3057 account -= r; 3058 } 3059 } 3060 } 3061 } 3062 if (account != 0) { 3063 PRINT_STAT_LINE("unaccounted", account); 3064 } 3065 #undef PRINT_STAT_LINE 3066 if (xtty != nullptr) xtty->tail("statistics"); 3067 } 3068 } 3069 3070 #else // COMPILER2_OR_JVMCI 3071 3072 3073 // Stubs for C1 only system. 3074 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 3075 return false; 3076 } 3077 3078 const char* Deoptimization::trap_reason_name(int reason) { 3079 return "unknown"; 3080 } 3081 3082 jint Deoptimization::total_deoptimization_count() { 3083 return 0; 3084 } 3085 3086 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3087 return 0; 3088 } 3089 3090 void Deoptimization::print_statistics() { 3091 // no output 3092 } 3093 3094 void 3095 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 3096 // no update 3097 } 3098 3099 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 3100 return 0; 3101 } 3102 3103 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 3104 Bytecodes::Code bc) { 3105 // no update 3106 } 3107 3108 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 3109 int trap_state) { 3110 jio_snprintf(buf, buflen, "#%d", trap_state); 3111 return buf; 3112 } 3113 3114 #endif // COMPILER2_OR_JVMCI