1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/bytecode.inline.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.hpp" 55 #include "oops/fieldStreams.inline.hpp" 56 #include "oops/method.hpp" 57 #include "oops/objArrayKlass.hpp" 58 #include "oops/objArrayOop.inline.hpp" 59 #include "oops/oop.inline.hpp" 60 #include "oops/inlineKlass.inline.hpp" 61 #include "oops/typeArrayOop.inline.hpp" 62 #include "oops/verifyOopClosure.hpp" 63 #include "prims/jvmtiDeferredUpdates.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "prims/jvmtiThreadState.hpp" 66 #include "prims/methodHandles.hpp" 67 #include "prims/vectorSupport.hpp" 68 #include "runtime/atomic.hpp" 69 #include "runtime/basicLock.inline.hpp" 70 #include "runtime/continuation.hpp" 71 #include "runtime/continuationEntry.inline.hpp" 72 #include "runtime/deoptimization.hpp" 73 #include "runtime/escapeBarrier.hpp" 74 #include "runtime/fieldDescriptor.hpp" 75 #include "runtime/fieldDescriptor.inline.hpp" 76 #include "runtime/frame.inline.hpp" 77 #include "runtime/handles.inline.hpp" 78 #include "runtime/interfaceSupport.inline.hpp" 79 #include "runtime/javaThread.hpp" 80 #include "runtime/jniHandles.inline.hpp" 81 #include "runtime/keepStackGCProcessed.hpp" 82 #include "runtime/lightweightSynchronizer.hpp" 83 #include "runtime/lockStack.inline.hpp" 84 #include "runtime/objectMonitor.inline.hpp" 85 #include "runtime/osThread.hpp" 86 #include "runtime/safepointVerifiers.hpp" 87 #include "runtime/sharedRuntime.hpp" 88 #include "runtime/signature.hpp" 89 #include "runtime/stackFrameStream.inline.hpp" 90 #include "runtime/stackValue.hpp" 91 #include "runtime/stackWatermarkSet.hpp" 92 #include "runtime/stubRoutines.hpp" 93 #include "runtime/synchronizer.inline.hpp" 94 #include "runtime/threadSMR.hpp" 95 #include "runtime/threadWXSetters.inline.hpp" 96 #include "runtime/vframe.hpp" 97 #include "runtime/vframeArray.hpp" 98 #include "runtime/vframe_hp.hpp" 99 #include "runtime/vmOperations.hpp" 100 #include "utilities/checkedCast.hpp" 101 #include "utilities/events.hpp" 102 #include "utilities/growableArray.hpp" 103 #include "utilities/macros.hpp" 104 #include "utilities/preserveException.hpp" 105 #include "utilities/xmlstream.hpp" 106 #if INCLUDE_JFR 107 #include "jfr/jfrEvents.hpp" 108 #include "jfr/metadata/jfrSerializer.hpp" 109 #endif 110 111 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 112 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 113 bool DeoptimizationScope::_committing_in_progress = false; 114 115 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 116 DEBUG_ONLY(_deopted = false;) 117 118 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 119 // If there is nothing to deopt _required_gen is the same as comitted. 120 _required_gen = DeoptimizationScope::_committed_deopt_gen; 121 } 122 123 DeoptimizationScope::~DeoptimizationScope() { 124 assert(_deopted, "Deopt not executed"); 125 } 126 127 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 128 if (!nm->can_be_deoptimized()) { 129 return; 130 } 131 132 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 133 134 // If it's already marked but we still need it to be deopted. 135 if (nm->is_marked_for_deoptimization()) { 136 dependent(nm); 137 return; 138 } 139 140 nmethod::DeoptimizationStatus status = 141 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 142 Atomic::store(&nm->_deoptimization_status, status); 143 144 // Make sure active is not committed 145 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 146 assert(nm->_deoptimization_generation == 0, "Is already marked"); 147 148 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 149 _required_gen = DeoptimizationScope::_active_deopt_gen; 150 } 151 152 void DeoptimizationScope::dependent(nmethod* nm) { 153 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 154 155 // A method marked by someone else may have a _required_gen lower than what we marked with. 156 // Therefore only store it if it's higher than _required_gen. 157 if (_required_gen < nm->_deoptimization_generation) { 158 _required_gen = nm->_deoptimization_generation; 159 } 160 } 161 162 void DeoptimizationScope::deoptimize_marked() { 163 assert(!_deopted, "Already deopted"); 164 165 // We are not alive yet. 166 if (!Universe::is_fully_initialized()) { 167 DEBUG_ONLY(_deopted = true;) 168 return; 169 } 170 171 // Safepoints are a special case, handled here. 172 if (SafepointSynchronize::is_at_safepoint()) { 173 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 174 DeoptimizationScope::_active_deopt_gen++; 175 Deoptimization::deoptimize_all_marked(); 176 DEBUG_ONLY(_deopted = true;) 177 return; 178 } 179 180 uint64_t comitting = 0; 181 bool wait = false; 182 while (true) { 183 { 184 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 185 186 // First we check if we or someone else already deopted the gen we want. 187 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 188 DEBUG_ONLY(_deopted = true;) 189 return; 190 } 191 if (!_committing_in_progress) { 192 // The version we are about to commit. 193 comitting = DeoptimizationScope::_active_deopt_gen; 194 // Make sure new marks use a higher gen. 195 DeoptimizationScope::_active_deopt_gen++; 196 _committing_in_progress = true; 197 wait = false; 198 } else { 199 // Another thread is handshaking and committing a gen. 200 wait = true; 201 } 202 } 203 if (wait) { 204 // Wait and let the concurrent handshake be performed. 205 ThreadBlockInVM tbivm(JavaThread::current()); 206 os::naked_yield(); 207 } else { 208 // Performs the handshake. 209 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 210 DEBUG_ONLY(_deopted = true;) 211 { 212 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 213 214 // Make sure that committed doesn't go backwards. 215 // Should only happen if we did a deopt during a safepoint above. 216 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 217 DeoptimizationScope::_committed_deopt_gen = comitting; 218 } 219 _committing_in_progress = false; 220 221 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 222 223 return; 224 } 225 } 226 } 227 } 228 229 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 230 int caller_adjustment, 231 int caller_actual_parameters, 232 int number_of_frames, 233 intptr_t* frame_sizes, 234 address* frame_pcs, 235 BasicType return_type, 236 int exec_mode) { 237 _size_of_deoptimized_frame = size_of_deoptimized_frame; 238 _caller_adjustment = caller_adjustment; 239 _caller_actual_parameters = caller_actual_parameters; 240 _number_of_frames = number_of_frames; 241 _frame_sizes = frame_sizes; 242 _frame_pcs = frame_pcs; 243 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 244 _return_type = return_type; 245 _initial_info = 0; 246 // PD (x86 only) 247 _counter_temp = 0; 248 _unpack_kind = exec_mode; 249 _sender_sp_temp = 0; 250 251 _total_frame_sizes = size_of_frames(); 252 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 253 } 254 255 Deoptimization::UnrollBlock::~UnrollBlock() { 256 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 257 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 258 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 259 } 260 261 int Deoptimization::UnrollBlock::size_of_frames() const { 262 // Account first for the adjustment of the initial frame 263 intptr_t result = _caller_adjustment; 264 for (int index = 0; index < number_of_frames(); index++) { 265 result += frame_sizes()[index]; 266 } 267 return checked_cast<int>(result); 268 } 269 270 void Deoptimization::UnrollBlock::print() { 271 ResourceMark rm; 272 stringStream st; 273 st.print_cr("UnrollBlock"); 274 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 275 st.print( " frame_sizes: "); 276 for (int index = 0; index < number_of_frames(); index++) { 277 st.print("%zd ", frame_sizes()[index]); 278 } 279 st.cr(); 280 tty->print_raw(st.freeze()); 281 } 282 283 // In order to make fetch_unroll_info work properly with escape 284 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 285 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 286 // which is called from the method fetch_unroll_info_helper below. 287 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 288 // fetch_unroll_info() is called at the beginning of the deoptimization 289 // handler. Note this fact before we start generating temporary frames 290 // that can confuse an asynchronous stack walker. This counter is 291 // decremented at the end of unpack_frames(). 292 current->inc_in_deopt_handler(); 293 294 if (exec_mode == Unpack_exception) { 295 // When we get here, a callee has thrown an exception into a deoptimized 296 // frame. That throw might have deferred stack watermark checking until 297 // after unwinding. So we deal with such deferred requests here. 298 StackWatermarkSet::after_unwind(current); 299 } 300 301 return fetch_unroll_info_helper(current, exec_mode); 302 JRT_END 303 304 #if COMPILER2_OR_JVMCI 305 // print information about reallocated objects 306 static void print_objects(JavaThread* deoptee_thread, 307 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 308 ResourceMark rm; 309 stringStream st; // change to logStream with logging 310 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 311 fieldDescriptor fd; 312 313 for (int i = 0; i < objects->length(); i++) { 314 ObjectValue* sv = (ObjectValue*) objects->at(i); 315 Handle obj = sv->value(); 316 317 if (obj.is_null()) { 318 st.print_cr(" nullptr"); 319 continue; 320 } 321 322 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 323 324 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 325 k->print_value_on(&st); 326 st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize); 327 328 if (Verbose && k != nullptr) { 329 k->oop_print_on(obj(), &st); 330 } 331 } 332 tty->print_raw(st.freeze()); 333 } 334 335 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 336 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 337 bool& deoptimized_objects) { 338 bool realloc_failures = false; 339 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 340 341 JavaThread* deoptee_thread = chunk->at(0)->thread(); 342 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 343 "a frame can only be deoptimized by the owner thread"); 344 345 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 346 347 // The flag return_oop() indicates call sites which return oop 348 // in compiled code. Such sites include java method calls, 349 // runtime calls (for example, used to allocate new objects/arrays 350 // on slow code path) and any other calls generated in compiled code. 351 // It is not guaranteed that we can get such information here only 352 // by analyzing bytecode in deoptimized frames. This is why this flag 353 // is set during method compilation (see Compile::Process_OopMap_Node()). 354 // If the previous frame was popped or if we are dispatching an exception, 355 // we don't have an oop result. 356 ScopeDesc* scope = chunk->at(0)->scope(); 357 bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 358 // In case of the return of multiple values, we must take care 359 // of all oop return values. 360 GrowableArray<Handle> return_oops; 361 InlineKlass* vk = nullptr; 362 if (save_oop_result && scope->return_scalarized()) { 363 vk = InlineKlass::returned_inline_klass(map); 364 if (vk != nullptr) { 365 vk->save_oop_fields(map, return_oops); 366 save_oop_result = false; 367 } 368 } 369 if (save_oop_result) { 370 // Reallocation may trigger GC. If deoptimization happened on return from 371 // call which returns oop we need to save it since it is not in oopmap. 372 oop result = deoptee.saved_oop_result(&map); 373 assert(oopDesc::is_oop_or_null(result), "must be oop"); 374 return_oops.push(Handle(thread, result)); 375 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 376 if (TraceDeoptimization) { 377 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 378 tty->cr(); 379 } 380 } 381 if (objects != nullptr || vk != nullptr) { 382 if (exec_mode == Deoptimization::Unpack_none) { 383 assert(thread->thread_state() == _thread_in_vm, "assumption"); 384 JavaThread* THREAD = thread; // For exception macros. 385 // Clear pending OOM if reallocation fails and return true indicating allocation failure 386 if (vk != nullptr) { 387 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, CHECK_AND_CLEAR_(true)); 388 } 389 if (objects != nullptr) { 390 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 391 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 392 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 393 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, CHECK_AND_CLEAR_(true)); 394 } 395 deoptimized_objects = true; 396 } else { 397 JavaThread* current = thread; // For JRT_BLOCK 398 JRT_BLOCK 399 if (vk != nullptr) { 400 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, THREAD); 401 } 402 if (objects != nullptr) { 403 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 404 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 405 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 406 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, THREAD); 407 } 408 JRT_END 409 } 410 if (TraceDeoptimization && objects != nullptr) { 411 print_objects(deoptee_thread, objects, realloc_failures); 412 } 413 } 414 if (save_oop_result || vk != nullptr) { 415 // Restore result. 416 assert(return_oops.length() == 1, "no inline type"); 417 deoptee.set_saved_oop_result(&map, return_oops.pop()()); 418 } 419 return realloc_failures; 420 } 421 422 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 423 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 424 JavaThread* deoptee_thread = chunk->at(0)->thread(); 425 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 426 assert(thread == Thread::current(), "should be"); 427 HandleMark hm(thread); 428 #ifndef PRODUCT 429 bool first = true; 430 #endif // !PRODUCT 431 // Start locking from outermost/oldest frame 432 for (int i = (chunk->length() - 1); i >= 0; i--) { 433 compiledVFrame* cvf = chunk->at(i); 434 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 435 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 436 if (monitors->is_nonempty()) { 437 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 438 exec_mode, realloc_failures); 439 deoptimized_objects = deoptimized_objects || relocked; 440 #ifndef PRODUCT 441 if (PrintDeoptimizationDetails) { 442 ResourceMark rm; 443 stringStream st; 444 for (int j = 0; j < monitors->length(); j++) { 445 MonitorInfo* mi = monitors->at(j); 446 if (mi->eliminated()) { 447 if (first) { 448 first = false; 449 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 450 } 451 if (exec_mode == Deoptimization::Unpack_none) { 452 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 453 if (monitor != nullptr && monitor->object() == mi->owner()) { 454 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 455 continue; 456 } 457 } 458 if (mi->owner_is_scalar_replaced()) { 459 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 460 st.print_cr(" failed reallocation for klass %s", k->external_name()); 461 } else { 462 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 463 } 464 } 465 } 466 tty->print_raw(st.freeze()); 467 } 468 #endif // !PRODUCT 469 } 470 } 471 } 472 473 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 474 // The given vframes cover one physical frame. 475 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 476 bool& realloc_failures) { 477 frame deoptee = chunk->at(0)->fr(); 478 JavaThread* deoptee_thread = chunk->at(0)->thread(); 479 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 480 RegisterMap map(chunk->at(0)->register_map()); 481 bool deoptimized_objects = false; 482 483 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 484 485 // Reallocate the non-escaping objects and restore their fields. 486 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 487 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 488 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 489 } 490 491 // MonitorInfo structures used in eliminate_locks are not GC safe. 492 NoSafepointVerifier no_safepoint; 493 494 // Now relock objects if synchronization on them was eliminated. 495 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 496 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 497 } 498 return deoptimized_objects; 499 } 500 #endif // COMPILER2_OR_JVMCI 501 502 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 503 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 504 // When we get here we are about to unwind the deoptee frame. In order to 505 // catch not yet safe to use frames, the following stack watermark barrier 506 // poll will make such frames safe to use. 507 StackWatermarkSet::before_unwind(current); 508 509 // Note: there is a safepoint safety issue here. No matter whether we enter 510 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 511 // the vframeArray is created. 512 // 513 514 // Allocate our special deoptimization ResourceMark 515 DeoptResourceMark* dmark = new DeoptResourceMark(current); 516 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 517 current->set_deopt_mark(dmark); 518 519 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 520 RegisterMap map(current, 521 RegisterMap::UpdateMap::include, 522 RegisterMap::ProcessFrames::include, 523 RegisterMap::WalkContinuation::skip); 524 RegisterMap dummy_map(current, 525 RegisterMap::UpdateMap::skip, 526 RegisterMap::ProcessFrames::include, 527 RegisterMap::WalkContinuation::skip); 528 // Now get the deoptee with a valid map 529 frame deoptee = stub_frame.sender(&map); 530 // Set the deoptee nmethod 531 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 532 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 533 current->set_deopt_compiled_method(nm); 534 535 if (VerifyStack) { 536 current->validate_frame_layout(); 537 } 538 539 // Create a growable array of VFrames where each VFrame represents an inlined 540 // Java frame. This storage is allocated with the usual system arena. 541 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 542 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 543 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 544 while (!vf->is_top()) { 545 assert(vf->is_compiled_frame(), "Wrong frame type"); 546 chunk->push(compiledVFrame::cast(vf)); 547 vf = vf->sender(); 548 } 549 assert(vf->is_compiled_frame(), "Wrong frame type"); 550 chunk->push(compiledVFrame::cast(vf)); 551 552 bool realloc_failures = false; 553 554 #if COMPILER2_OR_JVMCI 555 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 556 557 // Reallocate the non-escaping objects and restore their fields. Then 558 // relock objects if synchronization on them was eliminated. 559 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 560 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 561 bool unused; 562 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 563 } 564 #endif // COMPILER2_OR_JVMCI 565 566 // Ensure that no safepoint is taken after pointers have been stored 567 // in fields of rematerialized objects. If a safepoint occurs from here on 568 // out the java state residing in the vframeArray will be missed. 569 // Locks may be rebaised in a safepoint. 570 NoSafepointVerifier no_safepoint; 571 572 #if COMPILER2_OR_JVMCI 573 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 574 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 575 bool unused = false; 576 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 577 } 578 #endif // COMPILER2_OR_JVMCI 579 580 ScopeDesc* trap_scope = chunk->at(0)->scope(); 581 Handle exceptionObject; 582 if (trap_scope->rethrow_exception()) { 583 #ifndef PRODUCT 584 if (PrintDeoptimizationDetails) { 585 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 586 } 587 #endif // !PRODUCT 588 589 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 590 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 591 ScopeValue* topOfStack = expressions->top(); 592 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 593 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 594 } 595 596 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 597 #if COMPILER2_OR_JVMCI 598 if (realloc_failures) { 599 // This destroys all ScopedValue bindings. 600 current->clear_scopedValueBindings(); 601 pop_frames_failed_reallocs(current, array); 602 } 603 #endif 604 605 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 606 current->set_vframe_array_head(array); 607 608 // Now that the vframeArray has been created if we have any deferred local writes 609 // added by jvmti then we can free up that structure as the data is now in the 610 // vframeArray 611 612 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 613 614 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 615 CodeBlob* cb = stub_frame.cb(); 616 // Verify we have the right vframeArray 617 assert(cb->frame_size() >= 0, "Unexpected frame size"); 618 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 619 620 // If the deopt call site is a MethodHandle invoke call site we have 621 // to adjust the unpack_sp. 622 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 623 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 624 unpack_sp = deoptee.unextended_sp(); 625 626 #ifdef ASSERT 627 assert(cb->is_deoptimization_stub() || 628 cb->is_uncommon_trap_stub() || 629 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 630 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 631 "unexpected code blob: %s", cb->name()); 632 #endif 633 634 // This is a guarantee instead of an assert because if vframe doesn't match 635 // we will unpack the wrong deoptimized frame and wind up in strange places 636 // where it will be very difficult to figure out what went wrong. Better 637 // to die an early death here than some very obscure death later when the 638 // trail is cold. 639 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 640 641 int number_of_frames = array->frames(); 642 643 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 644 // virtual activation, which is the reverse of the elements in the vframes array. 645 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 646 // +1 because we always have an interpreter return address for the final slot. 647 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 648 int popframe_extra_args = 0; 649 // Create an interpreter return address for the stub to use as its return 650 // address so the skeletal frames are perfectly walkable 651 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 652 653 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 654 // activation be put back on the expression stack of the caller for reexecution 655 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 656 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 657 } 658 659 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 660 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 661 // than simply use array->sender.pc(). This requires us to walk the current set of frames 662 // 663 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 664 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 665 666 // It's possible that the number of parameters at the call site is 667 // different than number of arguments in the callee when method 668 // handles are used. If the caller is interpreted get the real 669 // value so that the proper amount of space can be added to it's 670 // frame. 671 bool caller_was_method_handle = false; 672 if (deopt_sender.is_interpreted_frame()) { 673 methodHandle method(current, deopt_sender.interpreter_frame_method()); 674 Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci()); 675 if (cur.has_member_arg()) { 676 // This should cover all real-world cases. One exception is a pathological chain of 677 // MH.linkToXXX() linker calls, which only trusted code could do anyway. To handle that case, we 678 // would need to get the size from the resolved method entry. Another exception would 679 // be an invokedynamic with an adapter that is really a MethodHandle linker. 680 caller_was_method_handle = true; 681 } 682 } 683 684 // 685 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 686 // frame_sizes/frame_pcs[1] next oldest frame (int) 687 // frame_sizes/frame_pcs[n] youngest frame (int) 688 // 689 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 690 // owns the space for the return address to it's caller). Confusing ain't it. 691 // 692 // The vframe array can address vframes with indices running from 693 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 694 // When we create the skeletal frames we need the oldest frame to be in the zero slot 695 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 696 // so things look a little strange in this loop. 697 // 698 int callee_parameters = 0; 699 int callee_locals = 0; 700 for (int index = 0; index < array->frames(); index++ ) { 701 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 702 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 703 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 704 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 705 callee_locals, 706 index == 0, 707 popframe_extra_args); 708 // This pc doesn't have to be perfect just good enough to identify the frame 709 // as interpreted so the skeleton frame will be walkable 710 // The correct pc will be set when the skeleton frame is completely filled out 711 // The final pc we store in the loop is wrong and will be overwritten below 712 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 713 714 callee_parameters = array->element(index)->method()->size_of_parameters(); 715 callee_locals = array->element(index)->method()->max_locals(); 716 popframe_extra_args = 0; 717 } 718 719 // Compute whether the root vframe returns a float or double value. 720 BasicType return_type; 721 { 722 methodHandle method(current, array->element(0)->method()); 723 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 724 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 725 } 726 727 // Compute information for handling adapters and adjusting the frame size of the caller. 728 int caller_adjustment = 0; 729 730 // Compute the amount the oldest interpreter frame will have to adjust 731 // its caller's stack by. If the caller is a compiled frame then 732 // we pretend that the callee has no parameters so that the 733 // extension counts for the full amount of locals and not just 734 // locals-parms. This is because without a c2i adapter the parm 735 // area as created by the compiled frame will not be usable by 736 // the interpreter. (Depending on the calling convention there 737 // may not even be enough space). 738 739 // QQQ I'd rather see this pushed down into last_frame_adjust 740 // and have it take the sender (aka caller). 741 742 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 743 caller_adjustment = last_frame_adjust(0, callee_locals); 744 } else if (callee_locals > callee_parameters) { 745 // The caller frame may need extending to accommodate 746 // non-parameter locals of the first unpacked interpreted frame. 747 // Compute that adjustment. 748 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 749 } 750 751 // If the sender is deoptimized we must retrieve the address of the handler 752 // since the frame will "magically" show the original pc before the deopt 753 // and we'd undo the deopt. 754 755 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 756 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 757 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 758 } 759 760 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 761 762 #if INCLUDE_JVMCI 763 if (exceptionObject() != nullptr) { 764 current->set_exception_oop(exceptionObject()); 765 exec_mode = Unpack_exception; 766 } 767 #endif 768 769 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 770 assert(current->has_pending_exception(), "should have thrown OOME"); 771 current->set_exception_oop(current->pending_exception()); 772 current->clear_pending_exception(); 773 exec_mode = Unpack_exception; 774 } 775 776 #if INCLUDE_JVMCI 777 if (current->frames_to_pop_failed_realloc() > 0) { 778 current->set_pending_monitorenter(false); 779 } 780 #endif 781 782 int caller_actual_parameters = -1; // value not used except for interpreted frames, see below 783 if (deopt_sender.is_interpreted_frame()) { 784 caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0); 785 } 786 787 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 788 caller_adjustment * BytesPerWord, 789 caller_actual_parameters, 790 number_of_frames, 791 frame_sizes, 792 frame_pcs, 793 return_type, 794 exec_mode); 795 // On some platforms, we need a way to pass some platform dependent 796 // information to the unpacking code so the skeletal frames come out 797 // correct (initial fp value, unextended sp, ...) 798 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 799 800 if (array->frames() > 1) { 801 if (VerifyStack && TraceDeoptimization) { 802 tty->print_cr("Deoptimizing method containing inlining"); 803 } 804 } 805 806 array->set_unroll_block(info); 807 return info; 808 } 809 810 // Called to cleanup deoptimization data structures in normal case 811 // after unpacking to stack and when stack overflow error occurs 812 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 813 vframeArray *array) { 814 815 // Get array if coming from exception 816 if (array == nullptr) { 817 array = thread->vframe_array_head(); 818 } 819 thread->set_vframe_array_head(nullptr); 820 821 // Free the previous UnrollBlock 822 vframeArray* old_array = thread->vframe_array_last(); 823 thread->set_vframe_array_last(array); 824 825 if (old_array != nullptr) { 826 UnrollBlock* old_info = old_array->unroll_block(); 827 old_array->set_unroll_block(nullptr); 828 delete old_info; 829 delete old_array; 830 } 831 832 // Deallocate any resource creating in this routine and any ResourceObjs allocated 833 // inside the vframeArray (StackValueCollections) 834 835 delete thread->deopt_mark(); 836 thread->set_deopt_mark(nullptr); 837 thread->set_deopt_compiled_method(nullptr); 838 839 840 if (JvmtiExport::can_pop_frame()) { 841 // Regardless of whether we entered this routine with the pending 842 // popframe condition bit set, we should always clear it now 843 thread->clear_popframe_condition(); 844 } 845 846 // unpack_frames() is called at the end of the deoptimization handler 847 // and (in C2) at the end of the uncommon trap handler. Note this fact 848 // so that an asynchronous stack walker can work again. This counter is 849 // incremented at the beginning of fetch_unroll_info() and (in C2) at 850 // the beginning of uncommon_trap(). 851 thread->dec_in_deopt_handler(); 852 } 853 854 // Moved from cpu directories because none of the cpus has callee save values. 855 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 856 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 857 858 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 859 // the days we had adapter frames. When we deoptimize a situation where a 860 // compiled caller calls a compiled caller will have registers it expects 861 // to survive the call to the callee. If we deoptimize the callee the only 862 // way we can restore these registers is to have the oldest interpreter 863 // frame that we create restore these values. That is what this routine 864 // will accomplish. 865 866 // At the moment we have modified c2 to not have any callee save registers 867 // so this problem does not exist and this routine is just a place holder. 868 869 assert(f->is_interpreted_frame(), "must be interpreted"); 870 } 871 872 #ifndef PRODUCT 873 static bool falls_through(Bytecodes::Code bc) { 874 switch (bc) { 875 // List may be incomplete. Here we really only care about bytecodes where compiled code 876 // can deoptimize. 877 case Bytecodes::_goto: 878 case Bytecodes::_goto_w: 879 case Bytecodes::_athrow: 880 return false; 881 default: 882 return true; 883 } 884 } 885 #endif 886 887 // Return BasicType of value being returned 888 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 889 assert(thread == JavaThread::current(), "pre-condition"); 890 891 // We are already active in the special DeoptResourceMark any ResourceObj's we 892 // allocate will be freed at the end of the routine. 893 894 // JRT_LEAF methods don't normally allocate handles and there is a 895 // NoHandleMark to enforce that. It is actually safe to use Handles 896 // in a JRT_LEAF method, and sometimes desirable, but to do so we 897 // must use ResetNoHandleMark to bypass the NoHandleMark, and 898 // then use a HandleMark to ensure any Handles we do create are 899 // cleaned up in this scope. 900 ResetNoHandleMark rnhm; 901 HandleMark hm(thread); 902 903 frame stub_frame = thread->last_frame(); 904 905 Continuation::notify_deopt(thread, stub_frame.sp()); 906 907 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 908 // must point to the vframeArray for the unpack frame. 909 vframeArray* array = thread->vframe_array_head(); 910 UnrollBlock* info = array->unroll_block(); 911 912 // We set the last_Java frame. But the stack isn't really parsable here. So we 913 // clear it to make sure JFR understands not to try and walk stacks from events 914 // in here. 915 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 916 thread->frame_anchor()->set_last_Java_sp(nullptr); 917 918 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 919 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 920 921 thread->frame_anchor()->set_last_Java_sp(sp); 922 923 BasicType bt = info->return_type(); 924 925 // If we have an exception pending, claim that the return type is an oop 926 // so the deopt_blob does not overwrite the exception_oop. 927 928 if (exec_mode == Unpack_exception) 929 bt = T_OBJECT; 930 931 // Cleanup thread deopt data 932 cleanup_deopt_info(thread, array); 933 934 #ifndef PRODUCT 935 if (VerifyStack) { 936 ResourceMark res_mark; 937 // Clear pending exception to not break verification code (restored afterwards) 938 PreserveExceptionMark pm(thread); 939 940 thread->validate_frame_layout(); 941 942 // Verify that the just-unpacked frames match the interpreter's 943 // notions of expression stack and locals 944 vframeArray* cur_array = thread->vframe_array_last(); 945 RegisterMap rm(thread, 946 RegisterMap::UpdateMap::skip, 947 RegisterMap::ProcessFrames::include, 948 RegisterMap::WalkContinuation::skip); 949 rm.set_include_argument_oops(false); 950 bool is_top_frame = true; 951 int callee_size_of_parameters = 0; 952 int callee_max_locals = 0; 953 for (int i = 0; i < cur_array->frames(); i++) { 954 vframeArrayElement* el = cur_array->element(i); 955 frame* iframe = el->iframe(); 956 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 957 958 // Get the oop map for this bci 959 InterpreterOopMap mask; 960 int cur_invoke_parameter_size = 0; 961 bool try_next_mask = false; 962 int next_mask_expression_stack_size = -1; 963 int top_frame_expression_stack_adjustment = 0; 964 methodHandle mh(thread, iframe->interpreter_frame_method()); 965 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 966 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 967 int max_bci = mh->code_size(); 968 // Get to the next bytecode if possible 969 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 970 // Check to see if we can grab the number of outgoing arguments 971 // at an uncommon trap for an invoke (where the compiler 972 // generates debug info before the invoke has executed) 973 Bytecodes::Code cur_code = str.next(); 974 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 975 if (Bytecodes::is_invoke(cur_code)) { 976 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 977 cur_invoke_parameter_size = invoke.size_of_parameters(); 978 if (i != 0 && invoke.has_member_arg()) { 979 callee_size_of_parameters++; 980 } 981 } 982 if (str.bci() < max_bci) { 983 next_code = str.next(); 984 if (next_code >= 0) { 985 // The interpreter oop map generator reports results before 986 // the current bytecode has executed except in the case of 987 // calls. It seems to be hard to tell whether the compiler 988 // has emitted debug information matching the "state before" 989 // a given bytecode or the state after, so we try both 990 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 991 // Get expression stack size for the next bytecode 992 InterpreterOopMap next_mask; 993 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 994 next_mask_expression_stack_size = next_mask.expression_stack_size(); 995 if (Bytecodes::is_invoke(next_code)) { 996 Bytecode_invoke invoke(mh, str.bci()); 997 next_mask_expression_stack_size += invoke.size_of_parameters(); 998 } 999 // Need to subtract off the size of the result type of 1000 // the bytecode because this is not described in the 1001 // debug info but returned to the interpreter in the TOS 1002 // caching register 1003 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 1004 if (bytecode_result_type != T_ILLEGAL) { 1005 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 1006 } 1007 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 1008 try_next_mask = true; 1009 } 1010 } 1011 } 1012 1013 // Verify stack depth and oops in frame 1014 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 1015 if (!( 1016 /* SPARC */ 1017 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 1018 /* x86 */ 1019 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 1020 (try_next_mask && 1021 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 1022 top_frame_expression_stack_adjustment))) || 1023 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 1024 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 1025 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 1026 )) { 1027 { 1028 // Print out some information that will help us debug the problem 1029 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 1030 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 1031 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1032 if (try_next_mask) { 1033 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1034 } 1035 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1036 iframe->interpreter_frame_expression_stack_size()); 1037 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1038 tty->print_cr(" try_next_mask = %d", try_next_mask); 1039 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1040 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1041 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1042 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1043 tty->print_cr(" exec_mode = %d", exec_mode); 1044 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1045 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1046 tty->print_cr(" Interpreted frames:"); 1047 for (int k = 0; k < cur_array->frames(); k++) { 1048 vframeArrayElement* el = cur_array->element(k); 1049 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1050 } 1051 cur_array->print_on_2(tty); 1052 } 1053 guarantee(false, "wrong number of expression stack elements during deopt"); 1054 } 1055 VerifyOopClosure verify; 1056 iframe->oops_interpreted_do(&verify, &rm, false); 1057 callee_size_of_parameters = mh->size_of_parameters(); 1058 callee_max_locals = mh->max_locals(); 1059 is_top_frame = false; 1060 } 1061 } 1062 #endif // !PRODUCT 1063 1064 return bt; 1065 JRT_END 1066 1067 class DeoptimizeMarkedClosure : public HandshakeClosure { 1068 public: 1069 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1070 void do_thread(Thread* thread) { 1071 JavaThread* jt = JavaThread::cast(thread); 1072 jt->deoptimize_marked_methods(); 1073 } 1074 }; 1075 1076 void Deoptimization::deoptimize_all_marked() { 1077 ResourceMark rm; 1078 1079 // Make the dependent methods not entrant 1080 CodeCache::make_marked_nmethods_deoptimized(); 1081 1082 DeoptimizeMarkedClosure deopt; 1083 if (SafepointSynchronize::is_at_safepoint()) { 1084 Threads::java_threads_do(&deopt); 1085 } else { 1086 Handshake::execute(&deopt); 1087 } 1088 } 1089 1090 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1091 = Deoptimization::Action_reinterpret; 1092 1093 #if INCLUDE_JVMCI 1094 template<typename CacheType> 1095 class BoxCacheBase : public CHeapObj<mtCompiler> { 1096 protected: 1097 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1098 ResourceMark rm(thread); 1099 char* klass_name_str = klass_name->as_C_string(); 1100 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle()); 1101 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1102 if (!ik->is_in_error_state()) { 1103 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1104 CacheType::compute_offsets(ik); 1105 } 1106 return ik; 1107 } 1108 }; 1109 1110 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1111 PrimitiveType _low; 1112 PrimitiveType _high; 1113 jobject _cache; 1114 protected: 1115 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1116 BoxCache(Thread* thread) { 1117 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1118 if (ik->is_in_error_state()) { 1119 _low = 1; 1120 _high = 0; 1121 _cache = nullptr; 1122 } else { 1123 objArrayOop cache = CacheType::cache(ik); 1124 assert(cache->length() > 0, "Empty cache"); 1125 _low = BoxType::value(cache->obj_at(0)); 1126 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1127 _cache = JNIHandles::make_global(Handle(thread, cache)); 1128 } 1129 } 1130 ~BoxCache() { 1131 JNIHandles::destroy_global(_cache); 1132 } 1133 public: 1134 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1135 if (_singleton == nullptr) { 1136 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1137 if (!Atomic::replace_if_null(&_singleton, s)) { 1138 delete s; 1139 } 1140 } 1141 return _singleton; 1142 } 1143 oop lookup(PrimitiveType value) { 1144 if (_low <= value && value <= _high) { 1145 int offset = checked_cast<int>(value - _low); 1146 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1147 } 1148 return nullptr; 1149 } 1150 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1151 if (_cache == nullptr) { 1152 cache_init_error = true; 1153 return nullptr; 1154 } 1155 // Have to cast to avoid little/big-endian problems. 1156 if (sizeof(PrimitiveType) > sizeof(jint)) { 1157 jlong value = (jlong)raw_value; 1158 return lookup(value); 1159 } 1160 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1161 return lookup(value); 1162 } 1163 }; 1164 1165 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1166 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1167 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1168 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1169 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1170 1171 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1172 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1173 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1174 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1175 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1176 1177 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1178 jobject _true_cache; 1179 jobject _false_cache; 1180 protected: 1181 static BooleanBoxCache *_singleton; 1182 BooleanBoxCache(Thread *thread) { 1183 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1184 if (ik->is_in_error_state()) { 1185 _true_cache = nullptr; 1186 _false_cache = nullptr; 1187 } else { 1188 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1189 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1190 } 1191 } 1192 ~BooleanBoxCache() { 1193 JNIHandles::destroy_global(_true_cache); 1194 JNIHandles::destroy_global(_false_cache); 1195 } 1196 public: 1197 static BooleanBoxCache* singleton(Thread* thread) { 1198 if (_singleton == nullptr) { 1199 BooleanBoxCache* s = new BooleanBoxCache(thread); 1200 if (!Atomic::replace_if_null(&_singleton, s)) { 1201 delete s; 1202 } 1203 } 1204 return _singleton; 1205 } 1206 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1207 if (_true_cache == nullptr) { 1208 cache_in_error = true; 1209 return nullptr; 1210 } 1211 // Have to cast to avoid little/big-endian problems. 1212 jboolean value = (jboolean)*((jint*)&raw_value); 1213 return lookup(value); 1214 } 1215 oop lookup(jboolean value) { 1216 if (value != 0) { 1217 return JNIHandles::resolve_non_null(_true_cache); 1218 } 1219 return JNIHandles::resolve_non_null(_false_cache); 1220 } 1221 }; 1222 1223 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1224 1225 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1226 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1227 BasicType box_type = vmClasses::box_klass_type(k); 1228 if (box_type != T_OBJECT) { 1229 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1230 switch(box_type) { 1231 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1232 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1233 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1234 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1235 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1236 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1237 default:; 1238 } 1239 } 1240 return nullptr; 1241 } 1242 #endif // INCLUDE_JVMCI 1243 1244 #if COMPILER2_OR_JVMCI 1245 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1246 Handle pending_exception(THREAD, thread->pending_exception()); 1247 const char* exception_file = thread->exception_file(); 1248 int exception_line = thread->exception_line(); 1249 thread->clear_pending_exception(); 1250 1251 bool failures = false; 1252 1253 for (int i = 0; i < objects->length(); i++) { 1254 assert(objects->at(i)->is_object(), "invalid debug information"); 1255 ObjectValue* sv = (ObjectValue*) objects->at(i); 1256 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1257 1258 // Check if the object may be null and has an additional is_init input that needs 1259 // to be checked before using the field values. Skip re-allocation if it is null. 1260 if (sv->maybe_null()) { 1261 assert(k->is_inline_klass(), "must be an inline klass"); 1262 jint is_init = StackValue::create_stack_value(fr, reg_map, sv->is_init())->get_jint(); 1263 if (is_init == 0) { 1264 continue; 1265 } 1266 } 1267 1268 oop obj = nullptr; 1269 bool cache_init_error = false; 1270 if (k->is_instance_klass()) { 1271 #if INCLUDE_JVMCI 1272 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1273 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1274 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1275 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1276 if (obj != nullptr) { 1277 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1278 abv->set_cached(true); 1279 } else if (cache_init_error) { 1280 // Results in an OOME which is valid (as opposed to a class initialization error) 1281 // and is fine for the rare case a cache initialization failing. 1282 failures = true; 1283 } 1284 } 1285 #endif // INCLUDE_JVMCI 1286 1287 InstanceKlass* ik = InstanceKlass::cast(k); 1288 if (obj == nullptr && !cache_init_error) { 1289 InternalOOMEMark iom(THREAD); 1290 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1291 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1292 } else { 1293 obj = ik->allocate_instance(THREAD); 1294 } 1295 } 1296 } else if (k->is_flatArray_klass()) { 1297 FlatArrayKlass* ak = FlatArrayKlass::cast(k); 1298 // Inline type array must be zeroed because not all memory is reassigned 1299 obj = ak->allocate(sv->field_size(), ak->layout_kind(), THREAD); 1300 } else if (k->is_typeArray_klass()) { 1301 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1302 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1303 int len = sv->field_size() / type2size[ak->element_type()]; 1304 InternalOOMEMark iom(THREAD); 1305 obj = ak->allocate(len, THREAD); 1306 } else if (k->is_objArray_klass()) { 1307 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1308 InternalOOMEMark iom(THREAD); 1309 obj = ak->allocate(sv->field_size(), THREAD); 1310 } 1311 1312 if (obj == nullptr) { 1313 failures = true; 1314 } 1315 1316 assert(sv->value().is_null(), "redundant reallocation"); 1317 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1318 CLEAR_PENDING_EXCEPTION; 1319 sv->set_value(obj); 1320 } 1321 1322 if (failures) { 1323 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1324 } else if (pending_exception.not_null()) { 1325 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1326 } 1327 1328 return failures; 1329 } 1330 1331 // We're deoptimizing at the return of a call, inline type fields are 1332 // in registers. When we go back to the interpreter, it will expect a 1333 // reference to an inline type instance. Allocate and initialize it from 1334 // the register values here. 1335 bool Deoptimization::realloc_inline_type_result(InlineKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) { 1336 oop new_vt = vk->realloc_result(map, return_oops, THREAD); 1337 if (new_vt == nullptr) { 1338 CLEAR_PENDING_EXCEPTION; 1339 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true); 1340 } 1341 return_oops.clear(); 1342 return_oops.push(Handle(THREAD, new_vt)); 1343 return false; 1344 } 1345 1346 #if INCLUDE_JVMCI 1347 /** 1348 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1349 * we need to somehow be able to recover the actual kind to be able to write the correct 1350 * amount of bytes. 1351 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1352 * the entries at index n + 1 to n + i are 'markers'. 1353 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1354 * expected form of the array would be: 1355 * 1356 * {b0, b1, b2, b3, INT, marker, b6, b7} 1357 * 1358 * Thus, in order to get back the size of the entry, we simply need to count the number 1359 * of marked entries 1360 * 1361 * @param virtualArray the virtualized byte array 1362 * @param i index of the virtual entry we are recovering 1363 * @return The number of bytes the entry spans 1364 */ 1365 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1366 int index = i; 1367 while (++index < virtualArray->field_size() && 1368 virtualArray->field_at(index)->is_marker()) {} 1369 return index - i; 1370 } 1371 1372 /** 1373 * If there was a guarantee for byte array to always start aligned to a long, we could 1374 * do a simple check on the parity of the index. Unfortunately, that is not always the 1375 * case. Thus, we check alignment of the actual address we are writing to. 1376 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1377 * write a long to index 3. 1378 */ 1379 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1380 jbyte* res = obj->byte_at_addr(index); 1381 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1382 return res; 1383 } 1384 1385 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1386 switch (byte_count) { 1387 case 1: 1388 obj->byte_at_put(index, (jbyte) value->get_jint()); 1389 break; 1390 case 2: 1391 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1392 break; 1393 case 4: 1394 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1395 break; 1396 case 8: 1397 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1398 break; 1399 default: 1400 ShouldNotReachHere(); 1401 } 1402 } 1403 #endif // INCLUDE_JVMCI 1404 1405 1406 // restore elements of an eliminated type array 1407 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1408 int index = 0; 1409 1410 for (int i = 0; i < sv->field_size(); i++) { 1411 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1412 switch(type) { 1413 case T_LONG: case T_DOUBLE: { 1414 assert(value->type() == T_INT, "Agreement."); 1415 StackValue* low = 1416 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1417 #ifdef _LP64 1418 jlong res = (jlong)low->get_intptr(); 1419 #else 1420 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1421 #endif 1422 obj->long_at_put(index, res); 1423 break; 1424 } 1425 1426 case T_INT: case T_FLOAT: { // 4 bytes. 1427 assert(value->type() == T_INT, "Agreement."); 1428 bool big_value = false; 1429 if (i + 1 < sv->field_size() && type == T_INT) { 1430 if (sv->field_at(i)->is_location()) { 1431 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1432 if (type == Location::dbl || type == Location::lng) { 1433 big_value = true; 1434 } 1435 } else if (sv->field_at(i)->is_constant_int()) { 1436 ScopeValue* next_scope_field = sv->field_at(i + 1); 1437 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1438 big_value = true; 1439 } 1440 } 1441 } 1442 1443 if (big_value) { 1444 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1445 #ifdef _LP64 1446 jlong res = (jlong)low->get_intptr(); 1447 #else 1448 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1449 #endif 1450 obj->int_at_put(index, *(jint*)&res); 1451 obj->int_at_put(++index, *((jint*)&res + 1)); 1452 } else { 1453 obj->int_at_put(index, value->get_jint()); 1454 } 1455 break; 1456 } 1457 1458 case T_SHORT: 1459 assert(value->type() == T_INT, "Agreement."); 1460 obj->short_at_put(index, (jshort)value->get_jint()); 1461 break; 1462 1463 case T_CHAR: 1464 assert(value->type() == T_INT, "Agreement."); 1465 obj->char_at_put(index, (jchar)value->get_jint()); 1466 break; 1467 1468 case T_BYTE: { 1469 assert(value->type() == T_INT, "Agreement."); 1470 #if INCLUDE_JVMCI 1471 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1472 int byte_count = count_number_of_bytes_for_entry(sv, i); 1473 byte_array_put(obj, value, index, byte_count); 1474 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1475 i += byte_count - 1; // Balance the loop counter. 1476 index += byte_count; 1477 // index has been updated so continue at top of loop 1478 continue; 1479 #else 1480 obj->byte_at_put(index, (jbyte)value->get_jint()); 1481 break; 1482 #endif // INCLUDE_JVMCI 1483 } 1484 1485 case T_BOOLEAN: { 1486 assert(value->type() == T_INT, "Agreement."); 1487 obj->bool_at_put(index, (jboolean)value->get_jint()); 1488 break; 1489 } 1490 1491 default: 1492 ShouldNotReachHere(); 1493 } 1494 index++; 1495 } 1496 } 1497 1498 // restore fields of an eliminated object array 1499 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1500 for (int i = 0; i < sv->field_size(); i++) { 1501 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1502 assert(value->type() == T_OBJECT, "object element expected"); 1503 obj->obj_at_put(i, value->get_obj()()); 1504 } 1505 } 1506 1507 class ReassignedField { 1508 public: 1509 int _offset; 1510 BasicType _type; 1511 InstanceKlass* _klass; 1512 bool _is_flat; 1513 bool _is_null_free; 1514 public: 1515 ReassignedField() : _offset(0), _type(T_ILLEGAL), _klass(nullptr), _is_flat(false), _is_null_free(false) { } 1516 }; 1517 1518 static int compare(ReassignedField* left, ReassignedField* right) { 1519 return left->_offset - right->_offset; 1520 } 1521 1522 1523 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned 1524 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) { 1525 InstanceKlass* super = klass->superklass(); 1526 if (super != nullptr) { 1527 get_reassigned_fields(super, fields, is_jvmci); 1528 } 1529 for (AllFieldStream fs(klass); !fs.done(); fs.next()) { 1530 if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) { 1531 ReassignedField field; 1532 field._offset = fs.offset(); 1533 field._type = Signature::basic_type(fs.signature()); 1534 if (fs.is_flat()) { 1535 field._is_flat = true; 1536 field._is_null_free = fs.is_null_free_inline_type(); 1537 // Resolve klass of flat inline type field 1538 field._klass = InlineKlass::cast(klass->get_inline_type_field_klass(fs.index())); 1539 } 1540 fields->append(field); 1541 } 1542 } 1543 return fields; 1544 } 1545 1546 // Restore fields of an eliminated instance object employing the same field order used by the compiler. 1547 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci, int base_offset, GrowableArray<int>* null_marker_offsets, TRAPS) { 1548 GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci); 1549 fields->sort(compare); 1550 1551 // Keep track of null marker offset for flat fields 1552 bool set_null_markers = false; 1553 if (null_marker_offsets == nullptr) { 1554 set_null_markers = true; 1555 null_marker_offsets = new GrowableArray<int>(); 1556 } 1557 1558 for (int i = 0; i < fields->length(); i++) { 1559 BasicType type = fields->at(i)._type; 1560 int offset = base_offset + fields->at(i)._offset; 1561 // Check for flat inline type field before accessing the ScopeValue because it might not have any fields 1562 if (fields->at(i)._is_flat) { 1563 // Recursively re-assign flat inline type fields 1564 InstanceKlass* vk = fields->at(i)._klass; 1565 assert(vk != nullptr, "must be resolved"); 1566 offset -= InlineKlass::cast(vk)->payload_offset(); // Adjust offset to omit oop header 1567 svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, is_jvmci, offset, null_marker_offsets, CHECK_0); 1568 if (!fields->at(i)._is_null_free) { 1569 int nm_offset = offset + InlineKlass::cast(vk)->null_marker_offset(); 1570 null_marker_offsets->append(nm_offset); 1571 } 1572 continue; // Continue because we don't need to increment svIndex 1573 } 1574 ScopeValue* scope_field = sv->field_at(svIndex); 1575 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1576 switch (type) { 1577 case T_OBJECT: 1578 case T_ARRAY: 1579 assert(value->type() == T_OBJECT, "Agreement."); 1580 obj->obj_field_put(offset, value->get_obj()()); 1581 break; 1582 1583 case T_INT: case T_FLOAT: { // 4 bytes. 1584 assert(value->type() == T_INT, "Agreement."); 1585 bool big_value = false; 1586 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1587 if (scope_field->is_location()) { 1588 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1589 if (type == Location::dbl || type == Location::lng) { 1590 big_value = true; 1591 } 1592 } 1593 if (scope_field->is_constant_int()) { 1594 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1595 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1596 big_value = true; 1597 } 1598 } 1599 } 1600 1601 if (big_value) { 1602 i++; 1603 assert(i < fields->length(), "second T_INT field needed"); 1604 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1605 } else { 1606 obj->int_field_put(offset, value->get_jint()); 1607 break; 1608 } 1609 } 1610 /* no break */ 1611 1612 case T_LONG: case T_DOUBLE: { 1613 assert(value->type() == T_INT, "Agreement."); 1614 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1615 #ifdef _LP64 1616 jlong res = (jlong)low->get_intptr(); 1617 #else 1618 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1619 #endif 1620 obj->long_field_put(offset, res); 1621 break; 1622 } 1623 1624 case T_SHORT: 1625 assert(value->type() == T_INT, "Agreement."); 1626 obj->short_field_put(offset, (jshort)value->get_jint()); 1627 break; 1628 1629 case T_CHAR: 1630 assert(value->type() == T_INT, "Agreement."); 1631 obj->char_field_put(offset, (jchar)value->get_jint()); 1632 break; 1633 1634 case T_BYTE: 1635 assert(value->type() == T_INT, "Agreement."); 1636 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1637 break; 1638 1639 case T_BOOLEAN: 1640 assert(value->type() == T_INT, "Agreement."); 1641 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1642 break; 1643 1644 default: 1645 ShouldNotReachHere(); 1646 } 1647 svIndex++; 1648 } 1649 if (set_null_markers) { 1650 // The null marker values come after all the field values in the debug info 1651 assert(null_marker_offsets->length() == (sv->field_size() - svIndex), "Missing null marker(s) in debug info"); 1652 for (int i = 0; i < null_marker_offsets->length(); ++i) { 1653 int offset = null_marker_offsets->at(i); 1654 jbyte is_init = (jbyte)StackValue::create_stack_value(fr, reg_map, sv->field_at(svIndex++))->get_jint(); 1655 obj->byte_field_put(offset, is_init); 1656 } 1657 } 1658 return svIndex; 1659 } 1660 1661 // restore fields of an eliminated inline type array 1662 void Deoptimization::reassign_flat_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, flatArrayOop obj, FlatArrayKlass* vak, bool is_jvmci, TRAPS) { 1663 InlineKlass* vk = vak->element_klass(); 1664 assert(vk->flat_array(), "should only be used for flat inline type arrays"); 1665 // Adjust offset to omit oop header 1666 int base_offset = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT) - InlineKlass::cast(vk)->payload_offset(); 1667 // Initialize all elements of the flat inline type array 1668 for (int i = 0; i < sv->field_size(); i++) { 1669 ScopeValue* val = sv->field_at(i); 1670 int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper())); 1671 reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, is_jvmci, offset, nullptr, CHECK); 1672 } 1673 } 1674 1675 // restore fields of all eliminated objects and arrays 1676 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci, TRAPS) { 1677 for (int i = 0; i < objects->length(); i++) { 1678 assert(objects->at(i)->is_object(), "invalid debug information"); 1679 ObjectValue* sv = (ObjectValue*) objects->at(i); 1680 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1681 Handle obj = sv->value(); 1682 assert(obj.not_null() || realloc_failures || sv->maybe_null(), "reallocation was missed"); 1683 #ifndef PRODUCT 1684 if (PrintDeoptimizationDetails) { 1685 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1686 } 1687 #endif // !PRODUCT 1688 1689 if (obj.is_null()) { 1690 continue; 1691 } 1692 1693 #if INCLUDE_JVMCI 1694 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1695 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1696 continue; 1697 } 1698 #endif // INCLUDE_JVMCI 1699 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1700 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1701 ScopeValue* payload = sv->field_at(0); 1702 if (payload->is_location() && 1703 payload->as_LocationValue()->location().type() == Location::vector) { 1704 #ifndef PRODUCT 1705 if (PrintDeoptimizationDetails) { 1706 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1707 if (Verbose) { 1708 Handle obj = sv->value(); 1709 k->oop_print_on(obj(), tty); 1710 } 1711 } 1712 #endif // !PRODUCT 1713 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1714 } 1715 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1716 // which could be restored after vector object allocation. 1717 } 1718 if (k->is_instance_klass()) { 1719 InstanceKlass* ik = InstanceKlass::cast(k); 1720 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci, 0, nullptr, CHECK); 1721 } else if (k->is_flatArray_klass()) { 1722 FlatArrayKlass* vak = FlatArrayKlass::cast(k); 1723 reassign_flat_array_elements(fr, reg_map, sv, (flatArrayOop) obj(), vak, is_jvmci, CHECK); 1724 } else if (k->is_typeArray_klass()) { 1725 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1726 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1727 } else if (k->is_objArray_klass()) { 1728 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1729 } 1730 } 1731 // These objects may escape when we return to Interpreter after deoptimization. 1732 // We need barrier so that stores that initialize these objects can't be reordered 1733 // with subsequent stores that make these objects accessible by other threads. 1734 OrderAccess::storestore(); 1735 } 1736 1737 1738 // relock objects for which synchronization was eliminated 1739 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1740 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1741 bool relocked_objects = false; 1742 for (int i = 0; i < monitors->length(); i++) { 1743 MonitorInfo* mon_info = monitors->at(i); 1744 if (mon_info->eliminated()) { 1745 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1746 relocked_objects = true; 1747 if (!mon_info->owner_is_scalar_replaced()) { 1748 Handle obj(thread, mon_info->owner()); 1749 markWord mark = obj->mark(); 1750 if (exec_mode == Unpack_none) { 1751 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1752 // With exec_mode == Unpack_none obj may be thread local and locked in 1753 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1754 markWord dmw = mark.displaced_mark_helper(); 1755 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1756 obj->set_mark(dmw); 1757 } 1758 if (mark.has_monitor()) { 1759 // defer relocking if the deoptee thread is currently waiting for obj 1760 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1761 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1762 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1763 if (LockingMode == LM_LEGACY) { 1764 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1765 } else if (UseObjectMonitorTable) { 1766 mon_info->lock()->clear_object_monitor_cache(); 1767 } 1768 #ifdef ASSERT 1769 else { 1770 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1771 mon_info->lock()->set_bad_metadata_deopt(); 1772 } 1773 #endif 1774 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1775 continue; 1776 } 1777 } 1778 } 1779 BasicLock* lock = mon_info->lock(); 1780 if (LockingMode == LM_LIGHTWEIGHT) { 1781 // We have lost information about the correct state of the lock stack. 1782 // Entering may create an invalid lock stack. Inflate the lock if it 1783 // was fast_locked to restore the valid lock stack. 1784 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1785 if (deoptee_thread->lock_stack().contains(obj())) { 1786 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1787 deoptee_thread, thread); 1788 } 1789 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1790 assert(obj->mark().has_monitor(), "must be"); 1791 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1792 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1793 } else { 1794 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1795 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1796 } 1797 } 1798 } 1799 } 1800 return relocked_objects; 1801 } 1802 #endif // COMPILER2_OR_JVMCI 1803 1804 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1805 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1806 1807 // Register map for next frame (used for stack crawl). We capture 1808 // the state of the deopt'ing frame's caller. Thus if we need to 1809 // stuff a C2I adapter we can properly fill in the callee-save 1810 // register locations. 1811 frame caller = fr.sender(reg_map); 1812 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1813 1814 frame sender = caller; 1815 1816 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1817 // the vframeArray containing the unpacking information is allocated in the C heap. 1818 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1819 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1820 1821 // Compare the vframeArray to the collected vframes 1822 assert(array->structural_compare(thread, chunk), "just checking"); 1823 1824 if (TraceDeoptimization) { 1825 ResourceMark rm; 1826 stringStream st; 1827 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1828 st.print(" "); 1829 fr.print_on(&st); 1830 st.print_cr(" Virtual frames (innermost/newest first):"); 1831 for (int index = 0; index < chunk->length(); index++) { 1832 compiledVFrame* vf = chunk->at(index); 1833 int bci = vf->raw_bci(); 1834 const char* code_name; 1835 if (bci == SynchronizationEntryBCI) { 1836 code_name = "sync entry"; 1837 } else { 1838 Bytecodes::Code code = vf->method()->code_at(bci); 1839 code_name = Bytecodes::name(code); 1840 } 1841 1842 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1843 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1844 st.print(" - %s", code_name); 1845 st.print_cr(" @ bci=%d ", bci); 1846 } 1847 tty->print_raw(st.freeze()); 1848 tty->cr(); 1849 } 1850 1851 return array; 1852 } 1853 1854 #if COMPILER2_OR_JVMCI 1855 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1856 // Reallocation of some scalar replaced objects failed. Record 1857 // that we need to pop all the interpreter frames for the 1858 // deoptimized compiled frame. 1859 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1860 thread->set_frames_to_pop_failed_realloc(array->frames()); 1861 // Unlock all monitors here otherwise the interpreter will see a 1862 // mix of locked and unlocked monitors (because of failed 1863 // reallocations of synchronized objects) and be confused. 1864 for (int i = 0; i < array->frames(); i++) { 1865 MonitorChunk* monitors = array->element(i)->monitors(); 1866 if (monitors != nullptr) { 1867 // Unlock in reverse order starting from most nested monitor. 1868 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1869 BasicObjectLock* src = monitors->at(j); 1870 if (src->obj() != nullptr) { 1871 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1872 } 1873 } 1874 array->element(i)->free_monitors(); 1875 #ifdef ASSERT 1876 array->element(i)->set_removed_monitors(); 1877 #endif 1878 } 1879 } 1880 } 1881 #endif 1882 1883 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1884 assert(fr.can_be_deoptimized(), "checking frame type"); 1885 1886 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1887 1888 if (LogCompilation && xtty != nullptr) { 1889 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1890 assert(nm != nullptr, "only compiled methods can deopt"); 1891 1892 ttyLocker ttyl; 1893 xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1894 nm->log_identity(xtty); 1895 xtty->end_head(); 1896 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1897 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1898 xtty->method(sd->method()); 1899 xtty->end_elem(); 1900 if (sd->is_top()) break; 1901 } 1902 xtty->tail("deoptimized"); 1903 } 1904 1905 Continuation::notify_deopt(thread, fr.sp()); 1906 1907 // Patch the compiled method so that when execution returns to it we will 1908 // deopt the execution state and return to the interpreter. 1909 fr.deoptimize(thread); 1910 } 1911 1912 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1913 // Deoptimize only if the frame comes from compiled code. 1914 // Do not deoptimize the frame which is already patched 1915 // during the execution of the loops below. 1916 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1917 return; 1918 } 1919 ResourceMark rm; 1920 deoptimize_single_frame(thread, fr, reason); 1921 } 1922 1923 #if INCLUDE_JVMCI 1924 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1925 // there is no exception handler for this pc => deoptimize 1926 nm->make_not_entrant("missing exception handler"); 1927 1928 // Use Deoptimization::deoptimize for all of its side-effects: 1929 // gathering traps statistics, logging... 1930 // it also patches the return pc but we do not care about that 1931 // since we return a continuation to the deopt_blob below. 1932 JavaThread* thread = JavaThread::current(); 1933 RegisterMap reg_map(thread, 1934 RegisterMap::UpdateMap::skip, 1935 RegisterMap::ProcessFrames::include, 1936 RegisterMap::WalkContinuation::skip); 1937 frame runtime_frame = thread->last_frame(); 1938 frame caller_frame = runtime_frame.sender(®_map); 1939 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1940 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1941 compiledVFrame* cvf = compiledVFrame::cast(vf); 1942 ScopeDesc* imm_scope = cvf->scope(); 1943 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1944 if (imm_mdo != nullptr) { 1945 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1946 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1947 1948 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1949 if (pdata != nullptr && pdata->is_BitData()) { 1950 BitData* bit_data = (BitData*) pdata; 1951 bit_data->set_exception_seen(); 1952 } 1953 } 1954 1955 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1956 1957 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1958 if (trap_mdo != nullptr) { 1959 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1960 } 1961 1962 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1963 } 1964 #endif 1965 1966 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1967 assert(thread == Thread::current() || 1968 thread->is_handshake_safe_for(Thread::current()) || 1969 SafepointSynchronize::is_at_safepoint(), 1970 "can only deoptimize other thread at a safepoint/handshake"); 1971 // Compute frame and register map based on thread and sp. 1972 RegisterMap reg_map(thread, 1973 RegisterMap::UpdateMap::skip, 1974 RegisterMap::ProcessFrames::include, 1975 RegisterMap::WalkContinuation::skip); 1976 frame fr = thread->last_frame(); 1977 while (fr.id() != id) { 1978 fr = fr.sender(®_map); 1979 } 1980 deoptimize(thread, fr, reason); 1981 } 1982 1983 1984 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1985 Thread* current = Thread::current(); 1986 if (thread == current || thread->is_handshake_safe_for(current)) { 1987 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1988 } else { 1989 VM_DeoptimizeFrame deopt(thread, id, reason); 1990 VMThread::execute(&deopt); 1991 } 1992 } 1993 1994 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1995 deoptimize_frame(thread, id, Reason_constraint); 1996 } 1997 1998 // JVMTI PopFrame support 1999 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 2000 { 2001 assert(thread == JavaThread::current(), "pre-condition"); 2002 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 2003 } 2004 JRT_END 2005 2006 MethodData* 2007 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 2008 bool create_if_missing) { 2009 JavaThread* THREAD = thread; // For exception macros. 2010 MethodData* mdo = m()->method_data(); 2011 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 2012 // Build an MDO. Ignore errors like OutOfMemory; 2013 // that simply means we won't have an MDO to update. 2014 Method::build_profiling_method_data(m, THREAD); 2015 if (HAS_PENDING_EXCEPTION) { 2016 // Only metaspace OOM is expected. No Java code executed. 2017 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 2018 CLEAR_PENDING_EXCEPTION; 2019 } 2020 mdo = m()->method_data(); 2021 } 2022 return mdo; 2023 } 2024 2025 #if COMPILER2_OR_JVMCI 2026 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 2027 // In case of an unresolved klass entry, load the class. 2028 // This path is exercised from case _ldc in Parse::do_one_bytecode, 2029 // and probably nowhere else. 2030 // Even that case would benefit from simply re-interpreting the 2031 // bytecode, without paying special attention to the class index. 2032 // So this whole "class index" feature should probably be removed. 2033 2034 if (constant_pool->tag_at(index).is_unresolved_klass()) { 2035 Klass* tk = constant_pool->klass_at(index, THREAD); 2036 if (HAS_PENDING_EXCEPTION) { 2037 // Exception happened during classloading. We ignore the exception here, since it 2038 // is going to be rethrown since the current activation is going to be deoptimized and 2039 // the interpreter will re-execute the bytecode. 2040 // Do not clear probable Async Exceptions. 2041 CLEAR_PENDING_NONASYNC_EXCEPTION; 2042 // Class loading called java code which may have caused a stack 2043 // overflow. If the exception was thrown right before the return 2044 // to the runtime the stack is no longer guarded. Reguard the 2045 // stack otherwise if we return to the uncommon trap blob and the 2046 // stack bang causes a stack overflow we crash. 2047 JavaThread* jt = THREAD; 2048 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 2049 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 2050 } 2051 return; 2052 } 2053 2054 assert(!constant_pool->tag_at(index).is_symbol(), 2055 "no symbolic names here, please"); 2056 } 2057 2058 #if INCLUDE_JFR 2059 2060 class DeoptReasonSerializer : public JfrSerializer { 2061 public: 2062 void serialize(JfrCheckpointWriter& writer) { 2063 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 2064 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 2065 writer.write_key((u8)i); 2066 writer.write(Deoptimization::trap_reason_name(i)); 2067 } 2068 } 2069 }; 2070 2071 class DeoptActionSerializer : public JfrSerializer { 2072 public: 2073 void serialize(JfrCheckpointWriter& writer) { 2074 static const u4 nof_actions = Deoptimization::Action_LIMIT; 2075 writer.write_count(nof_actions); 2076 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 2077 writer.write_key(i); 2078 writer.write(Deoptimization::trap_action_name((int)i)); 2079 } 2080 } 2081 }; 2082 2083 static void register_serializers() { 2084 static int critical_section = 0; 2085 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 2086 return; 2087 } 2088 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 2089 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 2090 } 2091 2092 static void post_deoptimization_event(nmethod* nm, 2093 const Method* method, 2094 int trap_bci, 2095 int instruction, 2096 Deoptimization::DeoptReason reason, 2097 Deoptimization::DeoptAction action) { 2098 assert(nm != nullptr, "invariant"); 2099 assert(method != nullptr, "invariant"); 2100 if (EventDeoptimization::is_enabled()) { 2101 static bool serializers_registered = false; 2102 if (!serializers_registered) { 2103 register_serializers(); 2104 serializers_registered = true; 2105 } 2106 EventDeoptimization event; 2107 event.set_compileId(nm->compile_id()); 2108 event.set_compiler(nm->compiler_type()); 2109 event.set_method(method); 2110 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 2111 event.set_bci(trap_bci); 2112 event.set_instruction(instruction); 2113 event.set_reason(reason); 2114 event.set_action(action); 2115 event.commit(); 2116 } 2117 } 2118 2119 #endif // INCLUDE_JFR 2120 2121 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2122 const char* reason_name, const char* reason_action) { 2123 LogTarget(Debug, deoptimization) lt; 2124 if (lt.is_enabled()) { 2125 LogStream ls(lt); 2126 bool is_osr = nm->is_osr_method(); 2127 ls.print("cid=%4d %s level=%d", 2128 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2129 ls.print(" %s", tm->name_and_sig_as_C_string()); 2130 ls.print(" trap_bci=%d ", trap_bci); 2131 if (is_osr) { 2132 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2133 } 2134 ls.print("%s ", reason_name); 2135 ls.print("%s ", reason_action); 2136 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2137 pc, fr.pc() - nm->code_begin()); 2138 } 2139 } 2140 2141 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2142 HandleMark hm(current); 2143 2144 // uncommon_trap() is called at the beginning of the uncommon trap 2145 // handler. Note this fact before we start generating temporary frames 2146 // that can confuse an asynchronous stack walker. This counter is 2147 // decremented at the end of unpack_frames(). 2148 2149 current->inc_in_deopt_handler(); 2150 2151 #if INCLUDE_JVMCI 2152 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2153 RegisterMap reg_map(current, 2154 RegisterMap::UpdateMap::include, 2155 RegisterMap::ProcessFrames::include, 2156 RegisterMap::WalkContinuation::skip); 2157 #else 2158 RegisterMap reg_map(current, 2159 RegisterMap::UpdateMap::skip, 2160 RegisterMap::ProcessFrames::include, 2161 RegisterMap::WalkContinuation::skip); 2162 #endif 2163 frame stub_frame = current->last_frame(); 2164 frame fr = stub_frame.sender(®_map); 2165 2166 // Log a message 2167 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2168 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2169 2170 { 2171 ResourceMark rm; 2172 2173 DeoptReason reason = trap_request_reason(trap_request); 2174 DeoptAction action = trap_request_action(trap_request); 2175 #if INCLUDE_JVMCI 2176 int debug_id = trap_request_debug_id(trap_request); 2177 #endif 2178 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2179 2180 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2181 compiledVFrame* cvf = compiledVFrame::cast(vf); 2182 2183 nmethod* nm = cvf->code(); 2184 2185 ScopeDesc* trap_scope = cvf->scope(); 2186 2187 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2188 2189 if (is_receiver_constraint_failure) { 2190 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2191 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2192 JVMCI_ONLY(COMMA debug_id)); 2193 } 2194 2195 methodHandle trap_method(current, trap_scope->method()); 2196 int trap_bci = trap_scope->bci(); 2197 #if INCLUDE_JVMCI 2198 jlong speculation = current->pending_failed_speculation(); 2199 if (nm->is_compiled_by_jvmci()) { 2200 nm->update_speculation(current); 2201 } else { 2202 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2203 } 2204 2205 if (trap_bci == SynchronizationEntryBCI) { 2206 trap_bci = 0; 2207 current->set_pending_monitorenter(true); 2208 } 2209 2210 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2211 current->set_pending_transfer_to_interpreter(true); 2212 } 2213 #endif 2214 2215 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2216 // Record this event in the histogram. 2217 gather_statistics(reason, action, trap_bc); 2218 2219 // Ensure that we can record deopt. history: 2220 bool create_if_missing = ProfileTraps; 2221 2222 methodHandle profiled_method; 2223 #if INCLUDE_JVMCI 2224 if (nm->is_compiled_by_jvmci()) { 2225 profiled_method = methodHandle(current, nm->method()); 2226 } else { 2227 profiled_method = trap_method; 2228 } 2229 #else 2230 profiled_method = trap_method; 2231 #endif 2232 2233 MethodData* trap_mdo = 2234 get_method_data(current, profiled_method, create_if_missing); 2235 2236 { // Log Deoptimization event for JFR, UL and event system 2237 Method* tm = trap_method(); 2238 const char* reason_name = trap_reason_name(reason); 2239 const char* reason_action = trap_action_name(action); 2240 intptr_t pc = p2i(fr.pc()); 2241 2242 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2243 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2244 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2245 reason_name, reason_action, pc, 2246 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2247 } 2248 2249 // Print a bunch of diagnostics, if requested. 2250 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2251 ResourceMark rm; 2252 2253 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2254 // We must do this already now, since we cannot acquire this lock while 2255 // holding the tty lock (lock ordering by rank). 2256 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2257 2258 ttyLocker ttyl; 2259 2260 char buf[100]; 2261 if (xtty != nullptr) { 2262 xtty->begin_head("uncommon_trap thread='%zu' %s", 2263 os::current_thread_id(), 2264 format_trap_request(buf, sizeof(buf), trap_request)); 2265 #if INCLUDE_JVMCI 2266 if (speculation != 0) { 2267 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2268 } 2269 #endif 2270 nm->log_identity(xtty); 2271 } 2272 Symbol* class_name = nullptr; 2273 bool unresolved = false; 2274 if (unloaded_class_index >= 0) { 2275 constantPoolHandle constants (current, trap_method->constants()); 2276 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2277 class_name = constants->klass_name_at(unloaded_class_index); 2278 unresolved = true; 2279 if (xtty != nullptr) 2280 xtty->print(" unresolved='1'"); 2281 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2282 class_name = constants->symbol_at(unloaded_class_index); 2283 } 2284 if (xtty != nullptr) 2285 xtty->name(class_name); 2286 } 2287 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2288 // Dump the relevant MDO state. 2289 // This is the deopt count for the current reason, any previous 2290 // reasons or recompiles seen at this point. 2291 int dcnt = trap_mdo->trap_count(reason); 2292 if (dcnt != 0) 2293 xtty->print(" count='%d'", dcnt); 2294 2295 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2296 // lock extra_data_lock before the tty lock. 2297 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2298 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2299 if (dos != 0) { 2300 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2301 if (trap_state_is_recompiled(dos)) { 2302 int recnt2 = trap_mdo->overflow_recompile_count(); 2303 if (recnt2 != 0) 2304 xtty->print(" recompiles2='%d'", recnt2); 2305 } 2306 } 2307 } 2308 if (xtty != nullptr) { 2309 xtty->stamp(); 2310 xtty->end_head(); 2311 } 2312 if (TraceDeoptimization) { // make noise on the tty 2313 stringStream st; 2314 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2315 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2316 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2317 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2318 #if INCLUDE_JVMCI 2319 if (nm->is_compiled_by_jvmci()) { 2320 const char* installed_code_name = nm->jvmci_name(); 2321 if (installed_code_name != nullptr) { 2322 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2323 } 2324 } 2325 #endif 2326 st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2327 p2i(fr.pc()), 2328 os::current_thread_id(), 2329 trap_reason_name(reason), 2330 trap_action_name(action), 2331 unloaded_class_index 2332 #if INCLUDE_JVMCI 2333 , debug_id 2334 #endif 2335 ); 2336 if (class_name != nullptr) { 2337 st.print(unresolved ? " unresolved class: " : " symbol: "); 2338 class_name->print_symbol_on(&st); 2339 } 2340 st.cr(); 2341 tty->print_raw(st.freeze()); 2342 } 2343 if (xtty != nullptr) { 2344 // Log the precise location of the trap. 2345 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2346 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2347 xtty->method(sd->method()); 2348 xtty->end_elem(); 2349 if (sd->is_top()) break; 2350 } 2351 xtty->tail("uncommon_trap"); 2352 } 2353 } 2354 // (End diagnostic printout.) 2355 2356 if (is_receiver_constraint_failure) { 2357 fatal("missing receiver type check"); 2358 } 2359 2360 // Load class if necessary 2361 if (unloaded_class_index >= 0) { 2362 constantPoolHandle constants(current, trap_method->constants()); 2363 load_class_by_index(constants, unloaded_class_index, THREAD); 2364 } 2365 2366 // Flush the nmethod if necessary and desirable. 2367 // 2368 // We need to avoid situations where we are re-flushing the nmethod 2369 // because of a hot deoptimization site. Repeated flushes at the same 2370 // point need to be detected by the compiler and avoided. If the compiler 2371 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2372 // module must take measures to avoid an infinite cycle of recompilation 2373 // and deoptimization. There are several such measures: 2374 // 2375 // 1. If a recompilation is ordered a second time at some site X 2376 // and for the same reason R, the action is adjusted to 'reinterpret', 2377 // to give the interpreter time to exercise the method more thoroughly. 2378 // If this happens, the method's overflow_recompile_count is incremented. 2379 // 2380 // 2. If the compiler fails to reduce the deoptimization rate, then 2381 // the method's overflow_recompile_count will begin to exceed the set 2382 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2383 // is adjusted to 'make_not_compilable', and the method is abandoned 2384 // to the interpreter. This is a performance hit for hot methods, 2385 // but is better than a disastrous infinite cycle of recompilations. 2386 // (Actually, only the method containing the site X is abandoned.) 2387 // 2388 // 3. In parallel with the previous measures, if the total number of 2389 // recompilations of a method exceeds the much larger set limit 2390 // PerMethodRecompilationCutoff, the method is abandoned. 2391 // This should only happen if the method is very large and has 2392 // many "lukewarm" deoptimizations. The code which enforces this 2393 // limit is elsewhere (class nmethod, class Method). 2394 // 2395 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2396 // to recompile at each bytecode independently of the per-BCI cutoff. 2397 // 2398 // The decision to update code is up to the compiler, and is encoded 2399 // in the Action_xxx code. If the compiler requests Action_none 2400 // no trap state is changed, no compiled code is changed, and the 2401 // computation suffers along in the interpreter. 2402 // 2403 // The other action codes specify various tactics for decompilation 2404 // and recompilation. Action_maybe_recompile is the loosest, and 2405 // allows the compiled code to stay around until enough traps are seen, 2406 // and until the compiler gets around to recompiling the trapping method. 2407 // 2408 // The other actions cause immediate removal of the present code. 2409 2410 // Traps caused by injected profile shouldn't pollute trap counts. 2411 bool injected_profile_trap = trap_method->has_injected_profile() && 2412 (reason == Reason_intrinsic || reason == Reason_unreached); 2413 2414 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2415 bool make_not_entrant = false; 2416 bool make_not_compilable = false; 2417 bool reprofile = false; 2418 switch (action) { 2419 case Action_none: 2420 // Keep the old code. 2421 update_trap_state = false; 2422 break; 2423 case Action_maybe_recompile: 2424 // Do not need to invalidate the present code, but we can 2425 // initiate another 2426 // Start compiler without (necessarily) invalidating the nmethod. 2427 // The system will tolerate the old code, but new code should be 2428 // generated when possible. 2429 break; 2430 case Action_reinterpret: 2431 // Go back into the interpreter for a while, and then consider 2432 // recompiling form scratch. 2433 make_not_entrant = true; 2434 // Reset invocation counter for outer most method. 2435 // This will allow the interpreter to exercise the bytecodes 2436 // for a while before recompiling. 2437 // By contrast, Action_make_not_entrant is immediate. 2438 // 2439 // Note that the compiler will track null_check, null_assert, 2440 // range_check, and class_check events and log them as if they 2441 // had been traps taken from compiled code. This will update 2442 // the MDO trap history so that the next compilation will 2443 // properly detect hot trap sites. 2444 reprofile = true; 2445 break; 2446 case Action_make_not_entrant: 2447 // Request immediate recompilation, and get rid of the old code. 2448 // Make them not entrant, so next time they are called they get 2449 // recompiled. Unloaded classes are loaded now so recompile before next 2450 // time they are called. Same for uninitialized. The interpreter will 2451 // link the missing class, if any. 2452 make_not_entrant = true; 2453 break; 2454 case Action_make_not_compilable: 2455 // Give up on compiling this method at all. 2456 make_not_entrant = true; 2457 make_not_compilable = true; 2458 break; 2459 default: 2460 ShouldNotReachHere(); 2461 } 2462 2463 // Setting +ProfileTraps fixes the following, on all platforms: 2464 // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2465 // recompile relies on a MethodData* to record heroic opt failures. 2466 2467 // Whether the interpreter is producing MDO data or not, we also need 2468 // to use the MDO to detect hot deoptimization points and control 2469 // aggressive optimization. 2470 bool inc_recompile_count = false; 2471 2472 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2473 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2474 (trap_mdo != nullptr), 2475 Mutex::_no_safepoint_check_flag); 2476 ProfileData* pdata = nullptr; 2477 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2478 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2479 uint this_trap_count = 0; 2480 bool maybe_prior_trap = false; 2481 bool maybe_prior_recompile = false; 2482 2483 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2484 #if INCLUDE_JVMCI 2485 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2486 #endif 2487 nm->method(), 2488 //outputs: 2489 this_trap_count, 2490 maybe_prior_trap, 2491 maybe_prior_recompile); 2492 // Because the interpreter also counts null, div0, range, and class 2493 // checks, these traps from compiled code are double-counted. 2494 // This is harmless; it just means that the PerXTrapLimit values 2495 // are in effect a little smaller than they look. 2496 2497 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2498 if (per_bc_reason != Reason_none) { 2499 // Now take action based on the partially known per-BCI history. 2500 if (maybe_prior_trap 2501 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2502 // If there are too many traps at this BCI, force a recompile. 2503 // This will allow the compiler to see the limit overflow, and 2504 // take corrective action, if possible. The compiler generally 2505 // does not use the exact PerBytecodeTrapLimit value, but instead 2506 // changes its tactics if it sees any traps at all. This provides 2507 // a little hysteresis, delaying a recompile until a trap happens 2508 // several times. 2509 // 2510 // Actually, since there is only one bit of counter per BCI, 2511 // the possible per-BCI counts are {0,1,(per-method count)}. 2512 // This produces accurate results if in fact there is only 2513 // one hot trap site, but begins to get fuzzy if there are 2514 // many sites. For example, if there are ten sites each 2515 // trapping two or more times, they each get the blame for 2516 // all of their traps. 2517 make_not_entrant = true; 2518 } 2519 2520 // Detect repeated recompilation at the same BCI, and enforce a limit. 2521 if (make_not_entrant && maybe_prior_recompile) { 2522 // More than one recompile at this point. 2523 inc_recompile_count = maybe_prior_trap; 2524 } 2525 } else { 2526 // For reasons which are not recorded per-bytecode, we simply 2527 // force recompiles unconditionally. 2528 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2529 make_not_entrant = true; 2530 } 2531 2532 // Go back to the compiler if there are too many traps in this method. 2533 if (this_trap_count >= per_method_trap_limit(reason)) { 2534 // If there are too many traps in this method, force a recompile. 2535 // This will allow the compiler to see the limit overflow, and 2536 // take corrective action, if possible. 2537 // (This condition is an unlikely backstop only, because the 2538 // PerBytecodeTrapLimit is more likely to take effect first, 2539 // if it is applicable.) 2540 make_not_entrant = true; 2541 } 2542 2543 // Here's more hysteresis: If there has been a recompile at 2544 // this trap point already, run the method in the interpreter 2545 // for a while to exercise it more thoroughly. 2546 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2547 reprofile = true; 2548 } 2549 } 2550 2551 // Take requested actions on the method: 2552 2553 // Recompile 2554 if (make_not_entrant) { 2555 if (!nm->make_not_entrant("uncommon trap")) { 2556 return; // the call did not change nmethod's state 2557 } 2558 2559 if (pdata != nullptr) { 2560 // Record the recompilation event, if any. 2561 int tstate0 = pdata->trap_state(); 2562 int tstate1 = trap_state_set_recompiled(tstate0, true); 2563 if (tstate1 != tstate0) 2564 pdata->set_trap_state(tstate1); 2565 } 2566 2567 // For code aging we count traps separately here, using make_not_entrant() 2568 // as a guard against simultaneous deopts in multiple threads. 2569 if (reason == Reason_tenured && trap_mdo != nullptr) { 2570 trap_mdo->inc_tenure_traps(); 2571 } 2572 } 2573 2574 if (inc_recompile_count) { 2575 trap_mdo->inc_overflow_recompile_count(); 2576 if ((uint)trap_mdo->overflow_recompile_count() > 2577 (uint)PerBytecodeRecompilationCutoff) { 2578 // Give up on the method containing the bad BCI. 2579 if (trap_method() == nm->method()) { 2580 make_not_compilable = true; 2581 } else { 2582 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2583 // But give grace to the enclosing nm->method(). 2584 } 2585 } 2586 } 2587 2588 // Reprofile 2589 if (reprofile) { 2590 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2591 } 2592 2593 // Give up compiling 2594 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2595 assert(make_not_entrant, "consistent"); 2596 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2597 } 2598 2599 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2600 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2601 if (exception_handler_data != nullptr) { 2602 // uncommon trap at the start of an exception handler. 2603 // C2 generates these for un-entered exception handlers. 2604 // mark the handler as entered to avoid generating 2605 // another uncommon trap the next time the handler is compiled 2606 exception_handler_data->set_exception_handler_entered(); 2607 } 2608 } 2609 2610 } // Free marked resources 2611 2612 } 2613 JRT_END 2614 2615 ProfileData* 2616 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2617 int trap_bci, 2618 Deoptimization::DeoptReason reason, 2619 bool update_total_trap_count, 2620 #if INCLUDE_JVMCI 2621 bool is_osr, 2622 #endif 2623 Method* compiled_method, 2624 //outputs: 2625 uint& ret_this_trap_count, 2626 bool& ret_maybe_prior_trap, 2627 bool& ret_maybe_prior_recompile) { 2628 trap_mdo->check_extra_data_locked(); 2629 2630 bool maybe_prior_trap = false; 2631 bool maybe_prior_recompile = false; 2632 uint this_trap_count = 0; 2633 if (update_total_trap_count) { 2634 uint idx = reason; 2635 #if INCLUDE_JVMCI 2636 if (is_osr) { 2637 // Upper half of history array used for traps in OSR compilations 2638 idx += Reason_TRAP_HISTORY_LENGTH; 2639 } 2640 #endif 2641 uint prior_trap_count = trap_mdo->trap_count(idx); 2642 this_trap_count = trap_mdo->inc_trap_count(idx); 2643 2644 // If the runtime cannot find a place to store trap history, 2645 // it is estimated based on the general condition of the method. 2646 // If the method has ever been recompiled, or has ever incurred 2647 // a trap with the present reason , then this BCI is assumed 2648 // (pessimistically) to be the culprit. 2649 maybe_prior_trap = (prior_trap_count != 0); 2650 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2651 } 2652 ProfileData* pdata = nullptr; 2653 2654 2655 // For reasons which are recorded per bytecode, we check per-BCI data. 2656 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2657 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2658 if (per_bc_reason != Reason_none) { 2659 // Find the profile data for this BCI. If there isn't one, 2660 // try to allocate one from the MDO's set of spares. 2661 // This will let us detect a repeated trap at this point. 2662 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2663 2664 if (pdata != nullptr) { 2665 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2666 if (LogCompilation && xtty != nullptr) { 2667 ttyLocker ttyl; 2668 // no more room for speculative traps in this MDO 2669 xtty->elem("speculative_traps_oom"); 2670 } 2671 } 2672 // Query the trap state of this profile datum. 2673 int tstate0 = pdata->trap_state(); 2674 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2675 maybe_prior_trap = false; 2676 if (!trap_state_is_recompiled(tstate0)) 2677 maybe_prior_recompile = false; 2678 2679 // Update the trap state of this profile datum. 2680 int tstate1 = tstate0; 2681 // Record the reason. 2682 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2683 // Store the updated state on the MDO, for next time. 2684 if (tstate1 != tstate0) 2685 pdata->set_trap_state(tstate1); 2686 } else { 2687 if (LogCompilation && xtty != nullptr) { 2688 ttyLocker ttyl; 2689 // Missing MDP? Leave a small complaint in the log. 2690 xtty->elem("missing_mdp bci='%d'", trap_bci); 2691 } 2692 } 2693 } 2694 2695 // Return results: 2696 ret_this_trap_count = this_trap_count; 2697 ret_maybe_prior_trap = maybe_prior_trap; 2698 ret_maybe_prior_recompile = maybe_prior_recompile; 2699 return pdata; 2700 } 2701 2702 void 2703 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2704 ResourceMark rm; 2705 // Ignored outputs: 2706 uint ignore_this_trap_count; 2707 bool ignore_maybe_prior_trap; 2708 bool ignore_maybe_prior_recompile; 2709 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2710 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2711 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2712 2713 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2714 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2715 2716 query_update_method_data(trap_mdo, trap_bci, 2717 (DeoptReason)reason, 2718 update_total_counts, 2719 #if INCLUDE_JVMCI 2720 false, 2721 #endif 2722 nullptr, 2723 ignore_this_trap_count, 2724 ignore_maybe_prior_trap, 2725 ignore_maybe_prior_recompile); 2726 } 2727 2728 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2729 // Enable WXWrite: current function is called from methods compiled by C2 directly 2730 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2731 2732 // Still in Java no safepoints 2733 { 2734 // This enters VM and may safepoint 2735 uncommon_trap_inner(current, trap_request); 2736 } 2737 HandleMark hm(current); 2738 return fetch_unroll_info_helper(current, exec_mode); 2739 } 2740 2741 // Local derived constants. 2742 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2743 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2744 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2745 2746 //---------------------------trap_state_reason--------------------------------- 2747 Deoptimization::DeoptReason 2748 Deoptimization::trap_state_reason(int trap_state) { 2749 // This assert provides the link between the width of DataLayout::trap_bits 2750 // and the encoding of "recorded" reasons. It ensures there are enough 2751 // bits to store all needed reasons in the per-BCI MDO profile. 2752 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2753 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2754 trap_state -= recompile_bit; 2755 if (trap_state == DS_REASON_MASK) { 2756 return Reason_many; 2757 } else { 2758 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2759 return (DeoptReason)trap_state; 2760 } 2761 } 2762 //-------------------------trap_state_has_reason------------------------------- 2763 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2764 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2765 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2766 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2767 trap_state -= recompile_bit; 2768 if (trap_state == DS_REASON_MASK) { 2769 return -1; // true, unspecifically (bottom of state lattice) 2770 } else if (trap_state == reason) { 2771 return 1; // true, definitely 2772 } else if (trap_state == 0) { 2773 return 0; // false, definitely (top of state lattice) 2774 } else { 2775 return 0; // false, definitely 2776 } 2777 } 2778 //-------------------------trap_state_add_reason------------------------------- 2779 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2780 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2781 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2782 trap_state -= recompile_bit; 2783 if (trap_state == DS_REASON_MASK) { 2784 return trap_state + recompile_bit; // already at state lattice bottom 2785 } else if (trap_state == reason) { 2786 return trap_state + recompile_bit; // the condition is already true 2787 } else if (trap_state == 0) { 2788 return reason + recompile_bit; // no condition has yet been true 2789 } else { 2790 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2791 } 2792 } 2793 //-----------------------trap_state_is_recompiled------------------------------ 2794 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2795 return (trap_state & DS_RECOMPILE_BIT) != 0; 2796 } 2797 //-----------------------trap_state_set_recompiled----------------------------- 2798 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2799 if (z) return trap_state | DS_RECOMPILE_BIT; 2800 else return trap_state & ~DS_RECOMPILE_BIT; 2801 } 2802 //---------------------------format_trap_state--------------------------------- 2803 // This is used for debugging and diagnostics, including LogFile output. 2804 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2805 int trap_state) { 2806 assert(buflen > 0, "sanity"); 2807 DeoptReason reason = trap_state_reason(trap_state); 2808 bool recomp_flag = trap_state_is_recompiled(trap_state); 2809 // Re-encode the state from its decoded components. 2810 int decoded_state = 0; 2811 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2812 decoded_state = trap_state_add_reason(decoded_state, reason); 2813 if (recomp_flag) 2814 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2815 // If the state re-encodes properly, format it symbolically. 2816 // Because this routine is used for debugging and diagnostics, 2817 // be robust even if the state is a strange value. 2818 size_t len; 2819 if (decoded_state != trap_state) { 2820 // Random buggy state that doesn't decode?? 2821 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2822 } else { 2823 len = jio_snprintf(buf, buflen, "%s%s", 2824 trap_reason_name(reason), 2825 recomp_flag ? " recompiled" : ""); 2826 } 2827 return buf; 2828 } 2829 2830 2831 //--------------------------------statics-------------------------------------- 2832 const char* Deoptimization::_trap_reason_name[] = { 2833 // Note: Keep this in sync. with enum DeoptReason. 2834 "none", 2835 "null_check", 2836 "null_assert" JVMCI_ONLY("_or_unreached0"), 2837 "range_check", 2838 "class_check", 2839 "array_check", 2840 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2841 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2842 "profile_predicate", 2843 "auto_vectorization_check", 2844 "unloaded", 2845 "uninitialized", 2846 "initialized", 2847 "unreached", 2848 "unhandled", 2849 "constraint", 2850 "div0_check", 2851 "age", 2852 "predicate", 2853 "loop_limit_check", 2854 "speculate_class_check", 2855 "speculate_null_check", 2856 "speculate_null_assert", 2857 "unstable_if", 2858 "unstable_fused_if", 2859 "receiver_constraint", 2860 #if INCLUDE_JVMCI 2861 "aliasing", 2862 "transfer_to_interpreter", 2863 "not_compiled_exception_handler", 2864 "unresolved", 2865 "jsr_mismatch", 2866 #endif 2867 "tenured" 2868 }; 2869 const char* Deoptimization::_trap_action_name[] = { 2870 // Note: Keep this in sync. with enum DeoptAction. 2871 "none", 2872 "maybe_recompile", 2873 "reinterpret", 2874 "make_not_entrant", 2875 "make_not_compilable" 2876 }; 2877 2878 const char* Deoptimization::trap_reason_name(int reason) { 2879 // Check that every reason has a name 2880 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2881 2882 if (reason == Reason_many) return "many"; 2883 if ((uint)reason < Reason_LIMIT) 2884 return _trap_reason_name[reason]; 2885 static char buf[20]; 2886 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2887 return buf; 2888 } 2889 const char* Deoptimization::trap_action_name(int action) { 2890 // Check that every action has a name 2891 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2892 2893 if ((uint)action < Action_LIMIT) 2894 return _trap_action_name[action]; 2895 static char buf[20]; 2896 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2897 return buf; 2898 } 2899 2900 // This is used for debugging and diagnostics, including LogFile output. 2901 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2902 int trap_request) { 2903 jint unloaded_class_index = trap_request_index(trap_request); 2904 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2905 const char* action = trap_action_name(trap_request_action(trap_request)); 2906 #if INCLUDE_JVMCI 2907 int debug_id = trap_request_debug_id(trap_request); 2908 #endif 2909 size_t len; 2910 if (unloaded_class_index < 0) { 2911 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2912 reason, action 2913 #if INCLUDE_JVMCI 2914 ,debug_id 2915 #endif 2916 ); 2917 } else { 2918 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2919 reason, action, unloaded_class_index 2920 #if INCLUDE_JVMCI 2921 ,debug_id 2922 #endif 2923 ); 2924 } 2925 return buf; 2926 } 2927 2928 juint Deoptimization::_deoptimization_hist 2929 [Deoptimization::Reason_LIMIT] 2930 [1 + Deoptimization::Action_LIMIT] 2931 [Deoptimization::BC_CASE_LIMIT] 2932 = {0}; 2933 2934 enum { 2935 LSB_BITS = 8, 2936 LSB_MASK = right_n_bits(LSB_BITS) 2937 }; 2938 2939 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2940 Bytecodes::Code bc) { 2941 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2942 assert(action >= 0 && action < Action_LIMIT, "oob"); 2943 _deoptimization_hist[Reason_none][0][0] += 1; // total 2944 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2945 juint* cases = _deoptimization_hist[reason][1+action]; 2946 juint* bc_counter_addr = nullptr; 2947 juint bc_counter = 0; 2948 // Look for an unused counter, or an exact match to this BC. 2949 if (bc != Bytecodes::_illegal) { 2950 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2951 juint* counter_addr = &cases[bc_case]; 2952 juint counter = *counter_addr; 2953 if ((counter == 0 && bc_counter_addr == nullptr) 2954 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2955 // this counter is either free or is already devoted to this BC 2956 bc_counter_addr = counter_addr; 2957 bc_counter = counter | bc; 2958 } 2959 } 2960 } 2961 if (bc_counter_addr == nullptr) { 2962 // Overflow, or no given bytecode. 2963 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2964 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2965 } 2966 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2967 } 2968 2969 jint Deoptimization::total_deoptimization_count() { 2970 return _deoptimization_hist[Reason_none][0][0]; 2971 } 2972 2973 // Get the deopt count for a specific reason and a specific action. If either 2974 // one of 'reason' or 'action' is null, the method returns the sum of all 2975 // deoptimizations with the specific 'action' or 'reason' respectively. 2976 // If both arguments are null, the method returns the total deopt count. 2977 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2978 if (reason_str == nullptr && action_str == nullptr) { 2979 return total_deoptimization_count(); 2980 } 2981 juint counter = 0; 2982 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2983 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2984 for (int action = 0; action < Action_LIMIT; action++) { 2985 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2986 juint* cases = _deoptimization_hist[reason][1+action]; 2987 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2988 counter += cases[bc_case] >> LSB_BITS; 2989 } 2990 } 2991 } 2992 } 2993 } 2994 return counter; 2995 } 2996 2997 void Deoptimization::print_statistics() { 2998 juint total = total_deoptimization_count(); 2999 juint account = total; 3000 if (total != 0) { 3001 ttyLocker ttyl; 3002 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 3003 tty->print_cr("Deoptimization traps recorded:"); 3004 #define PRINT_STAT_LINE(name, r) \ 3005 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 3006 PRINT_STAT_LINE("total", total); 3007 // For each non-zero entry in the histogram, print the reason, 3008 // the action, and (if specifically known) the type of bytecode. 3009 for (int reason = 0; reason < Reason_LIMIT; reason++) { 3010 for (int action = 0; action < Action_LIMIT; action++) { 3011 juint* cases = _deoptimization_hist[reason][1+action]; 3012 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 3013 juint counter = cases[bc_case]; 3014 if (counter != 0) { 3015 char name[1*K]; 3016 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 3017 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 3018 bc = Bytecodes::_illegal; 3019 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 3020 trap_reason_name(reason), 3021 trap_action_name(action), 3022 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 3023 juint r = counter >> LSB_BITS; 3024 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 3025 account -= r; 3026 } 3027 } 3028 } 3029 } 3030 if (account != 0) { 3031 PRINT_STAT_LINE("unaccounted", account); 3032 } 3033 #undef PRINT_STAT_LINE 3034 if (xtty != nullptr) xtty->tail("statistics"); 3035 } 3036 } 3037 3038 #else // COMPILER2_OR_JVMCI 3039 3040 3041 // Stubs for C1 only system. 3042 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 3043 return false; 3044 } 3045 3046 const char* Deoptimization::trap_reason_name(int reason) { 3047 return "unknown"; 3048 } 3049 3050 jint Deoptimization::total_deoptimization_count() { 3051 return 0; 3052 } 3053 3054 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3055 return 0; 3056 } 3057 3058 void Deoptimization::print_statistics() { 3059 // no output 3060 } 3061 3062 void 3063 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 3064 // no update 3065 } 3066 3067 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 3068 return 0; 3069 } 3070 3071 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 3072 Bytecodes::Code bc) { 3073 // no update 3074 } 3075 3076 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 3077 int trap_state) { 3078 jio_snprintf(buf, buflen, "#%d", trap_state); 3079 return buf; 3080 } 3081 3082 #endif // COMPILER2_OR_JVMCI