1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/bytecode.inline.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/flatArrayKlass.hpp" 54 #include "oops/flatArrayOop.hpp" 55 #include "oops/fieldStreams.inline.hpp" 56 #include "oops/method.hpp" 57 #include "oops/objArrayKlass.hpp" 58 #include "oops/objArrayOop.inline.hpp" 59 #include "oops/oop.inline.hpp" 60 #include "oops/inlineKlass.inline.hpp" 61 #include "oops/typeArrayOop.inline.hpp" 62 #include "oops/verifyOopClosure.hpp" 63 #include "prims/jvmtiDeferredUpdates.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "prims/jvmtiThreadState.hpp" 66 #include "prims/methodHandles.hpp" 67 #include "prims/vectorSupport.hpp" 68 #include "runtime/atomic.hpp" 69 #include "runtime/basicLock.inline.hpp" 70 #include "runtime/continuation.hpp" 71 #include "runtime/continuationEntry.inline.hpp" 72 #include "runtime/deoptimization.hpp" 73 #include "runtime/escapeBarrier.hpp" 74 #include "runtime/fieldDescriptor.hpp" 75 #include "runtime/fieldDescriptor.inline.hpp" 76 #include "runtime/frame.inline.hpp" 77 #include "runtime/handles.inline.hpp" 78 #include "runtime/interfaceSupport.inline.hpp" 79 #include "runtime/javaThread.hpp" 80 #include "runtime/jniHandles.inline.hpp" 81 #include "runtime/keepStackGCProcessed.hpp" 82 #include "runtime/lightweightSynchronizer.hpp" 83 #include "runtime/lockStack.inline.hpp" 84 #include "runtime/objectMonitor.inline.hpp" 85 #include "runtime/osThread.hpp" 86 #include "runtime/safepointVerifiers.hpp" 87 #include "runtime/sharedRuntime.hpp" 88 #include "runtime/signature.hpp" 89 #include "runtime/stackFrameStream.inline.hpp" 90 #include "runtime/stackValue.hpp" 91 #include "runtime/stackWatermarkSet.hpp" 92 #include "runtime/stubRoutines.hpp" 93 #include "runtime/synchronizer.inline.hpp" 94 #include "runtime/threadSMR.hpp" 95 #include "runtime/threadWXSetters.inline.hpp" 96 #include "runtime/vframe.hpp" 97 #include "runtime/vframeArray.hpp" 98 #include "runtime/vframe_hp.hpp" 99 #include "runtime/vmOperations.hpp" 100 #include "utilities/checkedCast.hpp" 101 #include "utilities/events.hpp" 102 #include "utilities/growableArray.hpp" 103 #include "utilities/macros.hpp" 104 #include "utilities/preserveException.hpp" 105 #include "utilities/xmlstream.hpp" 106 #if INCLUDE_JFR 107 #include "jfr/jfr.inline.hpp" 108 #include "jfr/jfrEvents.hpp" 109 #include "jfr/metadata/jfrSerializer.hpp" 110 #endif 111 112 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 113 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 114 bool DeoptimizationScope::_committing_in_progress = false; 115 116 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 117 DEBUG_ONLY(_deopted = false;) 118 119 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 120 // If there is nothing to deopt _required_gen is the same as comitted. 121 _required_gen = DeoptimizationScope::_committed_deopt_gen; 122 } 123 124 DeoptimizationScope::~DeoptimizationScope() { 125 assert(_deopted, "Deopt not executed"); 126 } 127 128 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 129 if (!nm->can_be_deoptimized()) { 130 return; 131 } 132 133 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 134 135 // If it's already marked but we still need it to be deopted. 136 if (nm->is_marked_for_deoptimization()) { 137 dependent(nm); 138 return; 139 } 140 141 nmethod::DeoptimizationStatus status = 142 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 143 Atomic::store(&nm->_deoptimization_status, status); 144 145 // Make sure active is not committed 146 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 147 assert(nm->_deoptimization_generation == 0, "Is already marked"); 148 149 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 150 _required_gen = DeoptimizationScope::_active_deopt_gen; 151 } 152 153 void DeoptimizationScope::dependent(nmethod* nm) { 154 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 155 156 // A method marked by someone else may have a _required_gen lower than what we marked with. 157 // Therefore only store it if it's higher than _required_gen. 158 if (_required_gen < nm->_deoptimization_generation) { 159 _required_gen = nm->_deoptimization_generation; 160 } 161 } 162 163 void DeoptimizationScope::deoptimize_marked() { 164 assert(!_deopted, "Already deopted"); 165 166 // We are not alive yet. 167 if (!Universe::is_fully_initialized()) { 168 DEBUG_ONLY(_deopted = true;) 169 return; 170 } 171 172 // Safepoints are a special case, handled here. 173 if (SafepointSynchronize::is_at_safepoint()) { 174 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 175 DeoptimizationScope::_active_deopt_gen++; 176 Deoptimization::deoptimize_all_marked(); 177 DEBUG_ONLY(_deopted = true;) 178 return; 179 } 180 181 uint64_t comitting = 0; 182 bool wait = false; 183 while (true) { 184 { 185 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 186 187 // First we check if we or someone else already deopted the gen we want. 188 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 189 DEBUG_ONLY(_deopted = true;) 190 return; 191 } 192 if (!_committing_in_progress) { 193 // The version we are about to commit. 194 comitting = DeoptimizationScope::_active_deopt_gen; 195 // Make sure new marks use a higher gen. 196 DeoptimizationScope::_active_deopt_gen++; 197 _committing_in_progress = true; 198 wait = false; 199 } else { 200 // Another thread is handshaking and committing a gen. 201 wait = true; 202 } 203 } 204 if (wait) { 205 // Wait and let the concurrent handshake be performed. 206 ThreadBlockInVM tbivm(JavaThread::current()); 207 os::naked_yield(); 208 } else { 209 // Performs the handshake. 210 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 211 DEBUG_ONLY(_deopted = true;) 212 { 213 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 214 215 // Make sure that committed doesn't go backwards. 216 // Should only happen if we did a deopt during a safepoint above. 217 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 218 DeoptimizationScope::_committed_deopt_gen = comitting; 219 } 220 _committing_in_progress = false; 221 222 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 223 224 return; 225 } 226 } 227 } 228 } 229 230 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 231 int caller_adjustment, 232 int caller_actual_parameters, 233 int number_of_frames, 234 intptr_t* frame_sizes, 235 address* frame_pcs, 236 BasicType return_type, 237 int exec_mode) { 238 _size_of_deoptimized_frame = size_of_deoptimized_frame; 239 _caller_adjustment = caller_adjustment; 240 _caller_actual_parameters = caller_actual_parameters; 241 _number_of_frames = number_of_frames; 242 _frame_sizes = frame_sizes; 243 _frame_pcs = frame_pcs; 244 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 245 _return_type = return_type; 246 _initial_info = 0; 247 // PD (x86 only) 248 _counter_temp = 0; 249 _unpack_kind = exec_mode; 250 _sender_sp_temp = 0; 251 252 _total_frame_sizes = size_of_frames(); 253 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 254 } 255 256 Deoptimization::UnrollBlock::~UnrollBlock() { 257 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 258 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 259 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 260 } 261 262 int Deoptimization::UnrollBlock::size_of_frames() const { 263 // Account first for the adjustment of the initial frame 264 intptr_t result = _caller_adjustment; 265 for (int index = 0; index < number_of_frames(); index++) { 266 result += frame_sizes()[index]; 267 } 268 return checked_cast<int>(result); 269 } 270 271 void Deoptimization::UnrollBlock::print() { 272 ResourceMark rm; 273 stringStream st; 274 st.print_cr("UnrollBlock"); 275 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 276 st.print( " frame_sizes: "); 277 for (int index = 0; index < number_of_frames(); index++) { 278 st.print("%zd ", frame_sizes()[index]); 279 } 280 st.cr(); 281 tty->print_raw(st.freeze()); 282 } 283 284 // In order to make fetch_unroll_info work properly with escape 285 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 286 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 287 // which is called from the method fetch_unroll_info_helper below. 288 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 289 // fetch_unroll_info() is called at the beginning of the deoptimization 290 // handler. Note this fact before we start generating temporary frames 291 // that can confuse an asynchronous stack walker. This counter is 292 // decremented at the end of unpack_frames(). 293 current->inc_in_deopt_handler(); 294 295 if (exec_mode == Unpack_exception) { 296 // When we get here, a callee has thrown an exception into a deoptimized 297 // frame. That throw might have deferred stack watermark checking until 298 // after unwinding. So we deal with such deferred requests here. 299 StackWatermarkSet::after_unwind(current); 300 } 301 302 return fetch_unroll_info_helper(current, exec_mode); 303 JRT_END 304 305 #if COMPILER2_OR_JVMCI 306 307 static Klass* get_refined_array_klass(Klass* k, frame* fr, RegisterMap* map, ObjectValue* sv, TRAPS) { 308 // If it's an array, get the properties 309 if (k->is_array_klass() && !k->is_typeArray_klass()) { 310 assert(!k->is_refArray_klass() && !k->is_flatArray_klass(), "Unexpected refined klass"); 311 nmethod* nm = fr->cb()->as_nmethod_or_null(); 312 if (nm->is_compiled_by_c2()) { 313 assert(sv->has_properties(), "Property information is missing"); 314 ArrayKlass::ArrayProperties props = static_cast<ArrayKlass::ArrayProperties>(StackValue::create_stack_value(fr, map, sv->properties())->get_jint()); 315 k = ObjArrayKlass::cast(k)->klass_with_properties(props, THREAD); 316 } else { 317 // TODO Graal needs to be fixed. Just go with the default properties for now 318 k = ObjArrayKlass::cast(k)->klass_with_properties(ArrayKlass::ArrayProperties::DEFAULT, THREAD); 319 } 320 } 321 return k; 322 } 323 324 // print information about reallocated objects 325 static void print_objects(JavaThread* deoptee_thread, frame* deoptee, RegisterMap* map, 326 GrowableArray<ScopeValue*>* objects, bool realloc_failures, TRAPS) { 327 ResourceMark rm; 328 stringStream st; // change to logStream with logging 329 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 330 fieldDescriptor fd; 331 332 for (int i = 0; i < objects->length(); i++) { 333 ObjectValue* sv = (ObjectValue*) objects->at(i); 334 Handle obj = sv->value(); 335 336 if (obj.is_null()) { 337 st.print_cr(" nullptr"); 338 continue; 339 } 340 341 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 342 k = get_refined_array_klass(k, deoptee, map, sv, THREAD); 343 344 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 345 k->print_value_on(&st); 346 st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize); 347 348 if (Verbose && k != nullptr) { 349 k->oop_print_on(obj(), &st); 350 } 351 } 352 tty->print_raw(st.freeze()); 353 } 354 355 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 356 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 357 bool& deoptimized_objects) { 358 bool realloc_failures = false; 359 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 360 361 JavaThread* deoptee_thread = chunk->at(0)->thread(); 362 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 363 "a frame can only be deoptimized by the owner thread"); 364 365 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 366 367 // The flag return_oop() indicates call sites which return oop 368 // in compiled code. Such sites include java method calls, 369 // runtime calls (for example, used to allocate new objects/arrays 370 // on slow code path) and any other calls generated in compiled code. 371 // It is not guaranteed that we can get such information here only 372 // by analyzing bytecode in deoptimized frames. This is why this flag 373 // is set during method compilation (see Compile::Process_OopMap_Node()). 374 // If the previous frame was popped or if we are dispatching an exception, 375 // we don't have an oop result. 376 ScopeDesc* scope = chunk->at(0)->scope(); 377 bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 378 // In case of the return of multiple values, we must take care 379 // of all oop return values. 380 GrowableArray<Handle> return_oops; 381 InlineKlass* vk = nullptr; 382 if (save_oop_result && scope->return_scalarized()) { 383 vk = InlineKlass::returned_inline_klass(map); 384 if (vk != nullptr) { 385 vk->save_oop_fields(map, return_oops); 386 save_oop_result = false; 387 } 388 } 389 if (save_oop_result) { 390 // Reallocation may trigger GC. If deoptimization happened on return from 391 // call which returns oop we need to save it since it is not in oopmap. 392 oop result = deoptee.saved_oop_result(&map); 393 assert(oopDesc::is_oop_or_null(result), "must be oop"); 394 return_oops.push(Handle(thread, result)); 395 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 396 if (TraceDeoptimization) { 397 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 398 tty->cr(); 399 } 400 } 401 if (objects != nullptr || vk != nullptr) { 402 if (exec_mode == Deoptimization::Unpack_none) { 403 assert(thread->thread_state() == _thread_in_vm, "assumption"); 404 JavaThread* THREAD = thread; // For exception macros. 405 // Clear pending OOM if reallocation fails and return true indicating allocation failure 406 if (vk != nullptr) { 407 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, CHECK_AND_CLEAR_(true)); 408 } 409 if (objects != nullptr) { 410 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 411 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 412 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 413 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, CHECK_AND_CLEAR_(true)); 414 } 415 deoptimized_objects = true; 416 } else { 417 JavaThread* current = thread; // For JRT_BLOCK 418 JRT_BLOCK 419 if (vk != nullptr) { 420 realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, THREAD); 421 } 422 if (objects != nullptr) { 423 realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 424 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 425 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 426 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci, THREAD); 427 } 428 JRT_END 429 } 430 if (TraceDeoptimization && objects != nullptr) { 431 print_objects(deoptee_thread, &deoptee, &map, objects, realloc_failures, thread); 432 } 433 } 434 if (save_oop_result || vk != nullptr) { 435 // Restore result. 436 assert(return_oops.length() == 1, "no inline type"); 437 deoptee.set_saved_oop_result(&map, return_oops.pop()()); 438 } 439 return realloc_failures; 440 } 441 442 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 443 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 444 JavaThread* deoptee_thread = chunk->at(0)->thread(); 445 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 446 assert(thread == Thread::current(), "should be"); 447 HandleMark hm(thread); 448 #ifndef PRODUCT 449 bool first = true; 450 #endif // !PRODUCT 451 // Start locking from outermost/oldest frame 452 for (int i = (chunk->length() - 1); i >= 0; i--) { 453 compiledVFrame* cvf = chunk->at(i); 454 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 455 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 456 if (monitors->is_nonempty()) { 457 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 458 exec_mode, realloc_failures); 459 deoptimized_objects = deoptimized_objects || relocked; 460 #ifndef PRODUCT 461 if (PrintDeoptimizationDetails) { 462 ResourceMark rm; 463 stringStream st; 464 for (int j = 0; j < monitors->length(); j++) { 465 MonitorInfo* mi = monitors->at(j); 466 if (mi->eliminated()) { 467 if (first) { 468 first = false; 469 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 470 } 471 if (exec_mode == Deoptimization::Unpack_none) { 472 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 473 if (monitor != nullptr && monitor->object() == mi->owner()) { 474 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 475 continue; 476 } 477 } 478 if (mi->owner_is_scalar_replaced()) { 479 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 480 st.print_cr(" failed reallocation for klass %s", k->external_name()); 481 } else { 482 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 483 } 484 } 485 } 486 tty->print_raw(st.freeze()); 487 } 488 #endif // !PRODUCT 489 } 490 } 491 } 492 493 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 494 // The given vframes cover one physical frame. 495 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 496 bool& realloc_failures) { 497 frame deoptee = chunk->at(0)->fr(); 498 JavaThread* deoptee_thread = chunk->at(0)->thread(); 499 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 500 RegisterMap map(chunk->at(0)->register_map()); 501 bool deoptimized_objects = false; 502 503 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 504 505 // Reallocate the non-escaping objects and restore their fields. 506 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 507 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 508 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 509 } 510 511 // MonitorInfo structures used in eliminate_locks are not GC safe. 512 NoSafepointVerifier no_safepoint; 513 514 // Now relock objects if synchronization on them was eliminated. 515 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 516 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 517 } 518 return deoptimized_objects; 519 } 520 #endif // COMPILER2_OR_JVMCI 521 522 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 523 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 524 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 525 // When we get here we are about to unwind the deoptee frame. In order to 526 // catch not yet safe to use frames, the following stack watermark barrier 527 // poll will make such frames safe to use. 528 StackWatermarkSet::before_unwind(current); 529 530 // Note: there is a safepoint safety issue here. No matter whether we enter 531 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 532 // the vframeArray is created. 533 // 534 535 // Allocate our special deoptimization ResourceMark 536 DeoptResourceMark* dmark = new DeoptResourceMark(current); 537 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 538 current->set_deopt_mark(dmark); 539 540 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 541 RegisterMap map(current, 542 RegisterMap::UpdateMap::include, 543 RegisterMap::ProcessFrames::include, 544 RegisterMap::WalkContinuation::skip); 545 RegisterMap dummy_map(current, 546 RegisterMap::UpdateMap::skip, 547 RegisterMap::ProcessFrames::include, 548 RegisterMap::WalkContinuation::skip); 549 // Now get the deoptee with a valid map 550 frame deoptee = stub_frame.sender(&map); 551 // Set the deoptee nmethod 552 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 553 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 554 current->set_deopt_compiled_method(nm); 555 556 if (VerifyStack) { 557 current->validate_frame_layout(); 558 } 559 560 // Create a growable array of VFrames where each VFrame represents an inlined 561 // Java frame. This storage is allocated with the usual system arena. 562 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 563 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 564 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 565 while (!vf->is_top()) { 566 assert(vf->is_compiled_frame(), "Wrong frame type"); 567 chunk->push(compiledVFrame::cast(vf)); 568 vf = vf->sender(); 569 } 570 assert(vf->is_compiled_frame(), "Wrong frame type"); 571 chunk->push(compiledVFrame::cast(vf)); 572 573 bool realloc_failures = false; 574 575 #if COMPILER2_OR_JVMCI 576 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 577 578 // Reallocate the non-escaping objects and restore their fields. Then 579 // relock objects if synchronization on them was eliminated. 580 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 581 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 582 bool unused; 583 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 584 } 585 #endif // COMPILER2_OR_JVMCI 586 587 // Ensure that no safepoint is taken after pointers have been stored 588 // in fields of rematerialized objects. If a safepoint occurs from here on 589 // out the java state residing in the vframeArray will be missed. 590 // Locks may be rebaised in a safepoint. 591 NoSafepointVerifier no_safepoint; 592 593 #if COMPILER2_OR_JVMCI 594 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 595 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 596 bool unused = false; 597 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 598 } 599 #endif // COMPILER2_OR_JVMCI 600 601 ScopeDesc* trap_scope = chunk->at(0)->scope(); 602 Handle exceptionObject; 603 if (trap_scope->rethrow_exception()) { 604 #ifndef PRODUCT 605 if (PrintDeoptimizationDetails) { 606 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 607 } 608 #endif // !PRODUCT 609 610 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 611 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 612 ScopeValue* topOfStack = expressions->top(); 613 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 614 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 615 } 616 617 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 618 #if COMPILER2_OR_JVMCI 619 if (realloc_failures) { 620 // This destroys all ScopedValue bindings. 621 current->clear_scopedValueBindings(); 622 pop_frames_failed_reallocs(current, array); 623 } 624 #endif 625 626 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 627 current->set_vframe_array_head(array); 628 629 // Now that the vframeArray has been created if we have any deferred local writes 630 // added by jvmti then we can free up that structure as the data is now in the 631 // vframeArray 632 633 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 634 635 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 636 CodeBlob* cb = stub_frame.cb(); 637 // Verify we have the right vframeArray 638 assert(cb->frame_size() >= 0, "Unexpected frame size"); 639 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 640 641 // If the deopt call site is a MethodHandle invoke call site we have 642 // to adjust the unpack_sp. 643 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 644 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 645 unpack_sp = deoptee.unextended_sp(); 646 647 #ifdef ASSERT 648 assert(cb->is_deoptimization_stub() || 649 cb->is_uncommon_trap_stub() || 650 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 651 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 652 "unexpected code blob: %s", cb->name()); 653 #endif 654 655 // This is a guarantee instead of an assert because if vframe doesn't match 656 // we will unpack the wrong deoptimized frame and wind up in strange places 657 // where it will be very difficult to figure out what went wrong. Better 658 // to die an early death here than some very obscure death later when the 659 // trail is cold. 660 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 661 662 int number_of_frames = array->frames(); 663 664 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 665 // virtual activation, which is the reverse of the elements in the vframes array. 666 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 667 // +1 because we always have an interpreter return address for the final slot. 668 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 669 int popframe_extra_args = 0; 670 // Create an interpreter return address for the stub to use as its return 671 // address so the skeletal frames are perfectly walkable 672 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 673 674 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 675 // activation be put back on the expression stack of the caller for reexecution 676 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 677 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 678 } 679 680 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 681 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 682 // than simply use array->sender.pc(). This requires us to walk the current set of frames 683 // 684 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 685 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 686 687 // It's possible that the number of parameters at the call site is 688 // different than number of arguments in the callee when method 689 // handles are used. If the caller is interpreted get the real 690 // value so that the proper amount of space can be added to it's 691 // frame. 692 bool caller_was_method_handle = false; 693 if (deopt_sender.is_interpreted_frame()) { 694 methodHandle method(current, deopt_sender.interpreter_frame_method()); 695 Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci()); 696 if (cur.has_member_arg()) { 697 // This should cover all real-world cases. One exception is a pathological chain of 698 // MH.linkToXXX() linker calls, which only trusted code could do anyway. To handle that case, we 699 // would need to get the size from the resolved method entry. Another exception would 700 // be an invokedynamic with an adapter that is really a MethodHandle linker. 701 caller_was_method_handle = true; 702 } 703 } 704 705 // 706 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 707 // frame_sizes/frame_pcs[1] next oldest frame (int) 708 // frame_sizes/frame_pcs[n] youngest frame (int) 709 // 710 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 711 // owns the space for the return address to it's caller). Confusing ain't it. 712 // 713 // The vframe array can address vframes with indices running from 714 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 715 // When we create the skeletal frames we need the oldest frame to be in the zero slot 716 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 717 // so things look a little strange in this loop. 718 // 719 int callee_parameters = 0; 720 int callee_locals = 0; 721 for (int index = 0; index < array->frames(); index++ ) { 722 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 723 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 724 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 725 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 726 callee_locals, 727 index == 0, 728 popframe_extra_args); 729 // This pc doesn't have to be perfect just good enough to identify the frame 730 // as interpreted so the skeleton frame will be walkable 731 // The correct pc will be set when the skeleton frame is completely filled out 732 // The final pc we store in the loop is wrong and will be overwritten below 733 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 734 735 callee_parameters = array->element(index)->method()->size_of_parameters(); 736 callee_locals = array->element(index)->method()->max_locals(); 737 popframe_extra_args = 0; 738 } 739 740 // Compute whether the root vframe returns a float or double value. 741 BasicType return_type; 742 { 743 methodHandle method(current, array->element(0)->method()); 744 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 745 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 746 } 747 748 // Compute information for handling adapters and adjusting the frame size of the caller. 749 int caller_adjustment = 0; 750 751 // Compute the amount the oldest interpreter frame will have to adjust 752 // its caller's stack by. If the caller is a compiled frame then 753 // we pretend that the callee has no parameters so that the 754 // extension counts for the full amount of locals and not just 755 // locals-parms. This is because without a c2i adapter the parm 756 // area as created by the compiled frame will not be usable by 757 // the interpreter. (Depending on the calling convention there 758 // may not even be enough space). 759 760 // QQQ I'd rather see this pushed down into last_frame_adjust 761 // and have it take the sender (aka caller). 762 763 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 764 caller_adjustment = last_frame_adjust(0, callee_locals); 765 } else if (callee_locals > callee_parameters) { 766 // The caller frame may need extending to accommodate 767 // non-parameter locals of the first unpacked interpreted frame. 768 // Compute that adjustment. 769 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 770 } 771 772 // If the sender is deoptimized we must retrieve the address of the handler 773 // since the frame will "magically" show the original pc before the deopt 774 // and we'd undo the deopt. 775 776 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 777 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 778 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 779 } 780 781 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 782 783 #if INCLUDE_JVMCI 784 if (exceptionObject() != nullptr) { 785 current->set_exception_oop(exceptionObject()); 786 exec_mode = Unpack_exception; 787 } 788 #endif 789 790 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 791 assert(current->has_pending_exception(), "should have thrown OOME"); 792 current->set_exception_oop(current->pending_exception()); 793 current->clear_pending_exception(); 794 exec_mode = Unpack_exception; 795 } 796 797 #if INCLUDE_JVMCI 798 if (current->frames_to_pop_failed_realloc() > 0) { 799 current->set_pending_monitorenter(false); 800 } 801 #endif 802 803 int caller_actual_parameters = -1; // value not used except for interpreted frames, see below 804 if (deopt_sender.is_interpreted_frame()) { 805 caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0); 806 } 807 808 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 809 caller_adjustment * BytesPerWord, 810 caller_actual_parameters, 811 number_of_frames, 812 frame_sizes, 813 frame_pcs, 814 return_type, 815 exec_mode); 816 // On some platforms, we need a way to pass some platform dependent 817 // information to the unpacking code so the skeletal frames come out 818 // correct (initial fp value, unextended sp, ...) 819 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 820 821 if (array->frames() > 1) { 822 if (VerifyStack && TraceDeoptimization) { 823 tty->print_cr("Deoptimizing method containing inlining"); 824 } 825 } 826 827 array->set_unroll_block(info); 828 return info; 829 } 830 831 // Called to cleanup deoptimization data structures in normal case 832 // after unpacking to stack and when stack overflow error occurs 833 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 834 vframeArray *array) { 835 836 // Get array if coming from exception 837 if (array == nullptr) { 838 array = thread->vframe_array_head(); 839 } 840 thread->set_vframe_array_head(nullptr); 841 842 // Free the previous UnrollBlock 843 vframeArray* old_array = thread->vframe_array_last(); 844 thread->set_vframe_array_last(array); 845 846 if (old_array != nullptr) { 847 UnrollBlock* old_info = old_array->unroll_block(); 848 old_array->set_unroll_block(nullptr); 849 delete old_info; 850 delete old_array; 851 } 852 853 // Deallocate any resource creating in this routine and any ResourceObjs allocated 854 // inside the vframeArray (StackValueCollections) 855 856 delete thread->deopt_mark(); 857 thread->set_deopt_mark(nullptr); 858 thread->set_deopt_compiled_method(nullptr); 859 860 861 if (JvmtiExport::can_pop_frame()) { 862 // Regardless of whether we entered this routine with the pending 863 // popframe condition bit set, we should always clear it now 864 thread->clear_popframe_condition(); 865 } 866 867 // unpack_frames() is called at the end of the deoptimization handler 868 // and (in C2) at the end of the uncommon trap handler. Note this fact 869 // so that an asynchronous stack walker can work again. This counter is 870 // incremented at the beginning of fetch_unroll_info() and (in C2) at 871 // the beginning of uncommon_trap(). 872 thread->dec_in_deopt_handler(); 873 } 874 875 // Moved from cpu directories because none of the cpus has callee save values. 876 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 877 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 878 879 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 880 // the days we had adapter frames. When we deoptimize a situation where a 881 // compiled caller calls a compiled caller will have registers it expects 882 // to survive the call to the callee. If we deoptimize the callee the only 883 // way we can restore these registers is to have the oldest interpreter 884 // frame that we create restore these values. That is what this routine 885 // will accomplish. 886 887 // At the moment we have modified c2 to not have any callee save registers 888 // so this problem does not exist and this routine is just a place holder. 889 890 assert(f->is_interpreted_frame(), "must be interpreted"); 891 } 892 893 #ifndef PRODUCT 894 // Return true if the execution after the provided bytecode continues at the 895 // next bytecode in the code. This is not the case for gotos, returns, and 896 // throws. 897 static bool falls_through(Bytecodes::Code bc) { 898 switch (bc) { 899 case Bytecodes::_goto: 900 case Bytecodes::_goto_w: 901 case Bytecodes::_athrow: 902 case Bytecodes::_areturn: 903 case Bytecodes::_dreturn: 904 case Bytecodes::_freturn: 905 case Bytecodes::_ireturn: 906 case Bytecodes::_lreturn: 907 case Bytecodes::_jsr: 908 case Bytecodes::_ret: 909 case Bytecodes::_return: 910 case Bytecodes::_lookupswitch: 911 case Bytecodes::_tableswitch: 912 return false; 913 default: 914 return true; 915 } 916 } 917 #endif 918 919 // Return BasicType of value being returned 920 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 921 assert(thread == JavaThread::current(), "pre-condition"); 922 923 // We are already active in the special DeoptResourceMark any ResourceObj's we 924 // allocate will be freed at the end of the routine. 925 926 // JRT_LEAF methods don't normally allocate handles and there is a 927 // NoHandleMark to enforce that. It is actually safe to use Handles 928 // in a JRT_LEAF method, and sometimes desirable, but to do so we 929 // must use ResetNoHandleMark to bypass the NoHandleMark, and 930 // then use a HandleMark to ensure any Handles we do create are 931 // cleaned up in this scope. 932 ResetNoHandleMark rnhm; 933 HandleMark hm(thread); 934 935 frame stub_frame = thread->last_frame(); 936 937 Continuation::notify_deopt(thread, stub_frame.sp()); 938 939 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 940 // must point to the vframeArray for the unpack frame. 941 vframeArray* array = thread->vframe_array_head(); 942 UnrollBlock* info = array->unroll_block(); 943 944 // We set the last_Java frame. But the stack isn't really parsable here. So we 945 // clear it to make sure JFR understands not to try and walk stacks from events 946 // in here. 947 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 948 thread->frame_anchor()->set_last_Java_sp(nullptr); 949 950 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 951 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 952 953 thread->frame_anchor()->set_last_Java_sp(sp); 954 955 BasicType bt = info->return_type(); 956 957 // If we have an exception pending, claim that the return type is an oop 958 // so the deopt_blob does not overwrite the exception_oop. 959 960 if (exec_mode == Unpack_exception) 961 bt = T_OBJECT; 962 963 // Cleanup thread deopt data 964 cleanup_deopt_info(thread, array); 965 966 #ifndef PRODUCT 967 if (VerifyStack) { 968 ResourceMark res_mark; 969 // Clear pending exception to not break verification code (restored afterwards) 970 PreserveExceptionMark pm(thread); 971 972 thread->validate_frame_layout(); 973 974 // Verify that the just-unpacked frames match the interpreter's 975 // notions of expression stack and locals 976 vframeArray* cur_array = thread->vframe_array_last(); 977 RegisterMap rm(thread, 978 RegisterMap::UpdateMap::skip, 979 RegisterMap::ProcessFrames::include, 980 RegisterMap::WalkContinuation::skip); 981 rm.set_include_argument_oops(false); 982 bool is_top_frame = true; 983 int callee_size_of_parameters = 0; 984 int callee_max_locals = 0; 985 for (int i = 0; i < cur_array->frames(); i++) { 986 vframeArrayElement* el = cur_array->element(i); 987 frame* iframe = el->iframe(); 988 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 989 990 // Get the oop map for this bci 991 InterpreterOopMap mask; 992 int cur_invoke_parameter_size = 0; 993 bool try_next_mask = false; 994 int next_mask_expression_stack_size = -1; 995 int top_frame_expression_stack_adjustment = 0; 996 methodHandle mh(thread, iframe->interpreter_frame_method()); 997 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 998 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 999 int max_bci = mh->code_size(); 1000 // Get to the next bytecode if possible 1001 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 1002 // Check to see if we can grab the number of outgoing arguments 1003 // at an uncommon trap for an invoke (where the compiler 1004 // generates debug info before the invoke has executed) 1005 Bytecodes::Code cur_code = str.next(); 1006 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 1007 if (Bytecodes::is_invoke(cur_code)) { 1008 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 1009 cur_invoke_parameter_size = invoke.size_of_parameters(); 1010 if (i != 0 && invoke.has_member_arg()) { 1011 callee_size_of_parameters++; 1012 } 1013 } 1014 if (str.bci() < max_bci) { 1015 next_code = str.next(); 1016 if (next_code >= 0) { 1017 // The interpreter oop map generator reports results before 1018 // the current bytecode has executed except in the case of 1019 // calls. It seems to be hard to tell whether the compiler 1020 // has emitted debug information matching the "state before" 1021 // a given bytecode or the state after, so we try both 1022 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 1023 // Get expression stack size for the next bytecode 1024 InterpreterOopMap next_mask; 1025 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 1026 next_mask_expression_stack_size = next_mask.expression_stack_size(); 1027 if (Bytecodes::is_invoke(next_code)) { 1028 Bytecode_invoke invoke(mh, str.bci()); 1029 next_mask_expression_stack_size += invoke.size_of_parameters(); 1030 } 1031 // Need to subtract off the size of the result type of 1032 // the bytecode because this is not described in the 1033 // debug info but returned to the interpreter in the TOS 1034 // caching register 1035 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 1036 if (bytecode_result_type != T_ILLEGAL) { 1037 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 1038 } 1039 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 1040 try_next_mask = true; 1041 } 1042 } 1043 } 1044 1045 // Verify stack depth and oops in frame 1046 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 1047 if (!( 1048 /* SPARC */ 1049 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 1050 /* x86 */ 1051 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 1052 (try_next_mask && 1053 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 1054 top_frame_expression_stack_adjustment))) || 1055 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 1056 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 1057 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 1058 )) { 1059 { 1060 // Print out some information that will help us debug the problem 1061 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 1062 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 1063 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1064 if (try_next_mask) { 1065 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1066 } 1067 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1068 iframe->interpreter_frame_expression_stack_size()); 1069 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1070 tty->print_cr(" try_next_mask = %d", try_next_mask); 1071 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1072 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1073 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1074 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1075 tty->print_cr(" exec_mode = %d", exec_mode); 1076 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1077 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1078 tty->print_cr(" Interpreted frames:"); 1079 for (int k = 0; k < cur_array->frames(); k++) { 1080 vframeArrayElement* el = cur_array->element(k); 1081 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1082 } 1083 cur_array->print_on_2(tty); 1084 } 1085 guarantee(false, "wrong number of expression stack elements during deopt"); 1086 } 1087 VerifyOopClosure verify; 1088 iframe->oops_interpreted_do(&verify, &rm, false); 1089 callee_size_of_parameters = mh->size_of_parameters(); 1090 callee_max_locals = mh->max_locals(); 1091 is_top_frame = false; 1092 } 1093 } 1094 #endif // !PRODUCT 1095 1096 return bt; 1097 JRT_END 1098 1099 class DeoptimizeMarkedHandshakeClosure : public HandshakeClosure { 1100 public: 1101 DeoptimizeMarkedHandshakeClosure() : HandshakeClosure("Deoptimize") {} 1102 void do_thread(Thread* thread) { 1103 JavaThread* jt = JavaThread::cast(thread); 1104 jt->deoptimize_marked_methods(); 1105 } 1106 }; 1107 1108 void Deoptimization::deoptimize_all_marked() { 1109 ResourceMark rm; 1110 1111 // Make the dependent methods not entrant 1112 CodeCache::make_marked_nmethods_deoptimized(); 1113 1114 DeoptimizeMarkedHandshakeClosure deopt; 1115 if (SafepointSynchronize::is_at_safepoint()) { 1116 Threads::java_threads_do(&deopt); 1117 } else { 1118 Handshake::execute(&deopt); 1119 } 1120 } 1121 1122 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1123 = Deoptimization::Action_reinterpret; 1124 1125 #if INCLUDE_JVMCI 1126 template<typename CacheType> 1127 class BoxCacheBase : public CHeapObj<mtCompiler> { 1128 protected: 1129 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1130 ResourceMark rm(thread); 1131 char* klass_name_str = klass_name->as_C_string(); 1132 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle()); 1133 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1134 if (!ik->is_in_error_state()) { 1135 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1136 CacheType::compute_offsets(ik); 1137 } 1138 return ik; 1139 } 1140 }; 1141 1142 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1143 PrimitiveType _low; 1144 PrimitiveType _high; 1145 jobject _cache; 1146 protected: 1147 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1148 BoxCache(Thread* thread) { 1149 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1150 if (ik->is_in_error_state()) { 1151 _low = 1; 1152 _high = 0; 1153 _cache = nullptr; 1154 } else { 1155 objArrayOop cache = CacheType::cache(ik); 1156 assert(cache->length() > 0, "Empty cache"); 1157 _low = BoxType::value(cache->obj_at(0)); 1158 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1159 _cache = JNIHandles::make_global(Handle(thread, cache)); 1160 } 1161 } 1162 ~BoxCache() { 1163 JNIHandles::destroy_global(_cache); 1164 } 1165 public: 1166 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1167 if (_singleton == nullptr) { 1168 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1169 if (!Atomic::replace_if_null(&_singleton, s)) { 1170 delete s; 1171 } 1172 } 1173 return _singleton; 1174 } 1175 oop lookup(PrimitiveType value) { 1176 if (_low <= value && value <= _high) { 1177 int offset = checked_cast<int>(value - _low); 1178 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1179 } 1180 return nullptr; 1181 } 1182 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1183 if (_cache == nullptr) { 1184 cache_init_error = true; 1185 return nullptr; 1186 } 1187 // Have to cast to avoid little/big-endian problems. 1188 if (sizeof(PrimitiveType) > sizeof(jint)) { 1189 jlong value = (jlong)raw_value; 1190 return lookup(value); 1191 } 1192 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1193 return lookup(value); 1194 } 1195 }; 1196 1197 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1198 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1199 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1200 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1201 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1202 1203 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1204 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1205 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1206 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1207 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1208 1209 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1210 jobject _true_cache; 1211 jobject _false_cache; 1212 protected: 1213 static BooleanBoxCache *_singleton; 1214 BooleanBoxCache(Thread *thread) { 1215 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1216 if (ik->is_in_error_state()) { 1217 _true_cache = nullptr; 1218 _false_cache = nullptr; 1219 } else { 1220 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1221 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1222 } 1223 } 1224 ~BooleanBoxCache() { 1225 JNIHandles::destroy_global(_true_cache); 1226 JNIHandles::destroy_global(_false_cache); 1227 } 1228 public: 1229 static BooleanBoxCache* singleton(Thread* thread) { 1230 if (_singleton == nullptr) { 1231 BooleanBoxCache* s = new BooleanBoxCache(thread); 1232 if (!Atomic::replace_if_null(&_singleton, s)) { 1233 delete s; 1234 } 1235 } 1236 return _singleton; 1237 } 1238 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1239 if (_true_cache == nullptr) { 1240 cache_in_error = true; 1241 return nullptr; 1242 } 1243 // Have to cast to avoid little/big-endian problems. 1244 jboolean value = (jboolean)*((jint*)&raw_value); 1245 return lookup(value); 1246 } 1247 oop lookup(jboolean value) { 1248 if (value != 0) { 1249 return JNIHandles::resolve_non_null(_true_cache); 1250 } 1251 return JNIHandles::resolve_non_null(_false_cache); 1252 } 1253 }; 1254 1255 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1256 1257 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1258 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1259 BasicType box_type = vmClasses::box_klass_type(k); 1260 if (box_type != T_OBJECT) { 1261 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1262 switch(box_type) { 1263 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1264 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1265 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1266 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1267 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1268 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1269 default:; 1270 } 1271 } 1272 return nullptr; 1273 } 1274 #endif // INCLUDE_JVMCI 1275 1276 #if COMPILER2_OR_JVMCI 1277 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1278 Handle pending_exception(THREAD, thread->pending_exception()); 1279 const char* exception_file = thread->exception_file(); 1280 int exception_line = thread->exception_line(); 1281 thread->clear_pending_exception(); 1282 1283 bool failures = false; 1284 1285 for (int i = 0; i < objects->length(); i++) { 1286 assert(objects->at(i)->is_object(), "invalid debug information"); 1287 ObjectValue* sv = (ObjectValue*) objects->at(i); 1288 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1289 k = get_refined_array_klass(k, fr, reg_map, sv, THREAD); 1290 1291 // Check if the object may be null and has an additional null_marker input that needs 1292 // to be checked before using the field values. Skip re-allocation if it is null. 1293 if (k->is_inline_klass() && sv->has_properties()) { 1294 jint null_marker = StackValue::create_stack_value(fr, reg_map, sv->properties())->get_jint(); 1295 if (null_marker == 0) { 1296 continue; 1297 } 1298 } 1299 1300 oop obj = nullptr; 1301 bool cache_init_error = false; 1302 if (k->is_instance_klass()) { 1303 #if INCLUDE_JVMCI 1304 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1305 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1306 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1307 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1308 if (obj != nullptr) { 1309 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1310 abv->set_cached(true); 1311 } else if (cache_init_error) { 1312 // Results in an OOME which is valid (as opposed to a class initialization error) 1313 // and is fine for the rare case a cache initialization failing. 1314 failures = true; 1315 } 1316 } 1317 #endif // INCLUDE_JVMCI 1318 1319 InstanceKlass* ik = InstanceKlass::cast(k); 1320 if (obj == nullptr && !cache_init_error) { 1321 InternalOOMEMark iom(THREAD); 1322 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1323 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1324 } else { 1325 obj = ik->allocate_instance(THREAD); 1326 } 1327 } 1328 } else if (k->is_flatArray_klass()) { 1329 FlatArrayKlass* ak = FlatArrayKlass::cast(k); 1330 // Inline type array must be zeroed because not all memory is reassigned 1331 obj = ak->allocate_instance(sv->field_size(), ak->properties(), THREAD); 1332 } else if (k->is_typeArray_klass()) { 1333 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1334 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1335 int len = sv->field_size() / type2size[ak->element_type()]; 1336 InternalOOMEMark iom(THREAD); 1337 obj = ak->allocate_instance(len, THREAD); 1338 } else if (k->is_refArray_klass()) { 1339 RefArrayKlass* ak = RefArrayKlass::cast(k); 1340 InternalOOMEMark iom(THREAD); 1341 obj = ak->allocate_instance(sv->field_size(), ak->properties(), THREAD); 1342 } 1343 1344 if (obj == nullptr) { 1345 failures = true; 1346 } 1347 1348 assert(sv->value().is_null(), "redundant reallocation"); 1349 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1350 CLEAR_PENDING_EXCEPTION; 1351 sv->set_value(obj); 1352 } 1353 1354 if (failures) { 1355 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1356 } else if (pending_exception.not_null()) { 1357 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1358 } 1359 1360 return failures; 1361 } 1362 1363 // We're deoptimizing at the return of a call, inline type fields are 1364 // in registers. When we go back to the interpreter, it will expect a 1365 // reference to an inline type instance. Allocate and initialize it from 1366 // the register values here. 1367 bool Deoptimization::realloc_inline_type_result(InlineKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) { 1368 oop new_vt = vk->realloc_result(map, return_oops, THREAD); 1369 if (new_vt == nullptr) { 1370 CLEAR_PENDING_EXCEPTION; 1371 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true); 1372 } 1373 return_oops.clear(); 1374 return_oops.push(Handle(THREAD, new_vt)); 1375 return false; 1376 } 1377 1378 #if INCLUDE_JVMCI 1379 /** 1380 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1381 * we need to somehow be able to recover the actual kind to be able to write the correct 1382 * amount of bytes. 1383 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1384 * the entries at index n + 1 to n + i are 'markers'. 1385 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1386 * expected form of the array would be: 1387 * 1388 * {b0, b1, b2, b3, INT, marker, b6, b7} 1389 * 1390 * Thus, in order to get back the size of the entry, we simply need to count the number 1391 * of marked entries 1392 * 1393 * @param virtualArray the virtualized byte array 1394 * @param i index of the virtual entry we are recovering 1395 * @return The number of bytes the entry spans 1396 */ 1397 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1398 int index = i; 1399 while (++index < virtualArray->field_size() && 1400 virtualArray->field_at(index)->is_marker()) {} 1401 return index - i; 1402 } 1403 1404 /** 1405 * If there was a guarantee for byte array to always start aligned to a long, we could 1406 * do a simple check on the parity of the index. Unfortunately, that is not always the 1407 * case. Thus, we check alignment of the actual address we are writing to. 1408 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1409 * write a long to index 3. 1410 */ 1411 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1412 jbyte* res = obj->byte_at_addr(index); 1413 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1414 return res; 1415 } 1416 1417 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1418 switch (byte_count) { 1419 case 1: 1420 obj->byte_at_put(index, (jbyte) value->get_jint()); 1421 break; 1422 case 2: 1423 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1424 break; 1425 case 4: 1426 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1427 break; 1428 case 8: 1429 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1430 break; 1431 default: 1432 ShouldNotReachHere(); 1433 } 1434 } 1435 #endif // INCLUDE_JVMCI 1436 1437 1438 // restore elements of an eliminated type array 1439 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1440 int index = 0; 1441 1442 for (int i = 0; i < sv->field_size(); i++) { 1443 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1444 switch(type) { 1445 case T_LONG: case T_DOUBLE: { 1446 assert(value->type() == T_INT, "Agreement."); 1447 StackValue* low = 1448 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1449 #ifdef _LP64 1450 jlong res = (jlong)low->get_intptr(); 1451 #else 1452 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1453 #endif 1454 obj->long_at_put(index, res); 1455 break; 1456 } 1457 1458 case T_INT: case T_FLOAT: { // 4 bytes. 1459 assert(value->type() == T_INT, "Agreement."); 1460 bool big_value = false; 1461 if (i + 1 < sv->field_size() && type == T_INT) { 1462 if (sv->field_at(i)->is_location()) { 1463 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1464 if (type == Location::dbl || type == Location::lng) { 1465 big_value = true; 1466 } 1467 } else if (sv->field_at(i)->is_constant_int()) { 1468 ScopeValue* next_scope_field = sv->field_at(i + 1); 1469 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1470 big_value = true; 1471 } 1472 } 1473 } 1474 1475 if (big_value) { 1476 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1477 #ifdef _LP64 1478 jlong res = (jlong)low->get_intptr(); 1479 #else 1480 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1481 #endif 1482 obj->int_at_put(index, *(jint*)&res); 1483 obj->int_at_put(++index, *((jint*)&res + 1)); 1484 } else { 1485 obj->int_at_put(index, value->get_jint()); 1486 } 1487 break; 1488 } 1489 1490 case T_SHORT: 1491 assert(value->type() == T_INT, "Agreement."); 1492 obj->short_at_put(index, (jshort)value->get_jint()); 1493 break; 1494 1495 case T_CHAR: 1496 assert(value->type() == T_INT, "Agreement."); 1497 obj->char_at_put(index, (jchar)value->get_jint()); 1498 break; 1499 1500 case T_BYTE: { 1501 assert(value->type() == T_INT, "Agreement."); 1502 #if INCLUDE_JVMCI 1503 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1504 int byte_count = count_number_of_bytes_for_entry(sv, i); 1505 byte_array_put(obj, value, index, byte_count); 1506 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1507 i += byte_count - 1; // Balance the loop counter. 1508 index += byte_count; 1509 // index has been updated so continue at top of loop 1510 continue; 1511 #else 1512 obj->byte_at_put(index, (jbyte)value->get_jint()); 1513 break; 1514 #endif // INCLUDE_JVMCI 1515 } 1516 1517 case T_BOOLEAN: { 1518 assert(value->type() == T_INT, "Agreement."); 1519 obj->bool_at_put(index, (jboolean)value->get_jint()); 1520 break; 1521 } 1522 1523 default: 1524 ShouldNotReachHere(); 1525 } 1526 index++; 1527 } 1528 } 1529 1530 // restore fields of an eliminated object array 1531 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1532 for (int i = 0; i < sv->field_size(); i++) { 1533 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1534 assert(value->type() == T_OBJECT, "object element expected"); 1535 obj->obj_at_put(i, value->get_obj()()); 1536 } 1537 } 1538 1539 class ReassignedField { 1540 public: 1541 int _offset; 1542 BasicType _type; 1543 InstanceKlass* _klass; 1544 bool _is_flat; 1545 bool _is_null_free; 1546 public: 1547 ReassignedField() : _offset(0), _type(T_ILLEGAL), _klass(nullptr), _is_flat(false), _is_null_free(false) { } 1548 }; 1549 1550 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned 1551 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) { 1552 InstanceKlass* super = klass->superklass(); 1553 if (super != nullptr) { 1554 get_reassigned_fields(super, fields, is_jvmci); 1555 } 1556 for (AllFieldStream fs(klass); !fs.done(); fs.next()) { 1557 if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) { 1558 ReassignedField field; 1559 field._offset = fs.offset(); 1560 field._type = Signature::basic_type(fs.signature()); 1561 if (fs.is_flat()) { 1562 field._is_flat = true; 1563 field._is_null_free = fs.is_null_free_inline_type(); 1564 // Resolve klass of flat inline type field 1565 field._klass = InlineKlass::cast(klass->get_inline_type_field_klass(fs.index())); 1566 } 1567 fields->append(field); 1568 } 1569 } 1570 return fields; 1571 } 1572 1573 // Restore fields of an eliminated instance object employing the same field order used by the 1574 // compiler when it scalarizes an object at safepoints. 1575 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci, int base_offset, TRAPS) { 1576 GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci); 1577 for (int i = 0; i < fields->length(); i++) { 1578 BasicType type = fields->at(i)._type; 1579 int offset = base_offset + fields->at(i)._offset; 1580 // Check for flat inline type field before accessing the ScopeValue because it might not have any fields 1581 if (fields->at(i)._is_flat) { 1582 // Recursively re-assign flat inline type fields 1583 InstanceKlass* vk = fields->at(i)._klass; 1584 assert(vk != nullptr, "must be resolved"); 1585 offset -= InlineKlass::cast(vk)->payload_offset(); // Adjust offset to omit oop header 1586 svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, is_jvmci, offset, CHECK_0); 1587 if (!fields->at(i)._is_null_free) { 1588 ScopeValue* scope_field = sv->field_at(svIndex); 1589 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1590 int nm_offset = offset + InlineKlass::cast(vk)->null_marker_offset(); 1591 obj->bool_field_put(nm_offset, value->get_jint() & 1); 1592 svIndex++; 1593 } 1594 continue; // Continue because we don't need to increment svIndex 1595 } 1596 1597 ScopeValue* scope_field = sv->field_at(svIndex); 1598 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1599 switch (type) { 1600 case T_OBJECT: 1601 case T_ARRAY: 1602 assert(value->type() == T_OBJECT, "Agreement."); 1603 obj->obj_field_put(offset, value->get_obj()()); 1604 break; 1605 1606 case T_INT: case T_FLOAT: { // 4 bytes. 1607 assert(value->type() == T_INT, "Agreement."); 1608 bool big_value = false; 1609 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1610 if (scope_field->is_location()) { 1611 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1612 if (type == Location::dbl || type == Location::lng) { 1613 big_value = true; 1614 } 1615 } 1616 if (scope_field->is_constant_int()) { 1617 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1618 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1619 big_value = true; 1620 } 1621 } 1622 } 1623 1624 if (big_value) { 1625 i++; 1626 assert(i < fields->length(), "second T_INT field needed"); 1627 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1628 } else { 1629 obj->int_field_put(offset, value->get_jint()); 1630 break; 1631 } 1632 } 1633 /* no break */ 1634 1635 case T_LONG: case T_DOUBLE: { 1636 assert(value->type() == T_INT, "Agreement."); 1637 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1638 #ifdef _LP64 1639 jlong res = (jlong)low->get_intptr(); 1640 #else 1641 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1642 #endif 1643 obj->long_field_put(offset, res); 1644 break; 1645 } 1646 1647 case T_SHORT: 1648 assert(value->type() == T_INT, "Agreement."); 1649 obj->short_field_put(offset, (jshort)value->get_jint()); 1650 break; 1651 1652 case T_CHAR: 1653 assert(value->type() == T_INT, "Agreement."); 1654 obj->char_field_put(offset, (jchar)value->get_jint()); 1655 break; 1656 1657 case T_BYTE: 1658 assert(value->type() == T_INT, "Agreement."); 1659 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1660 break; 1661 1662 case T_BOOLEAN: 1663 assert(value->type() == T_INT, "Agreement."); 1664 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1665 break; 1666 1667 default: 1668 ShouldNotReachHere(); 1669 } 1670 svIndex++; 1671 } 1672 1673 return svIndex; 1674 } 1675 1676 // restore fields of an eliminated inline type array 1677 void Deoptimization::reassign_flat_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, flatArrayOop obj, FlatArrayKlass* vak, bool is_jvmci, TRAPS) { 1678 InlineKlass* vk = vak->element_klass(); 1679 assert(vk->maybe_flat_in_array(), "should only be used for flat inline type arrays"); 1680 // Adjust offset to omit oop header 1681 int base_offset = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT) - InlineKlass::cast(vk)->payload_offset(); 1682 // Initialize all elements of the flat inline type array 1683 for (int i = 0; i < sv->field_size(); i++) { 1684 ScopeValue* val = sv->field_at(i); 1685 int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper())); 1686 reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, is_jvmci, offset, CHECK); 1687 } 1688 } 1689 1690 // restore fields of all eliminated objects and arrays 1691 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci, TRAPS) { 1692 for (int i = 0; i < objects->length(); i++) { 1693 assert(objects->at(i)->is_object(), "invalid debug information"); 1694 ObjectValue* sv = (ObjectValue*) objects->at(i); 1695 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1696 k = get_refined_array_klass(k, fr, reg_map, sv, THREAD); 1697 1698 Handle obj = sv->value(); 1699 assert(obj.not_null() || realloc_failures || sv->has_properties(), "reallocation was missed"); 1700 #ifndef PRODUCT 1701 if (PrintDeoptimizationDetails) { 1702 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1703 } 1704 #endif // !PRODUCT 1705 1706 if (obj.is_null()) { 1707 continue; 1708 } 1709 1710 #if INCLUDE_JVMCI 1711 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1712 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1713 continue; 1714 } 1715 #endif // INCLUDE_JVMCI 1716 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1717 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1718 ScopeValue* payload = sv->field_at(0); 1719 if (payload->is_location() && 1720 payload->as_LocationValue()->location().type() == Location::vector) { 1721 #ifndef PRODUCT 1722 if (PrintDeoptimizationDetails) { 1723 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1724 if (Verbose) { 1725 Handle obj = sv->value(); 1726 k->oop_print_on(obj(), tty); 1727 } 1728 } 1729 #endif // !PRODUCT 1730 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1731 } 1732 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1733 // which could be restored after vector object allocation. 1734 } 1735 if (k->is_instance_klass()) { 1736 InstanceKlass* ik = InstanceKlass::cast(k); 1737 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci, 0, CHECK); 1738 } else if (k->is_flatArray_klass()) { 1739 FlatArrayKlass* vak = FlatArrayKlass::cast(k); 1740 reassign_flat_array_elements(fr, reg_map, sv, (flatArrayOop) obj(), vak, is_jvmci, CHECK); 1741 } else if (k->is_typeArray_klass()) { 1742 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1743 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1744 } else if (k->is_refArray_klass()) { 1745 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1746 } 1747 } 1748 // These objects may escape when we return to Interpreter after deoptimization. 1749 // We need barrier so that stores that initialize these objects can't be reordered 1750 // with subsequent stores that make these objects accessible by other threads. 1751 OrderAccess::storestore(); 1752 } 1753 1754 1755 // relock objects for which synchronization was eliminated 1756 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1757 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1758 bool relocked_objects = false; 1759 for (int i = 0; i < monitors->length(); i++) { 1760 MonitorInfo* mon_info = monitors->at(i); 1761 if (mon_info->eliminated()) { 1762 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1763 relocked_objects = true; 1764 if (!mon_info->owner_is_scalar_replaced()) { 1765 Handle obj(thread, mon_info->owner()); 1766 markWord mark = obj->mark(); 1767 if (exec_mode == Unpack_none) { 1768 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1769 // With exec_mode == Unpack_none obj may be thread local and locked in 1770 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1771 markWord dmw = mark.displaced_mark_helper(); 1772 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1773 obj->set_mark(dmw); 1774 } 1775 if (mark.has_monitor()) { 1776 // defer relocking if the deoptee thread is currently waiting for obj 1777 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1778 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1779 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1780 if (LockingMode == LM_LEGACY) { 1781 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1782 } else if (UseObjectMonitorTable) { 1783 mon_info->lock()->clear_object_monitor_cache(); 1784 } 1785 #ifdef ASSERT 1786 else { 1787 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1788 mon_info->lock()->set_bad_metadata_deopt(); 1789 } 1790 #endif 1791 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1792 continue; 1793 } 1794 } 1795 } 1796 BasicLock* lock = mon_info->lock(); 1797 if (LockingMode == LM_LIGHTWEIGHT) { 1798 // We have lost information about the correct state of the lock stack. 1799 // Entering may create an invalid lock stack. Inflate the lock if it 1800 // was fast_locked to restore the valid lock stack. 1801 if (UseObjectMonitorTable) { 1802 // UseObjectMonitorTable expects the BasicLock cache to be either a 1803 // valid ObjectMonitor* or nullptr. Right now it is garbage, set it 1804 // to nullptr. 1805 lock->clear_object_monitor_cache(); 1806 } 1807 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1808 if (deoptee_thread->lock_stack().contains(obj())) { 1809 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1810 deoptee_thread, thread); 1811 } 1812 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1813 assert(obj->mark().has_monitor(), "must be"); 1814 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1815 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1816 } else { 1817 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1818 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1819 } 1820 } 1821 } 1822 } 1823 return relocked_objects; 1824 } 1825 #endif // COMPILER2_OR_JVMCI 1826 1827 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1828 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1829 1830 // Register map for next frame (used for stack crawl). We capture 1831 // the state of the deopt'ing frame's caller. Thus if we need to 1832 // stuff a C2I adapter we can properly fill in the callee-save 1833 // register locations. 1834 frame caller = fr.sender(reg_map); 1835 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1836 1837 frame sender = caller; 1838 1839 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1840 // the vframeArray containing the unpacking information is allocated in the C heap. 1841 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1842 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1843 1844 // Compare the vframeArray to the collected vframes 1845 assert(array->structural_compare(thread, chunk), "just checking"); 1846 1847 if (TraceDeoptimization) { 1848 ResourceMark rm; 1849 stringStream st; 1850 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1851 st.print(" "); 1852 fr.print_on(&st); 1853 st.print_cr(" Virtual frames (innermost/newest first):"); 1854 for (int index = 0; index < chunk->length(); index++) { 1855 compiledVFrame* vf = chunk->at(index); 1856 int bci = vf->raw_bci(); 1857 const char* code_name; 1858 if (bci == SynchronizationEntryBCI) { 1859 code_name = "sync entry"; 1860 } else { 1861 Bytecodes::Code code = vf->method()->code_at(bci); 1862 code_name = Bytecodes::name(code); 1863 } 1864 1865 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1866 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1867 st.print(" - %s", code_name); 1868 st.print_cr(" @ bci=%d ", bci); 1869 } 1870 tty->print_raw(st.freeze()); 1871 tty->cr(); 1872 } 1873 1874 return array; 1875 } 1876 1877 #if COMPILER2_OR_JVMCI 1878 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1879 // Reallocation of some scalar replaced objects failed. Record 1880 // that we need to pop all the interpreter frames for the 1881 // deoptimized compiled frame. 1882 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1883 thread->set_frames_to_pop_failed_realloc(array->frames()); 1884 // Unlock all monitors here otherwise the interpreter will see a 1885 // mix of locked and unlocked monitors (because of failed 1886 // reallocations of synchronized objects) and be confused. 1887 for (int i = 0; i < array->frames(); i++) { 1888 MonitorChunk* monitors = array->element(i)->monitors(); 1889 if (monitors != nullptr) { 1890 // Unlock in reverse order starting from most nested monitor. 1891 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1892 BasicObjectLock* src = monitors->at(j); 1893 if (src->obj() != nullptr) { 1894 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1895 } 1896 } 1897 array->element(i)->free_monitors(); 1898 #ifdef ASSERT 1899 array->element(i)->set_removed_monitors(); 1900 #endif 1901 } 1902 } 1903 } 1904 #endif 1905 1906 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1907 assert(fr.can_be_deoptimized(), "checking frame type"); 1908 1909 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1910 1911 if (LogCompilation && xtty != nullptr) { 1912 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1913 assert(nm != nullptr, "only compiled methods can deopt"); 1914 1915 ttyLocker ttyl; 1916 xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1917 nm->log_identity(xtty); 1918 xtty->end_head(); 1919 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1920 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1921 xtty->method(sd->method()); 1922 xtty->end_elem(); 1923 if (sd->is_top()) break; 1924 } 1925 xtty->tail("deoptimized"); 1926 } 1927 1928 Continuation::notify_deopt(thread, fr.sp()); 1929 1930 // Patch the compiled method so that when execution returns to it we will 1931 // deopt the execution state and return to the interpreter. 1932 fr.deoptimize(thread); 1933 } 1934 1935 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1936 // Deoptimize only if the frame comes from compiled code. 1937 // Do not deoptimize the frame which is already patched 1938 // during the execution of the loops below. 1939 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1940 return; 1941 } 1942 ResourceMark rm; 1943 deoptimize_single_frame(thread, fr, reason); 1944 } 1945 1946 #if INCLUDE_JVMCI 1947 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1948 // there is no exception handler for this pc => deoptimize 1949 nm->make_not_entrant(nmethod::InvalidationReason::MISSING_EXCEPTION_HANDLER); 1950 1951 // Use Deoptimization::deoptimize for all of its side-effects: 1952 // gathering traps statistics, logging... 1953 // it also patches the return pc but we do not care about that 1954 // since we return a continuation to the deopt_blob below. 1955 JavaThread* thread = JavaThread::current(); 1956 RegisterMap reg_map(thread, 1957 RegisterMap::UpdateMap::skip, 1958 RegisterMap::ProcessFrames::include, 1959 RegisterMap::WalkContinuation::skip); 1960 frame runtime_frame = thread->last_frame(); 1961 frame caller_frame = runtime_frame.sender(®_map); 1962 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1963 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1964 compiledVFrame* cvf = compiledVFrame::cast(vf); 1965 ScopeDesc* imm_scope = cvf->scope(); 1966 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1967 if (imm_mdo != nullptr) { 1968 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1969 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1970 1971 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1972 if (pdata != nullptr && pdata->is_BitData()) { 1973 BitData* bit_data = (BitData*) pdata; 1974 bit_data->set_exception_seen(); 1975 } 1976 } 1977 1978 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1979 1980 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1981 if (trap_mdo != nullptr) { 1982 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1983 } 1984 1985 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1986 } 1987 #endif 1988 1989 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1990 assert(thread == Thread::current() || 1991 thread->is_handshake_safe_for(Thread::current()) || 1992 SafepointSynchronize::is_at_safepoint(), 1993 "can only deoptimize other thread at a safepoint/handshake"); 1994 // Compute frame and register map based on thread and sp. 1995 RegisterMap reg_map(thread, 1996 RegisterMap::UpdateMap::skip, 1997 RegisterMap::ProcessFrames::include, 1998 RegisterMap::WalkContinuation::skip); 1999 frame fr = thread->last_frame(); 2000 while (fr.id() != id) { 2001 fr = fr.sender(®_map); 2002 } 2003 deoptimize(thread, fr, reason); 2004 } 2005 2006 2007 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 2008 Thread* current = Thread::current(); 2009 if (thread == current || thread->is_handshake_safe_for(current)) { 2010 Deoptimization::deoptimize_frame_internal(thread, id, reason); 2011 } else { 2012 VM_DeoptimizeFrame deopt(thread, id, reason); 2013 VMThread::execute(&deopt); 2014 } 2015 } 2016 2017 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 2018 deoptimize_frame(thread, id, Reason_constraint); 2019 } 2020 2021 // JVMTI PopFrame support 2022 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 2023 { 2024 assert(thread == JavaThread::current(), "pre-condition"); 2025 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 2026 } 2027 JRT_END 2028 2029 MethodData* 2030 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 2031 bool create_if_missing) { 2032 JavaThread* THREAD = thread; // For exception macros. 2033 MethodData* mdo = m()->method_data(); 2034 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 2035 // Build an MDO. Ignore errors like OutOfMemory; 2036 // that simply means we won't have an MDO to update. 2037 Method::build_profiling_method_data(m, THREAD); 2038 if (HAS_PENDING_EXCEPTION) { 2039 // Only metaspace OOM is expected. No Java code executed. 2040 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 2041 CLEAR_PENDING_EXCEPTION; 2042 } 2043 mdo = m()->method_data(); 2044 } 2045 return mdo; 2046 } 2047 2048 #if COMPILER2_OR_JVMCI 2049 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 2050 // In case of an unresolved klass entry, load the class. 2051 // This path is exercised from case _ldc in Parse::do_one_bytecode, 2052 // and probably nowhere else. 2053 // Even that case would benefit from simply re-interpreting the 2054 // bytecode, without paying special attention to the class index. 2055 // So this whole "class index" feature should probably be removed. 2056 2057 if (constant_pool->tag_at(index).is_unresolved_klass()) { 2058 Klass* tk = constant_pool->klass_at(index, THREAD); 2059 if (HAS_PENDING_EXCEPTION) { 2060 // Exception happened during classloading. We ignore the exception here, since it 2061 // is going to be rethrown since the current activation is going to be deoptimized and 2062 // the interpreter will re-execute the bytecode. 2063 // Do not clear probable Async Exceptions. 2064 CLEAR_PENDING_NONASYNC_EXCEPTION; 2065 // Class loading called java code which may have caused a stack 2066 // overflow. If the exception was thrown right before the return 2067 // to the runtime the stack is no longer guarded. Reguard the 2068 // stack otherwise if we return to the uncommon trap blob and the 2069 // stack bang causes a stack overflow we crash. 2070 JavaThread* jt = THREAD; 2071 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 2072 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 2073 } 2074 return; 2075 } 2076 2077 assert(!constant_pool->tag_at(index).is_symbol(), 2078 "no symbolic names here, please"); 2079 } 2080 2081 #if INCLUDE_JFR 2082 2083 class DeoptReasonSerializer : public JfrSerializer { 2084 public: 2085 void serialize(JfrCheckpointWriter& writer) { 2086 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 2087 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 2088 writer.write_key((u8)i); 2089 writer.write(Deoptimization::trap_reason_name(i)); 2090 } 2091 } 2092 }; 2093 2094 class DeoptActionSerializer : public JfrSerializer { 2095 public: 2096 void serialize(JfrCheckpointWriter& writer) { 2097 static const u4 nof_actions = Deoptimization::Action_LIMIT; 2098 writer.write_count(nof_actions); 2099 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 2100 writer.write_key(i); 2101 writer.write(Deoptimization::trap_action_name((int)i)); 2102 } 2103 } 2104 }; 2105 2106 static void register_serializers() { 2107 static int critical_section = 0; 2108 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 2109 return; 2110 } 2111 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 2112 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 2113 } 2114 2115 static void post_deoptimization_event(nmethod* nm, 2116 const Method* method, 2117 int trap_bci, 2118 int instruction, 2119 Deoptimization::DeoptReason reason, 2120 Deoptimization::DeoptAction action) { 2121 assert(nm != nullptr, "invariant"); 2122 assert(method != nullptr, "invariant"); 2123 if (EventDeoptimization::is_enabled()) { 2124 static bool serializers_registered = false; 2125 if (!serializers_registered) { 2126 register_serializers(); 2127 serializers_registered = true; 2128 } 2129 EventDeoptimization event; 2130 event.set_compileId(nm->compile_id()); 2131 event.set_compiler(nm->compiler_type()); 2132 event.set_method(method); 2133 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 2134 event.set_bci(trap_bci); 2135 event.set_instruction(instruction); 2136 event.set_reason(reason); 2137 event.set_action(action); 2138 event.commit(); 2139 } 2140 } 2141 2142 #endif // INCLUDE_JFR 2143 2144 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2145 const char* reason_name, const char* reason_action) { 2146 LogTarget(Debug, deoptimization) lt; 2147 if (lt.is_enabled()) { 2148 LogStream ls(lt); 2149 bool is_osr = nm->is_osr_method(); 2150 ls.print("cid=%4d %s level=%d", 2151 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2152 ls.print(" %s", tm->name_and_sig_as_C_string()); 2153 ls.print(" trap_bci=%d ", trap_bci); 2154 if (is_osr) { 2155 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2156 } 2157 ls.print("%s ", reason_name); 2158 ls.print("%s ", reason_action); 2159 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2160 pc, fr.pc() - nm->code_begin()); 2161 } 2162 } 2163 2164 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2165 HandleMark hm(current); 2166 2167 // uncommon_trap() is called at the beginning of the uncommon trap 2168 // handler. Note this fact before we start generating temporary frames 2169 // that can confuse an asynchronous stack walker. This counter is 2170 // decremented at the end of unpack_frames(). 2171 2172 current->inc_in_deopt_handler(); 2173 2174 #if INCLUDE_JVMCI 2175 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2176 RegisterMap reg_map(current, 2177 RegisterMap::UpdateMap::include, 2178 RegisterMap::ProcessFrames::include, 2179 RegisterMap::WalkContinuation::skip); 2180 #else 2181 RegisterMap reg_map(current, 2182 RegisterMap::UpdateMap::skip, 2183 RegisterMap::ProcessFrames::include, 2184 RegisterMap::WalkContinuation::skip); 2185 #endif 2186 frame stub_frame = current->last_frame(); 2187 frame fr = stub_frame.sender(®_map); 2188 2189 // Log a message 2190 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2191 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2192 2193 { 2194 ResourceMark rm; 2195 2196 DeoptReason reason = trap_request_reason(trap_request); 2197 DeoptAction action = trap_request_action(trap_request); 2198 #if INCLUDE_JVMCI 2199 int debug_id = trap_request_debug_id(trap_request); 2200 #endif 2201 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2202 2203 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2204 compiledVFrame* cvf = compiledVFrame::cast(vf); 2205 2206 nmethod* nm = cvf->code(); 2207 2208 ScopeDesc* trap_scope = cvf->scope(); 2209 2210 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2211 2212 if (is_receiver_constraint_failure) { 2213 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2214 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2215 JVMCI_ONLY(COMMA debug_id)); 2216 } 2217 2218 methodHandle trap_method(current, trap_scope->method()); 2219 int trap_bci = trap_scope->bci(); 2220 #if INCLUDE_JVMCI 2221 jlong speculation = current->pending_failed_speculation(); 2222 if (nm->is_compiled_by_jvmci()) { 2223 nm->update_speculation(current); 2224 } else { 2225 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2226 } 2227 2228 if (trap_bci == SynchronizationEntryBCI) { 2229 trap_bci = 0; 2230 current->set_pending_monitorenter(true); 2231 } 2232 2233 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2234 current->set_pending_transfer_to_interpreter(true); 2235 } 2236 #endif 2237 2238 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2239 // Record this event in the histogram. 2240 gather_statistics(reason, action, trap_bc); 2241 2242 // Ensure that we can record deopt. history: 2243 bool create_if_missing = ProfileTraps; 2244 2245 methodHandle profiled_method; 2246 #if INCLUDE_JVMCI 2247 if (nm->is_compiled_by_jvmci()) { 2248 profiled_method = methodHandle(current, nm->method()); 2249 } else { 2250 profiled_method = trap_method; 2251 } 2252 #else 2253 profiled_method = trap_method; 2254 #endif 2255 2256 MethodData* trap_mdo = 2257 get_method_data(current, profiled_method, create_if_missing); 2258 2259 { // Log Deoptimization event for JFR, UL and event system 2260 Method* tm = trap_method(); 2261 const char* reason_name = trap_reason_name(reason); 2262 const char* reason_action = trap_action_name(action); 2263 intptr_t pc = p2i(fr.pc()); 2264 2265 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2266 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2267 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2268 reason_name, reason_action, pc, 2269 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2270 } 2271 2272 // Print a bunch of diagnostics, if requested. 2273 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2274 ResourceMark rm; 2275 2276 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2277 // We must do this already now, since we cannot acquire this lock while 2278 // holding the tty lock (lock ordering by rank). 2279 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2280 2281 ttyLocker ttyl; 2282 2283 char buf[100]; 2284 if (xtty != nullptr) { 2285 xtty->begin_head("uncommon_trap thread='%zu' %s", 2286 os::current_thread_id(), 2287 format_trap_request(buf, sizeof(buf), trap_request)); 2288 #if INCLUDE_JVMCI 2289 if (speculation != 0) { 2290 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2291 } 2292 #endif 2293 nm->log_identity(xtty); 2294 } 2295 Symbol* class_name = nullptr; 2296 bool unresolved = false; 2297 if (unloaded_class_index >= 0) { 2298 constantPoolHandle constants (current, trap_method->constants()); 2299 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2300 class_name = constants->klass_name_at(unloaded_class_index); 2301 unresolved = true; 2302 if (xtty != nullptr) 2303 xtty->print(" unresolved='1'"); 2304 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2305 class_name = constants->symbol_at(unloaded_class_index); 2306 } 2307 if (xtty != nullptr) 2308 xtty->name(class_name); 2309 } 2310 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2311 // Dump the relevant MDO state. 2312 // This is the deopt count for the current reason, any previous 2313 // reasons or recompiles seen at this point. 2314 int dcnt = trap_mdo->trap_count(reason); 2315 if (dcnt != 0) 2316 xtty->print(" count='%d'", dcnt); 2317 2318 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2319 // lock extra_data_lock before the tty lock. 2320 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2321 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2322 if (dos != 0) { 2323 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2324 if (trap_state_is_recompiled(dos)) { 2325 int recnt2 = trap_mdo->overflow_recompile_count(); 2326 if (recnt2 != 0) 2327 xtty->print(" recompiles2='%d'", recnt2); 2328 } 2329 } 2330 } 2331 if (xtty != nullptr) { 2332 xtty->stamp(); 2333 xtty->end_head(); 2334 } 2335 if (TraceDeoptimization) { // make noise on the tty 2336 stringStream st; 2337 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2338 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2339 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2340 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2341 #if INCLUDE_JVMCI 2342 if (nm->is_compiled_by_jvmci()) { 2343 const char* installed_code_name = nm->jvmci_name(); 2344 if (installed_code_name != nullptr) { 2345 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2346 } 2347 } 2348 #endif 2349 st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2350 p2i(fr.pc()), 2351 os::current_thread_id(), 2352 trap_reason_name(reason), 2353 trap_action_name(action), 2354 unloaded_class_index 2355 #if INCLUDE_JVMCI 2356 , debug_id 2357 #endif 2358 ); 2359 if (class_name != nullptr) { 2360 st.print(unresolved ? " unresolved class: " : " symbol: "); 2361 class_name->print_symbol_on(&st); 2362 } 2363 st.cr(); 2364 tty->print_raw(st.freeze()); 2365 } 2366 if (xtty != nullptr) { 2367 // Log the precise location of the trap. 2368 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2369 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2370 xtty->method(sd->method()); 2371 xtty->end_elem(); 2372 if (sd->is_top()) break; 2373 } 2374 xtty->tail("uncommon_trap"); 2375 } 2376 } 2377 // (End diagnostic printout.) 2378 2379 if (is_receiver_constraint_failure) { 2380 fatal("missing receiver type check"); 2381 } 2382 2383 // Load class if necessary 2384 if (unloaded_class_index >= 0) { 2385 constantPoolHandle constants(current, trap_method->constants()); 2386 load_class_by_index(constants, unloaded_class_index, THREAD); 2387 } 2388 2389 // Flush the nmethod if necessary and desirable. 2390 // 2391 // We need to avoid situations where we are re-flushing the nmethod 2392 // because of a hot deoptimization site. Repeated flushes at the same 2393 // point need to be detected by the compiler and avoided. If the compiler 2394 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2395 // module must take measures to avoid an infinite cycle of recompilation 2396 // and deoptimization. There are several such measures: 2397 // 2398 // 1. If a recompilation is ordered a second time at some site X 2399 // and for the same reason R, the action is adjusted to 'reinterpret', 2400 // to give the interpreter time to exercise the method more thoroughly. 2401 // If this happens, the method's overflow_recompile_count is incremented. 2402 // 2403 // 2. If the compiler fails to reduce the deoptimization rate, then 2404 // the method's overflow_recompile_count will begin to exceed the set 2405 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2406 // is adjusted to 'make_not_compilable', and the method is abandoned 2407 // to the interpreter. This is a performance hit for hot methods, 2408 // but is better than a disastrous infinite cycle of recompilations. 2409 // (Actually, only the method containing the site X is abandoned.) 2410 // 2411 // 3. In parallel with the previous measures, if the total number of 2412 // recompilations of a method exceeds the much larger set limit 2413 // PerMethodRecompilationCutoff, the method is abandoned. 2414 // This should only happen if the method is very large and has 2415 // many "lukewarm" deoptimizations. The code which enforces this 2416 // limit is elsewhere (class nmethod, class Method). 2417 // 2418 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2419 // to recompile at each bytecode independently of the per-BCI cutoff. 2420 // 2421 // The decision to update code is up to the compiler, and is encoded 2422 // in the Action_xxx code. If the compiler requests Action_none 2423 // no trap state is changed, no compiled code is changed, and the 2424 // computation suffers along in the interpreter. 2425 // 2426 // The other action codes specify various tactics for decompilation 2427 // and recompilation. Action_maybe_recompile is the loosest, and 2428 // allows the compiled code to stay around until enough traps are seen, 2429 // and until the compiler gets around to recompiling the trapping method. 2430 // 2431 // The other actions cause immediate removal of the present code. 2432 2433 // Traps caused by injected profile shouldn't pollute trap counts. 2434 bool injected_profile_trap = trap_method->has_injected_profile() && 2435 (reason == Reason_intrinsic || reason == Reason_unreached); 2436 2437 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2438 bool make_not_entrant = false; 2439 bool make_not_compilable = false; 2440 bool reprofile = false; 2441 switch (action) { 2442 case Action_none: 2443 // Keep the old code. 2444 update_trap_state = false; 2445 break; 2446 case Action_maybe_recompile: 2447 // Do not need to invalidate the present code, but we can 2448 // initiate another 2449 // Start compiler without (necessarily) invalidating the nmethod. 2450 // The system will tolerate the old code, but new code should be 2451 // generated when possible. 2452 break; 2453 case Action_reinterpret: 2454 // Go back into the interpreter for a while, and then consider 2455 // recompiling form scratch. 2456 make_not_entrant = true; 2457 // Reset invocation counter for outer most method. 2458 // This will allow the interpreter to exercise the bytecodes 2459 // for a while before recompiling. 2460 // By contrast, Action_make_not_entrant is immediate. 2461 // 2462 // Note that the compiler will track null_check, null_assert, 2463 // range_check, and class_check events and log them as if they 2464 // had been traps taken from compiled code. This will update 2465 // the MDO trap history so that the next compilation will 2466 // properly detect hot trap sites. 2467 reprofile = true; 2468 break; 2469 case Action_make_not_entrant: 2470 // Request immediate recompilation, and get rid of the old code. 2471 // Make them not entrant, so next time they are called they get 2472 // recompiled. Unloaded classes are loaded now so recompile before next 2473 // time they are called. Same for uninitialized. The interpreter will 2474 // link the missing class, if any. 2475 make_not_entrant = true; 2476 break; 2477 case Action_make_not_compilable: 2478 // Give up on compiling this method at all. 2479 make_not_entrant = true; 2480 make_not_compilable = true; 2481 break; 2482 default: 2483 ShouldNotReachHere(); 2484 } 2485 2486 #if INCLUDE_JVMCI 2487 // Deoptimization count is used by the CompileBroker to reason about compilations 2488 // it requests so do not pollute the count for deoptimizations in non-default (i.e. 2489 // non-CompilerBroker) compilations. 2490 if (nm->is_jvmci_hosted()) { 2491 update_trap_state = false; 2492 } 2493 #endif 2494 // Setting +ProfileTraps fixes the following, on all platforms: 2495 // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2496 // recompile relies on a MethodData* to record heroic opt failures. 2497 2498 // Whether the interpreter is producing MDO data or not, we also need 2499 // to use the MDO to detect hot deoptimization points and control 2500 // aggressive optimization. 2501 bool inc_recompile_count = false; 2502 2503 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2504 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2505 (trap_mdo != nullptr), 2506 Mutex::_no_safepoint_check_flag); 2507 ProfileData* pdata = nullptr; 2508 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2509 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2510 uint this_trap_count = 0; 2511 bool maybe_prior_trap = false; 2512 bool maybe_prior_recompile = false; 2513 2514 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2515 #if INCLUDE_JVMCI 2516 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2517 #endif 2518 nm->method(), 2519 //outputs: 2520 this_trap_count, 2521 maybe_prior_trap, 2522 maybe_prior_recompile); 2523 // Because the interpreter also counts null, div0, range, and class 2524 // checks, these traps from compiled code are double-counted. 2525 // This is harmless; it just means that the PerXTrapLimit values 2526 // are in effect a little smaller than they look. 2527 2528 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2529 if (per_bc_reason != Reason_none) { 2530 // Now take action based on the partially known per-BCI history. 2531 if (maybe_prior_trap 2532 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2533 // If there are too many traps at this BCI, force a recompile. 2534 // This will allow the compiler to see the limit overflow, and 2535 // take corrective action, if possible. The compiler generally 2536 // does not use the exact PerBytecodeTrapLimit value, but instead 2537 // changes its tactics if it sees any traps at all. This provides 2538 // a little hysteresis, delaying a recompile until a trap happens 2539 // several times. 2540 // 2541 // Actually, since there is only one bit of counter per BCI, 2542 // the possible per-BCI counts are {0,1,(per-method count)}. 2543 // This produces accurate results if in fact there is only 2544 // one hot trap site, but begins to get fuzzy if there are 2545 // many sites. For example, if there are ten sites each 2546 // trapping two or more times, they each get the blame for 2547 // all of their traps. 2548 make_not_entrant = true; 2549 } 2550 2551 // Detect repeated recompilation at the same BCI, and enforce a limit. 2552 if (make_not_entrant && maybe_prior_recompile) { 2553 // More than one recompile at this point. 2554 inc_recompile_count = maybe_prior_trap; 2555 } 2556 } else { 2557 // For reasons which are not recorded per-bytecode, we simply 2558 // force recompiles unconditionally. 2559 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2560 make_not_entrant = true; 2561 } 2562 2563 // Go back to the compiler if there are too many traps in this method. 2564 if (this_trap_count >= per_method_trap_limit(reason)) { 2565 // If there are too many traps in this method, force a recompile. 2566 // This will allow the compiler to see the limit overflow, and 2567 // take corrective action, if possible. 2568 // (This condition is an unlikely backstop only, because the 2569 // PerBytecodeTrapLimit is more likely to take effect first, 2570 // if it is applicable.) 2571 make_not_entrant = true; 2572 } 2573 2574 // Here's more hysteresis: If there has been a recompile at 2575 // this trap point already, run the method in the interpreter 2576 // for a while to exercise it more thoroughly. 2577 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2578 reprofile = true; 2579 } 2580 } 2581 2582 // Take requested actions on the method: 2583 2584 // Recompile 2585 if (make_not_entrant) { 2586 if (!nm->make_not_entrant(nmethod::InvalidationReason::UNCOMMON_TRAP)) { 2587 return; // the call did not change nmethod's state 2588 } 2589 2590 if (pdata != nullptr) { 2591 // Record the recompilation event, if any. 2592 int tstate0 = pdata->trap_state(); 2593 int tstate1 = trap_state_set_recompiled(tstate0, true); 2594 if (tstate1 != tstate0) 2595 pdata->set_trap_state(tstate1); 2596 } 2597 2598 // For code aging we count traps separately here, using make_not_entrant() 2599 // as a guard against simultaneous deopts in multiple threads. 2600 if (reason == Reason_tenured && trap_mdo != nullptr) { 2601 trap_mdo->inc_tenure_traps(); 2602 } 2603 } 2604 if (inc_recompile_count) { 2605 trap_mdo->inc_overflow_recompile_count(); 2606 if ((uint)trap_mdo->overflow_recompile_count() > 2607 (uint)PerBytecodeRecompilationCutoff) { 2608 // Give up on the method containing the bad BCI. 2609 if (trap_method() == nm->method()) { 2610 make_not_compilable = true; 2611 } else { 2612 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2613 // But give grace to the enclosing nm->method(). 2614 } 2615 } 2616 } 2617 2618 // Reprofile 2619 if (reprofile) { 2620 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2621 } 2622 2623 // Give up compiling 2624 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2625 assert(make_not_entrant, "consistent"); 2626 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2627 } 2628 2629 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2630 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2631 if (exception_handler_data != nullptr) { 2632 // uncommon trap at the start of an exception handler. 2633 // C2 generates these for un-entered exception handlers. 2634 // mark the handler as entered to avoid generating 2635 // another uncommon trap the next time the handler is compiled 2636 exception_handler_data->set_exception_handler_entered(); 2637 } 2638 } 2639 2640 } // Free marked resources 2641 2642 } 2643 JRT_END 2644 2645 ProfileData* 2646 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2647 int trap_bci, 2648 Deoptimization::DeoptReason reason, 2649 bool update_total_trap_count, 2650 #if INCLUDE_JVMCI 2651 bool is_osr, 2652 #endif 2653 Method* compiled_method, 2654 //outputs: 2655 uint& ret_this_trap_count, 2656 bool& ret_maybe_prior_trap, 2657 bool& ret_maybe_prior_recompile) { 2658 trap_mdo->check_extra_data_locked(); 2659 2660 bool maybe_prior_trap = false; 2661 bool maybe_prior_recompile = false; 2662 uint this_trap_count = 0; 2663 if (update_total_trap_count) { 2664 uint idx = reason; 2665 #if INCLUDE_JVMCI 2666 if (is_osr) { 2667 // Upper half of history array used for traps in OSR compilations 2668 idx += Reason_TRAP_HISTORY_LENGTH; 2669 } 2670 #endif 2671 uint prior_trap_count = trap_mdo->trap_count(idx); 2672 this_trap_count = trap_mdo->inc_trap_count(idx); 2673 2674 // If the runtime cannot find a place to store trap history, 2675 // it is estimated based on the general condition of the method. 2676 // If the method has ever been recompiled, or has ever incurred 2677 // a trap with the present reason , then this BCI is assumed 2678 // (pessimistically) to be the culprit. 2679 maybe_prior_trap = (prior_trap_count != 0); 2680 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2681 } 2682 ProfileData* pdata = nullptr; 2683 2684 2685 // For reasons which are recorded per bytecode, we check per-BCI data. 2686 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2687 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2688 if (per_bc_reason != Reason_none) { 2689 // Find the profile data for this BCI. If there isn't one, 2690 // try to allocate one from the MDO's set of spares. 2691 // This will let us detect a repeated trap at this point. 2692 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2693 2694 if (pdata != nullptr) { 2695 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2696 if (LogCompilation && xtty != nullptr) { 2697 ttyLocker ttyl; 2698 // no more room for speculative traps in this MDO 2699 xtty->elem("speculative_traps_oom"); 2700 } 2701 } 2702 // Query the trap state of this profile datum. 2703 int tstate0 = pdata->trap_state(); 2704 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2705 maybe_prior_trap = false; 2706 if (!trap_state_is_recompiled(tstate0)) 2707 maybe_prior_recompile = false; 2708 2709 // Update the trap state of this profile datum. 2710 int tstate1 = tstate0; 2711 // Record the reason. 2712 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2713 // Store the updated state on the MDO, for next time. 2714 if (tstate1 != tstate0) 2715 pdata->set_trap_state(tstate1); 2716 } else { 2717 if (LogCompilation && xtty != nullptr) { 2718 ttyLocker ttyl; 2719 // Missing MDP? Leave a small complaint in the log. 2720 xtty->elem("missing_mdp bci='%d'", trap_bci); 2721 } 2722 } 2723 } 2724 2725 // Return results: 2726 ret_this_trap_count = this_trap_count; 2727 ret_maybe_prior_trap = maybe_prior_trap; 2728 ret_maybe_prior_recompile = maybe_prior_recompile; 2729 return pdata; 2730 } 2731 2732 void 2733 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2734 ResourceMark rm; 2735 // Ignored outputs: 2736 uint ignore_this_trap_count; 2737 bool ignore_maybe_prior_trap; 2738 bool ignore_maybe_prior_recompile; 2739 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2740 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2741 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2742 2743 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2744 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2745 2746 query_update_method_data(trap_mdo, trap_bci, 2747 (DeoptReason)reason, 2748 update_total_counts, 2749 #if INCLUDE_JVMCI 2750 false, 2751 #endif 2752 nullptr, 2753 ignore_this_trap_count, 2754 ignore_maybe_prior_trap, 2755 ignore_maybe_prior_recompile); 2756 } 2757 2758 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2759 // Enable WXWrite: current function is called from methods compiled by C2 directly 2760 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2761 2762 // Still in Java no safepoints 2763 { 2764 // This enters VM and may safepoint 2765 uncommon_trap_inner(current, trap_request); 2766 } 2767 HandleMark hm(current); 2768 return fetch_unroll_info_helper(current, exec_mode); 2769 } 2770 2771 // Local derived constants. 2772 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2773 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2774 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2775 2776 //---------------------------trap_state_reason--------------------------------- 2777 Deoptimization::DeoptReason 2778 Deoptimization::trap_state_reason(int trap_state) { 2779 // This assert provides the link between the width of DataLayout::trap_bits 2780 // and the encoding of "recorded" reasons. It ensures there are enough 2781 // bits to store all needed reasons in the per-BCI MDO profile. 2782 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2783 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2784 trap_state -= recompile_bit; 2785 if (trap_state == DS_REASON_MASK) { 2786 return Reason_many; 2787 } else { 2788 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2789 return (DeoptReason)trap_state; 2790 } 2791 } 2792 //-------------------------trap_state_has_reason------------------------------- 2793 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2794 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2795 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2796 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2797 trap_state -= recompile_bit; 2798 if (trap_state == DS_REASON_MASK) { 2799 return -1; // true, unspecifically (bottom of state lattice) 2800 } else if (trap_state == reason) { 2801 return 1; // true, definitely 2802 } else if (trap_state == 0) { 2803 return 0; // false, definitely (top of state lattice) 2804 } else { 2805 return 0; // false, definitely 2806 } 2807 } 2808 //-------------------------trap_state_add_reason------------------------------- 2809 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2810 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2811 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2812 trap_state -= recompile_bit; 2813 if (trap_state == DS_REASON_MASK) { 2814 return trap_state + recompile_bit; // already at state lattice bottom 2815 } else if (trap_state == reason) { 2816 return trap_state + recompile_bit; // the condition is already true 2817 } else if (trap_state == 0) { 2818 return reason + recompile_bit; // no condition has yet been true 2819 } else { 2820 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2821 } 2822 } 2823 //-----------------------trap_state_is_recompiled------------------------------ 2824 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2825 return (trap_state & DS_RECOMPILE_BIT) != 0; 2826 } 2827 //-----------------------trap_state_set_recompiled----------------------------- 2828 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2829 if (z) return trap_state | DS_RECOMPILE_BIT; 2830 else return trap_state & ~DS_RECOMPILE_BIT; 2831 } 2832 //---------------------------format_trap_state--------------------------------- 2833 // This is used for debugging and diagnostics, including LogFile output. 2834 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2835 int trap_state) { 2836 assert(buflen > 0, "sanity"); 2837 DeoptReason reason = trap_state_reason(trap_state); 2838 bool recomp_flag = trap_state_is_recompiled(trap_state); 2839 // Re-encode the state from its decoded components. 2840 int decoded_state = 0; 2841 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2842 decoded_state = trap_state_add_reason(decoded_state, reason); 2843 if (recomp_flag) 2844 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2845 // If the state re-encodes properly, format it symbolically. 2846 // Because this routine is used for debugging and diagnostics, 2847 // be robust even if the state is a strange value. 2848 size_t len; 2849 if (decoded_state != trap_state) { 2850 // Random buggy state that doesn't decode?? 2851 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2852 } else { 2853 len = jio_snprintf(buf, buflen, "%s%s", 2854 trap_reason_name(reason), 2855 recomp_flag ? " recompiled" : ""); 2856 } 2857 return buf; 2858 } 2859 2860 2861 //--------------------------------statics-------------------------------------- 2862 const char* Deoptimization::_trap_reason_name[] = { 2863 // Note: Keep this in sync. with enum DeoptReason. 2864 "none", 2865 "null_check", 2866 "null_assert" JVMCI_ONLY("_or_unreached0"), 2867 "range_check", 2868 "class_check", 2869 "array_check", 2870 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2871 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2872 "profile_predicate", 2873 "auto_vectorization_check", 2874 "unloaded", 2875 "uninitialized", 2876 "initialized", 2877 "unreached", 2878 "unhandled", 2879 "constraint", 2880 "div0_check", 2881 "age", 2882 "predicate", 2883 "loop_limit_check", 2884 "speculate_class_check", 2885 "speculate_null_check", 2886 "speculate_null_assert", 2887 "unstable_if", 2888 "unstable_fused_if", 2889 "receiver_constraint", 2890 #if INCLUDE_JVMCI 2891 "aliasing", 2892 "transfer_to_interpreter", 2893 "not_compiled_exception_handler", 2894 "unresolved", 2895 "jsr_mismatch", 2896 #endif 2897 "tenured" 2898 }; 2899 const char* Deoptimization::_trap_action_name[] = { 2900 // Note: Keep this in sync. with enum DeoptAction. 2901 "none", 2902 "maybe_recompile", 2903 "reinterpret", 2904 "make_not_entrant", 2905 "make_not_compilable" 2906 }; 2907 2908 const char* Deoptimization::trap_reason_name(int reason) { 2909 // Check that every reason has a name 2910 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2911 2912 if (reason == Reason_many) return "many"; 2913 if ((uint)reason < Reason_LIMIT) 2914 return _trap_reason_name[reason]; 2915 static char buf[20]; 2916 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2917 return buf; 2918 } 2919 const char* Deoptimization::trap_action_name(int action) { 2920 // Check that every action has a name 2921 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2922 2923 if ((uint)action < Action_LIMIT) 2924 return _trap_action_name[action]; 2925 static char buf[20]; 2926 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2927 return buf; 2928 } 2929 2930 // This is used for debugging and diagnostics, including LogFile output. 2931 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2932 int trap_request) { 2933 jint unloaded_class_index = trap_request_index(trap_request); 2934 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2935 const char* action = trap_action_name(trap_request_action(trap_request)); 2936 #if INCLUDE_JVMCI 2937 int debug_id = trap_request_debug_id(trap_request); 2938 #endif 2939 size_t len; 2940 if (unloaded_class_index < 0) { 2941 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2942 reason, action 2943 #if INCLUDE_JVMCI 2944 ,debug_id 2945 #endif 2946 ); 2947 } else { 2948 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2949 reason, action, unloaded_class_index 2950 #if INCLUDE_JVMCI 2951 ,debug_id 2952 #endif 2953 ); 2954 } 2955 return buf; 2956 } 2957 2958 juint Deoptimization::_deoptimization_hist 2959 [Deoptimization::Reason_LIMIT] 2960 [1 + Deoptimization::Action_LIMIT] 2961 [Deoptimization::BC_CASE_LIMIT] 2962 = {0}; 2963 2964 enum { 2965 LSB_BITS = 8, 2966 LSB_MASK = right_n_bits(LSB_BITS) 2967 }; 2968 2969 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2970 Bytecodes::Code bc) { 2971 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2972 assert(action >= 0 && action < Action_LIMIT, "oob"); 2973 _deoptimization_hist[Reason_none][0][0] += 1; // total 2974 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2975 juint* cases = _deoptimization_hist[reason][1+action]; 2976 juint* bc_counter_addr = nullptr; 2977 juint bc_counter = 0; 2978 // Look for an unused counter, or an exact match to this BC. 2979 if (bc != Bytecodes::_illegal) { 2980 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2981 juint* counter_addr = &cases[bc_case]; 2982 juint counter = *counter_addr; 2983 if ((counter == 0 && bc_counter_addr == nullptr) 2984 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2985 // this counter is either free or is already devoted to this BC 2986 bc_counter_addr = counter_addr; 2987 bc_counter = counter | bc; 2988 } 2989 } 2990 } 2991 if (bc_counter_addr == nullptr) { 2992 // Overflow, or no given bytecode. 2993 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2994 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2995 } 2996 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2997 } 2998 2999 jint Deoptimization::total_deoptimization_count() { 3000 return _deoptimization_hist[Reason_none][0][0]; 3001 } 3002 3003 // Get the deopt count for a specific reason and a specific action. If either 3004 // one of 'reason' or 'action' is null, the method returns the sum of all 3005 // deoptimizations with the specific 'action' or 'reason' respectively. 3006 // If both arguments are null, the method returns the total deopt count. 3007 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3008 if (reason_str == nullptr && action_str == nullptr) { 3009 return total_deoptimization_count(); 3010 } 3011 juint counter = 0; 3012 for (int reason = 0; reason < Reason_LIMIT; reason++) { 3013 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 3014 for (int action = 0; action < Action_LIMIT; action++) { 3015 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 3016 juint* cases = _deoptimization_hist[reason][1+action]; 3017 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 3018 counter += cases[bc_case] >> LSB_BITS; 3019 } 3020 } 3021 } 3022 } 3023 } 3024 return counter; 3025 } 3026 3027 void Deoptimization::print_statistics() { 3028 juint total = total_deoptimization_count(); 3029 juint account = total; 3030 if (total != 0) { 3031 ttyLocker ttyl; 3032 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 3033 tty->print_cr("Deoptimization traps recorded:"); 3034 #define PRINT_STAT_LINE(name, r) \ 3035 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 3036 PRINT_STAT_LINE("total", total); 3037 // For each non-zero entry in the histogram, print the reason, 3038 // the action, and (if specifically known) the type of bytecode. 3039 for (int reason = 0; reason < Reason_LIMIT; reason++) { 3040 for (int action = 0; action < Action_LIMIT; action++) { 3041 juint* cases = _deoptimization_hist[reason][1+action]; 3042 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 3043 juint counter = cases[bc_case]; 3044 if (counter != 0) { 3045 char name[1*K]; 3046 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 3047 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 3048 bc = Bytecodes::_illegal; 3049 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 3050 trap_reason_name(reason), 3051 trap_action_name(action), 3052 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 3053 juint r = counter >> LSB_BITS; 3054 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 3055 account -= r; 3056 } 3057 } 3058 } 3059 } 3060 if (account != 0) { 3061 PRINT_STAT_LINE("unaccounted", account); 3062 } 3063 #undef PRINT_STAT_LINE 3064 if (xtty != nullptr) xtty->tail("statistics"); 3065 } 3066 } 3067 3068 #else // COMPILER2_OR_JVMCI 3069 3070 3071 // Stubs for C1 only system. 3072 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 3073 return false; 3074 } 3075 3076 const char* Deoptimization::trap_reason_name(int reason) { 3077 return "unknown"; 3078 } 3079 3080 jint Deoptimization::total_deoptimization_count() { 3081 return 0; 3082 } 3083 3084 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3085 return 0; 3086 } 3087 3088 void Deoptimization::print_statistics() { 3089 // no output 3090 } 3091 3092 void 3093 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 3094 // no update 3095 } 3096 3097 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 3098 return 0; 3099 } 3100 3101 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 3102 Bytecodes::Code bc) { 3103 // no update 3104 } 3105 3106 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 3107 int trap_state) { 3108 jio_snprintf(buf, buflen, "#%d", trap_state); 3109 return buf; 3110 } 3111 3112 #endif // COMPILER2_OR_JVMCI