1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.inline.hpp"
  39 #include "interpreter/bytecodeStream.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvm.h"
  43 #include "logging/log.hpp"
  44 #include "logging/logLevel.hpp"
  45 #include "logging/logMessage.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/constantPool.hpp"
  52 #include "oops/fieldStreams.inline.hpp"



  53 #include "oops/method.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/typeArrayOop.inline.hpp"
  58 #include "oops/verifyOopClosure.hpp"
  59 #include "prims/jvmtiDeferredUpdates.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/jvmtiThreadState.hpp"
  62 #include "prims/methodHandles.hpp"
  63 #include "prims/vectorSupport.hpp"
  64 #include "runtime/atomicAccess.hpp"
  65 #include "runtime/basicLock.inline.hpp"
  66 #include "runtime/continuation.hpp"
  67 #include "runtime/continuationEntry.inline.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/escapeBarrier.hpp"
  70 #include "runtime/fieldDescriptor.inline.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/interfaceSupport.inline.hpp"
  74 #include "runtime/javaThread.hpp"
  75 #include "runtime/jniHandles.inline.hpp"
  76 #include "runtime/keepStackGCProcessed.hpp"
  77 #include "runtime/lightweightSynchronizer.hpp"
  78 #include "runtime/lockStack.inline.hpp"
  79 #include "runtime/objectMonitor.inline.hpp"
  80 #include "runtime/osThread.hpp"
  81 #include "runtime/safepointVerifiers.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/signature.hpp"
  84 #include "runtime/stackFrameStream.inline.hpp"
  85 #include "runtime/stackValue.hpp"
  86 #include "runtime/stackWatermarkSet.hpp"
  87 #include "runtime/stubRoutines.hpp"
  88 #include "runtime/synchronizer.inline.hpp"
  89 #include "runtime/threadSMR.hpp"
  90 #include "runtime/threadWXSetters.inline.hpp"
  91 #include "runtime/vframe.hpp"
  92 #include "runtime/vframe_hp.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vmOperations.hpp"
  95 #include "utilities/checkedCast.hpp"
  96 #include "utilities/events.hpp"
  97 #include "utilities/growableArray.hpp"
  98 #include "utilities/macros.hpp"
  99 #include "utilities/preserveException.hpp"
 100 #include "utilities/xmlstream.hpp"
 101 #if INCLUDE_JFR
 102 #include "jfr/jfr.inline.hpp"
 103 #include "jfr/jfrEvents.hpp"
 104 #include "jfr/metadata/jfrSerializer.hpp"
 105 #endif
 106 
 107 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 108 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 109 bool     DeoptimizationScope::_committing_in_progress = false;
 110 
 111 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 112   DEBUG_ONLY(_deopted = false;)
 113 
 114   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 115   // If there is nothing to deopt _required_gen is the same as comitted.
 116   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 117 }
 118 
 119 DeoptimizationScope::~DeoptimizationScope() {
 120   assert(_deopted, "Deopt not executed");
 121 }
 122 
 123 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 124   if (!nm->can_be_deoptimized()) {
 125     return;
 126   }
 127 
 128   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 129 
 130   // If it's already marked but we still need it to be deopted.
 131   if (nm->is_marked_for_deoptimization()) {
 132     dependent(nm);
 133     return;
 134   }
 135 
 136   nmethod::DeoptimizationStatus status =
 137     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 138   AtomicAccess::store(&nm->_deoptimization_status, status);
 139 
 140   // Make sure active is not committed
 141   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 142   assert(nm->_deoptimization_generation == 0, "Is already marked");
 143 
 144   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 145   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 146 }
 147 
 148 void DeoptimizationScope::dependent(nmethod* nm) {
 149   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 150 
 151   // A method marked by someone else may have a _required_gen lower than what we marked with.
 152   // Therefore only store it if it's higher than _required_gen.
 153   if (_required_gen < nm->_deoptimization_generation) {
 154     _required_gen = nm->_deoptimization_generation;
 155   }
 156 }
 157 
 158 void DeoptimizationScope::deoptimize_marked() {
 159   assert(!_deopted, "Already deopted");
 160 
 161   // We are not alive yet.
 162   if (!Universe::is_fully_initialized()) {
 163     DEBUG_ONLY(_deopted = true;)
 164     return;
 165   }
 166 
 167   // Safepoints are a special case, handled here.
 168   if (SafepointSynchronize::is_at_safepoint()) {
 169     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 170     DeoptimizationScope::_active_deopt_gen++;
 171     Deoptimization::deoptimize_all_marked();
 172     DEBUG_ONLY(_deopted = true;)
 173     return;
 174   }
 175 
 176   uint64_t comitting = 0;
 177   bool wait = false;
 178   while (true) {
 179     {
 180       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 181 
 182       // First we check if we or someone else already deopted the gen we want.
 183       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 184         DEBUG_ONLY(_deopted = true;)
 185         return;
 186       }
 187       if (!_committing_in_progress) {
 188         // The version we are about to commit.
 189         comitting = DeoptimizationScope::_active_deopt_gen;
 190         // Make sure new marks use a higher gen.
 191         DeoptimizationScope::_active_deopt_gen++;
 192         _committing_in_progress = true;
 193         wait = false;
 194       } else {
 195         // Another thread is handshaking and committing a gen.
 196         wait = true;
 197       }
 198     }
 199     if (wait) {
 200       // Wait and let the concurrent handshake be performed.
 201       ThreadBlockInVM tbivm(JavaThread::current());
 202       os::naked_yield();
 203     } else {
 204       // Performs the handshake.
 205       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 206       DEBUG_ONLY(_deopted = true;)
 207       {
 208         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 209 
 210         // Make sure that committed doesn't go backwards.
 211         // Should only happen if we did a deopt during a safepoint above.
 212         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 213           DeoptimizationScope::_committed_deopt_gen = comitting;
 214         }
 215         _committing_in_progress = false;
 216 
 217         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 218 
 219         return;
 220       }
 221     }
 222   }
 223 }
 224 
 225 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 226                                          int  caller_adjustment,
 227                                          int  caller_actual_parameters,
 228                                          int  number_of_frames,
 229                                          intptr_t* frame_sizes,
 230                                          address* frame_pcs,
 231                                          BasicType return_type,
 232                                          int exec_mode) {
 233   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 234   _caller_adjustment         = caller_adjustment;
 235   _caller_actual_parameters  = caller_actual_parameters;
 236   _number_of_frames          = number_of_frames;
 237   _frame_sizes               = frame_sizes;
 238   _frame_pcs                 = frame_pcs;
 239   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 240   _return_type               = return_type;
 241   _initial_info              = 0;
 242   // PD (x86 only)
 243   _counter_temp              = 0;
 244   _unpack_kind               = exec_mode;
 245   _sender_sp_temp            = 0;
 246 
 247   _total_frame_sizes         = size_of_frames();
 248   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 249 }
 250 
 251 Deoptimization::UnrollBlock::~UnrollBlock() {
 252   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 253   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 254   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 255 }
 256 
 257 int Deoptimization::UnrollBlock::size_of_frames() const {
 258   // Account first for the adjustment of the initial frame
 259   intptr_t result = _caller_adjustment;
 260   for (int index = 0; index < number_of_frames(); index++) {
 261     result += frame_sizes()[index];
 262   }
 263   return checked_cast<int>(result);
 264 }
 265 
 266 void Deoptimization::UnrollBlock::print() {
 267   ResourceMark rm;
 268   stringStream st;
 269   st.print_cr("UnrollBlock");
 270   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 271   st.print(   "  frame_sizes: ");
 272   for (int index = 0; index < number_of_frames(); index++) {
 273     st.print("%zd ", frame_sizes()[index]);
 274   }
 275   st.cr();
 276   tty->print_raw(st.freeze());
 277 }
 278 
 279 // In order to make fetch_unroll_info work properly with escape
 280 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 281 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 282 // which is called from the method fetch_unroll_info_helper below.
 283 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 284   // fetch_unroll_info() is called at the beginning of the deoptimization
 285   // handler. Note this fact before we start generating temporary frames
 286   // that can confuse an asynchronous stack walker. This counter is
 287   // decremented at the end of unpack_frames().
 288   current->inc_in_deopt_handler();
 289 
 290   if (exec_mode == Unpack_exception) {
 291     // When we get here, a callee has thrown an exception into a deoptimized
 292     // frame. That throw might have deferred stack watermark checking until
 293     // after unwinding. So we deal with such deferred requests here.
 294     StackWatermarkSet::after_unwind(current);
 295   }
 296 
 297   return fetch_unroll_info_helper(current, exec_mode);
 298 JRT_END
 299 
 300 #if COMPILER2_OR_JVMCI


















 301 // print information about reallocated objects
 302 static void print_objects(JavaThread* deoptee_thread,
 303                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 304   ResourceMark rm;
 305   stringStream st;  // change to logStream with logging
 306   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 307   fieldDescriptor fd;
 308 
 309   for (int i = 0; i < objects->length(); i++) {
 310     ObjectValue* sv = (ObjectValue*) objects->at(i);
 311     Handle obj = sv->value();
 312 
 313     if (obj.is_null()) {
 314       st.print_cr("     nullptr");
 315       continue;
 316     }
 317 
 318     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());

 319 
 320     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 321     k->print_value_on(&st);
 322     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 323 
 324     if (Verbose && k != nullptr) {
 325       k->oop_print_on(obj(), &st);
 326     }
 327   }
 328   tty->print_raw(st.freeze());
 329 }
 330 
 331 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 332                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 333                                   bool& deoptimized_objects) {
 334   bool realloc_failures = false;
 335   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 336 
 337   JavaThread* deoptee_thread = chunk->at(0)->thread();
 338   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 339          "a frame can only be deoptimized by the owner thread");
 340 
 341   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 342 
 343   // The flag return_oop() indicates call sites which return oop
 344   // in compiled code. Such sites include java method calls,
 345   // runtime calls (for example, used to allocate new objects/arrays
 346   // on slow code path) and any other calls generated in compiled code.
 347   // It is not guaranteed that we can get such information here only
 348   // by analyzing bytecode in deoptimized frames. This is why this flag
 349   // is set during method compilation (see Compile::Process_OopMap_Node()).
 350   // If the previous frame was popped or if we are dispatching an exception,
 351   // we don't have an oop result.
 352   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 353   Handle return_value;











 354   if (save_oop_result) {
 355     // Reallocation may trigger GC. If deoptimization happened on return from
 356     // call which returns oop we need to save it since it is not in oopmap.
 357     oop result = deoptee.saved_oop_result(&map);
 358     assert(oopDesc::is_oop_or_null(result), "must be oop");
 359     return_value = Handle(thread, result);
 360     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 361     if (TraceDeoptimization) {
 362       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 363       tty->cr();
 364     }
 365   }
 366   if (objects != nullptr) {
 367     if (exec_mode == Deoptimization::Unpack_none) {
 368       assert(thread->thread_state() == _thread_in_vm, "assumption");
 369       JavaThread* THREAD = thread; // For exception macros.
 370       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 371       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));








 372       deoptimized_objects = true;
 373     } else {
 374       JavaThread* current = thread; // For JRT_BLOCK
 375       JRT_BLOCK
 376       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);








 377       JRT_END
 378     }
 379     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 380     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 381     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 382     if (TraceDeoptimization) {
 383       print_objects(deoptee_thread, objects, realloc_failures);
 384     }
 385   }
 386   if (save_oop_result) {
 387     // Restore result.
 388     deoptee.set_saved_oop_result(&map, return_value());

 389   }
 390   return realloc_failures;
 391 }
 392 
 393 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 394                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 395   JavaThread* deoptee_thread = chunk->at(0)->thread();
 396   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 397   assert(thread == Thread::current(), "should be");
 398   HandleMark hm(thread);
 399 #ifndef PRODUCT
 400   bool first = true;
 401 #endif // !PRODUCT
 402   // Start locking from outermost/oldest frame
 403   for (int i = (chunk->length() - 1); i >= 0; i--) {
 404     compiledVFrame* cvf = chunk->at(i);
 405     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 406     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 407     if (monitors->is_nonempty()) {
 408       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 409                                                      exec_mode, realloc_failures);
 410       deoptimized_objects = deoptimized_objects || relocked;
 411 #ifndef PRODUCT
 412       if (PrintDeoptimizationDetails) {
 413         ResourceMark rm;
 414         stringStream st;
 415         for (int j = 0; j < monitors->length(); j++) {
 416           MonitorInfo* mi = monitors->at(j);
 417           if (mi->eliminated()) {
 418             if (first) {
 419               first = false;
 420               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 421             }
 422             if (exec_mode == Deoptimization::Unpack_none) {
 423               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 424               if (monitor != nullptr && monitor->object() == mi->owner()) {
 425                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 426                 continue;
 427               }
 428             }
 429             if (mi->owner_is_scalar_replaced()) {
 430               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 431               st.print_cr("     failed reallocation for klass %s", k->external_name());
 432             } else {
 433               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 434             }
 435           }
 436         }
 437         tty->print_raw(st.freeze());
 438       }
 439 #endif // !PRODUCT
 440     }
 441   }
 442 }
 443 
 444 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 445 // The given vframes cover one physical frame.
 446 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 447                                                  bool& realloc_failures) {
 448   frame deoptee = chunk->at(0)->fr();
 449   JavaThread* deoptee_thread = chunk->at(0)->thread();
 450   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 451   RegisterMap map(chunk->at(0)->register_map());
 452   bool deoptimized_objects = false;
 453 
 454   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 455 
 456   // Reallocate the non-escaping objects and restore their fields.
 457   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 458                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 459     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 460   }
 461 
 462   // MonitorInfo structures used in eliminate_locks are not GC safe.
 463   NoSafepointVerifier no_safepoint;
 464 
 465   // Now relock objects if synchronization on them was eliminated.
 466   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 467     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 468   }
 469   return deoptimized_objects;
 470 }
 471 #endif // COMPILER2_OR_JVMCI
 472 
 473 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 474 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 475   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
 476   // When we get here we are about to unwind the deoptee frame. In order to
 477   // catch not yet safe to use frames, the following stack watermark barrier
 478   // poll will make such frames safe to use.
 479   StackWatermarkSet::before_unwind(current);
 480 
 481   // Note: there is a safepoint safety issue here. No matter whether we enter
 482   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 483   // the vframeArray is created.
 484   //
 485 
 486   // Allocate our special deoptimization ResourceMark
 487   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 488   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 489   current->set_deopt_mark(dmark);
 490 
 491   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 492   RegisterMap map(current,
 493                   RegisterMap::UpdateMap::include,
 494                   RegisterMap::ProcessFrames::include,
 495                   RegisterMap::WalkContinuation::skip);
 496   RegisterMap dummy_map(current,
 497                         RegisterMap::UpdateMap::skip,
 498                         RegisterMap::ProcessFrames::include,
 499                         RegisterMap::WalkContinuation::skip);
 500   // Now get the deoptee with a valid map
 501   frame deoptee = stub_frame.sender(&map);
 502   if (exec_mode == Unpack_deopt) {
 503     assert(deoptee.is_deoptimized_frame(), "frame is not marked for deoptimization");
 504   }
 505   // Set the deoptee nmethod
 506   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 507   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 508   current->set_deopt_compiled_method(nm);
 509 
 510   if (VerifyStack) {
 511     current->validate_frame_layout();
 512   }
 513 
 514   // Create a growable array of VFrames where each VFrame represents an inlined
 515   // Java frame.  This storage is allocated with the usual system arena.
 516   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 517   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 518   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 519   while (!vf->is_top()) {
 520     assert(vf->is_compiled_frame(), "Wrong frame type");
 521     chunk->push(compiledVFrame::cast(vf));
 522     vf = vf->sender();
 523   }
 524   assert(vf->is_compiled_frame(), "Wrong frame type");
 525   chunk->push(compiledVFrame::cast(vf));
 526 
 527   bool realloc_failures = false;
 528 
 529 #if COMPILER2_OR_JVMCI
 530   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 531 
 532   // Reallocate the non-escaping objects and restore their fields. Then
 533   // relock objects if synchronization on them was eliminated.
 534   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 535                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 536     bool unused;
 537     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 538   }
 539 #endif // COMPILER2_OR_JVMCI
 540 
 541   // Ensure that no safepoint is taken after pointers have been stored
 542   // in fields of rematerialized objects.  If a safepoint occurs from here on
 543   // out the java state residing in the vframeArray will be missed.
 544   // Locks may be rebaised in a safepoint.
 545   NoSafepointVerifier no_safepoint;
 546 
 547 #if COMPILER2_OR_JVMCI
 548   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 549       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 550     bool unused = false;
 551     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 552   }
 553 #endif // COMPILER2_OR_JVMCI
 554 
 555   ScopeDesc* trap_scope = chunk->at(0)->scope();
 556   Handle exceptionObject;
 557   if (trap_scope->rethrow_exception()) {
 558 #ifndef PRODUCT
 559     if (PrintDeoptimizationDetails) {
 560       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 561     }
 562 #endif // !PRODUCT
 563 
 564     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 565     guarantee(expressions != nullptr && expressions->length() == 1, "should have only exception on stack");
 566     guarantee(exec_mode != Unpack_exception, "rethrow_exception set with Unpack_exception");
 567     ScopeValue* topOfStack = expressions->top();
 568     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 569     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 570   }
 571 
 572   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 573 #if COMPILER2_OR_JVMCI
 574   if (realloc_failures) {
 575     // This destroys all ScopedValue bindings.
 576     current->clear_scopedValueBindings();
 577     pop_frames_failed_reallocs(current, array);
 578   }
 579 #endif
 580 
 581   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 582   current->set_vframe_array_head(array);
 583 
 584   // Now that the vframeArray has been created if we have any deferred local writes
 585   // added by jvmti then we can free up that structure as the data is now in the
 586   // vframeArray
 587 
 588   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 589 
 590   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 591   CodeBlob* cb = stub_frame.cb();
 592   // Verify we have the right vframeArray
 593   assert(cb->frame_size() >= 0, "Unexpected frame size");
 594   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 595   assert(unpack_sp == deoptee.unextended_sp(), "must be");
 596 
 597 #ifdef ASSERT
 598   assert(cb->is_deoptimization_stub() ||
 599          cb->is_uncommon_trap_stub() ||
 600          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 601          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 602          "unexpected code blob: %s", cb->name());
 603 #endif
 604 
 605   // This is a guarantee instead of an assert because if vframe doesn't match
 606   // we will unpack the wrong deoptimized frame and wind up in strange places
 607   // where it will be very difficult to figure out what went wrong. Better
 608   // to die an early death here than some very obscure death later when the
 609   // trail is cold.
 610   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 611 
 612   int number_of_frames = array->frames();
 613 
 614   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 615   // virtual activation, which is the reverse of the elements in the vframes array.
 616   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 617   // +1 because we always have an interpreter return address for the final slot.
 618   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 619   int popframe_extra_args = 0;
 620   // Create an interpreter return address for the stub to use as its return
 621   // address so the skeletal frames are perfectly walkable
 622   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 623 
 624   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 625   // activation be put back on the expression stack of the caller for reexecution
 626   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 627     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 628   }
 629 
 630   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 631   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 632   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 633   //
 634   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 635   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 636 
 637   // It's possible that the number of parameters at the call site is
 638   // different than number of arguments in the callee when method
 639   // handles are used.  If the caller is interpreted get the real
 640   // value so that the proper amount of space can be added to it's
 641   // frame.
 642   bool caller_was_method_handle = false;
 643   if (deopt_sender.is_interpreted_frame()) {
 644     methodHandle method(current, deopt_sender.interpreter_frame_method());
 645     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 646     if (cur.has_member_arg()) {
 647       // This should cover all real-world cases.  One exception is a pathological chain of
 648       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 649       // would need to get the size from the resolved method entry.  Another exception would
 650       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 651       caller_was_method_handle = true;
 652     }
 653   }
 654 
 655   //
 656   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 657   // frame_sizes/frame_pcs[1] next oldest frame (int)
 658   // frame_sizes/frame_pcs[n] youngest frame (int)
 659   //
 660   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 661   // owns the space for the return address to it's caller).  Confusing ain't it.
 662   //
 663   // The vframe array can address vframes with indices running from
 664   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 665   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 666   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 667   // so things look a little strange in this loop.
 668   //
 669   int callee_parameters = 0;
 670   int callee_locals = 0;
 671   for (int index = 0; index < array->frames(); index++ ) {
 672     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 673     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 674     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 675     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 676                                                                                                     callee_locals,
 677                                                                                                     index == 0,
 678                                                                                                     popframe_extra_args);
 679     // This pc doesn't have to be perfect just good enough to identify the frame
 680     // as interpreted so the skeleton frame will be walkable
 681     // The correct pc will be set when the skeleton frame is completely filled out
 682     // The final pc we store in the loop is wrong and will be overwritten below
 683     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 684 
 685     callee_parameters = array->element(index)->method()->size_of_parameters();
 686     callee_locals = array->element(index)->method()->max_locals();
 687     popframe_extra_args = 0;
 688   }
 689 
 690   // Compute whether the root vframe returns a float or double value.
 691   BasicType return_type;
 692   {
 693     methodHandle method(current, array->element(0)->method());
 694     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 695     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 696   }
 697 
 698   // Compute information for handling adapters and adjusting the frame size of the caller.
 699   int caller_adjustment = 0;
 700 
 701   // Compute the amount the oldest interpreter frame will have to adjust
 702   // its caller's stack by. If the caller is a compiled frame then
 703   // we pretend that the callee has no parameters so that the
 704   // extension counts for the full amount of locals and not just
 705   // locals-parms. This is because without a c2i adapter the parm
 706   // area as created by the compiled frame will not be usable by
 707   // the interpreter. (Depending on the calling convention there
 708   // may not even be enough space).
 709 
 710   // QQQ I'd rather see this pushed down into last_frame_adjust
 711   // and have it take the sender (aka caller).
 712 
 713   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 714     caller_adjustment = last_frame_adjust(0, callee_locals);
 715   } else if (callee_locals > callee_parameters) {
 716     // The caller frame may need extending to accommodate
 717     // non-parameter locals of the first unpacked interpreted frame.
 718     // Compute that adjustment.
 719     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 720   }
 721 
 722   // If the sender is deoptimized the we must retrieve the address of the handler
 723   // since the frame will "magically" show the original pc before the deopt
 724   // and we'd undo the deopt.
 725 
 726   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 727   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 728     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 729   }
 730 
 731   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 732 
 733 #if INCLUDE_JVMCI
 734   if (exceptionObject() != nullptr) {
 735     current->set_exception_oop(exceptionObject());
 736     exec_mode = Unpack_exception;
 737     assert(array->element(0)->rethrow_exception(), "must be");
 738   }
 739 #endif
 740 
 741   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 742     assert(current->has_pending_exception(), "should have thrown OOME");
 743     current->set_exception_oop(current->pending_exception());
 744     current->clear_pending_exception();
 745     exec_mode = Unpack_exception;
 746   }
 747 
 748 #if INCLUDE_JVMCI
 749   if (current->frames_to_pop_failed_realloc() > 0) {
 750     current->set_pending_monitorenter(false);
 751   }
 752 #endif
 753 
 754   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 755   if (deopt_sender.is_interpreted_frame()) {
 756     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 757   }
 758 
 759   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 760                                       caller_adjustment * BytesPerWord,
 761                                       caller_actual_parameters,
 762                                       number_of_frames,
 763                                       frame_sizes,
 764                                       frame_pcs,
 765                                       return_type,
 766                                       exec_mode);
 767   // On some platforms, we need a way to pass some platform dependent
 768   // information to the unpacking code so the skeletal frames come out
 769   // correct (initial fp value, unextended sp, ...)
 770   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 771 
 772   if (array->frames() > 1) {
 773     if (VerifyStack && TraceDeoptimization) {
 774       tty->print_cr("Deoptimizing method containing inlining");
 775     }
 776   }
 777 
 778   array->set_unroll_block(info);
 779   return info;
 780 }
 781 
 782 // Called to cleanup deoptimization data structures in normal case
 783 // after unpacking to stack and when stack overflow error occurs
 784 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 785                                         vframeArray *array) {
 786 
 787   // Get array if coming from exception
 788   if (array == nullptr) {
 789     array = thread->vframe_array_head();
 790   }
 791   thread->set_vframe_array_head(nullptr);
 792 
 793   // Free the previous UnrollBlock
 794   vframeArray* old_array = thread->vframe_array_last();
 795   thread->set_vframe_array_last(array);
 796 
 797   if (old_array != nullptr) {
 798     UnrollBlock* old_info = old_array->unroll_block();
 799     old_array->set_unroll_block(nullptr);
 800     delete old_info;
 801     delete old_array;
 802   }
 803 
 804   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 805   // inside the vframeArray (StackValueCollections)
 806 
 807   delete thread->deopt_mark();
 808   thread->set_deopt_mark(nullptr);
 809   thread->set_deopt_compiled_method(nullptr);
 810 
 811 
 812   if (JvmtiExport::can_pop_frame()) {
 813     // Regardless of whether we entered this routine with the pending
 814     // popframe condition bit set, we should always clear it now
 815     thread->clear_popframe_condition();
 816   }
 817 
 818   // unpack_frames() is called at the end of the deoptimization handler
 819   // and (in C2) at the end of the uncommon trap handler. Note this fact
 820   // so that an asynchronous stack walker can work again. This counter is
 821   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 822   // the beginning of uncommon_trap().
 823   thread->dec_in_deopt_handler();
 824 }
 825 
 826 // Moved from cpu directories because none of the cpus has callee save values.
 827 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 828 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 829 
 830   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 831   // the days we had adapter frames. When we deoptimize a situation where a
 832   // compiled caller calls a compiled caller will have registers it expects
 833   // to survive the call to the callee. If we deoptimize the callee the only
 834   // way we can restore these registers is to have the oldest interpreter
 835   // frame that we create restore these values. That is what this routine
 836   // will accomplish.
 837 
 838   // At the moment we have modified c2 to not have any callee save registers
 839   // so this problem does not exist and this routine is just a place holder.
 840 
 841   assert(f->is_interpreted_frame(), "must be interpreted");
 842 }
 843 
 844 #ifndef PRODUCT
 845 #ifdef ASSERT
 846 // Return true if the execution after the provided bytecode continues at the
 847 // next bytecode in the code. This is not the case for gotos, returns, and
 848 // throws.
 849 static bool falls_through(Bytecodes::Code bc) {
 850   switch (bc) {
 851     case Bytecodes::_goto:
 852     case Bytecodes::_goto_w:
 853     case Bytecodes::_athrow:
 854     case Bytecodes::_areturn:
 855     case Bytecodes::_dreturn:
 856     case Bytecodes::_freturn:
 857     case Bytecodes::_ireturn:
 858     case Bytecodes::_lreturn:
 859     case Bytecodes::_jsr:
 860     case Bytecodes::_ret:
 861     case Bytecodes::_return:
 862     case Bytecodes::_lookupswitch:
 863     case Bytecodes::_tableswitch:
 864       return false;
 865     default:
 866       return true;
 867   }
 868 }
 869 #endif
 870 #endif
 871 
 872 // Return BasicType of value being returned
 873 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 874   assert(thread == JavaThread::current(), "pre-condition");
 875 
 876   // We are already active in the special DeoptResourceMark any ResourceObj's we
 877   // allocate will be freed at the end of the routine.
 878 
 879   // JRT_LEAF methods don't normally allocate handles and there is a
 880   // NoHandleMark to enforce that. It is actually safe to use Handles
 881   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 882   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 883   // then use a HandleMark to ensure any Handles we do create are
 884   // cleaned up in this scope.
 885   ResetNoHandleMark rnhm;
 886   HandleMark hm(thread);
 887 
 888   frame stub_frame = thread->last_frame();
 889 
 890   Continuation::notify_deopt(thread, stub_frame.sp());
 891 
 892   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 893   // must point to the vframeArray for the unpack frame.
 894   vframeArray* array = thread->vframe_array_head();
 895   UnrollBlock* info = array->unroll_block();
 896 
 897   // We set the last_Java frame. But the stack isn't really parsable here. So we
 898   // clear it to make sure JFR understands not to try and walk stacks from events
 899   // in here.
 900   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 901   thread->frame_anchor()->set_last_Java_sp(nullptr);
 902 
 903   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 904   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 905 
 906   thread->frame_anchor()->set_last_Java_sp(sp);
 907 
 908   BasicType bt = info->return_type();
 909 
 910   // If we have an exception pending, claim that the return type is an oop
 911   // so the deopt_blob does not overwrite the exception_oop.
 912 
 913   if (exec_mode == Unpack_exception)
 914     bt = T_OBJECT;
 915 
 916   // Cleanup thread deopt data
 917   cleanup_deopt_info(thread, array);
 918 
 919 #ifndef PRODUCT
 920   if (VerifyStack) {
 921     ResourceMark res_mark;
 922     // Clear pending exception to not break verification code (restored afterwards)
 923     PreserveExceptionMark pm(thread);
 924 
 925     thread->validate_frame_layout();
 926 
 927     // Verify that the just-unpacked frames match the interpreter's
 928     // notions of expression stack and locals
 929     vframeArray* cur_array = thread->vframe_array_last();
 930     RegisterMap rm(thread,
 931                    RegisterMap::UpdateMap::skip,
 932                    RegisterMap::ProcessFrames::include,
 933                    RegisterMap::WalkContinuation::skip);
 934     rm.set_include_argument_oops(false);
 935     int callee_size_of_parameters = 0;
 936     for (int frame_idx = 0; frame_idx < cur_array->frames(); frame_idx++) {
 937       bool is_top_frame = (frame_idx == 0);
 938       vframeArrayElement* el = cur_array->element(frame_idx);
 939       frame* iframe = el->iframe();
 940       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 941       methodHandle mh(thread, iframe->interpreter_frame_method());
 942       bool reexecute = el->should_reexecute();
 943 
 944       int cur_invoke_parameter_size = 0;
 945       int top_frame_expression_stack_adjustment = 0;
 946       int max_bci = mh->code_size();
 947       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 948       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 949       Bytecodes::Code cur_code = str.next();
 950 
 951       if (!reexecute && !Bytecodes::is_invoke(cur_code)) {
 952         // We can only compute OopMaps for the before state, so we need to roll forward
 953         // to the next bytecode.
 954         assert(is_top_frame, "must be");
 955         assert(falls_through(cur_code), "must be");
 956         assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 957         assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 958 
 959         // Need to subtract off the size of the result type of
 960         // the bytecode because this is not described in the
 961         // debug info but returned to the interpreter in the TOS
 962         // caching register
 963         BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 964         if (bytecode_result_type != T_ILLEGAL) {
 965           top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 966         }
 967         assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 968 
 969         cur_code = str.next();
 970         // Reflect the fact that we have rolled forward and now need
 971         // top_frame_expression_stack_adjustment
 972         reexecute = true;
 973       }
 974 
 975       assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 976       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 977 
 978       // Get the oop map for this bci
 979       InterpreterOopMap mask;
 980       OopMapCache::compute_one_oop_map(mh, str.bci(), &mask);
 981       // Check to see if we can grab the number of outgoing arguments
 982       // at an uncommon trap for an invoke (where the compiler
 983       // generates debug info before the invoke has executed)
 984       if (Bytecodes::is_invoke(cur_code)) {
 985         Bytecode_invoke invoke(mh, str.bci());
 986         cur_invoke_parameter_size = invoke.size_of_parameters();
 987         if (!is_top_frame && invoke.has_member_arg()) {
 988           callee_size_of_parameters++;
 989         }
 990       }
 991 
 992       // Verify stack depth and oops in frame
 993       auto match = [&]() {
 994         int iframe_expr_ssize = iframe->interpreter_frame_expression_stack_size();
 995 #if INCLUDE_JVMCI
 996         if (is_top_frame && el->rethrow_exception()) {
 997           return iframe_expr_ssize == 1;
 998         }
 999 #endif
1000         // This should only be needed for C1
1001         if (is_top_frame && exec_mode == Unpack_exception && iframe_expr_ssize == 0) {
1002           return true;
1003         }
1004         if (reexecute) {
1005           int expr_ssize_before = iframe_expr_ssize + top_frame_expression_stack_adjustment;
1006           int oopmap_expr_invoke_ssize = mask.expression_stack_size() + cur_invoke_parameter_size;
1007           return expr_ssize_before == oopmap_expr_invoke_ssize;
1008         } else {
1009           int oopmap_expr_callee_ssize = mask.expression_stack_size() + callee_size_of_parameters;
1010           return iframe_expr_ssize == oopmap_expr_callee_ssize;
1011         }
1012       };
1013       if (!match()) {
1014         // Print out some information that will help us debug the problem
1015         tty->print_cr("Wrong number of expression stack elements during deoptimization");
1016         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", frame_idx, cur_array->frames() - 1);
1017         tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1018         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1019                       iframe->interpreter_frame_expression_stack_size());
1020         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1021         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1022         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1023         tty->print_cr("  exec_mode = %d", exec_mode);
1024         tty->print_cr("  original should_reexecute = %s", el->should_reexecute() ? "true" : "false");
1025         tty->print_cr("  reexecute = %s%s", reexecute ? "true" : "false",
1026                       (reexecute != el->should_reexecute()) ? " (changed)" : "");
1027 #if INCLUDE_JVMCI
1028         tty->print_cr("  rethrow_exception = %s", el->rethrow_exception() ? "true" : "false");
1029 #endif
1030         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1031         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1032         tty->print_cr("  Interpreted frames:");
1033         for (int k = 0; k < cur_array->frames(); k++) {
1034           vframeArrayElement* el = cur_array->element(k);
1035           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1036         }
1037         cur_array->print_on_2(tty);
1038         guarantee(false, "wrong number of expression stack elements during deopt");
1039       }
1040       VerifyOopClosure verify;
1041       iframe->oops_interpreted_do(&verify, &rm, false);
1042       callee_size_of_parameters = mh->size_of_parameters();
1043     }
1044   }
1045 #endif // !PRODUCT
1046 
1047   return bt;
1048 JRT_END
1049 
1050 class DeoptimizeMarkedHandshakeClosure : public HandshakeClosure {
1051  public:
1052   DeoptimizeMarkedHandshakeClosure() : HandshakeClosure("Deoptimize") {}
1053   void do_thread(Thread* thread) {
1054     JavaThread* jt = JavaThread::cast(thread);
1055     jt->deoptimize_marked_methods();
1056   }
1057 };
1058 
1059 void Deoptimization::deoptimize_all_marked() {
1060   ResourceMark rm;
1061 
1062   // Make the dependent methods not entrant
1063   CodeCache::make_marked_nmethods_deoptimized();
1064 
1065   DeoptimizeMarkedHandshakeClosure deopt;
1066   if (SafepointSynchronize::is_at_safepoint()) {
1067     Threads::java_threads_do(&deopt);
1068   } else {
1069     Handshake::execute(&deopt);
1070   }
1071 }
1072 
1073 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1074   = Deoptimization::Action_reinterpret;
1075 
1076 #if INCLUDE_JVMCI
1077 template<typename CacheType>
1078 class BoxCacheBase : public CHeapObj<mtCompiler> {
1079 protected:
1080   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1081     ResourceMark rm(thread);
1082     char* klass_name_str = klass_name->as_C_string();
1083     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1084     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1085     if (!ik->is_in_error_state()) {
1086       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1087       CacheType::compute_offsets(ik);
1088     }
1089     return ik;
1090   }
1091 };
1092 
1093 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1094   PrimitiveType _low;
1095   PrimitiveType _high;
1096   jobject _cache;
1097 protected:
1098   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1099   BoxCache(Thread* thread) {
1100     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1101     if (ik->is_in_error_state()) {
1102       _low = 1;
1103       _high = 0;
1104       _cache = nullptr;
1105     } else {
1106       objArrayOop cache = CacheType::cache(ik);
1107       assert(cache->length() > 0, "Empty cache");
1108       _low = BoxType::value(cache->obj_at(0));
1109       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1110       _cache = JNIHandles::make_global(Handle(thread, cache));
1111     }
1112   }
1113   ~BoxCache() {
1114     JNIHandles::destroy_global(_cache);
1115   }
1116 public:
1117   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1118     if (_singleton == nullptr) {
1119       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1120       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1121         delete s;
1122       }
1123     }
1124     return _singleton;
1125   }
1126   oop lookup(PrimitiveType value) {
1127     if (_low <= value && value <= _high) {
1128       int offset = checked_cast<int>(value - _low);
1129       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1130     }
1131     return nullptr;
1132   }
1133   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1134     if (_cache == nullptr) {
1135       cache_init_error = true;
1136       return nullptr;
1137     }
1138     // Have to cast to avoid little/big-endian problems.
1139     if (sizeof(PrimitiveType) > sizeof(jint)) {
1140       jlong value = (jlong)raw_value;
1141       return lookup(value);
1142     }
1143     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1144     return lookup(value);
1145   }
1146 };
1147 
1148 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1149 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1150 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1151 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1152 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1153 
1154 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1155 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1156 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1157 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1158 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1159 
1160 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1161   jobject _true_cache;
1162   jobject _false_cache;
1163 protected:
1164   static BooleanBoxCache *_singleton;
1165   BooleanBoxCache(Thread *thread) {
1166     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1167     if (ik->is_in_error_state()) {
1168       _true_cache = nullptr;
1169       _false_cache = nullptr;
1170     } else {
1171       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1172       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1173     }
1174   }
1175   ~BooleanBoxCache() {
1176     JNIHandles::destroy_global(_true_cache);
1177     JNIHandles::destroy_global(_false_cache);
1178   }
1179 public:
1180   static BooleanBoxCache* singleton(Thread* thread) {
1181     if (_singleton == nullptr) {
1182       BooleanBoxCache* s = new BooleanBoxCache(thread);
1183       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1184         delete s;
1185       }
1186     }
1187     return _singleton;
1188   }
1189   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1190     if (_true_cache == nullptr) {
1191       cache_in_error = true;
1192       return nullptr;
1193     }
1194     // Have to cast to avoid little/big-endian problems.
1195     jboolean value = (jboolean)*((jint*)&raw_value);
1196     return lookup(value);
1197   }
1198   oop lookup(jboolean value) {
1199     if (value != 0) {
1200       return JNIHandles::resolve_non_null(_true_cache);
1201     }
1202     return JNIHandles::resolve_non_null(_false_cache);
1203   }
1204 };
1205 
1206 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1207 
1208 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1209    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1210    BasicType box_type = vmClasses::box_klass_type(k);
1211    if (box_type != T_OBJECT) {
1212      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1213      switch(box_type) {
1214        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1215        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1216        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1217        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1218        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1219        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1220        default:;
1221      }
1222    }
1223    return nullptr;
1224 }
1225 #endif // INCLUDE_JVMCI
1226 
1227 #if COMPILER2_OR_JVMCI
1228 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1229   Handle pending_exception(THREAD, thread->pending_exception());
1230   const char* exception_file = thread->exception_file();
1231   int exception_line = thread->exception_line();
1232   thread->clear_pending_exception();
1233 
1234   bool failures = false;
1235 
1236   for (int i = 0; i < objects->length(); i++) {
1237     assert(objects->at(i)->is_object(), "invalid debug information");
1238     ObjectValue* sv = (ObjectValue*) objects->at(i);
1239 
1240     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1241     oop obj = nullptr;









1242 

1243     bool cache_init_error = false;
1244     if (k->is_instance_klass()) {
1245 #if INCLUDE_JVMCI
1246       nmethod* nm = fr->cb()->as_nmethod_or_null();
1247       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1248         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1249         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1250         if (obj != nullptr) {
1251           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1252           abv->set_cached(true);
1253         } else if (cache_init_error) {
1254           // Results in an OOME which is valid (as opposed to a class initialization error)
1255           // and is fine for the rare case a cache initialization failing.
1256           failures = true;
1257         }
1258       }
1259 #endif // INCLUDE_JVMCI
1260 
1261       InstanceKlass* ik = InstanceKlass::cast(k);
1262       if (obj == nullptr && !cache_init_error) {
1263         InternalOOMEMark iom(THREAD);
1264         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1265           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1266         } else {
1267           obj = ik->allocate_instance(THREAD);
1268         }
1269       }




1270     } else if (k->is_typeArray_klass()) {
1271       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1272       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1273       int len = sv->field_size() / type2size[ak->element_type()];
1274       InternalOOMEMark iom(THREAD);
1275       obj = ak->allocate_instance(len, THREAD);
1276     } else if (k->is_objArray_klass()) {
1277       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1278       InternalOOMEMark iom(THREAD);
1279       obj = ak->allocate_instance(sv->field_size(), THREAD);
1280     }
1281 
1282     if (obj == nullptr) {
1283       failures = true;
1284     }
1285 
1286     assert(sv->value().is_null(), "redundant reallocation");
1287     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1288     CLEAR_PENDING_EXCEPTION;
1289     sv->set_value(obj);
1290   }
1291 
1292   if (failures) {
1293     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1294   } else if (pending_exception.not_null()) {
1295     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1296   }
1297 
1298   return failures;
1299 }
1300 















1301 #if INCLUDE_JVMCI
1302 /**
1303  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1304  * we need to somehow be able to recover the actual kind to be able to write the correct
1305  * amount of bytes.
1306  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1307  * the entries at index n + 1 to n + i are 'markers'.
1308  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1309  * expected form of the array would be:
1310  *
1311  * {b0, b1, b2, b3, INT, marker, b6, b7}
1312  *
1313  * Thus, in order to get back the size of the entry, we simply need to count the number
1314  * of marked entries
1315  *
1316  * @param virtualArray the virtualized byte array
1317  * @param i index of the virtual entry we are recovering
1318  * @return The number of bytes the entry spans
1319  */
1320 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1321   int index = i;
1322   while (++index < virtualArray->field_size() &&
1323            virtualArray->field_at(index)->is_marker()) {}
1324   return index - i;
1325 }
1326 
1327 /**
1328  * If there was a guarantee for byte array to always start aligned to a long, we could
1329  * do a simple check on the parity of the index. Unfortunately, that is not always the
1330  * case. Thus, we check alignment of the actual address we are writing to.
1331  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1332  * write a long to index 3.
1333  */
1334 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1335     jbyte* res = obj->byte_at_addr(index);
1336     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1337     return res;
1338 }
1339 
1340 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1341   switch (byte_count) {
1342     case 1:
1343       obj->byte_at_put(index, (jbyte) value->get_jint());
1344       break;
1345     case 2:
1346       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1347       break;
1348     case 4:
1349       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1350       break;
1351     case 8:
1352       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1353       break;
1354     default:
1355       ShouldNotReachHere();
1356   }
1357 }
1358 #endif // INCLUDE_JVMCI
1359 
1360 
1361 // restore elements of an eliminated type array
1362 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1363   int index = 0;
1364 
1365   for (int i = 0; i < sv->field_size(); i++) {
1366     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1367     switch(type) {
1368     case T_LONG: case T_DOUBLE: {
1369       assert(value->type() == T_INT, "Agreement.");
1370       StackValue* low =
1371         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1372 #ifdef _LP64
1373       jlong res = (jlong)low->get_intptr();
1374 #else
1375       jlong res = jlong_from(value->get_jint(), low->get_jint());
1376 #endif
1377       obj->long_at_put(index, res);
1378       break;
1379     }
1380 
1381     case T_INT: case T_FLOAT: { // 4 bytes.
1382       assert(value->type() == T_INT, "Agreement.");
1383 #if INCLUDE_JVMCI
1384       // big_value allows encoding double/long value as e.g. [int = 0, long], and storing
1385       // the value in two array elements.
1386       bool big_value = false;
1387       if (i + 1 < sv->field_size() && type == T_INT) {
1388         if (sv->field_at(i)->is_location()) {
1389           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1390           if (type == Location::dbl || type == Location::lng) {
1391             big_value = true;
1392           }
1393         } else if (sv->field_at(i)->is_constant_int()) {
1394           ScopeValue* next_scope_field = sv->field_at(i + 1);
1395           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1396             big_value = true;
1397           }
1398         }
1399       }
1400 
1401       if (big_value) {
1402         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1403   #ifdef _LP64
1404         jlong res = (jlong)low->get_intptr();
1405   #else
1406         jlong res = jlong_from(value->get_jint(), low->get_jint());
1407   #endif
1408         obj->int_at_put(index, *(jint*)&res);
1409         obj->int_at_put(++index, *((jint*)&res + 1));
1410       } else {
1411         obj->int_at_put(index, value->get_jint());
1412       }
1413 #else // not INCLUDE_JVMCI
1414       obj->int_at_put(index, value->get_jint());
1415 #endif // INCLUDE_JVMCI
1416       break;
1417     }
1418 
1419     case T_SHORT:
1420       assert(value->type() == T_INT, "Agreement.");
1421       obj->short_at_put(index, (jshort)value->get_jint());
1422       break;
1423 
1424     case T_CHAR:
1425       assert(value->type() == T_INT, "Agreement.");
1426       obj->char_at_put(index, (jchar)value->get_jint());
1427       break;
1428 
1429     case T_BYTE: {
1430       assert(value->type() == T_INT, "Agreement.");
1431 #if INCLUDE_JVMCI
1432       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1433       int byte_count = count_number_of_bytes_for_entry(sv, i);
1434       byte_array_put(obj, value, index, byte_count);
1435       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1436       i += byte_count - 1; // Balance the loop counter.
1437       index += byte_count;
1438       // index has been updated so continue at top of loop
1439       continue;
1440 #else
1441       obj->byte_at_put(index, (jbyte)value->get_jint());
1442       break;
1443 #endif // INCLUDE_JVMCI
1444     }
1445 
1446     case T_BOOLEAN: {
1447       assert(value->type() == T_INT, "Agreement.");
1448       obj->bool_at_put(index, (jboolean)value->get_jint());
1449       break;
1450     }
1451 
1452       default:
1453         ShouldNotReachHere();
1454     }
1455     index++;
1456   }
1457 }
1458 
1459 // restore fields of an eliminated object array
1460 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1461   for (int i = 0; i < sv->field_size(); i++) {
1462     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1463     assert(value->type() == T_OBJECT, "object element expected");
1464     obj->obj_at_put(i, value->get_obj()());
1465   }
1466 }
1467 
1468 class ReassignedField {
1469 public:
1470   int _offset;
1471   BasicType _type;



1472 public:
1473   ReassignedField() {
1474     _offset = 0;
1475     _type = T_ILLEGAL;
1476   }
1477 };
1478 
1479 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1480 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1481   InstanceKlass* super = klass->super();
1482   if (super != nullptr) {
1483     get_reassigned_fields(super, fields, is_jvmci);
1484   }
1485   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1486     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1487       ReassignedField field;
1488       field._offset = fs.offset();
1489       field._type = Signature::basic_type(fs.signature());






1490       fields->append(field);
1491     }
1492   }
1493   return fields;
1494 }
1495 
1496 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1497 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {

1498   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1499   for (int i = 0; i < fields->length(); i++) {



















1500     ScopeValue* scope_field = sv->field_at(svIndex);
1501     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1502     int offset = fields->at(i)._offset;
1503     BasicType type = fields->at(i)._type;
1504     switch (type) {
1505       case T_OBJECT: case T_ARRAY:

1506         assert(value->type() == T_OBJECT, "Agreement.");
1507         obj->obj_field_put(offset, value->get_obj()());
1508         break;
1509 
1510       case T_INT: case T_FLOAT: { // 4 bytes.
1511         assert(value->type() == T_INT, "Agreement.");
1512         bool big_value = false;
1513         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1514           if (scope_field->is_location()) {
1515             Location::Type type = ((LocationValue*) scope_field)->location().type();
1516             if (type == Location::dbl || type == Location::lng) {
1517               big_value = true;
1518             }
1519           }
1520           if (scope_field->is_constant_int()) {
1521             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1522             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1523               big_value = true;
1524             }
1525           }
1526         }
1527 
1528         if (big_value) {
1529           i++;
1530           assert(i < fields->length(), "second T_INT field needed");
1531           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1532         } else {
1533           obj->int_field_put(offset, value->get_jint());
1534           break;
1535         }
1536       }
1537         /* no break */
1538 
1539       case T_LONG: case T_DOUBLE: {
1540         assert(value->type() == T_INT, "Agreement.");
1541         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1542 #ifdef _LP64
1543         jlong res = (jlong)low->get_intptr();
1544 #else
1545         jlong res = jlong_from(value->get_jint(), low->get_jint());
1546 #endif
1547         obj->long_field_put(offset, res);
1548         break;
1549       }
1550 
1551       case T_SHORT:
1552         assert(value->type() == T_INT, "Agreement.");
1553         obj->short_field_put(offset, (jshort)value->get_jint());
1554         break;
1555 
1556       case T_CHAR:
1557         assert(value->type() == T_INT, "Agreement.");
1558         obj->char_field_put(offset, (jchar)value->get_jint());
1559         break;
1560 
1561       case T_BYTE:
1562         assert(value->type() == T_INT, "Agreement.");
1563         obj->byte_field_put(offset, (jbyte)value->get_jint());
1564         break;
1565 
1566       case T_BOOLEAN:
1567         assert(value->type() == T_INT, "Agreement.");
1568         obj->bool_field_put(offset, (jboolean)value->get_jint());
1569         break;
1570 
1571       default:
1572         ShouldNotReachHere();
1573     }
1574     svIndex++;
1575   }

1576   return svIndex;
1577 }
1578 























1579 // restore fields of all eliminated objects and arrays
1580 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1581   for (int i = 0; i < objects->length(); i++) {
1582     assert(objects->at(i)->is_object(), "invalid debug information");
1583     ObjectValue* sv = (ObjectValue*) objects->at(i);
1584     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());


1585     Handle obj = sv->value();
1586     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1587 #ifndef PRODUCT
1588     if (PrintDeoptimizationDetails) {
1589       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1590     }
1591 #endif // !PRODUCT
1592 
1593     if (obj.is_null()) {
1594       continue;
1595     }
1596 
1597 #if INCLUDE_JVMCI
1598     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1599     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1600       continue;
1601     }
1602 #endif // INCLUDE_JVMCI
1603     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1604       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1605       ScopeValue* payload = sv->field_at(0);
1606       if (payload->is_location() &&
1607           payload->as_LocationValue()->location().type() == Location::vector) {
1608 #ifndef PRODUCT
1609         if (PrintDeoptimizationDetails) {
1610           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1611           if (Verbose) {
1612             Handle obj = sv->value();
1613             k->oop_print_on(obj(), tty);
1614           }
1615         }
1616 #endif // !PRODUCT
1617         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1618       }
1619       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1620       // which could be restored after vector object allocation.
1621     }
1622     if (k->is_instance_klass()) {
1623       InstanceKlass* ik = InstanceKlass::cast(k);
1624       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);



1625     } else if (k->is_typeArray_klass()) {
1626       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1627       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1628     } else if (k->is_objArray_klass()) {
1629       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1630     }
1631   }
1632   // These objects may escape when we return to Interpreter after deoptimization.
1633   // We need barrier so that stores that initialize these objects can't be reordered
1634   // with subsequent stores that make these objects accessible by other threads.
1635   OrderAccess::storestore();
1636 }
1637 
1638 
1639 // relock objects for which synchronization was eliminated
1640 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1641                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1642   bool relocked_objects = false;
1643   for (int i = 0; i < monitors->length(); i++) {
1644     MonitorInfo* mon_info = monitors->at(i);
1645     if (mon_info->eliminated()) {
1646       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1647       relocked_objects = true;
1648       if (!mon_info->owner_is_scalar_replaced()) {
1649         Handle obj(thread, mon_info->owner());
1650         markWord mark = obj->mark();
1651         if (exec_mode == Unpack_none) {
1652           if (mark.has_monitor()) {
1653             // defer relocking if the deoptee thread is currently waiting for obj
1654             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1655             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1656               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1657               if (UseObjectMonitorTable) {
1658                 mon_info->lock()->clear_object_monitor_cache();
1659               }
1660 #ifdef ASSERT
1661               else {
1662                 assert(!UseObjectMonitorTable, "must be");
1663                 mon_info->lock()->set_bad_monitor_deopt();
1664               }
1665 #endif
1666               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1667               continue;
1668             }
1669           }
1670         }
1671         BasicLock* lock = mon_info->lock();
1672         // We have lost information about the correct state of the lock stack.
1673         // Entering may create an invalid lock stack. Inflate the lock if it
1674         // was fast_locked to restore the valid lock stack.
1675         if (UseObjectMonitorTable) {
1676           // UseObjectMonitorTable expects the BasicLock cache to be either a
1677           // valid ObjectMonitor* or nullptr. Right now it is garbage, set it
1678           // to nullptr.
1679           lock->clear_object_monitor_cache();
1680         }
1681         ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1682         if (deoptee_thread->lock_stack().contains(obj())) {
1683             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1684                                                               deoptee_thread, thread);
1685         }
1686         assert(mon_info->owner()->is_locked(), "object must be locked now");
1687         assert(obj->mark().has_monitor(), "must be");
1688         assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1689         assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1690       }
1691     }
1692   }
1693   return relocked_objects;
1694 }
1695 #endif // COMPILER2_OR_JVMCI
1696 
1697 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1698   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1699 
1700   // Register map for next frame (used for stack crawl).  We capture
1701   // the state of the deopt'ing frame's caller.  Thus if we need to
1702   // stuff a C2I adapter we can properly fill in the callee-save
1703   // register locations.
1704   frame caller = fr.sender(reg_map);
1705   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1706 
1707   frame sender = caller;
1708 
1709   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1710   // the vframeArray containing the unpacking information is allocated in the C heap.
1711   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1712   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1713 
1714   // Compare the vframeArray to the collected vframes
1715   assert(array->structural_compare(thread, chunk), "just checking");
1716 
1717   if (TraceDeoptimization) {
1718     ResourceMark rm;
1719     stringStream st;
1720     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1721     st.print("   ");
1722     fr.print_on(&st);
1723     st.print_cr("   Virtual frames (innermost/newest first):");
1724     for (int index = 0; index < chunk->length(); index++) {
1725       compiledVFrame* vf = chunk->at(index);
1726       int bci = vf->raw_bci();
1727       const char* code_name;
1728       if (bci == SynchronizationEntryBCI) {
1729         code_name = "sync entry";
1730       } else {
1731         Bytecodes::Code code = vf->method()->code_at(bci);
1732         code_name = Bytecodes::name(code);
1733       }
1734 
1735       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1736       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1737       st.print(" - %s", code_name);
1738       st.print_cr(" @ bci=%d ", bci);
1739     }
1740     tty->print_raw(st.freeze());
1741     tty->cr();
1742   }
1743 
1744   return array;
1745 }
1746 
1747 #if COMPILER2_OR_JVMCI
1748 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1749   // Reallocation of some scalar replaced objects failed. Record
1750   // that we need to pop all the interpreter frames for the
1751   // deoptimized compiled frame.
1752   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1753   thread->set_frames_to_pop_failed_realloc(array->frames());
1754   // Unlock all monitors here otherwise the interpreter will see a
1755   // mix of locked and unlocked monitors (because of failed
1756   // reallocations of synchronized objects) and be confused.
1757   for (int i = 0; i < array->frames(); i++) {
1758     MonitorChunk* monitors = array->element(i)->monitors();
1759     if (monitors != nullptr) {
1760       // Unlock in reverse order starting from most nested monitor.
1761       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1762         BasicObjectLock* src = monitors->at(j);
1763         if (src->obj() != nullptr) {
1764           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1765         }
1766       }
1767       array->element(i)->free_monitors();
1768 #ifdef ASSERT
1769       array->element(i)->set_removed_monitors();
1770 #endif
1771     }
1772   }
1773 }
1774 #endif
1775 
1776 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1777   assert(fr.can_be_deoptimized(), "checking frame type");
1778 
1779   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1780 
1781   if (LogCompilation && xtty != nullptr) {
1782     nmethod* nm = fr.cb()->as_nmethod_or_null();
1783     assert(nm != nullptr, "only compiled methods can deopt");
1784 
1785     ttyLocker ttyl;
1786     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1787     nm->log_identity(xtty);
1788     xtty->end_head();
1789     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1790       xtty->begin_elem("jvms bci='%d'", sd->bci());
1791       xtty->method(sd->method());
1792       xtty->end_elem();
1793       if (sd->is_top())  break;
1794     }
1795     xtty->tail("deoptimized");
1796   }
1797 
1798   Continuation::notify_deopt(thread, fr.sp());
1799 
1800   // Patch the compiled method so that when execution returns to it we will
1801   // deopt the execution state and return to the interpreter.
1802   fr.deoptimize(thread);
1803 }
1804 
1805 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1806   // Deoptimize only if the frame comes from compile code.
1807   // Do not deoptimize the frame which is already patched
1808   // during the execution of the loops below.
1809   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1810     return;
1811   }
1812   ResourceMark rm;
1813   deoptimize_single_frame(thread, fr, reason);
1814 }
1815 
1816 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm, bool make_not_entrant) {
1817   // there is no exception handler for this pc => deoptimize
1818   if (make_not_entrant) {
1819     nm->make_not_entrant(nmethod::InvalidationReason::MISSING_EXCEPTION_HANDLER);
1820   }
1821 
1822   // Use Deoptimization::deoptimize for all of its side-effects:
1823   // gathering traps statistics, logging...
1824   // it also patches the return pc but we do not care about that
1825   // since we return a continuation to the deopt_blob below.
1826   JavaThread* thread = JavaThread::current();
1827   RegisterMap reg_map(thread,
1828                       RegisterMap::UpdateMap::skip,
1829                       RegisterMap::ProcessFrames::include,
1830                       RegisterMap::WalkContinuation::skip);
1831   frame runtime_frame = thread->last_frame();
1832   frame caller_frame = runtime_frame.sender(&reg_map);
1833   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1834 
1835   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1836 
1837   if (!nm->is_compiled_by_jvmci()) {
1838     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1839   }
1840 
1841 #if INCLUDE_JVMCI
1842   // JVMCI support
1843   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1844   compiledVFrame* cvf = compiledVFrame::cast(vf);
1845   ScopeDesc* imm_scope = cvf->scope();
1846   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1847   if (imm_mdo != nullptr) {
1848     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1849     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1850 
1851     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1852     if (pdata != nullptr && pdata->is_BitData()) {
1853       BitData* bit_data = (BitData*) pdata;
1854       bit_data->set_exception_seen();
1855     }
1856   }
1857 
1858 
1859   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1860   if (trap_mdo != nullptr) {
1861     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1862   }
1863 #endif
1864 
1865   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1866 }
1867 
1868 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1869   assert(thread == Thread::current() ||
1870          thread->is_handshake_safe_for(Thread::current()) ||
1871          SafepointSynchronize::is_at_safepoint(),
1872          "can only deoptimize other thread at a safepoint/handshake");
1873   // Compute frame and register map based on thread and sp.
1874   RegisterMap reg_map(thread,
1875                       RegisterMap::UpdateMap::skip,
1876                       RegisterMap::ProcessFrames::include,
1877                       RegisterMap::WalkContinuation::skip);
1878   frame fr = thread->last_frame();
1879   while (fr.id() != id) {
1880     fr = fr.sender(&reg_map);
1881   }
1882   deoptimize(thread, fr, reason);
1883 }
1884 
1885 
1886 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1887   Thread* current = Thread::current();
1888   if (thread == current || thread->is_handshake_safe_for(current)) {
1889     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1890   } else {
1891     VM_DeoptimizeFrame deopt(thread, id, reason);
1892     VMThread::execute(&deopt);
1893   }
1894 }
1895 
1896 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1897   deoptimize_frame(thread, id, Reason_constraint);
1898 }
1899 
1900 // JVMTI PopFrame support
1901 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1902 {
1903   assert(thread == JavaThread::current(), "pre-condition");
1904   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1905 }
1906 JRT_END
1907 
1908 MethodData*
1909 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1910                                 bool create_if_missing) {
1911   JavaThread* THREAD = thread; // For exception macros.
1912   MethodData* mdo = m()->method_data();
1913   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1914     // Build an MDO.  Ignore errors like OutOfMemory;
1915     // that simply means we won't have an MDO to update.
1916     Method::build_profiling_method_data(m, THREAD);
1917     if (HAS_PENDING_EXCEPTION) {
1918       // Only metaspace OOM is expected. No Java code executed.
1919       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1920       CLEAR_PENDING_EXCEPTION;
1921     }
1922     mdo = m()->method_data();
1923   }
1924   return mdo;
1925 }
1926 
1927 #if COMPILER2_OR_JVMCI
1928 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1929   // In case of an unresolved klass entry, load the class.
1930   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1931   // and probably nowhere else.
1932   // Even that case would benefit from simply re-interpreting the
1933   // bytecode, without paying special attention to the class index.
1934   // So this whole "class index" feature should probably be removed.
1935 
1936   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1937     Klass* tk = constant_pool->klass_at(index, THREAD);
1938     if (HAS_PENDING_EXCEPTION) {
1939       // Exception happened during classloading. We ignore the exception here, since it
1940       // is going to be rethrown since the current activation is going to be deoptimized and
1941       // the interpreter will re-execute the bytecode.
1942       // Do not clear probable Async Exceptions.
1943       CLEAR_PENDING_NONASYNC_EXCEPTION;
1944       // Class loading called java code which may have caused a stack
1945       // overflow. If the exception was thrown right before the return
1946       // to the runtime the stack is no longer guarded. Reguard the
1947       // stack otherwise if we return to the uncommon trap blob and the
1948       // stack bang causes a stack overflow we crash.
1949       JavaThread* jt = THREAD;
1950       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1951       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1952     }
1953     return;
1954   }
1955 
1956   assert(!constant_pool->tag_at(index).is_symbol(),
1957          "no symbolic names here, please");
1958 }
1959 
1960 #if INCLUDE_JFR
1961 
1962 class DeoptReasonSerializer : public JfrSerializer {
1963  public:
1964   void serialize(JfrCheckpointWriter& writer) {
1965     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1966     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1967       writer.write_key((u8)i);
1968       writer.write(Deoptimization::trap_reason_name(i));
1969     }
1970   }
1971 };
1972 
1973 class DeoptActionSerializer : public JfrSerializer {
1974  public:
1975   void serialize(JfrCheckpointWriter& writer) {
1976     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1977     writer.write_count(nof_actions);
1978     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1979       writer.write_key(i);
1980       writer.write(Deoptimization::trap_action_name((int)i));
1981     }
1982   }
1983 };
1984 
1985 static void register_serializers() {
1986   static int critical_section = 0;
1987   if (1 == critical_section || AtomicAccess::cmpxchg(&critical_section, 0, 1) == 1) {
1988     return;
1989   }
1990   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1991   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1992 }
1993 
1994 static void post_deoptimization_event(nmethod* nm,
1995                                       const Method* method,
1996                                       int trap_bci,
1997                                       int instruction,
1998                                       Deoptimization::DeoptReason reason,
1999                                       Deoptimization::DeoptAction action) {
2000   assert(nm != nullptr, "invariant");
2001   assert(method != nullptr, "invariant");
2002   if (EventDeoptimization::is_enabled()) {
2003     static bool serializers_registered = false;
2004     if (!serializers_registered) {
2005       register_serializers();
2006       serializers_registered = true;
2007     }
2008     EventDeoptimization event;
2009     event.set_compileId(nm->compile_id());
2010     event.set_compiler(nm->compiler_type());
2011     event.set_method(method);
2012     event.set_lineNumber(method->line_number_from_bci(trap_bci));
2013     event.set_bci(trap_bci);
2014     event.set_instruction(instruction);
2015     event.set_reason(reason);
2016     event.set_action(action);
2017     event.commit();
2018   }
2019 }
2020 
2021 #endif // INCLUDE_JFR
2022 
2023 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2024                               const char* reason_name, const char* reason_action) {
2025   LogTarget(Debug, deoptimization) lt;
2026   if (lt.is_enabled()) {
2027     LogStream ls(lt);
2028     bool is_osr = nm->is_osr_method();
2029     ls.print("cid=%4d %s level=%d",
2030              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2031     ls.print(" %s", tm->name_and_sig_as_C_string());
2032     ls.print(" trap_bci=%d ", trap_bci);
2033     if (is_osr) {
2034       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2035     }
2036     ls.print("%s ", reason_name);
2037     ls.print("%s ", reason_action);
2038     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2039              pc, fr.pc() - nm->code_begin());
2040   }
2041 }
2042 
2043 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2044   HandleMark hm(current);
2045 
2046   // uncommon_trap() is called at the beginning of the uncommon trap
2047   // handler. Note this fact before we start generating temporary frames
2048   // that can confuse an asynchronous stack walker. This counter is
2049   // decremented at the end of unpack_frames().
2050 
2051   current->inc_in_deopt_handler();
2052 
2053 #if INCLUDE_JVMCI
2054   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2055   RegisterMap reg_map(current,
2056                       RegisterMap::UpdateMap::include,
2057                       RegisterMap::ProcessFrames::include,
2058                       RegisterMap::WalkContinuation::skip);
2059 #else
2060   RegisterMap reg_map(current,
2061                       RegisterMap::UpdateMap::skip,
2062                       RegisterMap::ProcessFrames::include,
2063                       RegisterMap::WalkContinuation::skip);
2064 #endif
2065   frame stub_frame = current->last_frame();
2066   frame fr = stub_frame.sender(&reg_map);
2067 
2068   // Log a message
2069   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2070               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2071 
2072   {
2073     ResourceMark rm;
2074 
2075     DeoptReason reason = trap_request_reason(trap_request);
2076     DeoptAction action = trap_request_action(trap_request);
2077 #if INCLUDE_JVMCI
2078     int debug_id = trap_request_debug_id(trap_request);
2079 #endif
2080     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2081 
2082     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2083     compiledVFrame* cvf = compiledVFrame::cast(vf);
2084 
2085     nmethod* nm = cvf->code();
2086 
2087     ScopeDesc*      trap_scope  = cvf->scope();
2088 
2089     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2090 
2091     if (is_receiver_constraint_failure) {
2092       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2093                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2094                     JVMCI_ONLY(COMMA debug_id));
2095     }
2096 
2097     methodHandle    trap_method(current, trap_scope->method());
2098     int             trap_bci    = trap_scope->bci();
2099 #if INCLUDE_JVMCI
2100     jlong           speculation = current->pending_failed_speculation();
2101     if (nm->is_compiled_by_jvmci()) {
2102       nm->update_speculation(current);
2103     } else {
2104       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2105     }
2106 
2107     if (trap_bci == SynchronizationEntryBCI) {
2108       trap_bci = 0;
2109       current->set_pending_monitorenter(true);
2110     }
2111 
2112     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2113       current->set_pending_transfer_to_interpreter(true);
2114     }
2115 #endif
2116 
2117     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2118     // Record this event in the histogram.
2119     gather_statistics(reason, action, trap_bc);
2120 
2121     // Ensure that we can record deopt. history:
2122     bool create_if_missing = ProfileTraps;
2123 
2124     methodHandle profiled_method;
2125 #if INCLUDE_JVMCI
2126     if (nm->is_compiled_by_jvmci()) {
2127       profiled_method = methodHandle(current, nm->method());
2128     } else {
2129       profiled_method = trap_method;
2130     }
2131 #else
2132     profiled_method = trap_method;
2133 #endif
2134 
2135     MethodData* trap_mdo =
2136       get_method_data(current, profiled_method, create_if_missing);
2137 
2138     { // Log Deoptimization event for JFR, UL and event system
2139       Method* tm = trap_method();
2140       const char* reason_name = trap_reason_name(reason);
2141       const char* reason_action = trap_action_name(action);
2142       intptr_t pc = p2i(fr.pc());
2143 
2144       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2145       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2146       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2147                                 reason_name, reason_action, pc,
2148                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2149     }
2150 
2151     // Print a bunch of diagnostics, if requested.
2152     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2153       ResourceMark rm;
2154 
2155       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2156       // We must do this already now, since we cannot acquire this lock while
2157       // holding the tty lock (lock ordering by rank).
2158       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2159 
2160       ttyLocker ttyl;
2161 
2162       char buf[100];
2163       if (xtty != nullptr) {
2164         xtty->begin_head("uncommon_trap thread='%zu' %s",
2165                          os::current_thread_id(),
2166                          format_trap_request(buf, sizeof(buf), trap_request));
2167 #if INCLUDE_JVMCI
2168         if (speculation != 0) {
2169           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2170         }
2171 #endif
2172         nm->log_identity(xtty);
2173       }
2174       Symbol* class_name = nullptr;
2175       bool unresolved = false;
2176       if (unloaded_class_index >= 0) {
2177         constantPoolHandle constants (current, trap_method->constants());
2178         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2179           class_name = constants->klass_name_at(unloaded_class_index);
2180           unresolved = true;
2181           if (xtty != nullptr)
2182             xtty->print(" unresolved='1'");
2183         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2184           class_name = constants->symbol_at(unloaded_class_index);
2185         }
2186         if (xtty != nullptr)
2187           xtty->name(class_name);
2188       }
2189       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2190         // Dump the relevant MDO state.
2191         // This is the deopt count for the current reason, any previous
2192         // reasons or recompiles seen at this point.
2193         int dcnt = trap_mdo->trap_count(reason);
2194         if (dcnt != 0)
2195           xtty->print(" count='%d'", dcnt);
2196 
2197         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2198         // lock extra_data_lock before the tty lock.
2199         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2200         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2201         if (dos != 0) {
2202           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2203           if (trap_state_is_recompiled(dos)) {
2204             int recnt2 = trap_mdo->overflow_recompile_count();
2205             if (recnt2 != 0)
2206               xtty->print(" recompiles2='%d'", recnt2);
2207           }
2208         }
2209       }
2210       if (xtty != nullptr) {
2211         xtty->stamp();
2212         xtty->end_head();
2213       }
2214       if (TraceDeoptimization) {  // make noise on the tty
2215         stringStream st;
2216         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2217         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2218                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2219         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2220 #if INCLUDE_JVMCI
2221         if (nm->is_compiled_by_jvmci()) {
2222           const char* installed_code_name = nm->jvmci_name();
2223           if (installed_code_name != nullptr) {
2224             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2225           }
2226         }
2227 #endif
2228         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2229                    p2i(fr.pc()),
2230                    os::current_thread_id(),
2231                    trap_reason_name(reason),
2232                    trap_action_name(action),
2233                    unloaded_class_index
2234 #if INCLUDE_JVMCI
2235                    , debug_id
2236 #endif
2237                    );
2238         if (class_name != nullptr) {
2239           st.print(unresolved ? " unresolved class: " : " symbol: ");
2240           class_name->print_symbol_on(&st);
2241         }
2242         st.cr();
2243         tty->print_raw(st.freeze());
2244       }
2245       if (xtty != nullptr) {
2246         // Log the precise location of the trap.
2247         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2248           xtty->begin_elem("jvms bci='%d'", sd->bci());
2249           xtty->method(sd->method());
2250           xtty->end_elem();
2251           if (sd->is_top())  break;
2252         }
2253         xtty->tail("uncommon_trap");
2254       }
2255     }
2256     // (End diagnostic printout.)
2257 
2258     if (is_receiver_constraint_failure) {
2259       fatal("missing receiver type check");
2260     }
2261 
2262     // Load class if necessary
2263     if (unloaded_class_index >= 0) {
2264       constantPoolHandle constants(current, trap_method->constants());
2265       load_class_by_index(constants, unloaded_class_index, THREAD);
2266     }
2267 
2268     // Flush the nmethod if necessary and desirable.
2269     //
2270     // We need to avoid situations where we are re-flushing the nmethod
2271     // because of a hot deoptimization site.  Repeated flushes at the same
2272     // point need to be detected by the compiler and avoided.  If the compiler
2273     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2274     // module must take measures to avoid an infinite cycle of recompilation
2275     // and deoptimization.  There are several such measures:
2276     //
2277     //   1. If a recompilation is ordered a second time at some site X
2278     //   and for the same reason R, the action is adjusted to 'reinterpret',
2279     //   to give the interpreter time to exercise the method more thoroughly.
2280     //   If this happens, the method's overflow_recompile_count is incremented.
2281     //
2282     //   2. If the compiler fails to reduce the deoptimization rate, then
2283     //   the method's overflow_recompile_count will begin to exceed the set
2284     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2285     //   is adjusted to 'make_not_compilable', and the method is abandoned
2286     //   to the interpreter.  This is a performance hit for hot methods,
2287     //   but is better than a disastrous infinite cycle of recompilations.
2288     //   (Actually, only the method containing the site X is abandoned.)
2289     //
2290     //   3. In parallel with the previous measures, if the total number of
2291     //   recompilations of a method exceeds the much larger set limit
2292     //   PerMethodRecompilationCutoff, the method is abandoned.
2293     //   This should only happen if the method is very large and has
2294     //   many "lukewarm" deoptimizations.  The code which enforces this
2295     //   limit is elsewhere (class nmethod, class Method).
2296     //
2297     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2298     // to recompile at each bytecode independently of the per-BCI cutoff.
2299     //
2300     // The decision to update code is up to the compiler, and is encoded
2301     // in the Action_xxx code.  If the compiler requests Action_none
2302     // no trap state is changed, no compiled code is changed, and the
2303     // computation suffers along in the interpreter.
2304     //
2305     // The other action codes specify various tactics for decompilation
2306     // and recompilation.  Action_maybe_recompile is the loosest, and
2307     // allows the compiled code to stay around until enough traps are seen,
2308     // and until the compiler gets around to recompiling the trapping method.
2309     //
2310     // The other actions cause immediate removal of the present code.
2311 
2312     // Traps caused by injected profile shouldn't pollute trap counts.
2313     bool injected_profile_trap = trap_method->has_injected_profile() &&
2314                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2315 
2316     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2317     bool make_not_entrant = false;
2318     bool make_not_compilable = false;
2319     bool reprofile = false;
2320     switch (action) {
2321     case Action_none:
2322       // Keep the old code.
2323       update_trap_state = false;
2324       break;
2325     case Action_maybe_recompile:
2326       // Do not need to invalidate the present code, but we can
2327       // initiate another
2328       // Start compiler without (necessarily) invalidating the nmethod.
2329       // The system will tolerate the old code, but new code should be
2330       // generated when possible.
2331       break;
2332     case Action_reinterpret:
2333       // Go back into the interpreter for a while, and then consider
2334       // recompiling form scratch.
2335       make_not_entrant = true;
2336       // Reset invocation counter for outer most method.
2337       // This will allow the interpreter to exercise the bytecodes
2338       // for a while before recompiling.
2339       // By contrast, Action_make_not_entrant is immediate.
2340       //
2341       // Note that the compiler will track null_check, null_assert,
2342       // range_check, and class_check events and log them as if they
2343       // had been traps taken from compiled code.  This will update
2344       // the MDO trap history so that the next compilation will
2345       // properly detect hot trap sites.
2346       reprofile = true;
2347       break;
2348     case Action_make_not_entrant:
2349       // Request immediate recompilation, and get rid of the old code.
2350       // Make them not entrant, so next time they are called they get
2351       // recompiled.  Unloaded classes are loaded now so recompile before next
2352       // time they are called.  Same for uninitialized.  The interpreter will
2353       // link the missing class, if any.
2354       make_not_entrant = true;
2355       break;
2356     case Action_make_not_compilable:
2357       // Give up on compiling this method at all.
2358       make_not_entrant = true;
2359       make_not_compilable = true;
2360       break;
2361     default:
2362       ShouldNotReachHere();
2363     }
2364 
2365 #if INCLUDE_JVMCI
2366     // Deoptimization count is used by the CompileBroker to reason about compilations
2367     // it requests so do not pollute the count for deoptimizations in non-default (i.e.
2368     // non-CompilerBroker) compilations.
2369     if (nm->jvmci_skip_profile_deopt()) {
2370       update_trap_state = false;
2371     }
2372 #endif
2373     // Setting +ProfileTraps fixes the following, on all platforms:
2374     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2375     // recompile relies on a MethodData* to record heroic opt failures.
2376 
2377     // Whether the interpreter is producing MDO data or not, we also need
2378     // to use the MDO to detect hot deoptimization points and control
2379     // aggressive optimization.
2380     bool inc_recompile_count = false;
2381 
2382     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2383     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2384                               (trap_mdo != nullptr),
2385                               Mutex::_no_safepoint_check_flag);
2386     ProfileData* pdata = nullptr;
2387     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2388       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2389       uint this_trap_count = 0;
2390       bool maybe_prior_trap = false;
2391       bool maybe_prior_recompile = false;
2392 
2393       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2394 #if INCLUDE_JVMCI
2395                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2396 #endif
2397                                    nm->method(),
2398                                    //outputs:
2399                                    this_trap_count,
2400                                    maybe_prior_trap,
2401                                    maybe_prior_recompile);
2402       // Because the interpreter also counts null, div0, range, and class
2403       // checks, these traps from compiled code are double-counted.
2404       // This is harmless; it just means that the PerXTrapLimit values
2405       // are in effect a little smaller than they look.
2406 
2407       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2408       if (per_bc_reason != Reason_none) {
2409         // Now take action based on the partially known per-BCI history.
2410         if (maybe_prior_trap
2411             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2412           // If there are too many traps at this BCI, force a recompile.
2413           // This will allow the compiler to see the limit overflow, and
2414           // take corrective action, if possible.  The compiler generally
2415           // does not use the exact PerBytecodeTrapLimit value, but instead
2416           // changes its tactics if it sees any traps at all.  This provides
2417           // a little hysteresis, delaying a recompile until a trap happens
2418           // several times.
2419           //
2420           // Actually, since there is only one bit of counter per BCI,
2421           // the possible per-BCI counts are {0,1,(per-method count)}.
2422           // This produces accurate results if in fact there is only
2423           // one hot trap site, but begins to get fuzzy if there are
2424           // many sites.  For example, if there are ten sites each
2425           // trapping two or more times, they each get the blame for
2426           // all of their traps.
2427           make_not_entrant = true;
2428         }
2429 
2430         // Detect repeated recompilation at the same BCI, and enforce a limit.
2431         if (make_not_entrant && maybe_prior_recompile) {
2432           // More than one recompile at this point.
2433           inc_recompile_count = maybe_prior_trap;
2434         }
2435       } else {
2436         // For reasons which are not recorded per-bytecode, we simply
2437         // force recompiles unconditionally.
2438         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2439         make_not_entrant = true;
2440       }
2441 
2442       // Go back to the compiler if there are too many traps in this method.
2443       if (this_trap_count >= per_method_trap_limit(reason)) {
2444         // If there are too many traps in this method, force a recompile.
2445         // This will allow the compiler to see the limit overflow, and
2446         // take corrective action, if possible.
2447         // (This condition is an unlikely backstop only, because the
2448         // PerBytecodeTrapLimit is more likely to take effect first,
2449         // if it is applicable.)
2450         make_not_entrant = true;
2451       }
2452 
2453       // Here's more hysteresis:  If there has been a recompile at
2454       // this trap point already, run the method in the interpreter
2455       // for a while to exercise it more thoroughly.
2456       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2457         reprofile = true;
2458       }
2459     }
2460 
2461     // Take requested actions on the method:
2462 
2463     // Recompile
2464     if (make_not_entrant) {
2465       if (!nm->make_not_entrant(nmethod::InvalidationReason::UNCOMMON_TRAP)) {
2466         return; // the call did not change nmethod's state
2467       }
2468 
2469       if (pdata != nullptr) {
2470         // Record the recompilation event, if any.
2471         int tstate0 = pdata->trap_state();
2472         int tstate1 = trap_state_set_recompiled(tstate0, true);
2473         if (tstate1 != tstate0)
2474           pdata->set_trap_state(tstate1);
2475       }
2476 
2477       // For code aging we count traps separately here, using make_not_entrant()
2478       // as a guard against simultaneous deopts in multiple threads.
2479       if (reason == Reason_tenured && trap_mdo != nullptr) {
2480         trap_mdo->inc_tenure_traps();
2481       }
2482     }
2483     if (inc_recompile_count) {
2484       trap_mdo->inc_overflow_recompile_count();
2485       if ((uint)trap_mdo->overflow_recompile_count() >
2486           (uint)PerBytecodeRecompilationCutoff) {
2487         // Give up on the method containing the bad BCI.
2488         if (trap_method() == nm->method()) {
2489           make_not_compilable = true;
2490         } else {
2491           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2492           // But give grace to the enclosing nm->method().
2493         }
2494       }
2495     }
2496 
2497     // Reprofile
2498     if (reprofile) {
2499       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2500     }
2501 
2502     // Give up compiling
2503     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2504       assert(make_not_entrant, "consistent");
2505       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2506     }
2507 
2508     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2509       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2510       if (exception_handler_data != nullptr) {
2511         // uncommon trap at the start of an exception handler.
2512         // C2 generates these for un-entered exception handlers.
2513         // mark the handler as entered to avoid generating
2514         // another uncommon trap the next time the handler is compiled
2515         exception_handler_data->set_exception_handler_entered();
2516       }
2517     }
2518 
2519   } // Free marked resources
2520 
2521 }
2522 JRT_END
2523 
2524 ProfileData*
2525 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2526                                          int trap_bci,
2527                                          Deoptimization::DeoptReason reason,
2528                                          bool update_total_trap_count,
2529 #if INCLUDE_JVMCI
2530                                          bool is_osr,
2531 #endif
2532                                          Method* compiled_method,
2533                                          //outputs:
2534                                          uint& ret_this_trap_count,
2535                                          bool& ret_maybe_prior_trap,
2536                                          bool& ret_maybe_prior_recompile) {
2537   trap_mdo->check_extra_data_locked();
2538 
2539   bool maybe_prior_trap = false;
2540   bool maybe_prior_recompile = false;
2541   uint this_trap_count = 0;
2542   if (update_total_trap_count) {
2543     uint idx = reason;
2544 #if INCLUDE_JVMCI
2545     if (is_osr) {
2546       // Upper half of history array used for traps in OSR compilations
2547       idx += Reason_TRAP_HISTORY_LENGTH;
2548     }
2549 #endif
2550     uint prior_trap_count = trap_mdo->trap_count(idx);
2551     this_trap_count  = trap_mdo->inc_trap_count(idx);
2552 
2553     // If the runtime cannot find a place to store trap history,
2554     // it is estimated based on the general condition of the method.
2555     // If the method has ever been recompiled, or has ever incurred
2556     // a trap with the present reason , then this BCI is assumed
2557     // (pessimistically) to be the culprit.
2558     maybe_prior_trap      = (prior_trap_count != 0);
2559     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2560   }
2561   ProfileData* pdata = nullptr;
2562 
2563 
2564   // For reasons which are recorded per bytecode, we check per-BCI data.
2565   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2566   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2567   if (per_bc_reason != Reason_none) {
2568     // Find the profile data for this BCI.  If there isn't one,
2569     // try to allocate one from the MDO's set of spares.
2570     // This will let us detect a repeated trap at this point.
2571     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2572 
2573     if (pdata != nullptr) {
2574       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2575         if (LogCompilation && xtty != nullptr) {
2576           ttyLocker ttyl;
2577           // no more room for speculative traps in this MDO
2578           xtty->elem("speculative_traps_oom");
2579         }
2580       }
2581       // Query the trap state of this profile datum.
2582       int tstate0 = pdata->trap_state();
2583       if (!trap_state_has_reason(tstate0, per_bc_reason))
2584         maybe_prior_trap = false;
2585       if (!trap_state_is_recompiled(tstate0))
2586         maybe_prior_recompile = false;
2587 
2588       // Update the trap state of this profile datum.
2589       int tstate1 = tstate0;
2590       // Record the reason.
2591       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2592       // Store the updated state on the MDO, for next time.
2593       if (tstate1 != tstate0)
2594         pdata->set_trap_state(tstate1);
2595     } else {
2596       if (LogCompilation && xtty != nullptr) {
2597         ttyLocker ttyl;
2598         // Missing MDP?  Leave a small complaint in the log.
2599         xtty->elem("missing_mdp bci='%d'", trap_bci);
2600       }
2601     }
2602   }
2603 
2604   // Return results:
2605   ret_this_trap_count = this_trap_count;
2606   ret_maybe_prior_trap = maybe_prior_trap;
2607   ret_maybe_prior_recompile = maybe_prior_recompile;
2608   return pdata;
2609 }
2610 
2611 void
2612 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2613   ResourceMark rm;
2614   // Ignored outputs:
2615   uint ignore_this_trap_count;
2616   bool ignore_maybe_prior_trap;
2617   bool ignore_maybe_prior_recompile;
2618   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2619   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2620   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2621 
2622   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2623   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2624 
2625   query_update_method_data(trap_mdo, trap_bci,
2626                            (DeoptReason)reason,
2627                            update_total_counts,
2628 #if INCLUDE_JVMCI
2629                            false,
2630 #endif
2631                            nullptr,
2632                            ignore_this_trap_count,
2633                            ignore_maybe_prior_trap,
2634                            ignore_maybe_prior_recompile);
2635 }
2636 
2637 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2638   // Enable WXWrite: current function is called from methods compiled by C2 directly
2639   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2640 
2641   // Still in Java no safepoints
2642   {
2643     // This enters VM and may safepoint
2644     uncommon_trap_inner(current, trap_request);
2645   }
2646   HandleMark hm(current);
2647   return fetch_unroll_info_helper(current, exec_mode);
2648 }
2649 
2650 // Local derived constants.
2651 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2652 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2653 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2654 
2655 //---------------------------trap_state_reason---------------------------------
2656 Deoptimization::DeoptReason
2657 Deoptimization::trap_state_reason(int trap_state) {
2658   // This assert provides the link between the width of DataLayout::trap_bits
2659   // and the encoding of "recorded" reasons.  It ensures there are enough
2660   // bits to store all needed reasons in the per-BCI MDO profile.
2661   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2662   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2663   trap_state -= recompile_bit;
2664   if (trap_state == DS_REASON_MASK) {
2665     return Reason_many;
2666   } else {
2667     assert((int)Reason_none == 0, "state=0 => Reason_none");
2668     return (DeoptReason)trap_state;
2669   }
2670 }
2671 //-------------------------trap_state_has_reason-------------------------------
2672 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2673   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2674   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2675   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2676   trap_state -= recompile_bit;
2677   if (trap_state == DS_REASON_MASK) {
2678     return -1;  // true, unspecifically (bottom of state lattice)
2679   } else if (trap_state == reason) {
2680     return 1;   // true, definitely
2681   } else if (trap_state == 0) {
2682     return 0;   // false, definitely (top of state lattice)
2683   } else {
2684     return 0;   // false, definitely
2685   }
2686 }
2687 //-------------------------trap_state_add_reason-------------------------------
2688 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2689   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2690   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2691   trap_state -= recompile_bit;
2692   if (trap_state == DS_REASON_MASK) {
2693     return trap_state + recompile_bit;     // already at state lattice bottom
2694   } else if (trap_state == reason) {
2695     return trap_state + recompile_bit;     // the condition is already true
2696   } else if (trap_state == 0) {
2697     return reason + recompile_bit;          // no condition has yet been true
2698   } else {
2699     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2700   }
2701 }
2702 //-----------------------trap_state_is_recompiled------------------------------
2703 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2704   return (trap_state & DS_RECOMPILE_BIT) != 0;
2705 }
2706 //-----------------------trap_state_set_recompiled-----------------------------
2707 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2708   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2709   else    return trap_state & ~DS_RECOMPILE_BIT;
2710 }
2711 //---------------------------format_trap_state---------------------------------
2712 // This is used for debugging and diagnostics, including LogFile output.
2713 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2714                                               int trap_state) {
2715   assert(buflen > 0, "sanity");
2716   DeoptReason reason      = trap_state_reason(trap_state);
2717   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2718   // Re-encode the state from its decoded components.
2719   int decoded_state = 0;
2720   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2721     decoded_state = trap_state_add_reason(decoded_state, reason);
2722   if (recomp_flag)
2723     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2724   // If the state re-encodes properly, format it symbolically.
2725   // Because this routine is used for debugging and diagnostics,
2726   // be robust even if the state is a strange value.
2727   size_t len;
2728   if (decoded_state != trap_state) {
2729     // Random buggy state that doesn't decode??
2730     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2731   } else {
2732     len = jio_snprintf(buf, buflen, "%s%s",
2733                        trap_reason_name(reason),
2734                        recomp_flag ? " recompiled" : "");
2735   }
2736   return buf;
2737 }
2738 
2739 
2740 //--------------------------------statics--------------------------------------
2741 const char* Deoptimization::_trap_reason_name[] = {
2742   // Note:  Keep this in sync. with enum DeoptReason.
2743   "none",
2744   "null_check",
2745   "null_assert" JVMCI_ONLY("_or_unreached0"),
2746   "range_check",
2747   "class_check",
2748   "array_check",
2749   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2750   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2751   "profile_predicate",
2752   "auto_vectorization_check",
2753   "unloaded",
2754   "uninitialized",
2755   "initialized",
2756   "unreached",
2757   "unhandled",
2758   "constraint",
2759   "div0_check",
2760   "age",
2761   "predicate",
2762   "loop_limit_check",
2763   "speculate_class_check",
2764   "speculate_null_check",
2765   "speculate_null_assert",
2766   "unstable_if",
2767   "unstable_fused_if",
2768   "receiver_constraint",
2769   "not_compiled_exception_handler",
2770   "short_running_loop" JVMCI_ONLY("_or_aliasing"),
2771 #if INCLUDE_JVMCI
2772   "transfer_to_interpreter",
2773   "unresolved",
2774   "jsr_mismatch",
2775 #endif
2776   "tenured"
2777 };
2778 const char* Deoptimization::_trap_action_name[] = {
2779   // Note:  Keep this in sync. with enum DeoptAction.
2780   "none",
2781   "maybe_recompile",
2782   "reinterpret",
2783   "make_not_entrant",
2784   "make_not_compilable"
2785 };
2786 
2787 const char* Deoptimization::trap_reason_name(int reason) {
2788   // Check that every reason has a name
2789   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2790 
2791   if (reason == Reason_many)  return "many";
2792   if ((uint)reason < Reason_LIMIT)
2793     return _trap_reason_name[reason];
2794   static char buf[20];
2795   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2796   return buf;
2797 }
2798 const char* Deoptimization::trap_action_name(int action) {
2799   // Check that every action has a name
2800   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2801 
2802   if ((uint)action < Action_LIMIT)
2803     return _trap_action_name[action];
2804   static char buf[20];
2805   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2806   return buf;
2807 }
2808 
2809 // This is used for debugging and diagnostics, including LogFile output.
2810 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2811                                                 int trap_request) {
2812   jint unloaded_class_index = trap_request_index(trap_request);
2813   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2814   const char* action = trap_action_name(trap_request_action(trap_request));
2815 #if INCLUDE_JVMCI
2816   int debug_id = trap_request_debug_id(trap_request);
2817 #endif
2818   size_t len;
2819   if (unloaded_class_index < 0) {
2820     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2821                        reason, action
2822 #if INCLUDE_JVMCI
2823                        ,debug_id
2824 #endif
2825                        );
2826   } else {
2827     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2828                        reason, action, unloaded_class_index
2829 #if INCLUDE_JVMCI
2830                        ,debug_id
2831 #endif
2832                        );
2833   }
2834   return buf;
2835 }
2836 
2837 juint Deoptimization::_deoptimization_hist
2838         [Deoptimization::Reason_LIMIT]
2839     [1 + Deoptimization::Action_LIMIT]
2840         [Deoptimization::BC_CASE_LIMIT]
2841   = {0};
2842 
2843 enum {
2844   LSB_BITS = 8,
2845   LSB_MASK = right_n_bits(LSB_BITS)
2846 };
2847 
2848 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2849                                        Bytecodes::Code bc) {
2850   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2851   assert(action >= 0 && action < Action_LIMIT, "oob");
2852   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2853   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2854   juint* cases = _deoptimization_hist[reason][1+action];
2855   juint* bc_counter_addr = nullptr;
2856   juint  bc_counter      = 0;
2857   // Look for an unused counter, or an exact match to this BC.
2858   if (bc != Bytecodes::_illegal) {
2859     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2860       juint* counter_addr = &cases[bc_case];
2861       juint  counter = *counter_addr;
2862       if ((counter == 0 && bc_counter_addr == nullptr)
2863           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2864         // this counter is either free or is already devoted to this BC
2865         bc_counter_addr = counter_addr;
2866         bc_counter = counter | bc;
2867       }
2868     }
2869   }
2870   if (bc_counter_addr == nullptr) {
2871     // Overflow, or no given bytecode.
2872     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2873     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2874   }
2875   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2876 }
2877 
2878 jint Deoptimization::total_deoptimization_count() {
2879   return _deoptimization_hist[Reason_none][0][0];
2880 }
2881 
2882 // Get the deopt count for a specific reason and a specific action. If either
2883 // one of 'reason' or 'action' is null, the method returns the sum of all
2884 // deoptimizations with the specific 'action' or 'reason' respectively.
2885 // If both arguments are null, the method returns the total deopt count.
2886 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2887   if (reason_str == nullptr && action_str == nullptr) {
2888     return total_deoptimization_count();
2889   }
2890   juint counter = 0;
2891   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2892     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2893       for (int action = 0; action < Action_LIMIT; action++) {
2894         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2895           juint* cases = _deoptimization_hist[reason][1+action];
2896           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2897             counter += cases[bc_case] >> LSB_BITS;
2898           }
2899         }
2900       }
2901     }
2902   }
2903   return counter;
2904 }
2905 
2906 void Deoptimization::print_statistics() {
2907   juint total = total_deoptimization_count();
2908   juint account = total;
2909   if (total != 0) {
2910     ttyLocker ttyl;
2911     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2912     tty->print_cr("Deoptimization traps recorded:");
2913     #define PRINT_STAT_LINE(name, r) \
2914       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2915     PRINT_STAT_LINE("total", total);
2916     // For each non-zero entry in the histogram, print the reason,
2917     // the action, and (if specifically known) the type of bytecode.
2918     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2919       for (int action = 0; action < Action_LIMIT; action++) {
2920         juint* cases = _deoptimization_hist[reason][1+action];
2921         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2922           juint counter = cases[bc_case];
2923           if (counter != 0) {
2924             char name[1*K];
2925             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2926             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2927                     trap_reason_name(reason),
2928                     trap_action_name(action),
2929                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2930             juint r = counter >> LSB_BITS;
2931             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2932             account -= r;
2933           }
2934         }
2935       }
2936     }
2937     if (account != 0) {
2938       PRINT_STAT_LINE("unaccounted", account);
2939     }
2940     #undef PRINT_STAT_LINE
2941     if (xtty != nullptr)  xtty->tail("statistics");
2942   }
2943 }
2944 
2945 #else // COMPILER2_OR_JVMCI
2946 
2947 
2948 // Stubs for C1 only system.
2949 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2950   return false;
2951 }
2952 
2953 const char* Deoptimization::trap_reason_name(int reason) {
2954   return "unknown";
2955 }
2956 
2957 jint Deoptimization::total_deoptimization_count() {
2958   return 0;
2959 }
2960 
2961 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2962   return 0;
2963 }
2964 
2965 void Deoptimization::print_statistics() {
2966   // no output
2967 }
2968 
2969 void
2970 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2971   // no update
2972 }
2973 
2974 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2975   return 0;
2976 }
2977 
2978 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2979                                        Bytecodes::Code bc) {
2980   // no update
2981 }
2982 
2983 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2984                                               int trap_state) {
2985   jio_snprintf(buf, buflen, "#%d", trap_state);
2986   return buf;
2987 }
2988 
2989 #endif // COMPILER2_OR_JVMCI
--- EOF ---