1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "cds/dynamicArchive.hpp"
  28 #include "ci/ciEnv.hpp"
  29 #include "classfile/javaClasses.inline.hpp"
  30 #include "classfile/javaThreadStatus.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmClasses.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/codeCache.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "compiler/compilerThread.hpp"
  38 #include "gc/shared/oopStorage.hpp"
  39 #include "gc/shared/oopStorageSet.hpp"
  40 #include "gc/shared/tlab_globals.hpp"
  41 #include "jfr/jfrEvents.hpp"
  42 #include "jvm.h"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logAsyncWriter.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/iterator.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.inline.hpp"
  51 #include "oops/instanceKlass.hpp"
  52 #include "oops/klass.inline.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "oops/oopHandle.inline.hpp"
  55 #include "oops/verifyOopClosure.hpp"
  56 #include "prims/jvm_misc.hpp"
  57 #include "prims/jvmtiDeferredUpdates.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "prims/jvmtiThreadState.inline.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/continuation.hpp"
  62 #include "runtime/continuationEntry.inline.hpp"
  63 #include "runtime/continuationHelper.inline.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/handshake.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/javaThread.inline.hpp"
  72 #include "runtime/jniHandles.inline.hpp"
  73 #include "runtime/lockStack.inline.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/orderAccess.hpp"
  76 #include "runtime/os.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/safepointMechanism.inline.hpp"
  80 #include "runtime/safepointVerifiers.hpp"
  81 #include "runtime/serviceThread.hpp"
  82 #include "runtime/stackFrameStream.inline.hpp"
  83 #include "runtime/stackWatermarkSet.hpp"
  84 #include "runtime/synchronizer.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/threadSMR.inline.hpp"
  87 #include "runtime/threadStatisticalInfo.hpp"
  88 #include "runtime/threadWXSetters.inline.hpp"
  89 #include "runtime/timer.hpp"
  90 #include "runtime/timerTrace.hpp"
  91 #include "runtime/vframe.inline.hpp"
  92 #include "runtime/vframeArray.hpp"
  93 #include "runtime/vframe_hp.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "runtime/vmOperations.hpp"
  96 #include "services/threadService.hpp"
  97 #include "utilities/copy.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #include "utilities/spinYield.hpp"
 104 #include "utilities/vmError.hpp"
 105 #if INCLUDE_JVMCI
 106 #include "jvmci/jvmci.hpp"
 107 #include "jvmci/jvmciEnv.hpp"
 108 #endif
 109 #if INCLUDE_JFR
 110 #include "jfr/jfr.hpp"
 111 #endif
 112 
 113 // Set by os layer.
 114 size_t      JavaThread::_stack_size_at_create = 0;
 115 
 116 #ifdef DTRACE_ENABLED
 117 
 118 // Only bother with this argument setup if dtrace is available
 119 
 120   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 121   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 122 
 123   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 124     {                                                                      \
 125       ResourceMark rm(this);                                               \
 126       int len = 0;                                                         \
 127       const char* name = (javathread)->name();                             \
 128       len = strlen(name);                                                  \
 129       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 130         (char *) name, len,                                                \
 131         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 132         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 133         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 134     }
 135 
 136 #else //  ndef DTRACE_ENABLED
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)
 139 
 140 #endif // ndef DTRACE_ENABLED
 141 
 142 void JavaThread::smr_delete() {
 143   if (_on_thread_list) {
 144     ThreadsSMRSupport::smr_delete(this);
 145   } else {
 146     delete this;
 147   }
 148 }
 149 
 150 // Initialized by VMThread at vm_global_init
 151 OopStorage* JavaThread::_thread_oop_storage = nullptr;
 152 
 153 OopStorage* JavaThread::thread_oop_storage() {
 154   assert(_thread_oop_storage != nullptr, "not yet initialized");
 155   return _thread_oop_storage;
 156 }
 157 
 158 void JavaThread::set_threadOopHandles(oop p) {
 159   assert(_thread_oop_storage != nullptr, "not yet initialized");
 160   _threadObj   = OopHandle(_thread_oop_storage, p);
 161   _vthread     = OopHandle(_thread_oop_storage, p);
 162   _jvmti_vthread = OopHandle(_thread_oop_storage, p->is_a(vmClasses::BoundVirtualThread_klass()) ? p : nullptr);
 163   _scopedValueCache = OopHandle(_thread_oop_storage, nullptr);
 164 }
 165 
 166 oop JavaThread::threadObj() const {
 167   // Ideally we would verify the current thread is oop_safe when this is called, but as we can
 168   // be called from a signal handler we would have to use Thread::current_or_null_safe(). That
 169   // has overhead and also interacts poorly with GetLastError on Windows due to the use of TLS.
 170   // Instead callers must verify oop safe access.
 171   return _threadObj.resolve();
 172 }
 173 
 174 oop JavaThread::vthread() const {
 175   return _vthread.resolve();
 176 }
 177 
 178 void JavaThread::set_vthread(oop p) {
 179   assert(_thread_oop_storage != nullptr, "not yet initialized");
 180   _vthread.replace(p);
 181 }
 182 
 183 oop JavaThread::jvmti_vthread() const {
 184   return _jvmti_vthread.resolve();
 185 }
 186 
 187 void JavaThread::set_jvmti_vthread(oop p) {
 188   assert(_thread_oop_storage != nullptr, "not yet initialized");
 189   _jvmti_vthread.replace(p);
 190 }
 191 
 192 // If there is a virtual thread mounted then return vthread() oop.
 193 // Otherwise, return threadObj().
 194 oop JavaThread::vthread_or_thread() const {
 195   oop result = vthread();
 196   if (result == nullptr) {
 197     result = threadObj();
 198   }
 199   return result;
 200 }
 201 
 202 oop JavaThread::scopedValueCache() const {
 203   return _scopedValueCache.resolve();
 204 }
 205 
 206 void JavaThread::set_scopedValueCache(oop p) {
 207   if (!_scopedValueCache.is_empty()) { // i.e. if the OopHandle has been allocated
 208     _scopedValueCache.replace(p);
 209   } else {
 210     assert(p == nullptr, "not yet initialized");
 211   }
 212 }
 213 
 214 void JavaThread::clear_scopedValueBindings() {
 215   set_scopedValueCache(nullptr);
 216   oop vthread_oop = vthread();
 217   // vthread may be null here if we get a VM error during startup,
 218   // before the java.lang.Thread instance has been created.
 219   if (vthread_oop != nullptr) {
 220     java_lang_Thread::clear_scopedValueBindings(vthread_oop);
 221   }
 222 }
 223 
 224 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
 225                                     bool daemon, TRAPS) {
 226   assert(thread_group.not_null(), "thread group should be specified");
 227   assert(threadObj() == nullptr, "should only create Java thread object once");
 228 
 229   InstanceKlass* ik = vmClasses::Thread_klass();
 230   assert(ik->is_initialized(), "must be");
 231   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
 232 
 233   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
 234   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
 235   // constructor calls Thread.current(), which must be set here.
 236   java_lang_Thread::set_thread(thread_oop(), this);
 237   set_threadOopHandles(thread_oop());
 238 
 239   JavaValue result(T_VOID);
 240   if (thread_name != nullptr) {
 241     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 242     // Thread gets assigned specified name and null target
 243     JavaCalls::call_special(&result,
 244                             thread_oop,
 245                             ik,
 246                             vmSymbols::object_initializer_name(),
 247                             vmSymbols::threadgroup_string_void_signature(),
 248                             thread_group,
 249                             name,
 250                             CHECK);
 251   } else {
 252     // Thread gets assigned name "Thread-nnn" and null target
 253     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 254     JavaCalls::call_special(&result,
 255                             thread_oop,
 256                             ik,
 257                             vmSymbols::object_initializer_name(),
 258                             vmSymbols::threadgroup_runnable_void_signature(),
 259                             thread_group,
 260                             Handle(),
 261                             CHECK);
 262   }
 263   os::set_priority(this, NormPriority);
 264 
 265   if (daemon) {
 266     java_lang_Thread::set_daemon(thread_oop());
 267   }
 268 }
 269 
 270 // ======= JavaThread ========
 271 
 272 #if INCLUDE_JVMCI
 273 
 274 jlong* JavaThread::_jvmci_old_thread_counters;
 275 
 276 static bool jvmci_counters_include(JavaThread* thread) {
 277   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
 278 }
 279 
 280 void JavaThread::collect_counters(jlong* array, int length) {
 281   assert(length == JVMCICounterSize, "wrong value");
 282   for (int i = 0; i < length; i++) {
 283     array[i] = _jvmci_old_thread_counters[i];
 284   }
 285   for (JavaThread* tp : ThreadsListHandle()) {
 286     if (jvmci_counters_include(tp)) {
 287       for (int i = 0; i < length; i++) {
 288         array[i] += tp->_jvmci_counters[i];
 289       }
 290     }
 291   }
 292 }
 293 
 294 // Attempt to enlarge the array for per thread counters.
 295 static jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
 296   jlong* new_counters = NEW_C_HEAP_ARRAY_RETURN_NULL(jlong, new_size, mtJVMCI);
 297   if (new_counters == nullptr) {
 298     return nullptr;
 299   }
 300   if (old_counters == nullptr) {
 301     old_counters = new_counters;
 302     memset(old_counters, 0, sizeof(jlong) * new_size);
 303   } else {
 304     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
 305       new_counters[i] = old_counters[i];
 306     }
 307     if (new_size > current_size) {
 308       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
 309     }
 310     FREE_C_HEAP_ARRAY(jlong, old_counters);
 311   }
 312   return new_counters;
 313 }
 314 
 315 // Attempt to enlarge the array for per thread counters.
 316 bool JavaThread::resize_counters(int current_size, int new_size) {
 317   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
 318   if (new_counters == nullptr) {
 319     return false;
 320   } else {
 321     _jvmci_counters = new_counters;
 322     return true;
 323   }
 324 }
 325 
 326 class VM_JVMCIResizeCounters : public VM_Operation {
 327  private:
 328   int _new_size;
 329   bool _failed;
 330 
 331  public:
 332   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
 333   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
 334   bool allow_nested_vm_operations() const        { return true; }
 335   void doit() {
 336     // Resize the old thread counters array
 337     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
 338     if (new_counters == nullptr) {
 339       _failed = true;
 340       return;
 341     } else {
 342       JavaThread::_jvmci_old_thread_counters = new_counters;
 343     }
 344 
 345     // Now resize each threads array
 346     for (JavaThread* tp : ThreadsListHandle()) {
 347       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
 348         _failed = true;
 349         break;
 350       }
 351     }
 352     if (!_failed) {
 353       JVMCICounterSize = _new_size;
 354     }
 355   }
 356 
 357   bool failed() { return _failed; }
 358 };
 359 
 360 bool JavaThread::resize_all_jvmci_counters(int new_size) {
 361   VM_JVMCIResizeCounters op(new_size);
 362   VMThread::execute(&op);
 363   return !op.failed();
 364 }
 365 
 366 #endif // INCLUDE_JVMCI
 367 
 368 #ifdef ASSERT
 369 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 370 void JavaThread::check_possible_safepoint() {
 371   if (_no_safepoint_count > 0) {
 372     print_owned_locks();
 373     assert(false, "Possible safepoint reached by thread that does not allow it");
 374   }
 375 #ifdef CHECK_UNHANDLED_OOPS
 376   // Clear unhandled oops in JavaThreads so we get a crash right away.
 377   clear_unhandled_oops();
 378 #endif // CHECK_UNHANDLED_OOPS
 379 
 380   // Macos/aarch64 should be in the right state for safepoint (e.g.
 381   // deoptimization needs WXWrite).  Crashes caused by the wrong state rarely
 382   // happens in practice, making such issues hard to find and reproduce.
 383 #if defined(__APPLE__) && defined(AARCH64)
 384   if (AssertWXAtThreadSync) {
 385     assert_wx_state(WXWrite);
 386   }
 387 #endif
 388 }
 389 
 390 void JavaThread::check_for_valid_safepoint_state() {
 391   // Don't complain if running a debugging command.
 392   if (DebuggingContext::is_enabled()) return;
 393 
 394   // Check NoSafepointVerifier, which is implied by locks taken that can be
 395   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 396   // are held.
 397   check_possible_safepoint();
 398 
 399   if (thread_state() != _thread_in_vm) {
 400     fatal("LEAF method calling lock?");
 401   }
 402 
 403   if (GCALotAtAllSafepoints) {
 404     // We could enter a safepoint here and thus have a gc
 405     InterfaceSupport::check_gc_alot();
 406   }
 407 }
 408 #endif // ASSERT
 409 
 410 // A JavaThread is a normal Java thread
 411 
 412 JavaThread::JavaThread(MemTag mem_tag) :
 413   Thread(mem_tag),
 414   // Initialize fields
 415   _on_thread_list(false),
 416   DEBUG_ONLY(_java_call_counter(0) COMMA)
 417   _entry_point(nullptr),
 418   _deopt_mark(nullptr),
 419   _deopt_nmethod(nullptr),
 420   _vframe_array_head(nullptr),
 421   _vframe_array_last(nullptr),
 422   _jvmti_deferred_updates(nullptr),
 423   _callee_target(nullptr),
 424   _vm_result(nullptr),
 425   _vm_result_2(nullptr),
 426 
 427   _current_pending_monitor(nullptr),
 428   _current_pending_monitor_is_from_java(true),
 429   _current_waiting_monitor(nullptr),
 430   _active_handles(nullptr),
 431   _free_handle_block(nullptr),
 432 
 433   _suspend_flags(0),
 434 
 435   _thread_state(_thread_new),
 436   _saved_exception_pc(nullptr),
 437 #ifdef ASSERT
 438   _no_safepoint_count(0),
 439   _visited_for_critical_count(false),
 440 #endif
 441 
 442   _terminated(_not_terminated),
 443   _in_deopt_handler(0),
 444   _doing_unsafe_access(false),
 445   _do_not_unlock_if_synchronized(false),
 446 #if INCLUDE_JVMTI
 447   _carrier_thread_suspended(false),
 448   _is_in_VTMS_transition(false),
 449   _is_disable_suspend(false),
 450   _VTMS_transition_mark(false),
 451 #ifdef ASSERT
 452   _is_VTMS_transition_disabler(false),
 453 #endif
 454 #endif
 455   _jni_attach_state(_not_attaching_via_jni),
 456   _is_in_internal_oome_mark(false),
 457 #if INCLUDE_JVMCI
 458   _pending_deoptimization(-1),
 459   _pending_monitorenter(false),
 460   _pending_transfer_to_interpreter(false),
 461   _pending_failed_speculation(0),
 462   _jvmci{nullptr},
 463   _libjvmci_runtime(nullptr),
 464   _jvmci_counters(nullptr),
 465   _jvmci_reserved0(0),
 466   _jvmci_reserved1(0),
 467   _jvmci_reserved_oop0(nullptr),
 468   _live_nmethod(nullptr),
 469 #endif // INCLUDE_JVMCI
 470 
 471   _exception_oop(oop()),
 472   _exception_pc(nullptr),
 473   _exception_handler_pc(nullptr),
 474   _is_method_handle_return(0),
 475 
 476   _jni_active_critical(0),
 477   _pending_jni_exception_check_fn(nullptr),
 478   _depth_first_number(0),
 479 
 480   // JVMTI PopFrame support
 481   _popframe_condition(popframe_inactive),
 482   _frames_to_pop_failed_realloc(0),
 483 
 484   _cont_entry(nullptr),
 485   _cont_fastpath(nullptr),
 486   _cont_fastpath_thread_state(1),
 487   _held_monitor_count(0),
 488   _jni_monitor_count(0),
 489   _unlocked_inflated_monitor(nullptr),
 490 
 491   _handshake(this),
 492 
 493   _popframe_preserved_args(nullptr),
 494   _popframe_preserved_args_size(0),
 495 
 496   _jvmti_thread_state(nullptr),
 497   _interp_only_mode(0),
 498   _should_post_on_exceptions_flag(JNI_FALSE),
 499   _thread_stat(new ThreadStatistics()),
 500 
 501   _parker(),
 502 
 503   _class_to_be_initialized(nullptr),
 504 
 505   _SleepEvent(ParkEvent::Allocate(this)),
 506 
 507   _lock_stack(this),
 508   _om_cache(this) {
 509   set_jni_functions(jni_functions());
 510 
 511 #if INCLUDE_JVMCI
 512   assert(_jvmci._implicit_exception_pc == nullptr, "must be");
 513   if (JVMCICounterSize > 0) {
 514     resize_counters(0, (int) JVMCICounterSize);
 515   }
 516 #endif // INCLUDE_JVMCI
 517 
 518   // Setup safepoint state info for this thread
 519   ThreadSafepointState::create(this);
 520 
 521   SafepointMechanism::initialize_header(this);
 522 
 523   set_requires_cross_modify_fence(false);
 524 
 525   pd_initialize();
 526   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
 527 }
 528 
 529 JavaThread* JavaThread::create_attaching_thread() {
 530   JavaThread* jt = new JavaThread();
 531   jt->_jni_attach_state = _attaching_via_jni;
 532   return jt;
 533 }
 534 
 535 // interrupt support
 536 
 537 void JavaThread::interrupt() {
 538   // All callers should have 'this' thread protected by a
 539   // ThreadsListHandle so that it cannot terminate and deallocate
 540   // itself.
 541   debug_only(check_for_dangling_thread_pointer(this);)
 542 
 543   // For Windows _interrupt_event
 544   WINDOWS_ONLY(osthread()->set_interrupted(true);)
 545 
 546   // For Thread.sleep
 547   _SleepEvent->unpark();
 548 
 549   // For JSR166 LockSupport.park
 550   parker()->unpark();
 551 
 552   // For ObjectMonitor and JvmtiRawMonitor
 553   _ParkEvent->unpark();
 554 }
 555 
 556 bool JavaThread::is_interrupted(bool clear_interrupted) {
 557   debug_only(check_for_dangling_thread_pointer(this);)
 558 
 559   if (_threadObj.peek() == nullptr) {
 560     // If there is no j.l.Thread then it is impossible to have
 561     // been interrupted. We can find null during VM initialization
 562     // or when a JNI thread is still in the process of attaching.
 563     // In such cases this must be the current thread.
 564     assert(this == Thread::current(), "invariant");
 565     return false;
 566   }
 567 
 568   bool interrupted = java_lang_Thread::interrupted(threadObj());
 569 
 570   // NOTE that since there is no "lock" around the interrupt and
 571   // is_interrupted operations, there is the possibility that the
 572   // interrupted flag will be "false" but that the
 573   // low-level events will be in the signaled state. This is
 574   // intentional. The effect of this is that Object.wait() and
 575   // LockSupport.park() will appear to have a spurious wakeup, which
 576   // is allowed and not harmful, and the possibility is so rare that
 577   // it is not worth the added complexity to add yet another lock.
 578   // For the sleep event an explicit reset is performed on entry
 579   // to JavaThread::sleep, so there is no early return. It has also been
 580   // recommended not to put the interrupted flag into the "event"
 581   // structure because it hides the issue.
 582   // Also, because there is no lock, we must only clear the interrupt
 583   // state if we are going to report that we were interrupted; otherwise
 584   // an interrupt that happens just after we read the field would be lost.
 585   if (interrupted && clear_interrupted) {
 586     assert(this == Thread::current(), "only the current thread can clear");
 587     java_lang_Thread::set_interrupted(threadObj(), false);
 588     WINDOWS_ONLY(osthread()->set_interrupted(false);)
 589   }
 590   return interrupted;
 591 }
 592 
 593 // This is only for use by JVMTI RawMonitorWait. It emulates the actions of
 594 // the Java code in Object::wait which are not present in RawMonitorWait.
 595 bool JavaThread::get_and_clear_interrupted() {
 596   if (!is_interrupted(false)) {
 597     return false;
 598   }
 599   oop thread_oop = vthread_or_thread();
 600   bool is_virtual = java_lang_VirtualThread::is_instance(thread_oop);
 601 
 602   if (!is_virtual) {
 603     return is_interrupted(true);
 604   }
 605   // Virtual thread: clear interrupt status for both virtual and
 606   // carrier threads under the interruptLock protection.
 607   JavaThread* current = JavaThread::current();
 608   HandleMark hm(current);
 609   Handle thread_h(current, thread_oop);
 610   ObjectLocker lock(Handle(current, java_lang_Thread::interrupt_lock(thread_h())), current);
 611 
 612   // re-check the interrupt status under the interruptLock protection
 613   bool interrupted = java_lang_Thread::interrupted(thread_h());
 614 
 615   if (interrupted) {
 616     assert(this == Thread::current(), "only the current thread can clear");
 617     java_lang_Thread::set_interrupted(thread_h(), false);  // clear for virtual
 618     java_lang_Thread::set_interrupted(threadObj(), false); // clear for carrier
 619     WINDOWS_ONLY(osthread()->set_interrupted(false);)
 620   }
 621   return interrupted;
 622 }
 623 
 624 void JavaThread::block_if_vm_exited() {
 625   if (_terminated == _vm_exited) {
 626     // _vm_exited is set at safepoint, and Threads_lock is never released
 627     // so we will block here forever.
 628     // Here we can be doing a jump from a safe state to an unsafe state without
 629     // proper transition, but it happens after the final safepoint has begun so
 630     // this jump won't cause any safepoint problems.
 631     set_thread_state(_thread_in_vm);
 632     Threads_lock->lock();
 633     ShouldNotReachHere();
 634   }
 635 }
 636 
 637 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz, MemTag mem_tag) : JavaThread(mem_tag) {
 638   set_entry_point(entry_point);
 639   // Create the native thread itself.
 640   // %note runtime_23
 641   os::ThreadType thr_type = os::java_thread;
 642   thr_type = entry_point == &CompilerThread::thread_entry ? os::compiler_thread :
 643                                                             os::java_thread;
 644   os::create_thread(this, thr_type, stack_sz);
 645   // The _osthread may be null here because we ran out of memory (too many threads active).
 646   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
 647   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
 648   // the exception consists of creating the exception object & initializing it, initialization
 649   // will leave the VM via a JavaCall and then all locks must be unlocked).
 650   //
 651   // The thread is still suspended when we reach here. Thread must be explicit started
 652   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
 653   // by calling Threads:add. The reason why this is not done here, is because the thread
 654   // object must be fully initialized (take a look at JVM_Start)
 655 }
 656 
 657 JavaThread::~JavaThread() {
 658 
 659   // Enqueue OopHandles for release by the service thread.
 660   add_oop_handles_for_release();
 661 
 662   // Return the sleep event to the free list
 663   ParkEvent::Release(_SleepEvent);
 664   _SleepEvent = nullptr;
 665 
 666   // Free any remaining  previous UnrollBlock
 667   vframeArray* old_array = vframe_array_last();
 668 
 669   if (old_array != nullptr) {
 670     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
 671     old_array->set_unroll_block(nullptr);
 672     delete old_info;
 673     delete old_array;
 674   }
 675 
 676   JvmtiDeferredUpdates* updates = deferred_updates();
 677   if (updates != nullptr) {
 678     // This can only happen if thread is destroyed before deoptimization occurs.
 679     assert(updates->count() > 0, "Updates holder not deleted");
 680     // free deferred updates.
 681     delete updates;
 682     set_deferred_updates(nullptr);
 683   }
 684 
 685   // All Java related clean up happens in exit
 686   ThreadSafepointState::destroy(this);
 687   if (_thread_stat != nullptr) delete _thread_stat;
 688 
 689 #if INCLUDE_JVMCI
 690   if (JVMCICounterSize > 0) {
 691     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
 692   }
 693 #endif // INCLUDE_JVMCI
 694 }
 695 
 696 
 697 // First JavaThread specific code executed by a new Java thread.
 698 void JavaThread::pre_run() {
 699   // empty - see comments in run()
 700 }
 701 
 702 // The main routine called by a new Java thread. This isn't overridden
 703 // by subclasses, instead different subclasses define a different "entry_point"
 704 // which defines the actual logic for that kind of thread.
 705 void JavaThread::run() {
 706   // initialize thread-local alloc buffer related fields
 707   initialize_tlab();
 708 
 709   _stack_overflow_state.create_stack_guard_pages();
 710 
 711   cache_global_variables();
 712 
 713   // Thread is now sufficiently initialized to be handled by the safepoint code as being
 714   // in the VM. Change thread state from _thread_new to _thread_in_vm
 715   assert(this->thread_state() == _thread_new, "wrong thread state");
 716   set_thread_state(_thread_in_vm);
 717 
 718   // Before a thread is on the threads list it is always safe, so after leaving the
 719   // _thread_new we should emit a instruction barrier. The distance to modified code
 720   // from here is probably far enough, but this is consistent and safe.
 721   OrderAccess::cross_modify_fence();
 722 
 723   assert(JavaThread::current() == this, "sanity check");
 724   assert(!Thread::current()->owns_locks(), "sanity check");
 725 
 726   DTRACE_THREAD_PROBE(start, this);
 727 
 728   // This operation might block. We call that after all safepoint checks for a new thread has
 729   // been completed.
 730   set_active_handles(JNIHandleBlock::allocate_block());
 731 
 732   if (JvmtiExport::should_post_thread_life()) {
 733     JvmtiExport::post_thread_start(this);
 734 
 735   }
 736 
 737   if (AlwaysPreTouchStacks) {
 738     pretouch_stack();
 739   }
 740 
 741   // We call another function to do the rest so we are sure that the stack addresses used
 742   // from there will be lower than the stack base just computed.
 743   thread_main_inner();
 744 }
 745 
 746 void JavaThread::thread_main_inner() {
 747   assert(JavaThread::current() == this, "sanity check");
 748   assert(_threadObj.peek() != nullptr, "just checking");
 749 
 750   // Execute thread entry point unless this thread has a pending exception.
 751   // Note: Due to JVMTI StopThread we can have pending exceptions already!
 752   if (!this->has_pending_exception()) {
 753     {
 754       ResourceMark rm(this);
 755       this->set_native_thread_name(this->name());
 756     }
 757     HandleMark hm(this);
 758     this->entry_point()(this, this);
 759   }
 760 
 761   DTRACE_THREAD_PROBE(stop, this);
 762 
 763   // Cleanup is handled in post_run()
 764 }
 765 
 766 // Shared teardown for all JavaThreads
 767 void JavaThread::post_run() {
 768   this->exit(false);
 769   this->unregister_thread_stack_with_NMT();
 770   // Defer deletion to here to ensure 'this' is still referenceable in call_run
 771   // for any shared tear-down.
 772   this->smr_delete();
 773 }
 774 
 775 static void ensure_join(JavaThread* thread) {
 776   // We do not need to grab the Threads_lock, since we are operating on ourself.
 777   Handle threadObj(thread, thread->threadObj());
 778   assert(threadObj.not_null(), "java thread object must exist");
 779   ObjectLocker lock(threadObj, thread);
 780   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
 781   java_lang_Thread::set_thread_status(threadObj(), JavaThreadStatus::TERMINATED);
 782   // Clear the native thread instance - this makes isAlive return false and allows the join()
 783   // to complete once we've done the notify_all below. Needs a release() to obey Java Memory Model
 784   // requirements.
 785   assert(java_lang_Thread::thread(threadObj()) == thread, "must be alive");
 786   java_lang_Thread::release_set_thread(threadObj(), nullptr);
 787   lock.notify_all(thread);
 788   // Ignore pending exception, since we are exiting anyway
 789   thread->clear_pending_exception();
 790 }
 791 
 792 static bool is_daemon(oop threadObj) {
 793   return (threadObj != nullptr && java_lang_Thread::is_daemon(threadObj));
 794 }
 795 
 796 // For any new cleanup additions, please check to see if they need to be applied to
 797 // cleanup_failed_attach_current_thread as well.
 798 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
 799   assert(this == JavaThread::current(), "thread consistency check");
 800   assert(!is_exiting(), "should not be exiting or terminated already");
 801 
 802   elapsedTimer _timer_exit_phase1;
 803   elapsedTimer _timer_exit_phase2;
 804   elapsedTimer _timer_exit_phase3;
 805   elapsedTimer _timer_exit_phase4;
 806 
 807   om_clear_monitor_cache();
 808 
 809   if (log_is_enabled(Debug, os, thread, timer)) {
 810     _timer_exit_phase1.start();
 811   }
 812 
 813   HandleMark hm(this);
 814   Handle uncaught_exception(this, this->pending_exception());
 815   this->clear_pending_exception();
 816   Handle threadObj(this, this->threadObj());
 817   assert(threadObj.not_null(), "Java thread object should be created");
 818 
 819   if (!destroy_vm) {
 820     if (uncaught_exception.not_null()) {
 821       EXCEPTION_MARK;
 822       // Call method Thread.dispatchUncaughtException().
 823       Klass* thread_klass = vmClasses::Thread_klass();
 824       JavaValue result(T_VOID);
 825       JavaCalls::call_virtual(&result,
 826                               threadObj, thread_klass,
 827                               vmSymbols::dispatchUncaughtException_name(),
 828                               vmSymbols::throwable_void_signature(),
 829                               uncaught_exception,
 830                               THREAD);
 831       if (HAS_PENDING_EXCEPTION) {
 832         ResourceMark rm(this);
 833         jio_fprintf(defaultStream::error_stream(),
 834                     "\nException: %s thrown from the UncaughtExceptionHandler"
 835                     " in thread \"%s\"\n",
 836                     pending_exception()->klass()->external_name(),
 837                     name());
 838         CLEAR_PENDING_EXCEPTION;
 839       }
 840     }
 841 
 842     if (!is_Compiler_thread()) {
 843       // We have finished executing user-defined Java code and now have to do the
 844       // implementation specific clean-up by calling Thread.exit(). We prevent any
 845       // asynchronous exceptions from being delivered while in Thread.exit()
 846       // to ensure the clean-up is not corrupted.
 847       NoAsyncExceptionDeliveryMark _no_async(this);
 848 
 849       EXCEPTION_MARK;
 850       JavaValue result(T_VOID);
 851       Klass* thread_klass = vmClasses::Thread_klass();
 852       JavaCalls::call_virtual(&result,
 853                               threadObj, thread_klass,
 854                               vmSymbols::exit_method_name(),
 855                               vmSymbols::void_method_signature(),
 856                               THREAD);
 857       CLEAR_PENDING_EXCEPTION;
 858     }
 859 
 860     // notify JVMTI
 861     if (JvmtiExport::should_post_thread_life()) {
 862       JvmtiExport::post_thread_end(this);
 863     }
 864   } else {
 865     // before_exit() has already posted JVMTI THREAD_END events
 866   }
 867 
 868   // Cleanup any pending async exception now since we cannot access oops after
 869   // BarrierSet::barrier_set()->on_thread_detach() has been executed.
 870   if (has_async_exception_condition()) {
 871     handshake_state()->clean_async_exception_operation();
 872   }
 873 
 874   // The careful dance between thread suspension and exit is handled here.
 875   // Since we are in thread_in_vm state and suspension is done with handshakes,
 876   // we can just put in the exiting state and it will be correctly handled.
 877   // Also, no more async exceptions will be added to the queue after this point.
 878   set_terminated(_thread_exiting);
 879   ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
 880 
 881   if (log_is_enabled(Debug, os, thread, timer)) {
 882     _timer_exit_phase1.stop();
 883     _timer_exit_phase2.start();
 884   }
 885 
 886   // Capture daemon status before the thread is marked as terminated.
 887   bool daemon = is_daemon(threadObj());
 888 
 889   // Notify waiters on thread object. This has to be done after exit() is called
 890   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
 891   // group should have the destroyed bit set before waiters are notified).
 892   ensure_join(this);
 893   assert(!this->has_pending_exception(), "ensure_join should have cleared");
 894 
 895   if (log_is_enabled(Debug, os, thread, timer)) {
 896     _timer_exit_phase2.stop();
 897     _timer_exit_phase3.start();
 898   }
 899   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
 900   // held by this thread must be released. The spec does not distinguish
 901   // between JNI-acquired and regular Java monitors. We can only see
 902   // regular Java monitors here if monitor enter-exit matching is broken.
 903   //
 904   // ensure_join() ignores IllegalThreadStateExceptions, and so does
 905   // ObjectSynchronizer::release_monitors_owned_by_thread().
 906   if (exit_type == jni_detach) {
 907     // Sanity check even though JNI DetachCurrentThread() would have
 908     // returned JNI_ERR if there was a Java frame. JavaThread exit
 909     // should be done executing Java code by the time we get here.
 910     assert(!this->has_last_Java_frame(),
 911            "should not have a Java frame when detaching or exiting");
 912     ObjectSynchronizer::release_monitors_owned_by_thread(this);
 913     assert(!this->has_pending_exception(), "release_monitors should have cleared");
 914     // Check for monitor counts being out of sync.
 915     assert(held_monitor_count() == jni_monitor_count(),
 916            "held monitor count should be equal to jni: " INTX_FORMAT " != " INTX_FORMAT,
 917            held_monitor_count(), jni_monitor_count());
 918     // All in-use monitors, including JNI-locked ones, should have been released above.
 919     assert(held_monitor_count() == 0, "Failed to unlock " INTX_FORMAT " object monitors",
 920            held_monitor_count());
 921   } else {
 922     // Check for monitor counts being out of sync.
 923     assert(held_monitor_count() == jni_monitor_count(),
 924            "held monitor count should be equal to jni: " INTX_FORMAT " != " INTX_FORMAT,
 925            held_monitor_count(), jni_monitor_count());
 926     // It is possible that a terminating thread failed to unlock monitors it locked
 927     // via JNI so we don't assert the count is zero.
 928   }
 929 
 930   if (CheckJNICalls && jni_monitor_count() > 0) {
 931     // We would like a fatal here, but due to we never checked this before there
 932     // is a lot of tests which breaks, even with an error log.
 933     log_debug(jni)("JavaThread %s (tid: " UINTX_FORMAT ") with Objects still locked by JNI MonitorEnter.",
 934                    exit_type == JavaThread::normal_exit ? "exiting" : "detaching", os::current_thread_id());
 935   }
 936 
 937   // These things needs to be done while we are still a Java Thread. Make sure that thread
 938   // is in a consistent state, in case GC happens
 939   JFR_ONLY(Jfr::on_thread_exit(this);)
 940 
 941   if (active_handles() != nullptr) {
 942     JNIHandleBlock* block = active_handles();
 943     set_active_handles(nullptr);
 944     JNIHandleBlock::release_block(block);
 945   }
 946 
 947   if (free_handle_block() != nullptr) {
 948     JNIHandleBlock* block = free_handle_block();
 949     set_free_handle_block(nullptr);
 950     JNIHandleBlock::release_block(block);
 951   }
 952 
 953   // These have to be removed while this is still a valid thread.
 954   _stack_overflow_state.remove_stack_guard_pages();
 955 
 956   if (UseTLAB) {
 957     tlab().retire();
 958   }
 959 
 960   if (JvmtiEnv::environments_might_exist()) {
 961     JvmtiExport::cleanup_thread(this);
 962   }
 963 
 964   // We need to cache the thread name for logging purposes below as once
 965   // we have called on_thread_detach this thread must not access any oops.
 966   char* thread_name = nullptr;
 967   if (log_is_enabled(Debug, os, thread, timer)) {
 968     ResourceMark rm(this);
 969     thread_name = os::strdup(name());
 970   }
 971 
 972   if (log_is_enabled(Info, os, thread)) {
 973     ResourceMark rm(this);
 974     log_info(os, thread)("JavaThread %s (name: \"%s\", tid: " UINTX_FORMAT ").",
 975                          exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
 976                          name(), os::current_thread_id());
 977   }
 978 
 979   if (log_is_enabled(Debug, os, thread, timer)) {
 980     _timer_exit_phase3.stop();
 981     _timer_exit_phase4.start();
 982   }
 983 
 984 #if INCLUDE_JVMCI
 985   if (JVMCICounterSize > 0) {
 986     if (jvmci_counters_include(this)) {
 987       for (int i = 0; i < JVMCICounterSize; i++) {
 988         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
 989       }
 990     }
 991   }
 992 #endif // INCLUDE_JVMCI
 993 
 994   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread.
 995   // We call BarrierSet::barrier_set()->on_thread_detach() here so no touching of oops after this point.
 996   Threads::remove(this, daemon);
 997 
 998   if (log_is_enabled(Debug, os, thread, timer)) {
 999     _timer_exit_phase4.stop();
1000     log_debug(os, thread, timer)("name='%s'"
1001                                  ", exit-phase1=" JLONG_FORMAT
1002                                  ", exit-phase2=" JLONG_FORMAT
1003                                  ", exit-phase3=" JLONG_FORMAT
1004                                  ", exit-phase4=" JLONG_FORMAT,
1005                                  thread_name,
1006                                  _timer_exit_phase1.milliseconds(),
1007                                  _timer_exit_phase2.milliseconds(),
1008                                  _timer_exit_phase3.milliseconds(),
1009                                  _timer_exit_phase4.milliseconds());
1010     os::free(thread_name);
1011   }
1012 }
1013 
1014 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
1015   if (active_handles() != nullptr) {
1016     JNIHandleBlock* block = active_handles();
1017     set_active_handles(nullptr);
1018     JNIHandleBlock::release_block(block);
1019   }
1020 
1021   if (free_handle_block() != nullptr) {
1022     JNIHandleBlock* block = free_handle_block();
1023     set_free_handle_block(nullptr);
1024     JNIHandleBlock::release_block(block);
1025   }
1026 
1027   // These have to be removed while this is still a valid thread.
1028   _stack_overflow_state.remove_stack_guard_pages();
1029 
1030   if (UseTLAB) {
1031     tlab().retire();
1032   }
1033 
1034   Threads::remove(this, is_daemon);
1035   this->smr_delete();
1036 }
1037 
1038 JavaThread* JavaThread::active() {
1039   Thread* thread = Thread::current();
1040   if (thread->is_Java_thread()) {
1041     return JavaThread::cast(thread);
1042   } else {
1043     assert(thread->is_VM_thread(), "this must be a vm thread");
1044     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1045     JavaThread *ret = op == nullptr ? nullptr : JavaThread::cast(op->calling_thread());
1046     return ret;
1047   }
1048 }
1049 
1050 bool JavaThread::is_lock_owned(address adr) const {
1051   assert(LockingMode != LM_LIGHTWEIGHT, "should not be called with new lightweight locking");
1052   return is_in_full_stack(adr);
1053 }
1054 
1055 oop JavaThread::exception_oop() const {
1056   return Atomic::load(&_exception_oop);
1057 }
1058 
1059 void JavaThread::set_exception_oop(oop o) {
1060   Atomic::store(&_exception_oop, o);
1061 }
1062 
1063 void JavaThread::handle_special_runtime_exit_condition() {
1064   if (is_obj_deopt_suspend()) {
1065     frame_anchor()->make_walkable();
1066     wait_for_object_deoptimization();
1067   }
1068   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
1069 }
1070 
1071 
1072 // Asynchronous exceptions support
1073 //
1074 void JavaThread::handle_async_exception(oop java_throwable) {
1075   assert(java_throwable != nullptr, "should have an _async_exception to throw");
1076   assert(!is_at_poll_safepoint(), "should have never called this method");
1077 
1078   if (has_last_Java_frame()) {
1079     frame f = last_frame();
1080     if (f.is_runtime_frame()) {
1081       // If the topmost frame is a runtime stub, then we are calling into
1082       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1083       // must deoptimize the caller before continuing, as the compiled exception
1084       // handler table may not be valid.
1085       RegisterMap reg_map(this,
1086                           RegisterMap::UpdateMap::skip,
1087                           RegisterMap::ProcessFrames::include,
1088                           RegisterMap::WalkContinuation::skip);
1089       frame compiled_frame = f.sender(&reg_map);
1090       if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
1091         Deoptimization::deoptimize(this, compiled_frame);
1092       }
1093     }
1094   }
1095 
1096   // We cannot call Exceptions::_throw(...) here because we cannot block
1097   set_pending_exception(java_throwable, __FILE__, __LINE__);
1098 
1099   clear_scopedValueBindings();
1100 
1101   LogTarget(Info, exceptions) lt;
1102   if (lt.is_enabled()) {
1103     ResourceMark rm;
1104     LogStream ls(lt);
1105     ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
1106     if (has_last_Java_frame()) {
1107       frame f = last_frame();
1108       ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
1109     }
1110     ls.print_cr(" of type: %s", java_throwable->klass()->external_name());
1111   }
1112 }
1113 
1114 void JavaThread::install_async_exception(AsyncExceptionHandshake* aeh) {
1115   // Do not throw asynchronous exceptions against the compiler thread
1116   // or if the thread is already exiting.
1117   if (!can_call_java() || is_exiting()) {
1118     delete aeh;
1119     return;
1120   }
1121 
1122   oop exception = aeh->exception();
1123   Handshake::execute(aeh, this);  // Install asynchronous handshake
1124 
1125   ResourceMark rm;
1126   if (log_is_enabled(Info, exceptions)) {
1127     log_info(exceptions)("Pending Async. exception installed of type: %s",
1128                          InstanceKlass::cast(exception->klass())->external_name());
1129   }
1130   // for AbortVMOnException flag
1131   Exceptions::debug_check_abort(exception->klass()->external_name());
1132 
1133   oop vt_oop = vthread();
1134   if (vt_oop == nullptr || !vt_oop->is_a(vmClasses::BaseVirtualThread_klass())) {
1135     // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
1136     java_lang_Thread::set_interrupted(threadObj(), true);
1137     this->interrupt();
1138   }
1139 }
1140 
1141 class InstallAsyncExceptionHandshake : public HandshakeClosure {
1142   AsyncExceptionHandshake* _aeh;
1143 public:
1144   InstallAsyncExceptionHandshake(AsyncExceptionHandshake* aeh) :
1145     HandshakeClosure("InstallAsyncException"), _aeh(aeh) {}
1146   ~InstallAsyncExceptionHandshake() {
1147     // If InstallAsyncExceptionHandshake was never executed we need to clean up _aeh.
1148     delete _aeh;
1149   }
1150   void do_thread(Thread* thr) {
1151     JavaThread* target = JavaThread::cast(thr);
1152     target->install_async_exception(_aeh);
1153     _aeh = nullptr;
1154   }
1155 };
1156 
1157 void JavaThread::send_async_exception(JavaThread* target, oop java_throwable) {
1158   OopHandle e(Universe::vm_global(), java_throwable);
1159   InstallAsyncExceptionHandshake iaeh(new AsyncExceptionHandshake(e));
1160   Handshake::execute(&iaeh, target);
1161 }
1162 
1163 #if INCLUDE_JVMTI
1164 void JavaThread::set_is_in_VTMS_transition(bool val) {
1165   _is_in_VTMS_transition = val;
1166 }
1167 
1168 #ifdef ASSERT
1169 void JavaThread::set_is_VTMS_transition_disabler(bool val) {
1170   _is_VTMS_transition_disabler = val;
1171 }
1172 #endif
1173 #endif
1174 
1175 // External suspension mechanism.
1176 //
1177 // Guarantees on return (for a valid target thread):
1178 //   - Target thread will not execute any new bytecode.
1179 //   - Target thread will not enter any new monitors.
1180 //
1181 bool JavaThread::java_suspend() {
1182 #if INCLUDE_JVMTI
1183   // Suspending a JavaThread in VTMS transition or disabling VTMS transitions can cause deadlocks.
1184   assert(!is_in_VTMS_transition(), "no suspend allowed in VTMS transition");
1185   assert(!is_VTMS_transition_disabler(), "no suspend allowed for VTMS transition disablers");
1186 #endif
1187 
1188   guarantee(Thread::is_JavaThread_protected(/* target */ this),
1189             "target JavaThread is not protected in calling context.");
1190   return this->handshake_state()->suspend();
1191 }
1192 
1193 bool JavaThread::java_resume() {
1194   guarantee(Thread::is_JavaThread_protected_by_TLH(/* target */ this),
1195             "missing ThreadsListHandle in calling context.");
1196   return this->handshake_state()->resume();
1197 }
1198 
1199 // Wait for another thread to perform object reallocation and relocking on behalf of
1200 // this thread. The current thread is required to change to _thread_blocked in order
1201 // to be seen to be safepoint/handshake safe whilst suspended and only after becoming
1202 // handshake safe, the other thread can complete the handshake used to synchronize
1203 // with this thread and then perform the reallocation and relocking.
1204 // See EscapeBarrier::sync_and_suspend_*()
1205 
1206 void JavaThread::wait_for_object_deoptimization() {
1207   assert(!has_last_Java_frame() || frame_anchor()->walkable(), "should have walkable stack");
1208   assert(this == Thread::current(), "invariant");
1209 
1210   bool spin_wait = os::is_MP();
1211   do {
1212     ThreadBlockInVM tbivm(this, true /* allow_suspend */);
1213     // Wait for object deoptimization if requested.
1214     if (spin_wait) {
1215       // A single deoptimization is typically very short. Microbenchmarks
1216       // showed 5% better performance when spinning.
1217       const uint spin_limit = 10 * SpinYield::default_spin_limit;
1218       SpinYield spin(spin_limit);
1219       for (uint i = 0; is_obj_deopt_suspend() && i < spin_limit; i++) {
1220         spin.wait();
1221       }
1222       // Spin just once
1223       spin_wait = false;
1224     } else {
1225       MonitorLocker ml(this, EscapeBarrier_lock, Monitor::_no_safepoint_check_flag);
1226       if (is_obj_deopt_suspend()) {
1227         ml.wait();
1228       }
1229     }
1230     // A handshake for obj. deoptimization suspend could have been processed so
1231     // we must check after processing.
1232   } while (is_obj_deopt_suspend());
1233 }
1234 
1235 #ifdef ASSERT
1236 // Verify the JavaThread has not yet been published in the Threads::list, and
1237 // hence doesn't need protection from concurrent access at this stage.
1238 void JavaThread::verify_not_published() {
1239   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
1240   // since an unpublished JavaThread doesn't participate in the
1241   // Thread-SMR protocol for keeping a ThreadsList alive.
1242   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
1243 }
1244 #endif
1245 
1246 // Slow path when the native==>Java barriers detect a safepoint/handshake is
1247 // pending, when _suspend_flags is non-zero or when we need to process a stack
1248 // watermark. Also check for pending async exceptions (except unsafe access error).
1249 // Note only the native==>Java barriers can call this function when thread state
1250 // is _thread_in_native_trans.
1251 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
1252   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
1253   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->Java transition");
1254 
1255   thread->set_thread_state(_thread_in_vm);
1256 
1257   // Enable WXWrite: called directly from interpreter native wrapper.
1258   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread));
1259 
1260   SafepointMechanism::process_if_requested_with_exit_check(thread, true /* check asyncs */);
1261 
1262   // After returning from native, it could be that the stack frames are not
1263   // yet safe to use. We catch such situations in the subsequent stack watermark
1264   // barrier, which will trap unsafe stack frames.
1265   StackWatermarkSet::before_unwind(thread);
1266 }
1267 
1268 #ifndef PRODUCT
1269 // Deoptimization
1270 // Function for testing deoptimization
1271 void JavaThread::deoptimize() {
1272   StackFrameStream fst(this, false /* update */, true /* process_frames */);
1273   bool deopt = false;           // Dump stack only if a deopt actually happens.
1274   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
1275   // Iterate over all frames in the thread and deoptimize
1276   for (; !fst.is_done(); fst.next()) {
1277     if (fst.current()->can_be_deoptimized()) {
1278 
1279       if (only_at) {
1280         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
1281         // consists of comma or carriage return separated numbers so
1282         // search for the current bci in that string.
1283         address    pc = fst.current()->pc();
1284         nmethod*   nm = fst.current()->cb()->as_nmethod();
1285         ScopeDesc* sd = nm->scope_desc_at(pc);
1286         char buffer[8];
1287         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
1288         size_t len = strlen(buffer);
1289         const char * found = strstr(DeoptimizeOnlyAt, buffer);
1290         while (found != nullptr) {
1291           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
1292               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
1293             // Check that the bci found is bracketed by terminators.
1294             break;
1295           }
1296           found = strstr(found + 1, buffer);
1297         }
1298         if (!found) {
1299           continue;
1300         }
1301       }
1302 
1303       if (DebugDeoptimization && !deopt) {
1304         deopt = true; // One-time only print before deopt
1305         tty->print_cr("[BEFORE Deoptimization]");
1306         trace_frames();
1307         trace_stack();
1308       }
1309       Deoptimization::deoptimize(this, *fst.current());
1310     }
1311   }
1312 
1313   if (DebugDeoptimization && deopt) {
1314     tty->print_cr("[AFTER Deoptimization]");
1315     trace_frames();
1316   }
1317 }
1318 
1319 
1320 // Make zombies
1321 void JavaThread::make_zombies() {
1322   for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1323     if (fst.current()->can_be_deoptimized()) {
1324       // it is a Java nmethod
1325       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
1326       assert(nm != nullptr, "did not find nmethod");
1327       nm->make_not_entrant();
1328     }
1329   }
1330 }
1331 #endif // PRODUCT
1332 
1333 
1334 void JavaThread::deoptimize_marked_methods() {
1335   if (!has_last_Java_frame()) return;
1336   StackFrameStream fst(this, false /* update */, true /* process_frames */);
1337   for (; !fst.is_done(); fst.next()) {
1338     if (fst.current()->should_be_deoptimized()) {
1339       Deoptimization::deoptimize(this, *fst.current());
1340     }
1341   }
1342 }
1343 
1344 #ifdef ASSERT
1345 void JavaThread::verify_frame_info() {
1346   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
1347          (has_last_Java_frame() && java_call_counter() > 0),
1348          "unexpected frame info: has_last_frame=%s, java_call_counter=%d",
1349          has_last_Java_frame() ? "true" : "false", java_call_counter());
1350 }
1351 #endif
1352 
1353 // Push on a new block of JNI handles.
1354 void JavaThread::push_jni_handle_block() {
1355   // Allocate a new block for JNI handles.
1356   // Inlined code from jni_PushLocalFrame()
1357   JNIHandleBlock* old_handles = active_handles();
1358   JNIHandleBlock* new_handles = JNIHandleBlock::allocate_block(this);
1359   assert(old_handles != nullptr && new_handles != nullptr, "should not be null");
1360   new_handles->set_pop_frame_link(old_handles);  // make sure java handles get gc'd.
1361   set_active_handles(new_handles);
1362 }
1363 
1364 // Pop off the current block of JNI handles.
1365 void JavaThread::pop_jni_handle_block() {
1366   // Release our JNI handle block
1367   JNIHandleBlock* old_handles = active_handles();
1368   JNIHandleBlock* new_handles = old_handles->pop_frame_link();
1369   assert(new_handles != nullptr, "should never set active handles to null");
1370   set_active_handles(new_handles);
1371   old_handles->set_pop_frame_link(nullptr);
1372   JNIHandleBlock::release_block(old_handles, this);
1373 }
1374 
1375 void JavaThread::oops_do_no_frames(OopClosure* f, NMethodClosure* cf) {
1376   // Verify that the deferred card marks have been flushed.
1377   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
1378 
1379   // Traverse the GCHandles
1380   Thread::oops_do_no_frames(f, cf);
1381 
1382   if (active_handles() != nullptr) {
1383     active_handles()->oops_do(f);
1384   }
1385 
1386   DEBUG_ONLY(verify_frame_info();)
1387 
1388   assert(vframe_array_head() == nullptr, "deopt in progress at a safepoint!");
1389   // If we have deferred set_locals there might be oops waiting to be
1390   // written
1391   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = JvmtiDeferredUpdates::deferred_locals(this);
1392   if (list != nullptr) {
1393     for (int i = 0; i < list->length(); i++) {
1394       list->at(i)->oops_do(f);
1395     }
1396   }
1397 
1398   // Traverse instance variables at the end since the GC may be moving things
1399   // around using this function
1400   f->do_oop((oop*) &_vm_result);
1401   f->do_oop((oop*) &_exception_oop);
1402 #if INCLUDE_JVMCI
1403   f->do_oop((oop*) &_jvmci_reserved_oop0);
1404 
1405   if (_live_nmethod != nullptr && cf != nullptr) {
1406     cf->do_nmethod(_live_nmethod);
1407   }
1408 #endif
1409 
1410   if (jvmti_thread_state() != nullptr) {
1411     jvmti_thread_state()->oops_do(f, cf);
1412   }
1413 
1414   // The continuation oops are really on the stack. But there is typically at most
1415   // one of those per thread, so we handle them here in the oops_do_no_frames part
1416   // so that we don't have to sprinkle as many stack watermark checks where these
1417   // oops are used. We just need to make sure the thread has started processing.
1418   ContinuationEntry* entry = _cont_entry;
1419   while (entry != nullptr) {
1420     f->do_oop((oop*)entry->cont_addr());
1421     f->do_oop((oop*)entry->chunk_addr());
1422     entry = entry->parent();
1423   }
1424 
1425   if (LockingMode == LM_LIGHTWEIGHT) {
1426     lock_stack().oops_do(f);
1427   }
1428 }
1429 
1430 void JavaThread::oops_do_frames(OopClosure* f, NMethodClosure* cf) {
1431   if (!has_last_Java_frame()) {
1432     return;
1433   }
1434   // Finish any pending lazy GC activity for the frames
1435   StackWatermarkSet::finish_processing(this, nullptr /* context */, StackWatermarkKind::gc);
1436   // Traverse the execution stack
1437   for (StackFrameStream fst(this, true /* update */, false /* process_frames */); !fst.is_done(); fst.next()) {
1438     fst.current()->oops_do(f, cf, fst.register_map());
1439   }
1440 }
1441 
1442 #ifdef ASSERT
1443 void JavaThread::verify_states_for_handshake() {
1444   // This checks that the thread has a correct frame state during a handshake.
1445   verify_frame_info();
1446 }
1447 #endif
1448 
1449 void JavaThread::nmethods_do(NMethodClosure* cf) {
1450   DEBUG_ONLY(verify_frame_info();)
1451   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, Thread::current());)
1452 
1453   if (has_last_Java_frame()) {
1454     // Traverse the execution stack
1455     for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1456       fst.current()->nmethod_do(cf);
1457     }
1458   }
1459 
1460   if (jvmti_thread_state() != nullptr) {
1461     jvmti_thread_state()->nmethods_do(cf);
1462   }
1463 
1464 #if INCLUDE_JVMCI
1465   if (_live_nmethod != nullptr) {
1466     cf->do_nmethod(_live_nmethod);
1467   }
1468 #endif
1469 }
1470 
1471 void JavaThread::metadata_do(MetadataClosure* f) {
1472   if (has_last_Java_frame()) {
1473     // Traverse the execution stack to call f() on the methods in the stack
1474     for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1475       fst.current()->metadata_do(f);
1476     }
1477   } else if (is_Compiler_thread()) {
1478     // need to walk ciMetadata in current compile tasks to keep alive.
1479     CompilerThread* ct = (CompilerThread*)this;
1480     if (ct->env() != nullptr) {
1481       ct->env()->metadata_do(f);
1482     }
1483     CompileTask* task = ct->task();
1484     if (task != nullptr) {
1485       task->metadata_do(f);
1486     }
1487   }
1488 }
1489 
1490 // Printing
1491 static const char* _get_thread_state_name(JavaThreadState _thread_state) {
1492   switch (_thread_state) {
1493   case _thread_uninitialized:     return "_thread_uninitialized";
1494   case _thread_new:               return "_thread_new";
1495   case _thread_new_trans:         return "_thread_new_trans";
1496   case _thread_in_native:         return "_thread_in_native";
1497   case _thread_in_native_trans:   return "_thread_in_native_trans";
1498   case _thread_in_vm:             return "_thread_in_vm";
1499   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
1500   case _thread_in_Java:           return "_thread_in_Java";
1501   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
1502   case _thread_blocked:           return "_thread_blocked";
1503   case _thread_blocked_trans:     return "_thread_blocked_trans";
1504   default:                        return "unknown thread state";
1505   }
1506 }
1507 
1508 void JavaThread::print_thread_state_on(outputStream *st) const {
1509   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
1510 }
1511 
1512 // Called by Threads::print() for VM_PrintThreads operation
1513 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
1514   st->print_raw("\"");
1515   st->print_raw(name());
1516   st->print_raw("\" ");
1517   oop thread_oop = threadObj();
1518   if (thread_oop != nullptr) {
1519     st->print("#" INT64_FORMAT " [%ld] ", (int64_t)java_lang_Thread::thread_id(thread_oop), (long) osthread()->thread_id());
1520     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
1521     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
1522   }
1523   Thread::print_on(st, print_extended_info);
1524   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
1525   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
1526   if (thread_oop != nullptr) {
1527     if (is_vthread_mounted()) {
1528       oop vt = vthread();
1529       assert(vt != nullptr, "");
1530       st->print_cr("   Carrying virtual thread #" INT64_FORMAT, (int64_t)java_lang_Thread::thread_id(vt));
1531     } else {
1532       st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
1533     }
1534   }
1535 #ifndef PRODUCT
1536   _safepoint_state->print_on(st);
1537 #endif // PRODUCT
1538   if (is_Compiler_thread()) {
1539     CompileTask *task = ((CompilerThread*)this)->task();
1540     if (task != nullptr) {
1541       st->print("   Compiling: ");
1542       task->print(st, nullptr, true, false);
1543     } else {
1544       st->print("   No compile task");
1545     }
1546     st->cr();
1547   }
1548 }
1549 
1550 void JavaThread::print() const { print_on(tty); }
1551 
1552 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
1553   st->print("%s", get_thread_name_string(buf, buflen));
1554 }
1555 
1556 // Called by fatal error handler. The difference between this and
1557 // JavaThread::print() is that we can't grab lock or allocate memory.
1558 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
1559   st->print("%s \"%s\"", type_name(), get_thread_name_string(buf, buflen));
1560   Thread* current = Thread::current_or_null_safe();
1561   assert(current != nullptr, "cannot be called by a detached thread");
1562   st->fill_to(60);
1563   if (!current->is_Java_thread() || JavaThread::cast(current)->is_oop_safe()) {
1564     // Only access threadObj() if current thread is not a JavaThread
1565     // or if it is a JavaThread that can safely access oops.
1566     oop thread_obj = threadObj();
1567     if (thread_obj != nullptr) {
1568       st->print(java_lang_Thread::is_daemon(thread_obj) ? " daemon" : "       ");
1569     }
1570   }
1571   st->print(" [");
1572   st->print("%s", _get_thread_state_name(_thread_state));
1573   if (osthread()) {
1574     st->print(", id=%d", osthread()->thread_id());
1575   }
1576   // Use raw field members for stack base/size as this could be
1577   // called before a thread has run enough to initialize them.
1578   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ") (" PROPERFMT ")",
1579             p2i(_stack_base - _stack_size), p2i(_stack_base),
1580             PROPERFMTARGS(_stack_size));
1581   st->print("]");
1582 
1583   ThreadsSMRSupport::print_info_on(this, st);
1584   return;
1585 }
1586 
1587 
1588 // Verification
1589 
1590 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
1591   // ignore if there is no stack
1592   if (!has_last_Java_frame()) return;
1593   // traverse the stack frames. Starts from top frame.
1594   for (StackFrameStream fst(this, true /* update_map */, true /* process_frames */, false /* walk_cont */); !fst.is_done(); fst.next()) {
1595     frame* fr = fst.current();
1596     f(fr, fst.register_map());
1597   }
1598 }
1599 
1600 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
1601 
1602 void JavaThread::verify() {
1603   // Verify oops in the thread.
1604   oops_do(&VerifyOopClosure::verify_oop, nullptr);
1605 
1606   // Verify the stack frames.
1607   frames_do(frame_verify);
1608 }
1609 
1610 // CR 6300358 (sub-CR 2137150)
1611 // Most callers of this method assume that it can't return null but a
1612 // thread may not have a name whilst it is in the process of attaching to
1613 // the VM - see CR 6412693, and there are places where a JavaThread can be
1614 // seen prior to having its threadObj set (e.g., JNI attaching threads and
1615 // if vm exit occurs during initialization). These cases can all be accounted
1616 // for such that this method never returns null.
1617 const char* JavaThread::name() const  {
1618   if (Thread::is_JavaThread_protected(/* target */ this)) {
1619     // The target JavaThread is protected so get_thread_name_string() is safe:
1620     return get_thread_name_string();
1621   }
1622 
1623   // The target JavaThread is not protected so we return the default:
1624   return Thread::name();
1625 }
1626 
1627 // Like name() but doesn't include the protection check. This must only be
1628 // called when it is known to be safe, even though the protection check can't tell
1629 // that e.g. when this thread is the init_thread() - see instanceKlass.cpp.
1630 const char* JavaThread::name_raw() const  {
1631   return get_thread_name_string();
1632 }
1633 
1634 // Returns a non-null representation of this thread's name, or a suitable
1635 // descriptive string if there is no set name.
1636 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
1637   const char* name_str;
1638 #ifdef ASSERT
1639   Thread* current = Thread::current_or_null_safe();
1640   assert(current != nullptr, "cannot be called by a detached thread");
1641   if (!current->is_Java_thread() || JavaThread::cast(current)->is_oop_safe()) {
1642     // Only access threadObj() if current thread is not a JavaThread
1643     // or if it is a JavaThread that can safely access oops.
1644 #endif
1645     oop thread_obj = threadObj();
1646     if (thread_obj != nullptr) {
1647       oop name = java_lang_Thread::name(thread_obj);
1648       if (name != nullptr) {
1649         if (buf == nullptr) {
1650           name_str = java_lang_String::as_utf8_string(name);
1651         } else {
1652           name_str = java_lang_String::as_utf8_string(name, buf, buflen);
1653         }
1654       } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
1655         name_str = "<no-name - thread is attaching>";
1656       } else {
1657         name_str = "<un-named>";
1658       }
1659     } else {
1660       name_str = Thread::name();
1661     }
1662 #ifdef ASSERT
1663   } else {
1664     // Current JavaThread has exited...
1665     if (current == this) {
1666       // ... and is asking about itself:
1667       name_str = "<no-name - current JavaThread has exited>";
1668     } else {
1669       // ... and it can't safely determine this JavaThread's name so
1670       // use the default thread name.
1671       name_str = Thread::name();
1672     }
1673   }
1674 #endif
1675   assert(name_str != nullptr, "unexpected null thread name");
1676   return name_str;
1677 }
1678 
1679 // Helper to extract the name from the thread oop for logging.
1680 const char* JavaThread::name_for(oop thread_obj) {
1681   assert(thread_obj != nullptr, "precondition");
1682   oop name = java_lang_Thread::name(thread_obj);
1683   const char* name_str;
1684   if (name != nullptr) {
1685     name_str = java_lang_String::as_utf8_string(name);
1686   } else {
1687     name_str = "<un-named>";
1688   }
1689   return name_str;
1690 }
1691 
1692 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
1693 
1694   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1695   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
1696   // Link Java Thread object <-> C++ Thread
1697 
1698   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
1699   // and put it into a new Handle.  The Handle "thread_oop" can then
1700   // be used to pass the C++ thread object to other methods.
1701 
1702   // Set the Java level thread object (jthread) field of the
1703   // new thread (a JavaThread *) to C++ thread object using the
1704   // "thread_oop" handle.
1705 
1706   // Set the thread field (a JavaThread *) of the
1707   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
1708 
1709   Handle thread_oop(Thread::current(),
1710                     JNIHandles::resolve_non_null(jni_thread));
1711   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
1712          "must be initialized");
1713   set_threadOopHandles(thread_oop());
1714 
1715   if (prio == NoPriority) {
1716     prio = java_lang_Thread::priority(thread_oop());
1717     assert(prio != NoPriority, "A valid priority should be present");
1718   }
1719 
1720   // Push the Java priority down to the native thread; needs Threads_lock
1721   Thread::set_priority(this, prio);
1722 
1723   // Add the new thread to the Threads list and set it in motion.
1724   // We must have threads lock in order to call Threads::add.
1725   // It is crucial that we do not block before the thread is
1726   // added to the Threads list for if a GC happens, then the java_thread oop
1727   // will not be visited by GC.
1728   Threads::add(this);
1729   // Publish the JavaThread* in java.lang.Thread after the JavaThread* is
1730   // on a ThreadsList. We don't want to wait for the release when the
1731   // Theads_lock is dropped somewhere in the caller since the JavaThread*
1732   // is already visible to JVM/TI via the ThreadsList.
1733   java_lang_Thread::release_set_thread(thread_oop(), this);
1734 }
1735 
1736 oop JavaThread::current_park_blocker() {
1737   // Support for JSR-166 locks
1738   oop thread_oop = threadObj();
1739   if (thread_oop != nullptr) {
1740     return java_lang_Thread::park_blocker(thread_oop);
1741   }
1742   return nullptr;
1743 }
1744 
1745 // Print current stack trace for checked JNI warnings and JNI fatal errors.
1746 // This is the external format, selecting the platform or vthread
1747 // as applicable, and allowing for a native-only stack.
1748 void JavaThread::print_jni_stack() {
1749   assert(this == JavaThread::current(), "Can't print stack of other threads");
1750   if (!has_last_Java_frame()) {
1751     ResourceMark rm(this);
1752     char* buf = NEW_RESOURCE_ARRAY_RETURN_NULL(char, O_BUFLEN);
1753     if (buf == nullptr) {
1754       tty->print_cr("Unable to print native stack - out of memory");
1755       return;
1756     }
1757     address lastpc = nullptr;
1758     if (os::platform_print_native_stack(tty, nullptr, buf, O_BUFLEN, lastpc)) {
1759       // We have printed the native stack in platform-specific code,
1760       // so nothing else to do in this case.
1761     } else {
1762       frame f = os::current_frame();
1763       VMError::print_native_stack(tty, f, this, true /*print_source_info */,
1764                                   -1 /* max stack */, buf, O_BUFLEN);
1765     }
1766   } else {
1767     print_active_stack_on(tty);
1768   }
1769 }
1770 
1771 void JavaThread::print_stack_on(outputStream* st) {
1772   if (!has_last_Java_frame()) return;
1773 
1774   Thread* current_thread = Thread::current();
1775   ResourceMark rm(current_thread);
1776   HandleMark hm(current_thread);
1777 
1778   RegisterMap reg_map(this,
1779                       RegisterMap::UpdateMap::include,
1780                       RegisterMap::ProcessFrames::include,
1781                       RegisterMap::WalkContinuation::skip);
1782   vframe* start_vf = platform_thread_last_java_vframe(&reg_map);
1783   int count = 0;
1784   for (vframe* f = start_vf; f != nullptr; f = f->sender()) {
1785     if (f->is_java_frame()) {
1786       javaVFrame* jvf = javaVFrame::cast(f);
1787       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
1788 
1789       // Print out lock information
1790       if (JavaMonitorsInStackTrace) {
1791         jvf->print_lock_info_on(st, count);
1792       }
1793     } else {
1794       // Ignore non-Java frames
1795     }
1796 
1797     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
1798     count++;
1799     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
1800   }
1801 }
1802 
1803 void JavaThread::print_vthread_stack_on(outputStream* st) {
1804   assert(is_vthread_mounted(), "Caller should have checked this");
1805   assert(has_last_Java_frame(), "must be");
1806 
1807   Thread* current_thread = Thread::current();
1808   ResourceMark rm(current_thread);
1809   HandleMark hm(current_thread);
1810 
1811   RegisterMap reg_map(this,
1812                       RegisterMap::UpdateMap::include,
1813                       RegisterMap::ProcessFrames::include,
1814                       RegisterMap::WalkContinuation::include);
1815   ContinuationEntry* cont_entry = last_continuation();
1816   vframe* start_vf = last_java_vframe(&reg_map);
1817   int count = 0;
1818   for (vframe* f = start_vf; f != nullptr; f = f->sender()) {
1819     // Watch for end of vthread stack
1820     if (Continuation::is_continuation_enterSpecial(f->fr())) {
1821       assert(cont_entry == Continuation::get_continuation_entry_for_entry_frame(this, f->fr()), "");
1822       if (cont_entry->is_virtual_thread()) {
1823         break;
1824       }
1825       cont_entry = cont_entry->parent();
1826     }
1827     if (f->is_java_frame()) {
1828       javaVFrame* jvf = javaVFrame::cast(f);
1829       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
1830 
1831       // Print out lock information
1832       if (JavaMonitorsInStackTrace) {
1833         jvf->print_lock_info_on(st, count);
1834       }
1835     } else {
1836       // Ignore non-Java frames
1837     }
1838 
1839     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
1840     count++;
1841     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
1842   }
1843 }
1844 
1845 void JavaThread::print_active_stack_on(outputStream* st) {
1846   if (is_vthread_mounted()) {
1847     print_vthread_stack_on(st);
1848   } else {
1849     print_stack_on(st);
1850   }
1851 }
1852 
1853 #if INCLUDE_JVMTI
1854 // Rebind JVMTI thread state from carrier to virtual or from virtual to carrier.
1855 JvmtiThreadState* JavaThread::rebind_to_jvmti_thread_state_of(oop thread_oop) {
1856   set_jvmti_vthread(thread_oop);
1857 
1858   // unbind current JvmtiThreadState from JavaThread
1859   JvmtiThreadState::unbind_from(jvmti_thread_state(), this);
1860 
1861   // bind new JvmtiThreadState to JavaThread
1862   JvmtiThreadState::bind_to(java_lang_Thread::jvmti_thread_state(thread_oop), this);
1863 
1864   // enable interp_only_mode for virtual or carrier thread if it has pending bit
1865   JvmtiThreadState::process_pending_interp_only(this);
1866 
1867   return jvmti_thread_state();
1868 }
1869 #endif
1870 
1871 // JVMTI PopFrame support
1872 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
1873   assert(_popframe_preserved_args == nullptr, "should not wipe out old PopFrame preserved arguments");
1874   if (in_bytes(size_in_bytes) != 0) {
1875     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
1876     _popframe_preserved_args_size = in_bytes(size_in_bytes);
1877     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
1878   }
1879 }
1880 
1881 void* JavaThread::popframe_preserved_args() {
1882   return _popframe_preserved_args;
1883 }
1884 
1885 ByteSize JavaThread::popframe_preserved_args_size() {
1886   return in_ByteSize(_popframe_preserved_args_size);
1887 }
1888 
1889 WordSize JavaThread::popframe_preserved_args_size_in_words() {
1890   int sz = in_bytes(popframe_preserved_args_size());
1891   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
1892   return in_WordSize(sz / wordSize);
1893 }
1894 
1895 void JavaThread::popframe_free_preserved_args() {
1896   assert(_popframe_preserved_args != nullptr, "should not free PopFrame preserved arguments twice");
1897   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
1898   _popframe_preserved_args = nullptr;
1899   _popframe_preserved_args_size = 0;
1900 }
1901 
1902 #ifndef PRODUCT
1903 
1904 void JavaThread::trace_frames() {
1905   tty->print_cr("[Describe stack]");
1906   int frame_no = 1;
1907   for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1908     tty->print("  %d. ", frame_no++);
1909     fst.current()->print_value_on(tty);
1910     tty->cr();
1911   }
1912 }
1913 
1914 class PrintAndVerifyOopClosure: public OopClosure {
1915  protected:
1916   template <class T> inline void do_oop_work(T* p) {
1917     oop obj = RawAccess<>::oop_load(p);
1918     if (obj == nullptr) return;
1919     tty->print(INTPTR_FORMAT ": ", p2i(p));
1920     if (oopDesc::is_oop_or_null(obj)) {
1921       if (obj->is_objArray()) {
1922         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
1923       } else {
1924         obj->print();
1925       }
1926     } else {
1927       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
1928     }
1929     tty->cr();
1930   }
1931  public:
1932   virtual void do_oop(oop* p) { do_oop_work(p); }
1933   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
1934 };
1935 
1936 #ifdef ASSERT
1937 // Print or validate the layout of stack frames
1938 void JavaThread::print_frame_layout(int depth, bool validate_only) {
1939   ResourceMark rm;
1940   PreserveExceptionMark pm(this);
1941   FrameValues values;
1942   int frame_no = 0;
1943   for (StackFrameStream fst(this, true, true, true); !fst.is_done(); fst.next()) {
1944     fst.current()->describe(values, ++frame_no, fst.register_map());
1945     if (depth == frame_no) break;
1946   }
1947   Continuation::describe(values);
1948   if (validate_only) {
1949     values.validate();
1950   } else {
1951     tty->print_cr("[Describe stack layout]");
1952     values.print(this);
1953   }
1954 }
1955 #endif
1956 
1957 void JavaThread::trace_stack_from(vframe* start_vf) {
1958   ResourceMark rm;
1959   int vframe_no = 1;
1960   for (vframe* f = start_vf; f; f = f->sender()) {
1961     if (f->is_java_frame()) {
1962       javaVFrame::cast(f)->print_activation(vframe_no++);
1963     } else {
1964       f->print();
1965     }
1966     if (vframe_no > StackPrintLimit) {
1967       tty->print_cr("...<more frames>...");
1968       return;
1969     }
1970   }
1971 }
1972 
1973 
1974 void JavaThread::trace_stack() {
1975   if (!has_last_Java_frame()) return;
1976   Thread* current_thread = Thread::current();
1977   ResourceMark rm(current_thread);
1978   HandleMark hm(current_thread);
1979   RegisterMap reg_map(this,
1980                       RegisterMap::UpdateMap::include,
1981                       RegisterMap::ProcessFrames::include,
1982                       RegisterMap::WalkContinuation::skip);
1983   trace_stack_from(last_java_vframe(&reg_map));
1984 }
1985 
1986 
1987 #endif // PRODUCT
1988 
1989 // Slow-path increment of the held monitor counts. JNI locking is always
1990 // this slow-path.
1991 void JavaThread::inc_held_monitor_count(intx i, bool jni) {
1992 #ifdef SUPPORT_MONITOR_COUNT
1993   assert(_held_monitor_count >= 0, "Must always be non-negative: " INTX_FORMAT, _held_monitor_count);
1994   _held_monitor_count += i;
1995   if (jni) {
1996     assert(_jni_monitor_count >= 0, "Must always be non-negative: " INTX_FORMAT, _jni_monitor_count);
1997     _jni_monitor_count += i;
1998   }
1999   assert(_held_monitor_count >= _jni_monitor_count, "Monitor count discrepancy detected - held count "
2000          INTX_FORMAT " is less than JNI count " INTX_FORMAT, _held_monitor_count, _jni_monitor_count);
2001 #endif
2002 }
2003 
2004 // Slow-path decrement of the held monitor counts. JNI unlocking is always
2005 // this slow-path.
2006 void JavaThread::dec_held_monitor_count(intx i, bool jni) {
2007 #ifdef SUPPORT_MONITOR_COUNT
2008   _held_monitor_count -= i;
2009   assert(_held_monitor_count >= 0, "Must always be greater than 0: " INTX_FORMAT, _held_monitor_count);
2010   if (jni) {
2011     _jni_monitor_count -= i;
2012     assert(_jni_monitor_count >= 0, "Must always be greater than 0: " INTX_FORMAT, _jni_monitor_count);
2013   }
2014   // When a thread is detaching with still owned JNI monitors, the logic that releases
2015   // the monitors doesn't know to set the "jni" flag and so the counts can get out of sync.
2016   // So we skip this assert if the thread is exiting. Once all monitors are unlocked the
2017   // JNI count is directly set to zero.
2018   assert(_held_monitor_count >= _jni_monitor_count || is_exiting(), "Monitor count discrepancy detected - held count "
2019          INTX_FORMAT " is less than JNI count " INTX_FORMAT, _held_monitor_count, _jni_monitor_count);
2020 #endif
2021 }
2022 
2023 frame JavaThread::vthread_last_frame() {
2024   assert (is_vthread_mounted(), "Virtual thread not mounted");
2025   return last_frame();
2026 }
2027 
2028 frame JavaThread::carrier_last_frame(RegisterMap* reg_map) {
2029   const ContinuationEntry* entry = vthread_continuation();
2030   guarantee (entry != nullptr, "Not a carrier thread");
2031   frame f = entry->to_frame();
2032   if (reg_map->process_frames()) {
2033     entry->flush_stack_processing(this);
2034   }
2035   entry->update_register_map(reg_map);
2036   return f.sender(reg_map);
2037 }
2038 
2039 frame JavaThread::platform_thread_last_frame(RegisterMap* reg_map) {
2040   return is_vthread_mounted() ? carrier_last_frame(reg_map) : last_frame();
2041 }
2042 
2043 javaVFrame* JavaThread::last_java_vframe(const frame f, RegisterMap *reg_map) {
2044   assert(reg_map != nullptr, "a map must be given");
2045   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
2046     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2047   }
2048   return nullptr;
2049 }
2050 
2051 Klass* JavaThread::security_get_caller_class(int depth) {
2052   ResetNoHandleMark rnhm;
2053   HandleMark hm(Thread::current());
2054 
2055   vframeStream vfst(this);
2056   vfst.security_get_caller_frame(depth);
2057   if (!vfst.at_end()) {
2058     return vfst.method()->method_holder();
2059   }
2060   return nullptr;
2061 }
2062 
2063 // Internal convenience function for millisecond resolution sleeps.
2064 bool JavaThread::sleep(jlong millis) {
2065   jlong nanos;
2066   if (millis > max_jlong / NANOUNITS_PER_MILLIUNIT) {
2067     // Conversion to nanos would overflow, saturate at max
2068     nanos = max_jlong;
2069   } else {
2070     nanos = millis * NANOUNITS_PER_MILLIUNIT;
2071   }
2072   return sleep_nanos(nanos);
2073 }
2074 
2075 // java.lang.Thread.sleep support
2076 // Returns true if sleep time elapsed as expected, and false
2077 // if the thread was interrupted.
2078 bool JavaThread::sleep_nanos(jlong nanos) {
2079   assert(this == Thread::current(),  "thread consistency check");
2080   assert(nanos >= 0, "nanos are in range");
2081 
2082   ParkEvent * const slp = this->_SleepEvent;
2083   // Because there can be races with thread interruption sending an unpark()
2084   // to the event, we explicitly reset it here to avoid an immediate return.
2085   // The actual interrupt state will be checked before we park().
2086   slp->reset();
2087   // Thread interruption establishes a happens-before ordering in the
2088   // Java Memory Model, so we need to ensure we synchronize with the
2089   // interrupt state.
2090   OrderAccess::fence();
2091 
2092   jlong prevtime = os::javaTimeNanos();
2093 
2094   jlong nanos_remaining = nanos;
2095 
2096   for (;;) {
2097     // interruption has precedence over timing out
2098     if (this->is_interrupted(true)) {
2099       return false;
2100     }
2101 
2102     if (nanos_remaining <= 0) {
2103       return true;
2104     }
2105 
2106     {
2107       ThreadBlockInVM tbivm(this);
2108       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
2109       slp->park_nanos(nanos_remaining);
2110     }
2111 
2112     // Update elapsed time tracking
2113     jlong newtime = os::javaTimeNanos();
2114     if (newtime - prevtime < 0) {
2115       // time moving backwards, should only happen if no monotonic clock
2116       // not a guarantee() because JVM should not abort on kernel/glibc bugs
2117       assert(false,
2118              "unexpected time moving backwards detected in JavaThread::sleep()");
2119     } else {
2120       nanos_remaining -= (newtime - prevtime);
2121     }
2122     prevtime = newtime;
2123   }
2124 }
2125 
2126 // Last thread running calls java.lang.Shutdown.shutdown()
2127 void JavaThread::invoke_shutdown_hooks() {
2128   HandleMark hm(this);
2129 
2130   // We could get here with a pending exception, if so clear it now.
2131   if (this->has_pending_exception()) {
2132     this->clear_pending_exception();
2133   }
2134 
2135   EXCEPTION_MARK;
2136   Klass* shutdown_klass =
2137     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
2138                                       THREAD);
2139   if (shutdown_klass != nullptr) {
2140     // SystemDictionary::resolve_or_null will return null if there was
2141     // an exception.  If we cannot load the Shutdown class, just don't
2142     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
2143     // won't be run.  Note that if a shutdown hook was registered,
2144     // the Shutdown class would have already been loaded
2145     // (Runtime.addShutdownHook will load it).
2146     JavaValue result(T_VOID);
2147     JavaCalls::call_static(&result,
2148                            shutdown_klass,
2149                            vmSymbols::shutdown_name(),
2150                            vmSymbols::void_method_signature(),
2151                            THREAD);
2152   }
2153   CLEAR_PENDING_EXCEPTION;
2154 }
2155 
2156 #ifndef PRODUCT
2157 void JavaThread::verify_cross_modify_fence_failure(JavaThread *thread) {
2158    report_vm_error(__FILE__, __LINE__, "Cross modify fence failure", "%p", thread);
2159 }
2160 #endif
2161 
2162 // Helper function to create the java.lang.Thread object for a
2163 // VM-internal thread. The thread will have the given name, and be
2164 // a member of the "system" ThreadGroup.
2165 Handle JavaThread::create_system_thread_object(const char* name, TRAPS) {
2166   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
2167 
2168   // Initialize thread_oop to put it into the system threadGroup.
2169   // This is done by calling the Thread(ThreadGroup group, String name) constructor.
2170   Handle thread_group(THREAD, Universe::system_thread_group());
2171   Handle thread_oop =
2172     JavaCalls::construct_new_instance(vmClasses::Thread_klass(),
2173                                       vmSymbols::threadgroup_string_void_signature(),
2174                                       thread_group,
2175                                       string,
2176                                       CHECK_NH);
2177 
2178   return thread_oop;
2179 }
2180 
2181 // Starts the target JavaThread as a daemon of the given priority, and
2182 // bound to the given java.lang.Thread instance.
2183 // The Threads_lock is held for the duration.
2184 void JavaThread::start_internal_daemon(JavaThread* current, JavaThread* target,
2185                                        Handle thread_oop, ThreadPriority prio) {
2186 
2187   assert(target->osthread() != nullptr, "target thread is not properly initialized");
2188 
2189   MutexLocker mu(current, Threads_lock);
2190 
2191   // Initialize the fields of the thread_oop first.
2192   if (prio != NoPriority) {
2193     java_lang_Thread::set_priority(thread_oop(), prio);
2194     // Note: we don't call os::set_priority here. Possibly we should,
2195     // else all threads should call it themselves when they first run.
2196   }
2197 
2198   java_lang_Thread::set_daemon(thread_oop());
2199 
2200   // Now bind the thread_oop to the target JavaThread.
2201   target->set_threadOopHandles(thread_oop());
2202 
2203   Threads::add(target); // target is now visible for safepoint/handshake
2204   // Publish the JavaThread* in java.lang.Thread after the JavaThread* is
2205   // on a ThreadsList. We don't want to wait for the release when the
2206   // Theads_lock is dropped when the 'mu' destructor is run since the
2207   // JavaThread* is already visible to JVM/TI via the ThreadsList.
2208 
2209   assert(java_lang_Thread::thread(thread_oop()) == nullptr, "must not be alive");
2210   java_lang_Thread::release_set_thread(thread_oop(), target); // isAlive == true now
2211   Thread::start(target);
2212 }
2213 
2214 void JavaThread::vm_exit_on_osthread_failure(JavaThread* thread) {
2215   // At this point it may be possible that no osthread was created for the
2216   // JavaThread due to lack of resources. However, since this must work
2217   // for critical system threads just check and abort if this fails.
2218   if (thread->osthread() == nullptr) {
2219     // This isn't really an OOM condition, but historically this is what
2220     // we report.
2221     vm_exit_during_initialization("java.lang.OutOfMemoryError",
2222                                   os::native_thread_creation_failed_msg());
2223   }
2224 }
2225 
2226 void JavaThread::pretouch_stack() {
2227   // Given an established java thread stack with usable area followed by
2228   // shadow zone and reserved/yellow/red zone, pretouch the usable area ranging
2229   // from the current frame down to the start of the shadow zone.
2230   const address end = _stack_overflow_state.shadow_zone_safe_limit();
2231   if (is_in_full_stack(end)) {
2232     char* p1 = (char*) alloca(1);
2233     address here = (address) &p1;
2234     if (is_in_full_stack(here) && here > end) {
2235       size_t to_alloc = here - end;
2236       char* p2 = (char*) alloca(to_alloc);
2237       log_trace(os, thread)("Pretouching thread stack for " UINTX_FORMAT ": " RANGEFMT ".",
2238                             (uintx) osthread()->thread_id(), RANGEFMTARGS(p2, to_alloc));
2239       os::pretouch_memory(p2, p2 + to_alloc,
2240                           NOT_AIX(os::vm_page_size()) AIX_ONLY(4096));
2241     }
2242   }
2243 }
2244 
2245 // Deferred OopHandle release support.
2246 
2247 class OopHandleList : public CHeapObj<mtInternal> {
2248   static const int _count = 4;
2249   OopHandle _handles[_count];
2250   OopHandleList* _next;
2251   int _index;
2252  public:
2253   OopHandleList(OopHandleList* next) : _next(next), _index(0) {}
2254   void add(OopHandle h) {
2255     assert(_index < _count, "too many additions");
2256     _handles[_index++] = h;
2257   }
2258   ~OopHandleList() {
2259     assert(_index == _count, "usage error");
2260     for (int i = 0; i < _index; i++) {
2261       _handles[i].release(JavaThread::thread_oop_storage());
2262     }
2263   }
2264   OopHandleList* next() const { return _next; }
2265 };
2266 
2267 OopHandleList* JavaThread::_oop_handle_list = nullptr;
2268 
2269 // Called by the ServiceThread to do the work of releasing
2270 // the OopHandles.
2271 void JavaThread::release_oop_handles() {
2272   OopHandleList* list;
2273   {
2274     MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2275     list = _oop_handle_list;
2276     _oop_handle_list = nullptr;
2277   }
2278   assert(!SafepointSynchronize::is_at_safepoint(), "cannot be called at a safepoint");
2279 
2280   while (list != nullptr) {
2281     OopHandleList* l = list;
2282     list = l->next();
2283     delete l;
2284   }
2285 }
2286 
2287 // Add our OopHandles for later release.
2288 void JavaThread::add_oop_handles_for_release() {
2289   MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2290   OopHandleList* new_head = new OopHandleList(_oop_handle_list);
2291   new_head->add(_threadObj);
2292   new_head->add(_vthread);
2293   new_head->add(_jvmti_vthread);
2294   new_head->add(_scopedValueCache);
2295   _oop_handle_list = new_head;
2296   Service_lock->notify_all();
2297 }