1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/hashTable.hpp"
  85 #include "utilities/macros.hpp"
  86 #include "utilities/xmlstream.hpp"
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #ifdef COMPILER2
  91 #include "opto/runtime.hpp"
  92 #endif
  93 #if INCLUDE_JFR
  94 #include "jfr/jfr.inline.hpp"
  95 #endif
  96 
  97 // Shared runtime stub routines reside in their own unique blob with a
  98 // single entry point
  99 
 100 
 101 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 102   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 103   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 104 #undef SHARED_STUB_FIELD_DEFINE
 105 
 106 nmethod*            SharedRuntime::_cont_doYield_stub;
 107 
 108 #if 0
 109 // TODO tweak global stub name generation to match this
 110 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 111 const char *SharedRuntime::_stub_names[] = {
 112   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 113 };
 114 #endif
 115 
 116 //----------------------------generate_stubs-----------------------------------
 117 void SharedRuntime::generate_initial_stubs() {
 118   // Build this early so it's available for the interpreter.
 119   _throw_StackOverflowError_blob =
 120     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 121                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 122 }
 123 
 124 void SharedRuntime::generate_stubs() {
 125   _wrong_method_blob =
 126     generate_resolve_blob(StubId::shared_wrong_method_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 128   _wrong_method_abstract_blob =
 129     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 131   _ic_miss_blob =
 132     generate_resolve_blob(StubId::shared_ic_miss_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 134   _resolve_opt_virtual_call_blob =
 135     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 137   _resolve_virtual_call_blob =
 138     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 140   _resolve_static_call_blob =
 141     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 142                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 143 
 144   _throw_delayed_StackOverflowError_blob =
 145     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 146                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 147 
 148   _throw_AbstractMethodError_blob =
 149     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 150                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 151 
 152   _throw_IncompatibleClassChangeError_blob =
 153     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 154                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 155 
 156   _throw_NullPointerException_at_call_blob =
 157     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 158                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 159 
 160 #if COMPILER2_OR_JVMCI
 161   // Vectors are generated only by C2 and JVMCI.
 162   bool support_wide = is_wide_vector(MaxVectorSize);
 163   if (support_wide) {
 164     _polling_page_vectors_safepoint_handler_blob =
 165       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 166                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 167   }
 168 #endif // COMPILER2_OR_JVMCI
 169   _polling_page_safepoint_handler_blob =
 170     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 171                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 172   _polling_page_return_handler_blob =
 173     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 174                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 175 
 176   generate_deopt_blob();
 177 }
 178 
 179 void SharedRuntime::init_adapter_library() {
 180   AdapterHandlerLibrary::initialize();
 181 }
 182 
 183 #if INCLUDE_JFR
 184 //------------------------------generate jfr runtime stubs ------
 185 void SharedRuntime::generate_jfr_stubs() {
 186   ResourceMark rm;
 187   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 188   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 189 
 190   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 191   _jfr_return_lease_blob = generate_jfr_return_lease();
 192 }
 193 
 194 #endif // INCLUDE_JFR
 195 
 196 #include <math.h>
 197 
 198 // Implementation of SharedRuntime
 199 
 200 #ifndef PRODUCT
 201 // For statistics
 202 uint SharedRuntime::_ic_miss_ctr = 0;
 203 uint SharedRuntime::_wrong_method_ctr = 0;
 204 uint SharedRuntime::_resolve_static_ctr = 0;
 205 uint SharedRuntime::_resolve_virtual_ctr = 0;
 206 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 207 uint SharedRuntime::_implicit_null_throws = 0;
 208 uint SharedRuntime::_implicit_div0_throws = 0;
 209 
 210 int64_t SharedRuntime::_nof_normal_calls = 0;
 211 int64_t SharedRuntime::_nof_inlined_calls = 0;
 212 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 213 int64_t SharedRuntime::_nof_static_calls = 0;
 214 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 215 int64_t SharedRuntime::_nof_interface_calls = 0;
 216 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 217 
 218 uint SharedRuntime::_new_instance_ctr=0;
 219 uint SharedRuntime::_new_array_ctr=0;
 220 uint SharedRuntime::_multi2_ctr=0;
 221 uint SharedRuntime::_multi3_ctr=0;
 222 uint SharedRuntime::_multi4_ctr=0;
 223 uint SharedRuntime::_multi5_ctr=0;
 224 uint SharedRuntime::_mon_enter_stub_ctr=0;
 225 uint SharedRuntime::_mon_exit_stub_ctr=0;
 226 uint SharedRuntime::_mon_enter_ctr=0;
 227 uint SharedRuntime::_mon_exit_ctr=0;
 228 uint SharedRuntime::_partial_subtype_ctr=0;
 229 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 230 uint SharedRuntime::_jshort_array_copy_ctr=0;
 231 uint SharedRuntime::_jint_array_copy_ctr=0;
 232 uint SharedRuntime::_jlong_array_copy_ctr=0;
 233 uint SharedRuntime::_oop_array_copy_ctr=0;
 234 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 235 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 236 uint SharedRuntime::_generic_array_copy_ctr=0;
 237 uint SharedRuntime::_slow_array_copy_ctr=0;
 238 uint SharedRuntime::_find_handler_ctr=0;
 239 uint SharedRuntime::_rethrow_ctr=0;
 240 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 241 
 242 int     SharedRuntime::_ICmiss_index                    = 0;
 243 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 244 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 245 
 246 
 247 void SharedRuntime::trace_ic_miss(address at) {
 248   for (int i = 0; i < _ICmiss_index; i++) {
 249     if (_ICmiss_at[i] == at) {
 250       _ICmiss_count[i]++;
 251       return;
 252     }
 253   }
 254   int index = _ICmiss_index++;
 255   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 256   _ICmiss_at[index] = at;
 257   _ICmiss_count[index] = 1;
 258 }
 259 
 260 void SharedRuntime::print_ic_miss_histogram() {
 261   if (ICMissHistogram) {
 262     tty->print_cr("IC Miss Histogram:");
 263     int tot_misses = 0;
 264     for (int i = 0; i < _ICmiss_index; i++) {
 265       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 266       tot_misses += _ICmiss_count[i];
 267     }
 268     tty->print_cr("Total IC misses: %7d", tot_misses);
 269   }
 270 }
 271 
 272 #ifdef COMPILER2
 273 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 274 void SharedRuntime::debug_print_value(jboolean x) {
 275   tty->print_cr("boolean %d", x);
 276 }
 277 
 278 void SharedRuntime::debug_print_value(jbyte x) {
 279   tty->print_cr("byte %d", x);
 280 }
 281 
 282 void SharedRuntime::debug_print_value(jshort x) {
 283   tty->print_cr("short %d", x);
 284 }
 285 
 286 void SharedRuntime::debug_print_value(jchar x) {
 287   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 288 }
 289 
 290 void SharedRuntime::debug_print_value(jint x) {
 291   tty->print_cr("int %d", x);
 292 }
 293 
 294 void SharedRuntime::debug_print_value(jlong x) {
 295   tty->print_cr("long " JLONG_FORMAT, x);
 296 }
 297 
 298 void SharedRuntime::debug_print_value(jfloat x) {
 299   tty->print_cr("float %f", x);
 300 }
 301 
 302 void SharedRuntime::debug_print_value(jdouble x) {
 303   tty->print_cr("double %lf", x);
 304 }
 305 
 306 void SharedRuntime::debug_print_value(oopDesc* x) {
 307   x->print();
 308 }
 309 #endif // COMPILER2
 310 
 311 #endif // PRODUCT
 312 
 313 
 314 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 315   return x * y;
 316 JRT_END
 317 
 318 
 319 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 320   if (x == min_jlong && y == CONST64(-1)) {
 321     return x;
 322   } else {
 323     return x / y;
 324   }
 325 JRT_END
 326 
 327 
 328 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 329   if (x == min_jlong && y == CONST64(-1)) {
 330     return 0;
 331   } else {
 332     return x % y;
 333   }
 334 JRT_END
 335 
 336 
 337 #ifdef _WIN64
 338 const juint  float_sign_mask  = 0x7FFFFFFF;
 339 const juint  float_infinity   = 0x7F800000;
 340 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 341 const julong double_infinity  = CONST64(0x7FF0000000000000);
 342 #endif
 343 
 344 #if !defined(X86)
 345 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 346 #ifdef _WIN64
 347   // 64-bit Windows on amd64 returns the wrong values for
 348   // infinity operands.
 349   juint xbits = PrimitiveConversions::cast<juint>(x);
 350   juint ybits = PrimitiveConversions::cast<juint>(y);
 351   // x Mod Infinity == x unless x is infinity
 352   if (((xbits & float_sign_mask) != float_infinity) &&
 353        ((ybits & float_sign_mask) == float_infinity) ) {
 354     return x;
 355   }
 356   return ((jfloat)fmod_winx64((double)x, (double)y));
 357 #else
 358   return ((jfloat)fmod((double)x,(double)y));
 359 #endif
 360 JRT_END
 361 
 362 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 363 #ifdef _WIN64
 364   julong xbits = PrimitiveConversions::cast<julong>(x);
 365   julong ybits = PrimitiveConversions::cast<julong>(y);
 366   // x Mod Infinity == x unless x is infinity
 367   if (((xbits & double_sign_mask) != double_infinity) &&
 368        ((ybits & double_sign_mask) == double_infinity) ) {
 369     return x;
 370   }
 371   return ((jdouble)fmod_winx64((double)x, (double)y));
 372 #else
 373   return ((jdouble)fmod((double)x,(double)y));
 374 #endif
 375 JRT_END
 376 #endif // !X86
 377 
 378 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 379   return (jfloat)x;
 380 JRT_END
 381 
 382 #ifdef __SOFTFP__
 383 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 384   return x + y;
 385 JRT_END
 386 
 387 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 388   return x - y;
 389 JRT_END
 390 
 391 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 392   return x * y;
 393 JRT_END
 394 
 395 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 396   return x / y;
 397 JRT_END
 398 
 399 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 400   return x + y;
 401 JRT_END
 402 
 403 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 404   return x - y;
 405 JRT_END
 406 
 407 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 408   return x * y;
 409 JRT_END
 410 
 411 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 412   return x / y;
 413 JRT_END
 414 
 415 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 416   return (jdouble)x;
 417 JRT_END
 418 
 419 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 420   return (jdouble)x;
 421 JRT_END
 422 
 423 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 424   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 425 JRT_END
 426 
 427 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 428   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 429 JRT_END
 430 
 431 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 432   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 433 JRT_END
 434 
 435 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 436   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 437 JRT_END
 438 
 439 // Functions to return the opposite of the aeabi functions for nan.
 440 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 441   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 442 JRT_END
 443 
 444 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 445   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 446 JRT_END
 447 
 448 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 449   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 450 JRT_END
 451 
 452 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 453   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 454 JRT_END
 455 
 456 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 457   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 458 JRT_END
 459 
 460 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 461   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 462 JRT_END
 463 
 464 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 465   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 466 JRT_END
 467 
 468 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 469   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 470 JRT_END
 471 
 472 // Intrinsics make gcc generate code for these.
 473 float  SharedRuntime::fneg(float f)   {
 474   return -f;
 475 }
 476 
 477 double SharedRuntime::dneg(double f)  {
 478   return -f;
 479 }
 480 
 481 #endif // __SOFTFP__
 482 
 483 #if defined(__SOFTFP__) || defined(E500V2)
 484 // Intrinsics make gcc generate code for these.
 485 double SharedRuntime::dabs(double f)  {
 486   return (f <= (double)0.0) ? (double)0.0 - f : f;
 487 }
 488 
 489 #endif
 490 
 491 #if defined(__SOFTFP__)
 492 double SharedRuntime::dsqrt(double f) {
 493   return sqrt(f);
 494 }
 495 #endif
 496 
 497 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 498   if (g_isnan(x))
 499     return 0;
 500   if (x >= (jfloat) max_jint)
 501     return max_jint;
 502   if (x <= (jfloat) min_jint)
 503     return min_jint;
 504   return (jint) x;
 505 JRT_END
 506 
 507 
 508 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 509   if (g_isnan(x))
 510     return 0;
 511   if (x >= (jfloat) max_jlong)
 512     return max_jlong;
 513   if (x <= (jfloat) min_jlong)
 514     return min_jlong;
 515   return (jlong) x;
 516 JRT_END
 517 
 518 
 519 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 520   if (g_isnan(x))
 521     return 0;
 522   if (x >= (jdouble) max_jint)
 523     return max_jint;
 524   if (x <= (jdouble) min_jint)
 525     return min_jint;
 526   return (jint) x;
 527 JRT_END
 528 
 529 
 530 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 531   if (g_isnan(x))
 532     return 0;
 533   if (x >= (jdouble) max_jlong)
 534     return max_jlong;
 535   if (x <= (jdouble) min_jlong)
 536     return min_jlong;
 537   return (jlong) x;
 538 JRT_END
 539 
 540 
 541 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 542   return (jfloat)x;
 543 JRT_END
 544 
 545 
 546 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 547   return (jfloat)x;
 548 JRT_END
 549 
 550 
 551 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 552   return (jdouble)x;
 553 JRT_END
 554 
 555 
 556 // Exception handling across interpreter/compiler boundaries
 557 //
 558 // exception_handler_for_return_address(...) returns the continuation address.
 559 // The continuation address is the entry point of the exception handler of the
 560 // previous frame depending on the return address.
 561 
 562 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 563   // Note: This is called when we have unwound the frame of the callee that did
 564   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 565   // Notably, the stack is not walkable at this point, and hence the check must
 566   // be deferred until later. Specifically, any of the handlers returned here in
 567   // this function, will get dispatched to, and call deferred checks to
 568   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 569   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 570   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 571 
 572 #if INCLUDE_JVMCI
 573   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 574   // and other exception handler continuations do not read it
 575   current->set_exception_pc(nullptr);
 576 #endif // INCLUDE_JVMCI
 577 
 578   if (Continuation::is_return_barrier_entry(return_address)) {
 579     return StubRoutines::cont_returnBarrierExc();
 580   }
 581 
 582   // The fastest case first
 583   CodeBlob* blob = CodeCache::find_blob(return_address);
 584   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 585   if (nm != nullptr) {
 586     // native nmethods don't have exception handlers
 587     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 588     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 589     if (nm->is_deopt_pc(return_address)) {
 590       // If we come here because of a stack overflow, the stack may be
 591       // unguarded. Reguard the stack otherwise if we return to the
 592       // deopt blob and the stack bang causes a stack overflow we
 593       // crash.
 594       StackOverflow* overflow_state = current->stack_overflow_state();
 595       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 596       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 597         overflow_state->set_reserved_stack_activation(current->stack_base());
 598       }
 599       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 600       // The deferred StackWatermarkSet::after_unwind check will be performed in
 601       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 602       return SharedRuntime::deopt_blob()->unpack_with_exception();
 603     } else {
 604       // The deferred StackWatermarkSet::after_unwind check will be performed in
 605       // * OptoRuntime::handle_exception_C_helper for C2 code
 606       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 607 #ifdef COMPILER2
 608       if (nm->compiler_type() == compiler_c2) {
 609         return OptoRuntime::exception_blob()->entry_point();
 610       }
 611 #endif // COMPILER2
 612       return nm->exception_begin();
 613     }
 614   }
 615 
 616   // Entry code
 617   if (StubRoutines::returns_to_call_stub(return_address)) {
 618     // The deferred StackWatermarkSet::after_unwind check will be performed in
 619     // JavaCallWrapper::~JavaCallWrapper
 620     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 621     return StubRoutines::catch_exception_entry();
 622   }
 623   if (blob != nullptr && blob->is_upcall_stub()) {
 624     return StubRoutines::upcall_stub_exception_handler();
 625   }
 626   // Interpreted code
 627   if (Interpreter::contains(return_address)) {
 628     // The deferred StackWatermarkSet::after_unwind check will be performed in
 629     // InterpreterRuntime::exception_handler_for_exception
 630     return Interpreter::rethrow_exception_entry();
 631   }
 632 
 633   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 634   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 635 
 636 #ifndef PRODUCT
 637   { ResourceMark rm;
 638     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 639     os::print_location(tty, (intptr_t)return_address);
 640     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 641     tty->print_cr("b) other problem");
 642   }
 643 #endif // PRODUCT
 644   ShouldNotReachHere();
 645   return nullptr;
 646 }
 647 
 648 
 649 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 650   return raw_exception_handler_for_return_address(current, return_address);
 651 JRT_END
 652 
 653 
 654 address SharedRuntime::get_poll_stub(address pc) {
 655   address stub;
 656   // Look up the code blob
 657   CodeBlob *cb = CodeCache::find_blob(pc);
 658 
 659   // Should be an nmethod
 660   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 661 
 662   // Look up the relocation information
 663   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 664       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 665 
 666 #ifdef ASSERT
 667   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 668     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 669     Disassembler::decode(cb);
 670     fatal("Only polling locations are used for safepoint");
 671   }
 672 #endif
 673 
 674   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 675   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 676   if (at_poll_return) {
 677     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 678            "polling page return stub not created yet");
 679     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 680   } else if (has_wide_vectors) {
 681     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 682            "polling page vectors safepoint stub not created yet");
 683     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 684   } else {
 685     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 686            "polling page safepoint stub not created yet");
 687     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 688   }
 689   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 690                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 691                        p2i(Thread::current()),
 692                        Thread::current()->osthread()->thread_id(),
 693                        p2i(pc),
 694                        at_poll_return ? "return" : "loop",
 695                        p2i(stub));
 696   return stub;
 697 }
 698 
 699 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 700   if (JvmtiExport::can_post_on_exceptions()) {
 701     vframeStream vfst(current, true);
 702     methodHandle method = methodHandle(current, vfst.method());
 703     address bcp = method()->bcp_from(vfst.bci());
 704     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 705   }
 706 
 707 #if INCLUDE_JVMCI
 708   if (EnableJVMCI) {
 709     vframeStream vfst(current, true);
 710     methodHandle method = methodHandle(current, vfst.method());
 711     int bci = vfst.bci();
 712     MethodData* trap_mdo = method->method_data();
 713     if (trap_mdo != nullptr) {
 714       // Set exception_seen if the exceptional bytecode is an invoke
 715       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 716       if (call.is_valid()) {
 717         ResourceMark rm(current);
 718 
 719         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 720         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 721 
 722         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 723         if (pdata != nullptr && pdata->is_BitData()) {
 724           BitData* bit_data = (BitData*) pdata;
 725           bit_data->set_exception_seen();
 726         }
 727       }
 728     }
 729   }
 730 #endif
 731 
 732   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 733 }
 734 
 735 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 736   Handle h_exception = Exceptions::new_exception(current, name, message);
 737   throw_and_post_jvmti_exception(current, h_exception);
 738 }
 739 
 740 // The interpreter code to call this tracing function is only
 741 // called/generated when UL is on for redefine, class and has the right level
 742 // and tags. Since obsolete methods are never compiled, we don't have
 743 // to modify the compilers to generate calls to this function.
 744 //
 745 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 746     JavaThread* thread, Method* method))
 747   if (method->is_obsolete()) {
 748     // We are calling an obsolete method, but this is not necessarily
 749     // an error. Our method could have been redefined just after we
 750     // fetched the Method* from the constant pool.
 751     ResourceMark rm;
 752     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 753   }
 754   return 0;
 755 JRT_END
 756 
 757 // ret_pc points into caller; we are returning caller's exception handler
 758 // for given exception
 759 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 760 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 761                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 762   assert(nm != nullptr, "must exist");
 763   ResourceMark rm;
 764 
 765 #if INCLUDE_JVMCI
 766   if (nm->is_compiled_by_jvmci()) {
 767     // lookup exception handler for this pc
 768     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 769     ExceptionHandlerTable table(nm);
 770     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 771     if (t != nullptr) {
 772       return nm->code_begin() + t->pco();
 773     } else {
 774       bool make_not_entrant = true;
 775       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 776     }
 777   }
 778 #endif // INCLUDE_JVMCI
 779 
 780   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 781   // determine handler bci, if any
 782   EXCEPTION_MARK;
 783 
 784   Handle orig_exception(THREAD, exception());
 785 
 786   int handler_bci = -1;
 787   int scope_depth = 0;
 788   if (!force_unwind) {
 789     int bci = sd->bci();
 790     bool recursive_exception = false;
 791     do {
 792       bool skip_scope_increment = false;
 793       // exception handler lookup
 794       Klass* ek = exception->klass();
 795       methodHandle mh(THREAD, sd->method());
 796       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 797       if (HAS_PENDING_EXCEPTION) {
 798         recursive_exception = true;
 799         // We threw an exception while trying to find the exception handler.
 800         // Transfer the new exception to the exception handle which will
 801         // be set into thread local storage, and do another lookup for an
 802         // exception handler for this exception, this time starting at the
 803         // BCI of the exception handler which caused the exception to be
 804         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 805         // argument to ensure that the correct exception is thrown (4870175).
 806         recursive_exception_occurred = true;
 807         exception.replace(PENDING_EXCEPTION);
 808         CLEAR_PENDING_EXCEPTION;
 809         if (handler_bci >= 0) {
 810           bci = handler_bci;
 811           handler_bci = -1;
 812           skip_scope_increment = true;
 813         }
 814       }
 815       else {
 816         recursive_exception = false;
 817       }
 818       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 819         sd = sd->sender();
 820         if (sd != nullptr) {
 821           bci = sd->bci();
 822         }
 823         ++scope_depth;
 824       }
 825     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 826   }
 827 
 828   // found handling method => lookup exception handler
 829   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 830 
 831   ExceptionHandlerTable table(nm);
 832   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 833 
 834   // If the compiler did not anticipate a recursive exception, resulting in an exception
 835   // thrown from the catch bci, then the compiled exception handler might be missing.
 836   // This is rare.  Just deoptimize and let the interpreter rethrow the original
 837   // exception at the original bci.
 838   if (t == nullptr && recursive_exception_occurred) {
 839     exception.replace(orig_exception()); // restore original exception
 840     bool make_not_entrant = false;
 841     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 842   }
 843 
 844   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 845     // Allow abbreviated catch tables.  The idea is to allow a method
 846     // to materialize its exceptions without committing to the exact
 847     // routing of exceptions.  In particular this is needed for adding
 848     // a synthetic handler to unlock monitors when inlining
 849     // synchronized methods since the unlock path isn't represented in
 850     // the bytecodes.
 851     t = table.entry_for(catch_pco, -1, 0);
 852   }
 853 
 854 #ifdef COMPILER1
 855   if (t == nullptr && nm->is_compiled_by_c1()) {
 856     assert(nm->unwind_handler_begin() != nullptr, "");
 857     return nm->unwind_handler_begin();
 858   }
 859 #endif
 860 
 861   if (t == nullptr) {
 862     ttyLocker ttyl;
 863     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 864     tty->print_cr("   Exception:");
 865     exception->print();
 866     tty->cr();
 867     tty->print_cr(" Compiled exception table :");
 868     table.print();
 869     nm->print();
 870     nm->print_code();
 871     guarantee(false, "missing exception handler");
 872     return nullptr;
 873   }
 874 
 875   if (handler_bci != -1) { // did we find a handler in this method?
 876     sd->method()->set_exception_handler_entered(handler_bci); // profile
 877   }
 878   return nm->code_begin() + t->pco();
 879 }
 880 
 881 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 882   // These errors occur only at call sites
 883   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 884 JRT_END
 885 
 886 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 887   // These errors occur only at call sites
 888   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 889 JRT_END
 890 
 891 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 892   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 893 JRT_END
 894 
 895 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 896   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 897 JRT_END
 898 
 899 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 900   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 901   // cache sites (when the callee activation is not yet set up) so we are at a call site
 902   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 903 JRT_END
 904 
 905 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 906   throw_StackOverflowError_common(current, false);
 907 JRT_END
 908 
 909 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 910   throw_StackOverflowError_common(current, true);
 911 JRT_END
 912 
 913 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 914   // We avoid using the normal exception construction in this case because
 915   // it performs an upcall to Java, and we're already out of stack space.
 916   JavaThread* THREAD = current; // For exception macros.
 917   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 918   oop exception_oop = k->allocate_instance(CHECK);
 919   if (delayed) {
 920     java_lang_Throwable::set_message(exception_oop,
 921                                      Universe::delayed_stack_overflow_error_message());
 922   }
 923   Handle exception (current, exception_oop);
 924   if (StackTraceInThrowable) {
 925     java_lang_Throwable::fill_in_stack_trace(exception);
 926   }
 927   // Remove the ScopedValue bindings in case we got a
 928   // StackOverflowError while we were trying to remove ScopedValue
 929   // bindings.
 930   current->clear_scopedValueBindings();
 931   // Increment counter for hs_err file reporting
 932   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 933   throw_and_post_jvmti_exception(current, exception);
 934 }
 935 
 936 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 937                                                            address pc,
 938                                                            ImplicitExceptionKind exception_kind)
 939 {
 940   address target_pc = nullptr;
 941 
 942   if (Interpreter::contains(pc)) {
 943     switch (exception_kind) {
 944       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 945       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 946       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 947       default:                      ShouldNotReachHere();
 948     }
 949   } else {
 950     switch (exception_kind) {
 951       case STACK_OVERFLOW: {
 952         // Stack overflow only occurs upon frame setup; the callee is
 953         // going to be unwound. Dispatch to a shared runtime stub
 954         // which will cause the StackOverflowError to be fabricated
 955         // and processed.
 956         // Stack overflow should never occur during deoptimization:
 957         // the compiled method bangs the stack by as much as the
 958         // interpreter would need in case of a deoptimization. The
 959         // deoptimization blob and uncommon trap blob bang the stack
 960         // in a debug VM to verify the correctness of the compiled
 961         // method stack banging.
 962         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 963         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 964         return SharedRuntime::throw_StackOverflowError_entry();
 965       }
 966 
 967       case IMPLICIT_NULL: {
 968         if (VtableStubs::contains(pc)) {
 969           // We haven't yet entered the callee frame. Fabricate an
 970           // exception and begin dispatching it in the caller. Since
 971           // the caller was at a call site, it's safe to destroy all
 972           // caller-saved registers, as these entry points do.
 973           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 974 
 975           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 976           if (vt_stub == nullptr) return nullptr;
 977 
 978           if (vt_stub->is_abstract_method_error(pc)) {
 979             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 980             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 981             // Instead of throwing the abstract method error here directly, we re-resolve
 982             // and will throw the AbstractMethodError during resolve. As a result, we'll
 983             // get a more detailed error message.
 984             return SharedRuntime::get_handle_wrong_method_stub();
 985           } else {
 986             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 987             // Assert that the signal comes from the expected location in stub code.
 988             assert(vt_stub->is_null_pointer_exception(pc),
 989                    "obtained signal from unexpected location in stub code");
 990             return SharedRuntime::throw_NullPointerException_at_call_entry();
 991           }
 992         } else {
 993           CodeBlob* cb = CodeCache::find_blob(pc);
 994 
 995           // If code blob is null, then return null to signal handler to report the SEGV error.
 996           if (cb == nullptr) return nullptr;
 997 
 998           // Exception happened in CodeCache. Must be either:
 999           // 1. Inline-cache check in C2I handler blob,
1000           // 2. Inline-cache check in nmethod, or
1001           // 3. Implicit null exception in nmethod
1002 
1003           if (!cb->is_nmethod()) {
1004             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1005             if (!is_in_blob) {
1006               // Allow normal crash reporting to handle this
1007               return nullptr;
1008             }
1009             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1010             // There is no handler here, so we will simply unwind.
1011             return SharedRuntime::throw_NullPointerException_at_call_entry();
1012           }
1013 
1014           // Otherwise, it's a compiled method.  Consult its exception handlers.
1015           nmethod* nm = cb->as_nmethod();
1016           if (nm->inlinecache_check_contains(pc)) {
1017             // exception happened inside inline-cache check code
1018             // => the nmethod is not yet active (i.e., the frame
1019             // is not set up yet) => use return address pushed by
1020             // caller => don't push another return address
1021             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1022             return SharedRuntime::throw_NullPointerException_at_call_entry();
1023           }
1024 
1025           if (nm->method()->is_method_handle_intrinsic()) {
1026             // exception happened inside MH dispatch code, similar to a vtable stub
1027             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1028             return SharedRuntime::throw_NullPointerException_at_call_entry();
1029           }
1030 
1031 #ifndef PRODUCT
1032           _implicit_null_throws++;
1033 #endif
1034           target_pc = nm->continuation_for_implicit_null_exception(pc);
1035           // If there's an unexpected fault, target_pc might be null,
1036           // in which case we want to fall through into the normal
1037           // error handling code.
1038         }
1039 
1040         break; // fall through
1041       }
1042 
1043 
1044       case IMPLICIT_DIVIDE_BY_ZERO: {
1045         nmethod* nm = CodeCache::find_nmethod(pc);
1046         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1047 #ifndef PRODUCT
1048         _implicit_div0_throws++;
1049 #endif
1050         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1051         // If there's an unexpected fault, target_pc might be null,
1052         // in which case we want to fall through into the normal
1053         // error handling code.
1054         break; // fall through
1055       }
1056 
1057       default: ShouldNotReachHere();
1058     }
1059 
1060     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1061 
1062     if (exception_kind == IMPLICIT_NULL) {
1063 #ifndef PRODUCT
1064       // for AbortVMOnException flag
1065       Exceptions::debug_check_abort("java.lang.NullPointerException");
1066 #endif //PRODUCT
1067       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1068     } else {
1069 #ifndef PRODUCT
1070       // for AbortVMOnException flag
1071       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1072 #endif //PRODUCT
1073       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1074     }
1075     return target_pc;
1076   }
1077 
1078   ShouldNotReachHere();
1079   return nullptr;
1080 }
1081 
1082 
1083 /**
1084  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1085  * installed in the native function entry of all native Java methods before
1086  * they get linked to their actual native methods.
1087  *
1088  * \note
1089  * This method actually never gets called!  The reason is because
1090  * the interpreter's native entries call NativeLookup::lookup() which
1091  * throws the exception when the lookup fails.  The exception is then
1092  * caught and forwarded on the return from NativeLookup::lookup() call
1093  * before the call to the native function.  This might change in the future.
1094  */
1095 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1096 {
1097   // We return a bad value here to make sure that the exception is
1098   // forwarded before we look at the return value.
1099   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1100 }
1101 JNI_END
1102 
1103 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1104   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1105 }
1106 
1107 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1108 #if INCLUDE_JVMCI
1109   if (!obj->klass()->has_finalizer()) {
1110     return;
1111   }
1112 #endif // INCLUDE_JVMCI
1113   assert(oopDesc::is_oop(obj), "must be a valid oop");
1114   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1115   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1116 JRT_END
1117 
1118 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1119   assert(thread != nullptr, "No thread");
1120   if (thread == nullptr) {
1121     return 0;
1122   }
1123   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1124             "current cannot touch oops after its GC barrier is detached.");
1125   oop obj = thread->threadObj();
1126   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1127 }
1128 
1129 /**
1130  * This function ought to be a void function, but cannot be because
1131  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1132  * 6254741.  Once that is fixed we can remove the dummy return value.
1133  */
1134 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1135   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1136 }
1137 
1138 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1139   return dtrace_object_alloc(thread, o, o->size());
1140 }
1141 
1142 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1143   assert(DTraceAllocProbes, "wrong call");
1144   Klass* klass = o->klass();
1145   Symbol* name = klass->name();
1146   HOTSPOT_OBJECT_ALLOC(
1147                    get_java_tid(thread),
1148                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1149   return 0;
1150 }
1151 
1152 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1153     JavaThread* current, Method* method))
1154   assert(current == JavaThread::current(), "pre-condition");
1155 
1156   assert(DTraceMethodProbes, "wrong call");
1157   Symbol* kname = method->klass_name();
1158   Symbol* name = method->name();
1159   Symbol* sig = method->signature();
1160   HOTSPOT_METHOD_ENTRY(
1161       get_java_tid(current),
1162       (char *) kname->bytes(), kname->utf8_length(),
1163       (char *) name->bytes(), name->utf8_length(),
1164       (char *) sig->bytes(), sig->utf8_length());
1165   return 0;
1166 JRT_END
1167 
1168 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1169     JavaThread* current, Method* method))
1170   assert(current == JavaThread::current(), "pre-condition");
1171   assert(DTraceMethodProbes, "wrong call");
1172   Symbol* kname = method->klass_name();
1173   Symbol* name = method->name();
1174   Symbol* sig = method->signature();
1175   HOTSPOT_METHOD_RETURN(
1176       get_java_tid(current),
1177       (char *) kname->bytes(), kname->utf8_length(),
1178       (char *) name->bytes(), name->utf8_length(),
1179       (char *) sig->bytes(), sig->utf8_length());
1180   return 0;
1181 JRT_END
1182 
1183 
1184 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1185 // for a call current in progress, i.e., arguments has been pushed on stack
1186 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1187 // vtable updates, etc.  Caller frame must be compiled.
1188 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1189   JavaThread* current = THREAD;
1190   ResourceMark rm(current);
1191 
1192   // last java frame on stack (which includes native call frames)
1193   vframeStream vfst(current, true);  // Do not skip and javaCalls
1194 
1195   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1196 }
1197 
1198 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1199   nmethod* caller = vfst.nm();
1200 
1201   address pc = vfst.frame_pc();
1202   { // Get call instruction under lock because another thread may be busy patching it.
1203     CompiledICLocker ic_locker(caller);
1204     return caller->attached_method_before_pc(pc);
1205   }
1206   return nullptr;
1207 }
1208 
1209 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1210 // for a call current in progress, i.e., arguments has been pushed on stack
1211 // but callee has not been invoked yet.  Caller frame must be compiled.
1212 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1213                                               CallInfo& callinfo, TRAPS) {
1214   Handle receiver;
1215   Handle nullHandle;  // create a handy null handle for exception returns
1216   JavaThread* current = THREAD;
1217 
1218   assert(!vfst.at_end(), "Java frame must exist");
1219 
1220   // Find caller and bci from vframe
1221   methodHandle caller(current, vfst.method());
1222   int          bci   = vfst.bci();
1223 
1224   if (caller->is_continuation_enter_intrinsic()) {
1225     bc = Bytecodes::_invokestatic;
1226     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1227     return receiver;
1228   }
1229 
1230   Bytecode_invoke bytecode(caller, bci);
1231   int bytecode_index = bytecode.index();
1232   bc = bytecode.invoke_code();
1233 
1234   methodHandle attached_method(current, extract_attached_method(vfst));
1235   if (attached_method.not_null()) {
1236     Method* callee = bytecode.static_target(CHECK_NH);
1237     vmIntrinsics::ID id = callee->intrinsic_id();
1238     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1239     // it attaches statically resolved method to the call site.
1240     if (MethodHandles::is_signature_polymorphic(id) &&
1241         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1242       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1243 
1244       // Adjust invocation mode according to the attached method.
1245       switch (bc) {
1246         case Bytecodes::_invokevirtual:
1247           if (attached_method->method_holder()->is_interface()) {
1248             bc = Bytecodes::_invokeinterface;
1249           }
1250           break;
1251         case Bytecodes::_invokeinterface:
1252           if (!attached_method->method_holder()->is_interface()) {
1253             bc = Bytecodes::_invokevirtual;
1254           }
1255           break;
1256         case Bytecodes::_invokehandle:
1257           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1258             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1259                                               : Bytecodes::_invokevirtual;
1260           }
1261           break;
1262         default:
1263           break;
1264       }
1265     }
1266   }
1267 
1268   assert(bc != Bytecodes::_illegal, "not initialized");
1269 
1270   bool has_receiver = bc != Bytecodes::_invokestatic &&
1271                       bc != Bytecodes::_invokedynamic &&
1272                       bc != Bytecodes::_invokehandle;
1273 
1274   // Find receiver for non-static call
1275   if (has_receiver) {
1276     // This register map must be update since we need to find the receiver for
1277     // compiled frames. The receiver might be in a register.
1278     RegisterMap reg_map2(current,
1279                          RegisterMap::UpdateMap::include,
1280                          RegisterMap::ProcessFrames::include,
1281                          RegisterMap::WalkContinuation::skip);
1282     frame stubFrame   = current->last_frame();
1283     // Caller-frame is a compiled frame
1284     frame callerFrame = stubFrame.sender(&reg_map2);
1285 
1286     if (attached_method.is_null()) {
1287       Method* callee = bytecode.static_target(CHECK_NH);
1288       if (callee == nullptr) {
1289         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1290       }
1291     }
1292 
1293     // Retrieve from a compiled argument list
1294     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1295     assert(oopDesc::is_oop_or_null(receiver()), "");
1296 
1297     if (receiver.is_null()) {
1298       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1299     }
1300   }
1301 
1302   // Resolve method
1303   if (attached_method.not_null()) {
1304     // Parameterized by attached method.
1305     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1306   } else {
1307     // Parameterized by bytecode.
1308     constantPoolHandle constants(current, caller->constants());
1309     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1310   }
1311 
1312 #ifdef ASSERT
1313   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1314   if (has_receiver) {
1315     assert(receiver.not_null(), "should have thrown exception");
1316     Klass* receiver_klass = receiver->klass();
1317     Klass* rk = nullptr;
1318     if (attached_method.not_null()) {
1319       // In case there's resolved method attached, use its holder during the check.
1320       rk = attached_method->method_holder();
1321     } else {
1322       // Klass is already loaded.
1323       constantPoolHandle constants(current, caller->constants());
1324       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1325     }
1326     Klass* static_receiver_klass = rk;
1327     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1328            "actual receiver must be subclass of static receiver klass");
1329     if (receiver_klass->is_instance_klass()) {
1330       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1331         tty->print_cr("ERROR: Klass not yet initialized!!");
1332         receiver_klass->print();
1333       }
1334       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1335     }
1336   }
1337 #endif
1338 
1339   return receiver;
1340 }
1341 
1342 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1343   JavaThread* current = THREAD;
1344   ResourceMark rm(current);
1345   // We need first to check if any Java activations (compiled, interpreted)
1346   // exist on the stack since last JavaCall.  If not, we need
1347   // to get the target method from the JavaCall wrapper.
1348   vframeStream vfst(current, true);  // Do not skip any javaCalls
1349   methodHandle callee_method;
1350   if (vfst.at_end()) {
1351     // No Java frames were found on stack since we did the JavaCall.
1352     // Hence the stack can only contain an entry_frame.  We need to
1353     // find the target method from the stub frame.
1354     RegisterMap reg_map(current,
1355                         RegisterMap::UpdateMap::skip,
1356                         RegisterMap::ProcessFrames::include,
1357                         RegisterMap::WalkContinuation::skip);
1358     frame fr = current->last_frame();
1359     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1360     fr = fr.sender(&reg_map);
1361     assert(fr.is_entry_frame(), "must be");
1362     // fr is now pointing to the entry frame.
1363     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1364   } else {
1365     Bytecodes::Code bc;
1366     CallInfo callinfo;
1367     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1368     callee_method = methodHandle(current, callinfo.selected_method());
1369   }
1370   assert(callee_method()->is_method(), "must be");
1371   return callee_method;
1372 }
1373 
1374 // Resolves a call.
1375 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1376   JavaThread* current = THREAD;
1377   ResourceMark rm(current);
1378   RegisterMap cbl_map(current,
1379                       RegisterMap::UpdateMap::skip,
1380                       RegisterMap::ProcessFrames::include,
1381                       RegisterMap::WalkContinuation::skip);
1382   frame caller_frame = current->last_frame().sender(&cbl_map);
1383 
1384   CodeBlob* caller_cb = caller_frame.cb();
1385   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1386   nmethod* caller_nm = caller_cb->as_nmethod();
1387 
1388   // determine call info & receiver
1389   // note: a) receiver is null for static calls
1390   //       b) an exception is thrown if receiver is null for non-static calls
1391   CallInfo call_info;
1392   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1393   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1394 
1395   NoSafepointVerifier nsv;
1396 
1397   methodHandle callee_method(current, call_info.selected_method());
1398 
1399   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1400          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1401          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1402          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1403          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1404 
1405   assert(!caller_nm->is_unloading(), "It should not be unloading");
1406 
1407 #ifndef PRODUCT
1408   // tracing/debugging/statistics
1409   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1410                  (is_virtual) ? (&_resolve_virtual_ctr) :
1411                                 (&_resolve_static_ctr);
1412   AtomicAccess::inc(addr);
1413 
1414   if (TraceCallFixup) {
1415     ResourceMark rm(current);
1416     tty->print("resolving %s%s (%s) call to",
1417                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1418                Bytecodes::name(invoke_code));
1419     callee_method->print_short_name(tty);
1420     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1421                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1422   }
1423 #endif
1424 
1425   if (invoke_code == Bytecodes::_invokestatic) {
1426     assert(callee_method->method_holder()->is_initialized() ||
1427            callee_method->method_holder()->is_reentrant_initialization(current),
1428            "invalid class initialization state for invoke_static");
1429     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1430       // In order to keep class initialization check, do not patch call
1431       // site for static call when the class is not fully initialized.
1432       // Proper check is enforced by call site re-resolution on every invocation.
1433       //
1434       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1435       // explicit class initialization check is put in nmethod entry (VEP).
1436       assert(callee_method->method_holder()->is_linked(), "must be");
1437       return callee_method;
1438     }
1439   }
1440 
1441 
1442   // JSR 292 key invariant:
1443   // If the resolved method is a MethodHandle invoke target, the call
1444   // site must be a MethodHandle call site, because the lambda form might tail-call
1445   // leaving the stack in a state unknown to either caller or callee
1446 
1447   // Compute entry points. The computation of the entry points is independent of
1448   // patching the call.
1449 
1450   // Make sure the callee nmethod does not get deoptimized and removed before
1451   // we are done patching the code.
1452 
1453 
1454   CompiledICLocker ml(caller_nm);
1455   if (is_virtual && !is_optimized) {
1456     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1457     inline_cache->update(&call_info, receiver->klass());
1458   } else {
1459     // Callsite is a direct call - set it to the destination method
1460     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1461     callsite->set(callee_method);
1462   }
1463 
1464   return callee_method;
1465 }
1466 
1467 // Inline caches exist only in compiled code
1468 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1469 #ifdef ASSERT
1470   RegisterMap reg_map(current,
1471                       RegisterMap::UpdateMap::skip,
1472                       RegisterMap::ProcessFrames::include,
1473                       RegisterMap::WalkContinuation::skip);
1474   frame stub_frame = current->last_frame();
1475   assert(stub_frame.is_runtime_frame(), "sanity check");
1476   frame caller_frame = stub_frame.sender(&reg_map);
1477   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1478 #endif /* ASSERT */
1479 
1480   methodHandle callee_method;
1481   JRT_BLOCK
1482     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1483     // Return Method* through TLS
1484     current->set_vm_result_metadata(callee_method());
1485   JRT_BLOCK_END
1486   // return compiled code entry point after potential safepoints
1487   return get_resolved_entry(current, callee_method);
1488 JRT_END
1489 
1490 
1491 // Handle call site that has been made non-entrant
1492 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1493   // 6243940 We might end up in here if the callee is deoptimized
1494   // as we race to call it.  We don't want to take a safepoint if
1495   // the caller was interpreted because the caller frame will look
1496   // interpreted to the stack walkers and arguments are now
1497   // "compiled" so it is much better to make this transition
1498   // invisible to the stack walking code. The i2c path will
1499   // place the callee method in the callee_target. It is stashed
1500   // there because if we try and find the callee by normal means a
1501   // safepoint is possible and have trouble gc'ing the compiled args.
1502   RegisterMap reg_map(current,
1503                       RegisterMap::UpdateMap::skip,
1504                       RegisterMap::ProcessFrames::include,
1505                       RegisterMap::WalkContinuation::skip);
1506   frame stub_frame = current->last_frame();
1507   assert(stub_frame.is_runtime_frame(), "sanity check");
1508   frame caller_frame = stub_frame.sender(&reg_map);
1509 
1510   if (caller_frame.is_interpreted_frame() ||
1511       caller_frame.is_entry_frame() ||
1512       caller_frame.is_upcall_stub_frame()) {
1513     Method* callee = current->callee_target();
1514     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1515     current->set_vm_result_metadata(callee);
1516     current->set_callee_target(nullptr);
1517     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1518       // Bypass class initialization checks in c2i when caller is in native.
1519       // JNI calls to static methods don't have class initialization checks.
1520       // Fast class initialization checks are present in c2i adapters and call into
1521       // SharedRuntime::handle_wrong_method() on the slow path.
1522       //
1523       // JVM upcalls may land here as well, but there's a proper check present in
1524       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1525       // so bypassing it in c2i adapter is benign.
1526       return callee->get_c2i_no_clinit_check_entry();
1527     } else {
1528       return callee->get_c2i_entry();
1529     }
1530   }
1531 
1532   // Must be compiled to compiled path which is safe to stackwalk
1533   methodHandle callee_method;
1534   JRT_BLOCK
1535     // Force resolving of caller (if we called from compiled frame)
1536     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1537     current->set_vm_result_metadata(callee_method());
1538   JRT_BLOCK_END
1539   // return compiled code entry point after potential safepoints
1540   return get_resolved_entry(current, callee_method);
1541 JRT_END
1542 
1543 // Handle abstract method call
1544 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1545   // Verbose error message for AbstractMethodError.
1546   // Get the called method from the invoke bytecode.
1547   vframeStream vfst(current, true);
1548   assert(!vfst.at_end(), "Java frame must exist");
1549   methodHandle caller(current, vfst.method());
1550   Bytecode_invoke invoke(caller, vfst.bci());
1551   DEBUG_ONLY( invoke.verify(); )
1552 
1553   // Find the compiled caller frame.
1554   RegisterMap reg_map(current,
1555                       RegisterMap::UpdateMap::include,
1556                       RegisterMap::ProcessFrames::include,
1557                       RegisterMap::WalkContinuation::skip);
1558   frame stubFrame = current->last_frame();
1559   assert(stubFrame.is_runtime_frame(), "must be");
1560   frame callerFrame = stubFrame.sender(&reg_map);
1561   assert(callerFrame.is_compiled_frame(), "must be");
1562 
1563   // Install exception and return forward entry.
1564   address res = SharedRuntime::throw_AbstractMethodError_entry();
1565   JRT_BLOCK
1566     methodHandle callee(current, invoke.static_target(current));
1567     if (!callee.is_null()) {
1568       oop recv = callerFrame.retrieve_receiver(&reg_map);
1569       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1570       res = StubRoutines::forward_exception_entry();
1571       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1572     }
1573   JRT_BLOCK_END
1574   return res;
1575 JRT_END
1576 
1577 // return verified_code_entry if interp_only_mode is not set for the current thread;
1578 // otherwise return c2i entry.
1579 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1580   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1581     // In interp_only_mode we need to go to the interpreted entry
1582     // The c2i won't patch in this mode -- see fixup_callers_callsite
1583     return callee_method->get_c2i_entry();
1584   }
1585   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1586   return callee_method->verified_code_entry();
1587 }
1588 
1589 // resolve a static call and patch code
1590 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1591   methodHandle callee_method;
1592   bool enter_special = false;
1593   JRT_BLOCK
1594     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1595     current->set_vm_result_metadata(callee_method());
1596   JRT_BLOCK_END
1597   // return compiled code entry point after potential safepoints
1598   return get_resolved_entry(current, callee_method);
1599 JRT_END
1600 
1601 // resolve virtual call and update inline cache to monomorphic
1602 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1603   methodHandle callee_method;
1604   JRT_BLOCK
1605     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1606     current->set_vm_result_metadata(callee_method());
1607   JRT_BLOCK_END
1608   // return compiled code entry point after potential safepoints
1609   return get_resolved_entry(current, callee_method);
1610 JRT_END
1611 
1612 
1613 // Resolve a virtual call that can be statically bound (e.g., always
1614 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1615 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1616   methodHandle callee_method;
1617   JRT_BLOCK
1618     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1619     current->set_vm_result_metadata(callee_method());
1620   JRT_BLOCK_END
1621   // return compiled code entry point after potential safepoints
1622   return get_resolved_entry(current, callee_method);
1623 JRT_END
1624 
1625 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1626   JavaThread* current = THREAD;
1627   ResourceMark rm(current);
1628   CallInfo call_info;
1629   Bytecodes::Code bc;
1630 
1631   // receiver is null for static calls. An exception is thrown for null
1632   // receivers for non-static calls
1633   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1634 
1635   methodHandle callee_method(current, call_info.selected_method());
1636 
1637 #ifndef PRODUCT
1638   AtomicAccess::inc(&_ic_miss_ctr);
1639 
1640   // Statistics & Tracing
1641   if (TraceCallFixup) {
1642     ResourceMark rm(current);
1643     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1644     callee_method->print_short_name(tty);
1645     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1646   }
1647 
1648   if (ICMissHistogram) {
1649     MutexLocker m(VMStatistic_lock);
1650     RegisterMap reg_map(current,
1651                         RegisterMap::UpdateMap::skip,
1652                         RegisterMap::ProcessFrames::include,
1653                         RegisterMap::WalkContinuation::skip);
1654     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1655     // produce statistics under the lock
1656     trace_ic_miss(f.pc());
1657   }
1658 #endif
1659 
1660   // install an event collector so that when a vtable stub is created the
1661   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1662   // event can't be posted when the stub is created as locks are held
1663   // - instead the event will be deferred until the event collector goes
1664   // out of scope.
1665   JvmtiDynamicCodeEventCollector event_collector;
1666 
1667   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1668   RegisterMap reg_map(current,
1669                       RegisterMap::UpdateMap::skip,
1670                       RegisterMap::ProcessFrames::include,
1671                       RegisterMap::WalkContinuation::skip);
1672   frame caller_frame = current->last_frame().sender(&reg_map);
1673   CodeBlob* cb = caller_frame.cb();
1674   nmethod* caller_nm = cb->as_nmethod();
1675 
1676   CompiledICLocker ml(caller_nm);
1677   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1678   inline_cache->update(&call_info, receiver()->klass());
1679 
1680   return callee_method;
1681 }
1682 
1683 //
1684 // Resets a call-site in compiled code so it will get resolved again.
1685 // This routines handles both virtual call sites, optimized virtual call
1686 // sites, and static call sites. Typically used to change a call sites
1687 // destination from compiled to interpreted.
1688 //
1689 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1690   JavaThread* current = THREAD;
1691   ResourceMark rm(current);
1692   RegisterMap reg_map(current,
1693                       RegisterMap::UpdateMap::skip,
1694                       RegisterMap::ProcessFrames::include,
1695                       RegisterMap::WalkContinuation::skip);
1696   frame stub_frame = current->last_frame();
1697   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1698   frame caller = stub_frame.sender(&reg_map);
1699 
1700   // Do nothing if the frame isn't a live compiled frame.
1701   // nmethod could be deoptimized by the time we get here
1702   // so no update to the caller is needed.
1703 
1704   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1705       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1706 
1707     address pc = caller.pc();
1708 
1709     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1710     assert(caller_nm != nullptr, "did not find caller nmethod");
1711 
1712     // Default call_addr is the location of the "basic" call.
1713     // Determine the address of the call we a reresolving. With
1714     // Inline Caches we will always find a recognizable call.
1715     // With Inline Caches disabled we may or may not find a
1716     // recognizable call. We will always find a call for static
1717     // calls and for optimized virtual calls. For vanilla virtual
1718     // calls it depends on the state of the UseInlineCaches switch.
1719     //
1720     // With Inline Caches disabled we can get here for a virtual call
1721     // for two reasons:
1722     //   1 - calling an abstract method. The vtable for abstract methods
1723     //       will run us thru handle_wrong_method and we will eventually
1724     //       end up in the interpreter to throw the ame.
1725     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1726     //       call and between the time we fetch the entry address and
1727     //       we jump to it the target gets deoptimized. Similar to 1
1728     //       we will wind up in the interprter (thru a c2i with c2).
1729     //
1730     CompiledICLocker ml(caller_nm);
1731     address call_addr = caller_nm->call_instruction_address(pc);
1732 
1733     if (call_addr != nullptr) {
1734       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1735       // bytes back in the instruction stream so we must also check for reloc info.
1736       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1737       bool ret = iter.next(); // Get item
1738       if (ret) {
1739         switch (iter.type()) {
1740           case relocInfo::static_call_type:
1741           case relocInfo::opt_virtual_call_type: {
1742             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1743             cdc->set_to_clean();
1744             break;
1745           }
1746 
1747           case relocInfo::virtual_call_type: {
1748             // compiled, dispatched call (which used to call an interpreted method)
1749             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1750             inline_cache->set_to_clean();
1751             break;
1752           }
1753           default:
1754             break;
1755         }
1756       }
1757     }
1758   }
1759 
1760   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1761 
1762 
1763 #ifndef PRODUCT
1764   AtomicAccess::inc(&_wrong_method_ctr);
1765 
1766   if (TraceCallFixup) {
1767     ResourceMark rm(current);
1768     tty->print("handle_wrong_method reresolving call to");
1769     callee_method->print_short_name(tty);
1770     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1771   }
1772 #endif
1773 
1774   return callee_method;
1775 }
1776 
1777 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1778   // The faulting unsafe accesses should be changed to throw the error
1779   // synchronously instead. Meanwhile the faulting instruction will be
1780   // skipped over (effectively turning it into a no-op) and an
1781   // asynchronous exception will be raised which the thread will
1782   // handle at a later point. If the instruction is a load it will
1783   // return garbage.
1784 
1785   // Request an async exception.
1786   thread->set_pending_unsafe_access_error();
1787 
1788   // Return address of next instruction to execute.
1789   return next_pc;
1790 }
1791 
1792 #ifdef ASSERT
1793 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1794                                                                 const BasicType* sig_bt,
1795                                                                 const VMRegPair* regs) {
1796   ResourceMark rm;
1797   const int total_args_passed = method->size_of_parameters();
1798   const VMRegPair*    regs_with_member_name = regs;
1799         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1800 
1801   const int member_arg_pos = total_args_passed - 1;
1802   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1803   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1804 
1805   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1806 
1807   for (int i = 0; i < member_arg_pos; i++) {
1808     VMReg a =    regs_with_member_name[i].first();
1809     VMReg b = regs_without_member_name[i].first();
1810     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1811   }
1812   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1813 }
1814 #endif
1815 
1816 // ---------------------------------------------------------------------------
1817 // We are calling the interpreter via a c2i. Normally this would mean that
1818 // we were called by a compiled method. However we could have lost a race
1819 // where we went int -> i2c -> c2i and so the caller could in fact be
1820 // interpreted. If the caller is compiled we attempt to patch the caller
1821 // so he no longer calls into the interpreter.
1822 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1823   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1824 
1825   // It's possible that deoptimization can occur at a call site which hasn't
1826   // been resolved yet, in which case this function will be called from
1827   // an nmethod that has been patched for deopt and we can ignore the
1828   // request for a fixup.
1829   // Also it is possible that we lost a race in that from_compiled_entry
1830   // is now back to the i2c in that case we don't need to patch and if
1831   // we did we'd leap into space because the callsite needs to use
1832   // "to interpreter" stub in order to load up the Method*. Don't
1833   // ask me how I know this...
1834 
1835   // Result from nmethod::is_unloading is not stable across safepoints.
1836   NoSafepointVerifier nsv;
1837 
1838   nmethod* callee = method->code();
1839   if (callee == nullptr) {
1840     return;
1841   }
1842 
1843   // write lock needed because we might patch call site by set_to_clean()
1844   // and is_unloading() can modify nmethod's state
1845   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1846 
1847   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1848   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1849     return;
1850   }
1851 
1852   // The check above makes sure this is an nmethod.
1853   nmethod* caller = cb->as_nmethod();
1854 
1855   // Get the return PC for the passed caller PC.
1856   address return_pc = caller_pc + frame::pc_return_offset;
1857 
1858   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1859     return;
1860   }
1861 
1862   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1863   CompiledICLocker ic_locker(caller);
1864   ResourceMark rm;
1865 
1866   // If we got here through a static call or opt_virtual call, then we know where the
1867   // call address would be; let's peek at it
1868   address callsite_addr = (address)nativeCall_before(return_pc);
1869   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1870   if (!iter.next()) {
1871     // No reloc entry found; not a static or optimized virtual call
1872     return;
1873   }
1874 
1875   relocInfo::relocType type = iter.reloc()->type();
1876   if (type != relocInfo::static_call_type &&
1877       type != relocInfo::opt_virtual_call_type) {
1878     return;
1879   }
1880 
1881   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1882   callsite->set_to_clean();
1883 JRT_END
1884 
1885 
1886 // same as JVM_Arraycopy, but called directly from compiled code
1887 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1888                                                 oopDesc* dest, jint dest_pos,
1889                                                 jint length,
1890                                                 JavaThread* current)) {
1891 #ifndef PRODUCT
1892   _slow_array_copy_ctr++;
1893 #endif
1894   // Check if we have null pointers
1895   if (src == nullptr || dest == nullptr) {
1896     THROW(vmSymbols::java_lang_NullPointerException());
1897   }
1898   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1899   // even though the copy_array API also performs dynamic checks to ensure
1900   // that src and dest are truly arrays (and are conformable).
1901   // The copy_array mechanism is awkward and could be removed, but
1902   // the compilers don't call this function except as a last resort,
1903   // so it probably doesn't matter.
1904   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1905                                         (arrayOopDesc*)dest, dest_pos,
1906                                         length, current);
1907 }
1908 JRT_END
1909 
1910 // The caller of generate_class_cast_message() (or one of its callers)
1911 // must use a ResourceMark in order to correctly free the result.
1912 char* SharedRuntime::generate_class_cast_message(
1913     JavaThread* thread, Klass* caster_klass) {
1914 
1915   // Get target class name from the checkcast instruction
1916   vframeStream vfst(thread, true);
1917   assert(!vfst.at_end(), "Java frame must exist");
1918   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1919   constantPoolHandle cpool(thread, vfst.method()->constants());
1920   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1921   Symbol* target_klass_name = nullptr;
1922   if (target_klass == nullptr) {
1923     // This klass should be resolved, but just in case, get the name in the klass slot.
1924     target_klass_name = cpool->klass_name_at(cc.index());
1925   }
1926   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1927 }
1928 
1929 
1930 // The caller of generate_class_cast_message() (or one of its callers)
1931 // must use a ResourceMark in order to correctly free the result.
1932 char* SharedRuntime::generate_class_cast_message(
1933     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1934   const char* caster_name = caster_klass->external_name();
1935 
1936   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1937   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1938                                                    target_klass->external_name();
1939 
1940   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1941 
1942   const char* caster_klass_description = "";
1943   const char* target_klass_description = "";
1944   const char* klass_separator = "";
1945   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1946     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1947   } else {
1948     caster_klass_description = caster_klass->class_in_module_of_loader();
1949     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1950     klass_separator = (target_klass != nullptr) ? "; " : "";
1951   }
1952 
1953   // add 3 for parenthesis and preceding space
1954   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1955 
1956   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1957   if (message == nullptr) {
1958     // Shouldn't happen, but don't cause even more problems if it does
1959     message = const_cast<char*>(caster_klass->external_name());
1960   } else {
1961     jio_snprintf(message,
1962                  msglen,
1963                  "class %s cannot be cast to class %s (%s%s%s)",
1964                  caster_name,
1965                  target_name,
1966                  caster_klass_description,
1967                  klass_separator,
1968                  target_klass_description
1969                  );
1970   }
1971   return message;
1972 }
1973 
1974 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1975   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1976 JRT_END
1977 
1978 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1979   if (!SafepointSynchronize::is_synchronizing()) {
1980     // Only try quick_enter() if we're not trying to reach a safepoint
1981     // so that the calling thread reaches the safepoint more quickly.
1982     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1983       return;
1984     }
1985   }
1986   // NO_ASYNC required because an async exception on the state transition destructor
1987   // would leave you with the lock held and it would never be released.
1988   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1989   // and the model is that an exception implies the method failed.
1990   JRT_BLOCK_NO_ASYNC
1991   Handle h_obj(THREAD, obj);
1992   ObjectSynchronizer::enter(h_obj, lock, current);
1993   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1994   JRT_BLOCK_END
1995 }
1996 
1997 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1998 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1999   SharedRuntime::monitor_enter_helper(obj, lock, current);
2000 JRT_END
2001 
2002 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2003   assert(JavaThread::current() == current, "invariant");
2004   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2005   ExceptionMark em(current);
2006 
2007   // Check if C2_MacroAssembler::fast_unlock() or
2008   // C2_MacroAssembler::fast_unlock() unlocked an inflated
2009   // monitor before going slow path.  Since there is no safepoint
2010   // polling when calling into the VM, we can be sure that the monitor
2011   // hasn't been deallocated.
2012   ObjectMonitor* m = current->unlocked_inflated_monitor();
2013   if (m != nullptr) {
2014     assert(!m->has_owner(current), "must be");
2015     current->clear_unlocked_inflated_monitor();
2016 
2017     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2018     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2019       // Some other thread acquired the lock (or the monitor was
2020       // deflated). Either way we are done.
2021       return;
2022     }
2023   }
2024 
2025   // The object could become unlocked through a JNI call, which we have no other checks for.
2026   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2027   if (obj->is_unlocked()) {
2028     if (CheckJNICalls) {
2029       fatal("Object has been unlocked by JNI");
2030     }
2031     return;
2032   }
2033   ObjectSynchronizer::exit(obj, lock, current);
2034 }
2035 
2036 // Handles the uncommon cases of monitor unlocking in compiled code
2037 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2038   assert(current == JavaThread::current(), "pre-condition");
2039   SharedRuntime::monitor_exit_helper(obj, lock, current);
2040 JRT_END
2041 
2042 #ifndef PRODUCT
2043 
2044 void SharedRuntime::print_statistics() {
2045   ttyLocker ttyl;
2046   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2047 
2048   SharedRuntime::print_ic_miss_histogram();
2049 
2050   // Dump the JRT_ENTRY counters
2051   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2052   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2053   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2054   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2055   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2056   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2057 
2058   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2059   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2060   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2061   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2062   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2063 
2064   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2065   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2066   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2067   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2068   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2069   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2070   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2071   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2072   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2073   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2074   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2075   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2076   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2077   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2078   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2079   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2080   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2081 
2082   AdapterHandlerLibrary::print_statistics();
2083 
2084   if (xtty != nullptr)  xtty->tail("statistics");
2085 }
2086 
2087 inline double percent(int64_t x, int64_t y) {
2088   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2089 }
2090 
2091 class MethodArityHistogram {
2092  public:
2093   enum { MAX_ARITY = 256 };
2094  private:
2095   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2096   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2097   static uint64_t _total_compiled_calls;
2098   static uint64_t _max_compiled_calls_per_method;
2099   static int _max_arity;                       // max. arity seen
2100   static int _max_size;                        // max. arg size seen
2101 
2102   static void add_method_to_histogram(nmethod* nm) {
2103     Method* method = (nm == nullptr) ? nullptr : nm->method();
2104     if (method != nullptr) {
2105       ArgumentCount args(method->signature());
2106       int arity   = args.size() + (method->is_static() ? 0 : 1);
2107       int argsize = method->size_of_parameters();
2108       arity   = MIN2(arity, MAX_ARITY-1);
2109       argsize = MIN2(argsize, MAX_ARITY-1);
2110       uint64_t count = (uint64_t)method->compiled_invocation_count();
2111       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2112       _total_compiled_calls    += count;
2113       _arity_histogram[arity]  += count;
2114       _size_histogram[argsize] += count;
2115       _max_arity = MAX2(_max_arity, arity);
2116       _max_size  = MAX2(_max_size, argsize);
2117     }
2118   }
2119 
2120   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2121     const int N = MIN2(9, n);
2122     double sum = 0;
2123     double weighted_sum = 0;
2124     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2125     if (sum >= 1) { // prevent divide by zero or divide overflow
2126       double rest = sum;
2127       double percent = sum / 100;
2128       for (int i = 0; i <= N; i++) {
2129         rest -= (double)histo[i];
2130         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2131       }
2132       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2133       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2134       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2135       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2136     } else {
2137       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2138     }
2139   }
2140 
2141   void print_histogram() {
2142     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2143     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2144     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2145     print_histogram_helper(_max_size, _size_histogram, "size");
2146     tty->cr();
2147   }
2148 
2149  public:
2150   MethodArityHistogram() {
2151     // Take the Compile_lock to protect against changes in the CodeBlob structures
2152     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2153     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2154     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2155     _max_arity = _max_size = 0;
2156     _total_compiled_calls = 0;
2157     _max_compiled_calls_per_method = 0;
2158     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2159     CodeCache::nmethods_do(add_method_to_histogram);
2160     print_histogram();
2161   }
2162 };
2163 
2164 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2165 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2166 uint64_t MethodArityHistogram::_total_compiled_calls;
2167 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2168 int MethodArityHistogram::_max_arity;
2169 int MethodArityHistogram::_max_size;
2170 
2171 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2172   tty->print_cr("Calls from compiled code:");
2173   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2174   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2175   int64_t mono_i = _nof_interface_calls;
2176   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2177   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2178   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2179   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2180   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2181   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2182   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2183   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2184   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2185   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2186   tty->cr();
2187   tty->print_cr("Note 1: counter updates are not MT-safe.");
2188   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2189   tty->print_cr("        %% in nested categories are relative to their category");
2190   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2191   tty->cr();
2192 
2193   MethodArityHistogram h;
2194 }
2195 #endif
2196 
2197 #ifndef PRODUCT
2198 static int _lookups; // number of calls to lookup
2199 static int _equals;  // number of buckets checked with matching hash
2200 static int _archived_hits; // number of successful lookups in archived table
2201 static int _runtime_hits;  // number of successful lookups in runtime table
2202 #endif
2203 
2204 // A simple wrapper class around the calling convention information
2205 // that allows sharing of adapters for the same calling convention.
2206 class AdapterFingerPrint : public MetaspaceObj {
2207  private:
2208   enum {
2209     _basic_type_bits = 4,
2210     _basic_type_mask = right_n_bits(_basic_type_bits),
2211     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2212   };
2213   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2214   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2215 
2216   int _length;
2217 
2218   static int data_offset() { return sizeof(AdapterFingerPrint); }
2219   int* data_pointer() {
2220     return (int*)((address)this + data_offset());
2221   }
2222 
2223   // Private construtor. Use allocate() to get an instance.
2224   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2225     int* data = data_pointer();
2226     // Pack the BasicTypes with 8 per int
2227     assert(len == length(total_args_passed), "sanity");
2228     _length = len;
2229     int sig_index = 0;
2230     for (int index = 0; index < _length; index++) {
2231       int value = 0;
2232       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2233         int bt = adapter_encoding(sig_bt[sig_index++]);
2234         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2235         value = (value << _basic_type_bits) | bt;
2236       }
2237       data[index] = value;
2238     }
2239   }
2240 
2241   // Call deallocate instead
2242   ~AdapterFingerPrint() {
2243     ShouldNotCallThis();
2244   }
2245 
2246   static int length(int total_args) {
2247     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2248   }
2249 
2250   static int compute_size_in_words(int len) {
2251     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2252   }
2253 
2254   // Remap BasicTypes that are handled equivalently by the adapters.
2255   // These are correct for the current system but someday it might be
2256   // necessary to make this mapping platform dependent.
2257   static int adapter_encoding(BasicType in) {
2258     switch (in) {
2259       case T_BOOLEAN:
2260       case T_BYTE:
2261       case T_SHORT:
2262       case T_CHAR:
2263         // There are all promoted to T_INT in the calling convention
2264         return T_INT;
2265 
2266       case T_OBJECT:
2267       case T_ARRAY:
2268         // In other words, we assume that any register good enough for
2269         // an int or long is good enough for a managed pointer.
2270 #ifdef _LP64
2271         return T_LONG;
2272 #else
2273         return T_INT;
2274 #endif
2275 
2276       case T_INT:
2277       case T_LONG:
2278       case T_FLOAT:
2279       case T_DOUBLE:
2280       case T_VOID:
2281         return in;
2282 
2283       default:
2284         ShouldNotReachHere();
2285         return T_CONFLICT;
2286     }
2287   }
2288 
2289   void* operator new(size_t size, size_t fp_size) throw() {
2290     assert(fp_size >= size, "sanity check");
2291     void* p = AllocateHeap(fp_size, mtCode);
2292     memset(p, 0, fp_size);
2293     return p;
2294   }
2295 
2296   template<typename Function>
2297   void iterate_args(Function function) {
2298     for (int i = 0; i < length(); i++) {
2299       unsigned val = (unsigned)value(i);
2300       // args are packed so that first/lower arguments are in the highest
2301       // bits of each int value, so iterate from highest to the lowest
2302       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2303         unsigned v = (val >> j) & _basic_type_mask;
2304         if (v == 0) {
2305           continue;
2306         }
2307         function(v);
2308       }
2309     }
2310   }
2311 
2312  public:
2313   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2314     int len = length(total_args_passed);
2315     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2316     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2317     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2318     return afp;
2319   }
2320 
2321   static void deallocate(AdapterFingerPrint* fp) {
2322     FreeHeap(fp);
2323   }
2324 
2325   int value(int index) {
2326     int* data = data_pointer();
2327     return data[index];
2328   }
2329 
2330   int length() {
2331     return _length;
2332   }
2333 
2334   unsigned int compute_hash() {
2335     int hash = 0;
2336     for (int i = 0; i < length(); i++) {
2337       int v = value(i);
2338       //Add arithmetic operation to the hash, like +3 to improve hashing
2339       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2340     }
2341     return (unsigned int)hash;
2342   }
2343 
2344   const char* as_string() {
2345     stringStream st;
2346     st.print("0x");
2347     for (int i = 0; i < length(); i++) {
2348       st.print("%x", value(i));
2349     }
2350     return st.as_string();
2351   }
2352 
2353   const char* as_basic_args_string() {
2354     stringStream st;
2355     bool long_prev = false;
2356     iterate_args([&] (int arg) {
2357       if (long_prev) {
2358         long_prev = false;
2359         if (arg == T_VOID) {
2360           st.print("J");
2361         } else {
2362           st.print("L");
2363         }
2364       }
2365       switch (arg) {
2366         case T_INT:    st.print("I");    break;
2367         case T_LONG:   long_prev = true; break;
2368         case T_FLOAT:  st.print("F");    break;
2369         case T_DOUBLE: st.print("D");    break;
2370         case T_VOID:   break;
2371         default: ShouldNotReachHere();
2372       }
2373     });
2374     if (long_prev) {
2375       st.print("L");
2376     }
2377     return st.as_string();
2378   }
2379 
2380   BasicType* as_basic_type(int& nargs) {
2381     nargs = 0;
2382     GrowableArray<BasicType> btarray;
2383     bool long_prev = false;
2384 
2385     iterate_args([&] (int arg) {
2386       if (long_prev) {
2387         long_prev = false;
2388         if (arg == T_VOID) {
2389           btarray.append(T_LONG);
2390         } else {
2391           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2392         }
2393       }
2394       switch (arg) {
2395         case T_INT: // fallthrough
2396         case T_FLOAT: // fallthrough
2397         case T_DOUBLE:
2398         case T_VOID:
2399           btarray.append((BasicType)arg);
2400           break;
2401         case T_LONG:
2402           long_prev = true;
2403           break;
2404         default: ShouldNotReachHere();
2405       }
2406     });
2407 
2408     if (long_prev) {
2409       btarray.append(T_OBJECT);
2410     }
2411 
2412     nargs = btarray.length();
2413     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2414     int index = 0;
2415     GrowableArrayIterator<BasicType> iter = btarray.begin();
2416     while (iter != btarray.end()) {
2417       sig_bt[index++] = *iter;
2418       ++iter;
2419     }
2420     assert(index == btarray.length(), "sanity check");
2421 #ifdef ASSERT
2422     {
2423       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2424       assert(this->equals(compare_fp), "sanity check");
2425       AdapterFingerPrint::deallocate(compare_fp);
2426     }
2427 #endif
2428     return sig_bt;
2429   }
2430 
2431   bool equals(AdapterFingerPrint* other) {
2432     if (other->_length != _length) {
2433       return false;
2434     } else {
2435       for (int i = 0; i < _length; i++) {
2436         if (value(i) != other->value(i)) {
2437           return false;
2438         }
2439       }
2440     }
2441     return true;
2442   }
2443 
2444   // methods required by virtue of being a MetaspaceObj
2445   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2446   int size() const { return compute_size_in_words(_length); }
2447   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2448 
2449   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2450     NOT_PRODUCT(_equals++);
2451     return fp1->equals(fp2);
2452   }
2453 
2454   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2455     return fp->compute_hash();
2456   }
2457 };
2458 
2459 #if INCLUDE_CDS
2460 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2461   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2462 }
2463 
2464 class ArchivedAdapterTable : public OffsetCompactHashtable<
2465   AdapterFingerPrint*,
2466   AdapterHandlerEntry*,
2467   adapter_fp_equals_compact_hashtable_entry> {};
2468 #endif // INCLUDE_CDS
2469 
2470 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2471 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2472                   AnyObj::C_HEAP, mtCode,
2473                   AdapterFingerPrint::compute_hash,
2474                   AdapterFingerPrint::equals>;
2475 static AdapterHandlerTable* _adapter_handler_table;
2476 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2477 
2478 // Find a entry with the same fingerprint if it exists
2479 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2480   NOT_PRODUCT(_lookups++);
2481   assert_lock_strong(AdapterHandlerLibrary_lock);
2482   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2483   AdapterHandlerEntry* entry = nullptr;
2484 #if INCLUDE_CDS
2485   // if we are building the archive then the archived adapter table is
2486   // not valid and we need to use the ones added to the runtime table
2487   if (AOTCodeCache::is_using_adapter()) {
2488     // Search archived table first. It is read-only table so can be searched without lock
2489     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2490 #ifndef PRODUCT
2491     if (entry != nullptr) {
2492       _archived_hits++;
2493     }
2494 #endif
2495   }
2496 #endif // INCLUDE_CDS
2497   if (entry == nullptr) {
2498     assert_lock_strong(AdapterHandlerLibrary_lock);
2499     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2500     if (entry_p != nullptr) {
2501       entry = *entry_p;
2502       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2503              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2504              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2505   #ifndef PRODUCT
2506       _runtime_hits++;
2507   #endif
2508     }
2509   }
2510   AdapterFingerPrint::deallocate(fp);
2511   return entry;
2512 }
2513 
2514 #ifndef PRODUCT
2515 static void print_table_statistics() {
2516   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2517     return sizeof(*key) + sizeof(*a);
2518   };
2519   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2520   ts.print(tty, "AdapterHandlerTable");
2521   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2522                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2523   int total_hits = _archived_hits + _runtime_hits;
2524   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2525                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2526 }
2527 #endif
2528 
2529 // ---------------------------------------------------------------------------
2530 // Implementation of AdapterHandlerLibrary
2531 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2532 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2533 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2534 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2535 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2536 #if INCLUDE_CDS
2537 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2538 #endif // INCLUDE_CDS
2539 static const int AdapterHandlerLibrary_size = 16*K;
2540 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2541 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2542 
2543 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2544   assert(_buffer != nullptr, "should be initialized");
2545   return _buffer;
2546 }
2547 
2548 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2549   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2550     AdapterBlob* adapter_blob = entry->adapter_blob();
2551     char blob_id[256];
2552     jio_snprintf(blob_id,
2553                  sizeof(blob_id),
2554                  "%s(%s)",
2555                  adapter_blob->name(),
2556                  entry->fingerprint()->as_string());
2557     if (Forte::is_enabled()) {
2558       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2559     }
2560 
2561     if (JvmtiExport::should_post_dynamic_code_generated()) {
2562       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2563     }
2564   }
2565 }
2566 
2567 void AdapterHandlerLibrary::initialize() {
2568   {
2569     ResourceMark rm;
2570     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2571     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2572   }
2573 
2574 #if INCLUDE_CDS
2575   // Link adapters in AOT Cache to their code in AOT Code Cache
2576   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2577     link_aot_adapters();
2578     lookup_simple_adapters();
2579     return;
2580   }
2581 #endif // INCLUDE_CDS
2582 
2583   ResourceMark rm;
2584   {
2585     MutexLocker mu(AdapterHandlerLibrary_lock);
2586 
2587     _no_arg_handler = create_adapter(0, nullptr);
2588 
2589     BasicType obj_args[] = { T_OBJECT };
2590     _obj_arg_handler = create_adapter(1, obj_args);
2591 
2592     BasicType int_args[] = { T_INT };
2593     _int_arg_handler = create_adapter(1, int_args);
2594 
2595     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2596     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2597 
2598     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2599     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2600 
2601     // we should always get an entry back but we don't have any
2602     // associated blob on Zero
2603     assert(_no_arg_handler != nullptr &&
2604            _obj_arg_handler != nullptr &&
2605            _int_arg_handler != nullptr &&
2606            _obj_int_arg_handler != nullptr &&
2607            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2608   }
2609 
2610   // Outside of the lock
2611 #ifndef ZERO
2612   // no blobs to register when we are on Zero
2613   post_adapter_creation(_no_arg_handler);
2614   post_adapter_creation(_obj_arg_handler);
2615   post_adapter_creation(_int_arg_handler);
2616   post_adapter_creation(_obj_int_arg_handler);
2617   post_adapter_creation(_obj_obj_arg_handler);
2618 #endif // ZERO
2619 }
2620 
2621 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2622   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2623   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2624   return AdapterHandlerEntry::allocate(id, fingerprint);
2625 }
2626 
2627 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2628   int total_args_passed = method->size_of_parameters(); // All args on stack
2629   if (total_args_passed == 0) {
2630     return _no_arg_handler;
2631   } else if (total_args_passed == 1) {
2632     if (!method->is_static()) {
2633       return _obj_arg_handler;
2634     }
2635     switch (method->signature()->char_at(1)) {
2636       case JVM_SIGNATURE_CLASS:
2637       case JVM_SIGNATURE_ARRAY:
2638         return _obj_arg_handler;
2639       case JVM_SIGNATURE_INT:
2640       case JVM_SIGNATURE_BOOLEAN:
2641       case JVM_SIGNATURE_CHAR:
2642       case JVM_SIGNATURE_BYTE:
2643       case JVM_SIGNATURE_SHORT:
2644         return _int_arg_handler;
2645     }
2646   } else if (total_args_passed == 2 &&
2647              !method->is_static()) {
2648     switch (method->signature()->char_at(1)) {
2649       case JVM_SIGNATURE_CLASS:
2650       case JVM_SIGNATURE_ARRAY:
2651         return _obj_obj_arg_handler;
2652       case JVM_SIGNATURE_INT:
2653       case JVM_SIGNATURE_BOOLEAN:
2654       case JVM_SIGNATURE_CHAR:
2655       case JVM_SIGNATURE_BYTE:
2656       case JVM_SIGNATURE_SHORT:
2657         return _obj_int_arg_handler;
2658     }
2659   }
2660   return nullptr;
2661 }
2662 
2663 class AdapterSignatureIterator : public SignatureIterator {
2664  private:
2665   BasicType stack_sig_bt[16];
2666   BasicType* sig_bt;
2667   int index;
2668 
2669  public:
2670   AdapterSignatureIterator(Symbol* signature,
2671                            fingerprint_t fingerprint,
2672                            bool is_static,
2673                            int total_args_passed) :
2674     SignatureIterator(signature, fingerprint),
2675     index(0)
2676   {
2677     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2678     if (!is_static) { // Pass in receiver first
2679       sig_bt[index++] = T_OBJECT;
2680     }
2681     do_parameters_on(this);
2682   }
2683 
2684   BasicType* basic_types() {
2685     return sig_bt;
2686   }
2687 
2688 #ifdef ASSERT
2689   int slots() {
2690     return index;
2691   }
2692 #endif
2693 
2694  private:
2695 
2696   friend class SignatureIterator;  // so do_parameters_on can call do_type
2697   void do_type(BasicType type) {
2698     sig_bt[index++] = type;
2699     if (type == T_LONG || type == T_DOUBLE) {
2700       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2701     }
2702   }
2703 };
2704 
2705 
2706 const char* AdapterHandlerEntry::_entry_names[] = {
2707   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2708 };
2709 
2710 #ifdef ASSERT
2711 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2712   // we can only check for the same code if there is any
2713 #ifndef ZERO
2714   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2715   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2716   assert(comparison_entry->compare_code(cached_entry), "code must match");
2717   // Release the one just created
2718   AdapterHandlerEntry::deallocate(comparison_entry);
2719 # endif // ZERO
2720 }
2721 #endif /* ASSERT*/
2722 
2723 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2724   assert(!method->is_abstract(), "abstract methods do not have adapters");
2725   // Use customized signature handler.  Need to lock around updates to
2726   // the _adapter_handler_table (it is not safe for concurrent readers
2727   // and a single writer: this could be fixed if it becomes a
2728   // problem).
2729 
2730   // Fast-path for trivial adapters
2731   AdapterHandlerEntry* entry = get_simple_adapter(method);
2732   if (entry != nullptr) {
2733     return entry;
2734   }
2735 
2736   ResourceMark rm;
2737   bool new_entry = false;
2738 
2739   // Fill in the signature array, for the calling-convention call.
2740   int total_args_passed = method->size_of_parameters(); // All args on stack
2741 
2742   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2743                               method->is_static(), total_args_passed);
2744   assert(si.slots() == total_args_passed, "");
2745   BasicType* sig_bt = si.basic_types();
2746   {
2747     MutexLocker mu(AdapterHandlerLibrary_lock);
2748 
2749     // Lookup method signature's fingerprint
2750     entry = lookup(total_args_passed, sig_bt);
2751 
2752     if (entry != nullptr) {
2753 #ifndef ZERO
2754       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2755 #endif
2756 #ifdef ASSERT
2757       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2758         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2759       }
2760 #endif
2761     } else {
2762       entry = create_adapter(total_args_passed, sig_bt);
2763       if (entry != nullptr) {
2764         new_entry = true;
2765       }
2766     }
2767   }
2768 
2769   // Outside of the lock
2770   if (new_entry) {
2771     post_adapter_creation(entry);
2772   }
2773   return entry;
2774 }
2775 
2776 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2777   ResourceMark rm;
2778   const char* name = AdapterHandlerLibrary::name(handler);
2779   const uint32_t id = AdapterHandlerLibrary::id(handler);
2780 
2781   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2782   if (blob != nullptr) {
2783     handler->set_adapter_blob(blob->as_adapter_blob());
2784   }
2785 }
2786 
2787 #ifndef PRODUCT
2788 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2789   ttyLocker ttyl;
2790   ResourceMark rm;
2791   int insts_size;
2792   // on Zero the blob may be null
2793   handler->print_adapter_on(tty);
2794   AdapterBlob* adapter_blob = handler->adapter_blob();
2795   if (adapter_blob == nullptr) {
2796     return;
2797   }
2798   insts_size = adapter_blob->code_size();
2799   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2800                 handler->fingerprint()->as_basic_args_string(),
2801                 handler->fingerprint()->as_string(), insts_size);
2802   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2803   if (Verbose || PrintStubCode) {
2804     address first_pc = adapter_blob->content_begin();
2805     if (first_pc != nullptr) {
2806       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2807       st->cr();
2808     }
2809   }
2810 }
2811 #endif // PRODUCT
2812 
2813 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2814                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2815   entry_offset[AdapterBlob::I2C] = 0;
2816   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2817   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2818   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2819     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2820   } else {
2821     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2822   }
2823 }
2824 
2825 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2826                                                   int total_args_passed,
2827                                                   BasicType* sig_bt,
2828                                                   bool is_transient) {
2829   if (log_is_enabled(Info, perf, class, link)) {
2830     ClassLoader::perf_method_adapters_count()->inc();
2831   }
2832 
2833 #ifndef ZERO
2834   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2835   CodeBuffer buffer(buf);
2836   short buffer_locs[20];
2837   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2838                                          sizeof(buffer_locs)/sizeof(relocInfo));
2839   MacroAssembler masm(&buffer);
2840   VMRegPair stack_regs[16];
2841   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2842 
2843   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2844   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2845   address entry_address[AdapterBlob::ENTRY_COUNT];
2846   SharedRuntime::generate_i2c2i_adapters(&masm,
2847                                          total_args_passed,
2848                                          comp_args_on_stack,
2849                                          sig_bt,
2850                                          regs,
2851                                          entry_address);
2852   // On zero there is no code to save and no need to create a blob and
2853   // or relocate the handler.
2854   int entry_offset[AdapterBlob::ENTRY_COUNT];
2855   address_to_offset(entry_address, entry_offset);
2856 #ifdef ASSERT
2857   if (VerifyAdapterSharing) {
2858     handler->save_code(buf->code_begin(), buffer.insts_size());
2859     if (is_transient) {
2860       return true;
2861     }
2862   }
2863 #endif
2864   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2865   if (adapter_blob == nullptr) {
2866     // CodeCache is full, disable compilation
2867     // Ought to log this but compile log is only per compile thread
2868     // and we're some non descript Java thread.
2869     return false;
2870   }
2871   handler->set_adapter_blob(adapter_blob);
2872   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2873     // try to save generated code
2874     const char* name = AdapterHandlerLibrary::name(handler);
2875     const uint32_t id = AdapterHandlerLibrary::id(handler);
2876     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2877     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2878   }
2879 #endif // ZERO
2880 
2881 #ifndef PRODUCT
2882   // debugging support
2883   if (PrintAdapterHandlers || PrintStubCode) {
2884     print_adapter_handler_info(tty, handler);
2885   }
2886 #endif
2887 
2888   return true;
2889 }
2890 
2891 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2892                                                            BasicType* sig_bt,
2893                                                            bool is_transient) {
2894   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2895   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2896   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2897     AdapterHandlerEntry::deallocate(handler);
2898     return nullptr;
2899   }
2900   if (!is_transient) {
2901     assert_lock_strong(AdapterHandlerLibrary_lock);
2902     _adapter_handler_table->put(fp, handler);
2903   }
2904   return handler;
2905 }
2906 
2907 #if INCLUDE_CDS
2908 void AdapterHandlerEntry::remove_unshareable_info() {
2909 #ifdef ASSERT
2910    _saved_code = nullptr;
2911    _saved_code_length = 0;
2912 #endif // ASSERT
2913    _adapter_blob = nullptr;
2914    _linked = false;
2915 }
2916 
2917 class CopyAdapterTableToArchive : StackObj {
2918 private:
2919   CompactHashtableWriter* _writer;
2920   ArchiveBuilder* _builder;
2921 public:
2922   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2923                                                              _builder(ArchiveBuilder::current())
2924   {}
2925 
2926   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2927     LogStreamHandle(Trace, aot) lsh;
2928     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2929       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2930       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2931       assert(buffered_fp != nullptr,"sanity check");
2932       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2933       assert(buffered_entry != nullptr,"sanity check");
2934 
2935       uint hash = fp->compute_hash();
2936       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2937       _writer->add(hash, delta);
2938       if (lsh.is_enabled()) {
2939         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2940         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2941         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2942       }
2943     } else {
2944       if (lsh.is_enabled()) {
2945         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2946       }
2947     }
2948     return true;
2949   }
2950 };
2951 
2952 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2953   CompactHashtableStats stats;
2954   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2955   CopyAdapterTableToArchive copy(&writer);
2956   _adapter_handler_table->iterate(&copy);
2957   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2958 }
2959 
2960 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2961   _aot_adapter_handler_table.serialize_header(soc);
2962 }
2963 
2964 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2965 #ifdef ASSERT
2966   if (TestAOTAdapterLinkFailure) {
2967     return;
2968   }
2969 #endif
2970   lookup_aot_cache(handler);
2971 #ifndef PRODUCT
2972   // debugging support
2973   if (PrintAdapterHandlers || PrintStubCode) {
2974     print_adapter_handler_info(tty, handler);
2975   }
2976 #endif
2977 }
2978 
2979 // This method is used during production run to link archived adapters (stored in AOT Cache)
2980 // to their code in AOT Code Cache
2981 void AdapterHandlerEntry::link() {
2982   ResourceMark rm;
2983   assert(_fingerprint != nullptr, "_fingerprint must not be null");
2984   bool generate_code = false;
2985   // Generate code only if AOTCodeCache is not available, or
2986   // caching adapters is disabled, or we fail to link
2987   // the AdapterHandlerEntry to its code in the AOTCodeCache
2988   if (AOTCodeCache::is_using_adapter()) {
2989     AdapterHandlerLibrary::link_aot_adapter_handler(this);
2990     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
2991     if (_adapter_blob == nullptr) {
2992       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
2993       generate_code = true;
2994     }
2995   } else {
2996     generate_code = true;
2997   }
2998   if (generate_code) {
2999     int nargs;
3000     BasicType* bt = _fingerprint->as_basic_type(nargs);
3001     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3002       // Don't throw exceptions during VM initialization because java.lang.* classes
3003       // might not have been initialized, causing problems when constructing the
3004       // Java exception object.
3005       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3006     }
3007   }
3008   if (_adapter_blob != nullptr) {
3009     post_adapter_creation(this);
3010   }
3011   assert(_linked, "AdapterHandlerEntry must now be linked");
3012 }
3013 
3014 void AdapterHandlerLibrary::link_aot_adapters() {
3015   uint max_id = 0;
3016   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3017   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3018    * That implies adapter ids of the adapters in the cache may not be contiguous.
3019    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3020    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3021    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3022    */
3023   _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) {
3024     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3025     entry->link();
3026     max_id = MAX2(max_id, entry->id());
3027   });
3028   // Set adapter id to the maximum id found in the AOTCache
3029   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3030   _id_counter = max_id;
3031 }
3032 
3033 // This method is called during production run to lookup simple adapters
3034 // in the archived adapter handler table
3035 void AdapterHandlerLibrary::lookup_simple_adapters() {
3036   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3037 
3038   MutexLocker mu(AdapterHandlerLibrary_lock);
3039   _no_arg_handler = lookup(0, nullptr);
3040 
3041   BasicType obj_args[] = { T_OBJECT };
3042   _obj_arg_handler = lookup(1, obj_args);
3043 
3044   BasicType int_args[] = { T_INT };
3045   _int_arg_handler = lookup(1, int_args);
3046 
3047   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3048   _obj_int_arg_handler = lookup(2, obj_int_args);
3049 
3050   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3051   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3052 
3053   assert(_no_arg_handler != nullptr &&
3054          _obj_arg_handler != nullptr &&
3055          _int_arg_handler != nullptr &&
3056          _obj_int_arg_handler != nullptr &&
3057          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3058   assert(_no_arg_handler->is_linked() &&
3059          _obj_arg_handler->is_linked() &&
3060          _int_arg_handler->is_linked() &&
3061          _obj_int_arg_handler->is_linked() &&
3062          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3063 }
3064 #endif // INCLUDE_CDS
3065 
3066 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3067   LogStreamHandle(Trace, aot) lsh;
3068   if (lsh.is_enabled()) {
3069     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3070     lsh.cr();
3071   }
3072   it->push(&_fingerprint);
3073 }
3074 
3075 AdapterHandlerEntry::~AdapterHandlerEntry() {
3076   if (_fingerprint != nullptr) {
3077     AdapterFingerPrint::deallocate(_fingerprint);
3078     _fingerprint = nullptr;
3079   }
3080 #ifdef ASSERT
3081   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3082 #endif
3083   FreeHeap(this);
3084 }
3085 
3086 
3087 #ifdef ASSERT
3088 // Capture the code before relocation so that it can be compared
3089 // against other versions.  If the code is captured after relocation
3090 // then relative instructions won't be equivalent.
3091 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3092   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3093   _saved_code_length = length;
3094   memcpy(_saved_code, buffer, length);
3095 }
3096 
3097 
3098 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3099   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3100 
3101   if (other->_saved_code_length != _saved_code_length) {
3102     return false;
3103   }
3104 
3105   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3106 }
3107 #endif
3108 
3109 
3110 /**
3111  * Create a native wrapper for this native method.  The wrapper converts the
3112  * Java-compiled calling convention to the native convention, handles
3113  * arguments, and transitions to native.  On return from the native we transition
3114  * back to java blocking if a safepoint is in progress.
3115  */
3116 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3117   ResourceMark rm;
3118   nmethod* nm = nullptr;
3119 
3120   // Check if memory should be freed before allocation
3121   CodeCache::gc_on_allocation();
3122 
3123   assert(method->is_native(), "must be native");
3124   assert(method->is_special_native_intrinsic() ||
3125          method->has_native_function(), "must have something valid to call!");
3126 
3127   {
3128     // Perform the work while holding the lock, but perform any printing outside the lock
3129     MutexLocker mu(AdapterHandlerLibrary_lock);
3130     // See if somebody beat us to it
3131     if (method->code() != nullptr) {
3132       return;
3133     }
3134 
3135     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3136     assert(compile_id > 0, "Must generate native wrapper");
3137 
3138 
3139     ResourceMark rm;
3140     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3141     if (buf != nullptr) {
3142       CodeBuffer buffer(buf);
3143 
3144       if (method->is_continuation_enter_intrinsic()) {
3145         buffer.initialize_stubs_size(192);
3146       }
3147 
3148       struct { double data[20]; } locs_buf;
3149       struct { double data[20]; } stubs_locs_buf;
3150       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3151 #if defined(AARCH64) || defined(PPC64)
3152       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3153       // in the constant pool to ensure ordering between the barrier and oops
3154       // accesses. For native_wrappers we need a constant.
3155       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3156       // static java call that is resolved in the runtime.
3157       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3158         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3159       }
3160 #endif
3161       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3162       MacroAssembler _masm(&buffer);
3163 
3164       // Fill in the signature array, for the calling-convention call.
3165       const int total_args_passed = method->size_of_parameters();
3166 
3167       VMRegPair stack_regs[16];
3168       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3169 
3170       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3171                               method->is_static(), total_args_passed);
3172       BasicType* sig_bt = si.basic_types();
3173       assert(si.slots() == total_args_passed, "");
3174       BasicType ret_type = si.return_type();
3175 
3176       // Now get the compiled-Java arguments layout.
3177       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3178 
3179       // Generate the compiled-to-native wrapper code
3180       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3181 
3182       if (nm != nullptr) {
3183         {
3184           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3185           if (nm->make_in_use()) {
3186             method->set_code(method, nm);
3187           }
3188         }
3189 
3190         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3191         if (directive->PrintAssemblyOption) {
3192           nm->print_code();
3193         }
3194         DirectivesStack::release(directive);
3195       }
3196     }
3197   } // Unlock AdapterHandlerLibrary_lock
3198 
3199 
3200   // Install the generated code.
3201   if (nm != nullptr) {
3202     const char *msg = method->is_static() ? "(static)" : "";
3203     CompileTask::print_ul(nm, msg);
3204     if (PrintCompilation) {
3205       ttyLocker ttyl;
3206       CompileTask::print(tty, nm, msg);
3207     }
3208     nm->post_compiled_method_load_event();
3209   }
3210 }
3211 
3212 // -------------------------------------------------------------------------
3213 // Java-Java calling convention
3214 // (what you use when Java calls Java)
3215 
3216 //------------------------------name_for_receiver----------------------------------
3217 // For a given signature, return the VMReg for parameter 0.
3218 VMReg SharedRuntime::name_for_receiver() {
3219   VMRegPair regs;
3220   BasicType sig_bt = T_OBJECT;
3221   (void) java_calling_convention(&sig_bt, &regs, 1);
3222   // Return argument 0 register.  In the LP64 build pointers
3223   // take 2 registers, but the VM wants only the 'main' name.
3224   return regs.first();
3225 }
3226 
3227 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3228   // This method is returning a data structure allocating as a
3229   // ResourceObject, so do not put any ResourceMarks in here.
3230 
3231   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3232   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3233   int cnt = 0;
3234   if (has_receiver) {
3235     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3236   }
3237 
3238   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3239     BasicType type = ss.type();
3240     sig_bt[cnt++] = type;
3241     if (is_double_word_type(type))
3242       sig_bt[cnt++] = T_VOID;
3243   }
3244 
3245   if (has_appendix) {
3246     sig_bt[cnt++] = T_OBJECT;
3247   }
3248 
3249   assert(cnt < 256, "grow table size");
3250 
3251   int comp_args_on_stack;
3252   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3253 
3254   // the calling convention doesn't count out_preserve_stack_slots so
3255   // we must add that in to get "true" stack offsets.
3256 
3257   if (comp_args_on_stack) {
3258     for (int i = 0; i < cnt; i++) {
3259       VMReg reg1 = regs[i].first();
3260       if (reg1->is_stack()) {
3261         // Yuck
3262         reg1 = reg1->bias(out_preserve_stack_slots());
3263       }
3264       VMReg reg2 = regs[i].second();
3265       if (reg2->is_stack()) {
3266         // Yuck
3267         reg2 = reg2->bias(out_preserve_stack_slots());
3268       }
3269       regs[i].set_pair(reg2, reg1);
3270     }
3271   }
3272 
3273   // results
3274   *arg_size = cnt;
3275   return regs;
3276 }
3277 
3278 // OSR Migration Code
3279 //
3280 // This code is used convert interpreter frames into compiled frames.  It is
3281 // called from very start of a compiled OSR nmethod.  A temp array is
3282 // allocated to hold the interesting bits of the interpreter frame.  All
3283 // active locks are inflated to allow them to move.  The displaced headers and
3284 // active interpreter locals are copied into the temp buffer.  Then we return
3285 // back to the compiled code.  The compiled code then pops the current
3286 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3287 // copies the interpreter locals and displaced headers where it wants.
3288 // Finally it calls back to free the temp buffer.
3289 //
3290 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3291 
3292 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3293   assert(current == JavaThread::current(), "pre-condition");
3294   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3295   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3296   // frame. The stack watermark code below ensures that the interpreted frame is processed
3297   // before it gets unwound. This is helpful as the size of the compiled frame could be
3298   // larger than the interpreted frame, which could result in the new frame not being
3299   // processed correctly.
3300   StackWatermarkSet::before_unwind(current);
3301 
3302   //
3303   // This code is dependent on the memory layout of the interpreter local
3304   // array and the monitors. On all of our platforms the layout is identical
3305   // so this code is shared. If some platform lays the their arrays out
3306   // differently then this code could move to platform specific code or
3307   // the code here could be modified to copy items one at a time using
3308   // frame accessor methods and be platform independent.
3309 
3310   frame fr = current->last_frame();
3311   assert(fr.is_interpreted_frame(), "");
3312   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3313 
3314   // Figure out how many monitors are active.
3315   int active_monitor_count = 0;
3316   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3317        kptr < fr.interpreter_frame_monitor_begin();
3318        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3319     if (kptr->obj() != nullptr) active_monitor_count++;
3320   }
3321 
3322   // QQQ we could place number of active monitors in the array so that compiled code
3323   // could double check it.
3324 
3325   Method* moop = fr.interpreter_frame_method();
3326   int max_locals = moop->max_locals();
3327   // Allocate temp buffer, 1 word per local & 2 per active monitor
3328   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3329   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3330 
3331   // Copy the locals.  Order is preserved so that loading of longs works.
3332   // Since there's no GC I can copy the oops blindly.
3333   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3334   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3335                        (HeapWord*)&buf[0],
3336                        max_locals);
3337 
3338   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3339   int i = max_locals;
3340   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3341        kptr2 < fr.interpreter_frame_monitor_begin();
3342        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3343     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3344       BasicLock *lock = kptr2->lock();
3345       if (UseObjectMonitorTable) {
3346         buf[i] = (intptr_t)lock->object_monitor_cache();
3347       }
3348 #ifdef ASSERT
3349       else {
3350         buf[i] = badDispHeaderOSR;
3351       }
3352 #endif
3353       i++;
3354       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3355     }
3356   }
3357   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3358 
3359   RegisterMap map(current,
3360                   RegisterMap::UpdateMap::skip,
3361                   RegisterMap::ProcessFrames::include,
3362                   RegisterMap::WalkContinuation::skip);
3363   frame sender = fr.sender(&map);
3364   if (sender.is_interpreted_frame()) {
3365     current->push_cont_fastpath(sender.sp());
3366   }
3367 
3368   return buf;
3369 JRT_END
3370 
3371 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3372   FREE_C_HEAP_ARRAY(intptr_t, buf);
3373 JRT_END
3374 
3375 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3376   return handler->fingerprint()->as_basic_args_string();
3377 }
3378 
3379 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3380   return handler->id();
3381 }
3382 
3383 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3384   bool found = false;
3385 #if INCLUDE_CDS
3386   if (AOTCodeCache::is_using_adapter()) {
3387     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3388       if (b == handler->adapter_blob()) {
3389         found = true;
3390         st->print("Adapter for signature: ");
3391         handler->print_adapter_on(st);
3392         return false; // abort iteration
3393       } else {
3394         return true; // keep looking
3395       }
3396     };
3397     _aot_adapter_handler_table.iterate(findblob_archived_table);
3398   }
3399 #endif // INCLUDE_CDS
3400   if (!found) {
3401     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) {
3402       if (b == handler->adapter_blob()) {
3403         found = true;
3404         st->print("Adapter for signature: ");
3405         handler->print_adapter_on(st);
3406         return false; // abort iteration
3407       } else {
3408         return true; // keep looking
3409       }
3410     };
3411     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3412     _adapter_handler_table->iterate(findblob_runtime_table);
3413   }
3414   assert(found, "Should have found handler");
3415 }
3416 
3417 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3418   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3419   if (adapter_blob() != nullptr) {
3420     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3421     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3422     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3423     if (get_c2i_no_clinit_check_entry() != nullptr) {
3424       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3425     }
3426   }
3427   st->cr();
3428 }
3429 
3430 #ifndef PRODUCT
3431 
3432 void AdapterHandlerLibrary::print_statistics() {
3433   print_table_statistics();
3434 }
3435 
3436 #endif /* PRODUCT */
3437 
3438 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3439   assert(current == JavaThread::current(), "pre-condition");
3440   StackOverflow* overflow_state = current->stack_overflow_state();
3441   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3442   overflow_state->set_reserved_stack_activation(current->stack_base());
3443 JRT_END
3444 
3445 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3446   ResourceMark rm(current);
3447   frame activation;
3448   nmethod* nm = nullptr;
3449   int count = 1;
3450 
3451   assert(fr.is_java_frame(), "Must start on Java frame");
3452 
3453   RegisterMap map(JavaThread::current(),
3454                   RegisterMap::UpdateMap::skip,
3455                   RegisterMap::ProcessFrames::skip,
3456                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3457   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3458     if (!fr.is_java_frame()) {
3459       continue;
3460     }
3461 
3462     Method* method = nullptr;
3463     bool found = false;
3464     if (fr.is_interpreted_frame()) {
3465       method = fr.interpreter_frame_method();
3466       if (method != nullptr && method->has_reserved_stack_access()) {
3467         found = true;
3468       }
3469     } else {
3470       CodeBlob* cb = fr.cb();
3471       if (cb != nullptr && cb->is_nmethod()) {
3472         nm = cb->as_nmethod();
3473         method = nm->method();
3474         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3475           method = sd->method();
3476           if (method != nullptr && method->has_reserved_stack_access()) {
3477             found = true;
3478           }
3479         }
3480       }
3481     }
3482     if (found) {
3483       activation = fr;
3484       warning("Potentially dangerous stack overflow in "
3485               "ReservedStackAccess annotated method %s [%d]",
3486               method->name_and_sig_as_C_string(), count++);
3487       EventReservedStackActivation event;
3488       if (event.should_commit()) {
3489         event.set_method(method);
3490         event.commit();
3491       }
3492     }
3493   }
3494   return activation;
3495 }
3496 
3497 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3498   // After any safepoint, just before going back to compiled code,
3499   // we inform the GC that we will be doing initializing writes to
3500   // this object in the future without emitting card-marks, so
3501   // GC may take any compensating steps.
3502 
3503   oop new_obj = current->vm_result_oop();
3504   if (new_obj == nullptr) return;
3505 
3506   BarrierSet *bs = BarrierSet::barrier_set();
3507   bs->on_slowpath_allocation_exit(current, new_obj);
3508 }