1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.inline.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/hashTable.hpp"
  85 #include "utilities/macros.hpp"
  86 #include "utilities/xmlstream.hpp"
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #ifdef COMPILER2
  91 #include "opto/runtime.hpp"
  92 #endif
  93 #if INCLUDE_JFR
  94 #include "jfr/jfr.inline.hpp"
  95 #endif
  96 
  97 // Shared runtime stub routines reside in their own unique blob with a
  98 // single entry point
  99 
 100 
 101 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 102   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 103   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 104 #undef SHARED_STUB_FIELD_DEFINE
 105 
 106 nmethod*            SharedRuntime::_cont_doYield_stub;
 107 
 108 #if 0
 109 // TODO tweak global stub name generation to match this
 110 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 111 const char *SharedRuntime::_stub_names[] = {
 112   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 113 };
 114 #endif
 115 
 116 //----------------------------generate_stubs-----------------------------------
 117 void SharedRuntime::generate_initial_stubs() {
 118   // Build this early so it's available for the interpreter.
 119   _throw_StackOverflowError_blob =
 120     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 121                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 122 }
 123 
 124 void SharedRuntime::generate_stubs() {
 125   _wrong_method_blob =
 126     generate_resolve_blob(StubId::shared_wrong_method_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 128   _wrong_method_abstract_blob =
 129     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 131   _ic_miss_blob =
 132     generate_resolve_blob(StubId::shared_ic_miss_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 134   _resolve_opt_virtual_call_blob =
 135     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 137   _resolve_virtual_call_blob =
 138     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 140   _resolve_static_call_blob =
 141     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 142                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 143 
 144   _throw_delayed_StackOverflowError_blob =
 145     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 146                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 147 
 148   _throw_AbstractMethodError_blob =
 149     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 150                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 151 
 152   _throw_IncompatibleClassChangeError_blob =
 153     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 154                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 155 
 156   _throw_NullPointerException_at_call_blob =
 157     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 158                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 159 
 160 #if COMPILER2_OR_JVMCI
 161   // Vectors are generated only by C2 and JVMCI.
 162   bool support_wide = is_wide_vector(MaxVectorSize);
 163   if (support_wide) {
 164     _polling_page_vectors_safepoint_handler_blob =
 165       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 166                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 167   }
 168 #endif // COMPILER2_OR_JVMCI
 169   _polling_page_safepoint_handler_blob =
 170     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 171                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 172   _polling_page_return_handler_blob =
 173     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 174                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 175 
 176   generate_deopt_blob();
 177 }
 178 
 179 void SharedRuntime::init_adapter_library() {
 180   AdapterHandlerLibrary::initialize();
 181 }
 182 
 183 #if INCLUDE_JFR
 184 //------------------------------generate jfr runtime stubs ------
 185 void SharedRuntime::generate_jfr_stubs() {
 186   ResourceMark rm;
 187   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 188   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 189 
 190   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 191   _jfr_return_lease_blob = generate_jfr_return_lease();
 192 }
 193 
 194 #endif // INCLUDE_JFR
 195 
 196 #include <math.h>
 197 
 198 // Implementation of SharedRuntime
 199 
 200 #ifndef PRODUCT
 201 // For statistics
 202 uint SharedRuntime::_ic_miss_ctr = 0;
 203 uint SharedRuntime::_wrong_method_ctr = 0;
 204 uint SharedRuntime::_resolve_static_ctr = 0;
 205 uint SharedRuntime::_resolve_virtual_ctr = 0;
 206 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 207 uint SharedRuntime::_implicit_null_throws = 0;
 208 uint SharedRuntime::_implicit_div0_throws = 0;
 209 
 210 int64_t SharedRuntime::_nof_normal_calls = 0;
 211 int64_t SharedRuntime::_nof_inlined_calls = 0;
 212 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 213 int64_t SharedRuntime::_nof_static_calls = 0;
 214 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 215 int64_t SharedRuntime::_nof_interface_calls = 0;
 216 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 217 
 218 uint SharedRuntime::_new_instance_ctr=0;
 219 uint SharedRuntime::_new_array_ctr=0;
 220 uint SharedRuntime::_multi2_ctr=0;
 221 uint SharedRuntime::_multi3_ctr=0;
 222 uint SharedRuntime::_multi4_ctr=0;
 223 uint SharedRuntime::_multi5_ctr=0;
 224 uint SharedRuntime::_mon_enter_stub_ctr=0;
 225 uint SharedRuntime::_mon_exit_stub_ctr=0;
 226 uint SharedRuntime::_mon_enter_ctr=0;
 227 uint SharedRuntime::_mon_exit_ctr=0;
 228 uint SharedRuntime::_partial_subtype_ctr=0;
 229 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 230 uint SharedRuntime::_jshort_array_copy_ctr=0;
 231 uint SharedRuntime::_jint_array_copy_ctr=0;
 232 uint SharedRuntime::_jlong_array_copy_ctr=0;
 233 uint SharedRuntime::_oop_array_copy_ctr=0;
 234 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 235 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 236 uint SharedRuntime::_generic_array_copy_ctr=0;
 237 uint SharedRuntime::_slow_array_copy_ctr=0;
 238 uint SharedRuntime::_find_handler_ctr=0;
 239 uint SharedRuntime::_rethrow_ctr=0;
 240 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 241 
 242 int     SharedRuntime::_ICmiss_index                    = 0;
 243 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 244 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 245 
 246 
 247 void SharedRuntime::trace_ic_miss(address at) {
 248   for (int i = 0; i < _ICmiss_index; i++) {
 249     if (_ICmiss_at[i] == at) {
 250       _ICmiss_count[i]++;
 251       return;
 252     }
 253   }
 254   int index = _ICmiss_index++;
 255   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 256   _ICmiss_at[index] = at;
 257   _ICmiss_count[index] = 1;
 258 }
 259 
 260 void SharedRuntime::print_ic_miss_histogram() {
 261   if (ICMissHistogram) {
 262     tty->print_cr("IC Miss Histogram:");
 263     int tot_misses = 0;
 264     for (int i = 0; i < _ICmiss_index; i++) {
 265       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 266       tot_misses += _ICmiss_count[i];
 267     }
 268     tty->print_cr("Total IC misses: %7d", tot_misses);
 269   }
 270 }
 271 
 272 #ifdef COMPILER2
 273 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 274 void SharedRuntime::debug_print_value(jboolean x) {
 275   tty->print_cr("boolean %d", x);
 276 }
 277 
 278 void SharedRuntime::debug_print_value(jbyte x) {
 279   tty->print_cr("byte %d", x);
 280 }
 281 
 282 void SharedRuntime::debug_print_value(jshort x) {
 283   tty->print_cr("short %d", x);
 284 }
 285 
 286 void SharedRuntime::debug_print_value(jchar x) {
 287   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 288 }
 289 
 290 void SharedRuntime::debug_print_value(jint x) {
 291   tty->print_cr("int %d", x);
 292 }
 293 
 294 void SharedRuntime::debug_print_value(jlong x) {
 295   tty->print_cr("long " JLONG_FORMAT, x);
 296 }
 297 
 298 void SharedRuntime::debug_print_value(jfloat x) {
 299   tty->print_cr("float %f", x);
 300 }
 301 
 302 void SharedRuntime::debug_print_value(jdouble x) {
 303   tty->print_cr("double %lf", x);
 304 }
 305 
 306 void SharedRuntime::debug_print_value(oopDesc* x) {
 307   x->print();
 308 }
 309 #endif // COMPILER2
 310 
 311 #endif // PRODUCT
 312 
 313 
 314 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 315   return x * y;
 316 JRT_END
 317 
 318 
 319 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 320   if (x == min_jlong && y == CONST64(-1)) {
 321     return x;
 322   } else {
 323     return x / y;
 324   }
 325 JRT_END
 326 
 327 
 328 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 329   if (x == min_jlong && y == CONST64(-1)) {
 330     return 0;
 331   } else {
 332     return x % y;
 333   }
 334 JRT_END
 335 
 336 
 337 #ifdef _WIN64
 338 const juint  float_sign_mask  = 0x7FFFFFFF;
 339 const juint  float_infinity   = 0x7F800000;
 340 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 341 const julong double_infinity  = CONST64(0x7FF0000000000000);
 342 #endif
 343 
 344 #if !defined(X86)
 345 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 346 #ifdef _WIN64
 347   // 64-bit Windows on amd64 returns the wrong values for
 348   // infinity operands.
 349   juint xbits = PrimitiveConversions::cast<juint>(x);
 350   juint ybits = PrimitiveConversions::cast<juint>(y);
 351   // x Mod Infinity == x unless x is infinity
 352   if (((xbits & float_sign_mask) != float_infinity) &&
 353        ((ybits & float_sign_mask) == float_infinity) ) {
 354     return x;
 355   }
 356   return ((jfloat)fmod_winx64((double)x, (double)y));
 357 #else
 358   return ((jfloat)fmod((double)x,(double)y));
 359 #endif
 360 JRT_END
 361 
 362 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 363 #ifdef _WIN64
 364   julong xbits = PrimitiveConversions::cast<julong>(x);
 365   julong ybits = PrimitiveConversions::cast<julong>(y);
 366   // x Mod Infinity == x unless x is infinity
 367   if (((xbits & double_sign_mask) != double_infinity) &&
 368        ((ybits & double_sign_mask) == double_infinity) ) {
 369     return x;
 370   }
 371   return ((jdouble)fmod_winx64((double)x, (double)y));
 372 #else
 373   return ((jdouble)fmod((double)x,(double)y));
 374 #endif
 375 JRT_END
 376 #endif // !X86
 377 
 378 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 379   return (jfloat)x;
 380 JRT_END
 381 
 382 #ifdef __SOFTFP__
 383 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 384   return x + y;
 385 JRT_END
 386 
 387 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 388   return x - y;
 389 JRT_END
 390 
 391 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 392   return x * y;
 393 JRT_END
 394 
 395 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 396   return x / y;
 397 JRT_END
 398 
 399 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 400   return x + y;
 401 JRT_END
 402 
 403 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 404   return x - y;
 405 JRT_END
 406 
 407 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 408   return x * y;
 409 JRT_END
 410 
 411 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 412   return x / y;
 413 JRT_END
 414 
 415 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 416   return (jdouble)x;
 417 JRT_END
 418 
 419 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 420   return (jdouble)x;
 421 JRT_END
 422 
 423 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 424   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 425 JRT_END
 426 
 427 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 428   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 429 JRT_END
 430 
 431 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 432   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 433 JRT_END
 434 
 435 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 436   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 437 JRT_END
 438 
 439 // Functions to return the opposite of the aeabi functions for nan.
 440 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 441   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 442 JRT_END
 443 
 444 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 445   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 446 JRT_END
 447 
 448 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 449   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 450 JRT_END
 451 
 452 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 453   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 454 JRT_END
 455 
 456 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 457   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 458 JRT_END
 459 
 460 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 461   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 462 JRT_END
 463 
 464 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 465   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 466 JRT_END
 467 
 468 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 469   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 470 JRT_END
 471 
 472 // Intrinsics make gcc generate code for these.
 473 float  SharedRuntime::fneg(float f)   {
 474   return -f;
 475 }
 476 
 477 double SharedRuntime::dneg(double f)  {
 478   return -f;
 479 }
 480 
 481 #endif // __SOFTFP__
 482 
 483 #if defined(__SOFTFP__) || defined(E500V2)
 484 // Intrinsics make gcc generate code for these.
 485 double SharedRuntime::dabs(double f)  {
 486   return (f <= (double)0.0) ? (double)0.0 - f : f;
 487 }
 488 
 489 #endif
 490 
 491 #if defined(__SOFTFP__)
 492 double SharedRuntime::dsqrt(double f) {
 493   return sqrt(f);
 494 }
 495 #endif
 496 
 497 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 498   if (g_isnan(x))
 499     return 0;
 500   if (x >= (jfloat) max_jint)
 501     return max_jint;
 502   if (x <= (jfloat) min_jint)
 503     return min_jint;
 504   return (jint) x;
 505 JRT_END
 506 
 507 
 508 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 509   if (g_isnan(x))
 510     return 0;
 511   if (x >= (jfloat) max_jlong)
 512     return max_jlong;
 513   if (x <= (jfloat) min_jlong)
 514     return min_jlong;
 515   return (jlong) x;
 516 JRT_END
 517 
 518 
 519 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 520   if (g_isnan(x))
 521     return 0;
 522   if (x >= (jdouble) max_jint)
 523     return max_jint;
 524   if (x <= (jdouble) min_jint)
 525     return min_jint;
 526   return (jint) x;
 527 JRT_END
 528 
 529 
 530 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 531   if (g_isnan(x))
 532     return 0;
 533   if (x >= (jdouble) max_jlong)
 534     return max_jlong;
 535   if (x <= (jdouble) min_jlong)
 536     return min_jlong;
 537   return (jlong) x;
 538 JRT_END
 539 
 540 
 541 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 542   return (jfloat)x;
 543 JRT_END
 544 
 545 
 546 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 547   return (jfloat)x;
 548 JRT_END
 549 
 550 
 551 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 552   return (jdouble)x;
 553 JRT_END
 554 
 555 
 556 // Exception handling across interpreter/compiler boundaries
 557 //
 558 // exception_handler_for_return_address(...) returns the continuation address.
 559 // The continuation address is the entry point of the exception handler of the
 560 // previous frame depending on the return address.
 561 
 562 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 563   // Note: This is called when we have unwound the frame of the callee that did
 564   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 565   // Notably, the stack is not walkable at this point, and hence the check must
 566   // be deferred until later. Specifically, any of the handlers returned here in
 567   // this function, will get dispatched to, and call deferred checks to
 568   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 569   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 570   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 571 
 572 #if INCLUDE_JVMCI
 573   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 574   // and other exception handler continuations do not read it
 575   current->set_exception_pc(nullptr);
 576 #endif // INCLUDE_JVMCI
 577 
 578   if (Continuation::is_return_barrier_entry(return_address)) {
 579     return StubRoutines::cont_returnBarrierExc();
 580   }
 581 
 582   // The fastest case first
 583   CodeBlob* blob = CodeCache::find_blob(return_address);
 584   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 585   if (nm != nullptr) {
 586     // native nmethods don't have exception handlers
 587     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 588     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 589     if (nm->is_deopt_pc(return_address)) {
 590       // If we come here because of a stack overflow, the stack may be
 591       // unguarded. Reguard the stack otherwise if we return to the
 592       // deopt blob and the stack bang causes a stack overflow we
 593       // crash.
 594       StackOverflow* overflow_state = current->stack_overflow_state();
 595       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 596       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 597         overflow_state->set_reserved_stack_activation(current->stack_base());
 598       }
 599       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 600       // The deferred StackWatermarkSet::after_unwind check will be performed in
 601       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 602       return SharedRuntime::deopt_blob()->unpack_with_exception();
 603     } else {
 604       // The deferred StackWatermarkSet::after_unwind check will be performed in
 605       // * OptoRuntime::handle_exception_C_helper for C2 code
 606       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 607 #ifdef COMPILER2
 608       if (nm->compiler_type() == compiler_c2) {
 609         return OptoRuntime::exception_blob()->entry_point();
 610       }
 611 #endif // COMPILER2
 612       return nm->exception_begin();
 613     }
 614   }
 615 
 616   // Entry code
 617   if (StubRoutines::returns_to_call_stub(return_address)) {
 618     // The deferred StackWatermarkSet::after_unwind check will be performed in
 619     // JavaCallWrapper::~JavaCallWrapper
 620     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 621     return StubRoutines::catch_exception_entry();
 622   }
 623   if (blob != nullptr && blob->is_upcall_stub()) {
 624     return StubRoutines::upcall_stub_exception_handler();
 625   }
 626   // Interpreted code
 627   if (Interpreter::contains(return_address)) {
 628     // The deferred StackWatermarkSet::after_unwind check will be performed in
 629     // InterpreterRuntime::exception_handler_for_exception
 630     return Interpreter::rethrow_exception_entry();
 631   }
 632 
 633   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 634   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 635 
 636 #ifndef PRODUCT
 637   { ResourceMark rm;
 638     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 639     os::print_location(tty, (intptr_t)return_address);
 640     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 641     tty->print_cr("b) other problem");
 642   }
 643 #endif // PRODUCT
 644   ShouldNotReachHere();
 645   return nullptr;
 646 }
 647 
 648 
 649 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 650   return raw_exception_handler_for_return_address(current, return_address);
 651 JRT_END
 652 
 653 
 654 address SharedRuntime::get_poll_stub(address pc) {
 655   address stub;
 656   // Look up the code blob
 657   CodeBlob *cb = CodeCache::find_blob(pc);
 658 
 659   // Should be an nmethod
 660   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 661 
 662   // Look up the relocation information
 663   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 664       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 665 
 666 #ifdef ASSERT
 667   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 668     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 669     Disassembler::decode(cb);
 670     fatal("Only polling locations are used for safepoint");
 671   }
 672 #endif
 673 
 674   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 675   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 676   if (at_poll_return) {
 677     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 678            "polling page return stub not created yet");
 679     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 680   } else if (has_wide_vectors) {
 681     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 682            "polling page vectors safepoint stub not created yet");
 683     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 684   } else {
 685     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 686            "polling page safepoint stub not created yet");
 687     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 688   }
 689   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 690                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 691                        p2i(Thread::current()),
 692                        Thread::current()->osthread()->thread_id(),
 693                        p2i(pc),
 694                        at_poll_return ? "return" : "loop",
 695                        p2i(stub));
 696   return stub;
 697 }
 698 
 699 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 700   if (JvmtiExport::can_post_on_exceptions()) {
 701     vframeStream vfst(current, true);
 702     methodHandle method = methodHandle(current, vfst.method());
 703     address bcp = method()->bcp_from(vfst.bci());
 704     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 705   }
 706 
 707 #if INCLUDE_JVMCI
 708   if (EnableJVMCI) {
 709     vframeStream vfst(current, true);
 710     methodHandle method = methodHandle(current, vfst.method());
 711     int bci = vfst.bci();
 712     MethodData* trap_mdo = method->method_data();
 713     if (trap_mdo != nullptr) {
 714       // Set exception_seen if the exceptional bytecode is an invoke
 715       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 716       if (call.is_valid()) {
 717         ResourceMark rm(current);
 718 
 719         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 720         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 721 
 722         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 723         if (pdata != nullptr && pdata->is_BitData()) {
 724           BitData* bit_data = (BitData*) pdata;
 725           bit_data->set_exception_seen();
 726         }
 727       }
 728     }
 729   }
 730 #endif
 731 
 732   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 733 }
 734 
 735 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 736   Handle h_exception = Exceptions::new_exception(current, name, message);
 737   throw_and_post_jvmti_exception(current, h_exception);
 738 }
 739 
 740 #if INCLUDE_JVMTI
 741 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 742   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 743   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 744   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 745   JNIHandles::destroy_local(vthread);
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 749   assert(hide == JNI_TRUE, "must be VTMS transition start");
 750   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 751   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 752   JNIHandles::destroy_local(vthread);
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 756   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 757   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 758   JNIHandles::destroy_local(vthread);
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 762   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 763   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 764   JNIHandles::destroy_local(vthread);
 765 JRT_END
 766 #endif // INCLUDE_JVMTI
 767 
 768 // The interpreter code to call this tracing function is only
 769 // called/generated when UL is on for redefine, class and has the right level
 770 // and tags. Since obsolete methods are never compiled, we don't have
 771 // to modify the compilers to generate calls to this function.
 772 //
 773 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 774     JavaThread* thread, Method* method))
 775   if (method->is_obsolete()) {
 776     // We are calling an obsolete method, but this is not necessarily
 777     // an error. Our method could have been redefined just after we
 778     // fetched the Method* from the constant pool.
 779     ResourceMark rm;
 780     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 781   }
 782   return 0;
 783 JRT_END
 784 
 785 // ret_pc points into caller; we are returning caller's exception handler
 786 // for given exception
 787 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 788 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 789                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 790   assert(nm != nullptr, "must exist");
 791   ResourceMark rm;
 792 
 793 #if INCLUDE_JVMCI
 794   if (nm->is_compiled_by_jvmci()) {
 795     // lookup exception handler for this pc
 796     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 797     ExceptionHandlerTable table(nm);
 798     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 799     if (t != nullptr) {
 800       return nm->code_begin() + t->pco();
 801     } else {
 802       bool make_not_entrant = true;
 803       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 804     }
 805   }
 806 #endif // INCLUDE_JVMCI
 807 
 808   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 809   // determine handler bci, if any
 810   EXCEPTION_MARK;
 811 
 812   int handler_bci = -1;
 813   int scope_depth = 0;
 814   if (!force_unwind) {
 815     int bci = sd->bci();
 816     bool recursive_exception = false;
 817     do {
 818       bool skip_scope_increment = false;
 819       // exception handler lookup
 820       Klass* ek = exception->klass();
 821       methodHandle mh(THREAD, sd->method());
 822       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 823       if (HAS_PENDING_EXCEPTION) {
 824         recursive_exception = true;
 825         // We threw an exception while trying to find the exception handler.
 826         // Transfer the new exception to the exception handle which will
 827         // be set into thread local storage, and do another lookup for an
 828         // exception handler for this exception, this time starting at the
 829         // BCI of the exception handler which caused the exception to be
 830         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 831         // argument to ensure that the correct exception is thrown (4870175).
 832         recursive_exception_occurred = true;
 833         exception = Handle(THREAD, PENDING_EXCEPTION);
 834         CLEAR_PENDING_EXCEPTION;
 835         if (handler_bci >= 0) {
 836           bci = handler_bci;
 837           handler_bci = -1;
 838           skip_scope_increment = true;
 839         }
 840       }
 841       else {
 842         recursive_exception = false;
 843       }
 844       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 845         sd = sd->sender();
 846         if (sd != nullptr) {
 847           bci = sd->bci();
 848         }
 849         ++scope_depth;
 850       }
 851     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 852   }
 853 
 854   // found handling method => lookup exception handler
 855   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 856 
 857   ExceptionHandlerTable table(nm);
 858   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 859 
 860   // If the compiler did not anticipate a recursive exception, resulting in an exception
 861   // thrown from the catch bci, then the compiled exception handler might be missing.
 862   // This is rare.  Just deoptimize and let the interpreter handle it.
 863   if (t == nullptr && recursive_exception_occurred) {
 864     bool make_not_entrant = false;
 865     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 866   }
 867 
 868   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 869     // Allow abbreviated catch tables.  The idea is to allow a method
 870     // to materialize its exceptions without committing to the exact
 871     // routing of exceptions.  In particular this is needed for adding
 872     // a synthetic handler to unlock monitors when inlining
 873     // synchronized methods since the unlock path isn't represented in
 874     // the bytecodes.
 875     t = table.entry_for(catch_pco, -1, 0);
 876   }
 877 
 878 #ifdef COMPILER1
 879   if (t == nullptr && nm->is_compiled_by_c1()) {
 880     assert(nm->unwind_handler_begin() != nullptr, "");
 881     return nm->unwind_handler_begin();
 882   }
 883 #endif
 884 
 885   if (t == nullptr) {
 886     ttyLocker ttyl;
 887     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 888     tty->print_cr("   Exception:");
 889     exception->print();
 890     tty->cr();
 891     tty->print_cr(" Compiled exception table :");
 892     table.print();
 893     nm->print();
 894     nm->print_code();
 895     guarantee(false, "missing exception handler");
 896     return nullptr;
 897   }
 898 
 899   if (handler_bci != -1) { // did we find a handler in this method?
 900     sd->method()->set_exception_handler_entered(handler_bci); // profile
 901   }
 902   return nm->code_begin() + t->pco();
 903 }
 904 
 905 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 906   // These errors occur only at call sites
 907   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 908 JRT_END
 909 
 910 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 911   // These errors occur only at call sites
 912   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 913 JRT_END
 914 
 915 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 916   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 917 JRT_END
 918 
 919 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 920   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 921 JRT_END
 922 
 923 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 924   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 925   // cache sites (when the callee activation is not yet set up) so we are at a call site
 926   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 927 JRT_END
 928 
 929 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 930   throw_StackOverflowError_common(current, false);
 931 JRT_END
 932 
 933 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 934   throw_StackOverflowError_common(current, true);
 935 JRT_END
 936 
 937 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 938   // We avoid using the normal exception construction in this case because
 939   // it performs an upcall to Java, and we're already out of stack space.
 940   JavaThread* THREAD = current; // For exception macros.
 941   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 942   oop exception_oop = k->allocate_instance(CHECK);
 943   if (delayed) {
 944     java_lang_Throwable::set_message(exception_oop,
 945                                      Universe::delayed_stack_overflow_error_message());
 946   }
 947   Handle exception (current, exception_oop);
 948   if (StackTraceInThrowable) {
 949     java_lang_Throwable::fill_in_stack_trace(exception);
 950   }
 951   // Remove the ScopedValue bindings in case we got a
 952   // StackOverflowError while we were trying to remove ScopedValue
 953   // bindings.
 954   current->clear_scopedValueBindings();
 955   // Increment counter for hs_err file reporting
 956   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 957   throw_and_post_jvmti_exception(current, exception);
 958 }
 959 
 960 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 961                                                            address pc,
 962                                                            ImplicitExceptionKind exception_kind)
 963 {
 964   address target_pc = nullptr;
 965 
 966   if (Interpreter::contains(pc)) {
 967     switch (exception_kind) {
 968       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 969       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 970       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 971       default:                      ShouldNotReachHere();
 972     }
 973   } else {
 974     switch (exception_kind) {
 975       case STACK_OVERFLOW: {
 976         // Stack overflow only occurs upon frame setup; the callee is
 977         // going to be unwound. Dispatch to a shared runtime stub
 978         // which will cause the StackOverflowError to be fabricated
 979         // and processed.
 980         // Stack overflow should never occur during deoptimization:
 981         // the compiled method bangs the stack by as much as the
 982         // interpreter would need in case of a deoptimization. The
 983         // deoptimization blob and uncommon trap blob bang the stack
 984         // in a debug VM to verify the correctness of the compiled
 985         // method stack banging.
 986         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 987         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 988         return SharedRuntime::throw_StackOverflowError_entry();
 989       }
 990 
 991       case IMPLICIT_NULL: {
 992         if (VtableStubs::contains(pc)) {
 993           // We haven't yet entered the callee frame. Fabricate an
 994           // exception and begin dispatching it in the caller. Since
 995           // the caller was at a call site, it's safe to destroy all
 996           // caller-saved registers, as these entry points do.
 997           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 998 
 999           // If vt_stub is null, then return null to signal handler to report the SEGV error.
1000           if (vt_stub == nullptr) return nullptr;
1001 
1002           if (vt_stub->is_abstract_method_error(pc)) {
1003             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1004             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1005             // Instead of throwing the abstract method error here directly, we re-resolve
1006             // and will throw the AbstractMethodError during resolve. As a result, we'll
1007             // get a more detailed error message.
1008             return SharedRuntime::get_handle_wrong_method_stub();
1009           } else {
1010             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1011             // Assert that the signal comes from the expected location in stub code.
1012             assert(vt_stub->is_null_pointer_exception(pc),
1013                    "obtained signal from unexpected location in stub code");
1014             return SharedRuntime::throw_NullPointerException_at_call_entry();
1015           }
1016         } else {
1017           CodeBlob* cb = CodeCache::find_blob(pc);
1018 
1019           // If code blob is null, then return null to signal handler to report the SEGV error.
1020           if (cb == nullptr) return nullptr;
1021 
1022           // Exception happened in CodeCache. Must be either:
1023           // 1. Inline-cache check in C2I handler blob,
1024           // 2. Inline-cache check in nmethod, or
1025           // 3. Implicit null exception in nmethod
1026 
1027           if (!cb->is_nmethod()) {
1028             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1029             if (!is_in_blob) {
1030               // Allow normal crash reporting to handle this
1031               return nullptr;
1032             }
1033             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1034             // There is no handler here, so we will simply unwind.
1035             return SharedRuntime::throw_NullPointerException_at_call_entry();
1036           }
1037 
1038           // Otherwise, it's a compiled method.  Consult its exception handlers.
1039           nmethod* nm = cb->as_nmethod();
1040           if (nm->inlinecache_check_contains(pc)) {
1041             // exception happened inside inline-cache check code
1042             // => the nmethod is not yet active (i.e., the frame
1043             // is not set up yet) => use return address pushed by
1044             // caller => don't push another return address
1045             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1046             return SharedRuntime::throw_NullPointerException_at_call_entry();
1047           }
1048 
1049           if (nm->method()->is_method_handle_intrinsic()) {
1050             // exception happened inside MH dispatch code, similar to a vtable stub
1051             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1052             return SharedRuntime::throw_NullPointerException_at_call_entry();
1053           }
1054 
1055 #ifndef PRODUCT
1056           _implicit_null_throws++;
1057 #endif
1058           target_pc = nm->continuation_for_implicit_null_exception(pc);
1059           // If there's an unexpected fault, target_pc might be null,
1060           // in which case we want to fall through into the normal
1061           // error handling code.
1062         }
1063 
1064         break; // fall through
1065       }
1066 
1067 
1068       case IMPLICIT_DIVIDE_BY_ZERO: {
1069         nmethod* nm = CodeCache::find_nmethod(pc);
1070         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1071 #ifndef PRODUCT
1072         _implicit_div0_throws++;
1073 #endif
1074         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1075         // If there's an unexpected fault, target_pc might be null,
1076         // in which case we want to fall through into the normal
1077         // error handling code.
1078         break; // fall through
1079       }
1080 
1081       default: ShouldNotReachHere();
1082     }
1083 
1084     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1085 
1086     if (exception_kind == IMPLICIT_NULL) {
1087 #ifndef PRODUCT
1088       // for AbortVMOnException flag
1089       Exceptions::debug_check_abort("java.lang.NullPointerException");
1090 #endif //PRODUCT
1091       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1092     } else {
1093 #ifndef PRODUCT
1094       // for AbortVMOnException flag
1095       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1096 #endif //PRODUCT
1097       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1098     }
1099     return target_pc;
1100   }
1101 
1102   ShouldNotReachHere();
1103   return nullptr;
1104 }
1105 
1106 
1107 /**
1108  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1109  * installed in the native function entry of all native Java methods before
1110  * they get linked to their actual native methods.
1111  *
1112  * \note
1113  * This method actually never gets called!  The reason is because
1114  * the interpreter's native entries call NativeLookup::lookup() which
1115  * throws the exception when the lookup fails.  The exception is then
1116  * caught and forwarded on the return from NativeLookup::lookup() call
1117  * before the call to the native function.  This might change in the future.
1118  */
1119 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1120 {
1121   // We return a bad value here to make sure that the exception is
1122   // forwarded before we look at the return value.
1123   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1124 }
1125 JNI_END
1126 
1127 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1128   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1129 }
1130 
1131 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1132 #if INCLUDE_JVMCI
1133   if (!obj->klass()->has_finalizer()) {
1134     return;
1135   }
1136 #endif // INCLUDE_JVMCI
1137   assert(oopDesc::is_oop(obj), "must be a valid oop");
1138   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1139   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1140 JRT_END
1141 
1142 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1143   assert(thread != nullptr, "No thread");
1144   if (thread == nullptr) {
1145     return 0;
1146   }
1147   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1148             "current cannot touch oops after its GC barrier is detached.");
1149   oop obj = thread->threadObj();
1150   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1151 }
1152 
1153 /**
1154  * This function ought to be a void function, but cannot be because
1155  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1156  * 6254741.  Once that is fixed we can remove the dummy return value.
1157  */
1158 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1159   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1160 }
1161 
1162 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1163   return dtrace_object_alloc(thread, o, o->size());
1164 }
1165 
1166 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1167   assert(DTraceAllocProbes, "wrong call");
1168   Klass* klass = o->klass();
1169   Symbol* name = klass->name();
1170   HOTSPOT_OBJECT_ALLOC(
1171                    get_java_tid(thread),
1172                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1173   return 0;
1174 }
1175 
1176 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1177     JavaThread* current, Method* method))
1178   assert(current == JavaThread::current(), "pre-condition");
1179 
1180   assert(DTraceMethodProbes, "wrong call");
1181   Symbol* kname = method->klass_name();
1182   Symbol* name = method->name();
1183   Symbol* sig = method->signature();
1184   HOTSPOT_METHOD_ENTRY(
1185       get_java_tid(current),
1186       (char *) kname->bytes(), kname->utf8_length(),
1187       (char *) name->bytes(), name->utf8_length(),
1188       (char *) sig->bytes(), sig->utf8_length());
1189   return 0;
1190 JRT_END
1191 
1192 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1193     JavaThread* current, Method* method))
1194   assert(current == JavaThread::current(), "pre-condition");
1195   assert(DTraceMethodProbes, "wrong call");
1196   Symbol* kname = method->klass_name();
1197   Symbol* name = method->name();
1198   Symbol* sig = method->signature();
1199   HOTSPOT_METHOD_RETURN(
1200       get_java_tid(current),
1201       (char *) kname->bytes(), kname->utf8_length(),
1202       (char *) name->bytes(), name->utf8_length(),
1203       (char *) sig->bytes(), sig->utf8_length());
1204   return 0;
1205 JRT_END
1206 
1207 
1208 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1209 // for a call current in progress, i.e., arguments has been pushed on stack
1210 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1211 // vtable updates, etc.  Caller frame must be compiled.
1212 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1213   JavaThread* current = THREAD;
1214   ResourceMark rm(current);
1215 
1216   // last java frame on stack (which includes native call frames)
1217   vframeStream vfst(current, true);  // Do not skip and javaCalls
1218 
1219   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1220 }
1221 
1222 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1223   nmethod* caller = vfst.nm();
1224 
1225   address pc = vfst.frame_pc();
1226   { // Get call instruction under lock because another thread may be busy patching it.
1227     CompiledICLocker ic_locker(caller);
1228     return caller->attached_method_before_pc(pc);
1229   }
1230   return nullptr;
1231 }
1232 
1233 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1234 // for a call current in progress, i.e., arguments has been pushed on stack
1235 // but callee has not been invoked yet.  Caller frame must be compiled.
1236 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1237                                               CallInfo& callinfo, TRAPS) {
1238   Handle receiver;
1239   Handle nullHandle;  // create a handy null handle for exception returns
1240   JavaThread* current = THREAD;
1241 
1242   assert(!vfst.at_end(), "Java frame must exist");
1243 
1244   // Find caller and bci from vframe
1245   methodHandle caller(current, vfst.method());
1246   int          bci   = vfst.bci();
1247 
1248   if (caller->is_continuation_enter_intrinsic()) {
1249     bc = Bytecodes::_invokestatic;
1250     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1251     return receiver;
1252   }
1253 
1254   Bytecode_invoke bytecode(caller, bci);
1255   int bytecode_index = bytecode.index();
1256   bc = bytecode.invoke_code();
1257 
1258   methodHandle attached_method(current, extract_attached_method(vfst));
1259   if (attached_method.not_null()) {
1260     Method* callee = bytecode.static_target(CHECK_NH);
1261     vmIntrinsics::ID id = callee->intrinsic_id();
1262     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1263     // it attaches statically resolved method to the call site.
1264     if (MethodHandles::is_signature_polymorphic(id) &&
1265         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1266       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1267 
1268       // Adjust invocation mode according to the attached method.
1269       switch (bc) {
1270         case Bytecodes::_invokevirtual:
1271           if (attached_method->method_holder()->is_interface()) {
1272             bc = Bytecodes::_invokeinterface;
1273           }
1274           break;
1275         case Bytecodes::_invokeinterface:
1276           if (!attached_method->method_holder()->is_interface()) {
1277             bc = Bytecodes::_invokevirtual;
1278           }
1279           break;
1280         case Bytecodes::_invokehandle:
1281           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1282             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1283                                               : Bytecodes::_invokevirtual;
1284           }
1285           break;
1286         default:
1287           break;
1288       }
1289     }
1290   }
1291 
1292   assert(bc != Bytecodes::_illegal, "not initialized");
1293 
1294   bool has_receiver = bc != Bytecodes::_invokestatic &&
1295                       bc != Bytecodes::_invokedynamic &&
1296                       bc != Bytecodes::_invokehandle;
1297 
1298   // Find receiver for non-static call
1299   if (has_receiver) {
1300     // This register map must be update since we need to find the receiver for
1301     // compiled frames. The receiver might be in a register.
1302     RegisterMap reg_map2(current,
1303                          RegisterMap::UpdateMap::include,
1304                          RegisterMap::ProcessFrames::include,
1305                          RegisterMap::WalkContinuation::skip);
1306     frame stubFrame   = current->last_frame();
1307     // Caller-frame is a compiled frame
1308     frame callerFrame = stubFrame.sender(&reg_map2);
1309 
1310     if (attached_method.is_null()) {
1311       Method* callee = bytecode.static_target(CHECK_NH);
1312       if (callee == nullptr) {
1313         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1314       }
1315     }
1316 
1317     // Retrieve from a compiled argument list
1318     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1319     assert(oopDesc::is_oop_or_null(receiver()), "");
1320 
1321     if (receiver.is_null()) {
1322       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1323     }
1324   }
1325 
1326   // Resolve method
1327   if (attached_method.not_null()) {
1328     // Parameterized by attached method.
1329     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1330   } else {
1331     // Parameterized by bytecode.
1332     constantPoolHandle constants(current, caller->constants());
1333     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1334   }
1335 
1336 #ifdef ASSERT
1337   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1338   if (has_receiver) {
1339     assert(receiver.not_null(), "should have thrown exception");
1340     Klass* receiver_klass = receiver->klass();
1341     Klass* rk = nullptr;
1342     if (attached_method.not_null()) {
1343       // In case there's resolved method attached, use its holder during the check.
1344       rk = attached_method->method_holder();
1345     } else {
1346       // Klass is already loaded.
1347       constantPoolHandle constants(current, caller->constants());
1348       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1349     }
1350     Klass* static_receiver_klass = rk;
1351     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1352            "actual receiver must be subclass of static receiver klass");
1353     if (receiver_klass->is_instance_klass()) {
1354       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1355         tty->print_cr("ERROR: Klass not yet initialized!!");
1356         receiver_klass->print();
1357       }
1358       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1359     }
1360   }
1361 #endif
1362 
1363   return receiver;
1364 }
1365 
1366 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1367   JavaThread* current = THREAD;
1368   ResourceMark rm(current);
1369   // We need first to check if any Java activations (compiled, interpreted)
1370   // exist on the stack since last JavaCall.  If not, we need
1371   // to get the target method from the JavaCall wrapper.
1372   vframeStream vfst(current, true);  // Do not skip any javaCalls
1373   methodHandle callee_method;
1374   if (vfst.at_end()) {
1375     // No Java frames were found on stack since we did the JavaCall.
1376     // Hence the stack can only contain an entry_frame.  We need to
1377     // find the target method from the stub frame.
1378     RegisterMap reg_map(current,
1379                         RegisterMap::UpdateMap::skip,
1380                         RegisterMap::ProcessFrames::include,
1381                         RegisterMap::WalkContinuation::skip);
1382     frame fr = current->last_frame();
1383     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1384     fr = fr.sender(&reg_map);
1385     assert(fr.is_entry_frame(), "must be");
1386     // fr is now pointing to the entry frame.
1387     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1388   } else {
1389     Bytecodes::Code bc;
1390     CallInfo callinfo;
1391     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1392     callee_method = methodHandle(current, callinfo.selected_method());
1393   }
1394   assert(callee_method()->is_method(), "must be");
1395   return callee_method;
1396 }
1397 
1398 // Resolves a call.
1399 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1400   JavaThread* current = THREAD;
1401   ResourceMark rm(current);
1402   RegisterMap cbl_map(current,
1403                       RegisterMap::UpdateMap::skip,
1404                       RegisterMap::ProcessFrames::include,
1405                       RegisterMap::WalkContinuation::skip);
1406   frame caller_frame = current->last_frame().sender(&cbl_map);
1407 
1408   CodeBlob* caller_cb = caller_frame.cb();
1409   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1410   nmethod* caller_nm = caller_cb->as_nmethod();
1411 
1412   // determine call info & receiver
1413   // note: a) receiver is null for static calls
1414   //       b) an exception is thrown if receiver is null for non-static calls
1415   CallInfo call_info;
1416   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1417   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1418 
1419   NoSafepointVerifier nsv;
1420 
1421   methodHandle callee_method(current, call_info.selected_method());
1422 
1423   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1424          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1425          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1426          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1427          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1428 
1429   assert(!caller_nm->is_unloading(), "It should not be unloading");
1430 
1431 #ifndef PRODUCT
1432   // tracing/debugging/statistics
1433   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1434                  (is_virtual) ? (&_resolve_virtual_ctr) :
1435                                 (&_resolve_static_ctr);
1436   AtomicAccess::inc(addr);
1437 
1438   if (TraceCallFixup) {
1439     ResourceMark rm(current);
1440     tty->print("resolving %s%s (%s) call to",
1441                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1442                Bytecodes::name(invoke_code));
1443     callee_method->print_short_name(tty);
1444     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1445                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1446   }
1447 #endif
1448 
1449   if (invoke_code == Bytecodes::_invokestatic) {
1450     assert(callee_method->method_holder()->is_initialized() ||
1451            callee_method->method_holder()->is_reentrant_initialization(current),
1452            "invalid class initialization state for invoke_static");
1453     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1454       // In order to keep class initialization check, do not patch call
1455       // site for static call when the class is not fully initialized.
1456       // Proper check is enforced by call site re-resolution on every invocation.
1457       //
1458       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1459       // explicit class initialization check is put in nmethod entry (VEP).
1460       assert(callee_method->method_holder()->is_linked(), "must be");
1461       return callee_method;
1462     }
1463   }
1464 
1465 
1466   // JSR 292 key invariant:
1467   // If the resolved method is a MethodHandle invoke target, the call
1468   // site must be a MethodHandle call site, because the lambda form might tail-call
1469   // leaving the stack in a state unknown to either caller or callee
1470 
1471   // Compute entry points. The computation of the entry points is independent of
1472   // patching the call.
1473 
1474   // Make sure the callee nmethod does not get deoptimized and removed before
1475   // we are done patching the code.
1476 
1477 
1478   CompiledICLocker ml(caller_nm);
1479   if (is_virtual && !is_optimized) {
1480     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1481     inline_cache->update(&call_info, receiver->klass());
1482   } else {
1483     // Callsite is a direct call - set it to the destination method
1484     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1485     callsite->set(callee_method);
1486   }
1487 
1488   return callee_method;
1489 }
1490 
1491 // Inline caches exist only in compiled code
1492 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1493 #ifdef ASSERT
1494   RegisterMap reg_map(current,
1495                       RegisterMap::UpdateMap::skip,
1496                       RegisterMap::ProcessFrames::include,
1497                       RegisterMap::WalkContinuation::skip);
1498   frame stub_frame = current->last_frame();
1499   assert(stub_frame.is_runtime_frame(), "sanity check");
1500   frame caller_frame = stub_frame.sender(&reg_map);
1501   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1502 #endif /* ASSERT */
1503 
1504   methodHandle callee_method;
1505   JRT_BLOCK
1506     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1507     // Return Method* through TLS
1508     current->set_vm_result_metadata(callee_method());
1509   JRT_BLOCK_END
1510   // return compiled code entry point after potential safepoints
1511   return get_resolved_entry(current, callee_method);
1512 JRT_END
1513 
1514 
1515 // Handle call site that has been made non-entrant
1516 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1517   // 6243940 We might end up in here if the callee is deoptimized
1518   // as we race to call it.  We don't want to take a safepoint if
1519   // the caller was interpreted because the caller frame will look
1520   // interpreted to the stack walkers and arguments are now
1521   // "compiled" so it is much better to make this transition
1522   // invisible to the stack walking code. The i2c path will
1523   // place the callee method in the callee_target. It is stashed
1524   // there because if we try and find the callee by normal means a
1525   // safepoint is possible and have trouble gc'ing the compiled args.
1526   RegisterMap reg_map(current,
1527                       RegisterMap::UpdateMap::skip,
1528                       RegisterMap::ProcessFrames::include,
1529                       RegisterMap::WalkContinuation::skip);
1530   frame stub_frame = current->last_frame();
1531   assert(stub_frame.is_runtime_frame(), "sanity check");
1532   frame caller_frame = stub_frame.sender(&reg_map);
1533 
1534   if (caller_frame.is_interpreted_frame() ||
1535       caller_frame.is_entry_frame() ||
1536       caller_frame.is_upcall_stub_frame()) {
1537     Method* callee = current->callee_target();
1538     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1539     current->set_vm_result_metadata(callee);
1540     current->set_callee_target(nullptr);
1541     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1542       // Bypass class initialization checks in c2i when caller is in native.
1543       // JNI calls to static methods don't have class initialization checks.
1544       // Fast class initialization checks are present in c2i adapters and call into
1545       // SharedRuntime::handle_wrong_method() on the slow path.
1546       //
1547       // JVM upcalls may land here as well, but there's a proper check present in
1548       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1549       // so bypassing it in c2i adapter is benign.
1550       return callee->get_c2i_no_clinit_check_entry();
1551     } else {
1552       return callee->get_c2i_entry();
1553     }
1554   }
1555 
1556   // Must be compiled to compiled path which is safe to stackwalk
1557   methodHandle callee_method;
1558   JRT_BLOCK
1559     // Force resolving of caller (if we called from compiled frame)
1560     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1561     current->set_vm_result_metadata(callee_method());
1562   JRT_BLOCK_END
1563   // return compiled code entry point after potential safepoints
1564   return get_resolved_entry(current, callee_method);
1565 JRT_END
1566 
1567 // Handle abstract method call
1568 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1569   // Verbose error message for AbstractMethodError.
1570   // Get the called method from the invoke bytecode.
1571   vframeStream vfst(current, true);
1572   assert(!vfst.at_end(), "Java frame must exist");
1573   methodHandle caller(current, vfst.method());
1574   Bytecode_invoke invoke(caller, vfst.bci());
1575   DEBUG_ONLY( invoke.verify(); )
1576 
1577   // Find the compiled caller frame.
1578   RegisterMap reg_map(current,
1579                       RegisterMap::UpdateMap::include,
1580                       RegisterMap::ProcessFrames::include,
1581                       RegisterMap::WalkContinuation::skip);
1582   frame stubFrame = current->last_frame();
1583   assert(stubFrame.is_runtime_frame(), "must be");
1584   frame callerFrame = stubFrame.sender(&reg_map);
1585   assert(callerFrame.is_compiled_frame(), "must be");
1586 
1587   // Install exception and return forward entry.
1588   address res = SharedRuntime::throw_AbstractMethodError_entry();
1589   JRT_BLOCK
1590     methodHandle callee(current, invoke.static_target(current));
1591     if (!callee.is_null()) {
1592       oop recv = callerFrame.retrieve_receiver(&reg_map);
1593       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1594       res = StubRoutines::forward_exception_entry();
1595       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1596     }
1597   JRT_BLOCK_END
1598   return res;
1599 JRT_END
1600 
1601 // return verified_code_entry if interp_only_mode is not set for the current thread;
1602 // otherwise return c2i entry.
1603 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1604   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1605     // In interp_only_mode we need to go to the interpreted entry
1606     // The c2i won't patch in this mode -- see fixup_callers_callsite
1607     return callee_method->get_c2i_entry();
1608   }
1609   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1610   return callee_method->verified_code_entry();
1611 }
1612 
1613 // resolve a static call and patch code
1614 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1615   methodHandle callee_method;
1616   bool enter_special = false;
1617   JRT_BLOCK
1618     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1619     current->set_vm_result_metadata(callee_method());
1620   JRT_BLOCK_END
1621   // return compiled code entry point after potential safepoints
1622   return get_resolved_entry(current, callee_method);
1623 JRT_END
1624 
1625 // resolve virtual call and update inline cache to monomorphic
1626 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1627   methodHandle callee_method;
1628   JRT_BLOCK
1629     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1630     current->set_vm_result_metadata(callee_method());
1631   JRT_BLOCK_END
1632   // return compiled code entry point after potential safepoints
1633   return get_resolved_entry(current, callee_method);
1634 JRT_END
1635 
1636 
1637 // Resolve a virtual call that can be statically bound (e.g., always
1638 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1639 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1640   methodHandle callee_method;
1641   JRT_BLOCK
1642     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1643     current->set_vm_result_metadata(callee_method());
1644   JRT_BLOCK_END
1645   // return compiled code entry point after potential safepoints
1646   return get_resolved_entry(current, callee_method);
1647 JRT_END
1648 
1649 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1650   JavaThread* current = THREAD;
1651   ResourceMark rm(current);
1652   CallInfo call_info;
1653   Bytecodes::Code bc;
1654 
1655   // receiver is null for static calls. An exception is thrown for null
1656   // receivers for non-static calls
1657   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1658 
1659   methodHandle callee_method(current, call_info.selected_method());
1660 
1661 #ifndef PRODUCT
1662   AtomicAccess::inc(&_ic_miss_ctr);
1663 
1664   // Statistics & Tracing
1665   if (TraceCallFixup) {
1666     ResourceMark rm(current);
1667     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1668     callee_method->print_short_name(tty);
1669     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1670   }
1671 
1672   if (ICMissHistogram) {
1673     MutexLocker m(VMStatistic_lock);
1674     RegisterMap reg_map(current,
1675                         RegisterMap::UpdateMap::skip,
1676                         RegisterMap::ProcessFrames::include,
1677                         RegisterMap::WalkContinuation::skip);
1678     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1679     // produce statistics under the lock
1680     trace_ic_miss(f.pc());
1681   }
1682 #endif
1683 
1684   // install an event collector so that when a vtable stub is created the
1685   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1686   // event can't be posted when the stub is created as locks are held
1687   // - instead the event will be deferred until the event collector goes
1688   // out of scope.
1689   JvmtiDynamicCodeEventCollector event_collector;
1690 
1691   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1692   RegisterMap reg_map(current,
1693                       RegisterMap::UpdateMap::skip,
1694                       RegisterMap::ProcessFrames::include,
1695                       RegisterMap::WalkContinuation::skip);
1696   frame caller_frame = current->last_frame().sender(&reg_map);
1697   CodeBlob* cb = caller_frame.cb();
1698   nmethod* caller_nm = cb->as_nmethod();
1699 
1700   CompiledICLocker ml(caller_nm);
1701   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1702   inline_cache->update(&call_info, receiver()->klass());
1703 
1704   return callee_method;
1705 }
1706 
1707 //
1708 // Resets a call-site in compiled code so it will get resolved again.
1709 // This routines handles both virtual call sites, optimized virtual call
1710 // sites, and static call sites. Typically used to change a call sites
1711 // destination from compiled to interpreted.
1712 //
1713 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1714   JavaThread* current = THREAD;
1715   ResourceMark rm(current);
1716   RegisterMap reg_map(current,
1717                       RegisterMap::UpdateMap::skip,
1718                       RegisterMap::ProcessFrames::include,
1719                       RegisterMap::WalkContinuation::skip);
1720   frame stub_frame = current->last_frame();
1721   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1722   frame caller = stub_frame.sender(&reg_map);
1723 
1724   // Do nothing if the frame isn't a live compiled frame.
1725   // nmethod could be deoptimized by the time we get here
1726   // so no update to the caller is needed.
1727 
1728   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1729       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1730 
1731     address pc = caller.pc();
1732 
1733     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1734     assert(caller_nm != nullptr, "did not find caller nmethod");
1735 
1736     // Default call_addr is the location of the "basic" call.
1737     // Determine the address of the call we a reresolving. With
1738     // Inline Caches we will always find a recognizable call.
1739     // With Inline Caches disabled we may or may not find a
1740     // recognizable call. We will always find a call for static
1741     // calls and for optimized virtual calls. For vanilla virtual
1742     // calls it depends on the state of the UseInlineCaches switch.
1743     //
1744     // With Inline Caches disabled we can get here for a virtual call
1745     // for two reasons:
1746     //   1 - calling an abstract method. The vtable for abstract methods
1747     //       will run us thru handle_wrong_method and we will eventually
1748     //       end up in the interpreter to throw the ame.
1749     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1750     //       call and between the time we fetch the entry address and
1751     //       we jump to it the target gets deoptimized. Similar to 1
1752     //       we will wind up in the interprter (thru a c2i with c2).
1753     //
1754     CompiledICLocker ml(caller_nm);
1755     address call_addr = caller_nm->call_instruction_address(pc);
1756 
1757     if (call_addr != nullptr) {
1758       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1759       // bytes back in the instruction stream so we must also check for reloc info.
1760       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1761       bool ret = iter.next(); // Get item
1762       if (ret) {
1763         switch (iter.type()) {
1764           case relocInfo::static_call_type:
1765           case relocInfo::opt_virtual_call_type: {
1766             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1767             cdc->set_to_clean();
1768             break;
1769           }
1770 
1771           case relocInfo::virtual_call_type: {
1772             // compiled, dispatched call (which used to call an interpreted method)
1773             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1774             inline_cache->set_to_clean();
1775             break;
1776           }
1777           default:
1778             break;
1779         }
1780       }
1781     }
1782   }
1783 
1784   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1785 
1786 
1787 #ifndef PRODUCT
1788   AtomicAccess::inc(&_wrong_method_ctr);
1789 
1790   if (TraceCallFixup) {
1791     ResourceMark rm(current);
1792     tty->print("handle_wrong_method reresolving call to");
1793     callee_method->print_short_name(tty);
1794     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1795   }
1796 #endif
1797 
1798   return callee_method;
1799 }
1800 
1801 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1802   // The faulting unsafe accesses should be changed to throw the error
1803   // synchronously instead. Meanwhile the faulting instruction will be
1804   // skipped over (effectively turning it into a no-op) and an
1805   // asynchronous exception will be raised which the thread will
1806   // handle at a later point. If the instruction is a load it will
1807   // return garbage.
1808 
1809   // Request an async exception.
1810   thread->set_pending_unsafe_access_error();
1811 
1812   // Return address of next instruction to execute.
1813   return next_pc;
1814 }
1815 
1816 #ifdef ASSERT
1817 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1818                                                                 const BasicType* sig_bt,
1819                                                                 const VMRegPair* regs) {
1820   ResourceMark rm;
1821   const int total_args_passed = method->size_of_parameters();
1822   const VMRegPair*    regs_with_member_name = regs;
1823         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1824 
1825   const int member_arg_pos = total_args_passed - 1;
1826   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1827   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1828 
1829   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1830 
1831   for (int i = 0; i < member_arg_pos; i++) {
1832     VMReg a =    regs_with_member_name[i].first();
1833     VMReg b = regs_without_member_name[i].first();
1834     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1835   }
1836   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1837 }
1838 #endif
1839 
1840 // ---------------------------------------------------------------------------
1841 // We are calling the interpreter via a c2i. Normally this would mean that
1842 // we were called by a compiled method. However we could have lost a race
1843 // where we went int -> i2c -> c2i and so the caller could in fact be
1844 // interpreted. If the caller is compiled we attempt to patch the caller
1845 // so he no longer calls into the interpreter.
1846 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1847   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1848 
1849   // It's possible that deoptimization can occur at a call site which hasn't
1850   // been resolved yet, in which case this function will be called from
1851   // an nmethod that has been patched for deopt and we can ignore the
1852   // request for a fixup.
1853   // Also it is possible that we lost a race in that from_compiled_entry
1854   // is now back to the i2c in that case we don't need to patch and if
1855   // we did we'd leap into space because the callsite needs to use
1856   // "to interpreter" stub in order to load up the Method*. Don't
1857   // ask me how I know this...
1858 
1859   // Result from nmethod::is_unloading is not stable across safepoints.
1860   NoSafepointVerifier nsv;
1861 
1862   nmethod* callee = method->code();
1863   if (callee == nullptr) {
1864     return;
1865   }
1866 
1867   // write lock needed because we might patch call site by set_to_clean()
1868   // and is_unloading() can modify nmethod's state
1869   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1870 
1871   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1872   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1873     return;
1874   }
1875 
1876   // The check above makes sure this is an nmethod.
1877   nmethod* caller = cb->as_nmethod();
1878 
1879   // Get the return PC for the passed caller PC.
1880   address return_pc = caller_pc + frame::pc_return_offset;
1881 
1882   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1883     return;
1884   }
1885 
1886   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1887   CompiledICLocker ic_locker(caller);
1888   ResourceMark rm;
1889 
1890   // If we got here through a static call or opt_virtual call, then we know where the
1891   // call address would be; let's peek at it
1892   address callsite_addr = (address)nativeCall_before(return_pc);
1893   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1894   if (!iter.next()) {
1895     // No reloc entry found; not a static or optimized virtual call
1896     return;
1897   }
1898 
1899   relocInfo::relocType type = iter.reloc()->type();
1900   if (type != relocInfo::static_call_type &&
1901       type != relocInfo::opt_virtual_call_type) {
1902     return;
1903   }
1904 
1905   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1906   callsite->set_to_clean();
1907 JRT_END
1908 
1909 
1910 // same as JVM_Arraycopy, but called directly from compiled code
1911 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1912                                                 oopDesc* dest, jint dest_pos,
1913                                                 jint length,
1914                                                 JavaThread* current)) {
1915 #ifndef PRODUCT
1916   _slow_array_copy_ctr++;
1917 #endif
1918   // Check if we have null pointers
1919   if (src == nullptr || dest == nullptr) {
1920     THROW(vmSymbols::java_lang_NullPointerException());
1921   }
1922   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1923   // even though the copy_array API also performs dynamic checks to ensure
1924   // that src and dest are truly arrays (and are conformable).
1925   // The copy_array mechanism is awkward and could be removed, but
1926   // the compilers don't call this function except as a last resort,
1927   // so it probably doesn't matter.
1928   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1929                                         (arrayOopDesc*)dest, dest_pos,
1930                                         length, current);
1931 }
1932 JRT_END
1933 
1934 // The caller of generate_class_cast_message() (or one of its callers)
1935 // must use a ResourceMark in order to correctly free the result.
1936 char* SharedRuntime::generate_class_cast_message(
1937     JavaThread* thread, Klass* caster_klass) {
1938 
1939   // Get target class name from the checkcast instruction
1940   vframeStream vfst(thread, true);
1941   assert(!vfst.at_end(), "Java frame must exist");
1942   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1943   constantPoolHandle cpool(thread, vfst.method()->constants());
1944   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1945   Symbol* target_klass_name = nullptr;
1946   if (target_klass == nullptr) {
1947     // This klass should be resolved, but just in case, get the name in the klass slot.
1948     target_klass_name = cpool->klass_name_at(cc.index());
1949   }
1950   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1951 }
1952 
1953 
1954 // The caller of generate_class_cast_message() (or one of its callers)
1955 // must use a ResourceMark in order to correctly free the result.
1956 char* SharedRuntime::generate_class_cast_message(
1957     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1958   const char* caster_name = caster_klass->external_name();
1959 
1960   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1961   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1962                                                    target_klass->external_name();
1963 
1964   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1965 
1966   const char* caster_klass_description = "";
1967   const char* target_klass_description = "";
1968   const char* klass_separator = "";
1969   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1970     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1971   } else {
1972     caster_klass_description = caster_klass->class_in_module_of_loader();
1973     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1974     klass_separator = (target_klass != nullptr) ? "; " : "";
1975   }
1976 
1977   // add 3 for parenthesis and preceding space
1978   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1979 
1980   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1981   if (message == nullptr) {
1982     // Shouldn't happen, but don't cause even more problems if it does
1983     message = const_cast<char*>(caster_klass->external_name());
1984   } else {
1985     jio_snprintf(message,
1986                  msglen,
1987                  "class %s cannot be cast to class %s (%s%s%s)",
1988                  caster_name,
1989                  target_name,
1990                  caster_klass_description,
1991                  klass_separator,
1992                  target_klass_description
1993                  );
1994   }
1995   return message;
1996 }
1997 
1998 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1999   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2000 JRT_END
2001 
2002 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2003   if (!SafepointSynchronize::is_synchronizing()) {
2004     // Only try quick_enter() if we're not trying to reach a safepoint
2005     // so that the calling thread reaches the safepoint more quickly.
2006     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2007       return;
2008     }
2009   }
2010   // NO_ASYNC required because an async exception on the state transition destructor
2011   // would leave you with the lock held and it would never be released.
2012   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2013   // and the model is that an exception implies the method failed.
2014   JRT_BLOCK_NO_ASYNC
2015   Handle h_obj(THREAD, obj);
2016   ObjectSynchronizer::enter(h_obj, lock, current);
2017   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2018   JRT_BLOCK_END
2019 }
2020 
2021 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2022 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2023   SharedRuntime::monitor_enter_helper(obj, lock, current);
2024 JRT_END
2025 
2026 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2027   assert(JavaThread::current() == current, "invariant");
2028   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2029   ExceptionMark em(current);
2030 
2031   // Check if C2_MacroAssembler::fast_unlock() or
2032   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2033   // monitor before going slow path.  Since there is no safepoint
2034   // polling when calling into the VM, we can be sure that the monitor
2035   // hasn't been deallocated.
2036   ObjectMonitor* m = current->unlocked_inflated_monitor();
2037   if (m != nullptr) {
2038     assert(!m->has_owner(current), "must be");
2039     current->clear_unlocked_inflated_monitor();
2040 
2041     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2042     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2043       // Some other thread acquired the lock (or the monitor was
2044       // deflated). Either way we are done.
2045       return;
2046     }
2047   }
2048 
2049   // The object could become unlocked through a JNI call, which we have no other checks for.
2050   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2051   if (obj->is_unlocked()) {
2052     if (CheckJNICalls) {
2053       fatal("Object has been unlocked by JNI");
2054     }
2055     return;
2056   }
2057   ObjectSynchronizer::exit(obj, lock, current);
2058 }
2059 
2060 // Handles the uncommon cases of monitor unlocking in compiled code
2061 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2062   assert(current == JavaThread::current(), "pre-condition");
2063   SharedRuntime::monitor_exit_helper(obj, lock, current);
2064 JRT_END
2065 
2066 #ifndef PRODUCT
2067 
2068 void SharedRuntime::print_statistics() {
2069   ttyLocker ttyl;
2070   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2071 
2072   SharedRuntime::print_ic_miss_histogram();
2073 
2074   // Dump the JRT_ENTRY counters
2075   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2076   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2077   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2078   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2079   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2080   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2081 
2082   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2083   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2084   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2085   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2086   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2087 
2088   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2089   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2090   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2091   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2092   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2093   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2094   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2095   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2096   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2097   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2098   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2099   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2100   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2101   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2102   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2103   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2104   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2105 
2106   AdapterHandlerLibrary::print_statistics();
2107 
2108   if (xtty != nullptr)  xtty->tail("statistics");
2109 }
2110 
2111 inline double percent(int64_t x, int64_t y) {
2112   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2113 }
2114 
2115 class MethodArityHistogram {
2116  public:
2117   enum { MAX_ARITY = 256 };
2118  private:
2119   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2120   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2121   static uint64_t _total_compiled_calls;
2122   static uint64_t _max_compiled_calls_per_method;
2123   static int _max_arity;                       // max. arity seen
2124   static int _max_size;                        // max. arg size seen
2125 
2126   static void add_method_to_histogram(nmethod* nm) {
2127     Method* method = (nm == nullptr) ? nullptr : nm->method();
2128     if (method != nullptr) {
2129       ArgumentCount args(method->signature());
2130       int arity   = args.size() + (method->is_static() ? 0 : 1);
2131       int argsize = method->size_of_parameters();
2132       arity   = MIN2(arity, MAX_ARITY-1);
2133       argsize = MIN2(argsize, MAX_ARITY-1);
2134       uint64_t count = (uint64_t)method->compiled_invocation_count();
2135       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2136       _total_compiled_calls    += count;
2137       _arity_histogram[arity]  += count;
2138       _size_histogram[argsize] += count;
2139       _max_arity = MAX2(_max_arity, arity);
2140       _max_size  = MAX2(_max_size, argsize);
2141     }
2142   }
2143 
2144   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2145     const int N = MIN2(9, n);
2146     double sum = 0;
2147     double weighted_sum = 0;
2148     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2149     if (sum >= 1) { // prevent divide by zero or divide overflow
2150       double rest = sum;
2151       double percent = sum / 100;
2152       for (int i = 0; i <= N; i++) {
2153         rest -= (double)histo[i];
2154         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2155       }
2156       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2157       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2158       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2159       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2160     } else {
2161       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2162     }
2163   }
2164 
2165   void print_histogram() {
2166     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2167     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2168     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2169     print_histogram_helper(_max_size, _size_histogram, "size");
2170     tty->cr();
2171   }
2172 
2173  public:
2174   MethodArityHistogram() {
2175     // Take the Compile_lock to protect against changes in the CodeBlob structures
2176     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2177     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2178     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2179     _max_arity = _max_size = 0;
2180     _total_compiled_calls = 0;
2181     _max_compiled_calls_per_method = 0;
2182     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2183     CodeCache::nmethods_do(add_method_to_histogram);
2184     print_histogram();
2185   }
2186 };
2187 
2188 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2189 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2190 uint64_t MethodArityHistogram::_total_compiled_calls;
2191 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2192 int MethodArityHistogram::_max_arity;
2193 int MethodArityHistogram::_max_size;
2194 
2195 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2196   tty->print_cr("Calls from compiled code:");
2197   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2198   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2199   int64_t mono_i = _nof_interface_calls;
2200   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2201   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2202   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2203   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2204   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2205   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2206   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2207   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2208   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2209   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2210   tty->cr();
2211   tty->print_cr("Note 1: counter updates are not MT-safe.");
2212   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2213   tty->print_cr("        %% in nested categories are relative to their category");
2214   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2215   tty->cr();
2216 
2217   MethodArityHistogram h;
2218 }
2219 #endif
2220 
2221 #ifndef PRODUCT
2222 static int _lookups; // number of calls to lookup
2223 static int _equals;  // number of buckets checked with matching hash
2224 static int _archived_hits; // number of successful lookups in archived table
2225 static int _runtime_hits;  // number of successful lookups in runtime table
2226 #endif
2227 
2228 // A simple wrapper class around the calling convention information
2229 // that allows sharing of adapters for the same calling convention.
2230 class AdapterFingerPrint : public MetaspaceObj {
2231  private:
2232   enum {
2233     _basic_type_bits = 4,
2234     _basic_type_mask = right_n_bits(_basic_type_bits),
2235     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2236   };
2237   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2238   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2239 
2240   int _length;
2241 
2242   static int data_offset() { return sizeof(AdapterFingerPrint); }
2243   int* data_pointer() {
2244     return (int*)((address)this + data_offset());
2245   }
2246 
2247   // Private construtor. Use allocate() to get an instance.
2248   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2249     int* data = data_pointer();
2250     // Pack the BasicTypes with 8 per int
2251     assert(len == length(total_args_passed), "sanity");
2252     _length = len;
2253     int sig_index = 0;
2254     for (int index = 0; index < _length; index++) {
2255       int value = 0;
2256       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2257         int bt = adapter_encoding(sig_bt[sig_index++]);
2258         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2259         value = (value << _basic_type_bits) | bt;
2260       }
2261       data[index] = value;
2262     }
2263   }
2264 
2265   // Call deallocate instead
2266   ~AdapterFingerPrint() {
2267     ShouldNotCallThis();
2268   }
2269 
2270   static int length(int total_args) {
2271     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2272   }
2273 
2274   static int compute_size_in_words(int len) {
2275     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2276   }
2277 
2278   // Remap BasicTypes that are handled equivalently by the adapters.
2279   // These are correct for the current system but someday it might be
2280   // necessary to make this mapping platform dependent.
2281   static int adapter_encoding(BasicType in) {
2282     switch (in) {
2283       case T_BOOLEAN:
2284       case T_BYTE:
2285       case T_SHORT:
2286       case T_CHAR:
2287         // There are all promoted to T_INT in the calling convention
2288         return T_INT;
2289 
2290       case T_OBJECT:
2291       case T_ARRAY:
2292         // In other words, we assume that any register good enough for
2293         // an int or long is good enough for a managed pointer.
2294 #ifdef _LP64
2295         return T_LONG;
2296 #else
2297         return T_INT;
2298 #endif
2299 
2300       case T_INT:
2301       case T_LONG:
2302       case T_FLOAT:
2303       case T_DOUBLE:
2304       case T_VOID:
2305         return in;
2306 
2307       default:
2308         ShouldNotReachHere();
2309         return T_CONFLICT;
2310     }
2311   }
2312 
2313   void* operator new(size_t size, size_t fp_size) throw() {
2314     assert(fp_size >= size, "sanity check");
2315     void* p = AllocateHeap(fp_size, mtCode);
2316     memset(p, 0, fp_size);
2317     return p;
2318   }
2319 
2320   template<typename Function>
2321   void iterate_args(Function function) {
2322     for (int i = 0; i < length(); i++) {
2323       unsigned val = (unsigned)value(i);
2324       // args are packed so that first/lower arguments are in the highest
2325       // bits of each int value, so iterate from highest to the lowest
2326       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2327         unsigned v = (val >> j) & _basic_type_mask;
2328         if (v == 0) {
2329           continue;
2330         }
2331         function(v);
2332       }
2333     }
2334   }
2335 
2336  public:
2337   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2338     int len = length(total_args_passed);
2339     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2340     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2341     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2342     return afp;
2343   }
2344 
2345   static void deallocate(AdapterFingerPrint* fp) {
2346     FreeHeap(fp);
2347   }
2348 
2349   int value(int index) {
2350     int* data = data_pointer();
2351     return data[index];
2352   }
2353 
2354   int length() {
2355     return _length;
2356   }
2357 
2358   unsigned int compute_hash() {
2359     int hash = 0;
2360     for (int i = 0; i < length(); i++) {
2361       int v = value(i);
2362       //Add arithmetic operation to the hash, like +3 to improve hashing
2363       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2364     }
2365     return (unsigned int)hash;
2366   }
2367 
2368   const char* as_string() {
2369     stringStream st;
2370     st.print("0x");
2371     for (int i = 0; i < length(); i++) {
2372       st.print("%x", value(i));
2373     }
2374     return st.as_string();
2375   }
2376 
2377   const char* as_basic_args_string() {
2378     stringStream st;
2379     bool long_prev = false;
2380     iterate_args([&] (int arg) {
2381       if (long_prev) {
2382         long_prev = false;
2383         if (arg == T_VOID) {
2384           st.print("J");
2385         } else {
2386           st.print("L");
2387         }
2388       }
2389       switch (arg) {
2390         case T_INT:    st.print("I");    break;
2391         case T_LONG:   long_prev = true; break;
2392         case T_FLOAT:  st.print("F");    break;
2393         case T_DOUBLE: st.print("D");    break;
2394         case T_VOID:   break;
2395         default: ShouldNotReachHere();
2396       }
2397     });
2398     if (long_prev) {
2399       st.print("L");
2400     }
2401     return st.as_string();
2402   }
2403 
2404   BasicType* as_basic_type(int& nargs) {
2405     nargs = 0;
2406     GrowableArray<BasicType> btarray;
2407     bool long_prev = false;
2408 
2409     iterate_args([&] (int arg) {
2410       if (long_prev) {
2411         long_prev = false;
2412         if (arg == T_VOID) {
2413           btarray.append(T_LONG);
2414         } else {
2415           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2416         }
2417       }
2418       switch (arg) {
2419         case T_INT: // fallthrough
2420         case T_FLOAT: // fallthrough
2421         case T_DOUBLE:
2422         case T_VOID:
2423           btarray.append((BasicType)arg);
2424           break;
2425         case T_LONG:
2426           long_prev = true;
2427           break;
2428         default: ShouldNotReachHere();
2429       }
2430     });
2431 
2432     if (long_prev) {
2433       btarray.append(T_OBJECT);
2434     }
2435 
2436     nargs = btarray.length();
2437     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2438     int index = 0;
2439     GrowableArrayIterator<BasicType> iter = btarray.begin();
2440     while (iter != btarray.end()) {
2441       sig_bt[index++] = *iter;
2442       ++iter;
2443     }
2444     assert(index == btarray.length(), "sanity check");
2445 #ifdef ASSERT
2446     {
2447       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2448       assert(this->equals(compare_fp), "sanity check");
2449       AdapterFingerPrint::deallocate(compare_fp);
2450     }
2451 #endif
2452     return sig_bt;
2453   }
2454 
2455   bool equals(AdapterFingerPrint* other) {
2456     if (other->_length != _length) {
2457       return false;
2458     } else {
2459       for (int i = 0; i < _length; i++) {
2460         if (value(i) != other->value(i)) {
2461           return false;
2462         }
2463       }
2464     }
2465     return true;
2466   }
2467 
2468   // methods required by virtue of being a MetaspaceObj
2469   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2470   int size() const { return compute_size_in_words(_length); }
2471   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2472 
2473   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2474     NOT_PRODUCT(_equals++);
2475     return fp1->equals(fp2);
2476   }
2477 
2478   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2479     return fp->compute_hash();
2480   }
2481 };
2482 
2483 #if INCLUDE_CDS
2484 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2485   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2486 }
2487 
2488 class ArchivedAdapterTable : public OffsetCompactHashtable<
2489   AdapterFingerPrint*,
2490   AdapterHandlerEntry*,
2491   adapter_fp_equals_compact_hashtable_entry> {};
2492 #endif // INCLUDE_CDS
2493 
2494 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2495 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2496                   AnyObj::C_HEAP, mtCode,
2497                   AdapterFingerPrint::compute_hash,
2498                   AdapterFingerPrint::equals>;
2499 static AdapterHandlerTable* _adapter_handler_table;
2500 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2501 
2502 // Find a entry with the same fingerprint if it exists
2503 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2504   NOT_PRODUCT(_lookups++);
2505   assert_lock_strong(AdapterHandlerLibrary_lock);
2506   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2507   AdapterHandlerEntry* entry = nullptr;
2508 #if INCLUDE_CDS
2509   // if we are building the archive then the archived adapter table is
2510   // not valid and we need to use the ones added to the runtime table
2511   if (AOTCodeCache::is_using_adapter()) {
2512     // Search archived table first. It is read-only table so can be searched without lock
2513     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2514 #ifndef PRODUCT
2515     if (entry != nullptr) {
2516       _archived_hits++;
2517     }
2518 #endif
2519   }
2520 #endif // INCLUDE_CDS
2521   if (entry == nullptr) {
2522     assert_lock_strong(AdapterHandlerLibrary_lock);
2523     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2524     if (entry_p != nullptr) {
2525       entry = *entry_p;
2526       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2527              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2528              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2529   #ifndef PRODUCT
2530       _runtime_hits++;
2531   #endif
2532     }
2533   }
2534   AdapterFingerPrint::deallocate(fp);
2535   return entry;
2536 }
2537 
2538 #ifndef PRODUCT
2539 static void print_table_statistics() {
2540   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2541     return sizeof(*key) + sizeof(*a);
2542   };
2543   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2544   ts.print(tty, "AdapterHandlerTable");
2545   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2546                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2547   int total_hits = _archived_hits + _runtime_hits;
2548   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2549                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2550 }
2551 #endif
2552 
2553 // ---------------------------------------------------------------------------
2554 // Implementation of AdapterHandlerLibrary
2555 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2556 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2557 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2558 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2559 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2560 #if INCLUDE_CDS
2561 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2562 #endif // INCLUDE_CDS
2563 static const int AdapterHandlerLibrary_size = 16*K;
2564 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2565 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2566 
2567 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2568   assert(_buffer != nullptr, "should be initialized");
2569   return _buffer;
2570 }
2571 
2572 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2573   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2574     AdapterBlob* adapter_blob = entry->adapter_blob();
2575     char blob_id[256];
2576     jio_snprintf(blob_id,
2577                  sizeof(blob_id),
2578                  "%s(%s)",
2579                  adapter_blob->name(),
2580                  entry->fingerprint()->as_string());
2581     if (Forte::is_enabled()) {
2582       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2583     }
2584 
2585     if (JvmtiExport::should_post_dynamic_code_generated()) {
2586       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2587     }
2588   }
2589 }
2590 
2591 void AdapterHandlerLibrary::initialize() {
2592   {
2593     ResourceMark rm;
2594     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2595     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2596   }
2597 
2598 #if INCLUDE_CDS
2599   // Link adapters in AOT Cache to their code in AOT Code Cache
2600   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2601     link_aot_adapters();
2602     lookup_simple_adapters();
2603     return;
2604   }
2605 #endif // INCLUDE_CDS
2606 
2607   ResourceMark rm;
2608   {
2609     MutexLocker mu(AdapterHandlerLibrary_lock);
2610 
2611     _no_arg_handler = create_adapter(0, nullptr);
2612 
2613     BasicType obj_args[] = { T_OBJECT };
2614     _obj_arg_handler = create_adapter(1, obj_args);
2615 
2616     BasicType int_args[] = { T_INT };
2617     _int_arg_handler = create_adapter(1, int_args);
2618 
2619     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2620     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2621 
2622     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2623     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2624 
2625     // we should always get an entry back but we don't have any
2626     // associated blob on Zero
2627     assert(_no_arg_handler != nullptr &&
2628            _obj_arg_handler != nullptr &&
2629            _int_arg_handler != nullptr &&
2630            _obj_int_arg_handler != nullptr &&
2631            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2632   }
2633 
2634   // Outside of the lock
2635 #ifndef ZERO
2636   // no blobs to register when we are on Zero
2637   post_adapter_creation(_no_arg_handler);
2638   post_adapter_creation(_obj_arg_handler);
2639   post_adapter_creation(_int_arg_handler);
2640   post_adapter_creation(_obj_int_arg_handler);
2641   post_adapter_creation(_obj_obj_arg_handler);
2642 #endif // ZERO
2643 }
2644 
2645 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2646   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2647   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2648   return AdapterHandlerEntry::allocate(id, fingerprint);
2649 }
2650 
2651 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2652   int total_args_passed = method->size_of_parameters(); // All args on stack
2653   if (total_args_passed == 0) {
2654     return _no_arg_handler;
2655   } else if (total_args_passed == 1) {
2656     if (!method->is_static()) {
2657       return _obj_arg_handler;
2658     }
2659     switch (method->signature()->char_at(1)) {
2660       case JVM_SIGNATURE_CLASS:
2661       case JVM_SIGNATURE_ARRAY:
2662         return _obj_arg_handler;
2663       case JVM_SIGNATURE_INT:
2664       case JVM_SIGNATURE_BOOLEAN:
2665       case JVM_SIGNATURE_CHAR:
2666       case JVM_SIGNATURE_BYTE:
2667       case JVM_SIGNATURE_SHORT:
2668         return _int_arg_handler;
2669     }
2670   } else if (total_args_passed == 2 &&
2671              !method->is_static()) {
2672     switch (method->signature()->char_at(1)) {
2673       case JVM_SIGNATURE_CLASS:
2674       case JVM_SIGNATURE_ARRAY:
2675         return _obj_obj_arg_handler;
2676       case JVM_SIGNATURE_INT:
2677       case JVM_SIGNATURE_BOOLEAN:
2678       case JVM_SIGNATURE_CHAR:
2679       case JVM_SIGNATURE_BYTE:
2680       case JVM_SIGNATURE_SHORT:
2681         return _obj_int_arg_handler;
2682     }
2683   }
2684   return nullptr;
2685 }
2686 
2687 class AdapterSignatureIterator : public SignatureIterator {
2688  private:
2689   BasicType stack_sig_bt[16];
2690   BasicType* sig_bt;
2691   int index;
2692 
2693  public:
2694   AdapterSignatureIterator(Symbol* signature,
2695                            fingerprint_t fingerprint,
2696                            bool is_static,
2697                            int total_args_passed) :
2698     SignatureIterator(signature, fingerprint),
2699     index(0)
2700   {
2701     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2702     if (!is_static) { // Pass in receiver first
2703       sig_bt[index++] = T_OBJECT;
2704     }
2705     do_parameters_on(this);
2706   }
2707 
2708   BasicType* basic_types() {
2709     return sig_bt;
2710   }
2711 
2712 #ifdef ASSERT
2713   int slots() {
2714     return index;
2715   }
2716 #endif
2717 
2718  private:
2719 
2720   friend class SignatureIterator;  // so do_parameters_on can call do_type
2721   void do_type(BasicType type) {
2722     sig_bt[index++] = type;
2723     if (type == T_LONG || type == T_DOUBLE) {
2724       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2725     }
2726   }
2727 };
2728 
2729 
2730 const char* AdapterHandlerEntry::_entry_names[] = {
2731   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2732 };
2733 
2734 #ifdef ASSERT
2735 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2736   // we can only check for the same code if there is any
2737 #ifndef ZERO
2738   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2739   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2740   assert(comparison_entry->compare_code(cached_entry), "code must match");
2741   // Release the one just created
2742   AdapterHandlerEntry::deallocate(comparison_entry);
2743 # endif // ZERO
2744 }
2745 #endif /* ASSERT*/
2746 
2747 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2748   assert(!method->is_abstract(), "abstract methods do not have adapters");
2749   // Use customized signature handler.  Need to lock around updates to
2750   // the _adapter_handler_table (it is not safe for concurrent readers
2751   // and a single writer: this could be fixed if it becomes a
2752   // problem).
2753 
2754   // Fast-path for trivial adapters
2755   AdapterHandlerEntry* entry = get_simple_adapter(method);
2756   if (entry != nullptr) {
2757     return entry;
2758   }
2759 
2760   ResourceMark rm;
2761   bool new_entry = false;
2762 
2763   // Fill in the signature array, for the calling-convention call.
2764   int total_args_passed = method->size_of_parameters(); // All args on stack
2765 
2766   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2767                               method->is_static(), total_args_passed);
2768   assert(si.slots() == total_args_passed, "");
2769   BasicType* sig_bt = si.basic_types();
2770   {
2771     MutexLocker mu(AdapterHandlerLibrary_lock);
2772 
2773     // Lookup method signature's fingerprint
2774     entry = lookup(total_args_passed, sig_bt);
2775 
2776     if (entry != nullptr) {
2777 #ifndef ZERO
2778       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2779 #endif
2780 #ifdef ASSERT
2781       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2782         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2783       }
2784 #endif
2785     } else {
2786       entry = create_adapter(total_args_passed, sig_bt);
2787       if (entry != nullptr) {
2788         new_entry = true;
2789       }
2790     }
2791   }
2792 
2793   // Outside of the lock
2794   if (new_entry) {
2795     post_adapter_creation(entry);
2796   }
2797   return entry;
2798 }
2799 
2800 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2801   ResourceMark rm;
2802   const char* name = AdapterHandlerLibrary::name(handler);
2803   const uint32_t id = AdapterHandlerLibrary::id(handler);
2804 
2805   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2806   if (blob != nullptr) {
2807     handler->set_adapter_blob(blob->as_adapter_blob());
2808   }
2809 }
2810 
2811 #ifndef PRODUCT
2812 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2813   ttyLocker ttyl;
2814   ResourceMark rm;
2815   int insts_size;
2816   // on Zero the blob may be null
2817   handler->print_adapter_on(tty);
2818   AdapterBlob* adapter_blob = handler->adapter_blob();
2819   if (adapter_blob == nullptr) {
2820     return;
2821   }
2822   insts_size = adapter_blob->code_size();
2823   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2824                 handler->fingerprint()->as_basic_args_string(),
2825                 handler->fingerprint()->as_string(), insts_size);
2826   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2827   if (Verbose || PrintStubCode) {
2828     address first_pc = adapter_blob->content_begin();
2829     if (first_pc != nullptr) {
2830       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2831       st->cr();
2832     }
2833   }
2834 }
2835 #endif // PRODUCT
2836 
2837 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2838                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2839   entry_offset[AdapterBlob::I2C] = 0;
2840   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2841   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2842   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2843     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2844   } else {
2845     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2846   }
2847 }
2848 
2849 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2850                                                   int total_args_passed,
2851                                                   BasicType* sig_bt,
2852                                                   bool is_transient) {
2853   if (log_is_enabled(Info, perf, class, link)) {
2854     ClassLoader::perf_method_adapters_count()->inc();
2855   }
2856 
2857 #ifndef ZERO
2858   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2859   CodeBuffer buffer(buf);
2860   short buffer_locs[20];
2861   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2862                                          sizeof(buffer_locs)/sizeof(relocInfo));
2863   MacroAssembler masm(&buffer);
2864   VMRegPair stack_regs[16];
2865   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2866 
2867   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2868   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2869   address entry_address[AdapterBlob::ENTRY_COUNT];
2870   SharedRuntime::generate_i2c2i_adapters(&masm,
2871                                          total_args_passed,
2872                                          comp_args_on_stack,
2873                                          sig_bt,
2874                                          regs,
2875                                          entry_address);
2876   // On zero there is no code to save and no need to create a blob and
2877   // or relocate the handler.
2878   int entry_offset[AdapterBlob::ENTRY_COUNT];
2879   address_to_offset(entry_address, entry_offset);
2880 #ifdef ASSERT
2881   if (VerifyAdapterSharing) {
2882     handler->save_code(buf->code_begin(), buffer.insts_size());
2883     if (is_transient) {
2884       return true;
2885     }
2886   }
2887 #endif
2888   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2889   if (adapter_blob == nullptr) {
2890     // CodeCache is full, disable compilation
2891     // Ought to log this but compile log is only per compile thread
2892     // and we're some non descript Java thread.
2893     return false;
2894   }
2895   handler->set_adapter_blob(adapter_blob);
2896   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2897     // try to save generated code
2898     const char* name = AdapterHandlerLibrary::name(handler);
2899     const uint32_t id = AdapterHandlerLibrary::id(handler);
2900     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2901     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2902   }
2903 #endif // ZERO
2904 
2905 #ifndef PRODUCT
2906   // debugging support
2907   if (PrintAdapterHandlers || PrintStubCode) {
2908     print_adapter_handler_info(tty, handler);
2909   }
2910 #endif
2911 
2912   return true;
2913 }
2914 
2915 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2916                                                            BasicType* sig_bt,
2917                                                            bool is_transient) {
2918   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2919   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2920   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2921     AdapterHandlerEntry::deallocate(handler);
2922     return nullptr;
2923   }
2924   if (!is_transient) {
2925     assert_lock_strong(AdapterHandlerLibrary_lock);
2926     _adapter_handler_table->put(fp, handler);
2927   }
2928   return handler;
2929 }
2930 
2931 #if INCLUDE_CDS
2932 void AdapterHandlerEntry::remove_unshareable_info() {
2933 #ifdef ASSERT
2934    _saved_code = nullptr;
2935    _saved_code_length = 0;
2936 #endif // ASSERT
2937    _adapter_blob = nullptr;
2938    _linked = false;
2939 }
2940 
2941 class CopyAdapterTableToArchive : StackObj {
2942 private:
2943   CompactHashtableWriter* _writer;
2944   ArchiveBuilder* _builder;
2945 public:
2946   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2947                                                              _builder(ArchiveBuilder::current())
2948   {}
2949 
2950   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2951     LogStreamHandle(Trace, aot) lsh;
2952     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2953       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2954       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2955       assert(buffered_fp != nullptr,"sanity check");
2956       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2957       assert(buffered_entry != nullptr,"sanity check");
2958 
2959       uint hash = fp->compute_hash();
2960       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2961       _writer->add(hash, delta);
2962       if (lsh.is_enabled()) {
2963         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2964         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2965         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2966       }
2967     } else {
2968       if (lsh.is_enabled()) {
2969         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2970       }
2971     }
2972     return true;
2973   }
2974 };
2975 
2976 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2977   CompactHashtableStats stats;
2978   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2979   CopyAdapterTableToArchive copy(&writer);
2980   _adapter_handler_table->iterate(&copy);
2981   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2982 }
2983 
2984 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2985   _aot_adapter_handler_table.serialize_header(soc);
2986 }
2987 
2988 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2989 #ifdef ASSERT
2990   if (TestAOTAdapterLinkFailure) {
2991     return;
2992   }
2993 #endif
2994   lookup_aot_cache(handler);
2995 #ifndef PRODUCT
2996   // debugging support
2997   if (PrintAdapterHandlers || PrintStubCode) {
2998     print_adapter_handler_info(tty, handler);
2999   }
3000 #endif
3001 }
3002 
3003 // This method is used during production run to link archived adapters (stored in AOT Cache)
3004 // to their code in AOT Code Cache
3005 void AdapterHandlerEntry::link() {
3006   ResourceMark rm;
3007   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3008   bool generate_code = false;
3009   // Generate code only if AOTCodeCache is not available, or
3010   // caching adapters is disabled, or we fail to link
3011   // the AdapterHandlerEntry to its code in the AOTCodeCache
3012   if (AOTCodeCache::is_using_adapter()) {
3013     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3014     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3015     if (_adapter_blob == nullptr) {
3016       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3017       generate_code = true;
3018     }
3019   } else {
3020     generate_code = true;
3021   }
3022   if (generate_code) {
3023     int nargs;
3024     BasicType* bt = _fingerprint->as_basic_type(nargs);
3025     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3026       // Don't throw exceptions during VM initialization because java.lang.* classes
3027       // might not have been initialized, causing problems when constructing the
3028       // Java exception object.
3029       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3030     }
3031   }
3032   if (_adapter_blob != nullptr) {
3033     post_adapter_creation(this);
3034   }
3035   assert(_linked, "AdapterHandlerEntry must now be linked");
3036 }
3037 
3038 void AdapterHandlerLibrary::link_aot_adapters() {
3039   uint max_id = 0;
3040   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3041   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3042    * That implies adapter ids of the adapters in the cache may not be contiguous.
3043    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3044    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3045    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3046    */
3047   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3048     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3049     entry->link();
3050     max_id = MAX2(max_id, entry->id());
3051   });
3052   // Set adapter id to the maximum id found in the AOTCache
3053   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3054   _id_counter = max_id;
3055 }
3056 
3057 // This method is called during production run to lookup simple adapters
3058 // in the archived adapter handler table
3059 void AdapterHandlerLibrary::lookup_simple_adapters() {
3060   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3061 
3062   MutexLocker mu(AdapterHandlerLibrary_lock);
3063   _no_arg_handler = lookup(0, nullptr);
3064 
3065   BasicType obj_args[] = { T_OBJECT };
3066   _obj_arg_handler = lookup(1, obj_args);
3067 
3068   BasicType int_args[] = { T_INT };
3069   _int_arg_handler = lookup(1, int_args);
3070 
3071   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3072   _obj_int_arg_handler = lookup(2, obj_int_args);
3073 
3074   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3075   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3076 
3077   assert(_no_arg_handler != nullptr &&
3078          _obj_arg_handler != nullptr &&
3079          _int_arg_handler != nullptr &&
3080          _obj_int_arg_handler != nullptr &&
3081          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3082   assert(_no_arg_handler->is_linked() &&
3083          _obj_arg_handler->is_linked() &&
3084          _int_arg_handler->is_linked() &&
3085          _obj_int_arg_handler->is_linked() &&
3086          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3087 }
3088 #endif // INCLUDE_CDS
3089 
3090 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3091   LogStreamHandle(Trace, aot) lsh;
3092   if (lsh.is_enabled()) {
3093     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3094     lsh.cr();
3095   }
3096   it->push(&_fingerprint);
3097 }
3098 
3099 AdapterHandlerEntry::~AdapterHandlerEntry() {
3100   if (_fingerprint != nullptr) {
3101     AdapterFingerPrint::deallocate(_fingerprint);
3102     _fingerprint = nullptr;
3103   }
3104 #ifdef ASSERT
3105   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3106 #endif
3107   FreeHeap(this);
3108 }
3109 
3110 
3111 #ifdef ASSERT
3112 // Capture the code before relocation so that it can be compared
3113 // against other versions.  If the code is captured after relocation
3114 // then relative instructions won't be equivalent.
3115 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3116   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3117   _saved_code_length = length;
3118   memcpy(_saved_code, buffer, length);
3119 }
3120 
3121 
3122 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3123   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3124 
3125   if (other->_saved_code_length != _saved_code_length) {
3126     return false;
3127   }
3128 
3129   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3130 }
3131 #endif
3132 
3133 
3134 /**
3135  * Create a native wrapper for this native method.  The wrapper converts the
3136  * Java-compiled calling convention to the native convention, handles
3137  * arguments, and transitions to native.  On return from the native we transition
3138  * back to java blocking if a safepoint is in progress.
3139  */
3140 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3141   ResourceMark rm;
3142   nmethod* nm = nullptr;
3143 
3144   // Check if memory should be freed before allocation
3145   CodeCache::gc_on_allocation();
3146 
3147   assert(method->is_native(), "must be native");
3148   assert(method->is_special_native_intrinsic() ||
3149          method->has_native_function(), "must have something valid to call!");
3150 
3151   {
3152     // Perform the work while holding the lock, but perform any printing outside the lock
3153     MutexLocker mu(AdapterHandlerLibrary_lock);
3154     // See if somebody beat us to it
3155     if (method->code() != nullptr) {
3156       return;
3157     }
3158 
3159     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3160     assert(compile_id > 0, "Must generate native wrapper");
3161 
3162 
3163     ResourceMark rm;
3164     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3165     if (buf != nullptr) {
3166       CodeBuffer buffer(buf);
3167 
3168       if (method->is_continuation_enter_intrinsic()) {
3169         buffer.initialize_stubs_size(192);
3170       }
3171 
3172       struct { double data[20]; } locs_buf;
3173       struct { double data[20]; } stubs_locs_buf;
3174       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3175 #if defined(AARCH64) || defined(PPC64)
3176       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3177       // in the constant pool to ensure ordering between the barrier and oops
3178       // accesses. For native_wrappers we need a constant.
3179       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3180       // static java call that is resolved in the runtime.
3181       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3182         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3183       }
3184 #endif
3185       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3186       MacroAssembler _masm(&buffer);
3187 
3188       // Fill in the signature array, for the calling-convention call.
3189       const int total_args_passed = method->size_of_parameters();
3190 
3191       VMRegPair stack_regs[16];
3192       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3193 
3194       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3195                               method->is_static(), total_args_passed);
3196       BasicType* sig_bt = si.basic_types();
3197       assert(si.slots() == total_args_passed, "");
3198       BasicType ret_type = si.return_type();
3199 
3200       // Now get the compiled-Java arguments layout.
3201       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3202 
3203       // Generate the compiled-to-native wrapper code
3204       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3205 
3206       if (nm != nullptr) {
3207         {
3208           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3209           if (nm->make_in_use()) {
3210             method->set_code(method, nm);
3211           }
3212         }
3213 
3214         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3215         if (directive->PrintAssemblyOption) {
3216           nm->print_code();
3217         }
3218         DirectivesStack::release(directive);
3219       }
3220     }
3221   } // Unlock AdapterHandlerLibrary_lock
3222 
3223 
3224   // Install the generated code.
3225   if (nm != nullptr) {
3226     const char *msg = method->is_static() ? "(static)" : "";
3227     CompileTask::print_ul(nm, msg);
3228     if (PrintCompilation) {
3229       ttyLocker ttyl;
3230       CompileTask::print(tty, nm, msg);
3231     }
3232     nm->post_compiled_method_load_event();
3233   }
3234 }
3235 
3236 // -------------------------------------------------------------------------
3237 // Java-Java calling convention
3238 // (what you use when Java calls Java)
3239 
3240 //------------------------------name_for_receiver----------------------------------
3241 // For a given signature, return the VMReg for parameter 0.
3242 VMReg SharedRuntime::name_for_receiver() {
3243   VMRegPair regs;
3244   BasicType sig_bt = T_OBJECT;
3245   (void) java_calling_convention(&sig_bt, &regs, 1);
3246   // Return argument 0 register.  In the LP64 build pointers
3247   // take 2 registers, but the VM wants only the 'main' name.
3248   return regs.first();
3249 }
3250 
3251 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3252   // This method is returning a data structure allocating as a
3253   // ResourceObject, so do not put any ResourceMarks in here.
3254 
3255   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3256   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3257   int cnt = 0;
3258   if (has_receiver) {
3259     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3260   }
3261 
3262   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3263     BasicType type = ss.type();
3264     sig_bt[cnt++] = type;
3265     if (is_double_word_type(type))
3266       sig_bt[cnt++] = T_VOID;
3267   }
3268 
3269   if (has_appendix) {
3270     sig_bt[cnt++] = T_OBJECT;
3271   }
3272 
3273   assert(cnt < 256, "grow table size");
3274 
3275   int comp_args_on_stack;
3276   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3277 
3278   // the calling convention doesn't count out_preserve_stack_slots so
3279   // we must add that in to get "true" stack offsets.
3280 
3281   if (comp_args_on_stack) {
3282     for (int i = 0; i < cnt; i++) {
3283       VMReg reg1 = regs[i].first();
3284       if (reg1->is_stack()) {
3285         // Yuck
3286         reg1 = reg1->bias(out_preserve_stack_slots());
3287       }
3288       VMReg reg2 = regs[i].second();
3289       if (reg2->is_stack()) {
3290         // Yuck
3291         reg2 = reg2->bias(out_preserve_stack_slots());
3292       }
3293       regs[i].set_pair(reg2, reg1);
3294     }
3295   }
3296 
3297   // results
3298   *arg_size = cnt;
3299   return regs;
3300 }
3301 
3302 // OSR Migration Code
3303 //
3304 // This code is used convert interpreter frames into compiled frames.  It is
3305 // called from very start of a compiled OSR nmethod.  A temp array is
3306 // allocated to hold the interesting bits of the interpreter frame.  All
3307 // active locks are inflated to allow them to move.  The displaced headers and
3308 // active interpreter locals are copied into the temp buffer.  Then we return
3309 // back to the compiled code.  The compiled code then pops the current
3310 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3311 // copies the interpreter locals and displaced headers where it wants.
3312 // Finally it calls back to free the temp buffer.
3313 //
3314 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3315 
3316 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3317   assert(current == JavaThread::current(), "pre-condition");
3318   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3319   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3320   // frame. The stack watermark code below ensures that the interpreted frame is processed
3321   // before it gets unwound. This is helpful as the size of the compiled frame could be
3322   // larger than the interpreted frame, which could result in the new frame not being
3323   // processed correctly.
3324   StackWatermarkSet::before_unwind(current);
3325 
3326   //
3327   // This code is dependent on the memory layout of the interpreter local
3328   // array and the monitors. On all of our platforms the layout is identical
3329   // so this code is shared. If some platform lays the their arrays out
3330   // differently then this code could move to platform specific code or
3331   // the code here could be modified to copy items one at a time using
3332   // frame accessor methods and be platform independent.
3333 
3334   frame fr = current->last_frame();
3335   assert(fr.is_interpreted_frame(), "");
3336   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3337 
3338   // Figure out how many monitors are active.
3339   int active_monitor_count = 0;
3340   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3341        kptr < fr.interpreter_frame_monitor_begin();
3342        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3343     if (kptr->obj() != nullptr) active_monitor_count++;
3344   }
3345 
3346   // QQQ we could place number of active monitors in the array so that compiled code
3347   // could double check it.
3348 
3349   Method* moop = fr.interpreter_frame_method();
3350   int max_locals = moop->max_locals();
3351   // Allocate temp buffer, 1 word per local & 2 per active monitor
3352   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3353   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3354 
3355   // Copy the locals.  Order is preserved so that loading of longs works.
3356   // Since there's no GC I can copy the oops blindly.
3357   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3358   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3359                        (HeapWord*)&buf[0],
3360                        max_locals);
3361 
3362   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3363   int i = max_locals;
3364   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3365        kptr2 < fr.interpreter_frame_monitor_begin();
3366        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3367     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3368       BasicLock *lock = kptr2->lock();
3369       if (UseObjectMonitorTable) {
3370         buf[i] = (intptr_t)lock->object_monitor_cache();
3371       }
3372 #ifdef ASSERT
3373       else {
3374         buf[i] = badDispHeaderOSR;
3375       }
3376 #endif
3377       i++;
3378       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3379     }
3380   }
3381   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3382 
3383   RegisterMap map(current,
3384                   RegisterMap::UpdateMap::skip,
3385                   RegisterMap::ProcessFrames::include,
3386                   RegisterMap::WalkContinuation::skip);
3387   frame sender = fr.sender(&map);
3388   if (sender.is_interpreted_frame()) {
3389     current->push_cont_fastpath(sender.sp());
3390   }
3391 
3392   return buf;
3393 JRT_END
3394 
3395 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3396   FREE_C_HEAP_ARRAY(intptr_t, buf);
3397 JRT_END
3398 
3399 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3400   bool found = false;
3401 #if INCLUDE_CDS
3402   if (AOTCodeCache::is_using_adapter()) {
3403     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3404       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3405     };
3406     _aot_adapter_handler_table.iterate(findblob_archived_table);
3407   }
3408 #endif // INCLUDE_CDS
3409   if (!found) {
3410     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3411       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3412     };
3413     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3414     _adapter_handler_table->iterate(findblob_runtime_table);
3415   }
3416   return found;
3417 }
3418 
3419 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3420   return handler->fingerprint()->as_basic_args_string();
3421 }
3422 
3423 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3424   return handler->id();
3425 }
3426 
3427 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3428   bool found = false;
3429 #if INCLUDE_CDS
3430   if (AOTCodeCache::is_using_adapter()) {
3431     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3432       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3433         found = true;
3434         st->print("Adapter for signature: ");
3435         handler->print_adapter_on(st);
3436         return true;
3437       } else {
3438         return false; // keep looking
3439       }
3440     };
3441     _aot_adapter_handler_table.iterate(findblob_archived_table);
3442   }
3443 #endif // INCLUDE_CDS
3444   if (!found) {
3445     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3446       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3447         found = true;
3448         st->print("Adapter for signature: ");
3449         a->print_adapter_on(st);
3450         return true;
3451       } else {
3452         return false; // keep looking
3453       }
3454     };
3455     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3456     _adapter_handler_table->iterate(findblob_runtime_table);
3457   }
3458   assert(found, "Should have found handler");
3459 }
3460 
3461 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3462   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3463   if (adapter_blob() != nullptr) {
3464     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3465     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3466     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3467     if (get_c2i_no_clinit_check_entry() != nullptr) {
3468       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3469     }
3470   }
3471   st->cr();
3472 }
3473 
3474 #ifndef PRODUCT
3475 
3476 void AdapterHandlerLibrary::print_statistics() {
3477   print_table_statistics();
3478 }
3479 
3480 #endif /* PRODUCT */
3481 
3482 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3483   assert(current == JavaThread::current(), "pre-condition");
3484   StackOverflow* overflow_state = current->stack_overflow_state();
3485   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3486   overflow_state->set_reserved_stack_activation(current->stack_base());
3487 JRT_END
3488 
3489 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3490   ResourceMark rm(current);
3491   frame activation;
3492   nmethod* nm = nullptr;
3493   int count = 1;
3494 
3495   assert(fr.is_java_frame(), "Must start on Java frame");
3496 
3497   RegisterMap map(JavaThread::current(),
3498                   RegisterMap::UpdateMap::skip,
3499                   RegisterMap::ProcessFrames::skip,
3500                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3501   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3502     if (!fr.is_java_frame()) {
3503       continue;
3504     }
3505 
3506     Method* method = nullptr;
3507     bool found = false;
3508     if (fr.is_interpreted_frame()) {
3509       method = fr.interpreter_frame_method();
3510       if (method != nullptr && method->has_reserved_stack_access()) {
3511         found = true;
3512       }
3513     } else {
3514       CodeBlob* cb = fr.cb();
3515       if (cb != nullptr && cb->is_nmethod()) {
3516         nm = cb->as_nmethod();
3517         method = nm->method();
3518         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3519           method = sd->method();
3520           if (method != nullptr && method->has_reserved_stack_access()) {
3521             found = true;
3522           }
3523         }
3524       }
3525     }
3526     if (found) {
3527       activation = fr;
3528       warning("Potentially dangerous stack overflow in "
3529               "ReservedStackAccess annotated method %s [%d]",
3530               method->name_and_sig_as_C_string(), count++);
3531       EventReservedStackActivation event;
3532       if (event.should_commit()) {
3533         event.set_method(method);
3534         event.commit();
3535       }
3536     }
3537   }
3538   return activation;
3539 }
3540 
3541 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3542   // After any safepoint, just before going back to compiled code,
3543   // we inform the GC that we will be doing initializing writes to
3544   // this object in the future without emitting card-marks, so
3545   // GC may take any compensating steps.
3546 
3547   oop new_obj = current->vm_result_oop();
3548   if (new_obj == nullptr) return;
3549 
3550   BarrierSet *bs = BarrierSet::barrier_set();
3551   bs->on_slowpath_allocation_exit(current, new_obj);
3552 }