1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "runtime/arguments.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/basicLock.inline.hpp" 62 #include "runtime/frame.inline.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/perfData.hpp" 70 #include "runtime/sharedRuntime.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/stubRoutines.hpp" 73 #include "runtime/synchronizer.inline.hpp" 74 #include "runtime/timerTrace.hpp" 75 #include "runtime/vframe.inline.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vm_version.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/dtrace.hpp" 80 #include "utilities/events.hpp" 81 #include "utilities/globalDefinitions.hpp" 82 #include "utilities/resourceHash.hpp" 83 #include "utilities/macros.hpp" 84 #include "utilities/xmlstream.hpp" 85 #ifdef COMPILER1 86 #include "c1/c1_Runtime1.hpp" 87 #endif 88 #if INCLUDE_JFR 89 #include "jfr/jfr.hpp" 90 #endif 91 92 // Shared runtime stub routines reside in their own unique blob with a 93 // single entry point 94 95 96 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 97 type SharedRuntime::BLOB_FIELD_NAME(name); 98 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 99 #undef SHARED_STUB_FIELD_DEFINE 100 101 nmethod* SharedRuntime::_cont_doYield_stub; 102 103 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 104 const char *SharedRuntime::_stub_names[] = { 105 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 106 }; 107 108 //----------------------------generate_stubs----------------------------------- 109 void SharedRuntime::generate_initial_stubs() { 110 // Build this early so it's available for the interpreter. 111 _throw_StackOverflowError_blob = 112 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 113 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 114 } 115 116 void SharedRuntime::generate_stubs() { 117 _wrong_method_blob = 118 generate_resolve_blob(SharedStubId::wrong_method_id, 119 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 120 _wrong_method_abstract_blob = 121 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 122 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 123 _ic_miss_blob = 124 generate_resolve_blob(SharedStubId::ic_miss_id, 125 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 126 _resolve_opt_virtual_call_blob = 127 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 129 _resolve_virtual_call_blob = 130 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 132 _resolve_static_call_blob = 133 generate_resolve_blob(SharedStubId::resolve_static_call_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 135 136 _throw_delayed_StackOverflowError_blob = 137 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 138 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 139 140 _throw_AbstractMethodError_blob = 141 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 143 144 _throw_IncompatibleClassChangeError_blob = 145 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 147 148 _throw_NullPointerException_at_call_blob = 149 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 151 152 AdapterHandlerLibrary::initialize(); 153 154 #if COMPILER2_OR_JVMCI 155 // Vectors are generated only by C2 and JVMCI. 156 bool support_wide = is_wide_vector(MaxVectorSize); 157 if (support_wide) { 158 _polling_page_vectors_safepoint_handler_blob = 159 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 160 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 161 } 162 #endif // COMPILER2_OR_JVMCI 163 _polling_page_safepoint_handler_blob = 164 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 165 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 166 _polling_page_return_handler_blob = 167 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 168 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 169 170 generate_deopt_blob(); 171 } 172 173 #if INCLUDE_JFR 174 //------------------------------generate jfr runtime stubs ------ 175 void SharedRuntime::generate_jfr_stubs() { 176 ResourceMark rm; 177 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 178 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 179 180 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 181 _jfr_return_lease_blob = generate_jfr_return_lease(); 182 } 183 184 #endif // INCLUDE_JFR 185 186 #include <math.h> 187 188 // Implementation of SharedRuntime 189 190 #ifndef PRODUCT 191 // For statistics 192 uint SharedRuntime::_ic_miss_ctr = 0; 193 uint SharedRuntime::_wrong_method_ctr = 0; 194 uint SharedRuntime::_resolve_static_ctr = 0; 195 uint SharedRuntime::_resolve_virtual_ctr = 0; 196 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 197 uint SharedRuntime::_implicit_null_throws = 0; 198 uint SharedRuntime::_implicit_div0_throws = 0; 199 200 int64_t SharedRuntime::_nof_normal_calls = 0; 201 int64_t SharedRuntime::_nof_inlined_calls = 0; 202 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 203 int64_t SharedRuntime::_nof_static_calls = 0; 204 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 205 int64_t SharedRuntime::_nof_interface_calls = 0; 206 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 207 208 uint SharedRuntime::_new_instance_ctr=0; 209 uint SharedRuntime::_new_array_ctr=0; 210 uint SharedRuntime::_multi2_ctr=0; 211 uint SharedRuntime::_multi3_ctr=0; 212 uint SharedRuntime::_multi4_ctr=0; 213 uint SharedRuntime::_multi5_ctr=0; 214 uint SharedRuntime::_mon_enter_stub_ctr=0; 215 uint SharedRuntime::_mon_exit_stub_ctr=0; 216 uint SharedRuntime::_mon_enter_ctr=0; 217 uint SharedRuntime::_mon_exit_ctr=0; 218 uint SharedRuntime::_partial_subtype_ctr=0; 219 uint SharedRuntime::_jbyte_array_copy_ctr=0; 220 uint SharedRuntime::_jshort_array_copy_ctr=0; 221 uint SharedRuntime::_jint_array_copy_ctr=0; 222 uint SharedRuntime::_jlong_array_copy_ctr=0; 223 uint SharedRuntime::_oop_array_copy_ctr=0; 224 uint SharedRuntime::_checkcast_array_copy_ctr=0; 225 uint SharedRuntime::_unsafe_array_copy_ctr=0; 226 uint SharedRuntime::_generic_array_copy_ctr=0; 227 uint SharedRuntime::_slow_array_copy_ctr=0; 228 uint SharedRuntime::_find_handler_ctr=0; 229 uint SharedRuntime::_rethrow_ctr=0; 230 uint SharedRuntime::_unsafe_set_memory_ctr=0; 231 232 int SharedRuntime::_ICmiss_index = 0; 233 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 234 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 235 236 237 void SharedRuntime::trace_ic_miss(address at) { 238 for (int i = 0; i < _ICmiss_index; i++) { 239 if (_ICmiss_at[i] == at) { 240 _ICmiss_count[i]++; 241 return; 242 } 243 } 244 int index = _ICmiss_index++; 245 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 246 _ICmiss_at[index] = at; 247 _ICmiss_count[index] = 1; 248 } 249 250 void SharedRuntime::print_ic_miss_histogram() { 251 if (ICMissHistogram) { 252 tty->print_cr("IC Miss Histogram:"); 253 int tot_misses = 0; 254 for (int i = 0; i < _ICmiss_index; i++) { 255 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 256 tot_misses += _ICmiss_count[i]; 257 } 258 tty->print_cr("Total IC misses: %7d", tot_misses); 259 } 260 } 261 #endif // PRODUCT 262 263 264 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 265 return x * y; 266 JRT_END 267 268 269 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 270 if (x == min_jlong && y == CONST64(-1)) { 271 return x; 272 } else { 273 return x / y; 274 } 275 JRT_END 276 277 278 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 279 if (x == min_jlong && y == CONST64(-1)) { 280 return 0; 281 } else { 282 return x % y; 283 } 284 JRT_END 285 286 287 #ifdef _WIN64 288 const juint float_sign_mask = 0x7FFFFFFF; 289 const juint float_infinity = 0x7F800000; 290 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 291 const julong double_infinity = CONST64(0x7FF0000000000000); 292 #endif 293 294 #if !defined(X86) 295 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 296 #ifdef _WIN64 297 // 64-bit Windows on amd64 returns the wrong values for 298 // infinity operands. 299 juint xbits = PrimitiveConversions::cast<juint>(x); 300 juint ybits = PrimitiveConversions::cast<juint>(y); 301 // x Mod Infinity == x unless x is infinity 302 if (((xbits & float_sign_mask) != float_infinity) && 303 ((ybits & float_sign_mask) == float_infinity) ) { 304 return x; 305 } 306 return ((jfloat)fmod_winx64((double)x, (double)y)); 307 #else 308 return ((jfloat)fmod((double)x,(double)y)); 309 #endif 310 JRT_END 311 312 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 313 #ifdef _WIN64 314 julong xbits = PrimitiveConversions::cast<julong>(x); 315 julong ybits = PrimitiveConversions::cast<julong>(y); 316 // x Mod Infinity == x unless x is infinity 317 if (((xbits & double_sign_mask) != double_infinity) && 318 ((ybits & double_sign_mask) == double_infinity) ) { 319 return x; 320 } 321 return ((jdouble)fmod_winx64((double)x, (double)y)); 322 #else 323 return ((jdouble)fmod((double)x,(double)y)); 324 #endif 325 JRT_END 326 #endif // !X86 327 328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 329 return (jfloat)x; 330 JRT_END 331 332 #ifdef __SOFTFP__ 333 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 334 return x + y; 335 JRT_END 336 337 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 338 return x - y; 339 JRT_END 340 341 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 342 return x * y; 343 JRT_END 344 345 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 346 return x / y; 347 JRT_END 348 349 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 350 return x + y; 351 JRT_END 352 353 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 354 return x - y; 355 JRT_END 356 357 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 358 return x * y; 359 JRT_END 360 361 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 362 return x / y; 363 JRT_END 364 365 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 366 return (jdouble)x; 367 JRT_END 368 369 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 370 return (jdouble)x; 371 JRT_END 372 373 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 374 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 375 JRT_END 376 377 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 378 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 379 JRT_END 380 381 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 382 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 383 JRT_END 384 385 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 386 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 387 JRT_END 388 389 // Functions to return the opposite of the aeabi functions for nan. 390 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 391 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 392 JRT_END 393 394 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 395 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 396 JRT_END 397 398 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 399 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 400 JRT_END 401 402 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 403 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 404 JRT_END 405 406 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 407 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 408 JRT_END 409 410 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 411 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 412 JRT_END 413 414 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 415 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 416 JRT_END 417 418 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 419 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 420 JRT_END 421 422 // Intrinsics make gcc generate code for these. 423 float SharedRuntime::fneg(float f) { 424 return -f; 425 } 426 427 double SharedRuntime::dneg(double f) { 428 return -f; 429 } 430 431 #endif // __SOFTFP__ 432 433 #if defined(__SOFTFP__) || defined(E500V2) 434 // Intrinsics make gcc generate code for these. 435 double SharedRuntime::dabs(double f) { 436 return (f <= (double)0.0) ? (double)0.0 - f : f; 437 } 438 439 #endif 440 441 #if defined(__SOFTFP__) || defined(PPC) 442 double SharedRuntime::dsqrt(double f) { 443 return sqrt(f); 444 } 445 #endif 446 447 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 448 if (g_isnan(x)) 449 return 0; 450 if (x >= (jfloat) max_jint) 451 return max_jint; 452 if (x <= (jfloat) min_jint) 453 return min_jint; 454 return (jint) x; 455 JRT_END 456 457 458 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 459 if (g_isnan(x)) 460 return 0; 461 if (x >= (jfloat) max_jlong) 462 return max_jlong; 463 if (x <= (jfloat) min_jlong) 464 return min_jlong; 465 return (jlong) x; 466 JRT_END 467 468 469 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 470 if (g_isnan(x)) 471 return 0; 472 if (x >= (jdouble) max_jint) 473 return max_jint; 474 if (x <= (jdouble) min_jint) 475 return min_jint; 476 return (jint) x; 477 JRT_END 478 479 480 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 481 if (g_isnan(x)) 482 return 0; 483 if (x >= (jdouble) max_jlong) 484 return max_jlong; 485 if (x <= (jdouble) min_jlong) 486 return min_jlong; 487 return (jlong) x; 488 JRT_END 489 490 491 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 492 return (jfloat)x; 493 JRT_END 494 495 496 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 497 return (jfloat)x; 498 JRT_END 499 500 501 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 502 return (jdouble)x; 503 JRT_END 504 505 506 // Exception handling across interpreter/compiler boundaries 507 // 508 // exception_handler_for_return_address(...) returns the continuation address. 509 // The continuation address is the entry point of the exception handler of the 510 // previous frame depending on the return address. 511 512 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 513 // Note: This is called when we have unwound the frame of the callee that did 514 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 515 // Notably, the stack is not walkable at this point, and hence the check must 516 // be deferred until later. Specifically, any of the handlers returned here in 517 // this function, will get dispatched to, and call deferred checks to 518 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 519 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 520 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 521 522 // Reset method handle flag. 523 current->set_is_method_handle_return(false); 524 525 #if INCLUDE_JVMCI 526 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 527 // and other exception handler continuations do not read it 528 current->set_exception_pc(nullptr); 529 #endif // INCLUDE_JVMCI 530 531 if (Continuation::is_return_barrier_entry(return_address)) { 532 return StubRoutines::cont_returnBarrierExc(); 533 } 534 535 // The fastest case first 536 CodeBlob* blob = CodeCache::find_blob(return_address); 537 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 538 if (nm != nullptr) { 539 // Set flag if return address is a method handle call site. 540 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 541 // native nmethods don't have exception handlers 542 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 543 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 544 if (nm->is_deopt_pc(return_address)) { 545 // If we come here because of a stack overflow, the stack may be 546 // unguarded. Reguard the stack otherwise if we return to the 547 // deopt blob and the stack bang causes a stack overflow we 548 // crash. 549 StackOverflow* overflow_state = current->stack_overflow_state(); 550 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 551 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 552 overflow_state->set_reserved_stack_activation(current->stack_base()); 553 } 554 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 555 // The deferred StackWatermarkSet::after_unwind check will be performed in 556 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 557 return SharedRuntime::deopt_blob()->unpack_with_exception(); 558 } else { 559 // The deferred StackWatermarkSet::after_unwind check will be performed in 560 // * OptoRuntime::handle_exception_C_helper for C2 code 561 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 562 return nm->exception_begin(); 563 } 564 } 565 566 // Entry code 567 if (StubRoutines::returns_to_call_stub(return_address)) { 568 // The deferred StackWatermarkSet::after_unwind check will be performed in 569 // JavaCallWrapper::~JavaCallWrapper 570 return StubRoutines::catch_exception_entry(); 571 } 572 if (blob != nullptr && blob->is_upcall_stub()) { 573 return StubRoutines::upcall_stub_exception_handler(); 574 } 575 // Interpreted code 576 if (Interpreter::contains(return_address)) { 577 // The deferred StackWatermarkSet::after_unwind check will be performed in 578 // InterpreterRuntime::exception_handler_for_exception 579 return Interpreter::rethrow_exception_entry(); 580 } 581 582 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 583 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 584 585 #ifndef PRODUCT 586 { ResourceMark rm; 587 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 588 os::print_location(tty, (intptr_t)return_address); 589 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 590 tty->print_cr("b) other problem"); 591 } 592 #endif // PRODUCT 593 ShouldNotReachHere(); 594 return nullptr; 595 } 596 597 598 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 599 return raw_exception_handler_for_return_address(current, return_address); 600 JRT_END 601 602 603 address SharedRuntime::get_poll_stub(address pc) { 604 address stub; 605 // Look up the code blob 606 CodeBlob *cb = CodeCache::find_blob(pc); 607 608 // Should be an nmethod 609 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 610 611 // Look up the relocation information 612 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 613 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 614 615 #ifdef ASSERT 616 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 617 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 618 Disassembler::decode(cb); 619 fatal("Only polling locations are used for safepoint"); 620 } 621 #endif 622 623 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 624 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 625 if (at_poll_return) { 626 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 627 "polling page return stub not created yet"); 628 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 629 } else if (has_wide_vectors) { 630 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 631 "polling page vectors safepoint stub not created yet"); 632 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 633 } else { 634 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 635 "polling page safepoint stub not created yet"); 636 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 637 } 638 log_debug(safepoint)("... found polling page %s exception at pc = " 639 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 640 at_poll_return ? "return" : "loop", 641 (intptr_t)pc, (intptr_t)stub); 642 return stub; 643 } 644 645 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 646 if (JvmtiExport::can_post_on_exceptions()) { 647 vframeStream vfst(current, true); 648 methodHandle method = methodHandle(current, vfst.method()); 649 address bcp = method()->bcp_from(vfst.bci()); 650 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 651 } 652 653 #if INCLUDE_JVMCI 654 if (EnableJVMCI) { 655 vframeStream vfst(current, true); 656 methodHandle method = methodHandle(current, vfst.method()); 657 int bci = vfst.bci(); 658 MethodData* trap_mdo = method->method_data(); 659 if (trap_mdo != nullptr) { 660 // Set exception_seen if the exceptional bytecode is an invoke 661 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 662 if (call.is_valid()) { 663 ResourceMark rm(current); 664 665 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 666 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 667 668 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 669 if (pdata != nullptr && pdata->is_BitData()) { 670 BitData* bit_data = (BitData*) pdata; 671 bit_data->set_exception_seen(); 672 } 673 } 674 } 675 } 676 #endif 677 678 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 679 } 680 681 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 682 Handle h_exception = Exceptions::new_exception(current, name, message); 683 throw_and_post_jvmti_exception(current, h_exception); 684 } 685 686 #if INCLUDE_JVMTI 687 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 688 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 689 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 690 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 691 JNIHandles::destroy_local(vthread); 692 JRT_END 693 694 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 695 assert(hide == JNI_TRUE, "must be VTMS transition start"); 696 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 697 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 698 JNIHandles::destroy_local(vthread); 699 JRT_END 700 701 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 702 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 703 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 704 JNIHandles::destroy_local(vthread); 705 JRT_END 706 707 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 708 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 709 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 710 JNIHandles::destroy_local(vthread); 711 JRT_END 712 #endif // INCLUDE_JVMTI 713 714 // The interpreter code to call this tracing function is only 715 // called/generated when UL is on for redefine, class and has the right level 716 // and tags. Since obsolete methods are never compiled, we don't have 717 // to modify the compilers to generate calls to this function. 718 // 719 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 720 JavaThread* thread, Method* method)) 721 if (method->is_obsolete()) { 722 // We are calling an obsolete method, but this is not necessarily 723 // an error. Our method could have been redefined just after we 724 // fetched the Method* from the constant pool. 725 ResourceMark rm; 726 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 727 } 728 return 0; 729 JRT_END 730 731 // ret_pc points into caller; we are returning caller's exception handler 732 // for given exception 733 // Note that the implementation of this method assumes it's only called when an exception has actually occured 734 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 735 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 736 assert(nm != nullptr, "must exist"); 737 ResourceMark rm; 738 739 #if INCLUDE_JVMCI 740 if (nm->is_compiled_by_jvmci()) { 741 // lookup exception handler for this pc 742 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 743 ExceptionHandlerTable table(nm); 744 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 745 if (t != nullptr) { 746 return nm->code_begin() + t->pco(); 747 } else { 748 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 749 } 750 } 751 #endif // INCLUDE_JVMCI 752 753 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 754 // determine handler bci, if any 755 EXCEPTION_MARK; 756 757 int handler_bci = -1; 758 int scope_depth = 0; 759 if (!force_unwind) { 760 int bci = sd->bci(); 761 bool recursive_exception = false; 762 do { 763 bool skip_scope_increment = false; 764 // exception handler lookup 765 Klass* ek = exception->klass(); 766 methodHandle mh(THREAD, sd->method()); 767 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 768 if (HAS_PENDING_EXCEPTION) { 769 recursive_exception = true; 770 // We threw an exception while trying to find the exception handler. 771 // Transfer the new exception to the exception handle which will 772 // be set into thread local storage, and do another lookup for an 773 // exception handler for this exception, this time starting at the 774 // BCI of the exception handler which caused the exception to be 775 // thrown (bugs 4307310 and 4546590). Set "exception" reference 776 // argument to ensure that the correct exception is thrown (4870175). 777 recursive_exception_occurred = true; 778 exception = Handle(THREAD, PENDING_EXCEPTION); 779 CLEAR_PENDING_EXCEPTION; 780 if (handler_bci >= 0) { 781 bci = handler_bci; 782 handler_bci = -1; 783 skip_scope_increment = true; 784 } 785 } 786 else { 787 recursive_exception = false; 788 } 789 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 790 sd = sd->sender(); 791 if (sd != nullptr) { 792 bci = sd->bci(); 793 } 794 ++scope_depth; 795 } 796 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 797 } 798 799 // found handling method => lookup exception handler 800 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 801 802 ExceptionHandlerTable table(nm); 803 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 804 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 805 // Allow abbreviated catch tables. The idea is to allow a method 806 // to materialize its exceptions without committing to the exact 807 // routing of exceptions. In particular this is needed for adding 808 // a synthetic handler to unlock monitors when inlining 809 // synchronized methods since the unlock path isn't represented in 810 // the bytecodes. 811 t = table.entry_for(catch_pco, -1, 0); 812 } 813 814 #ifdef COMPILER1 815 if (t == nullptr && nm->is_compiled_by_c1()) { 816 assert(nm->unwind_handler_begin() != nullptr, ""); 817 return nm->unwind_handler_begin(); 818 } 819 #endif 820 821 if (t == nullptr) { 822 ttyLocker ttyl; 823 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 824 tty->print_cr(" Exception:"); 825 exception->print(); 826 tty->cr(); 827 tty->print_cr(" Compiled exception table :"); 828 table.print(); 829 nm->print(); 830 nm->print_code(); 831 guarantee(false, "missing exception handler"); 832 return nullptr; 833 } 834 835 if (handler_bci != -1) { // did we find a handler in this method? 836 sd->method()->set_exception_handler_entered(handler_bci); // profile 837 } 838 return nm->code_begin() + t->pco(); 839 } 840 841 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 842 // These errors occur only at call sites 843 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 844 JRT_END 845 846 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 847 // These errors occur only at call sites 848 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 849 JRT_END 850 851 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 852 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 853 JRT_END 854 855 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 856 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 857 JRT_END 858 859 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 860 // This entry point is effectively only used for NullPointerExceptions which occur at inline 861 // cache sites (when the callee activation is not yet set up) so we are at a call site 862 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 863 JRT_END 864 865 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 866 throw_StackOverflowError_common(current, false); 867 JRT_END 868 869 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 870 throw_StackOverflowError_common(current, true); 871 JRT_END 872 873 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 874 // We avoid using the normal exception construction in this case because 875 // it performs an upcall to Java, and we're already out of stack space. 876 JavaThread* THREAD = current; // For exception macros. 877 Klass* k = vmClasses::StackOverflowError_klass(); 878 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 879 if (delayed) { 880 java_lang_Throwable::set_message(exception_oop, 881 Universe::delayed_stack_overflow_error_message()); 882 } 883 Handle exception (current, exception_oop); 884 if (StackTraceInThrowable) { 885 java_lang_Throwable::fill_in_stack_trace(exception); 886 } 887 // Remove the ScopedValue bindings in case we got a 888 // StackOverflowError while we were trying to remove ScopedValue 889 // bindings. 890 current->clear_scopedValueBindings(); 891 // Increment counter for hs_err file reporting 892 Atomic::inc(&Exceptions::_stack_overflow_errors); 893 throw_and_post_jvmti_exception(current, exception); 894 } 895 896 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 897 address pc, 898 ImplicitExceptionKind exception_kind) 899 { 900 address target_pc = nullptr; 901 902 if (Interpreter::contains(pc)) { 903 switch (exception_kind) { 904 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 905 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 906 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 907 default: ShouldNotReachHere(); 908 } 909 } else { 910 switch (exception_kind) { 911 case STACK_OVERFLOW: { 912 // Stack overflow only occurs upon frame setup; the callee is 913 // going to be unwound. Dispatch to a shared runtime stub 914 // which will cause the StackOverflowError to be fabricated 915 // and processed. 916 // Stack overflow should never occur during deoptimization: 917 // the compiled method bangs the stack by as much as the 918 // interpreter would need in case of a deoptimization. The 919 // deoptimization blob and uncommon trap blob bang the stack 920 // in a debug VM to verify the correctness of the compiled 921 // method stack banging. 922 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 923 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 924 return SharedRuntime::throw_StackOverflowError_entry(); 925 } 926 927 case IMPLICIT_NULL: { 928 if (VtableStubs::contains(pc)) { 929 // We haven't yet entered the callee frame. Fabricate an 930 // exception and begin dispatching it in the caller. Since 931 // the caller was at a call site, it's safe to destroy all 932 // caller-saved registers, as these entry points do. 933 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 934 935 // If vt_stub is null, then return null to signal handler to report the SEGV error. 936 if (vt_stub == nullptr) return nullptr; 937 938 if (vt_stub->is_abstract_method_error(pc)) { 939 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 940 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 941 // Instead of throwing the abstract method error here directly, we re-resolve 942 // and will throw the AbstractMethodError during resolve. As a result, we'll 943 // get a more detailed error message. 944 return SharedRuntime::get_handle_wrong_method_stub(); 945 } else { 946 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 947 // Assert that the signal comes from the expected location in stub code. 948 assert(vt_stub->is_null_pointer_exception(pc), 949 "obtained signal from unexpected location in stub code"); 950 return SharedRuntime::throw_NullPointerException_at_call_entry(); 951 } 952 } else { 953 CodeBlob* cb = CodeCache::find_blob(pc); 954 955 // If code blob is null, then return null to signal handler to report the SEGV error. 956 if (cb == nullptr) return nullptr; 957 958 // Exception happened in CodeCache. Must be either: 959 // 1. Inline-cache check in C2I handler blob, 960 // 2. Inline-cache check in nmethod, or 961 // 3. Implicit null exception in nmethod 962 963 if (!cb->is_nmethod()) { 964 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 965 if (!is_in_blob) { 966 // Allow normal crash reporting to handle this 967 return nullptr; 968 } 969 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 970 // There is no handler here, so we will simply unwind. 971 return SharedRuntime::throw_NullPointerException_at_call_entry(); 972 } 973 974 // Otherwise, it's a compiled method. Consult its exception handlers. 975 nmethod* nm = cb->as_nmethod(); 976 if (nm->inlinecache_check_contains(pc)) { 977 // exception happened inside inline-cache check code 978 // => the nmethod is not yet active (i.e., the frame 979 // is not set up yet) => use return address pushed by 980 // caller => don't push another return address 981 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 982 return SharedRuntime::throw_NullPointerException_at_call_entry(); 983 } 984 985 if (nm->method()->is_method_handle_intrinsic()) { 986 // exception happened inside MH dispatch code, similar to a vtable stub 987 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 988 return SharedRuntime::throw_NullPointerException_at_call_entry(); 989 } 990 991 #ifndef PRODUCT 992 _implicit_null_throws++; 993 #endif 994 target_pc = nm->continuation_for_implicit_null_exception(pc); 995 // If there's an unexpected fault, target_pc might be null, 996 // in which case we want to fall through into the normal 997 // error handling code. 998 } 999 1000 break; // fall through 1001 } 1002 1003 1004 case IMPLICIT_DIVIDE_BY_ZERO: { 1005 nmethod* nm = CodeCache::find_nmethod(pc); 1006 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1007 #ifndef PRODUCT 1008 _implicit_div0_throws++; 1009 #endif 1010 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1011 // If there's an unexpected fault, target_pc might be null, 1012 // in which case we want to fall through into the normal 1013 // error handling code. 1014 break; // fall through 1015 } 1016 1017 default: ShouldNotReachHere(); 1018 } 1019 1020 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1021 1022 if (exception_kind == IMPLICIT_NULL) { 1023 #ifndef PRODUCT 1024 // for AbortVMOnException flag 1025 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1026 #endif //PRODUCT 1027 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1028 } else { 1029 #ifndef PRODUCT 1030 // for AbortVMOnException flag 1031 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1032 #endif //PRODUCT 1033 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1034 } 1035 return target_pc; 1036 } 1037 1038 ShouldNotReachHere(); 1039 return nullptr; 1040 } 1041 1042 1043 /** 1044 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1045 * installed in the native function entry of all native Java methods before 1046 * they get linked to their actual native methods. 1047 * 1048 * \note 1049 * This method actually never gets called! The reason is because 1050 * the interpreter's native entries call NativeLookup::lookup() which 1051 * throws the exception when the lookup fails. The exception is then 1052 * caught and forwarded on the return from NativeLookup::lookup() call 1053 * before the call to the native function. This might change in the future. 1054 */ 1055 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1056 { 1057 // We return a bad value here to make sure that the exception is 1058 // forwarded before we look at the return value. 1059 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1060 } 1061 JNI_END 1062 1063 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1064 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1065 } 1066 1067 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1068 #if INCLUDE_JVMCI 1069 if (!obj->klass()->has_finalizer()) { 1070 return; 1071 } 1072 #endif // INCLUDE_JVMCI 1073 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1074 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1075 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1076 JRT_END 1077 1078 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1079 assert(thread != nullptr, "No thread"); 1080 if (thread == nullptr) { 1081 return 0; 1082 } 1083 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1084 "current cannot touch oops after its GC barrier is detached."); 1085 oop obj = thread->threadObj(); 1086 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1087 } 1088 1089 /** 1090 * This function ought to be a void function, but cannot be because 1091 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1092 * 6254741. Once that is fixed we can remove the dummy return value. 1093 */ 1094 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1095 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1096 } 1097 1098 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1099 return dtrace_object_alloc(thread, o, o->size()); 1100 } 1101 1102 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1103 assert(DTraceAllocProbes, "wrong call"); 1104 Klass* klass = o->klass(); 1105 Symbol* name = klass->name(); 1106 HOTSPOT_OBJECT_ALLOC( 1107 get_java_tid(thread), 1108 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1109 return 0; 1110 } 1111 1112 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1113 JavaThread* current, Method* method)) 1114 assert(current == JavaThread::current(), "pre-condition"); 1115 1116 assert(DTraceMethodProbes, "wrong call"); 1117 Symbol* kname = method->klass_name(); 1118 Symbol* name = method->name(); 1119 Symbol* sig = method->signature(); 1120 HOTSPOT_METHOD_ENTRY( 1121 get_java_tid(current), 1122 (char *) kname->bytes(), kname->utf8_length(), 1123 (char *) name->bytes(), name->utf8_length(), 1124 (char *) sig->bytes(), sig->utf8_length()); 1125 return 0; 1126 JRT_END 1127 1128 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1129 JavaThread* current, Method* method)) 1130 assert(current == JavaThread::current(), "pre-condition"); 1131 assert(DTraceMethodProbes, "wrong call"); 1132 Symbol* kname = method->klass_name(); 1133 Symbol* name = method->name(); 1134 Symbol* sig = method->signature(); 1135 HOTSPOT_METHOD_RETURN( 1136 get_java_tid(current), 1137 (char *) kname->bytes(), kname->utf8_length(), 1138 (char *) name->bytes(), name->utf8_length(), 1139 (char *) sig->bytes(), sig->utf8_length()); 1140 return 0; 1141 JRT_END 1142 1143 1144 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1145 // for a call current in progress, i.e., arguments has been pushed on stack 1146 // put callee has not been invoked yet. Used by: resolve virtual/static, 1147 // vtable updates, etc. Caller frame must be compiled. 1148 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1149 JavaThread* current = THREAD; 1150 ResourceMark rm(current); 1151 1152 // last java frame on stack (which includes native call frames) 1153 vframeStream vfst(current, true); // Do not skip and javaCalls 1154 1155 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1156 } 1157 1158 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1159 nmethod* caller = vfst.nm(); 1160 1161 address pc = vfst.frame_pc(); 1162 { // Get call instruction under lock because another thread may be busy patching it. 1163 CompiledICLocker ic_locker(caller); 1164 return caller->attached_method_before_pc(pc); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1170 // for a call current in progress, i.e., arguments has been pushed on stack 1171 // but callee has not been invoked yet. Caller frame must be compiled. 1172 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1173 CallInfo& callinfo, TRAPS) { 1174 Handle receiver; 1175 Handle nullHandle; // create a handy null handle for exception returns 1176 JavaThread* current = THREAD; 1177 1178 assert(!vfst.at_end(), "Java frame must exist"); 1179 1180 // Find caller and bci from vframe 1181 methodHandle caller(current, vfst.method()); 1182 int bci = vfst.bci(); 1183 1184 if (caller->is_continuation_enter_intrinsic()) { 1185 bc = Bytecodes::_invokestatic; 1186 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1187 return receiver; 1188 } 1189 1190 Bytecode_invoke bytecode(caller, bci); 1191 int bytecode_index = bytecode.index(); 1192 bc = bytecode.invoke_code(); 1193 1194 methodHandle attached_method(current, extract_attached_method(vfst)); 1195 if (attached_method.not_null()) { 1196 Method* callee = bytecode.static_target(CHECK_NH); 1197 vmIntrinsics::ID id = callee->intrinsic_id(); 1198 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1199 // it attaches statically resolved method to the call site. 1200 if (MethodHandles::is_signature_polymorphic(id) && 1201 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1202 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1203 1204 // Adjust invocation mode according to the attached method. 1205 switch (bc) { 1206 case Bytecodes::_invokevirtual: 1207 if (attached_method->method_holder()->is_interface()) { 1208 bc = Bytecodes::_invokeinterface; 1209 } 1210 break; 1211 case Bytecodes::_invokeinterface: 1212 if (!attached_method->method_holder()->is_interface()) { 1213 bc = Bytecodes::_invokevirtual; 1214 } 1215 break; 1216 case Bytecodes::_invokehandle: 1217 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1218 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1219 : Bytecodes::_invokevirtual; 1220 } 1221 break; 1222 default: 1223 break; 1224 } 1225 } 1226 } 1227 1228 assert(bc != Bytecodes::_illegal, "not initialized"); 1229 1230 bool has_receiver = bc != Bytecodes::_invokestatic && 1231 bc != Bytecodes::_invokedynamic && 1232 bc != Bytecodes::_invokehandle; 1233 1234 // Find receiver for non-static call 1235 if (has_receiver) { 1236 // This register map must be update since we need to find the receiver for 1237 // compiled frames. The receiver might be in a register. 1238 RegisterMap reg_map2(current, 1239 RegisterMap::UpdateMap::include, 1240 RegisterMap::ProcessFrames::include, 1241 RegisterMap::WalkContinuation::skip); 1242 frame stubFrame = current->last_frame(); 1243 // Caller-frame is a compiled frame 1244 frame callerFrame = stubFrame.sender(®_map2); 1245 1246 if (attached_method.is_null()) { 1247 Method* callee = bytecode.static_target(CHECK_NH); 1248 if (callee == nullptr) { 1249 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1250 } 1251 } 1252 1253 // Retrieve from a compiled argument list 1254 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1255 assert(oopDesc::is_oop_or_null(receiver()), ""); 1256 1257 if (receiver.is_null()) { 1258 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1259 } 1260 } 1261 1262 // Resolve method 1263 if (attached_method.not_null()) { 1264 // Parameterized by attached method. 1265 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1266 } else { 1267 // Parameterized by bytecode. 1268 constantPoolHandle constants(current, caller->constants()); 1269 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1270 } 1271 1272 #ifdef ASSERT 1273 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1274 if (has_receiver) { 1275 assert(receiver.not_null(), "should have thrown exception"); 1276 Klass* receiver_klass = receiver->klass(); 1277 Klass* rk = nullptr; 1278 if (attached_method.not_null()) { 1279 // In case there's resolved method attached, use its holder during the check. 1280 rk = attached_method->method_holder(); 1281 } else { 1282 // Klass is already loaded. 1283 constantPoolHandle constants(current, caller->constants()); 1284 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1285 } 1286 Klass* static_receiver_klass = rk; 1287 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1288 "actual receiver must be subclass of static receiver klass"); 1289 if (receiver_klass->is_instance_klass()) { 1290 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1291 tty->print_cr("ERROR: Klass not yet initialized!!"); 1292 receiver_klass->print(); 1293 } 1294 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1295 } 1296 } 1297 #endif 1298 1299 return receiver; 1300 } 1301 1302 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1303 JavaThread* current = THREAD; 1304 ResourceMark rm(current); 1305 // We need first to check if any Java activations (compiled, interpreted) 1306 // exist on the stack since last JavaCall. If not, we need 1307 // to get the target method from the JavaCall wrapper. 1308 vframeStream vfst(current, true); // Do not skip any javaCalls 1309 methodHandle callee_method; 1310 if (vfst.at_end()) { 1311 // No Java frames were found on stack since we did the JavaCall. 1312 // Hence the stack can only contain an entry_frame. We need to 1313 // find the target method from the stub frame. 1314 RegisterMap reg_map(current, 1315 RegisterMap::UpdateMap::skip, 1316 RegisterMap::ProcessFrames::include, 1317 RegisterMap::WalkContinuation::skip); 1318 frame fr = current->last_frame(); 1319 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1320 fr = fr.sender(®_map); 1321 assert(fr.is_entry_frame(), "must be"); 1322 // fr is now pointing to the entry frame. 1323 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1324 } else { 1325 Bytecodes::Code bc; 1326 CallInfo callinfo; 1327 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1328 callee_method = methodHandle(current, callinfo.selected_method()); 1329 } 1330 assert(callee_method()->is_method(), "must be"); 1331 return callee_method; 1332 } 1333 1334 // Resolves a call. 1335 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1336 JavaThread* current = THREAD; 1337 ResourceMark rm(current); 1338 RegisterMap cbl_map(current, 1339 RegisterMap::UpdateMap::skip, 1340 RegisterMap::ProcessFrames::include, 1341 RegisterMap::WalkContinuation::skip); 1342 frame caller_frame = current->last_frame().sender(&cbl_map); 1343 1344 CodeBlob* caller_cb = caller_frame.cb(); 1345 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1346 nmethod* caller_nm = caller_cb->as_nmethod(); 1347 1348 // determine call info & receiver 1349 // note: a) receiver is null for static calls 1350 // b) an exception is thrown if receiver is null for non-static calls 1351 CallInfo call_info; 1352 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1353 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1354 1355 NoSafepointVerifier nsv; 1356 1357 methodHandle callee_method(current, call_info.selected_method()); 1358 1359 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1360 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1361 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1362 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1363 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1364 1365 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1366 1367 #ifndef PRODUCT 1368 // tracing/debugging/statistics 1369 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1370 (is_virtual) ? (&_resolve_virtual_ctr) : 1371 (&_resolve_static_ctr); 1372 Atomic::inc(addr); 1373 1374 if (TraceCallFixup) { 1375 ResourceMark rm(current); 1376 tty->print("resolving %s%s (%s) call to", 1377 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1378 Bytecodes::name(invoke_code)); 1379 callee_method->print_short_name(tty); 1380 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1381 p2i(caller_frame.pc()), p2i(callee_method->code())); 1382 } 1383 #endif 1384 1385 if (invoke_code == Bytecodes::_invokestatic) { 1386 assert(callee_method->method_holder()->is_initialized() || 1387 callee_method->method_holder()->is_reentrant_initialization(current), 1388 "invalid class initialization state for invoke_static"); 1389 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1390 // In order to keep class initialization check, do not patch call 1391 // site for static call when the class is not fully initialized. 1392 // Proper check is enforced by call site re-resolution on every invocation. 1393 // 1394 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1395 // explicit class initialization check is put in nmethod entry (VEP). 1396 assert(callee_method->method_holder()->is_linked(), "must be"); 1397 return callee_method; 1398 } 1399 } 1400 1401 1402 // JSR 292 key invariant: 1403 // If the resolved method is a MethodHandle invoke target, the call 1404 // site must be a MethodHandle call site, because the lambda form might tail-call 1405 // leaving the stack in a state unknown to either caller or callee 1406 1407 // Compute entry points. The computation of the entry points is independent of 1408 // patching the call. 1409 1410 // Make sure the callee nmethod does not get deoptimized and removed before 1411 // we are done patching the code. 1412 1413 1414 CompiledICLocker ml(caller_nm); 1415 if (is_virtual && !is_optimized) { 1416 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1417 inline_cache->update(&call_info, receiver->klass()); 1418 } else { 1419 // Callsite is a direct call - set it to the destination method 1420 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1421 callsite->set(callee_method); 1422 } 1423 1424 return callee_method; 1425 } 1426 1427 // Inline caches exist only in compiled code 1428 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1429 #ifdef ASSERT 1430 RegisterMap reg_map(current, 1431 RegisterMap::UpdateMap::skip, 1432 RegisterMap::ProcessFrames::include, 1433 RegisterMap::WalkContinuation::skip); 1434 frame stub_frame = current->last_frame(); 1435 assert(stub_frame.is_runtime_frame(), "sanity check"); 1436 frame caller_frame = stub_frame.sender(®_map); 1437 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1438 #endif /* ASSERT */ 1439 1440 methodHandle callee_method; 1441 JRT_BLOCK 1442 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1443 // Return Method* through TLS 1444 current->set_vm_result_2(callee_method()); 1445 JRT_BLOCK_END 1446 // return compiled code entry point after potential safepoints 1447 return get_resolved_entry(current, callee_method); 1448 JRT_END 1449 1450 1451 // Handle call site that has been made non-entrant 1452 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1453 // 6243940 We might end up in here if the callee is deoptimized 1454 // as we race to call it. We don't want to take a safepoint if 1455 // the caller was interpreted because the caller frame will look 1456 // interpreted to the stack walkers and arguments are now 1457 // "compiled" so it is much better to make this transition 1458 // invisible to the stack walking code. The i2c path will 1459 // place the callee method in the callee_target. It is stashed 1460 // there because if we try and find the callee by normal means a 1461 // safepoint is possible and have trouble gc'ing the compiled args. 1462 RegisterMap reg_map(current, 1463 RegisterMap::UpdateMap::skip, 1464 RegisterMap::ProcessFrames::include, 1465 RegisterMap::WalkContinuation::skip); 1466 frame stub_frame = current->last_frame(); 1467 assert(stub_frame.is_runtime_frame(), "sanity check"); 1468 frame caller_frame = stub_frame.sender(®_map); 1469 1470 if (caller_frame.is_interpreted_frame() || 1471 caller_frame.is_entry_frame() || 1472 caller_frame.is_upcall_stub_frame()) { 1473 Method* callee = current->callee_target(); 1474 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1475 current->set_vm_result_2(callee); 1476 current->set_callee_target(nullptr); 1477 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1478 // Bypass class initialization checks in c2i when caller is in native. 1479 // JNI calls to static methods don't have class initialization checks. 1480 // Fast class initialization checks are present in c2i adapters and call into 1481 // SharedRuntime::handle_wrong_method() on the slow path. 1482 // 1483 // JVM upcalls may land here as well, but there's a proper check present in 1484 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1485 // so bypassing it in c2i adapter is benign. 1486 return callee->get_c2i_no_clinit_check_entry(); 1487 } else { 1488 return callee->get_c2i_entry(); 1489 } 1490 } 1491 1492 // Must be compiled to compiled path which is safe to stackwalk 1493 methodHandle callee_method; 1494 JRT_BLOCK 1495 // Force resolving of caller (if we called from compiled frame) 1496 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1497 current->set_vm_result_2(callee_method()); 1498 JRT_BLOCK_END 1499 // return compiled code entry point after potential safepoints 1500 return get_resolved_entry(current, callee_method); 1501 JRT_END 1502 1503 // Handle abstract method call 1504 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1505 // Verbose error message for AbstractMethodError. 1506 // Get the called method from the invoke bytecode. 1507 vframeStream vfst(current, true); 1508 assert(!vfst.at_end(), "Java frame must exist"); 1509 methodHandle caller(current, vfst.method()); 1510 Bytecode_invoke invoke(caller, vfst.bci()); 1511 DEBUG_ONLY( invoke.verify(); ) 1512 1513 // Find the compiled caller frame. 1514 RegisterMap reg_map(current, 1515 RegisterMap::UpdateMap::include, 1516 RegisterMap::ProcessFrames::include, 1517 RegisterMap::WalkContinuation::skip); 1518 frame stubFrame = current->last_frame(); 1519 assert(stubFrame.is_runtime_frame(), "must be"); 1520 frame callerFrame = stubFrame.sender(®_map); 1521 assert(callerFrame.is_compiled_frame(), "must be"); 1522 1523 // Install exception and return forward entry. 1524 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1525 JRT_BLOCK 1526 methodHandle callee(current, invoke.static_target(current)); 1527 if (!callee.is_null()) { 1528 oop recv = callerFrame.retrieve_receiver(®_map); 1529 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1530 res = StubRoutines::forward_exception_entry(); 1531 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1532 } 1533 JRT_BLOCK_END 1534 return res; 1535 JRT_END 1536 1537 // return verified_code_entry if interp_only_mode is not set for the current thread; 1538 // otherwise return c2i entry. 1539 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1540 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1541 // In interp_only_mode we need to go to the interpreted entry 1542 // The c2i won't patch in this mode -- see fixup_callers_callsite 1543 return callee_method->get_c2i_entry(); 1544 } 1545 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1546 return callee_method->verified_code_entry(); 1547 } 1548 1549 // resolve a static call and patch code 1550 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1551 methodHandle callee_method; 1552 bool enter_special = false; 1553 JRT_BLOCK 1554 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1555 current->set_vm_result_2(callee_method()); 1556 JRT_BLOCK_END 1557 // return compiled code entry point after potential safepoints 1558 return get_resolved_entry(current, callee_method); 1559 JRT_END 1560 1561 // resolve virtual call and update inline cache to monomorphic 1562 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1563 methodHandle callee_method; 1564 JRT_BLOCK 1565 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1566 current->set_vm_result_2(callee_method()); 1567 JRT_BLOCK_END 1568 // return compiled code entry point after potential safepoints 1569 return get_resolved_entry(current, callee_method); 1570 JRT_END 1571 1572 1573 // Resolve a virtual call that can be statically bound (e.g., always 1574 // monomorphic, so it has no inline cache). Patch code to resolved target. 1575 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1576 methodHandle callee_method; 1577 JRT_BLOCK 1578 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1579 current->set_vm_result_2(callee_method()); 1580 JRT_BLOCK_END 1581 // return compiled code entry point after potential safepoints 1582 return get_resolved_entry(current, callee_method); 1583 JRT_END 1584 1585 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1586 JavaThread* current = THREAD; 1587 ResourceMark rm(current); 1588 CallInfo call_info; 1589 Bytecodes::Code bc; 1590 1591 // receiver is null for static calls. An exception is thrown for null 1592 // receivers for non-static calls 1593 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1594 1595 methodHandle callee_method(current, call_info.selected_method()); 1596 1597 #ifndef PRODUCT 1598 Atomic::inc(&_ic_miss_ctr); 1599 1600 // Statistics & Tracing 1601 if (TraceCallFixup) { 1602 ResourceMark rm(current); 1603 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1604 callee_method->print_short_name(tty); 1605 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1606 } 1607 1608 if (ICMissHistogram) { 1609 MutexLocker m(VMStatistic_lock); 1610 RegisterMap reg_map(current, 1611 RegisterMap::UpdateMap::skip, 1612 RegisterMap::ProcessFrames::include, 1613 RegisterMap::WalkContinuation::skip); 1614 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1615 // produce statistics under the lock 1616 trace_ic_miss(f.pc()); 1617 } 1618 #endif 1619 1620 // install an event collector so that when a vtable stub is created the 1621 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1622 // event can't be posted when the stub is created as locks are held 1623 // - instead the event will be deferred until the event collector goes 1624 // out of scope. 1625 JvmtiDynamicCodeEventCollector event_collector; 1626 1627 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1628 RegisterMap reg_map(current, 1629 RegisterMap::UpdateMap::skip, 1630 RegisterMap::ProcessFrames::include, 1631 RegisterMap::WalkContinuation::skip); 1632 frame caller_frame = current->last_frame().sender(®_map); 1633 CodeBlob* cb = caller_frame.cb(); 1634 nmethod* caller_nm = cb->as_nmethod(); 1635 1636 CompiledICLocker ml(caller_nm); 1637 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1638 inline_cache->update(&call_info, receiver()->klass()); 1639 1640 return callee_method; 1641 } 1642 1643 // 1644 // Resets a call-site in compiled code so it will get resolved again. 1645 // This routines handles both virtual call sites, optimized virtual call 1646 // sites, and static call sites. Typically used to change a call sites 1647 // destination from compiled to interpreted. 1648 // 1649 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1650 JavaThread* current = THREAD; 1651 ResourceMark rm(current); 1652 RegisterMap reg_map(current, 1653 RegisterMap::UpdateMap::skip, 1654 RegisterMap::ProcessFrames::include, 1655 RegisterMap::WalkContinuation::skip); 1656 frame stub_frame = current->last_frame(); 1657 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1658 frame caller = stub_frame.sender(®_map); 1659 1660 // Do nothing if the frame isn't a live compiled frame. 1661 // nmethod could be deoptimized by the time we get here 1662 // so no update to the caller is needed. 1663 1664 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1665 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1666 1667 address pc = caller.pc(); 1668 1669 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1670 assert(caller_nm != nullptr, "did not find caller nmethod"); 1671 1672 // Default call_addr is the location of the "basic" call. 1673 // Determine the address of the call we a reresolving. With 1674 // Inline Caches we will always find a recognizable call. 1675 // With Inline Caches disabled we may or may not find a 1676 // recognizable call. We will always find a call for static 1677 // calls and for optimized virtual calls. For vanilla virtual 1678 // calls it depends on the state of the UseInlineCaches switch. 1679 // 1680 // With Inline Caches disabled we can get here for a virtual call 1681 // for two reasons: 1682 // 1 - calling an abstract method. The vtable for abstract methods 1683 // will run us thru handle_wrong_method and we will eventually 1684 // end up in the interpreter to throw the ame. 1685 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1686 // call and between the time we fetch the entry address and 1687 // we jump to it the target gets deoptimized. Similar to 1 1688 // we will wind up in the interprter (thru a c2i with c2). 1689 // 1690 CompiledICLocker ml(caller_nm); 1691 address call_addr = caller_nm->call_instruction_address(pc); 1692 1693 if (call_addr != nullptr) { 1694 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1695 // bytes back in the instruction stream so we must also check for reloc info. 1696 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1697 bool ret = iter.next(); // Get item 1698 if (ret) { 1699 switch (iter.type()) { 1700 case relocInfo::static_call_type: 1701 case relocInfo::opt_virtual_call_type: { 1702 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1703 cdc->set_to_clean(); 1704 break; 1705 } 1706 1707 case relocInfo::virtual_call_type: { 1708 // compiled, dispatched call (which used to call an interpreted method) 1709 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1710 inline_cache->set_to_clean(); 1711 break; 1712 } 1713 default: 1714 break; 1715 } 1716 } 1717 } 1718 } 1719 1720 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1721 1722 1723 #ifndef PRODUCT 1724 Atomic::inc(&_wrong_method_ctr); 1725 1726 if (TraceCallFixup) { 1727 ResourceMark rm(current); 1728 tty->print("handle_wrong_method reresolving call to"); 1729 callee_method->print_short_name(tty); 1730 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1731 } 1732 #endif 1733 1734 return callee_method; 1735 } 1736 1737 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1738 // The faulting unsafe accesses should be changed to throw the error 1739 // synchronously instead. Meanwhile the faulting instruction will be 1740 // skipped over (effectively turning it into a no-op) and an 1741 // asynchronous exception will be raised which the thread will 1742 // handle at a later point. If the instruction is a load it will 1743 // return garbage. 1744 1745 // Request an async exception. 1746 thread->set_pending_unsafe_access_error(); 1747 1748 // Return address of next instruction to execute. 1749 return next_pc; 1750 } 1751 1752 #ifdef ASSERT 1753 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1754 const BasicType* sig_bt, 1755 const VMRegPair* regs) { 1756 ResourceMark rm; 1757 const int total_args_passed = method->size_of_parameters(); 1758 const VMRegPair* regs_with_member_name = regs; 1759 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1760 1761 const int member_arg_pos = total_args_passed - 1; 1762 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1763 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1764 1765 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1766 1767 for (int i = 0; i < member_arg_pos; i++) { 1768 VMReg a = regs_with_member_name[i].first(); 1769 VMReg b = regs_without_member_name[i].first(); 1770 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1771 } 1772 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1773 } 1774 #endif 1775 1776 // --------------------------------------------------------------------------- 1777 // We are calling the interpreter via a c2i. Normally this would mean that 1778 // we were called by a compiled method. However we could have lost a race 1779 // where we went int -> i2c -> c2i and so the caller could in fact be 1780 // interpreted. If the caller is compiled we attempt to patch the caller 1781 // so he no longer calls into the interpreter. 1782 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1783 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1784 1785 // It's possible that deoptimization can occur at a call site which hasn't 1786 // been resolved yet, in which case this function will be called from 1787 // an nmethod that has been patched for deopt and we can ignore the 1788 // request for a fixup. 1789 // Also it is possible that we lost a race in that from_compiled_entry 1790 // is now back to the i2c in that case we don't need to patch and if 1791 // we did we'd leap into space because the callsite needs to use 1792 // "to interpreter" stub in order to load up the Method*. Don't 1793 // ask me how I know this... 1794 1795 // Result from nmethod::is_unloading is not stable across safepoints. 1796 NoSafepointVerifier nsv; 1797 1798 nmethod* callee = method->code(); 1799 if (callee == nullptr) { 1800 return; 1801 } 1802 1803 // write lock needed because we might patch call site by set_to_clean() 1804 // and is_unloading() can modify nmethod's state 1805 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1806 1807 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1808 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1809 return; 1810 } 1811 1812 // The check above makes sure this is an nmethod. 1813 nmethod* caller = cb->as_nmethod(); 1814 1815 // Get the return PC for the passed caller PC. 1816 address return_pc = caller_pc + frame::pc_return_offset; 1817 1818 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1819 return; 1820 } 1821 1822 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1823 CompiledICLocker ic_locker(caller); 1824 ResourceMark rm; 1825 1826 // If we got here through a static call or opt_virtual call, then we know where the 1827 // call address would be; let's peek at it 1828 address callsite_addr = (address)nativeCall_before(return_pc); 1829 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1830 if (!iter.next()) { 1831 // No reloc entry found; not a static or optimized virtual call 1832 return; 1833 } 1834 1835 relocInfo::relocType type = iter.reloc()->type(); 1836 if (type != relocInfo::static_call_type && 1837 type != relocInfo::opt_virtual_call_type) { 1838 return; 1839 } 1840 1841 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1842 callsite->set_to_clean(); 1843 JRT_END 1844 1845 1846 // same as JVM_Arraycopy, but called directly from compiled code 1847 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1848 oopDesc* dest, jint dest_pos, 1849 jint length, 1850 JavaThread* current)) { 1851 #ifndef PRODUCT 1852 _slow_array_copy_ctr++; 1853 #endif 1854 // Check if we have null pointers 1855 if (src == nullptr || dest == nullptr) { 1856 THROW(vmSymbols::java_lang_NullPointerException()); 1857 } 1858 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1859 // even though the copy_array API also performs dynamic checks to ensure 1860 // that src and dest are truly arrays (and are conformable). 1861 // The copy_array mechanism is awkward and could be removed, but 1862 // the compilers don't call this function except as a last resort, 1863 // so it probably doesn't matter. 1864 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1865 (arrayOopDesc*)dest, dest_pos, 1866 length, current); 1867 } 1868 JRT_END 1869 1870 // The caller of generate_class_cast_message() (or one of its callers) 1871 // must use a ResourceMark in order to correctly free the result. 1872 char* SharedRuntime::generate_class_cast_message( 1873 JavaThread* thread, Klass* caster_klass) { 1874 1875 // Get target class name from the checkcast instruction 1876 vframeStream vfst(thread, true); 1877 assert(!vfst.at_end(), "Java frame must exist"); 1878 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1879 constantPoolHandle cpool(thread, vfst.method()->constants()); 1880 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1881 Symbol* target_klass_name = nullptr; 1882 if (target_klass == nullptr) { 1883 // This klass should be resolved, but just in case, get the name in the klass slot. 1884 target_klass_name = cpool->klass_name_at(cc.index()); 1885 } 1886 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1887 } 1888 1889 1890 // The caller of generate_class_cast_message() (or one of its callers) 1891 // must use a ResourceMark in order to correctly free the result. 1892 char* SharedRuntime::generate_class_cast_message( 1893 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1894 const char* caster_name = caster_klass->external_name(); 1895 1896 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1897 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1898 target_klass->external_name(); 1899 1900 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1901 1902 const char* caster_klass_description = ""; 1903 const char* target_klass_description = ""; 1904 const char* klass_separator = ""; 1905 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1906 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1907 } else { 1908 caster_klass_description = caster_klass->class_in_module_of_loader(); 1909 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1910 klass_separator = (target_klass != nullptr) ? "; " : ""; 1911 } 1912 1913 // add 3 for parenthesis and preceding space 1914 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1915 1916 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1917 if (message == nullptr) { 1918 // Shouldn't happen, but don't cause even more problems if it does 1919 message = const_cast<char*>(caster_klass->external_name()); 1920 } else { 1921 jio_snprintf(message, 1922 msglen, 1923 "class %s cannot be cast to class %s (%s%s%s)", 1924 caster_name, 1925 target_name, 1926 caster_klass_description, 1927 klass_separator, 1928 target_klass_description 1929 ); 1930 } 1931 return message; 1932 } 1933 1934 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1935 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1936 JRT_END 1937 1938 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1939 if (!SafepointSynchronize::is_synchronizing()) { 1940 // Only try quick_enter() if we're not trying to reach a safepoint 1941 // so that the calling thread reaches the safepoint more quickly. 1942 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1943 return; 1944 } 1945 } 1946 // NO_ASYNC required because an async exception on the state transition destructor 1947 // would leave you with the lock held and it would never be released. 1948 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1949 // and the model is that an exception implies the method failed. 1950 JRT_BLOCK_NO_ASYNC 1951 Handle h_obj(THREAD, obj); 1952 ObjectSynchronizer::enter(h_obj, lock, current); 1953 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1954 JRT_BLOCK_END 1955 } 1956 1957 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1958 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1959 SharedRuntime::monitor_enter_helper(obj, lock, current); 1960 JRT_END 1961 1962 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1963 assert(JavaThread::current() == current, "invariant"); 1964 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1965 ExceptionMark em(current); 1966 1967 // Check if C2_MacroAssembler::fast_unlock() or 1968 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 1969 // monitor before going slow path. Since there is no safepoint 1970 // polling when calling into the VM, we can be sure that the monitor 1971 // hasn't been deallocated. 1972 ObjectMonitor* m = current->unlocked_inflated_monitor(); 1973 if (m != nullptr) { 1974 assert(m->owner_raw() != current, "must be"); 1975 current->clear_unlocked_inflated_monitor(); 1976 1977 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 1978 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 1979 // Some other thread acquired the lock (or the monitor was 1980 // deflated). Either way we are done. 1981 current->dec_held_monitor_count(); 1982 return; 1983 } 1984 } 1985 1986 // The object could become unlocked through a JNI call, which we have no other checks for. 1987 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1988 if (obj->is_unlocked()) { 1989 if (CheckJNICalls) { 1990 fatal("Object has been unlocked by JNI"); 1991 } 1992 return; 1993 } 1994 ObjectSynchronizer::exit(obj, lock, current); 1995 } 1996 1997 // Handles the uncommon cases of monitor unlocking in compiled code 1998 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1999 assert(current == JavaThread::current(), "pre-condition"); 2000 SharedRuntime::monitor_exit_helper(obj, lock, current); 2001 JRT_END 2002 2003 // This is only called when CheckJNICalls is true, and only 2004 // for virtual thread termination. 2005 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2006 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2007 if (log_is_enabled(Debug, jni)) { 2008 JavaThread* current = JavaThread::current(); 2009 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2010 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2011 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2012 ") exiting with Objects still locked by JNI MonitorEnter.", 2013 vthread_id, carrier_id); 2014 } 2015 JRT_END 2016 2017 #ifndef PRODUCT 2018 2019 void SharedRuntime::print_statistics() { 2020 ttyLocker ttyl; 2021 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2022 2023 SharedRuntime::print_ic_miss_histogram(); 2024 2025 // Dump the JRT_ENTRY counters 2026 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2027 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2028 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2029 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2030 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2031 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2032 2033 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2034 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2035 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2036 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2037 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2038 2039 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2040 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2041 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2042 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2043 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2044 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2045 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2046 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2047 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2048 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2049 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2050 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2051 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2052 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2053 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2054 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2055 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2056 2057 AdapterHandlerLibrary::print_statistics(); 2058 2059 if (xtty != nullptr) xtty->tail("statistics"); 2060 } 2061 2062 inline double percent(int64_t x, int64_t y) { 2063 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2064 } 2065 2066 class MethodArityHistogram { 2067 public: 2068 enum { MAX_ARITY = 256 }; 2069 private: 2070 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2071 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2072 static uint64_t _total_compiled_calls; 2073 static uint64_t _max_compiled_calls_per_method; 2074 static int _max_arity; // max. arity seen 2075 static int _max_size; // max. arg size seen 2076 2077 static void add_method_to_histogram(nmethod* nm) { 2078 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2079 if (method != nullptr) { 2080 ArgumentCount args(method->signature()); 2081 int arity = args.size() + (method->is_static() ? 0 : 1); 2082 int argsize = method->size_of_parameters(); 2083 arity = MIN2(arity, MAX_ARITY-1); 2084 argsize = MIN2(argsize, MAX_ARITY-1); 2085 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2086 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2087 _total_compiled_calls += count; 2088 _arity_histogram[arity] += count; 2089 _size_histogram[argsize] += count; 2090 _max_arity = MAX2(_max_arity, arity); 2091 _max_size = MAX2(_max_size, argsize); 2092 } 2093 } 2094 2095 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2096 const int N = MIN2(9, n); 2097 double sum = 0; 2098 double weighted_sum = 0; 2099 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2100 if (sum >= 1) { // prevent divide by zero or divide overflow 2101 double rest = sum; 2102 double percent = sum / 100; 2103 for (int i = 0; i <= N; i++) { 2104 rest -= (double)histo[i]; 2105 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2106 } 2107 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2108 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2109 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2110 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2111 } else { 2112 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2113 } 2114 } 2115 2116 void print_histogram() { 2117 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2118 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2119 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2120 print_histogram_helper(_max_size, _size_histogram, "size"); 2121 tty->cr(); 2122 } 2123 2124 public: 2125 MethodArityHistogram() { 2126 // Take the Compile_lock to protect against changes in the CodeBlob structures 2127 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2128 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2129 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2130 _max_arity = _max_size = 0; 2131 _total_compiled_calls = 0; 2132 _max_compiled_calls_per_method = 0; 2133 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2134 CodeCache::nmethods_do(add_method_to_histogram); 2135 print_histogram(); 2136 } 2137 }; 2138 2139 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2140 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2141 uint64_t MethodArityHistogram::_total_compiled_calls; 2142 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2143 int MethodArityHistogram::_max_arity; 2144 int MethodArityHistogram::_max_size; 2145 2146 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2147 tty->print_cr("Calls from compiled code:"); 2148 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2149 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2150 int64_t mono_i = _nof_interface_calls; 2151 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2152 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2153 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2154 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2155 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2156 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2157 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2158 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2159 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2160 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2161 tty->cr(); 2162 tty->print_cr("Note 1: counter updates are not MT-safe."); 2163 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2164 tty->print_cr(" %% in nested categories are relative to their category"); 2165 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2166 tty->cr(); 2167 2168 MethodArityHistogram h; 2169 } 2170 #endif 2171 2172 #ifndef PRODUCT 2173 static int _lookups; // number of calls to lookup 2174 static int _equals; // number of buckets checked with matching hash 2175 static int _hits; // number of successful lookups 2176 static int _compact; // number of equals calls with compact signature 2177 #endif 2178 2179 // A simple wrapper class around the calling convention information 2180 // that allows sharing of adapters for the same calling convention. 2181 class AdapterFingerPrint : public CHeapObj<mtCode> { 2182 private: 2183 enum { 2184 _basic_type_bits = 4, 2185 _basic_type_mask = right_n_bits(_basic_type_bits), 2186 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2187 _compact_int_count = 3 2188 }; 2189 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2190 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2191 2192 union { 2193 int _compact[_compact_int_count]; 2194 int* _fingerprint; 2195 } _value; 2196 int _length; // A negative length indicates the fingerprint is in the compact form, 2197 // Otherwise _value._fingerprint is the array. 2198 2199 // Remap BasicTypes that are handled equivalently by the adapters. 2200 // These are correct for the current system but someday it might be 2201 // necessary to make this mapping platform dependent. 2202 static int adapter_encoding(BasicType in) { 2203 switch (in) { 2204 case T_BOOLEAN: 2205 case T_BYTE: 2206 case T_SHORT: 2207 case T_CHAR: 2208 // There are all promoted to T_INT in the calling convention 2209 return T_INT; 2210 2211 case T_OBJECT: 2212 case T_ARRAY: 2213 // In other words, we assume that any register good enough for 2214 // an int or long is good enough for a managed pointer. 2215 #ifdef _LP64 2216 return T_LONG; 2217 #else 2218 return T_INT; 2219 #endif 2220 2221 case T_INT: 2222 case T_LONG: 2223 case T_FLOAT: 2224 case T_DOUBLE: 2225 case T_VOID: 2226 return in; 2227 2228 default: 2229 ShouldNotReachHere(); 2230 return T_CONFLICT; 2231 } 2232 } 2233 2234 public: 2235 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2236 // The fingerprint is based on the BasicType signature encoded 2237 // into an array of ints with eight entries per int. 2238 int* ptr; 2239 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2240 if (len <= _compact_int_count) { 2241 assert(_compact_int_count == 3, "else change next line"); 2242 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2243 // Storing the signature encoded as signed chars hits about 98% 2244 // of the time. 2245 _length = -len; 2246 ptr = _value._compact; 2247 } else { 2248 _length = len; 2249 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2250 ptr = _value._fingerprint; 2251 } 2252 2253 // Now pack the BasicTypes with 8 per int 2254 int sig_index = 0; 2255 for (int index = 0; index < len; index++) { 2256 int value = 0; 2257 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2258 int bt = adapter_encoding(sig_bt[sig_index++]); 2259 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2260 value = (value << _basic_type_bits) | bt; 2261 } 2262 ptr[index] = value; 2263 } 2264 } 2265 2266 ~AdapterFingerPrint() { 2267 if (_length > 0) { 2268 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2269 } 2270 } 2271 2272 int value(int index) { 2273 if (_length < 0) { 2274 return _value._compact[index]; 2275 } 2276 return _value._fingerprint[index]; 2277 } 2278 int length() { 2279 if (_length < 0) return -_length; 2280 return _length; 2281 } 2282 2283 bool is_compact() { 2284 return _length <= 0; 2285 } 2286 2287 unsigned int compute_hash() { 2288 int hash = 0; 2289 for (int i = 0; i < length(); i++) { 2290 int v = value(i); 2291 hash = (hash << 8) ^ v ^ (hash >> 5); 2292 } 2293 return (unsigned int)hash; 2294 } 2295 2296 const char* as_string() { 2297 stringStream st; 2298 st.print("0x"); 2299 for (int i = 0; i < length(); i++) { 2300 st.print("%x", value(i)); 2301 } 2302 return st.as_string(); 2303 } 2304 2305 #ifndef PRODUCT 2306 // Reconstitutes the basic type arguments from the fingerprint, 2307 // producing strings like LIJDF 2308 const char* as_basic_args_string() { 2309 stringStream st; 2310 bool long_prev = false; 2311 for (int i = 0; i < length(); i++) { 2312 unsigned val = (unsigned)value(i); 2313 // args are packed so that first/lower arguments are in the highest 2314 // bits of each int value, so iterate from highest to the lowest 2315 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2316 unsigned v = (val >> j) & _basic_type_mask; 2317 if (v == 0) { 2318 assert(i == length() - 1, "Only expect zeroes in the last word"); 2319 continue; 2320 } 2321 if (long_prev) { 2322 long_prev = false; 2323 if (v == T_VOID) { 2324 st.print("J"); 2325 } else { 2326 st.print("L"); 2327 } 2328 } 2329 switch (v) { 2330 case T_INT: st.print("I"); break; 2331 case T_LONG: long_prev = true; break; 2332 case T_FLOAT: st.print("F"); break; 2333 case T_DOUBLE: st.print("D"); break; 2334 case T_VOID: break; 2335 default: ShouldNotReachHere(); 2336 } 2337 } 2338 } 2339 if (long_prev) { 2340 st.print("L"); 2341 } 2342 return st.as_string(); 2343 } 2344 #endif // !product 2345 2346 bool equals(AdapterFingerPrint* other) { 2347 if (other->_length != _length) { 2348 return false; 2349 } 2350 if (_length < 0) { 2351 assert(_compact_int_count == 3, "else change next line"); 2352 return _value._compact[0] == other->_value._compact[0] && 2353 _value._compact[1] == other->_value._compact[1] && 2354 _value._compact[2] == other->_value._compact[2]; 2355 } else { 2356 for (int i = 0; i < _length; i++) { 2357 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2358 return false; 2359 } 2360 } 2361 } 2362 return true; 2363 } 2364 2365 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2366 NOT_PRODUCT(_equals++); 2367 return fp1->equals(fp2); 2368 } 2369 2370 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2371 return fp->compute_hash(); 2372 } 2373 }; 2374 2375 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2376 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2377 AnyObj::C_HEAP, mtCode, 2378 AdapterFingerPrint::compute_hash, 2379 AdapterFingerPrint::equals>; 2380 static AdapterHandlerTable* _adapter_handler_table; 2381 2382 // Find a entry with the same fingerprint if it exists 2383 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2384 NOT_PRODUCT(_lookups++); 2385 assert_lock_strong(AdapterHandlerLibrary_lock); 2386 AdapterFingerPrint fp(total_args_passed, sig_bt); 2387 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2388 if (entry != nullptr) { 2389 #ifndef PRODUCT 2390 if (fp.is_compact()) _compact++; 2391 _hits++; 2392 #endif 2393 return *entry; 2394 } 2395 return nullptr; 2396 } 2397 2398 #ifndef PRODUCT 2399 static void print_table_statistics() { 2400 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2401 return sizeof(*key) + sizeof(*a); 2402 }; 2403 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2404 ts.print(tty, "AdapterHandlerTable"); 2405 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2406 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2407 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2408 _lookups, _equals, _hits, _compact); 2409 } 2410 #endif 2411 2412 // --------------------------------------------------------------------------- 2413 // Implementation of AdapterHandlerLibrary 2414 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2415 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2416 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2417 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2418 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2419 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2420 const int AdapterHandlerLibrary_size = 16*K; 2421 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2422 2423 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2424 return _buffer; 2425 } 2426 2427 static void post_adapter_creation(const AdapterBlob* new_adapter, 2428 const AdapterHandlerEntry* entry) { 2429 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2430 char blob_id[256]; 2431 jio_snprintf(blob_id, 2432 sizeof(blob_id), 2433 "%s(%s)", 2434 new_adapter->name(), 2435 entry->fingerprint()->as_string()); 2436 if (Forte::is_enabled()) { 2437 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2438 } 2439 2440 if (JvmtiExport::should_post_dynamic_code_generated()) { 2441 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2442 } 2443 } 2444 } 2445 2446 void AdapterHandlerLibrary::initialize() { 2447 ResourceMark rm; 2448 AdapterBlob* no_arg_blob = nullptr; 2449 AdapterBlob* int_arg_blob = nullptr; 2450 AdapterBlob* obj_arg_blob = nullptr; 2451 AdapterBlob* obj_int_arg_blob = nullptr; 2452 AdapterBlob* obj_obj_arg_blob = nullptr; 2453 { 2454 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2455 MutexLocker mu(AdapterHandlerLibrary_lock); 2456 2457 // Create a special handler for abstract methods. Abstract methods 2458 // are never compiled so an i2c entry is somewhat meaningless, but 2459 // throw AbstractMethodError just in case. 2460 // Pass wrong_method_abstract for the c2i transitions to return 2461 // AbstractMethodError for invalid invocations. 2462 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2463 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2464 SharedRuntime::throw_AbstractMethodError_entry(), 2465 wrong_method_abstract, wrong_method_abstract); 2466 2467 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2468 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2469 2470 BasicType obj_args[] = { T_OBJECT }; 2471 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2472 2473 BasicType int_args[] = { T_INT }; 2474 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2475 2476 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2477 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2478 2479 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2480 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2481 2482 assert(no_arg_blob != nullptr && 2483 obj_arg_blob != nullptr && 2484 int_arg_blob != nullptr && 2485 obj_int_arg_blob != nullptr && 2486 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2487 } 2488 2489 // Outside of the lock 2490 post_adapter_creation(no_arg_blob, _no_arg_handler); 2491 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2492 post_adapter_creation(int_arg_blob, _int_arg_handler); 2493 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2494 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2495 } 2496 2497 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2498 address i2c_entry, 2499 address c2i_entry, 2500 address c2i_unverified_entry, 2501 address c2i_no_clinit_check_entry) { 2502 // Insert an entry into the table 2503 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2504 c2i_no_clinit_check_entry); 2505 } 2506 2507 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2508 if (method->is_abstract()) { 2509 return _abstract_method_handler; 2510 } 2511 int total_args_passed = method->size_of_parameters(); // All args on stack 2512 if (total_args_passed == 0) { 2513 return _no_arg_handler; 2514 } else if (total_args_passed == 1) { 2515 if (!method->is_static()) { 2516 return _obj_arg_handler; 2517 } 2518 switch (method->signature()->char_at(1)) { 2519 case JVM_SIGNATURE_CLASS: 2520 case JVM_SIGNATURE_ARRAY: 2521 return _obj_arg_handler; 2522 case JVM_SIGNATURE_INT: 2523 case JVM_SIGNATURE_BOOLEAN: 2524 case JVM_SIGNATURE_CHAR: 2525 case JVM_SIGNATURE_BYTE: 2526 case JVM_SIGNATURE_SHORT: 2527 return _int_arg_handler; 2528 } 2529 } else if (total_args_passed == 2 && 2530 !method->is_static()) { 2531 switch (method->signature()->char_at(1)) { 2532 case JVM_SIGNATURE_CLASS: 2533 case JVM_SIGNATURE_ARRAY: 2534 return _obj_obj_arg_handler; 2535 case JVM_SIGNATURE_INT: 2536 case JVM_SIGNATURE_BOOLEAN: 2537 case JVM_SIGNATURE_CHAR: 2538 case JVM_SIGNATURE_BYTE: 2539 case JVM_SIGNATURE_SHORT: 2540 return _obj_int_arg_handler; 2541 } 2542 } 2543 return nullptr; 2544 } 2545 2546 class AdapterSignatureIterator : public SignatureIterator { 2547 private: 2548 BasicType stack_sig_bt[16]; 2549 BasicType* sig_bt; 2550 int index; 2551 2552 public: 2553 AdapterSignatureIterator(Symbol* signature, 2554 fingerprint_t fingerprint, 2555 bool is_static, 2556 int total_args_passed) : 2557 SignatureIterator(signature, fingerprint), 2558 index(0) 2559 { 2560 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2561 if (!is_static) { // Pass in receiver first 2562 sig_bt[index++] = T_OBJECT; 2563 } 2564 do_parameters_on(this); 2565 } 2566 2567 BasicType* basic_types() { 2568 return sig_bt; 2569 } 2570 2571 #ifdef ASSERT 2572 int slots() { 2573 return index; 2574 } 2575 #endif 2576 2577 private: 2578 2579 friend class SignatureIterator; // so do_parameters_on can call do_type 2580 void do_type(BasicType type) { 2581 sig_bt[index++] = type; 2582 if (type == T_LONG || type == T_DOUBLE) { 2583 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2584 } 2585 } 2586 }; 2587 2588 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2589 // Use customized signature handler. Need to lock around updates to 2590 // the _adapter_handler_table (it is not safe for concurrent readers 2591 // and a single writer: this could be fixed if it becomes a 2592 // problem). 2593 2594 // Fast-path for trivial adapters 2595 AdapterHandlerEntry* entry = get_simple_adapter(method); 2596 if (entry != nullptr) { 2597 return entry; 2598 } 2599 2600 ResourceMark rm; 2601 AdapterBlob* new_adapter = nullptr; 2602 2603 // Fill in the signature array, for the calling-convention call. 2604 int total_args_passed = method->size_of_parameters(); // All args on stack 2605 2606 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2607 method->is_static(), total_args_passed); 2608 assert(si.slots() == total_args_passed, ""); 2609 BasicType* sig_bt = si.basic_types(); 2610 { 2611 MutexLocker mu(AdapterHandlerLibrary_lock); 2612 2613 // Lookup method signature's fingerprint 2614 entry = lookup(total_args_passed, sig_bt); 2615 2616 if (entry != nullptr) { 2617 #ifdef ASSERT 2618 if (VerifyAdapterSharing) { 2619 AdapterBlob* comparison_blob = nullptr; 2620 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2621 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2622 assert(comparison_entry->compare_code(entry), "code must match"); 2623 // Release the one just created and return the original 2624 delete comparison_entry; 2625 } 2626 #endif 2627 return entry; 2628 } 2629 2630 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2631 } 2632 2633 // Outside of the lock 2634 if (new_adapter != nullptr) { 2635 post_adapter_creation(new_adapter, entry); 2636 } 2637 return entry; 2638 } 2639 2640 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2641 int total_args_passed, 2642 BasicType* sig_bt, 2643 bool allocate_code_blob) { 2644 if (log_is_enabled(Info, perf, class, link)) { 2645 ClassLoader::perf_method_adapters_count()->inc(); 2646 } 2647 2648 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2649 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2650 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2651 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2652 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2653 2654 VMRegPair stack_regs[16]; 2655 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2656 2657 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2658 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2659 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2660 CodeBuffer buffer(buf); 2661 short buffer_locs[20]; 2662 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2663 sizeof(buffer_locs)/sizeof(relocInfo)); 2664 2665 // Make a C heap allocated version of the fingerprint to store in the adapter 2666 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2667 MacroAssembler _masm(&buffer); 2668 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2669 total_args_passed, 2670 comp_args_on_stack, 2671 sig_bt, 2672 regs, 2673 fingerprint); 2674 2675 #ifdef ASSERT 2676 if (VerifyAdapterSharing) { 2677 entry->save_code(buf->code_begin(), buffer.insts_size()); 2678 if (!allocate_code_blob) { 2679 return entry; 2680 } 2681 } 2682 #endif 2683 2684 new_adapter = AdapterBlob::create(&buffer); 2685 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2686 if (new_adapter == nullptr) { 2687 // CodeCache is full, disable compilation 2688 // Ought to log this but compile log is only per compile thread 2689 // and we're some non descript Java thread. 2690 return nullptr; 2691 } 2692 entry->relocate(new_adapter->content_begin()); 2693 #ifndef PRODUCT 2694 // debugging support 2695 if (PrintAdapterHandlers || PrintStubCode) { 2696 ttyLocker ttyl; 2697 entry->print_adapter_on(tty); 2698 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2699 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2700 fingerprint->as_string(), insts_size); 2701 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2702 if (Verbose || PrintStubCode) { 2703 address first_pc = entry->base_address(); 2704 if (first_pc != nullptr) { 2705 Disassembler::decode(first_pc, first_pc + insts_size, tty 2706 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2707 tty->cr(); 2708 } 2709 } 2710 } 2711 #endif 2712 2713 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2714 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2715 if (contains_all_checks || !VerifyAdapterCalls) { 2716 assert_lock_strong(AdapterHandlerLibrary_lock); 2717 _adapter_handler_table->put(fingerprint, entry); 2718 } 2719 return entry; 2720 } 2721 2722 address AdapterHandlerEntry::base_address() { 2723 address base = _i2c_entry; 2724 if (base == nullptr) base = _c2i_entry; 2725 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2726 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2727 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2728 return base; 2729 } 2730 2731 void AdapterHandlerEntry::relocate(address new_base) { 2732 address old_base = base_address(); 2733 assert(old_base != nullptr, ""); 2734 ptrdiff_t delta = new_base - old_base; 2735 if (_i2c_entry != nullptr) 2736 _i2c_entry += delta; 2737 if (_c2i_entry != nullptr) 2738 _c2i_entry += delta; 2739 if (_c2i_unverified_entry != nullptr) 2740 _c2i_unverified_entry += delta; 2741 if (_c2i_no_clinit_check_entry != nullptr) 2742 _c2i_no_clinit_check_entry += delta; 2743 assert(base_address() == new_base, ""); 2744 } 2745 2746 2747 AdapterHandlerEntry::~AdapterHandlerEntry() { 2748 delete _fingerprint; 2749 #ifdef ASSERT 2750 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2751 #endif 2752 } 2753 2754 2755 #ifdef ASSERT 2756 // Capture the code before relocation so that it can be compared 2757 // against other versions. If the code is captured after relocation 2758 // then relative instructions won't be equivalent. 2759 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2760 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2761 _saved_code_length = length; 2762 memcpy(_saved_code, buffer, length); 2763 } 2764 2765 2766 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2767 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2768 2769 if (other->_saved_code_length != _saved_code_length) { 2770 return false; 2771 } 2772 2773 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2774 } 2775 #endif 2776 2777 2778 /** 2779 * Create a native wrapper for this native method. The wrapper converts the 2780 * Java-compiled calling convention to the native convention, handles 2781 * arguments, and transitions to native. On return from the native we transition 2782 * back to java blocking if a safepoint is in progress. 2783 */ 2784 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2785 ResourceMark rm; 2786 nmethod* nm = nullptr; 2787 2788 // Check if memory should be freed before allocation 2789 CodeCache::gc_on_allocation(); 2790 2791 assert(method->is_native(), "must be native"); 2792 assert(method->is_special_native_intrinsic() || 2793 method->has_native_function(), "must have something valid to call!"); 2794 2795 { 2796 // Perform the work while holding the lock, but perform any printing outside the lock 2797 MutexLocker mu(AdapterHandlerLibrary_lock); 2798 // See if somebody beat us to it 2799 if (method->code() != nullptr) { 2800 return; 2801 } 2802 2803 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2804 assert(compile_id > 0, "Must generate native wrapper"); 2805 2806 2807 ResourceMark rm; 2808 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2809 if (buf != nullptr) { 2810 CodeBuffer buffer(buf); 2811 2812 if (method->is_continuation_enter_intrinsic()) { 2813 buffer.initialize_stubs_size(192); 2814 } 2815 2816 struct { double data[20]; } locs_buf; 2817 struct { double data[20]; } stubs_locs_buf; 2818 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2819 #if defined(AARCH64) || defined(PPC64) 2820 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2821 // in the constant pool to ensure ordering between the barrier and oops 2822 // accesses. For native_wrappers we need a constant. 2823 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2824 // static java call that is resolved in the runtime. 2825 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2826 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2827 } 2828 #endif 2829 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2830 MacroAssembler _masm(&buffer); 2831 2832 // Fill in the signature array, for the calling-convention call. 2833 const int total_args_passed = method->size_of_parameters(); 2834 2835 VMRegPair stack_regs[16]; 2836 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2837 2838 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2839 method->is_static(), total_args_passed); 2840 BasicType* sig_bt = si.basic_types(); 2841 assert(si.slots() == total_args_passed, ""); 2842 BasicType ret_type = si.return_type(); 2843 2844 // Now get the compiled-Java arguments layout. 2845 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2846 2847 // Generate the compiled-to-native wrapper code 2848 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2849 2850 if (nm != nullptr) { 2851 { 2852 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2853 if (nm->make_in_use()) { 2854 method->set_code(method, nm); 2855 } 2856 } 2857 2858 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2859 if (directive->PrintAssemblyOption) { 2860 nm->print_code(); 2861 } 2862 DirectivesStack::release(directive); 2863 } 2864 } 2865 } // Unlock AdapterHandlerLibrary_lock 2866 2867 2868 // Install the generated code. 2869 if (nm != nullptr) { 2870 const char *msg = method->is_static() ? "(static)" : ""; 2871 CompileTask::print_ul(nm, msg); 2872 if (PrintCompilation) { 2873 ttyLocker ttyl; 2874 CompileTask::print(tty, nm, msg); 2875 } 2876 nm->post_compiled_method_load_event(); 2877 } 2878 } 2879 2880 // ------------------------------------------------------------------------- 2881 // Java-Java calling convention 2882 // (what you use when Java calls Java) 2883 2884 //------------------------------name_for_receiver---------------------------------- 2885 // For a given signature, return the VMReg for parameter 0. 2886 VMReg SharedRuntime::name_for_receiver() { 2887 VMRegPair regs; 2888 BasicType sig_bt = T_OBJECT; 2889 (void) java_calling_convention(&sig_bt, ®s, 1); 2890 // Return argument 0 register. In the LP64 build pointers 2891 // take 2 registers, but the VM wants only the 'main' name. 2892 return regs.first(); 2893 } 2894 2895 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2896 // This method is returning a data structure allocating as a 2897 // ResourceObject, so do not put any ResourceMarks in here. 2898 2899 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2900 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2901 int cnt = 0; 2902 if (has_receiver) { 2903 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2904 } 2905 2906 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2907 BasicType type = ss.type(); 2908 sig_bt[cnt++] = type; 2909 if (is_double_word_type(type)) 2910 sig_bt[cnt++] = T_VOID; 2911 } 2912 2913 if (has_appendix) { 2914 sig_bt[cnt++] = T_OBJECT; 2915 } 2916 2917 assert(cnt < 256, "grow table size"); 2918 2919 int comp_args_on_stack; 2920 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 2921 2922 // the calling convention doesn't count out_preserve_stack_slots so 2923 // we must add that in to get "true" stack offsets. 2924 2925 if (comp_args_on_stack) { 2926 for (int i = 0; i < cnt; i++) { 2927 VMReg reg1 = regs[i].first(); 2928 if (reg1->is_stack()) { 2929 // Yuck 2930 reg1 = reg1->bias(out_preserve_stack_slots()); 2931 } 2932 VMReg reg2 = regs[i].second(); 2933 if (reg2->is_stack()) { 2934 // Yuck 2935 reg2 = reg2->bias(out_preserve_stack_slots()); 2936 } 2937 regs[i].set_pair(reg2, reg1); 2938 } 2939 } 2940 2941 // results 2942 *arg_size = cnt; 2943 return regs; 2944 } 2945 2946 // OSR Migration Code 2947 // 2948 // This code is used convert interpreter frames into compiled frames. It is 2949 // called from very start of a compiled OSR nmethod. A temp array is 2950 // allocated to hold the interesting bits of the interpreter frame. All 2951 // active locks are inflated to allow them to move. The displaced headers and 2952 // active interpreter locals are copied into the temp buffer. Then we return 2953 // back to the compiled code. The compiled code then pops the current 2954 // interpreter frame off the stack and pushes a new compiled frame. Then it 2955 // copies the interpreter locals and displaced headers where it wants. 2956 // Finally it calls back to free the temp buffer. 2957 // 2958 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2959 2960 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 2961 assert(current == JavaThread::current(), "pre-condition"); 2962 2963 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 2964 // frame. The stack watermark code below ensures that the interpreted frame is processed 2965 // before it gets unwound. This is helpful as the size of the compiled frame could be 2966 // larger than the interpreted frame, which could result in the new frame not being 2967 // processed correctly. 2968 StackWatermarkSet::before_unwind(current); 2969 2970 // 2971 // This code is dependent on the memory layout of the interpreter local 2972 // array and the monitors. On all of our platforms the layout is identical 2973 // so this code is shared. If some platform lays the their arrays out 2974 // differently then this code could move to platform specific code or 2975 // the code here could be modified to copy items one at a time using 2976 // frame accessor methods and be platform independent. 2977 2978 frame fr = current->last_frame(); 2979 assert(fr.is_interpreted_frame(), ""); 2980 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 2981 2982 // Figure out how many monitors are active. 2983 int active_monitor_count = 0; 2984 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2985 kptr < fr.interpreter_frame_monitor_begin(); 2986 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2987 if (kptr->obj() != nullptr) active_monitor_count++; 2988 } 2989 2990 // QQQ we could place number of active monitors in the array so that compiled code 2991 // could double check it. 2992 2993 Method* moop = fr.interpreter_frame_method(); 2994 int max_locals = moop->max_locals(); 2995 // Allocate temp buffer, 1 word per local & 2 per active monitor 2996 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 2997 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2998 2999 // Copy the locals. Order is preserved so that loading of longs works. 3000 // Since there's no GC I can copy the oops blindly. 3001 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3002 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3003 (HeapWord*)&buf[0], 3004 max_locals); 3005 3006 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3007 int i = max_locals; 3008 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3009 kptr2 < fr.interpreter_frame_monitor_begin(); 3010 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3011 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3012 BasicLock *lock = kptr2->lock(); 3013 if (LockingMode == LM_LEGACY) { 3014 // Inflate so the object's header no longer refers to the BasicLock. 3015 if (lock->displaced_header().is_unlocked()) { 3016 // The object is locked and the resulting ObjectMonitor* will also be 3017 // locked so it can't be async deflated until ownership is dropped. 3018 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3019 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3020 } 3021 // Now the displaced header is free to move because the 3022 // object's header no longer refers to it. 3023 buf[i] = (intptr_t)lock->displaced_header().value(); 3024 } else if (UseObjectMonitorTable) { 3025 buf[i] = (intptr_t)lock->object_monitor_cache(); 3026 } 3027 #ifdef ASSERT 3028 else { 3029 buf[i] = badDispHeaderOSR; 3030 } 3031 #endif 3032 i++; 3033 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3034 } 3035 } 3036 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3037 3038 RegisterMap map(current, 3039 RegisterMap::UpdateMap::skip, 3040 RegisterMap::ProcessFrames::include, 3041 RegisterMap::WalkContinuation::skip); 3042 frame sender = fr.sender(&map); 3043 if (sender.is_interpreted_frame()) { 3044 current->push_cont_fastpath(sender.sp()); 3045 } 3046 3047 return buf; 3048 JRT_END 3049 3050 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3051 FREE_C_HEAP_ARRAY(intptr_t, buf); 3052 JRT_END 3053 3054 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3055 bool found = false; 3056 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3057 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3058 }; 3059 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3060 _adapter_handler_table->iterate(findblob); 3061 return found; 3062 } 3063 3064 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3065 bool found = false; 3066 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3067 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3068 found = true; 3069 st->print("Adapter for signature: "); 3070 a->print_adapter_on(st); 3071 return true; 3072 } else { 3073 return false; // keep looking 3074 } 3075 }; 3076 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3077 _adapter_handler_table->iterate(findblob); 3078 assert(found, "Should have found handler"); 3079 } 3080 3081 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3082 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3083 if (get_i2c_entry() != nullptr) { 3084 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3085 } 3086 if (get_c2i_entry() != nullptr) { 3087 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3088 } 3089 if (get_c2i_unverified_entry() != nullptr) { 3090 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3091 } 3092 if (get_c2i_no_clinit_check_entry() != nullptr) { 3093 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3094 } 3095 st->cr(); 3096 } 3097 3098 #ifndef PRODUCT 3099 3100 void AdapterHandlerLibrary::print_statistics() { 3101 print_table_statistics(); 3102 } 3103 3104 #endif /* PRODUCT */ 3105 3106 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3107 assert(current == JavaThread::current(), "pre-condition"); 3108 StackOverflow* overflow_state = current->stack_overflow_state(); 3109 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3110 overflow_state->set_reserved_stack_activation(current->stack_base()); 3111 JRT_END 3112 3113 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3114 ResourceMark rm(current); 3115 frame activation; 3116 nmethod* nm = nullptr; 3117 int count = 1; 3118 3119 assert(fr.is_java_frame(), "Must start on Java frame"); 3120 3121 RegisterMap map(JavaThread::current(), 3122 RegisterMap::UpdateMap::skip, 3123 RegisterMap::ProcessFrames::skip, 3124 RegisterMap::WalkContinuation::skip); // don't walk continuations 3125 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3126 if (!fr.is_java_frame()) { 3127 continue; 3128 } 3129 3130 Method* method = nullptr; 3131 bool found = false; 3132 if (fr.is_interpreted_frame()) { 3133 method = fr.interpreter_frame_method(); 3134 if (method != nullptr && method->has_reserved_stack_access()) { 3135 found = true; 3136 } 3137 } else { 3138 CodeBlob* cb = fr.cb(); 3139 if (cb != nullptr && cb->is_nmethod()) { 3140 nm = cb->as_nmethod(); 3141 method = nm->method(); 3142 // scope_desc_near() must be used, instead of scope_desc_at() because on 3143 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3144 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3145 method = sd->method(); 3146 if (method != nullptr && method->has_reserved_stack_access()) { 3147 found = true; 3148 } 3149 } 3150 } 3151 } 3152 if (found) { 3153 activation = fr; 3154 warning("Potentially dangerous stack overflow in " 3155 "ReservedStackAccess annotated method %s [%d]", 3156 method->name_and_sig_as_C_string(), count++); 3157 EventReservedStackActivation event; 3158 if (event.should_commit()) { 3159 event.set_method(method); 3160 event.commit(); 3161 } 3162 } 3163 } 3164 return activation; 3165 } 3166 3167 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3168 // After any safepoint, just before going back to compiled code, 3169 // we inform the GC that we will be doing initializing writes to 3170 // this object in the future without emitting card-marks, so 3171 // GC may take any compensating steps. 3172 3173 oop new_obj = current->vm_result(); 3174 if (new_obj == nullptr) return; 3175 3176 BarrierSet *bs = BarrierSet::barrier_set(); 3177 bs->on_slowpath_allocation_exit(current, new_obj); 3178 }