1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveBuilder.hpp"
26 #include "cds/archiveUtils.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/javaClasses.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/vmClasses.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/aotCodeCache.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/compiledIC.hpp"
35 #include "code/nmethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "jvm.h"
47 #include "logging/log.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "memory/universe.hpp"
50 #include "metaprogramming/primitiveConversions.hpp"
51 #include "oops/klass.hpp"
52 #include "oops/method.inline.hpp"
53 #include "oops/objArrayKlass.hpp"
54 #include "oops/oop.inline.hpp"
55 #include "prims/forte.hpp"
56 #include "prims/jvmtiExport.hpp"
57 #include "prims/jvmtiThreadState.hpp"
58 #include "prims/methodHandles.hpp"
59 #include "prims/nativeLookup.hpp"
60 #include "runtime/arguments.hpp"
61 #include "runtime/atomicAccess.hpp"
62 #include "runtime/basicLock.inline.hpp"
63 #include "runtime/frame.inline.hpp"
64 #include "runtime/handles.inline.hpp"
65 #include "runtime/init.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/java.hpp"
68 #include "runtime/javaCalls.hpp"
69 #include "runtime/jniHandles.inline.hpp"
70 #include "runtime/perfData.hpp"
71 #include "runtime/sharedRuntime.hpp"
72 #include "runtime/stackWatermarkSet.hpp"
73 #include "runtime/stubRoutines.hpp"
74 #include "runtime/synchronizer.inline.hpp"
75 #include "runtime/timerTrace.hpp"
76 #include "runtime/vframe.inline.hpp"
77 #include "runtime/vframeArray.hpp"
78 #include "runtime/vm_version.hpp"
79 #include "utilities/copy.hpp"
80 #include "utilities/dtrace.hpp"
81 #include "utilities/events.hpp"
82 #include "utilities/globalDefinitions.hpp"
83 #include "utilities/hashTable.hpp"
84 #include "utilities/macros.hpp"
85 #include "utilities/xmlstream.hpp"
86 #ifdef COMPILER1
87 #include "c1/c1_Runtime1.hpp"
88 #endif
89 #if INCLUDE_JFR
90 #include "jfr/jfr.inline.hpp"
91 #endif
92
93 // Shared runtime stub routines reside in their own unique blob with a
94 // single entry point
95
96
97 #define SHARED_STUB_FIELD_DEFINE(name, type) \
98 type* SharedRuntime::BLOB_FIELD_NAME(name);
99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
100 #undef SHARED_STUB_FIELD_DEFINE
101
102 nmethod* SharedRuntime::_cont_doYield_stub;
103
104 #if 0
105 // TODO tweak global stub name generation to match this
106 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
107 const char *SharedRuntime::_stub_names[] = {
108 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
109 };
110 #endif
111
112 //----------------------------generate_stubs-----------------------------------
113 void SharedRuntime::generate_initial_stubs() {
114 // Build this early so it's available for the interpreter.
115 _throw_StackOverflowError_blob =
116 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
117 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
118 }
119
120 void SharedRuntime::generate_stubs() {
121 _wrong_method_blob =
122 generate_resolve_blob(StubId::shared_wrong_method_id,
123 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
124 _wrong_method_abstract_blob =
125 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
126 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
127 _ic_miss_blob =
128 generate_resolve_blob(StubId::shared_ic_miss_id,
129 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
130 _resolve_opt_virtual_call_blob =
131 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
132 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
133 _resolve_virtual_call_blob =
134 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
135 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
136 _resolve_static_call_blob =
137 generate_resolve_blob(StubId::shared_resolve_static_call_id,
138 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
139
140 _throw_delayed_StackOverflowError_blob =
141 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
142 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
143
144 _throw_AbstractMethodError_blob =
145 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
147
148 _throw_IncompatibleClassChangeError_blob =
149 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
151
152 _throw_NullPointerException_at_call_blob =
153 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
155
156 #if COMPILER2_OR_JVMCI
157 // Vectors are generated only by C2 and JVMCI.
158 bool support_wide = is_wide_vector(MaxVectorSize);
159 if (support_wide) {
160 _polling_page_vectors_safepoint_handler_blob =
161 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
162 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
163 }
164 #endif // COMPILER2_OR_JVMCI
165 _polling_page_safepoint_handler_blob =
166 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
168 _polling_page_return_handler_blob =
169 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
171
172 generate_deopt_blob();
173 }
174
175 void SharedRuntime::init_adapter_library() {
176 AdapterHandlerLibrary::initialize();
177 }
178
179 #if INCLUDE_JFR
180 //------------------------------generate jfr runtime stubs ------
181 void SharedRuntime::generate_jfr_stubs() {
182 ResourceMark rm;
183 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
184 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
185
186 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
187 _jfr_return_lease_blob = generate_jfr_return_lease();
188 }
189
190 #endif // INCLUDE_JFR
191
192 #include <math.h>
193
194 // Implementation of SharedRuntime
195
196 #ifndef PRODUCT
197 // For statistics
198 uint SharedRuntime::_ic_miss_ctr = 0;
199 uint SharedRuntime::_wrong_method_ctr = 0;
200 uint SharedRuntime::_resolve_static_ctr = 0;
201 uint SharedRuntime::_resolve_virtual_ctr = 0;
202 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
203 uint SharedRuntime::_implicit_null_throws = 0;
204 uint SharedRuntime::_implicit_div0_throws = 0;
205
206 int64_t SharedRuntime::_nof_normal_calls = 0;
207 int64_t SharedRuntime::_nof_inlined_calls = 0;
208 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
209 int64_t SharedRuntime::_nof_static_calls = 0;
210 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
211 int64_t SharedRuntime::_nof_interface_calls = 0;
212 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
213
214 uint SharedRuntime::_new_instance_ctr=0;
215 uint SharedRuntime::_new_array_ctr=0;
216 uint SharedRuntime::_multi2_ctr=0;
217 uint SharedRuntime::_multi3_ctr=0;
218 uint SharedRuntime::_multi4_ctr=0;
219 uint SharedRuntime::_multi5_ctr=0;
220 uint SharedRuntime::_mon_enter_stub_ctr=0;
221 uint SharedRuntime::_mon_exit_stub_ctr=0;
222 uint SharedRuntime::_mon_enter_ctr=0;
223 uint SharedRuntime::_mon_exit_ctr=0;
224 uint SharedRuntime::_partial_subtype_ctr=0;
225 uint SharedRuntime::_jbyte_array_copy_ctr=0;
226 uint SharedRuntime::_jshort_array_copy_ctr=0;
227 uint SharedRuntime::_jint_array_copy_ctr=0;
228 uint SharedRuntime::_jlong_array_copy_ctr=0;
229 uint SharedRuntime::_oop_array_copy_ctr=0;
230 uint SharedRuntime::_checkcast_array_copy_ctr=0;
231 uint SharedRuntime::_unsafe_array_copy_ctr=0;
232 uint SharedRuntime::_generic_array_copy_ctr=0;
233 uint SharedRuntime::_slow_array_copy_ctr=0;
234 uint SharedRuntime::_find_handler_ctr=0;
235 uint SharedRuntime::_rethrow_ctr=0;
236 uint SharedRuntime::_unsafe_set_memory_ctr=0;
237
238 int SharedRuntime::_ICmiss_index = 0;
239 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
240 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
241
242
243 void SharedRuntime::trace_ic_miss(address at) {
244 for (int i = 0; i < _ICmiss_index; i++) {
245 if (_ICmiss_at[i] == at) {
246 _ICmiss_count[i]++;
247 return;
248 }
249 }
250 int index = _ICmiss_index++;
251 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
252 _ICmiss_at[index] = at;
253 _ICmiss_count[index] = 1;
254 }
255
256 void SharedRuntime::print_ic_miss_histogram() {
257 if (ICMissHistogram) {
258 tty->print_cr("IC Miss Histogram:");
259 int tot_misses = 0;
260 for (int i = 0; i < _ICmiss_index; i++) {
261 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
262 tot_misses += _ICmiss_count[i];
263 }
264 tty->print_cr("Total IC misses: %7d", tot_misses);
265 }
266 }
267
268 #ifdef COMPILER2
269 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
270 void SharedRuntime::debug_print_value(jboolean x) {
271 tty->print_cr("boolean %d", x);
272 }
273
274 void SharedRuntime::debug_print_value(jbyte x) {
275 tty->print_cr("byte %d", x);
276 }
277
278 void SharedRuntime::debug_print_value(jshort x) {
279 tty->print_cr("short %d", x);
280 }
281
282 void SharedRuntime::debug_print_value(jchar x) {
283 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
284 }
285
286 void SharedRuntime::debug_print_value(jint x) {
287 tty->print_cr("int %d", x);
288 }
289
290 void SharedRuntime::debug_print_value(jlong x) {
291 tty->print_cr("long " JLONG_FORMAT, x);
292 }
293
294 void SharedRuntime::debug_print_value(jfloat x) {
295 tty->print_cr("float %f", x);
296 }
297
298 void SharedRuntime::debug_print_value(jdouble x) {
299 tty->print_cr("double %lf", x);
300 }
301
302 void SharedRuntime::debug_print_value(oopDesc* x) {
303 x->print();
304 }
305 #endif // COMPILER2
306
307 #endif // PRODUCT
308
309
310 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
311 return x * y;
312 JRT_END
313
314
315 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
316 if (x == min_jlong && y == CONST64(-1)) {
317 return x;
318 } else {
319 return x / y;
320 }
321 JRT_END
322
323
324 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
325 if (x == min_jlong && y == CONST64(-1)) {
326 return 0;
327 } else {
328 return x % y;
329 }
330 JRT_END
331
332
333 #ifdef _WIN64
334 const juint float_sign_mask = 0x7FFFFFFF;
335 const juint float_infinity = 0x7F800000;
336 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
337 const julong double_infinity = CONST64(0x7FF0000000000000);
338 #endif
339
340 #if !defined(X86)
341 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
342 #ifdef _WIN64
343 // 64-bit Windows on amd64 returns the wrong values for
344 // infinity operands.
345 juint xbits = PrimitiveConversions::cast<juint>(x);
346 juint ybits = PrimitiveConversions::cast<juint>(y);
347 // x Mod Infinity == x unless x is infinity
348 if (((xbits & float_sign_mask) != float_infinity) &&
349 ((ybits & float_sign_mask) == float_infinity) ) {
350 return x;
351 }
352 return ((jfloat)fmod_winx64((double)x, (double)y));
353 #else
354 return ((jfloat)fmod((double)x,(double)y));
355 #endif
356 JRT_END
357
358 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
359 #ifdef _WIN64
360 julong xbits = PrimitiveConversions::cast<julong>(x);
361 julong ybits = PrimitiveConversions::cast<julong>(y);
362 // x Mod Infinity == x unless x is infinity
363 if (((xbits & double_sign_mask) != double_infinity) &&
364 ((ybits & double_sign_mask) == double_infinity) ) {
365 return x;
366 }
367 return ((jdouble)fmod_winx64((double)x, (double)y));
368 #else
369 return ((jdouble)fmod((double)x,(double)y));
370 #endif
371 JRT_END
372 #endif // !X86
373
374 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
375 return (jfloat)x;
376 JRT_END
377
378 #ifdef __SOFTFP__
379 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
380 return x + y;
381 JRT_END
382
383 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
384 return x - y;
385 JRT_END
386
387 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
388 return x * y;
389 JRT_END
390
391 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
392 return x / y;
393 JRT_END
394
395 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
396 return x + y;
397 JRT_END
398
399 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
400 return x - y;
401 JRT_END
402
403 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
404 return x * y;
405 JRT_END
406
407 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
408 return x / y;
409 JRT_END
410
411 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
412 return (jdouble)x;
413 JRT_END
414
415 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
416 return (jdouble)x;
417 JRT_END
418
419 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
420 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
421 JRT_END
422
423 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
424 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
425 JRT_END
426
427 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
428 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
429 JRT_END
430
431 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
432 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
433 JRT_END
434
435 // Functions to return the opposite of the aeabi functions for nan.
436 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
437 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
438 JRT_END
439
440 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
441 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
442 JRT_END
443
444 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
445 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
446 JRT_END
447
448 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
449 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
450 JRT_END
451
452 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
453 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
454 JRT_END
455
456 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
457 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
458 JRT_END
459
460 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
461 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
462 JRT_END
463
464 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
465 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
466 JRT_END
467
468 // Intrinsics make gcc generate code for these.
469 float SharedRuntime::fneg(float f) {
470 return -f;
471 }
472
473 double SharedRuntime::dneg(double f) {
474 return -f;
475 }
476
477 #endif // __SOFTFP__
478
479 #if defined(__SOFTFP__) || defined(E500V2)
480 // Intrinsics make gcc generate code for these.
481 double SharedRuntime::dabs(double f) {
482 return (f <= (double)0.0) ? (double)0.0 - f : f;
483 }
484
485 #endif
486
487 #if defined(__SOFTFP__)
488 double SharedRuntime::dsqrt(double f) {
489 return sqrt(f);
490 }
491 #endif
492
493 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
494 if (g_isnan(x))
495 return 0;
496 if (x >= (jfloat) max_jint)
497 return max_jint;
498 if (x <= (jfloat) min_jint)
499 return min_jint;
500 return (jint) x;
501 JRT_END
502
503
504 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
505 if (g_isnan(x))
506 return 0;
507 if (x >= (jfloat) max_jlong)
508 return max_jlong;
509 if (x <= (jfloat) min_jlong)
510 return min_jlong;
511 return (jlong) x;
512 JRT_END
513
514
515 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
516 if (g_isnan(x))
517 return 0;
518 if (x >= (jdouble) max_jint)
519 return max_jint;
520 if (x <= (jdouble) min_jint)
521 return min_jint;
522 return (jint) x;
523 JRT_END
524
525
526 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
527 if (g_isnan(x))
528 return 0;
529 if (x >= (jdouble) max_jlong)
530 return max_jlong;
531 if (x <= (jdouble) min_jlong)
532 return min_jlong;
533 return (jlong) x;
534 JRT_END
535
536
537 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
538 return (jfloat)x;
539 JRT_END
540
541
542 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
543 return (jfloat)x;
544 JRT_END
545
546
547 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
548 return (jdouble)x;
549 JRT_END
550
551
552 // Exception handling across interpreter/compiler boundaries
553 //
554 // exception_handler_for_return_address(...) returns the continuation address.
555 // The continuation address is the entry point of the exception handler of the
556 // previous frame depending on the return address.
557
558 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
559 // Note: This is called when we have unwound the frame of the callee that did
560 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
561 // Notably, the stack is not walkable at this point, and hence the check must
562 // be deferred until later. Specifically, any of the handlers returned here in
563 // this function, will get dispatched to, and call deferred checks to
564 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
565 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
566 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
567
568 #if INCLUDE_JVMCI
569 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
570 // and other exception handler continuations do not read it
571 current->set_exception_pc(nullptr);
572 #endif // INCLUDE_JVMCI
573
574 if (Continuation::is_return_barrier_entry(return_address)) {
575 return StubRoutines::cont_returnBarrierExc();
576 }
577
578 // The fastest case first
579 CodeBlob* blob = CodeCache::find_blob(return_address);
580 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
581 if (nm != nullptr) {
582 // native nmethods don't have exception handlers
583 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
584 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
585 if (nm->is_deopt_pc(return_address)) {
586 // If we come here because of a stack overflow, the stack may be
587 // unguarded. Reguard the stack otherwise if we return to the
588 // deopt blob and the stack bang causes a stack overflow we
589 // crash.
590 StackOverflow* overflow_state = current->stack_overflow_state();
591 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
592 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
593 overflow_state->set_reserved_stack_activation(current->stack_base());
594 }
595 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
596 // The deferred StackWatermarkSet::after_unwind check will be performed in
597 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
598 return SharedRuntime::deopt_blob()->unpack_with_exception();
599 } else {
600 // The deferred StackWatermarkSet::after_unwind check will be performed in
601 // * OptoRuntime::handle_exception_C_helper for C2 code
602 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
603 return nm->exception_begin();
604 }
605 }
606
607 // Entry code
608 if (StubRoutines::returns_to_call_stub(return_address)) {
609 // The deferred StackWatermarkSet::after_unwind check will be performed in
610 // JavaCallWrapper::~JavaCallWrapper
611 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
612 return StubRoutines::catch_exception_entry();
613 }
614 if (blob != nullptr && blob->is_upcall_stub()) {
615 return StubRoutines::upcall_stub_exception_handler();
616 }
617 // Interpreted code
618 if (Interpreter::contains(return_address)) {
619 // The deferred StackWatermarkSet::after_unwind check will be performed in
620 // InterpreterRuntime::exception_handler_for_exception
621 return Interpreter::rethrow_exception_entry();
622 }
623
624 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
625 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
626
627 #ifndef PRODUCT
628 { ResourceMark rm;
629 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
630 os::print_location(tty, (intptr_t)return_address);
631 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
632 tty->print_cr("b) other problem");
633 }
634 #endif // PRODUCT
635 ShouldNotReachHere();
636 return nullptr;
637 }
638
639
640 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
641 return raw_exception_handler_for_return_address(current, return_address);
642 JRT_END
643
644
645 address SharedRuntime::get_poll_stub(address pc) {
646 address stub;
647 // Look up the code blob
648 CodeBlob *cb = CodeCache::find_blob(pc);
649
650 // Should be an nmethod
651 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
652
653 // Look up the relocation information
654 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
655 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
656
657 #ifdef ASSERT
658 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
659 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
660 Disassembler::decode(cb);
661 fatal("Only polling locations are used for safepoint");
662 }
663 #endif
664
665 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
666 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
667 if (at_poll_return) {
668 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
669 "polling page return stub not created yet");
670 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
671 } else if (has_wide_vectors) {
672 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
673 "polling page vectors safepoint stub not created yet");
674 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
675 } else {
676 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
677 "polling page safepoint stub not created yet");
678 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
679 }
680 log_debug(safepoint)("... found polling page %s exception at pc = "
681 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
682 at_poll_return ? "return" : "loop",
683 (intptr_t)pc, (intptr_t)stub);
684 return stub;
685 }
686
687 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
688 if (JvmtiExport::can_post_on_exceptions()) {
689 vframeStream vfst(current, true);
690 methodHandle method = methodHandle(current, vfst.method());
691 address bcp = method()->bcp_from(vfst.bci());
692 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
693 }
694
695 #if INCLUDE_JVMCI
696 if (EnableJVMCI) {
697 vframeStream vfst(current, true);
698 methodHandle method = methodHandle(current, vfst.method());
699 int bci = vfst.bci();
700 MethodData* trap_mdo = method->method_data();
701 if (trap_mdo != nullptr) {
702 // Set exception_seen if the exceptional bytecode is an invoke
703 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
704 if (call.is_valid()) {
705 ResourceMark rm(current);
706
707 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
708 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
709
710 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
711 if (pdata != nullptr && pdata->is_BitData()) {
712 BitData* bit_data = (BitData*) pdata;
713 bit_data->set_exception_seen();
714 }
715 }
716 }
717 }
718 #endif
719
720 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
721 }
722
723 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
724 Handle h_exception = Exceptions::new_exception(current, name, message);
725 throw_and_post_jvmti_exception(current, h_exception);
726 }
727
728 #if INCLUDE_JVMTI
729 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
730 assert(hide == JNI_FALSE, "must be VTMS transition finish");
731 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
732 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
733 JNIHandles::destroy_local(vthread);
734 JRT_END
735
736 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
737 assert(hide == JNI_TRUE, "must be VTMS transition start");
738 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
739 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
740 JNIHandles::destroy_local(vthread);
741 JRT_END
742
743 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
744 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
745 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
746 JNIHandles::destroy_local(vthread);
747 JRT_END
748
749 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
750 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
751 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
752 JNIHandles::destroy_local(vthread);
753 JRT_END
754 #endif // INCLUDE_JVMTI
755
756 // The interpreter code to call this tracing function is only
757 // called/generated when UL is on for redefine, class and has the right level
758 // and tags. Since obsolete methods are never compiled, we don't have
759 // to modify the compilers to generate calls to this function.
760 //
761 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
762 JavaThread* thread, Method* method))
763 if (method->is_obsolete()) {
764 // We are calling an obsolete method, but this is not necessarily
765 // an error. Our method could have been redefined just after we
766 // fetched the Method* from the constant pool.
767 ResourceMark rm;
768 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
769 }
770 return 0;
771 JRT_END
772
773 // ret_pc points into caller; we are returning caller's exception handler
774 // for given exception
775 // Note that the implementation of this method assumes it's only called when an exception has actually occured
776 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
777 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
778 assert(nm != nullptr, "must exist");
779 ResourceMark rm;
780
781 #if INCLUDE_JVMCI
782 if (nm->is_compiled_by_jvmci()) {
783 // lookup exception handler for this pc
784 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
785 ExceptionHandlerTable table(nm);
786 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
787 if (t != nullptr) {
788 return nm->code_begin() + t->pco();
789 } else {
790 return Deoptimization::deoptimize_for_missing_exception_handler(nm);
791 }
792 }
793 #endif // INCLUDE_JVMCI
794
795 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
796 // determine handler bci, if any
797 EXCEPTION_MARK;
798
799 int handler_bci = -1;
800 int scope_depth = 0;
801 if (!force_unwind) {
802 int bci = sd->bci();
803 bool recursive_exception = false;
804 do {
805 bool skip_scope_increment = false;
806 // exception handler lookup
807 Klass* ek = exception->klass();
808 methodHandle mh(THREAD, sd->method());
809 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
810 if (HAS_PENDING_EXCEPTION) {
811 recursive_exception = true;
812 // We threw an exception while trying to find the exception handler.
813 // Transfer the new exception to the exception handle which will
814 // be set into thread local storage, and do another lookup for an
815 // exception handler for this exception, this time starting at the
816 // BCI of the exception handler which caused the exception to be
817 // thrown (bugs 4307310 and 4546590). Set "exception" reference
818 // argument to ensure that the correct exception is thrown (4870175).
819 recursive_exception_occurred = true;
820 exception = Handle(THREAD, PENDING_EXCEPTION);
821 CLEAR_PENDING_EXCEPTION;
822 if (handler_bci >= 0) {
823 bci = handler_bci;
824 handler_bci = -1;
825 skip_scope_increment = true;
826 }
827 }
828 else {
829 recursive_exception = false;
830 }
831 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
832 sd = sd->sender();
833 if (sd != nullptr) {
834 bci = sd->bci();
835 }
836 ++scope_depth;
837 }
838 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
839 }
840
841 // found handling method => lookup exception handler
842 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
843
844 ExceptionHandlerTable table(nm);
845 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
846 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
847 // Allow abbreviated catch tables. The idea is to allow a method
848 // to materialize its exceptions without committing to the exact
849 // routing of exceptions. In particular this is needed for adding
850 // a synthetic handler to unlock monitors when inlining
851 // synchronized methods since the unlock path isn't represented in
852 // the bytecodes.
853 t = table.entry_for(catch_pco, -1, 0);
854 }
855
856 #ifdef COMPILER1
857 if (t == nullptr && nm->is_compiled_by_c1()) {
858 assert(nm->unwind_handler_begin() != nullptr, "");
859 return nm->unwind_handler_begin();
860 }
861 #endif
862
863 if (t == nullptr) {
864 ttyLocker ttyl;
865 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
866 tty->print_cr(" Exception:");
867 exception->print();
868 tty->cr();
869 tty->print_cr(" Compiled exception table :");
870 table.print();
871 nm->print();
872 nm->print_code();
873 guarantee(false, "missing exception handler");
874 return nullptr;
875 }
876
877 if (handler_bci != -1) { // did we find a handler in this method?
878 sd->method()->set_exception_handler_entered(handler_bci); // profile
879 }
880 return nm->code_begin() + t->pco();
881 }
882
883 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
884 // These errors occur only at call sites
885 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
886 JRT_END
887
888 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
889 // These errors occur only at call sites
890 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
891 JRT_END
892
893 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
894 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
895 JRT_END
896
897 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
898 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
899 JRT_END
900
901 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
902 // This entry point is effectively only used for NullPointerExceptions which occur at inline
903 // cache sites (when the callee activation is not yet set up) so we are at a call site
904 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
905 JRT_END
906
907 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
908 throw_StackOverflowError_common(current, false);
909 JRT_END
910
911 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
912 throw_StackOverflowError_common(current, true);
913 JRT_END
914
915 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
916 // We avoid using the normal exception construction in this case because
917 // it performs an upcall to Java, and we're already out of stack space.
918 JavaThread* THREAD = current; // For exception macros.
919 InstanceKlass* k = vmClasses::StackOverflowError_klass();
920 oop exception_oop = k->allocate_instance(CHECK);
921 if (delayed) {
922 java_lang_Throwable::set_message(exception_oop,
923 Universe::delayed_stack_overflow_error_message());
924 }
925 Handle exception (current, exception_oop);
926 if (StackTraceInThrowable) {
927 java_lang_Throwable::fill_in_stack_trace(exception);
928 }
929 // Remove the ScopedValue bindings in case we got a
930 // StackOverflowError while we were trying to remove ScopedValue
931 // bindings.
932 current->clear_scopedValueBindings();
933 // Increment counter for hs_err file reporting
934 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
935 throw_and_post_jvmti_exception(current, exception);
936 }
937
938 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
939 address pc,
940 ImplicitExceptionKind exception_kind)
941 {
942 address target_pc = nullptr;
943
944 if (Interpreter::contains(pc)) {
945 switch (exception_kind) {
946 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
947 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
948 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
949 default: ShouldNotReachHere();
950 }
951 } else {
952 switch (exception_kind) {
953 case STACK_OVERFLOW: {
954 // Stack overflow only occurs upon frame setup; the callee is
955 // going to be unwound. Dispatch to a shared runtime stub
956 // which will cause the StackOverflowError to be fabricated
957 // and processed.
958 // Stack overflow should never occur during deoptimization:
959 // the compiled method bangs the stack by as much as the
960 // interpreter would need in case of a deoptimization. The
961 // deoptimization blob and uncommon trap blob bang the stack
962 // in a debug VM to verify the correctness of the compiled
963 // method stack banging.
964 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
965 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
966 return SharedRuntime::throw_StackOverflowError_entry();
967 }
968
969 case IMPLICIT_NULL: {
970 if (VtableStubs::contains(pc)) {
971 // We haven't yet entered the callee frame. Fabricate an
972 // exception and begin dispatching it in the caller. Since
973 // the caller was at a call site, it's safe to destroy all
974 // caller-saved registers, as these entry points do.
975 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
976
977 // If vt_stub is null, then return null to signal handler to report the SEGV error.
978 if (vt_stub == nullptr) return nullptr;
979
980 if (vt_stub->is_abstract_method_error(pc)) {
981 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
982 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
983 // Instead of throwing the abstract method error here directly, we re-resolve
984 // and will throw the AbstractMethodError during resolve. As a result, we'll
985 // get a more detailed error message.
986 return SharedRuntime::get_handle_wrong_method_stub();
987 } else {
988 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
989 // Assert that the signal comes from the expected location in stub code.
990 assert(vt_stub->is_null_pointer_exception(pc),
991 "obtained signal from unexpected location in stub code");
992 return SharedRuntime::throw_NullPointerException_at_call_entry();
993 }
994 } else {
995 CodeBlob* cb = CodeCache::find_blob(pc);
996
997 // If code blob is null, then return null to signal handler to report the SEGV error.
998 if (cb == nullptr) return nullptr;
999
1000 // Exception happened in CodeCache. Must be either:
1001 // 1. Inline-cache check in C2I handler blob,
1002 // 2. Inline-cache check in nmethod, or
1003 // 3. Implicit null exception in nmethod
1004
1005 if (!cb->is_nmethod()) {
1006 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1007 if (!is_in_blob) {
1008 // Allow normal crash reporting to handle this
1009 return nullptr;
1010 }
1011 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1012 // There is no handler here, so we will simply unwind.
1013 return SharedRuntime::throw_NullPointerException_at_call_entry();
1014 }
1015
1016 // Otherwise, it's a compiled method. Consult its exception handlers.
1017 nmethod* nm = cb->as_nmethod();
1018 if (nm->inlinecache_check_contains(pc)) {
1019 // exception happened inside inline-cache check code
1020 // => the nmethod is not yet active (i.e., the frame
1021 // is not set up yet) => use return address pushed by
1022 // caller => don't push another return address
1023 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1024 return SharedRuntime::throw_NullPointerException_at_call_entry();
1025 }
1026
1027 if (nm->method()->is_method_handle_intrinsic()) {
1028 // exception happened inside MH dispatch code, similar to a vtable stub
1029 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1030 return SharedRuntime::throw_NullPointerException_at_call_entry();
1031 }
1032
1033 #ifndef PRODUCT
1034 _implicit_null_throws++;
1035 #endif
1036 target_pc = nm->continuation_for_implicit_null_exception(pc);
1037 // If there's an unexpected fault, target_pc might be null,
1038 // in which case we want to fall through into the normal
1039 // error handling code.
1040 }
1041
1042 break; // fall through
1043 }
1044
1045
1046 case IMPLICIT_DIVIDE_BY_ZERO: {
1047 nmethod* nm = CodeCache::find_nmethod(pc);
1048 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1049 #ifndef PRODUCT
1050 _implicit_div0_throws++;
1051 #endif
1052 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1053 // If there's an unexpected fault, target_pc might be null,
1054 // in which case we want to fall through into the normal
1055 // error handling code.
1056 break; // fall through
1057 }
1058
1059 default: ShouldNotReachHere();
1060 }
1061
1062 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1063
1064 if (exception_kind == IMPLICIT_NULL) {
1065 #ifndef PRODUCT
1066 // for AbortVMOnException flag
1067 Exceptions::debug_check_abort("java.lang.NullPointerException");
1068 #endif //PRODUCT
1069 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1070 } else {
1071 #ifndef PRODUCT
1072 // for AbortVMOnException flag
1073 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1074 #endif //PRODUCT
1075 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1076 }
1077 return target_pc;
1078 }
1079
1080 ShouldNotReachHere();
1081 return nullptr;
1082 }
1083
1084
1085 /**
1086 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1087 * installed in the native function entry of all native Java methods before
1088 * they get linked to their actual native methods.
1089 *
1090 * \note
1091 * This method actually never gets called! The reason is because
1092 * the interpreter's native entries call NativeLookup::lookup() which
1093 * throws the exception when the lookup fails. The exception is then
1094 * caught and forwarded on the return from NativeLookup::lookup() call
1095 * before the call to the native function. This might change in the future.
1096 */
1097 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1098 {
1099 // We return a bad value here to make sure that the exception is
1100 // forwarded before we look at the return value.
1101 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1102 }
1103 JNI_END
1104
1105 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1106 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1107 }
1108
1109 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1110 #if INCLUDE_JVMCI
1111 if (!obj->klass()->has_finalizer()) {
1112 return;
1113 }
1114 #endif // INCLUDE_JVMCI
1115 assert(oopDesc::is_oop(obj), "must be a valid oop");
1116 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1117 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1118 JRT_END
1119
1120 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1121 assert(thread != nullptr, "No thread");
1122 if (thread == nullptr) {
1123 return 0;
1124 }
1125 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1126 "current cannot touch oops after its GC barrier is detached.");
1127 oop obj = thread->threadObj();
1128 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1129 }
1130
1131 /**
1132 * This function ought to be a void function, but cannot be because
1133 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1134 * 6254741. Once that is fixed we can remove the dummy return value.
1135 */
1136 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1137 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1138 }
1139
1140 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1141 return dtrace_object_alloc(thread, o, o->size());
1142 }
1143
1144 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1145 assert(DTraceAllocProbes, "wrong call");
1146 Klass* klass = o->klass();
1147 Symbol* name = klass->name();
1148 HOTSPOT_OBJECT_ALLOC(
1149 get_java_tid(thread),
1150 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1151 return 0;
1152 }
1153
1154 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1155 JavaThread* current, Method* method))
1156 assert(current == JavaThread::current(), "pre-condition");
1157
1158 assert(DTraceMethodProbes, "wrong call");
1159 Symbol* kname = method->klass_name();
1160 Symbol* name = method->name();
1161 Symbol* sig = method->signature();
1162 HOTSPOT_METHOD_ENTRY(
1163 get_java_tid(current),
1164 (char *) kname->bytes(), kname->utf8_length(),
1165 (char *) name->bytes(), name->utf8_length(),
1166 (char *) sig->bytes(), sig->utf8_length());
1167 return 0;
1168 JRT_END
1169
1170 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1171 JavaThread* current, Method* method))
1172 assert(current == JavaThread::current(), "pre-condition");
1173 assert(DTraceMethodProbes, "wrong call");
1174 Symbol* kname = method->klass_name();
1175 Symbol* name = method->name();
1176 Symbol* sig = method->signature();
1177 HOTSPOT_METHOD_RETURN(
1178 get_java_tid(current),
1179 (char *) kname->bytes(), kname->utf8_length(),
1180 (char *) name->bytes(), name->utf8_length(),
1181 (char *) sig->bytes(), sig->utf8_length());
1182 return 0;
1183 JRT_END
1184
1185
1186 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1187 // for a call current in progress, i.e., arguments has been pushed on stack
1188 // put callee has not been invoked yet. Used by: resolve virtual/static,
1189 // vtable updates, etc. Caller frame must be compiled.
1190 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1191 JavaThread* current = THREAD;
1192 ResourceMark rm(current);
1193
1194 // last java frame on stack (which includes native call frames)
1195 vframeStream vfst(current, true); // Do not skip and javaCalls
1196
1197 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1198 }
1199
1200 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1201 nmethod* caller = vfst.nm();
1202
1203 address pc = vfst.frame_pc();
1204 { // Get call instruction under lock because another thread may be busy patching it.
1205 CompiledICLocker ic_locker(caller);
1206 return caller->attached_method_before_pc(pc);
1207 }
1208 return nullptr;
1209 }
1210
1211 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1212 // for a call current in progress, i.e., arguments has been pushed on stack
1213 // but callee has not been invoked yet. Caller frame must be compiled.
1214 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1215 CallInfo& callinfo, TRAPS) {
1216 Handle receiver;
1217 Handle nullHandle; // create a handy null handle for exception returns
1218 JavaThread* current = THREAD;
1219
1220 assert(!vfst.at_end(), "Java frame must exist");
1221
1222 // Find caller and bci from vframe
1223 methodHandle caller(current, vfst.method());
1224 int bci = vfst.bci();
1225
1226 if (caller->is_continuation_enter_intrinsic()) {
1227 bc = Bytecodes::_invokestatic;
1228 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1229 return receiver;
1230 }
1231
1232 Bytecode_invoke bytecode(caller, bci);
1233 int bytecode_index = bytecode.index();
1234 bc = bytecode.invoke_code();
1235
1236 methodHandle attached_method(current, extract_attached_method(vfst));
1237 if (attached_method.not_null()) {
1238 Method* callee = bytecode.static_target(CHECK_NH);
1239 vmIntrinsics::ID id = callee->intrinsic_id();
1240 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1241 // it attaches statically resolved method to the call site.
1242 if (MethodHandles::is_signature_polymorphic(id) &&
1243 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1244 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1245
1246 // Adjust invocation mode according to the attached method.
1247 switch (bc) {
1248 case Bytecodes::_invokevirtual:
1249 if (attached_method->method_holder()->is_interface()) {
1250 bc = Bytecodes::_invokeinterface;
1251 }
1252 break;
1253 case Bytecodes::_invokeinterface:
1254 if (!attached_method->method_holder()->is_interface()) {
1255 bc = Bytecodes::_invokevirtual;
1256 }
1257 break;
1258 case Bytecodes::_invokehandle:
1259 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1260 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1261 : Bytecodes::_invokevirtual;
1262 }
1263 break;
1264 default:
1265 break;
1266 }
1267 }
1268 }
1269
1270 assert(bc != Bytecodes::_illegal, "not initialized");
1271
1272 bool has_receiver = bc != Bytecodes::_invokestatic &&
1273 bc != Bytecodes::_invokedynamic &&
1274 bc != Bytecodes::_invokehandle;
1275
1276 // Find receiver for non-static call
1277 if (has_receiver) {
1278 // This register map must be update since we need to find the receiver for
1279 // compiled frames. The receiver might be in a register.
1280 RegisterMap reg_map2(current,
1281 RegisterMap::UpdateMap::include,
1282 RegisterMap::ProcessFrames::include,
1283 RegisterMap::WalkContinuation::skip);
1284 frame stubFrame = current->last_frame();
1285 // Caller-frame is a compiled frame
1286 frame callerFrame = stubFrame.sender(®_map2);
1287
1288 if (attached_method.is_null()) {
1289 Method* callee = bytecode.static_target(CHECK_NH);
1290 if (callee == nullptr) {
1291 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1292 }
1293 }
1294
1295 // Retrieve from a compiled argument list
1296 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1297 assert(oopDesc::is_oop_or_null(receiver()), "");
1298
1299 if (receiver.is_null()) {
1300 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1301 }
1302 }
1303
1304 // Resolve method
1305 if (attached_method.not_null()) {
1306 // Parameterized by attached method.
1307 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1308 } else {
1309 // Parameterized by bytecode.
1310 constantPoolHandle constants(current, caller->constants());
1311 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1312 }
1313
1314 #ifdef ASSERT
1315 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1316 if (has_receiver) {
1317 assert(receiver.not_null(), "should have thrown exception");
1318 Klass* receiver_klass = receiver->klass();
1319 Klass* rk = nullptr;
1320 if (attached_method.not_null()) {
1321 // In case there's resolved method attached, use its holder during the check.
1322 rk = attached_method->method_holder();
1323 } else {
1324 // Klass is already loaded.
1325 constantPoolHandle constants(current, caller->constants());
1326 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1327 }
1328 Klass* static_receiver_klass = rk;
1329 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1330 "actual receiver must be subclass of static receiver klass");
1331 if (receiver_klass->is_instance_klass()) {
1332 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1333 tty->print_cr("ERROR: Klass not yet initialized!!");
1334 receiver_klass->print();
1335 }
1336 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1337 }
1338 }
1339 #endif
1340
1341 return receiver;
1342 }
1343
1344 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1345 JavaThread* current = THREAD;
1346 ResourceMark rm(current);
1347 // We need first to check if any Java activations (compiled, interpreted)
1348 // exist on the stack since last JavaCall. If not, we need
1349 // to get the target method from the JavaCall wrapper.
1350 vframeStream vfst(current, true); // Do not skip any javaCalls
1351 methodHandle callee_method;
1352 if (vfst.at_end()) {
1353 // No Java frames were found on stack since we did the JavaCall.
1354 // Hence the stack can only contain an entry_frame. We need to
1355 // find the target method from the stub frame.
1356 RegisterMap reg_map(current,
1357 RegisterMap::UpdateMap::skip,
1358 RegisterMap::ProcessFrames::include,
1359 RegisterMap::WalkContinuation::skip);
1360 frame fr = current->last_frame();
1361 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1362 fr = fr.sender(®_map);
1363 assert(fr.is_entry_frame(), "must be");
1364 // fr is now pointing to the entry frame.
1365 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1366 } else {
1367 Bytecodes::Code bc;
1368 CallInfo callinfo;
1369 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1370 callee_method = methodHandle(current, callinfo.selected_method());
1371 }
1372 assert(callee_method()->is_method(), "must be");
1373 return callee_method;
1374 }
1375
1376 // Resolves a call.
1377 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1378 JavaThread* current = THREAD;
1379 ResourceMark rm(current);
1380 RegisterMap cbl_map(current,
1381 RegisterMap::UpdateMap::skip,
1382 RegisterMap::ProcessFrames::include,
1383 RegisterMap::WalkContinuation::skip);
1384 frame caller_frame = current->last_frame().sender(&cbl_map);
1385
1386 CodeBlob* caller_cb = caller_frame.cb();
1387 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1388 nmethod* caller_nm = caller_cb->as_nmethod();
1389
1390 // determine call info & receiver
1391 // note: a) receiver is null for static calls
1392 // b) an exception is thrown if receiver is null for non-static calls
1393 CallInfo call_info;
1394 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1395 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1396
1397 NoSafepointVerifier nsv;
1398
1399 methodHandle callee_method(current, call_info.selected_method());
1400
1401 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1402 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1403 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1404 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1405 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1406
1407 assert(!caller_nm->is_unloading(), "It should not be unloading");
1408
1409 #ifndef PRODUCT
1410 // tracing/debugging/statistics
1411 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1412 (is_virtual) ? (&_resolve_virtual_ctr) :
1413 (&_resolve_static_ctr);
1414 AtomicAccess::inc(addr);
1415
1416 if (TraceCallFixup) {
1417 ResourceMark rm(current);
1418 tty->print("resolving %s%s (%s) call to",
1419 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1420 Bytecodes::name(invoke_code));
1421 callee_method->print_short_name(tty);
1422 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1423 p2i(caller_frame.pc()), p2i(callee_method->code()));
1424 }
1425 #endif
1426
1427 if (invoke_code == Bytecodes::_invokestatic) {
1428 assert(callee_method->method_holder()->is_initialized() ||
1429 callee_method->method_holder()->is_reentrant_initialization(current),
1430 "invalid class initialization state for invoke_static");
1431 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1432 // In order to keep class initialization check, do not patch call
1433 // site for static call when the class is not fully initialized.
1434 // Proper check is enforced by call site re-resolution on every invocation.
1435 //
1436 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1437 // explicit class initialization check is put in nmethod entry (VEP).
1438 assert(callee_method->method_holder()->is_linked(), "must be");
1439 return callee_method;
1440 }
1441 }
1442
1443
1444 // JSR 292 key invariant:
1445 // If the resolved method is a MethodHandle invoke target, the call
1446 // site must be a MethodHandle call site, because the lambda form might tail-call
1447 // leaving the stack in a state unknown to either caller or callee
1448
1449 // Compute entry points. The computation of the entry points is independent of
1450 // patching the call.
1451
1452 // Make sure the callee nmethod does not get deoptimized and removed before
1453 // we are done patching the code.
1454
1455
1456 CompiledICLocker ml(caller_nm);
1457 if (is_virtual && !is_optimized) {
1458 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1459 inline_cache->update(&call_info, receiver->klass());
1460 } else {
1461 // Callsite is a direct call - set it to the destination method
1462 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1463 callsite->set(callee_method);
1464 }
1465
1466 return callee_method;
1467 }
1468
1469 // Inline caches exist only in compiled code
1470 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1471 #ifdef ASSERT
1472 RegisterMap reg_map(current,
1473 RegisterMap::UpdateMap::skip,
1474 RegisterMap::ProcessFrames::include,
1475 RegisterMap::WalkContinuation::skip);
1476 frame stub_frame = current->last_frame();
1477 assert(stub_frame.is_runtime_frame(), "sanity check");
1478 frame caller_frame = stub_frame.sender(®_map);
1479 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1480 #endif /* ASSERT */
1481
1482 methodHandle callee_method;
1483 JRT_BLOCK
1484 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1485 // Return Method* through TLS
1486 current->set_vm_result_metadata(callee_method());
1487 JRT_BLOCK_END
1488 // return compiled code entry point after potential safepoints
1489 return get_resolved_entry(current, callee_method);
1490 JRT_END
1491
1492
1493 // Handle call site that has been made non-entrant
1494 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1495 // 6243940 We might end up in here if the callee is deoptimized
1496 // as we race to call it. We don't want to take a safepoint if
1497 // the caller was interpreted because the caller frame will look
1498 // interpreted to the stack walkers and arguments are now
1499 // "compiled" so it is much better to make this transition
1500 // invisible to the stack walking code. The i2c path will
1501 // place the callee method in the callee_target. It is stashed
1502 // there because if we try and find the callee by normal means a
1503 // safepoint is possible and have trouble gc'ing the compiled args.
1504 RegisterMap reg_map(current,
1505 RegisterMap::UpdateMap::skip,
1506 RegisterMap::ProcessFrames::include,
1507 RegisterMap::WalkContinuation::skip);
1508 frame stub_frame = current->last_frame();
1509 assert(stub_frame.is_runtime_frame(), "sanity check");
1510 frame caller_frame = stub_frame.sender(®_map);
1511
1512 if (caller_frame.is_interpreted_frame() ||
1513 caller_frame.is_entry_frame() ||
1514 caller_frame.is_upcall_stub_frame()) {
1515 Method* callee = current->callee_target();
1516 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1517 current->set_vm_result_metadata(callee);
1518 current->set_callee_target(nullptr);
1519 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1520 // Bypass class initialization checks in c2i when caller is in native.
1521 // JNI calls to static methods don't have class initialization checks.
1522 // Fast class initialization checks are present in c2i adapters and call into
1523 // SharedRuntime::handle_wrong_method() on the slow path.
1524 //
1525 // JVM upcalls may land here as well, but there's a proper check present in
1526 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1527 // so bypassing it in c2i adapter is benign.
1528 return callee->get_c2i_no_clinit_check_entry();
1529 } else {
1530 return callee->get_c2i_entry();
1531 }
1532 }
1533
1534 // Must be compiled to compiled path which is safe to stackwalk
1535 methodHandle callee_method;
1536 JRT_BLOCK
1537 // Force resolving of caller (if we called from compiled frame)
1538 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1539 current->set_vm_result_metadata(callee_method());
1540 JRT_BLOCK_END
1541 // return compiled code entry point after potential safepoints
1542 return get_resolved_entry(current, callee_method);
1543 JRT_END
1544
1545 // Handle abstract method call
1546 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1547 // Verbose error message for AbstractMethodError.
1548 // Get the called method from the invoke bytecode.
1549 vframeStream vfst(current, true);
1550 assert(!vfst.at_end(), "Java frame must exist");
1551 methodHandle caller(current, vfst.method());
1552 Bytecode_invoke invoke(caller, vfst.bci());
1553 DEBUG_ONLY( invoke.verify(); )
1554
1555 // Find the compiled caller frame.
1556 RegisterMap reg_map(current,
1557 RegisterMap::UpdateMap::include,
1558 RegisterMap::ProcessFrames::include,
1559 RegisterMap::WalkContinuation::skip);
1560 frame stubFrame = current->last_frame();
1561 assert(stubFrame.is_runtime_frame(), "must be");
1562 frame callerFrame = stubFrame.sender(®_map);
1563 assert(callerFrame.is_compiled_frame(), "must be");
1564
1565 // Install exception and return forward entry.
1566 address res = SharedRuntime::throw_AbstractMethodError_entry();
1567 JRT_BLOCK
1568 methodHandle callee(current, invoke.static_target(current));
1569 if (!callee.is_null()) {
1570 oop recv = callerFrame.retrieve_receiver(®_map);
1571 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1572 res = StubRoutines::forward_exception_entry();
1573 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1574 }
1575 JRT_BLOCK_END
1576 return res;
1577 JRT_END
1578
1579 // return verified_code_entry if interp_only_mode is not set for the current thread;
1580 // otherwise return c2i entry.
1581 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1582 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1583 // In interp_only_mode we need to go to the interpreted entry
1584 // The c2i won't patch in this mode -- see fixup_callers_callsite
1585 return callee_method->get_c2i_entry();
1586 }
1587 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1588 return callee_method->verified_code_entry();
1589 }
1590
1591 // resolve a static call and patch code
1592 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1593 methodHandle callee_method;
1594 bool enter_special = false;
1595 JRT_BLOCK
1596 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1597 current->set_vm_result_metadata(callee_method());
1598 JRT_BLOCK_END
1599 // return compiled code entry point after potential safepoints
1600 return get_resolved_entry(current, callee_method);
1601 JRT_END
1602
1603 // resolve virtual call and update inline cache to monomorphic
1604 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1605 methodHandle callee_method;
1606 JRT_BLOCK
1607 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1608 current->set_vm_result_metadata(callee_method());
1609 JRT_BLOCK_END
1610 // return compiled code entry point after potential safepoints
1611 return get_resolved_entry(current, callee_method);
1612 JRT_END
1613
1614
1615 // Resolve a virtual call that can be statically bound (e.g., always
1616 // monomorphic, so it has no inline cache). Patch code to resolved target.
1617 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1618 methodHandle callee_method;
1619 JRT_BLOCK
1620 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1621 current->set_vm_result_metadata(callee_method());
1622 JRT_BLOCK_END
1623 // return compiled code entry point after potential safepoints
1624 return get_resolved_entry(current, callee_method);
1625 JRT_END
1626
1627 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1628 JavaThread* current = THREAD;
1629 ResourceMark rm(current);
1630 CallInfo call_info;
1631 Bytecodes::Code bc;
1632
1633 // receiver is null for static calls. An exception is thrown for null
1634 // receivers for non-static calls
1635 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1636
1637 methodHandle callee_method(current, call_info.selected_method());
1638
1639 #ifndef PRODUCT
1640 AtomicAccess::inc(&_ic_miss_ctr);
1641
1642 // Statistics & Tracing
1643 if (TraceCallFixup) {
1644 ResourceMark rm(current);
1645 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1646 callee_method->print_short_name(tty);
1647 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1648 }
1649
1650 if (ICMissHistogram) {
1651 MutexLocker m(VMStatistic_lock);
1652 RegisterMap reg_map(current,
1653 RegisterMap::UpdateMap::skip,
1654 RegisterMap::ProcessFrames::include,
1655 RegisterMap::WalkContinuation::skip);
1656 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1657 // produce statistics under the lock
1658 trace_ic_miss(f.pc());
1659 }
1660 #endif
1661
1662 // install an event collector so that when a vtable stub is created the
1663 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1664 // event can't be posted when the stub is created as locks are held
1665 // - instead the event will be deferred until the event collector goes
1666 // out of scope.
1667 JvmtiDynamicCodeEventCollector event_collector;
1668
1669 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1670 RegisterMap reg_map(current,
1671 RegisterMap::UpdateMap::skip,
1672 RegisterMap::ProcessFrames::include,
1673 RegisterMap::WalkContinuation::skip);
1674 frame caller_frame = current->last_frame().sender(®_map);
1675 CodeBlob* cb = caller_frame.cb();
1676 nmethod* caller_nm = cb->as_nmethod();
1677
1678 CompiledICLocker ml(caller_nm);
1679 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1680 inline_cache->update(&call_info, receiver()->klass());
1681
1682 return callee_method;
1683 }
1684
1685 //
1686 // Resets a call-site in compiled code so it will get resolved again.
1687 // This routines handles both virtual call sites, optimized virtual call
1688 // sites, and static call sites. Typically used to change a call sites
1689 // destination from compiled to interpreted.
1690 //
1691 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1692 JavaThread* current = THREAD;
1693 ResourceMark rm(current);
1694 RegisterMap reg_map(current,
1695 RegisterMap::UpdateMap::skip,
1696 RegisterMap::ProcessFrames::include,
1697 RegisterMap::WalkContinuation::skip);
1698 frame stub_frame = current->last_frame();
1699 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1700 frame caller = stub_frame.sender(®_map);
1701
1702 // Do nothing if the frame isn't a live compiled frame.
1703 // nmethod could be deoptimized by the time we get here
1704 // so no update to the caller is needed.
1705
1706 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1707 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1708
1709 address pc = caller.pc();
1710
1711 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1712 assert(caller_nm != nullptr, "did not find caller nmethod");
1713
1714 // Default call_addr is the location of the "basic" call.
1715 // Determine the address of the call we a reresolving. With
1716 // Inline Caches we will always find a recognizable call.
1717 // With Inline Caches disabled we may or may not find a
1718 // recognizable call. We will always find a call for static
1719 // calls and for optimized virtual calls. For vanilla virtual
1720 // calls it depends on the state of the UseInlineCaches switch.
1721 //
1722 // With Inline Caches disabled we can get here for a virtual call
1723 // for two reasons:
1724 // 1 - calling an abstract method. The vtable for abstract methods
1725 // will run us thru handle_wrong_method and we will eventually
1726 // end up in the interpreter to throw the ame.
1727 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1728 // call and between the time we fetch the entry address and
1729 // we jump to it the target gets deoptimized. Similar to 1
1730 // we will wind up in the interprter (thru a c2i with c2).
1731 //
1732 CompiledICLocker ml(caller_nm);
1733 address call_addr = caller_nm->call_instruction_address(pc);
1734
1735 if (call_addr != nullptr) {
1736 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1737 // bytes back in the instruction stream so we must also check for reloc info.
1738 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1739 bool ret = iter.next(); // Get item
1740 if (ret) {
1741 switch (iter.type()) {
1742 case relocInfo::static_call_type:
1743 case relocInfo::opt_virtual_call_type: {
1744 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1745 cdc->set_to_clean();
1746 break;
1747 }
1748
1749 case relocInfo::virtual_call_type: {
1750 // compiled, dispatched call (which used to call an interpreted method)
1751 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1752 inline_cache->set_to_clean();
1753 break;
1754 }
1755 default:
1756 break;
1757 }
1758 }
1759 }
1760 }
1761
1762 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1763
1764
1765 #ifndef PRODUCT
1766 AtomicAccess::inc(&_wrong_method_ctr);
1767
1768 if (TraceCallFixup) {
1769 ResourceMark rm(current);
1770 tty->print("handle_wrong_method reresolving call to");
1771 callee_method->print_short_name(tty);
1772 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1773 }
1774 #endif
1775
1776 return callee_method;
1777 }
1778
1779 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1780 // The faulting unsafe accesses should be changed to throw the error
1781 // synchronously instead. Meanwhile the faulting instruction will be
1782 // skipped over (effectively turning it into a no-op) and an
1783 // asynchronous exception will be raised which the thread will
1784 // handle at a later point. If the instruction is a load it will
1785 // return garbage.
1786
1787 // Request an async exception.
1788 thread->set_pending_unsafe_access_error();
1789
1790 // Return address of next instruction to execute.
1791 return next_pc;
1792 }
1793
1794 #ifdef ASSERT
1795 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1796 const BasicType* sig_bt,
1797 const VMRegPair* regs) {
1798 ResourceMark rm;
1799 const int total_args_passed = method->size_of_parameters();
1800 const VMRegPair* regs_with_member_name = regs;
1801 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1802
1803 const int member_arg_pos = total_args_passed - 1;
1804 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1805 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1806
1807 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1808
1809 for (int i = 0; i < member_arg_pos; i++) {
1810 VMReg a = regs_with_member_name[i].first();
1811 VMReg b = regs_without_member_name[i].first();
1812 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1813 }
1814 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1815 }
1816 #endif
1817
1818 // ---------------------------------------------------------------------------
1819 // We are calling the interpreter via a c2i. Normally this would mean that
1820 // we were called by a compiled method. However we could have lost a race
1821 // where we went int -> i2c -> c2i and so the caller could in fact be
1822 // interpreted. If the caller is compiled we attempt to patch the caller
1823 // so he no longer calls into the interpreter.
1824 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1825 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1826
1827 // It's possible that deoptimization can occur at a call site which hasn't
1828 // been resolved yet, in which case this function will be called from
1829 // an nmethod that has been patched for deopt and we can ignore the
1830 // request for a fixup.
1831 // Also it is possible that we lost a race in that from_compiled_entry
1832 // is now back to the i2c in that case we don't need to patch and if
1833 // we did we'd leap into space because the callsite needs to use
1834 // "to interpreter" stub in order to load up the Method*. Don't
1835 // ask me how I know this...
1836
1837 // Result from nmethod::is_unloading is not stable across safepoints.
1838 NoSafepointVerifier nsv;
1839
1840 nmethod* callee = method->code();
1841 if (callee == nullptr) {
1842 return;
1843 }
1844
1845 // write lock needed because we might patch call site by set_to_clean()
1846 // and is_unloading() can modify nmethod's state
1847 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1848
1849 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1850 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1851 return;
1852 }
1853
1854 // The check above makes sure this is an nmethod.
1855 nmethod* caller = cb->as_nmethod();
1856
1857 // Get the return PC for the passed caller PC.
1858 address return_pc = caller_pc + frame::pc_return_offset;
1859
1860 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1861 return;
1862 }
1863
1864 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1865 CompiledICLocker ic_locker(caller);
1866 ResourceMark rm;
1867
1868 // If we got here through a static call or opt_virtual call, then we know where the
1869 // call address would be; let's peek at it
1870 address callsite_addr = (address)nativeCall_before(return_pc);
1871 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1872 if (!iter.next()) {
1873 // No reloc entry found; not a static or optimized virtual call
1874 return;
1875 }
1876
1877 relocInfo::relocType type = iter.reloc()->type();
1878 if (type != relocInfo::static_call_type &&
1879 type != relocInfo::opt_virtual_call_type) {
1880 return;
1881 }
1882
1883 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1884 callsite->set_to_clean();
1885 JRT_END
1886
1887
1888 // same as JVM_Arraycopy, but called directly from compiled code
1889 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1890 oopDesc* dest, jint dest_pos,
1891 jint length,
1892 JavaThread* current)) {
1893 #ifndef PRODUCT
1894 _slow_array_copy_ctr++;
1895 #endif
1896 // Check if we have null pointers
1897 if (src == nullptr || dest == nullptr) {
1898 THROW(vmSymbols::java_lang_NullPointerException());
1899 }
1900 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1901 // even though the copy_array API also performs dynamic checks to ensure
1902 // that src and dest are truly arrays (and are conformable).
1903 // The copy_array mechanism is awkward and could be removed, but
1904 // the compilers don't call this function except as a last resort,
1905 // so it probably doesn't matter.
1906 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1907 (arrayOopDesc*)dest, dest_pos,
1908 length, current);
1909 }
1910 JRT_END
1911
1912 // The caller of generate_class_cast_message() (or one of its callers)
1913 // must use a ResourceMark in order to correctly free the result.
1914 char* SharedRuntime::generate_class_cast_message(
1915 JavaThread* thread, Klass* caster_klass) {
1916
1917 // Get target class name from the checkcast instruction
1918 vframeStream vfst(thread, true);
1919 assert(!vfst.at_end(), "Java frame must exist");
1920 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1921 constantPoolHandle cpool(thread, vfst.method()->constants());
1922 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1923 Symbol* target_klass_name = nullptr;
1924 if (target_klass == nullptr) {
1925 // This klass should be resolved, but just in case, get the name in the klass slot.
1926 target_klass_name = cpool->klass_name_at(cc.index());
1927 }
1928 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1929 }
1930
1931
1932 // The caller of generate_class_cast_message() (or one of its callers)
1933 // must use a ResourceMark in order to correctly free the result.
1934 char* SharedRuntime::generate_class_cast_message(
1935 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1936 const char* caster_name = caster_klass->external_name();
1937
1938 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1939 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1940 target_klass->external_name();
1941
1942 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1943
1944 const char* caster_klass_description = "";
1945 const char* target_klass_description = "";
1946 const char* klass_separator = "";
1947 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1948 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1949 } else {
1950 caster_klass_description = caster_klass->class_in_module_of_loader();
1951 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1952 klass_separator = (target_klass != nullptr) ? "; " : "";
1953 }
1954
1955 // add 3 for parenthesis and preceding space
1956 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1957
1958 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1959 if (message == nullptr) {
1960 // Shouldn't happen, but don't cause even more problems if it does
1961 message = const_cast<char*>(caster_klass->external_name());
1962 } else {
1963 jio_snprintf(message,
1964 msglen,
1965 "class %s cannot be cast to class %s (%s%s%s)",
1966 caster_name,
1967 target_name,
1968 caster_klass_description,
1969 klass_separator,
1970 target_klass_description
1971 );
1972 }
1973 return message;
1974 }
1975
1976 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1977 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1978 JRT_END
1979
1980 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1981 if (!SafepointSynchronize::is_synchronizing()) {
1982 // Only try quick_enter() if we're not trying to reach a safepoint
1983 // so that the calling thread reaches the safepoint more quickly.
1984 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1985 return;
1986 }
1987 }
1988 // NO_ASYNC required because an async exception on the state transition destructor
1989 // would leave you with the lock held and it would never be released.
1990 // The normal monitorenter NullPointerException is thrown without acquiring a lock
1991 // and the model is that an exception implies the method failed.
1992 JRT_BLOCK_NO_ASYNC
1993 Handle h_obj(THREAD, obj);
1994 ObjectSynchronizer::enter(h_obj, lock, current);
1995 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1996 JRT_BLOCK_END
1997 }
1998
1999 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2000 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2001 SharedRuntime::monitor_enter_helper(obj, lock, current);
2002 JRT_END
2003
2004 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2005 assert(JavaThread::current() == current, "invariant");
2006 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2007 ExceptionMark em(current);
2008
2009 // Check if C2_MacroAssembler::fast_unlock() or
2010 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2011 // monitor before going slow path. Since there is no safepoint
2012 // polling when calling into the VM, we can be sure that the monitor
2013 // hasn't been deallocated.
2014 ObjectMonitor* m = current->unlocked_inflated_monitor();
2015 if (m != nullptr) {
2016 assert(!m->has_owner(current), "must be");
2017 current->clear_unlocked_inflated_monitor();
2018
2019 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2020 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2021 // Some other thread acquired the lock (or the monitor was
2022 // deflated). Either way we are done.
2023 return;
2024 }
2025 }
2026
2027 // The object could become unlocked through a JNI call, which we have no other checks for.
2028 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2029 if (obj->is_unlocked()) {
2030 if (CheckJNICalls) {
2031 fatal("Object has been unlocked by JNI");
2032 }
2033 return;
2034 }
2035 ObjectSynchronizer::exit(obj, lock, current);
2036 }
2037
2038 // Handles the uncommon cases of monitor unlocking in compiled code
2039 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2040 assert(current == JavaThread::current(), "pre-condition");
2041 SharedRuntime::monitor_exit_helper(obj, lock, current);
2042 JRT_END
2043
2044 #ifndef PRODUCT
2045
2046 void SharedRuntime::print_statistics() {
2047 ttyLocker ttyl;
2048 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2049
2050 SharedRuntime::print_ic_miss_histogram();
2051
2052 // Dump the JRT_ENTRY counters
2053 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2054 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2055 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2056 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2057 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2058 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2059
2060 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2061 tty->print_cr("%5u wrong method", _wrong_method_ctr);
2062 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2063 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2064 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2065
2066 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2067 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2068 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2069 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2070 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2071 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2072 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2073 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2074 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2075 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2076 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2077 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2078 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2079 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2080 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2081 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2082 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2083
2084 AdapterHandlerLibrary::print_statistics();
2085
2086 if (xtty != nullptr) xtty->tail("statistics");
2087 }
2088
2089 inline double percent(int64_t x, int64_t y) {
2090 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2091 }
2092
2093 class MethodArityHistogram {
2094 public:
2095 enum { MAX_ARITY = 256 };
2096 private:
2097 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2098 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2099 static uint64_t _total_compiled_calls;
2100 static uint64_t _max_compiled_calls_per_method;
2101 static int _max_arity; // max. arity seen
2102 static int _max_size; // max. arg size seen
2103
2104 static void add_method_to_histogram(nmethod* nm) {
2105 Method* method = (nm == nullptr) ? nullptr : nm->method();
2106 if (method != nullptr) {
2107 ArgumentCount args(method->signature());
2108 int arity = args.size() + (method->is_static() ? 0 : 1);
2109 int argsize = method->size_of_parameters();
2110 arity = MIN2(arity, MAX_ARITY-1);
2111 argsize = MIN2(argsize, MAX_ARITY-1);
2112 uint64_t count = (uint64_t)method->compiled_invocation_count();
2113 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2114 _total_compiled_calls += count;
2115 _arity_histogram[arity] += count;
2116 _size_histogram[argsize] += count;
2117 _max_arity = MAX2(_max_arity, arity);
2118 _max_size = MAX2(_max_size, argsize);
2119 }
2120 }
2121
2122 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2123 const int N = MIN2(9, n);
2124 double sum = 0;
2125 double weighted_sum = 0;
2126 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2127 if (sum >= 1) { // prevent divide by zero or divide overflow
2128 double rest = sum;
2129 double percent = sum / 100;
2130 for (int i = 0; i <= N; i++) {
2131 rest -= (double)histo[i];
2132 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2133 }
2134 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2135 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2136 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2137 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2138 } else {
2139 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2140 }
2141 }
2142
2143 void print_histogram() {
2144 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2145 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2146 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2147 print_histogram_helper(_max_size, _size_histogram, "size");
2148 tty->cr();
2149 }
2150
2151 public:
2152 MethodArityHistogram() {
2153 // Take the Compile_lock to protect against changes in the CodeBlob structures
2154 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2155 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2156 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2157 _max_arity = _max_size = 0;
2158 _total_compiled_calls = 0;
2159 _max_compiled_calls_per_method = 0;
2160 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2161 CodeCache::nmethods_do(add_method_to_histogram);
2162 print_histogram();
2163 }
2164 };
2165
2166 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2167 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2168 uint64_t MethodArityHistogram::_total_compiled_calls;
2169 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2170 int MethodArityHistogram::_max_arity;
2171 int MethodArityHistogram::_max_size;
2172
2173 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2174 tty->print_cr("Calls from compiled code:");
2175 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2176 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2177 int64_t mono_i = _nof_interface_calls;
2178 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2179 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2180 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2181 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2182 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2183 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2184 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2185 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2186 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2187 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2188 tty->cr();
2189 tty->print_cr("Note 1: counter updates are not MT-safe.");
2190 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2191 tty->print_cr(" %% in nested categories are relative to their category");
2192 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2193 tty->cr();
2194
2195 MethodArityHistogram h;
2196 }
2197 #endif
2198
2199 #ifndef PRODUCT
2200 static int _lookups; // number of calls to lookup
2201 static int _equals; // number of buckets checked with matching hash
2202 static int _archived_hits; // number of successful lookups in archived table
2203 static int _runtime_hits; // number of successful lookups in runtime table
2204 #endif
2205
2206 // A simple wrapper class around the calling convention information
2207 // that allows sharing of adapters for the same calling convention.
2208 class AdapterFingerPrint : public MetaspaceObj {
2209 private:
2210 enum {
2211 _basic_type_bits = 4,
2212 _basic_type_mask = right_n_bits(_basic_type_bits),
2213 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2214 };
2215 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2216 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2217
2218 int _length;
2219
2220 static int data_offset() { return sizeof(AdapterFingerPrint); }
2221 int* data_pointer() {
2222 return (int*)((address)this + data_offset());
2223 }
2224
2225 // Private construtor. Use allocate() to get an instance.
2226 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2227 int* data = data_pointer();
2228 // Pack the BasicTypes with 8 per int
2229 assert(len == length(total_args_passed), "sanity");
2230 _length = len;
2231 int sig_index = 0;
2232 for (int index = 0; index < _length; index++) {
2233 int value = 0;
2234 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2235 int bt = adapter_encoding(sig_bt[sig_index++]);
2236 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2237 value = (value << _basic_type_bits) | bt;
2238 }
2239 data[index] = value;
2240 }
2241 }
2242
2243 // Call deallocate instead
2244 ~AdapterFingerPrint() {
2245 ShouldNotCallThis();
2246 }
2247
2248 static int length(int total_args) {
2249 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2250 }
2251
2252 static int compute_size_in_words(int len) {
2253 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2254 }
2255
2256 // Remap BasicTypes that are handled equivalently by the adapters.
2257 // These are correct for the current system but someday it might be
2258 // necessary to make this mapping platform dependent.
2259 static int adapter_encoding(BasicType in) {
2260 switch (in) {
2261 case T_BOOLEAN:
2262 case T_BYTE:
2263 case T_SHORT:
2264 case T_CHAR:
2265 // There are all promoted to T_INT in the calling convention
2266 return T_INT;
2267
2268 case T_OBJECT:
2269 case T_ARRAY:
2270 // In other words, we assume that any register good enough for
2271 // an int or long is good enough for a managed pointer.
2272 #ifdef _LP64
2273 return T_LONG;
2274 #else
2275 return T_INT;
2276 #endif
2277
2278 case T_INT:
2279 case T_LONG:
2280 case T_FLOAT:
2281 case T_DOUBLE:
2282 case T_VOID:
2283 return in;
2284
2285 default:
2286 ShouldNotReachHere();
2287 return T_CONFLICT;
2288 }
2289 }
2290
2291 void* operator new(size_t size, size_t fp_size) throw() {
2292 assert(fp_size >= size, "sanity check");
2293 void* p = AllocateHeap(fp_size, mtCode);
2294 memset(p, 0, fp_size);
2295 return p;
2296 }
2297
2298 template<typename Function>
2299 void iterate_args(Function function) {
2300 for (int i = 0; i < length(); i++) {
2301 unsigned val = (unsigned)value(i);
2302 // args are packed so that first/lower arguments are in the highest
2303 // bits of each int value, so iterate from highest to the lowest
2304 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2305 unsigned v = (val >> j) & _basic_type_mask;
2306 if (v == 0) {
2307 continue;
2308 }
2309 function(v);
2310 }
2311 }
2312 }
2313
2314 public:
2315 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2316 int len = length(total_args_passed);
2317 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2318 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2319 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2320 return afp;
2321 }
2322
2323 static void deallocate(AdapterFingerPrint* fp) {
2324 FreeHeap(fp);
2325 }
2326
2327 int value(int index) {
2328 int* data = data_pointer();
2329 return data[index];
2330 }
2331
2332 int length() {
2333 return _length;
2334 }
2335
2336 unsigned int compute_hash() {
2337 int hash = 0;
2338 for (int i = 0; i < length(); i++) {
2339 int v = value(i);
2340 //Add arithmetic operation to the hash, like +3 to improve hashing
2341 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2342 }
2343 return (unsigned int)hash;
2344 }
2345
2346 const char* as_string() {
2347 stringStream st;
2348 st.print("0x");
2349 for (int i = 0; i < length(); i++) {
2350 st.print("%x", value(i));
2351 }
2352 return st.as_string();
2353 }
2354
2355 const char* as_basic_args_string() {
2356 stringStream st;
2357 bool long_prev = false;
2358 iterate_args([&] (int arg) {
2359 if (long_prev) {
2360 long_prev = false;
2361 if (arg == T_VOID) {
2362 st.print("J");
2363 } else {
2364 st.print("L");
2365 }
2366 }
2367 switch (arg) {
2368 case T_INT: st.print("I"); break;
2369 case T_LONG: long_prev = true; break;
2370 case T_FLOAT: st.print("F"); break;
2371 case T_DOUBLE: st.print("D"); break;
2372 case T_VOID: break;
2373 default: ShouldNotReachHere();
2374 }
2375 });
2376 if (long_prev) {
2377 st.print("L");
2378 }
2379 return st.as_string();
2380 }
2381
2382 BasicType* as_basic_type(int& nargs) {
2383 nargs = 0;
2384 GrowableArray<BasicType> btarray;
2385 bool long_prev = false;
2386
2387 iterate_args([&] (int arg) {
2388 if (long_prev) {
2389 long_prev = false;
2390 if (arg == T_VOID) {
2391 btarray.append(T_LONG);
2392 } else {
2393 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2394 }
2395 }
2396 switch (arg) {
2397 case T_INT: // fallthrough
2398 case T_FLOAT: // fallthrough
2399 case T_DOUBLE:
2400 case T_VOID:
2401 btarray.append((BasicType)arg);
2402 break;
2403 case T_LONG:
2404 long_prev = true;
2405 break;
2406 default: ShouldNotReachHere();
2407 }
2408 });
2409
2410 if (long_prev) {
2411 btarray.append(T_OBJECT);
2412 }
2413
2414 nargs = btarray.length();
2415 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2416 int index = 0;
2417 GrowableArrayIterator<BasicType> iter = btarray.begin();
2418 while (iter != btarray.end()) {
2419 sig_bt[index++] = *iter;
2420 ++iter;
2421 }
2422 assert(index == btarray.length(), "sanity check");
2423 #ifdef ASSERT
2424 {
2425 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2426 assert(this->equals(compare_fp), "sanity check");
2427 AdapterFingerPrint::deallocate(compare_fp);
2428 }
2429 #endif
2430 return sig_bt;
2431 }
2432
2433 bool equals(AdapterFingerPrint* other) {
2434 if (other->_length != _length) {
2435 return false;
2436 } else {
2437 for (int i = 0; i < _length; i++) {
2438 if (value(i) != other->value(i)) {
2439 return false;
2440 }
2441 }
2442 }
2443 return true;
2444 }
2445
2446 // methods required by virtue of being a MetaspaceObj
2447 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2448 int size() const { return compute_size_in_words(_length); }
2449 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2450
2451 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2452 NOT_PRODUCT(_equals++);
2453 return fp1->equals(fp2);
2454 }
2455
2456 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2457 return fp->compute_hash();
2458 }
2459 };
2460
2461 #if INCLUDE_CDS
2462 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2463 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2464 }
2465
2466 class ArchivedAdapterTable : public OffsetCompactHashtable<
2467 AdapterFingerPrint*,
2468 AdapterHandlerEntry*,
2469 adapter_fp_equals_compact_hashtable_entry> {};
2470 #endif // INCLUDE_CDS
2471
2472 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2473 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2474 AnyObj::C_HEAP, mtCode,
2475 AdapterFingerPrint::compute_hash,
2476 AdapterFingerPrint::equals>;
2477 static AdapterHandlerTable* _adapter_handler_table;
2478 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2479
2480 // Find a entry with the same fingerprint if it exists
2481 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2482 NOT_PRODUCT(_lookups++);
2483 assert_lock_strong(AdapterHandlerLibrary_lock);
2484 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2485 AdapterHandlerEntry* entry = nullptr;
2486 #if INCLUDE_CDS
2487 // if we are building the archive then the archived adapter table is
2488 // not valid and we need to use the ones added to the runtime table
2489 if (AOTCodeCache::is_using_adapter()) {
2490 // Search archived table first. It is read-only table so can be searched without lock
2491 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2492 #ifndef PRODUCT
2493 if (entry != nullptr) {
2494 _archived_hits++;
2495 }
2496 #endif
2497 }
2498 #endif // INCLUDE_CDS
2499 if (entry == nullptr) {
2500 assert_lock_strong(AdapterHandlerLibrary_lock);
2501 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2502 if (entry_p != nullptr) {
2503 entry = *entry_p;
2504 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2505 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2506 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2507 #ifndef PRODUCT
2508 _runtime_hits++;
2509 #endif
2510 }
2511 }
2512 AdapterFingerPrint::deallocate(fp);
2513 return entry;
2514 }
2515
2516 #ifndef PRODUCT
2517 static void print_table_statistics() {
2518 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2519 return sizeof(*key) + sizeof(*a);
2520 };
2521 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2522 ts.print(tty, "AdapterHandlerTable");
2523 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2524 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2525 int total_hits = _archived_hits + _runtime_hits;
2526 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2527 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2528 }
2529 #endif
2530
2531 // ---------------------------------------------------------------------------
2532 // Implementation of AdapterHandlerLibrary
2533 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2534 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2535 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2536 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2537 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2538 #if INCLUDE_CDS
2539 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2540 #endif // INCLUDE_CDS
2541 static const int AdapterHandlerLibrary_size = 16*K;
2542 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2543 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2544
2545 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2546 assert(_buffer != nullptr, "should be initialized");
2547 return _buffer;
2548 }
2549
2550 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2551 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2552 AdapterBlob* adapter_blob = entry->adapter_blob();
2553 char blob_id[256];
2554 jio_snprintf(blob_id,
2555 sizeof(blob_id),
2556 "%s(%s)",
2557 adapter_blob->name(),
2558 entry->fingerprint()->as_string());
2559 if (Forte::is_enabled()) {
2560 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2561 }
2562
2563 if (JvmtiExport::should_post_dynamic_code_generated()) {
2564 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2565 }
2566 }
2567 }
2568
2569 void AdapterHandlerLibrary::initialize() {
2570 {
2571 ResourceMark rm;
2572 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2573 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2574 }
2575
2576 #if INCLUDE_CDS
2577 // Link adapters in AOT Cache to their code in AOT Code Cache
2578 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2579 link_aot_adapters();
2580 lookup_simple_adapters();
2581 return;
2582 }
2583 #endif // INCLUDE_CDS
2584
2585 ResourceMark rm;
2586 {
2587 MutexLocker mu(AdapterHandlerLibrary_lock);
2588
2589 _no_arg_handler = create_adapter(0, nullptr);
2590
2591 BasicType obj_args[] = { T_OBJECT };
2592 _obj_arg_handler = create_adapter(1, obj_args);
2593
2594 BasicType int_args[] = { T_INT };
2595 _int_arg_handler = create_adapter(1, int_args);
2596
2597 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2598 _obj_int_arg_handler = create_adapter(2, obj_int_args);
2599
2600 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2601 _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2602
2603 // we should always get an entry back but we don't have any
2604 // associated blob on Zero
2605 assert(_no_arg_handler != nullptr &&
2606 _obj_arg_handler != nullptr &&
2607 _int_arg_handler != nullptr &&
2608 _obj_int_arg_handler != nullptr &&
2609 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2610 }
2611
2612 // Outside of the lock
2613 #ifndef ZERO
2614 // no blobs to register when we are on Zero
2615 post_adapter_creation(_no_arg_handler);
2616 post_adapter_creation(_obj_arg_handler);
2617 post_adapter_creation(_int_arg_handler);
2618 post_adapter_creation(_obj_int_arg_handler);
2619 post_adapter_creation(_obj_obj_arg_handler);
2620 #endif // ZERO
2621 }
2622
2623 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2624 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2625 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2626 return AdapterHandlerEntry::allocate(id, fingerprint);
2627 }
2628
2629 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2630 int total_args_passed = method->size_of_parameters(); // All args on stack
2631 if (total_args_passed == 0) {
2632 return _no_arg_handler;
2633 } else if (total_args_passed == 1) {
2634 if (!method->is_static()) {
2635 return _obj_arg_handler;
2636 }
2637 switch (method->signature()->char_at(1)) {
2638 case JVM_SIGNATURE_CLASS:
2639 case JVM_SIGNATURE_ARRAY:
2640 return _obj_arg_handler;
2641 case JVM_SIGNATURE_INT:
2642 case JVM_SIGNATURE_BOOLEAN:
2643 case JVM_SIGNATURE_CHAR:
2644 case JVM_SIGNATURE_BYTE:
2645 case JVM_SIGNATURE_SHORT:
2646 return _int_arg_handler;
2647 }
2648 } else if (total_args_passed == 2 &&
2649 !method->is_static()) {
2650 switch (method->signature()->char_at(1)) {
2651 case JVM_SIGNATURE_CLASS:
2652 case JVM_SIGNATURE_ARRAY:
2653 return _obj_obj_arg_handler;
2654 case JVM_SIGNATURE_INT:
2655 case JVM_SIGNATURE_BOOLEAN:
2656 case JVM_SIGNATURE_CHAR:
2657 case JVM_SIGNATURE_BYTE:
2658 case JVM_SIGNATURE_SHORT:
2659 return _obj_int_arg_handler;
2660 }
2661 }
2662 return nullptr;
2663 }
2664
2665 class AdapterSignatureIterator : public SignatureIterator {
2666 private:
2667 BasicType stack_sig_bt[16];
2668 BasicType* sig_bt;
2669 int index;
2670
2671 public:
2672 AdapterSignatureIterator(Symbol* signature,
2673 fingerprint_t fingerprint,
2674 bool is_static,
2675 int total_args_passed) :
2676 SignatureIterator(signature, fingerprint),
2677 index(0)
2678 {
2679 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2680 if (!is_static) { // Pass in receiver first
2681 sig_bt[index++] = T_OBJECT;
2682 }
2683 do_parameters_on(this);
2684 }
2685
2686 BasicType* basic_types() {
2687 return sig_bt;
2688 }
2689
2690 #ifdef ASSERT
2691 int slots() {
2692 return index;
2693 }
2694 #endif
2695
2696 private:
2697
2698 friend class SignatureIterator; // so do_parameters_on can call do_type
2699 void do_type(BasicType type) {
2700 sig_bt[index++] = type;
2701 if (type == T_LONG || type == T_DOUBLE) {
2702 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2703 }
2704 }
2705 };
2706
2707
2708 const char* AdapterHandlerEntry::_entry_names[] = {
2709 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2710 };
2711
2712 #ifdef ASSERT
2713 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2714 // we can only check for the same code if there is any
2715 #ifndef ZERO
2716 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2717 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2718 assert(comparison_entry->compare_code(cached_entry), "code must match");
2719 // Release the one just created
2720 AdapterHandlerEntry::deallocate(comparison_entry);
2721 # endif // ZERO
2722 }
2723 #endif /* ASSERT*/
2724
2725 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2726 assert(!method->is_abstract(), "abstract methods do not have adapters");
2727 // Use customized signature handler. Need to lock around updates to
2728 // the _adapter_handler_table (it is not safe for concurrent readers
2729 // and a single writer: this could be fixed if it becomes a
2730 // problem).
2731
2732 // Fast-path for trivial adapters
2733 AdapterHandlerEntry* entry = get_simple_adapter(method);
2734 if (entry != nullptr) {
2735 return entry;
2736 }
2737
2738 ResourceMark rm;
2739 bool new_entry = false;
2740
2741 // Fill in the signature array, for the calling-convention call.
2742 int total_args_passed = method->size_of_parameters(); // All args on stack
2743
2744 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2745 method->is_static(), total_args_passed);
2746 assert(si.slots() == total_args_passed, "");
2747 BasicType* sig_bt = si.basic_types();
2748 {
2749 MutexLocker mu(AdapterHandlerLibrary_lock);
2750
2751 // Lookup method signature's fingerprint
2752 entry = lookup(total_args_passed, sig_bt);
2753
2754 if (entry != nullptr) {
2755 #ifndef ZERO
2756 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2757 #endif
2758 #ifdef ASSERT
2759 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2760 verify_adapter_sharing(total_args_passed, sig_bt, entry);
2761 }
2762 #endif
2763 } else {
2764 entry = create_adapter(total_args_passed, sig_bt);
2765 if (entry != nullptr) {
2766 new_entry = true;
2767 }
2768 }
2769 }
2770
2771 // Outside of the lock
2772 if (new_entry) {
2773 post_adapter_creation(entry);
2774 }
2775 return entry;
2776 }
2777
2778 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2779 ResourceMark rm;
2780 const char* name = AdapterHandlerLibrary::name(handler);
2781 const uint32_t id = AdapterHandlerLibrary::id(handler);
2782
2783 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2784 if (blob != nullptr) {
2785 handler->set_adapter_blob(blob->as_adapter_blob());
2786 }
2787 }
2788
2789 #ifndef PRODUCT
2790 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2791 ttyLocker ttyl;
2792 ResourceMark rm;
2793 int insts_size;
2794 // on Zero the blob may be null
2795 handler->print_adapter_on(tty);
2796 AdapterBlob* adapter_blob = handler->adapter_blob();
2797 if (adapter_blob == nullptr) {
2798 return;
2799 }
2800 insts_size = adapter_blob->code_size();
2801 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2802 handler->fingerprint()->as_basic_args_string(),
2803 handler->fingerprint()->as_string(), insts_size);
2804 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2805 if (Verbose || PrintStubCode) {
2806 address first_pc = adapter_blob->content_begin();
2807 if (first_pc != nullptr) {
2808 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2809 st->cr();
2810 }
2811 }
2812 }
2813 #endif // PRODUCT
2814
2815 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2816 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2817 entry_offset[AdapterBlob::I2C] = 0;
2818 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2819 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2820 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2821 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2822 } else {
2823 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2824 }
2825 }
2826
2827 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2828 int total_args_passed,
2829 BasicType* sig_bt,
2830 bool is_transient) {
2831 if (log_is_enabled(Info, perf, class, link)) {
2832 ClassLoader::perf_method_adapters_count()->inc();
2833 }
2834
2835 #ifndef ZERO
2836 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2837 CodeBuffer buffer(buf);
2838 short buffer_locs[20];
2839 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2840 sizeof(buffer_locs)/sizeof(relocInfo));
2841 MacroAssembler masm(&buffer);
2842 VMRegPair stack_regs[16];
2843 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2844
2845 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2846 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2847 address entry_address[AdapterBlob::ENTRY_COUNT];
2848 SharedRuntime::generate_i2c2i_adapters(&masm,
2849 total_args_passed,
2850 comp_args_on_stack,
2851 sig_bt,
2852 regs,
2853 entry_address);
2854 // On zero there is no code to save and no need to create a blob and
2855 // or relocate the handler.
2856 int entry_offset[AdapterBlob::ENTRY_COUNT];
2857 address_to_offset(entry_address, entry_offset);
2858 #ifdef ASSERT
2859 if (VerifyAdapterSharing) {
2860 handler->save_code(buf->code_begin(), buffer.insts_size());
2861 if (is_transient) {
2862 return true;
2863 }
2864 }
2865 #endif
2866 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2867 if (adapter_blob == nullptr) {
2868 // CodeCache is full, disable compilation
2869 // Ought to log this but compile log is only per compile thread
2870 // and we're some non descript Java thread.
2871 return false;
2872 }
2873 handler->set_adapter_blob(adapter_blob);
2874 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2875 // try to save generated code
2876 const char* name = AdapterHandlerLibrary::name(handler);
2877 const uint32_t id = AdapterHandlerLibrary::id(handler);
2878 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2879 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2880 }
2881 #endif // ZERO
2882
2883 #ifndef PRODUCT
2884 // debugging support
2885 if (PrintAdapterHandlers || PrintStubCode) {
2886 print_adapter_handler_info(tty, handler);
2887 }
2888 #endif
2889
2890 return true;
2891 }
2892
2893 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2894 BasicType* sig_bt,
2895 bool is_transient) {
2896 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2897 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2898 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2899 AdapterHandlerEntry::deallocate(handler);
2900 return nullptr;
2901 }
2902 if (!is_transient) {
2903 assert_lock_strong(AdapterHandlerLibrary_lock);
2904 _adapter_handler_table->put(fp, handler);
2905 }
2906 return handler;
2907 }
2908
2909 #if INCLUDE_CDS
2910 void AdapterHandlerEntry::remove_unshareable_info() {
2911 #ifdef ASSERT
2912 _saved_code = nullptr;
2913 _saved_code_length = 0;
2914 #endif // ASSERT
2915 _adapter_blob = nullptr;
2916 _linked = false;
2917 }
2918
2919 class CopyAdapterTableToArchive : StackObj {
2920 private:
2921 CompactHashtableWriter* _writer;
2922 ArchiveBuilder* _builder;
2923 public:
2924 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2925 _builder(ArchiveBuilder::current())
2926 {}
2927
2928 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2929 LogStreamHandle(Trace, aot) lsh;
2930 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2931 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2932 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2933 assert(buffered_fp != nullptr,"sanity check");
2934 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2935 assert(buffered_entry != nullptr,"sanity check");
2936
2937 uint hash = fp->compute_hash();
2938 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2939 _writer->add(hash, delta);
2940 if (lsh.is_enabled()) {
2941 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2942 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2943 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2944 }
2945 } else {
2946 if (lsh.is_enabled()) {
2947 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2948 }
2949 }
2950 return true;
2951 }
2952 };
2953
2954 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2955 CompactHashtableStats stats;
2956 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2957 CopyAdapterTableToArchive copy(&writer);
2958 _adapter_handler_table->iterate(©);
2959 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2960 }
2961
2962 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2963 _aot_adapter_handler_table.serialize_header(soc);
2964 }
2965
2966 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2967 #ifdef ASSERT
2968 if (TestAOTAdapterLinkFailure) {
2969 return;
2970 }
2971 #endif
2972 lookup_aot_cache(handler);
2973 #ifndef PRODUCT
2974 // debugging support
2975 if (PrintAdapterHandlers || PrintStubCode) {
2976 print_adapter_handler_info(tty, handler);
2977 }
2978 #endif
2979 }
2980
2981 // This method is used during production run to link archived adapters (stored in AOT Cache)
2982 // to their code in AOT Code Cache
2983 void AdapterHandlerEntry::link() {
2984 ResourceMark rm;
2985 assert(_fingerprint != nullptr, "_fingerprint must not be null");
2986 bool generate_code = false;
2987 // Generate code only if AOTCodeCache is not available, or
2988 // caching adapters is disabled, or we fail to link
2989 // the AdapterHandlerEntry to its code in the AOTCodeCache
2990 if (AOTCodeCache::is_using_adapter()) {
2991 AdapterHandlerLibrary::link_aot_adapter_handler(this);
2992 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
2993 if (_adapter_blob == nullptr) {
2994 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
2995 generate_code = true;
2996 }
2997 } else {
2998 generate_code = true;
2999 }
3000 if (generate_code) {
3001 int nargs;
3002 BasicType* bt = _fingerprint->as_basic_type(nargs);
3003 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3004 // Don't throw exceptions during VM initialization because java.lang.* classes
3005 // might not have been initialized, causing problems when constructing the
3006 // Java exception object.
3007 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3008 }
3009 }
3010 if (_adapter_blob != nullptr) {
3011 post_adapter_creation(this);
3012 }
3013 assert(_linked, "AdapterHandlerEntry must now be linked");
3014 }
3015
3016 void AdapterHandlerLibrary::link_aot_adapters() {
3017 uint max_id = 0;
3018 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3019 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3020 * That implies adapter ids of the adapters in the cache may not be contiguous.
3021 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3022 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3023 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3024 */
3025 _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3026 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3027 entry->link();
3028 max_id = MAX2(max_id, entry->id());
3029 });
3030 // Set adapter id to the maximum id found in the AOTCache
3031 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3032 _id_counter = max_id;
3033 }
3034
3035 // This method is called during production run to lookup simple adapters
3036 // in the archived adapter handler table
3037 void AdapterHandlerLibrary::lookup_simple_adapters() {
3038 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3039
3040 MutexLocker mu(AdapterHandlerLibrary_lock);
3041 _no_arg_handler = lookup(0, nullptr);
3042
3043 BasicType obj_args[] = { T_OBJECT };
3044 _obj_arg_handler = lookup(1, obj_args);
3045
3046 BasicType int_args[] = { T_INT };
3047 _int_arg_handler = lookup(1, int_args);
3048
3049 BasicType obj_int_args[] = { T_OBJECT, T_INT };
3050 _obj_int_arg_handler = lookup(2, obj_int_args);
3051
3052 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3053 _obj_obj_arg_handler = lookup(2, obj_obj_args);
3054
3055 assert(_no_arg_handler != nullptr &&
3056 _obj_arg_handler != nullptr &&
3057 _int_arg_handler != nullptr &&
3058 _obj_int_arg_handler != nullptr &&
3059 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3060 assert(_no_arg_handler->is_linked() &&
3061 _obj_arg_handler->is_linked() &&
3062 _int_arg_handler->is_linked() &&
3063 _obj_int_arg_handler->is_linked() &&
3064 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3065 }
3066 #endif // INCLUDE_CDS
3067
3068 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3069 LogStreamHandle(Trace, aot) lsh;
3070 if (lsh.is_enabled()) {
3071 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3072 lsh.cr();
3073 }
3074 it->push(&_fingerprint);
3075 }
3076
3077 AdapterHandlerEntry::~AdapterHandlerEntry() {
3078 if (_fingerprint != nullptr) {
3079 AdapterFingerPrint::deallocate(_fingerprint);
3080 _fingerprint = nullptr;
3081 }
3082 #ifdef ASSERT
3083 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3084 #endif
3085 FreeHeap(this);
3086 }
3087
3088
3089 #ifdef ASSERT
3090 // Capture the code before relocation so that it can be compared
3091 // against other versions. If the code is captured after relocation
3092 // then relative instructions won't be equivalent.
3093 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3094 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3095 _saved_code_length = length;
3096 memcpy(_saved_code, buffer, length);
3097 }
3098
3099
3100 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3101 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3102
3103 if (other->_saved_code_length != _saved_code_length) {
3104 return false;
3105 }
3106
3107 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3108 }
3109 #endif
3110
3111
3112 /**
3113 * Create a native wrapper for this native method. The wrapper converts the
3114 * Java-compiled calling convention to the native convention, handles
3115 * arguments, and transitions to native. On return from the native we transition
3116 * back to java blocking if a safepoint is in progress.
3117 */
3118 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3119 ResourceMark rm;
3120 nmethod* nm = nullptr;
3121
3122 // Check if memory should be freed before allocation
3123 CodeCache::gc_on_allocation();
3124
3125 assert(method->is_native(), "must be native");
3126 assert(method->is_special_native_intrinsic() ||
3127 method->has_native_function(), "must have something valid to call!");
3128
3129 {
3130 // Perform the work while holding the lock, but perform any printing outside the lock
3131 MutexLocker mu(AdapterHandlerLibrary_lock);
3132 // See if somebody beat us to it
3133 if (method->code() != nullptr) {
3134 return;
3135 }
3136
3137 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3138 assert(compile_id > 0, "Must generate native wrapper");
3139
3140
3141 ResourceMark rm;
3142 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3143 if (buf != nullptr) {
3144 CodeBuffer buffer(buf);
3145
3146 if (method->is_continuation_enter_intrinsic()) {
3147 buffer.initialize_stubs_size(192);
3148 }
3149
3150 struct { double data[20]; } locs_buf;
3151 struct { double data[20]; } stubs_locs_buf;
3152 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3153 #if defined(AARCH64) || defined(PPC64)
3154 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3155 // in the constant pool to ensure ordering between the barrier and oops
3156 // accesses. For native_wrappers we need a constant.
3157 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3158 // static java call that is resolved in the runtime.
3159 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3160 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3161 }
3162 #endif
3163 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3164 MacroAssembler _masm(&buffer);
3165
3166 // Fill in the signature array, for the calling-convention call.
3167 const int total_args_passed = method->size_of_parameters();
3168
3169 VMRegPair stack_regs[16];
3170 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3171
3172 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3173 method->is_static(), total_args_passed);
3174 BasicType* sig_bt = si.basic_types();
3175 assert(si.slots() == total_args_passed, "");
3176 BasicType ret_type = si.return_type();
3177
3178 // Now get the compiled-Java arguments layout.
3179 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3180
3181 // Generate the compiled-to-native wrapper code
3182 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3183
3184 if (nm != nullptr) {
3185 {
3186 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3187 if (nm->make_in_use()) {
3188 method->set_code(method, nm);
3189 }
3190 }
3191
3192 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3193 if (directive->PrintAssemblyOption) {
3194 nm->print_code();
3195 }
3196 DirectivesStack::release(directive);
3197 }
3198 }
3199 } // Unlock AdapterHandlerLibrary_lock
3200
3201
3202 // Install the generated code.
3203 if (nm != nullptr) {
3204 const char *msg = method->is_static() ? "(static)" : "";
3205 CompileTask::print_ul(nm, msg);
3206 if (PrintCompilation) {
3207 ttyLocker ttyl;
3208 CompileTask::print(tty, nm, msg);
3209 }
3210 nm->post_compiled_method_load_event();
3211 }
3212 }
3213
3214 // -------------------------------------------------------------------------
3215 // Java-Java calling convention
3216 // (what you use when Java calls Java)
3217
3218 //------------------------------name_for_receiver----------------------------------
3219 // For a given signature, return the VMReg for parameter 0.
3220 VMReg SharedRuntime::name_for_receiver() {
3221 VMRegPair regs;
3222 BasicType sig_bt = T_OBJECT;
3223 (void) java_calling_convention(&sig_bt, ®s, 1);
3224 // Return argument 0 register. In the LP64 build pointers
3225 // take 2 registers, but the VM wants only the 'main' name.
3226 return regs.first();
3227 }
3228
3229 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3230 // This method is returning a data structure allocating as a
3231 // ResourceObject, so do not put any ResourceMarks in here.
3232
3233 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3234 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3235 int cnt = 0;
3236 if (has_receiver) {
3237 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3238 }
3239
3240 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3241 BasicType type = ss.type();
3242 sig_bt[cnt++] = type;
3243 if (is_double_word_type(type))
3244 sig_bt[cnt++] = T_VOID;
3245 }
3246
3247 if (has_appendix) {
3248 sig_bt[cnt++] = T_OBJECT;
3249 }
3250
3251 assert(cnt < 256, "grow table size");
3252
3253 int comp_args_on_stack;
3254 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3255
3256 // the calling convention doesn't count out_preserve_stack_slots so
3257 // we must add that in to get "true" stack offsets.
3258
3259 if (comp_args_on_stack) {
3260 for (int i = 0; i < cnt; i++) {
3261 VMReg reg1 = regs[i].first();
3262 if (reg1->is_stack()) {
3263 // Yuck
3264 reg1 = reg1->bias(out_preserve_stack_slots());
3265 }
3266 VMReg reg2 = regs[i].second();
3267 if (reg2->is_stack()) {
3268 // Yuck
3269 reg2 = reg2->bias(out_preserve_stack_slots());
3270 }
3271 regs[i].set_pair(reg2, reg1);
3272 }
3273 }
3274
3275 // results
3276 *arg_size = cnt;
3277 return regs;
3278 }
3279
3280 // OSR Migration Code
3281 //
3282 // This code is used convert interpreter frames into compiled frames. It is
3283 // called from very start of a compiled OSR nmethod. A temp array is
3284 // allocated to hold the interesting bits of the interpreter frame. All
3285 // active locks are inflated to allow them to move. The displaced headers and
3286 // active interpreter locals are copied into the temp buffer. Then we return
3287 // back to the compiled code. The compiled code then pops the current
3288 // interpreter frame off the stack and pushes a new compiled frame. Then it
3289 // copies the interpreter locals and displaced headers where it wants.
3290 // Finally it calls back to free the temp buffer.
3291 //
3292 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3293
3294 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3295 assert(current == JavaThread::current(), "pre-condition");
3296 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3297 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3298 // frame. The stack watermark code below ensures that the interpreted frame is processed
3299 // before it gets unwound. This is helpful as the size of the compiled frame could be
3300 // larger than the interpreted frame, which could result in the new frame not being
3301 // processed correctly.
3302 StackWatermarkSet::before_unwind(current);
3303
3304 //
3305 // This code is dependent on the memory layout of the interpreter local
3306 // array and the monitors. On all of our platforms the layout is identical
3307 // so this code is shared. If some platform lays the their arrays out
3308 // differently then this code could move to platform specific code or
3309 // the code here could be modified to copy items one at a time using
3310 // frame accessor methods and be platform independent.
3311
3312 frame fr = current->last_frame();
3313 assert(fr.is_interpreted_frame(), "");
3314 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3315
3316 // Figure out how many monitors are active.
3317 int active_monitor_count = 0;
3318 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3319 kptr < fr.interpreter_frame_monitor_begin();
3320 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3321 if (kptr->obj() != nullptr) active_monitor_count++;
3322 }
3323
3324 // QQQ we could place number of active monitors in the array so that compiled code
3325 // could double check it.
3326
3327 Method* moop = fr.interpreter_frame_method();
3328 int max_locals = moop->max_locals();
3329 // Allocate temp buffer, 1 word per local & 2 per active monitor
3330 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3331 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3332
3333 // Copy the locals. Order is preserved so that loading of longs works.
3334 // Since there's no GC I can copy the oops blindly.
3335 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3336 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3337 (HeapWord*)&buf[0],
3338 max_locals);
3339
3340 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3341 int i = max_locals;
3342 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3343 kptr2 < fr.interpreter_frame_monitor_begin();
3344 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3345 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3346 BasicLock *lock = kptr2->lock();
3347 if (UseObjectMonitorTable) {
3348 buf[i] = (intptr_t)lock->object_monitor_cache();
3349 }
3350 #ifdef ASSERT
3351 else {
3352 buf[i] = badDispHeaderOSR;
3353 }
3354 #endif
3355 i++;
3356 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3357 }
3358 }
3359 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3360
3361 RegisterMap map(current,
3362 RegisterMap::UpdateMap::skip,
3363 RegisterMap::ProcessFrames::include,
3364 RegisterMap::WalkContinuation::skip);
3365 frame sender = fr.sender(&map);
3366 if (sender.is_interpreted_frame()) {
3367 current->push_cont_fastpath(sender.sp());
3368 }
3369
3370 return buf;
3371 JRT_END
3372
3373 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3374 FREE_C_HEAP_ARRAY(intptr_t, buf);
3375 JRT_END
3376
3377 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3378 bool found = false;
3379 #if INCLUDE_CDS
3380 if (AOTCodeCache::is_using_adapter()) {
3381 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3382 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3383 };
3384 _aot_adapter_handler_table.iterate(findblob_archived_table);
3385 }
3386 #endif // INCLUDE_CDS
3387 if (!found) {
3388 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3389 return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3390 };
3391 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3392 _adapter_handler_table->iterate(findblob_runtime_table);
3393 }
3394 return found;
3395 }
3396
3397 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3398 return handler->fingerprint()->as_basic_args_string();
3399 }
3400
3401 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3402 return handler->id();
3403 }
3404
3405 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3406 bool found = false;
3407 #if INCLUDE_CDS
3408 if (AOTCodeCache::is_using_adapter()) {
3409 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3410 if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3411 found = true;
3412 st->print("Adapter for signature: ");
3413 handler->print_adapter_on(st);
3414 return true;
3415 } else {
3416 return false; // keep looking
3417 }
3418 };
3419 _aot_adapter_handler_table.iterate(findblob_archived_table);
3420 }
3421 #endif // INCLUDE_CDS
3422 if (!found) {
3423 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3424 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3425 found = true;
3426 st->print("Adapter for signature: ");
3427 a->print_adapter_on(st);
3428 return true;
3429 } else {
3430 return false; // keep looking
3431 }
3432 };
3433 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3434 _adapter_handler_table->iterate(findblob_runtime_table);
3435 }
3436 assert(found, "Should have found handler");
3437 }
3438
3439 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3440 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3441 if (adapter_blob() != nullptr) {
3442 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3443 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3444 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3445 if (get_c2i_no_clinit_check_entry() != nullptr) {
3446 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3447 }
3448 }
3449 st->cr();
3450 }
3451
3452 #ifndef PRODUCT
3453
3454 void AdapterHandlerLibrary::print_statistics() {
3455 print_table_statistics();
3456 }
3457
3458 #endif /* PRODUCT */
3459
3460 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3461 assert(current == JavaThread::current(), "pre-condition");
3462 StackOverflow* overflow_state = current->stack_overflow_state();
3463 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3464 overflow_state->set_reserved_stack_activation(current->stack_base());
3465 JRT_END
3466
3467 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3468 ResourceMark rm(current);
3469 frame activation;
3470 nmethod* nm = nullptr;
3471 int count = 1;
3472
3473 assert(fr.is_java_frame(), "Must start on Java frame");
3474
3475 RegisterMap map(JavaThread::current(),
3476 RegisterMap::UpdateMap::skip,
3477 RegisterMap::ProcessFrames::skip,
3478 RegisterMap::WalkContinuation::skip); // don't walk continuations
3479 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3480 if (!fr.is_java_frame()) {
3481 continue;
3482 }
3483
3484 Method* method = nullptr;
3485 bool found = false;
3486 if (fr.is_interpreted_frame()) {
3487 method = fr.interpreter_frame_method();
3488 if (method != nullptr && method->has_reserved_stack_access()) {
3489 found = true;
3490 }
3491 } else {
3492 CodeBlob* cb = fr.cb();
3493 if (cb != nullptr && cb->is_nmethod()) {
3494 nm = cb->as_nmethod();
3495 method = nm->method();
3496 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3497 method = sd->method();
3498 if (method != nullptr && method->has_reserved_stack_access()) {
3499 found = true;
3500 }
3501 }
3502 }
3503 }
3504 if (found) {
3505 activation = fr;
3506 warning("Potentially dangerous stack overflow in "
3507 "ReservedStackAccess annotated method %s [%d]",
3508 method->name_and_sig_as_C_string(), count++);
3509 EventReservedStackActivation event;
3510 if (event.should_commit()) {
3511 event.set_method(method);
3512 event.commit();
3513 }
3514 }
3515 }
3516 return activation;
3517 }
3518
3519 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3520 // After any safepoint, just before going back to compiled code,
3521 // we inform the GC that we will be doing initializing writes to
3522 // this object in the future without emitting card-marks, so
3523 // GC may take any compensating steps.
3524
3525 oop new_obj = current->vm_result_oop();
3526 if (new_obj == nullptr) return;
3527
3528 BarrierSet *bs = BarrierSet::barrier_set();
3529 bs->on_slowpath_allocation_exit(current, new_obj);
3530 }