1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/compiledMethod.inline.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/abstractCompiler.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gcLocker.inline.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "jfr/jfrEvents.hpp" 45 #include "logging/log.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/access.hpp" 50 #include "oops/fieldStreams.inline.hpp" 51 #include "metaprogramming/primitiveConversions.hpp" 52 #include "oops/klass.hpp" 53 #include "oops/method.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "oops/inlineKlass.inline.hpp" 58 #include "prims/forte.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/jvmtiThreadState.hpp" 61 #include "prims/methodHandles.hpp" 62 #include "prims/nativeLookup.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/frame.inline.hpp" 65 #include "runtime/handles.inline.hpp" 66 #include "runtime/init.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/java.hpp" 69 #include "runtime/javaCalls.hpp" 70 #include "runtime/jniHandles.inline.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/vframe.inline.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vm_version.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/dtrace.hpp" 80 #include "utilities/events.hpp" 81 #include "utilities/resourceHash.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/xmlstream.hpp" 84 #ifdef COMPILER1 85 #include "c1/c1_Runtime1.hpp" 86 #endif 87 #if INCLUDE_JFR 88 #include "jfr/jfr.hpp" 89 #endif 90 91 // Shared stub locations 92 RuntimeStub* SharedRuntime::_wrong_method_blob; 93 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 94 RuntimeStub* SharedRuntime::_ic_miss_blob; 95 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 96 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 97 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 98 99 DeoptimizationBlob* SharedRuntime::_deopt_blob; 100 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 101 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 102 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 103 104 #ifdef COMPILER2 105 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 106 #endif // COMPILER2 107 108 nmethod* SharedRuntime::_cont_doYield_stub; 109 110 //----------------------------generate_stubs----------------------------------- 111 void SharedRuntime::generate_stubs() { 112 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 113 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 114 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 115 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 116 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 117 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 118 119 AdapterHandlerLibrary::initialize(); 120 121 #if COMPILER2_OR_JVMCI 122 // Vectors are generated only by C2 and JVMCI. 123 bool support_wide = is_wide_vector(MaxVectorSize); 124 if (support_wide) { 125 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 126 } 127 #endif // COMPILER2_OR_JVMCI 128 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 129 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 130 131 generate_deopt_blob(); 132 133 #ifdef COMPILER2 134 generate_uncommon_trap_blob(); 135 #endif // COMPILER2 136 } 137 138 #include <math.h> 139 140 // Implementation of SharedRuntime 141 142 #ifndef PRODUCT 143 // For statistics 144 uint SharedRuntime::_ic_miss_ctr = 0; 145 uint SharedRuntime::_wrong_method_ctr = 0; 146 uint SharedRuntime::_resolve_static_ctr = 0; 147 uint SharedRuntime::_resolve_virtual_ctr = 0; 148 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 149 uint SharedRuntime::_implicit_null_throws = 0; 150 uint SharedRuntime::_implicit_div0_throws = 0; 151 152 int64_t SharedRuntime::_nof_normal_calls = 0; 153 int64_t SharedRuntime::_nof_inlined_calls = 0; 154 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 155 int64_t SharedRuntime::_nof_static_calls = 0; 156 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 157 int64_t SharedRuntime::_nof_interface_calls = 0; 158 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 159 160 uint SharedRuntime::_new_instance_ctr=0; 161 uint SharedRuntime::_new_array_ctr=0; 162 uint SharedRuntime::_multi2_ctr=0; 163 uint SharedRuntime::_multi3_ctr=0; 164 uint SharedRuntime::_multi4_ctr=0; 165 uint SharedRuntime::_multi5_ctr=0; 166 uint SharedRuntime::_mon_enter_stub_ctr=0; 167 uint SharedRuntime::_mon_exit_stub_ctr=0; 168 uint SharedRuntime::_mon_enter_ctr=0; 169 uint SharedRuntime::_mon_exit_ctr=0; 170 uint SharedRuntime::_partial_subtype_ctr=0; 171 uint SharedRuntime::_jbyte_array_copy_ctr=0; 172 uint SharedRuntime::_jshort_array_copy_ctr=0; 173 uint SharedRuntime::_jint_array_copy_ctr=0; 174 uint SharedRuntime::_jlong_array_copy_ctr=0; 175 uint SharedRuntime::_oop_array_copy_ctr=0; 176 uint SharedRuntime::_checkcast_array_copy_ctr=0; 177 uint SharedRuntime::_unsafe_array_copy_ctr=0; 178 uint SharedRuntime::_generic_array_copy_ctr=0; 179 uint SharedRuntime::_slow_array_copy_ctr=0; 180 uint SharedRuntime::_find_handler_ctr=0; 181 uint SharedRuntime::_rethrow_ctr=0; 182 183 int SharedRuntime::_ICmiss_index = 0; 184 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 186 187 188 void SharedRuntime::trace_ic_miss(address at) { 189 for (int i = 0; i < _ICmiss_index; i++) { 190 if (_ICmiss_at[i] == at) { 191 _ICmiss_count[i]++; 192 return; 193 } 194 } 195 int index = _ICmiss_index++; 196 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 197 _ICmiss_at[index] = at; 198 _ICmiss_count[index] = 1; 199 } 200 201 void SharedRuntime::print_ic_miss_histogram() { 202 if (ICMissHistogram) { 203 tty->print_cr("IC Miss Histogram:"); 204 int tot_misses = 0; 205 for (int i = 0; i < _ICmiss_index; i++) { 206 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 207 tot_misses += _ICmiss_count[i]; 208 } 209 tty->print_cr("Total IC misses: %7d", tot_misses); 210 } 211 } 212 #endif // PRODUCT 213 214 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 216 return x * y; 217 JRT_END 218 219 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 221 if (x == min_jlong && y == CONST64(-1)) { 222 return x; 223 } else { 224 return x / y; 225 } 226 JRT_END 227 228 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 230 if (x == min_jlong && y == CONST64(-1)) { 231 return 0; 232 } else { 233 return x % y; 234 } 235 JRT_END 236 237 238 #ifdef _WIN64 239 const juint float_sign_mask = 0x7FFFFFFF; 240 const juint float_infinity = 0x7F800000; 241 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 242 const julong double_infinity = CONST64(0x7FF0000000000000); 243 #endif 244 245 #if !defined(X86) 246 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 247 #ifdef _WIN64 248 // 64-bit Windows on amd64 returns the wrong values for 249 // infinity operands. 250 juint xbits = PrimitiveConversions::cast<juint>(x); 251 juint ybits = PrimitiveConversions::cast<juint>(y); 252 // x Mod Infinity == x unless x is infinity 253 if (((xbits & float_sign_mask) != float_infinity) && 254 ((ybits & float_sign_mask) == float_infinity) ) { 255 return x; 256 } 257 return ((jfloat)fmod_winx64((double)x, (double)y)); 258 #else 259 return ((jfloat)fmod((double)x,(double)y)); 260 #endif 261 JRT_END 262 263 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 264 #ifdef _WIN64 265 julong xbits = PrimitiveConversions::cast<julong>(x); 266 julong ybits = PrimitiveConversions::cast<julong>(y); 267 // x Mod Infinity == x unless x is infinity 268 if (((xbits & double_sign_mask) != double_infinity) && 269 ((ybits & double_sign_mask) == double_infinity) ) { 270 return x; 271 } 272 return ((jdouble)fmod_winx64((double)x, (double)y)); 273 #else 274 return ((jdouble)fmod((double)x,(double)y)); 275 #endif 276 JRT_END 277 #endif // !X86 278 279 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 280 return (jfloat)x; 281 JRT_END 282 283 #ifdef __SOFTFP__ 284 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 285 return x + y; 286 JRT_END 287 288 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 289 return x - y; 290 JRT_END 291 292 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 293 return x * y; 294 JRT_END 295 296 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 297 return x / y; 298 JRT_END 299 300 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 301 return x + y; 302 JRT_END 303 304 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 305 return x - y; 306 JRT_END 307 308 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 309 return x * y; 310 JRT_END 311 312 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 313 return x / y; 314 JRT_END 315 316 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 317 return (jdouble)x; 318 JRT_END 319 320 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 321 return (jdouble)x; 322 JRT_END 323 324 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 325 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 326 JRT_END 327 328 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 329 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 330 JRT_END 331 332 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 333 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 334 JRT_END 335 336 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 337 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 338 JRT_END 339 340 // Functions to return the opposite of the aeabi functions for nan. 341 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 342 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 343 JRT_END 344 345 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 346 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 347 JRT_END 348 349 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 350 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 351 JRT_END 352 353 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 354 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 355 JRT_END 356 357 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 358 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 359 JRT_END 360 361 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 362 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 363 JRT_END 364 365 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 366 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 367 JRT_END 368 369 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 370 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 371 JRT_END 372 373 // Intrinsics make gcc generate code for these. 374 float SharedRuntime::fneg(float f) { 375 return -f; 376 } 377 378 double SharedRuntime::dneg(double f) { 379 return -f; 380 } 381 382 #endif // __SOFTFP__ 383 384 #if defined(__SOFTFP__) || defined(E500V2) 385 // Intrinsics make gcc generate code for these. 386 double SharedRuntime::dabs(double f) { 387 return (f <= (double)0.0) ? (double)0.0 - f : f; 388 } 389 390 #endif 391 392 #if defined(__SOFTFP__) || defined(PPC) 393 double SharedRuntime::dsqrt(double f) { 394 return sqrt(f); 395 } 396 #endif 397 398 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 399 if (g_isnan(x)) 400 return 0; 401 if (x >= (jfloat) max_jint) 402 return max_jint; 403 if (x <= (jfloat) min_jint) 404 return min_jint; 405 return (jint) x; 406 JRT_END 407 408 409 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 410 if (g_isnan(x)) 411 return 0; 412 if (x >= (jfloat) max_jlong) 413 return max_jlong; 414 if (x <= (jfloat) min_jlong) 415 return min_jlong; 416 return (jlong) x; 417 JRT_END 418 419 420 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 421 if (g_isnan(x)) 422 return 0; 423 if (x >= (jdouble) max_jint) 424 return max_jint; 425 if (x <= (jdouble) min_jint) 426 return min_jint; 427 return (jint) x; 428 JRT_END 429 430 431 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 432 if (g_isnan(x)) 433 return 0; 434 if (x >= (jdouble) max_jlong) 435 return max_jlong; 436 if (x <= (jdouble) min_jlong) 437 return min_jlong; 438 return (jlong) x; 439 JRT_END 440 441 442 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 443 return (jfloat)x; 444 JRT_END 445 446 447 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 448 return (jfloat)x; 449 JRT_END 450 451 452 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 453 return (jdouble)x; 454 JRT_END 455 456 457 // Exception handling across interpreter/compiler boundaries 458 // 459 // exception_handler_for_return_address(...) returns the continuation address. 460 // The continuation address is the entry point of the exception handler of the 461 // previous frame depending on the return address. 462 463 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 464 // Note: This is called when we have unwound the frame of the callee that did 465 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 466 // Notably, the stack is not walkable at this point, and hence the check must 467 // be deferred until later. Specifically, any of the handlers returned here in 468 // this function, will get dispatched to, and call deferred checks to 469 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 470 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 471 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 472 473 // Reset method handle flag. 474 current->set_is_method_handle_return(false); 475 476 #if INCLUDE_JVMCI 477 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 478 // and other exception handler continuations do not read it 479 current->set_exception_pc(nullptr); 480 #endif // INCLUDE_JVMCI 481 482 if (Continuation::is_return_barrier_entry(return_address)) { 483 return StubRoutines::cont_returnBarrierExc(); 484 } 485 486 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 487 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 488 489 // The fastest case first 490 CodeBlob* blob = CodeCache::find_blob(return_address); 491 CompiledMethod* nm = (blob != nullptr) ? blob->as_compiled_method_or_null() : nullptr; 492 if (nm != nullptr) { 493 // Set flag if return address is a method handle call site. 494 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 495 // native nmethods don't have exception handlers 496 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 497 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 498 if (nm->is_deopt_pc(return_address)) { 499 // If we come here because of a stack overflow, the stack may be 500 // unguarded. Reguard the stack otherwise if we return to the 501 // deopt blob and the stack bang causes a stack overflow we 502 // crash. 503 StackOverflow* overflow_state = current->stack_overflow_state(); 504 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 505 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 506 overflow_state->set_reserved_stack_activation(current->stack_base()); 507 } 508 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 509 // The deferred StackWatermarkSet::after_unwind check will be performed in 510 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 511 return SharedRuntime::deopt_blob()->unpack_with_exception(); 512 } else { 513 // The deferred StackWatermarkSet::after_unwind check will be performed in 514 // * OptoRuntime::handle_exception_C_helper for C2 code 515 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 516 return nm->exception_begin(); 517 } 518 } 519 520 // Entry code 521 if (StubRoutines::returns_to_call_stub(return_address)) { 522 // The deferred StackWatermarkSet::after_unwind check will be performed in 523 // JavaCallWrapper::~JavaCallWrapper 524 return StubRoutines::catch_exception_entry(); 525 } 526 if (blob != nullptr && blob->is_upcall_stub()) { 527 return StubRoutines::upcall_stub_exception_handler(); 528 } 529 // Interpreted code 530 if (Interpreter::contains(return_address)) { 531 // The deferred StackWatermarkSet::after_unwind check will be performed in 532 // InterpreterRuntime::exception_handler_for_exception 533 return Interpreter::rethrow_exception_entry(); 534 } 535 536 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 537 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 538 539 #ifndef PRODUCT 540 { ResourceMark rm; 541 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 542 os::print_location(tty, (intptr_t)return_address); 543 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 544 tty->print_cr("b) other problem"); 545 } 546 #endif // PRODUCT 547 548 ShouldNotReachHere(); 549 return nullptr; 550 } 551 552 553 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 554 return raw_exception_handler_for_return_address(current, return_address); 555 JRT_END 556 557 558 address SharedRuntime::get_poll_stub(address pc) { 559 address stub; 560 // Look up the code blob 561 CodeBlob *cb = CodeCache::find_blob(pc); 562 563 // Should be an nmethod 564 guarantee(cb != nullptr && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 565 566 // Look up the relocation information 567 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 568 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 569 570 #ifdef ASSERT 571 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 572 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 573 Disassembler::decode(cb); 574 fatal("Only polling locations are used for safepoint"); 575 } 576 #endif 577 578 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 579 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 580 if (at_poll_return) { 581 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 582 "polling page return stub not created yet"); 583 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 584 } else if (has_wide_vectors) { 585 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 586 "polling page vectors safepoint stub not created yet"); 587 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 588 } else { 589 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 590 "polling page safepoint stub not created yet"); 591 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 592 } 593 log_debug(safepoint)("... found polling page %s exception at pc = " 594 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 595 at_poll_return ? "return" : "loop", 596 (intptr_t)pc, (intptr_t)stub); 597 return stub; 598 } 599 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 601 if (JvmtiExport::can_post_on_exceptions()) { 602 vframeStream vfst(current, true); 603 methodHandle method = methodHandle(current, vfst.method()); 604 address bcp = method()->bcp_from(vfst.bci()); 605 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 606 } 607 608 #if INCLUDE_JVMCI 609 if (EnableJVMCI && UseJVMCICompiler) { 610 vframeStream vfst(current, true); 611 methodHandle method = methodHandle(current, vfst.method()); 612 int bci = vfst.bci(); 613 MethodData* trap_mdo = method->method_data(); 614 if (trap_mdo != nullptr) { 615 // Set exception_seen if the exceptional bytecode is an invoke 616 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 617 if (call.is_valid()) { 618 ResourceMark rm(current); 619 620 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 621 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 622 623 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 624 if (pdata != nullptr && pdata->is_BitData()) { 625 BitData* bit_data = (BitData*) pdata; 626 bit_data->set_exception_seen(); 627 } 628 } 629 } 630 } 631 #endif 632 633 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 634 } 635 636 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 637 Handle h_exception = Exceptions::new_exception(current, name, message); 638 throw_and_post_jvmti_exception(current, h_exception); 639 } 640 641 #if INCLUDE_JVMTI 642 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 643 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 644 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 645 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 646 JNIHandles::destroy_local(vthread); 647 JRT_END 648 649 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 650 assert(hide == JNI_TRUE, "must be VTMS transition start"); 651 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 652 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 653 JNIHandles::destroy_local(vthread); 654 JRT_END 655 656 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 657 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 658 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 659 JNIHandles::destroy_local(vthread); 660 JRT_END 661 662 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 663 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 664 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 665 JNIHandles::destroy_local(vthread); 666 JRT_END 667 #endif // INCLUDE_JVMTI 668 669 // The interpreter code to call this tracing function is only 670 // called/generated when UL is on for redefine, class and has the right level 671 // and tags. Since obsolete methods are never compiled, we don't have 672 // to modify the compilers to generate calls to this function. 673 // 674 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 675 JavaThread* thread, Method* method)) 676 if (method->is_obsolete()) { 677 // We are calling an obsolete method, but this is not necessarily 678 // an error. Our method could have been redefined just after we 679 // fetched the Method* from the constant pool. 680 ResourceMark rm; 681 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 682 } 683 return 0; 684 JRT_END 685 686 // ret_pc points into caller; we are returning caller's exception handler 687 // for given exception 688 // Note that the implementation of this method assumes it's only called when an exception has actually occured 689 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 690 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 691 assert(cm != nullptr, "must exist"); 692 ResourceMark rm; 693 694 #if INCLUDE_JVMCI 695 if (cm->is_compiled_by_jvmci()) { 696 // lookup exception handler for this pc 697 int catch_pco = pointer_delta_as_int(ret_pc, cm->code_begin()); 698 ExceptionHandlerTable table(cm); 699 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 700 if (t != nullptr) { 701 return cm->code_begin() + t->pco(); 702 } else { 703 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 704 } 705 } 706 #endif // INCLUDE_JVMCI 707 708 nmethod* nm = cm->as_nmethod(); 709 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 710 // determine handler bci, if any 711 EXCEPTION_MARK; 712 713 int handler_bci = -1; 714 int scope_depth = 0; 715 if (!force_unwind) { 716 int bci = sd->bci(); 717 bool recursive_exception = false; 718 do { 719 bool skip_scope_increment = false; 720 // exception handler lookup 721 Klass* ek = exception->klass(); 722 methodHandle mh(THREAD, sd->method()); 723 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 724 if (HAS_PENDING_EXCEPTION) { 725 recursive_exception = true; 726 // We threw an exception while trying to find the exception handler. 727 // Transfer the new exception to the exception handle which will 728 // be set into thread local storage, and do another lookup for an 729 // exception handler for this exception, this time starting at the 730 // BCI of the exception handler which caused the exception to be 731 // thrown (bugs 4307310 and 4546590). Set "exception" reference 732 // argument to ensure that the correct exception is thrown (4870175). 733 recursive_exception_occurred = true; 734 exception = Handle(THREAD, PENDING_EXCEPTION); 735 CLEAR_PENDING_EXCEPTION; 736 if (handler_bci >= 0) { 737 bci = handler_bci; 738 handler_bci = -1; 739 skip_scope_increment = true; 740 } 741 } 742 else { 743 recursive_exception = false; 744 } 745 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 746 sd = sd->sender(); 747 if (sd != nullptr) { 748 bci = sd->bci(); 749 } 750 ++scope_depth; 751 } 752 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 753 } 754 755 // found handling method => lookup exception handler 756 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 757 758 ExceptionHandlerTable table(nm); 759 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 760 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 761 // Allow abbreviated catch tables. The idea is to allow a method 762 // to materialize its exceptions without committing to the exact 763 // routing of exceptions. In particular this is needed for adding 764 // a synthetic handler to unlock monitors when inlining 765 // synchronized methods since the unlock path isn't represented in 766 // the bytecodes. 767 t = table.entry_for(catch_pco, -1, 0); 768 } 769 770 #ifdef COMPILER1 771 if (t == nullptr && nm->is_compiled_by_c1()) { 772 assert(nm->unwind_handler_begin() != nullptr, ""); 773 return nm->unwind_handler_begin(); 774 } 775 #endif 776 777 if (t == nullptr) { 778 ttyLocker ttyl; 779 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 780 tty->print_cr(" Exception:"); 781 exception->print(); 782 tty->cr(); 783 tty->print_cr(" Compiled exception table :"); 784 table.print(); 785 nm->print(); 786 nm->print_code(); 787 guarantee(false, "missing exception handler"); 788 return nullptr; 789 } 790 791 if (handler_bci != -1) { // did we find a handler in this method? 792 sd->method()->set_exception_handler_entered(handler_bci); // profile 793 } 794 return nm->code_begin() + t->pco(); 795 } 796 797 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 798 // These errors occur only at call sites 799 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 800 JRT_END 801 802 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 803 // These errors occur only at call sites 804 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 805 JRT_END 806 807 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 808 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 809 JRT_END 810 811 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 812 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 813 JRT_END 814 815 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 816 // This entry point is effectively only used for NullPointerExceptions which occur at inline 817 // cache sites (when the callee activation is not yet set up) so we are at a call site 818 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 819 JRT_END 820 821 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 822 throw_StackOverflowError_common(current, false); 823 JRT_END 824 825 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 826 throw_StackOverflowError_common(current, true); 827 JRT_END 828 829 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 830 // We avoid using the normal exception construction in this case because 831 // it performs an upcall to Java, and we're already out of stack space. 832 JavaThread* THREAD = current; // For exception macros. 833 Klass* k = vmClasses::StackOverflowError_klass(); 834 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 835 if (delayed) { 836 java_lang_Throwable::set_message(exception_oop, 837 Universe::delayed_stack_overflow_error_message()); 838 } 839 Handle exception (current, exception_oop); 840 if (StackTraceInThrowable) { 841 java_lang_Throwable::fill_in_stack_trace(exception); 842 } 843 // Remove the ScopedValue bindings in case we got a 844 // StackOverflowError while we were trying to remove ScopedValue 845 // bindings. 846 current->clear_scopedValueBindings(); 847 // Increment counter for hs_err file reporting 848 Atomic::inc(&Exceptions::_stack_overflow_errors); 849 throw_and_post_jvmti_exception(current, exception); 850 } 851 852 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 853 address pc, 854 ImplicitExceptionKind exception_kind) 855 { 856 address target_pc = nullptr; 857 858 if (Interpreter::contains(pc)) { 859 switch (exception_kind) { 860 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 861 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 862 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 863 default: ShouldNotReachHere(); 864 } 865 } else { 866 switch (exception_kind) { 867 case STACK_OVERFLOW: { 868 // Stack overflow only occurs upon frame setup; the callee is 869 // going to be unwound. Dispatch to a shared runtime stub 870 // which will cause the StackOverflowError to be fabricated 871 // and processed. 872 // Stack overflow should never occur during deoptimization: 873 // the compiled method bangs the stack by as much as the 874 // interpreter would need in case of a deoptimization. The 875 // deoptimization blob and uncommon trap blob bang the stack 876 // in a debug VM to verify the correctness of the compiled 877 // method stack banging. 878 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 879 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 880 return StubRoutines::throw_StackOverflowError_entry(); 881 } 882 883 case IMPLICIT_NULL: { 884 if (VtableStubs::contains(pc)) { 885 // We haven't yet entered the callee frame. Fabricate an 886 // exception and begin dispatching it in the caller. Since 887 // the caller was at a call site, it's safe to destroy all 888 // caller-saved registers, as these entry points do. 889 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 890 891 // If vt_stub is null, then return null to signal handler to report the SEGV error. 892 if (vt_stub == nullptr) return nullptr; 893 894 if (vt_stub->is_abstract_method_error(pc)) { 895 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 896 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 897 // Instead of throwing the abstract method error here directly, we re-resolve 898 // and will throw the AbstractMethodError during resolve. As a result, we'll 899 // get a more detailed error message. 900 return SharedRuntime::get_handle_wrong_method_stub(); 901 } else { 902 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 903 // Assert that the signal comes from the expected location in stub code. 904 assert(vt_stub->is_null_pointer_exception(pc), 905 "obtained signal from unexpected location in stub code"); 906 return StubRoutines::throw_NullPointerException_at_call_entry(); 907 } 908 } else { 909 CodeBlob* cb = CodeCache::find_blob(pc); 910 911 // If code blob is null, then return null to signal handler to report the SEGV error. 912 if (cb == nullptr) return nullptr; 913 914 // Exception happened in CodeCache. Must be either: 915 // 1. Inline-cache check in C2I handler blob, 916 // 2. Inline-cache check in nmethod, or 917 // 3. Implicit null exception in nmethod 918 919 if (!cb->is_compiled()) { 920 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 921 if (!is_in_blob) { 922 // Allow normal crash reporting to handle this 923 return nullptr; 924 } 925 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 926 // There is no handler here, so we will simply unwind. 927 return StubRoutines::throw_NullPointerException_at_call_entry(); 928 } 929 930 // Otherwise, it's a compiled method. Consult its exception handlers. 931 CompiledMethod* cm = (CompiledMethod*)cb; 932 if (cm->inlinecache_check_contains(pc)) { 933 // exception happened inside inline-cache check code 934 // => the nmethod is not yet active (i.e., the frame 935 // is not set up yet) => use return address pushed by 936 // caller => don't push another return address 937 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 938 return StubRoutines::throw_NullPointerException_at_call_entry(); 939 } 940 941 if (cm->method()->is_method_handle_intrinsic()) { 942 // exception happened inside MH dispatch code, similar to a vtable stub 943 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 944 return StubRoutines::throw_NullPointerException_at_call_entry(); 945 } 946 947 #ifndef PRODUCT 948 _implicit_null_throws++; 949 #endif 950 target_pc = cm->continuation_for_implicit_null_exception(pc); 951 // If there's an unexpected fault, target_pc might be null, 952 // in which case we want to fall through into the normal 953 // error handling code. 954 } 955 956 break; // fall through 957 } 958 959 960 case IMPLICIT_DIVIDE_BY_ZERO: { 961 CompiledMethod* cm = CodeCache::find_compiled(pc); 962 guarantee(cm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 963 #ifndef PRODUCT 964 _implicit_div0_throws++; 965 #endif 966 target_pc = cm->continuation_for_implicit_div0_exception(pc); 967 // If there's an unexpected fault, target_pc might be null, 968 // in which case we want to fall through into the normal 969 // error handling code. 970 break; // fall through 971 } 972 973 default: ShouldNotReachHere(); 974 } 975 976 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 977 978 if (exception_kind == IMPLICIT_NULL) { 979 #ifndef PRODUCT 980 // for AbortVMOnException flag 981 Exceptions::debug_check_abort("java.lang.NullPointerException"); 982 #endif //PRODUCT 983 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 984 } else { 985 #ifndef PRODUCT 986 // for AbortVMOnException flag 987 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 988 #endif //PRODUCT 989 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 990 } 991 return target_pc; 992 } 993 994 ShouldNotReachHere(); 995 return nullptr; 996 } 997 998 999 /** 1000 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1001 * installed in the native function entry of all native Java methods before 1002 * they get linked to their actual native methods. 1003 * 1004 * \note 1005 * This method actually never gets called! The reason is because 1006 * the interpreter's native entries call NativeLookup::lookup() which 1007 * throws the exception when the lookup fails. The exception is then 1008 * caught and forwarded on the return from NativeLookup::lookup() call 1009 * before the call to the native function. This might change in the future. 1010 */ 1011 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1012 { 1013 // We return a bad value here to make sure that the exception is 1014 // forwarded before we look at the return value. 1015 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1016 } 1017 JNI_END 1018 1019 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1020 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1021 } 1022 1023 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1024 #if INCLUDE_JVMCI 1025 if (!obj->klass()->has_finalizer()) { 1026 return; 1027 } 1028 #endif // INCLUDE_JVMCI 1029 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1030 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1031 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1032 JRT_END 1033 1034 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1035 assert(thread != nullptr, "No thread"); 1036 if (thread == nullptr) { 1037 return 0; 1038 } 1039 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1040 "current cannot touch oops after its GC barrier is detached."); 1041 oop obj = thread->threadObj(); 1042 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1043 } 1044 1045 /** 1046 * This function ought to be a void function, but cannot be because 1047 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1048 * 6254741. Once that is fixed we can remove the dummy return value. 1049 */ 1050 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1051 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1052 } 1053 1054 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1055 return dtrace_object_alloc(thread, o, o->size()); 1056 } 1057 1058 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1059 assert(DTraceAllocProbes, "wrong call"); 1060 Klass* klass = o->klass(); 1061 Symbol* name = klass->name(); 1062 HOTSPOT_OBJECT_ALLOC( 1063 get_java_tid(thread), 1064 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1065 return 0; 1066 } 1067 1068 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1069 JavaThread* current, Method* method)) 1070 assert(current == JavaThread::current(), "pre-condition"); 1071 1072 assert(DTraceMethodProbes, "wrong call"); 1073 Symbol* kname = method->klass_name(); 1074 Symbol* name = method->name(); 1075 Symbol* sig = method->signature(); 1076 HOTSPOT_METHOD_ENTRY( 1077 get_java_tid(current), 1078 (char *) kname->bytes(), kname->utf8_length(), 1079 (char *) name->bytes(), name->utf8_length(), 1080 (char *) sig->bytes(), sig->utf8_length()); 1081 return 0; 1082 JRT_END 1083 1084 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1085 JavaThread* current, Method* method)) 1086 assert(current == JavaThread::current(), "pre-condition"); 1087 assert(DTraceMethodProbes, "wrong call"); 1088 Symbol* kname = method->klass_name(); 1089 Symbol* name = method->name(); 1090 Symbol* sig = method->signature(); 1091 HOTSPOT_METHOD_RETURN( 1092 get_java_tid(current), 1093 (char *) kname->bytes(), kname->utf8_length(), 1094 (char *) name->bytes(), name->utf8_length(), 1095 (char *) sig->bytes(), sig->utf8_length()); 1096 return 0; 1097 JRT_END 1098 1099 1100 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1101 // for a call current in progress, i.e., arguments has been pushed on stack 1102 // put callee has not been invoked yet. Used by: resolve virtual/static, 1103 // vtable updates, etc. Caller frame must be compiled. 1104 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1105 JavaThread* current = THREAD; 1106 ResourceMark rm(current); 1107 1108 // last java frame on stack (which includes native call frames) 1109 vframeStream vfst(current, true); // Do not skip and javaCalls 1110 1111 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1112 } 1113 1114 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1115 CompiledMethod* caller = vfst.nm(); 1116 1117 address pc = vfst.frame_pc(); 1118 { // Get call instruction under lock because another thread may be busy patching it. 1119 CompiledICLocker ic_locker(caller); 1120 return caller->attached_method_before_pc(pc); 1121 } 1122 return nullptr; 1123 } 1124 1125 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1126 // for a call current in progress, i.e., arguments has been pushed on stack 1127 // but callee has not been invoked yet. Caller frame must be compiled. 1128 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1129 CallInfo& callinfo, TRAPS) { 1130 Handle receiver; 1131 Handle nullHandle; // create a handy null handle for exception returns 1132 JavaThread* current = THREAD; 1133 1134 assert(!vfst.at_end(), "Java frame must exist"); 1135 1136 // Find caller and bci from vframe 1137 methodHandle caller(current, vfst.method()); 1138 int bci = vfst.bci(); 1139 1140 if (caller->is_continuation_enter_intrinsic()) { 1141 bc = Bytecodes::_invokestatic; 1142 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1143 return receiver; 1144 } 1145 1146 // Substitutability test implementation piggy backs on static call resolution 1147 Bytecodes::Code code = caller->java_code_at(bci); 1148 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1149 bc = Bytecodes::_invokestatic; 1150 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1151 assert(attached_method.not_null(), "must have attached method"); 1152 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1153 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1154 #ifdef ASSERT 1155 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1156 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1157 #endif 1158 return receiver; 1159 } 1160 1161 Bytecode_invoke bytecode(caller, bci); 1162 int bytecode_index = bytecode.index(); 1163 bc = bytecode.invoke_code(); 1164 1165 methodHandle attached_method(current, extract_attached_method(vfst)); 1166 if (attached_method.not_null()) { 1167 Method* callee = bytecode.static_target(CHECK_NH); 1168 vmIntrinsics::ID id = callee->intrinsic_id(); 1169 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1170 // it attaches statically resolved method to the call site. 1171 if (MethodHandles::is_signature_polymorphic(id) && 1172 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1173 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1174 1175 // Adjust invocation mode according to the attached method. 1176 switch (bc) { 1177 case Bytecodes::_invokevirtual: 1178 if (attached_method->method_holder()->is_interface()) { 1179 bc = Bytecodes::_invokeinterface; 1180 } 1181 break; 1182 case Bytecodes::_invokeinterface: 1183 if (!attached_method->method_holder()->is_interface()) { 1184 bc = Bytecodes::_invokevirtual; 1185 } 1186 break; 1187 case Bytecodes::_invokehandle: 1188 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1189 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1190 : Bytecodes::_invokevirtual; 1191 } 1192 break; 1193 default: 1194 break; 1195 } 1196 } else { 1197 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1198 if (!attached_method->method_holder()->is_inline_klass()) { 1199 // Ignore the attached method in this case to not confuse below code 1200 attached_method = methodHandle(current, nullptr); 1201 } 1202 } 1203 } 1204 1205 assert(bc != Bytecodes::_illegal, "not initialized"); 1206 1207 bool has_receiver = bc != Bytecodes::_invokestatic && 1208 bc != Bytecodes::_invokedynamic && 1209 bc != Bytecodes::_invokehandle; 1210 bool check_null_and_abstract = true; 1211 1212 // Find receiver for non-static call 1213 if (has_receiver) { 1214 // This register map must be update since we need to find the receiver for 1215 // compiled frames. The receiver might be in a register. 1216 RegisterMap reg_map2(current, 1217 RegisterMap::UpdateMap::include, 1218 RegisterMap::ProcessFrames::include, 1219 RegisterMap::WalkContinuation::skip); 1220 frame stubFrame = current->last_frame(); 1221 // Caller-frame is a compiled frame 1222 frame callerFrame = stubFrame.sender(®_map2); 1223 1224 Method* callee = attached_method(); 1225 if (callee == nullptr) { 1226 callee = bytecode.static_target(CHECK_NH); 1227 if (callee == nullptr) { 1228 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1229 } 1230 } 1231 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->is_compiled_by_c1(); 1232 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1233 // If the receiver is an inline type that is passed as fields, no oop is available 1234 // Resolve the call without receiver null checking. 1235 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1236 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1237 if (bc == Bytecodes::_invokeinterface) { 1238 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1239 } 1240 check_null_and_abstract = false; 1241 } else { 1242 // Retrieve from a compiled argument list 1243 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1244 assert(oopDesc::is_oop_or_null(receiver()), ""); 1245 if (receiver.is_null()) { 1246 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1247 } 1248 } 1249 } 1250 1251 // Resolve method 1252 if (attached_method.not_null()) { 1253 // Parameterized by attached method. 1254 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1255 } else { 1256 // Parameterized by bytecode. 1257 constantPoolHandle constants(current, caller->constants()); 1258 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1259 } 1260 1261 #ifdef ASSERT 1262 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1263 if (has_receiver && check_null_and_abstract) { 1264 assert(receiver.not_null(), "should have thrown exception"); 1265 Klass* receiver_klass = receiver->klass(); 1266 Klass* rk = nullptr; 1267 if (attached_method.not_null()) { 1268 // In case there's resolved method attached, use its holder during the check. 1269 rk = attached_method->method_holder(); 1270 } else { 1271 // Klass is already loaded. 1272 constantPoolHandle constants(current, caller->constants()); 1273 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1274 } 1275 Klass* static_receiver_klass = rk; 1276 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1277 "actual receiver must be subclass of static receiver klass"); 1278 if (receiver_klass->is_instance_klass()) { 1279 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1280 tty->print_cr("ERROR: Klass not yet initialized!!"); 1281 receiver_klass->print(); 1282 } 1283 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1284 } 1285 } 1286 #endif 1287 1288 return receiver; 1289 } 1290 1291 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1292 JavaThread* current = THREAD; 1293 ResourceMark rm(current); 1294 // We need first to check if any Java activations (compiled, interpreted) 1295 // exist on the stack since last JavaCall. If not, we need 1296 // to get the target method from the JavaCall wrapper. 1297 vframeStream vfst(current, true); // Do not skip any javaCalls 1298 methodHandle callee_method; 1299 if (vfst.at_end()) { 1300 // No Java frames were found on stack since we did the JavaCall. 1301 // Hence the stack can only contain an entry_frame. We need to 1302 // find the target method from the stub frame. 1303 RegisterMap reg_map(current, 1304 RegisterMap::UpdateMap::skip, 1305 RegisterMap::ProcessFrames::include, 1306 RegisterMap::WalkContinuation::skip); 1307 frame fr = current->last_frame(); 1308 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1309 fr = fr.sender(®_map); 1310 assert(fr.is_entry_frame(), "must be"); 1311 // fr is now pointing to the entry frame. 1312 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1313 } else { 1314 Bytecodes::Code bc; 1315 CallInfo callinfo; 1316 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1317 // Calls via mismatching methods are always non-scalarized 1318 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1319 caller_is_c1 = true; 1320 } 1321 callee_method = methodHandle(current, callinfo.selected_method()); 1322 } 1323 assert(callee_method()->is_method(), "must be"); 1324 return callee_method; 1325 } 1326 1327 // Resolves a call. 1328 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1329 JavaThread* current = THREAD; 1330 ResourceMark rm(current); 1331 RegisterMap cbl_map(current, 1332 RegisterMap::UpdateMap::skip, 1333 RegisterMap::ProcessFrames::include, 1334 RegisterMap::WalkContinuation::skip); 1335 frame caller_frame = current->last_frame().sender(&cbl_map); 1336 1337 CodeBlob* caller_cb = caller_frame.cb(); 1338 guarantee(caller_cb != nullptr && caller_cb->is_compiled(), "must be called from compiled method"); 1339 CompiledMethod* caller_nm = caller_cb->as_compiled_method(); 1340 1341 // determine call info & receiver 1342 // note: a) receiver is null for static calls 1343 // b) an exception is thrown if receiver is null for non-static calls 1344 CallInfo call_info; 1345 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1346 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1347 1348 NoSafepointVerifier nsv; 1349 1350 methodHandle callee_method(current, call_info.selected_method()); 1351 // Calls via mismatching methods are always non-scalarized 1352 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1353 caller_is_c1 = true; 1354 } 1355 1356 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1357 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1358 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1359 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1360 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1361 1362 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1363 1364 #ifndef PRODUCT 1365 // tracing/debugging/statistics 1366 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1367 (is_virtual) ? (&_resolve_virtual_ctr) : 1368 (&_resolve_static_ctr); 1369 Atomic::inc(addr); 1370 1371 if (TraceCallFixup) { 1372 ResourceMark rm(current); 1373 tty->print("resolving %s%s (%s) call%s to", 1374 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1375 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1376 callee_method->print_short_name(tty); 1377 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1378 p2i(caller_frame.pc()), p2i(callee_method->code())); 1379 } 1380 #endif 1381 1382 if (invoke_code == Bytecodes::_invokestatic) { 1383 assert(callee_method->method_holder()->is_initialized() || 1384 callee_method->method_holder()->is_init_thread(current), 1385 "invalid class initialization state for invoke_static"); 1386 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1387 // In order to keep class initialization check, do not patch call 1388 // site for static call when the class is not fully initialized. 1389 // Proper check is enforced by call site re-resolution on every invocation. 1390 // 1391 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1392 // explicit class initialization check is put in nmethod entry (VEP). 1393 assert(callee_method->method_holder()->is_linked(), "must be"); 1394 return callee_method; 1395 } 1396 } 1397 1398 1399 // JSR 292 key invariant: 1400 // If the resolved method is a MethodHandle invoke target, the call 1401 // site must be a MethodHandle call site, because the lambda form might tail-call 1402 // leaving the stack in a state unknown to either caller or callee 1403 1404 // Compute entry points. The computation of the entry points is independent of 1405 // patching the call. 1406 1407 // Make sure the callee nmethod does not get deoptimized and removed before 1408 // we are done patching the code. 1409 1410 1411 CompiledICLocker ml(caller_nm); 1412 if (is_virtual && !is_optimized) { 1413 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1414 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1415 } else { 1416 // Callsite is a direct call - set it to the destination method 1417 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1418 callsite->set(callee_method, caller_is_c1); 1419 } 1420 1421 return callee_method; 1422 } 1423 1424 // Inline caches exist only in compiled code 1425 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1426 #ifdef ASSERT 1427 RegisterMap reg_map(current, 1428 RegisterMap::UpdateMap::skip, 1429 RegisterMap::ProcessFrames::include, 1430 RegisterMap::WalkContinuation::skip); 1431 frame stub_frame = current->last_frame(); 1432 assert(stub_frame.is_runtime_frame(), "sanity check"); 1433 frame caller_frame = stub_frame.sender(®_map); 1434 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1435 #endif /* ASSERT */ 1436 1437 methodHandle callee_method; 1438 bool is_optimized = false; 1439 bool caller_is_c1 = false; 1440 JRT_BLOCK 1441 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1442 // Return Method* through TLS 1443 current->set_vm_result_2(callee_method()); 1444 JRT_BLOCK_END 1445 // return compiled code entry point after potential safepoints 1446 return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1); 1447 JRT_END 1448 1449 1450 // Handle call site that has been made non-entrant 1451 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1452 // 6243940 We might end up in here if the callee is deoptimized 1453 // as we race to call it. We don't want to take a safepoint if 1454 // the caller was interpreted because the caller frame will look 1455 // interpreted to the stack walkers and arguments are now 1456 // "compiled" so it is much better to make this transition 1457 // invisible to the stack walking code. The i2c path will 1458 // place the callee method in the callee_target. It is stashed 1459 // there because if we try and find the callee by normal means a 1460 // safepoint is possible and have trouble gc'ing the compiled args. 1461 RegisterMap reg_map(current, 1462 RegisterMap::UpdateMap::skip, 1463 RegisterMap::ProcessFrames::include, 1464 RegisterMap::WalkContinuation::skip); 1465 frame stub_frame = current->last_frame(); 1466 assert(stub_frame.is_runtime_frame(), "sanity check"); 1467 frame caller_frame = stub_frame.sender(®_map); 1468 1469 if (caller_frame.is_interpreted_frame() || 1470 caller_frame.is_entry_frame() || 1471 caller_frame.is_upcall_stub_frame()) { 1472 Method* callee = current->callee_target(); 1473 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1474 current->set_vm_result_2(callee); 1475 current->set_callee_target(nullptr); 1476 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1477 // Bypass class initialization checks in c2i when caller is in native. 1478 // JNI calls to static methods don't have class initialization checks. 1479 // Fast class initialization checks are present in c2i adapters and call into 1480 // SharedRuntime::handle_wrong_method() on the slow path. 1481 // 1482 // JVM upcalls may land here as well, but there's a proper check present in 1483 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1484 // so bypassing it in c2i adapter is benign. 1485 return callee->get_c2i_no_clinit_check_entry(); 1486 } else { 1487 if (caller_frame.is_interpreted_frame()) { 1488 return callee->get_c2i_inline_entry(); 1489 } else { 1490 return callee->get_c2i_entry(); 1491 } 1492 } 1493 } 1494 1495 // Must be compiled to compiled path which is safe to stackwalk 1496 methodHandle callee_method; 1497 bool is_static_call = false; 1498 bool is_optimized = false; 1499 bool caller_is_c1 = false; 1500 JRT_BLOCK 1501 // Force resolving of caller (if we called from compiled frame) 1502 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1503 current->set_vm_result_2(callee_method()); 1504 JRT_BLOCK_END 1505 // return compiled code entry point after potential safepoints 1506 return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1); 1507 JRT_END 1508 1509 // Handle abstract method call 1510 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1511 // Verbose error message for AbstractMethodError. 1512 // Get the called method from the invoke bytecode. 1513 vframeStream vfst(current, true); 1514 assert(!vfst.at_end(), "Java frame must exist"); 1515 methodHandle caller(current, vfst.method()); 1516 Bytecode_invoke invoke(caller, vfst.bci()); 1517 DEBUG_ONLY( invoke.verify(); ) 1518 1519 // Find the compiled caller frame. 1520 RegisterMap reg_map(current, 1521 RegisterMap::UpdateMap::include, 1522 RegisterMap::ProcessFrames::include, 1523 RegisterMap::WalkContinuation::skip); 1524 frame stubFrame = current->last_frame(); 1525 assert(stubFrame.is_runtime_frame(), "must be"); 1526 frame callerFrame = stubFrame.sender(®_map); 1527 assert(callerFrame.is_compiled_frame(), "must be"); 1528 1529 // Install exception and return forward entry. 1530 address res = StubRoutines::throw_AbstractMethodError_entry(); 1531 JRT_BLOCK 1532 methodHandle callee(current, invoke.static_target(current)); 1533 if (!callee.is_null()) { 1534 oop recv = callerFrame.retrieve_receiver(®_map); 1535 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1536 res = StubRoutines::forward_exception_entry(); 1537 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1538 } 1539 JRT_BLOCK_END 1540 return res; 1541 JRT_END 1542 1543 1544 // resolve a static call and patch code 1545 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1546 methodHandle callee_method; 1547 bool caller_is_c1 = false; 1548 bool enter_special = false; 1549 JRT_BLOCK 1550 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1551 current->set_vm_result_2(callee_method()); 1552 1553 if (current->is_interp_only_mode()) { 1554 RegisterMap reg_map(current, 1555 RegisterMap::UpdateMap::skip, 1556 RegisterMap::ProcessFrames::include, 1557 RegisterMap::WalkContinuation::skip); 1558 frame stub_frame = current->last_frame(); 1559 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1560 frame caller = stub_frame.sender(®_map); 1561 enter_special = caller.cb() != nullptr && caller.cb()->is_compiled() 1562 && caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic(); 1563 } 1564 JRT_BLOCK_END 1565 1566 if (current->is_interp_only_mode() && enter_special) { 1567 // enterSpecial is compiled and calls this method to resolve the call to Continuation::enter 1568 // but in interp_only_mode we need to go to the interpreted entry 1569 // The c2i won't patch in this mode -- see fixup_callers_callsite 1570 // 1571 // This should probably be done in all cases, not just enterSpecial (see JDK-8218403), 1572 // but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no 1573 // interpreted version. 1574 return callee_method->get_c2i_entry(); 1575 } 1576 1577 // return compiled code entry point after potential safepoints 1578 address entry = caller_is_c1 ? 1579 callee_method->verified_inline_code_entry() : callee_method->verified_code_entry(); 1580 assert(entry != nullptr, "Jump to zero!"); 1581 return entry; 1582 JRT_END 1583 1584 1585 // resolve virtual call and update inline cache to monomorphic 1586 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1587 methodHandle callee_method; 1588 bool caller_is_c1 = false; 1589 JRT_BLOCK 1590 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1591 current->set_vm_result_2(callee_method()); 1592 JRT_BLOCK_END 1593 // return compiled code entry point after potential safepoints 1594 address entry = caller_is_c1 ? 1595 callee_method->verified_inline_code_entry() : callee_method->verified_inline_ro_code_entry(); 1596 assert(entry != nullptr, "Jump to zero!"); 1597 return entry; 1598 JRT_END 1599 1600 1601 // Resolve a virtual call that can be statically bound (e.g., always 1602 // monomorphic, so it has no inline cache). Patch code to resolved target. 1603 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1604 methodHandle callee_method; 1605 bool caller_is_c1 = false; 1606 JRT_BLOCK 1607 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1608 current->set_vm_result_2(callee_method()); 1609 JRT_BLOCK_END 1610 // return compiled code entry point after potential safepoints 1611 address entry = caller_is_c1 ? 1612 callee_method->verified_inline_code_entry() : callee_method->verified_code_entry(); 1613 assert(entry != nullptr, "Jump to zero!"); 1614 return entry; 1615 JRT_END 1616 1617 1618 1619 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1620 JavaThread* current = THREAD; 1621 ResourceMark rm(current); 1622 CallInfo call_info; 1623 Bytecodes::Code bc; 1624 1625 // receiver is null for static calls. An exception is thrown for null 1626 // receivers for non-static calls 1627 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1628 1629 methodHandle callee_method(current, call_info.selected_method()); 1630 1631 #ifndef PRODUCT 1632 Atomic::inc(&_ic_miss_ctr); 1633 1634 // Statistics & Tracing 1635 if (TraceCallFixup) { 1636 ResourceMark rm(current); 1637 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1638 callee_method->print_short_name(tty); 1639 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1640 } 1641 1642 if (ICMissHistogram) { 1643 MutexLocker m(VMStatistic_lock); 1644 RegisterMap reg_map(current, 1645 RegisterMap::UpdateMap::skip, 1646 RegisterMap::ProcessFrames::include, 1647 RegisterMap::WalkContinuation::skip); 1648 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1649 // produce statistics under the lock 1650 trace_ic_miss(f.pc()); 1651 } 1652 #endif 1653 1654 // install an event collector so that when a vtable stub is created the 1655 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1656 // event can't be posted when the stub is created as locks are held 1657 // - instead the event will be deferred until the event collector goes 1658 // out of scope. 1659 JvmtiDynamicCodeEventCollector event_collector; 1660 1661 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1662 RegisterMap reg_map(current, 1663 RegisterMap::UpdateMap::skip, 1664 RegisterMap::ProcessFrames::include, 1665 RegisterMap::WalkContinuation::skip); 1666 frame caller_frame = current->last_frame().sender(®_map); 1667 CodeBlob* cb = caller_frame.cb(); 1668 CompiledMethod* caller_nm = cb->as_compiled_method(); 1669 // Calls via mismatching methods are always non-scalarized 1670 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1671 caller_is_c1 = true; 1672 } 1673 1674 CompiledICLocker ml(caller_nm); 1675 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1676 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1677 1678 return callee_method; 1679 } 1680 1681 // 1682 // Resets a call-site in compiled code so it will get resolved again. 1683 // This routines handles both virtual call sites, optimized virtual call 1684 // sites, and static call sites. Typically used to change a call sites 1685 // destination from compiled to interpreted. 1686 // 1687 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1688 JavaThread* current = THREAD; 1689 ResourceMark rm(current); 1690 RegisterMap reg_map(current, 1691 RegisterMap::UpdateMap::skip, 1692 RegisterMap::ProcessFrames::include, 1693 RegisterMap::WalkContinuation::skip); 1694 frame stub_frame = current->last_frame(); 1695 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1696 frame caller = stub_frame.sender(®_map); 1697 if (caller.is_compiled_frame()) { 1698 caller_is_c1 = caller.cb()->is_compiled_by_c1(); 1699 } 1700 1701 // Do nothing if the frame isn't a live compiled frame. 1702 // nmethod could be deoptimized by the time we get here 1703 // so no update to the caller is needed. 1704 1705 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1706 (caller.is_native_frame() && ((CompiledMethod*)caller.cb())->method()->is_continuation_enter_intrinsic())) { 1707 1708 address pc = caller.pc(); 1709 1710 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1711 1712 // Default call_addr is the location of the "basic" call. 1713 // Determine the address of the call we a reresolving. With 1714 // Inline Caches we will always find a recognizable call. 1715 // With Inline Caches disabled we may or may not find a 1716 // recognizable call. We will always find a call for static 1717 // calls and for optimized virtual calls. For vanilla virtual 1718 // calls it depends on the state of the UseInlineCaches switch. 1719 // 1720 // With Inline Caches disabled we can get here for a virtual call 1721 // for two reasons: 1722 // 1 - calling an abstract method. The vtable for abstract methods 1723 // will run us thru handle_wrong_method and we will eventually 1724 // end up in the interpreter to throw the ame. 1725 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1726 // call and between the time we fetch the entry address and 1727 // we jump to it the target gets deoptimized. Similar to 1 1728 // we will wind up in the interprter (thru a c2i with c2). 1729 // 1730 CompiledICLocker ml(caller_nm); 1731 address call_addr = caller_nm->call_instruction_address(pc); 1732 1733 if (call_addr != nullptr) { 1734 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1735 // bytes back in the instruction stream so we must also check for reloc info. 1736 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1737 bool ret = iter.next(); // Get item 1738 if (ret) { 1739 is_static_call = false; 1740 is_optimized = false; 1741 switch (iter.type()) { 1742 case relocInfo::static_call_type: 1743 is_static_call = true; 1744 case relocInfo::opt_virtual_call_type: { 1745 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1746 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1747 cdc->set_to_clean(); 1748 break; 1749 } 1750 case relocInfo::virtual_call_type: { 1751 // compiled, dispatched call (which used to call an interpreted method) 1752 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1753 inline_cache->set_to_clean(); 1754 break; 1755 } 1756 default: 1757 break; 1758 } 1759 } 1760 } 1761 } 1762 1763 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1764 1765 #ifndef PRODUCT 1766 Atomic::inc(&_wrong_method_ctr); 1767 1768 if (TraceCallFixup) { 1769 ResourceMark rm(current); 1770 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1771 callee_method->print_short_name(tty); 1772 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1773 } 1774 #endif 1775 1776 return callee_method; 1777 } 1778 1779 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1780 // The faulting unsafe accesses should be changed to throw the error 1781 // synchronously instead. Meanwhile the faulting instruction will be 1782 // skipped over (effectively turning it into a no-op) and an 1783 // asynchronous exception will be raised which the thread will 1784 // handle at a later point. If the instruction is a load it will 1785 // return garbage. 1786 1787 // Request an async exception. 1788 thread->set_pending_unsafe_access_error(); 1789 1790 // Return address of next instruction to execute. 1791 return next_pc; 1792 } 1793 1794 #ifdef ASSERT 1795 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1796 const BasicType* sig_bt, 1797 const VMRegPair* regs) { 1798 ResourceMark rm; 1799 const int total_args_passed = method->size_of_parameters(); 1800 const VMRegPair* regs_with_member_name = regs; 1801 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1802 1803 const int member_arg_pos = total_args_passed - 1; 1804 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1805 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1806 1807 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1808 1809 for (int i = 0; i < member_arg_pos; i++) { 1810 VMReg a = regs_with_member_name[i].first(); 1811 VMReg b = regs_without_member_name[i].first(); 1812 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1813 } 1814 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1815 } 1816 #endif 1817 1818 // --------------------------------------------------------------------------- 1819 // We are calling the interpreter via a c2i. Normally this would mean that 1820 // we were called by a compiled method. However we could have lost a race 1821 // where we went int -> i2c -> c2i and so the caller could in fact be 1822 // interpreted. If the caller is compiled we attempt to patch the caller 1823 // so he no longer calls into the interpreter. 1824 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1825 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1826 1827 // It's possible that deoptimization can occur at a call site which hasn't 1828 // been resolved yet, in which case this function will be called from 1829 // an nmethod that has been patched for deopt and we can ignore the 1830 // request for a fixup. 1831 // Also it is possible that we lost a race in that from_compiled_entry 1832 // is now back to the i2c in that case we don't need to patch and if 1833 // we did we'd leap into space because the callsite needs to use 1834 // "to interpreter" stub in order to load up the Method*. Don't 1835 // ask me how I know this... 1836 1837 // Result from nmethod::is_unloading is not stable across safepoints. 1838 NoSafepointVerifier nsv; 1839 1840 CompiledMethod* callee = method->code(); 1841 if (callee == nullptr) { 1842 return; 1843 } 1844 1845 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 1846 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1847 1848 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1849 if (cb == nullptr || !cb->is_compiled() || !callee->is_in_use() || callee->is_unloading()) { 1850 return; 1851 } 1852 1853 // The check above makes sure this is a nmethod. 1854 CompiledMethod* caller = cb->as_compiled_method(); 1855 1856 // Get the return PC for the passed caller PC. 1857 address return_pc = caller_pc + frame::pc_return_offset; 1858 1859 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1860 return; 1861 } 1862 1863 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1864 CompiledICLocker ic_locker(caller); 1865 ResourceMark rm; 1866 1867 // If we got here through a static call or opt_virtual call, then we know where the 1868 // call address would be; let's peek at it 1869 address callsite_addr = (address)nativeCall_before(return_pc); 1870 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1871 if (!iter.next()) { 1872 // No reloc entry found; not a static or optimized virtual call 1873 return; 1874 } 1875 1876 relocInfo::relocType type = iter.reloc()->type(); 1877 if (type != relocInfo::static_call_type && 1878 type != relocInfo::opt_virtual_call_type) { 1879 return; 1880 } 1881 1882 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1883 callsite->set_to_clean(); 1884 JRT_END 1885 1886 1887 // same as JVM_Arraycopy, but called directly from compiled code 1888 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1889 oopDesc* dest, jint dest_pos, 1890 jint length, 1891 JavaThread* current)) { 1892 #ifndef PRODUCT 1893 _slow_array_copy_ctr++; 1894 #endif 1895 // Check if we have null pointers 1896 if (src == nullptr || dest == nullptr) { 1897 THROW(vmSymbols::java_lang_NullPointerException()); 1898 } 1899 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1900 // even though the copy_array API also performs dynamic checks to ensure 1901 // that src and dest are truly arrays (and are conformable). 1902 // The copy_array mechanism is awkward and could be removed, but 1903 // the compilers don't call this function except as a last resort, 1904 // so it probably doesn't matter. 1905 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1906 (arrayOopDesc*)dest, dest_pos, 1907 length, current); 1908 } 1909 JRT_END 1910 1911 // The caller of generate_class_cast_message() (or one of its callers) 1912 // must use a ResourceMark in order to correctly free the result. 1913 char* SharedRuntime::generate_class_cast_message( 1914 JavaThread* thread, Klass* caster_klass) { 1915 1916 // Get target class name from the checkcast instruction 1917 vframeStream vfst(thread, true); 1918 assert(!vfst.at_end(), "Java frame must exist"); 1919 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1920 constantPoolHandle cpool(thread, vfst.method()->constants()); 1921 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1922 Symbol* target_klass_name = nullptr; 1923 if (target_klass == nullptr) { 1924 // This klass should be resolved, but just in case, get the name in the klass slot. 1925 target_klass_name = cpool->klass_name_at(cc.index()); 1926 } 1927 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1928 } 1929 1930 1931 // The caller of generate_class_cast_message() (or one of its callers) 1932 // must use a ResourceMark in order to correctly free the result. 1933 char* SharedRuntime::generate_class_cast_message( 1934 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1935 const char* caster_name = caster_klass->external_name(); 1936 1937 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1938 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1939 target_klass->external_name(); 1940 1941 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1942 1943 const char* caster_klass_description = ""; 1944 const char* target_klass_description = ""; 1945 const char* klass_separator = ""; 1946 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1947 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1948 } else { 1949 caster_klass_description = caster_klass->class_in_module_of_loader(); 1950 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1951 klass_separator = (target_klass != nullptr) ? "; " : ""; 1952 } 1953 1954 // add 3 for parenthesis and preceding space 1955 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1956 1957 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1958 if (message == nullptr) { 1959 // Shouldn't happen, but don't cause even more problems if it does 1960 message = const_cast<char*>(caster_klass->external_name()); 1961 } else { 1962 jio_snprintf(message, 1963 msglen, 1964 "class %s cannot be cast to class %s (%s%s%s)", 1965 caster_name, 1966 target_name, 1967 caster_klass_description, 1968 klass_separator, 1969 target_klass_description 1970 ); 1971 } 1972 return message; 1973 } 1974 1975 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 1976 assert(klass->is_inline_klass(), "Must be a concrete value class"); 1977 const char* desc = "Cannot synchronize on an instance of value class "; 1978 const char* className = klass->external_name(); 1979 size_t msglen = strlen(desc) + strlen(className) + 1; 1980 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1981 if (nullptr == message) { 1982 // Out of memory: can't create detailed error message 1983 message = const_cast<char*>(klass->external_name()); 1984 } else { 1985 jio_snprintf(message, msglen, "%s%s", desc, className); 1986 } 1987 return message; 1988 } 1989 1990 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1991 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1992 JRT_END 1993 1994 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1995 if (!SafepointSynchronize::is_synchronizing()) { 1996 // Only try quick_enter() if we're not trying to reach a safepoint 1997 // so that the calling thread reaches the safepoint more quickly. 1998 if (ObjectSynchronizer::quick_enter(obj, current, lock)) { 1999 return; 2000 } 2001 } 2002 // NO_ASYNC required because an async exception on the state transition destructor 2003 // would leave you with the lock held and it would never be released. 2004 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2005 // and the model is that an exception implies the method failed. 2006 JRT_BLOCK_NO_ASYNC 2007 Handle h_obj(THREAD, obj); 2008 ObjectSynchronizer::enter(h_obj, lock, current); 2009 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2010 JRT_BLOCK_END 2011 } 2012 2013 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2014 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2015 SharedRuntime::monitor_enter_helper(obj, lock, current); 2016 JRT_END 2017 2018 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2019 assert(JavaThread::current() == current, "invariant"); 2020 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2021 ExceptionMark em(current); 2022 // The object could become unlocked through a JNI call, which we have no other checks for. 2023 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2024 if (obj->is_unlocked()) { 2025 if (CheckJNICalls) { 2026 fatal("Object has been unlocked by JNI"); 2027 } 2028 return; 2029 } 2030 ObjectSynchronizer::exit(obj, lock, current); 2031 } 2032 2033 // Handles the uncommon cases of monitor unlocking in compiled code 2034 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2035 assert(current == JavaThread::current(), "pre-condition"); 2036 SharedRuntime::monitor_exit_helper(obj, lock, current); 2037 JRT_END 2038 2039 #ifndef PRODUCT 2040 2041 void SharedRuntime::print_statistics() { 2042 ttyLocker ttyl; 2043 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2044 2045 SharedRuntime::print_ic_miss_histogram(); 2046 2047 // Dump the JRT_ENTRY counters 2048 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2049 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2050 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2051 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2052 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2053 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2054 2055 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2056 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2057 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2058 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2059 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2060 2061 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2062 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2063 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2064 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2065 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2066 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2067 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2068 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2069 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2070 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2071 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2072 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2073 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2074 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2075 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2076 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2077 2078 AdapterHandlerLibrary::print_statistics(); 2079 2080 if (xtty != nullptr) xtty->tail("statistics"); 2081 } 2082 2083 inline double percent(int64_t x, int64_t y) { 2084 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2085 } 2086 2087 class MethodArityHistogram { 2088 public: 2089 enum { MAX_ARITY = 256 }; 2090 private: 2091 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2092 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2093 static uint64_t _total_compiled_calls; 2094 static uint64_t _max_compiled_calls_per_method; 2095 static int _max_arity; // max. arity seen 2096 static int _max_size; // max. arg size seen 2097 2098 static void add_method_to_histogram(nmethod* nm) { 2099 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2100 if (method != nullptr) { 2101 ArgumentCount args(method->signature()); 2102 int arity = args.size() + (method->is_static() ? 0 : 1); 2103 int argsize = method->size_of_parameters(); 2104 arity = MIN2(arity, MAX_ARITY-1); 2105 argsize = MIN2(argsize, MAX_ARITY-1); 2106 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2107 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2108 _total_compiled_calls += count; 2109 _arity_histogram[arity] += count; 2110 _size_histogram[argsize] += count; 2111 _max_arity = MAX2(_max_arity, arity); 2112 _max_size = MAX2(_max_size, argsize); 2113 } 2114 } 2115 2116 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2117 const int N = MIN2(9, n); 2118 double sum = 0; 2119 double weighted_sum = 0; 2120 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2121 if (sum >= 1) { // prevent divide by zero or divide overflow 2122 double rest = sum; 2123 double percent = sum / 100; 2124 for (int i = 0; i <= N; i++) { 2125 rest -= (double)histo[i]; 2126 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2127 } 2128 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2129 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2130 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2131 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2132 } else { 2133 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2134 } 2135 } 2136 2137 void print_histogram() { 2138 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2139 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2140 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2141 print_histogram_helper(_max_size, _size_histogram, "size"); 2142 tty->cr(); 2143 } 2144 2145 public: 2146 MethodArityHistogram() { 2147 // Take the Compile_lock to protect against changes in the CodeBlob structures 2148 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2149 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2150 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2151 _max_arity = _max_size = 0; 2152 _total_compiled_calls = 0; 2153 _max_compiled_calls_per_method = 0; 2154 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2155 CodeCache::nmethods_do(add_method_to_histogram); 2156 print_histogram(); 2157 } 2158 }; 2159 2160 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2161 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2162 uint64_t MethodArityHistogram::_total_compiled_calls; 2163 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2164 int MethodArityHistogram::_max_arity; 2165 int MethodArityHistogram::_max_size; 2166 2167 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2168 tty->print_cr("Calls from compiled code:"); 2169 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2170 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2171 int64_t mono_i = _nof_interface_calls; 2172 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2173 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2174 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2175 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2176 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2177 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2178 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2179 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2180 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2181 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2182 tty->cr(); 2183 tty->print_cr("Note 1: counter updates are not MT-safe."); 2184 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2185 tty->print_cr(" %% in nested categories are relative to their category"); 2186 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2187 tty->cr(); 2188 2189 MethodArityHistogram h; 2190 } 2191 #endif 2192 2193 #ifndef PRODUCT 2194 static int _lookups; // number of calls to lookup 2195 static int _equals; // number of buckets checked with matching hash 2196 static int _hits; // number of successful lookups 2197 static int _compact; // number of equals calls with compact signature 2198 #endif 2199 2200 // A simple wrapper class around the calling convention information 2201 // that allows sharing of adapters for the same calling convention. 2202 class AdapterFingerPrint : public CHeapObj<mtCode> { 2203 private: 2204 enum { 2205 _basic_type_bits = 5, 2206 _basic_type_mask = right_n_bits(_basic_type_bits), 2207 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2208 _compact_int_count = 3 2209 }; 2210 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2211 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2212 2213 union { 2214 int _compact[_compact_int_count]; 2215 int* _fingerprint; 2216 } _value; 2217 int _length; // A negative length indicates the fingerprint is in the compact form, 2218 // Otherwise _value._fingerprint is the array. 2219 2220 // Remap BasicTypes that are handled equivalently by the adapters. 2221 // These are correct for the current system but someday it might be 2222 // necessary to make this mapping platform dependent. 2223 static BasicType adapter_encoding(BasicType in) { 2224 switch (in) { 2225 case T_BOOLEAN: 2226 case T_BYTE: 2227 case T_SHORT: 2228 case T_CHAR: 2229 // They are all promoted to T_INT in the calling convention 2230 return T_INT; 2231 2232 case T_OBJECT: 2233 case T_ARRAY: 2234 // In other words, we assume that any register good enough for 2235 // an int or long is good enough for a managed pointer. 2236 #ifdef _LP64 2237 return T_LONG; 2238 #else 2239 return T_INT; 2240 #endif 2241 2242 case T_INT: 2243 case T_LONG: 2244 case T_FLOAT: 2245 case T_DOUBLE: 2246 case T_VOID: 2247 return in; 2248 2249 default: 2250 ShouldNotReachHere(); 2251 return T_CONFLICT; 2252 } 2253 } 2254 2255 public: 2256 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2257 // The fingerprint is based on the BasicType signature encoded 2258 // into an array of ints with eight entries per int. 2259 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2260 int* ptr; 2261 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2262 if (len <= _compact_int_count) { 2263 assert(_compact_int_count == 3, "else change next line"); 2264 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2265 // Storing the signature encoded as signed chars hits about 98% 2266 // of the time. 2267 _length = -len; 2268 ptr = _value._compact; 2269 } else { 2270 _length = len; 2271 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2272 ptr = _value._fingerprint; 2273 } 2274 2275 // Now pack the BasicTypes with 8 per int 2276 int sig_index = 0; 2277 BasicType prev_bt = T_ILLEGAL; 2278 int vt_count = 0; 2279 for (int index = 0; index < len; index++) { 2280 int value = 0; 2281 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2282 BasicType bt = T_ILLEGAL; 2283 if (sig_index < total_args_passed) { 2284 bt = sig->at(sig_index++)._bt; 2285 if (bt == T_METADATA) { 2286 // Found start of inline type in signature 2287 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2288 if (sig_index == 1 && has_ro_adapter) { 2289 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2290 // with other adapters that have the same inline type as first argument and no receiver. 2291 bt = T_VOID; 2292 } 2293 vt_count++; 2294 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2295 // Found end of inline type in signature 2296 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2297 vt_count--; 2298 assert(vt_count >= 0, "invalid vt_count"); 2299 } else if (vt_count == 0) { 2300 // Widen fields that are not part of a scalarized inline type argument 2301 bt = adapter_encoding(bt); 2302 } 2303 prev_bt = bt; 2304 } 2305 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2306 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2307 value = (value << _basic_type_bits) | bt_val; 2308 } 2309 ptr[index] = value; 2310 } 2311 assert(vt_count == 0, "invalid vt_count"); 2312 } 2313 2314 ~AdapterFingerPrint() { 2315 if (_length > 0) { 2316 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2317 } 2318 } 2319 2320 int value(int index) { 2321 if (_length < 0) { 2322 return _value._compact[index]; 2323 } 2324 return _value._fingerprint[index]; 2325 } 2326 int length() { 2327 if (_length < 0) return -_length; 2328 return _length; 2329 } 2330 2331 bool is_compact() { 2332 return _length <= 0; 2333 } 2334 2335 unsigned int compute_hash() { 2336 int hash = 0; 2337 for (int i = 0; i < length(); i++) { 2338 int v = value(i); 2339 hash = (hash << 8) ^ v ^ (hash >> 5); 2340 } 2341 return (unsigned int)hash; 2342 } 2343 2344 const char* as_string() { 2345 stringStream st; 2346 st.print("0x"); 2347 for (int i = 0; i < length(); i++) { 2348 st.print("%x", value(i)); 2349 } 2350 return st.as_string(); 2351 } 2352 2353 #ifndef PRODUCT 2354 // Reconstitutes the basic type arguments from the fingerprint, 2355 // producing strings like LIJDF 2356 const char* as_basic_args_string() { 2357 stringStream st; 2358 bool long_prev = false; 2359 for (int i = 0; i < length(); i++) { 2360 unsigned val = (unsigned)value(i); 2361 // args are packed so that first/lower arguments are in the highest 2362 // bits of each int value, so iterate from highest to the lowest 2363 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2364 unsigned v = (val >> j) & _basic_type_mask; 2365 if (v == 0) { 2366 assert(i == length() - 1, "Only expect zeroes in the last word"); 2367 continue; 2368 } 2369 if (long_prev) { 2370 long_prev = false; 2371 if (v == T_VOID) { 2372 st.print("J"); 2373 } else { 2374 st.print("L"); 2375 } 2376 } else if (v == T_LONG) { 2377 long_prev = true; 2378 } else if (v != T_VOID){ 2379 st.print("%c", type2char((BasicType)v)); 2380 } 2381 } 2382 } 2383 if (long_prev) { 2384 st.print("L"); 2385 } 2386 return st.as_string(); 2387 } 2388 #endif // !product 2389 2390 bool equals(AdapterFingerPrint* other) { 2391 if (other->_length != _length) { 2392 return false; 2393 } 2394 if (_length < 0) { 2395 assert(_compact_int_count == 3, "else change next line"); 2396 return _value._compact[0] == other->_value._compact[0] && 2397 _value._compact[1] == other->_value._compact[1] && 2398 _value._compact[2] == other->_value._compact[2]; 2399 } else { 2400 for (int i = 0; i < _length; i++) { 2401 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2402 return false; 2403 } 2404 } 2405 } 2406 return true; 2407 } 2408 2409 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2410 NOT_PRODUCT(_equals++); 2411 return fp1->equals(fp2); 2412 } 2413 2414 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2415 return fp->compute_hash(); 2416 } 2417 }; 2418 2419 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2420 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2421 AnyObj::C_HEAP, mtCode, 2422 AdapterFingerPrint::compute_hash, 2423 AdapterFingerPrint::equals>; 2424 static AdapterHandlerTable* _adapter_handler_table; 2425 2426 // Find a entry with the same fingerprint if it exists 2427 static AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2428 NOT_PRODUCT(_lookups++); 2429 assert_lock_strong(AdapterHandlerLibrary_lock); 2430 AdapterFingerPrint fp(sig, has_ro_adapter); 2431 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2432 if (entry != nullptr) { 2433 #ifndef PRODUCT 2434 if (fp.is_compact()) _compact++; 2435 _hits++; 2436 #endif 2437 return *entry; 2438 } 2439 return nullptr; 2440 } 2441 2442 #ifndef PRODUCT 2443 static void print_table_statistics() { 2444 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2445 return sizeof(*key) + sizeof(*a); 2446 }; 2447 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2448 ts.print(tty, "AdapterHandlerTable"); 2449 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2450 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2451 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2452 _lookups, _equals, _hits, _compact); 2453 } 2454 #endif 2455 2456 // --------------------------------------------------------------------------- 2457 // Implementation of AdapterHandlerLibrary 2458 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2459 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2460 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2461 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2462 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2463 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2464 const int AdapterHandlerLibrary_size = 48*K; 2465 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2466 2467 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2468 return _buffer; 2469 } 2470 2471 static void post_adapter_creation(const AdapterBlob* new_adapter, 2472 const AdapterHandlerEntry* entry) { 2473 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2474 char blob_id[256]; 2475 jio_snprintf(blob_id, 2476 sizeof(blob_id), 2477 "%s(%s)", 2478 new_adapter->name(), 2479 entry->fingerprint()->as_string()); 2480 if (Forte::is_enabled()) { 2481 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2482 } 2483 2484 if (JvmtiExport::should_post_dynamic_code_generated()) { 2485 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2486 } 2487 } 2488 } 2489 2490 void AdapterHandlerLibrary::initialize() { 2491 ResourceMark rm; 2492 AdapterBlob* no_arg_blob = nullptr; 2493 AdapterBlob* int_arg_blob = nullptr; 2494 AdapterBlob* obj_arg_blob = nullptr; 2495 AdapterBlob* obj_int_arg_blob = nullptr; 2496 AdapterBlob* obj_obj_arg_blob = nullptr; 2497 { 2498 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2499 MutexLocker mu(AdapterHandlerLibrary_lock); 2500 2501 // Create a special handler for abstract methods. Abstract methods 2502 // are never compiled so an i2c entry is somewhat meaningless, but 2503 // throw AbstractMethodError just in case. 2504 // Pass wrong_method_abstract for the c2i transitions to return 2505 // AbstractMethodError for invalid invocations. 2506 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2507 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2508 StubRoutines::throw_AbstractMethodError_entry(), 2509 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2510 wrong_method_abstract, wrong_method_abstract); 2511 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2512 2513 CompiledEntrySignature no_args; 2514 no_args.compute_calling_conventions(); 2515 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2516 2517 CompiledEntrySignature obj_args; 2518 SigEntry::add_entry(obj_args.sig(), T_OBJECT, nullptr); 2519 obj_args.compute_calling_conventions(); 2520 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2521 2522 CompiledEntrySignature int_args; 2523 SigEntry::add_entry(int_args.sig(), T_INT, nullptr); 2524 int_args.compute_calling_conventions(); 2525 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2526 2527 CompiledEntrySignature obj_int_args; 2528 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT, nullptr); 2529 SigEntry::add_entry(obj_int_args.sig(), T_INT, nullptr); 2530 obj_int_args.compute_calling_conventions(); 2531 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2532 2533 CompiledEntrySignature obj_obj_args; 2534 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2535 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2536 obj_obj_args.compute_calling_conventions(); 2537 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2538 2539 assert(no_arg_blob != nullptr && 2540 obj_arg_blob != nullptr && 2541 int_arg_blob != nullptr && 2542 obj_int_arg_blob != nullptr && 2543 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2544 } 2545 return; 2546 2547 // Outside of the lock 2548 post_adapter_creation(no_arg_blob, _no_arg_handler); 2549 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2550 post_adapter_creation(int_arg_blob, _int_arg_handler); 2551 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2552 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2553 } 2554 2555 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2556 address i2c_entry, 2557 address c2i_entry, 2558 address c2i_inline_entry, 2559 address c2i_inline_ro_entry, 2560 address c2i_unverified_entry, 2561 address c2i_unverified_inline_entry, 2562 address c2i_no_clinit_check_entry) { 2563 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 2564 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 2565 } 2566 2567 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2568 if (method->is_abstract()) { 2569 return nullptr; 2570 } 2571 int total_args_passed = method->size_of_parameters(); // All args on stack 2572 if (total_args_passed == 0) { 2573 return _no_arg_handler; 2574 } else if (total_args_passed == 1) { 2575 if (!method->is_static()) { 2576 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2577 return nullptr; 2578 } 2579 return _obj_arg_handler; 2580 } 2581 switch (method->signature()->char_at(1)) { 2582 case JVM_SIGNATURE_CLASS: { 2583 if (InlineTypePassFieldsAsArgs) { 2584 SignatureStream ss(method->signature()); 2585 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2586 if (vk != nullptr) { 2587 return nullptr; 2588 } 2589 } 2590 return _obj_arg_handler; 2591 } 2592 case JVM_SIGNATURE_ARRAY: 2593 return _obj_arg_handler; 2594 case JVM_SIGNATURE_INT: 2595 case JVM_SIGNATURE_BOOLEAN: 2596 case JVM_SIGNATURE_CHAR: 2597 case JVM_SIGNATURE_BYTE: 2598 case JVM_SIGNATURE_SHORT: 2599 return _int_arg_handler; 2600 } 2601 } else if (total_args_passed == 2 && 2602 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2603 switch (method->signature()->char_at(1)) { 2604 case JVM_SIGNATURE_CLASS: { 2605 if (InlineTypePassFieldsAsArgs) { 2606 SignatureStream ss(method->signature()); 2607 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2608 if (vk != nullptr) { 2609 return nullptr; 2610 } 2611 } 2612 return _obj_obj_arg_handler; 2613 } 2614 case JVM_SIGNATURE_ARRAY: 2615 return _obj_obj_arg_handler; 2616 case JVM_SIGNATURE_INT: 2617 case JVM_SIGNATURE_BOOLEAN: 2618 case JVM_SIGNATURE_CHAR: 2619 case JVM_SIGNATURE_BYTE: 2620 case JVM_SIGNATURE_SHORT: 2621 return _obj_int_arg_handler; 2622 } 2623 } 2624 return nullptr; 2625 } 2626 2627 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2628 _method(method), _num_inline_args(0), _has_inline_recv(false), 2629 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2630 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2631 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2632 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2633 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2634 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2635 } 2636 2637 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2638 // or the same entry for VEP and VIEP(RO). 2639 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2640 if (!has_scalarized_args()) { 2641 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2642 return CodeOffsets::Verified_Entry; 2643 } 2644 if (_method->is_static()) { 2645 // Static methods don't need VIEP(RO) 2646 return CodeOffsets::Verified_Entry; 2647 } 2648 2649 if (has_inline_recv()) { 2650 if (num_inline_args() == 1) { 2651 // Share same entry for VIEP and VIEP(RO). 2652 // This is quite common: we have an instance method in an InlineKlass that has 2653 // no inline type args other than <this>. 2654 return CodeOffsets::Verified_Inline_Entry; 2655 } else { 2656 assert(num_inline_args() > 1, "must be"); 2657 // No sharing: 2658 // VIEP(RO) -- <this> is passed as object 2659 // VEP -- <this> is passed as fields 2660 return CodeOffsets::Verified_Inline_Entry_RO; 2661 } 2662 } 2663 2664 // Either a static method, or <this> is not an inline type 2665 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2666 // No sharing: 2667 // Some arguments are passed on the stack, and we have inserted reserved entries 2668 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2669 return CodeOffsets::Verified_Inline_Entry_RO; 2670 } else { 2671 // Share same entry for VEP and VIEP(RO). 2672 return CodeOffsets::Verified_Entry; 2673 } 2674 } 2675 2676 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2677 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2678 if (_supers != nullptr) { 2679 return _supers; 2680 } 2681 _supers = new GrowableArray<Method*>(); 2682 // Skip private, static, and <init> methods 2683 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2684 return _supers; 2685 } 2686 Symbol* name = _method->name(); 2687 Symbol* signature = _method->signature(); 2688 const Klass* holder = _method->method_holder()->super(); 2689 Symbol* holder_name = holder->name(); 2690 ThreadInVMfromUnknown tiv; 2691 JavaThread* current = JavaThread::current(); 2692 HandleMark hm(current); 2693 Handle loader(current, _method->method_holder()->class_loader()); 2694 2695 // Walk up the class hierarchy and search for super methods 2696 while (holder != nullptr) { 2697 Method* super_method = holder->lookup_method(name, signature); 2698 if (super_method == nullptr) { 2699 break; 2700 } 2701 if (!super_method->is_static() && !super_method->is_private() && 2702 (!super_method->is_package_private() || 2703 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2704 _supers->push(super_method); 2705 } 2706 holder = super_method->method_holder()->super(); 2707 } 2708 // Search interfaces for super methods 2709 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2710 for (int i = 0; i < interfaces->length(); ++i) { 2711 Method* m = interfaces->at(i)->lookup_method(name, signature); 2712 if (m != nullptr && !m->is_static() && m->is_public()) { 2713 _supers->push(m); 2714 } 2715 } 2716 return _supers; 2717 } 2718 2719 // Iterate over arguments and compute scalarized and non-scalarized signatures 2720 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2721 bool has_scalarized = false; 2722 if (_method != nullptr) { 2723 InstanceKlass* holder = _method->method_holder(); 2724 int arg_num = 0; 2725 if (!_method->is_static()) { 2726 // We shouldn't scalarize 'this' in a value class constructor 2727 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2728 (init || _method->is_scalarized_arg(arg_num))) { 2729 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2730 has_scalarized = true; 2731 _has_inline_recv = true; 2732 _num_inline_args++; 2733 } else { 2734 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2735 } 2736 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2737 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2738 arg_num++; 2739 } 2740 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2741 BasicType bt = ss.type(); 2742 if (bt == T_OBJECT) { 2743 InlineKlass* vk = ss.as_inline_klass(holder); 2744 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2745 // Check for a calling convention mismatch with super method(s) 2746 bool scalar_super = false; 2747 bool non_scalar_super = false; 2748 GrowableArray<Method*>* supers = get_supers(); 2749 for (int i = 0; i < supers->length(); ++i) { 2750 Method* super_method = supers->at(i); 2751 if (super_method->is_scalarized_arg(arg_num)) { 2752 scalar_super = true; 2753 } else { 2754 non_scalar_super = true; 2755 } 2756 } 2757 #ifdef ASSERT 2758 // Randomly enable below code paths for stress testing 2759 bool stress = init && StressCallingConvention; 2760 if (stress && (os::random() & 1) == 1) { 2761 non_scalar_super = true; 2762 if ((os::random() & 1) == 1) { 2763 scalar_super = true; 2764 } 2765 } 2766 #endif 2767 if (non_scalar_super) { 2768 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2769 if (scalar_super) { 2770 // Found non-scalar *and* scalar super methods. We can't handle both. 2771 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2772 for (int i = 0; i < supers->length(); ++i) { 2773 Method* super_method = supers->at(i); 2774 if (super_method->is_scalarized_arg(arg_num) debug_only(|| (stress && (os::random() & 1) == 1))) { 2775 super_method->set_mismatch(); 2776 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2777 JavaThread* thread = JavaThread::current(); 2778 HandleMark hm(thread); 2779 methodHandle mh(thread, super_method); 2780 DeoptimizationScope deopt_scope; 2781 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2782 deopt_scope.deoptimize_marked(); 2783 } 2784 } 2785 } 2786 // Fall back to non-scalarized calling convention 2787 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2788 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2789 } else { 2790 _num_inline_args++; 2791 has_scalarized = true; 2792 int last = _sig_cc->length(); 2793 int last_ro = _sig_cc_ro->length(); 2794 _sig_cc->appendAll(vk->extended_sig()); 2795 _sig_cc_ro->appendAll(vk->extended_sig()); 2796 if (bt == T_OBJECT) { 2797 // Nullable inline type argument, insert InlineTypeNode::IsInit field right after T_METADATA delimiter 2798 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr)); 2799 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr)); 2800 } 2801 } 2802 } else { 2803 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2804 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2805 } 2806 bt = T_OBJECT; 2807 } else { 2808 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2809 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2810 } 2811 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2812 if (bt != T_VOID) { 2813 arg_num++; 2814 } 2815 } 2816 } 2817 2818 // Compute the non-scalarized calling convention 2819 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2820 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2821 2822 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2823 if (has_scalarized && !_method->is_native()) { 2824 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2825 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2826 2827 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2828 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2829 2830 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2831 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2832 2833 // Upper bound on stack arguments to avoid hitting the argument limit and 2834 // bailing out of compilation ("unsupported incoming calling sequence"). 2835 // TODO we need a reasonable limit (flag?) here 2836 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2837 return; // Success 2838 } 2839 } 2840 2841 // No scalarized args 2842 _sig_cc = _sig; 2843 _regs_cc = _regs; 2844 _args_on_stack_cc = _args_on_stack; 2845 2846 _sig_cc_ro = _sig; 2847 _regs_cc_ro = _regs; 2848 _args_on_stack_cc_ro = _args_on_stack; 2849 } 2850 2851 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2852 // Use customized signature handler. Need to lock around updates to 2853 // the _adapter_handler_table (it is not safe for concurrent readers 2854 // and a single writer: this could be fixed if it becomes a 2855 // problem). 2856 2857 // Fast-path for trivial adapters 2858 AdapterHandlerEntry* entry = get_simple_adapter(method); 2859 if (entry != nullptr) { 2860 return entry; 2861 } 2862 2863 ResourceMark rm; 2864 AdapterBlob* new_adapter = nullptr; 2865 2866 CompiledEntrySignature ces(method()); 2867 ces.compute_calling_conventions(); 2868 if (ces.has_scalarized_args()) { 2869 if (!method->has_scalarized_args()) { 2870 method->set_has_scalarized_args(); 2871 } 2872 if (ces.c1_needs_stack_repair()) { 2873 method->set_c1_needs_stack_repair(); 2874 } 2875 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 2876 method->set_c2_needs_stack_repair(); 2877 } 2878 } else if (method->is_abstract()) { 2879 return _abstract_method_handler; 2880 } 2881 2882 { 2883 MutexLocker mu(AdapterHandlerLibrary_lock); 2884 2885 if (ces.has_scalarized_args() && method->is_abstract()) { 2886 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 2887 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2888 entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2889 StubRoutines::throw_AbstractMethodError_entry(), 2890 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2891 wrong_method_abstract, wrong_method_abstract); 2892 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 2893 heap_sig->appendAll(ces.sig_cc_ro()); 2894 entry->set_sig_cc(heap_sig); 2895 return entry; 2896 } 2897 2898 // Lookup method signature's fingerprint 2899 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 2900 2901 if (entry != nullptr) { 2902 #ifdef ASSERT 2903 if (VerifyAdapterSharing) { 2904 AdapterBlob* comparison_blob = nullptr; 2905 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false); 2906 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2907 assert(comparison_entry->compare_code(entry), "code must match"); 2908 // Release the one just created and return the original 2909 delete comparison_entry; 2910 } 2911 #endif 2912 return entry; 2913 } 2914 2915 entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true); 2916 } 2917 2918 // Outside of the lock 2919 if (new_adapter != nullptr) { 2920 post_adapter_creation(new_adapter, entry); 2921 } 2922 return entry; 2923 } 2924 2925 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2926 CompiledEntrySignature& ces, 2927 bool allocate_code_blob) { 2928 2929 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2930 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2931 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2932 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2933 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2934 2935 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2936 CodeBuffer buffer(buf); 2937 short buffer_locs[20]; 2938 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2939 sizeof(buffer_locs)/sizeof(relocInfo)); 2940 2941 // Make a C heap allocated version of the fingerprint to store in the adapter 2942 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(ces.sig_cc(), ces.has_inline_recv()); 2943 MacroAssembler _masm(&buffer); 2944 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2945 ces.args_on_stack(), 2946 ces.sig(), 2947 ces.regs(), 2948 ces.sig_cc(), 2949 ces.regs_cc(), 2950 ces.sig_cc_ro(), 2951 ces.regs_cc_ro(), 2952 fingerprint, 2953 new_adapter, 2954 allocate_code_blob); 2955 2956 if (ces.has_scalarized_args()) { 2957 // Save a C heap allocated version of the scalarized signature and store it in the adapter 2958 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 2959 heap_sig->appendAll(ces.sig_cc()); 2960 entry->set_sig_cc(heap_sig); 2961 } 2962 2963 #ifdef ASSERT 2964 if (VerifyAdapterSharing) { 2965 entry->save_code(buf->code_begin(), buffer.insts_size()); 2966 if (!allocate_code_blob) { 2967 return entry; 2968 } 2969 } 2970 #endif 2971 2972 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2973 if (new_adapter == nullptr) { 2974 // CodeCache is full, disable compilation 2975 // Ought to log this but compile log is only per compile thread 2976 // and we're some non descript Java thread. 2977 return nullptr; 2978 } 2979 entry->relocate(new_adapter->content_begin()); 2980 #ifndef PRODUCT 2981 // debugging support 2982 if (PrintAdapterHandlers || PrintStubCode) { 2983 ttyLocker ttyl; 2984 entry->print_adapter_on(tty); 2985 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2986 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2987 fingerprint->as_string(), insts_size); 2988 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2989 if (Verbose || PrintStubCode) { 2990 address first_pc = entry->base_address(); 2991 if (first_pc != nullptr) { 2992 Disassembler::decode(first_pc, first_pc + insts_size, tty 2993 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2994 tty->cr(); 2995 } 2996 } 2997 } 2998 #endif 2999 3000 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 3001 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 3002 if (contains_all_checks || !VerifyAdapterCalls) { 3003 assert_lock_strong(AdapterHandlerLibrary_lock); 3004 _adapter_handler_table->put(fingerprint, entry); 3005 } 3006 return entry; 3007 } 3008 3009 address AdapterHandlerEntry::base_address() { 3010 address base = _i2c_entry; 3011 if (base == nullptr) base = _c2i_entry; 3012 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3013 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3014 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3015 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3016 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3017 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3018 return base; 3019 } 3020 3021 void AdapterHandlerEntry::relocate(address new_base) { 3022 address old_base = base_address(); 3023 assert(old_base != nullptr, ""); 3024 ptrdiff_t delta = new_base - old_base; 3025 if (_i2c_entry != nullptr) 3026 _i2c_entry += delta; 3027 if (_c2i_entry != nullptr) 3028 _c2i_entry += delta; 3029 if (_c2i_inline_entry != nullptr) 3030 _c2i_inline_entry += delta; 3031 if (_c2i_inline_ro_entry != nullptr) 3032 _c2i_inline_ro_entry += delta; 3033 if (_c2i_unverified_entry != nullptr) 3034 _c2i_unverified_entry += delta; 3035 if (_c2i_unverified_inline_entry != nullptr) 3036 _c2i_unverified_inline_entry += delta; 3037 if (_c2i_no_clinit_check_entry != nullptr) 3038 _c2i_no_clinit_check_entry += delta; 3039 assert(base_address() == new_base, ""); 3040 } 3041 3042 3043 AdapterHandlerEntry::~AdapterHandlerEntry() { 3044 delete _fingerprint; 3045 if (_sig_cc != nullptr) { 3046 delete _sig_cc; 3047 } 3048 #ifdef ASSERT 3049 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3050 #endif 3051 } 3052 3053 3054 #ifdef ASSERT 3055 // Capture the code before relocation so that it can be compared 3056 // against other versions. If the code is captured after relocation 3057 // then relative instructions won't be equivalent. 3058 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3059 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3060 _saved_code_length = length; 3061 memcpy(_saved_code, buffer, length); 3062 } 3063 3064 3065 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3066 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3067 3068 if (other->_saved_code_length != _saved_code_length) { 3069 return false; 3070 } 3071 3072 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3073 } 3074 #endif 3075 3076 3077 /** 3078 * Create a native wrapper for this native method. The wrapper converts the 3079 * Java-compiled calling convention to the native convention, handles 3080 * arguments, and transitions to native. On return from the native we transition 3081 * back to java blocking if a safepoint is in progress. 3082 */ 3083 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3084 ResourceMark rm; 3085 nmethod* nm = nullptr; 3086 3087 // Check if memory should be freed before allocation 3088 CodeCache::gc_on_allocation(); 3089 3090 assert(method->is_native(), "must be native"); 3091 assert(method->is_special_native_intrinsic() || 3092 method->has_native_function(), "must have something valid to call!"); 3093 3094 { 3095 // Perform the work while holding the lock, but perform any printing outside the lock 3096 MutexLocker mu(AdapterHandlerLibrary_lock); 3097 // See if somebody beat us to it 3098 if (method->code() != nullptr) { 3099 return; 3100 } 3101 3102 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3103 assert(compile_id > 0, "Must generate native wrapper"); 3104 3105 3106 ResourceMark rm; 3107 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3108 if (buf != nullptr) { 3109 CodeBuffer buffer(buf); 3110 3111 if (method->is_continuation_enter_intrinsic()) { 3112 buffer.initialize_stubs_size(192); 3113 } 3114 3115 struct { double data[20]; } locs_buf; 3116 struct { double data[20]; } stubs_locs_buf; 3117 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3118 #if defined(AARCH64) || defined(PPC64) 3119 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3120 // in the constant pool to ensure ordering between the barrier and oops 3121 // accesses. For native_wrappers we need a constant. 3122 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3123 // static java call that is resolved in the runtime. 3124 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3125 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3126 } 3127 #endif 3128 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3129 MacroAssembler _masm(&buffer); 3130 3131 // Fill in the signature array, for the calling-convention call. 3132 const int total_args_passed = method->size_of_parameters(); 3133 3134 BasicType stack_sig_bt[16]; 3135 VMRegPair stack_regs[16]; 3136 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3137 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3138 3139 int i = 0; 3140 if (!method->is_static()) { // Pass in receiver first 3141 sig_bt[i++] = T_OBJECT; 3142 } 3143 SignatureStream ss(method->signature()); 3144 for (; !ss.at_return_type(); ss.next()) { 3145 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3146 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3147 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3148 } 3149 } 3150 assert(i == total_args_passed, ""); 3151 BasicType ret_type = ss.type(); 3152 3153 // Now get the compiled-Java arguments layout. 3154 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3155 3156 // Generate the compiled-to-native wrapper code 3157 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3158 3159 if (nm != nullptr) { 3160 { 3161 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 3162 if (nm->make_in_use()) { 3163 method->set_code(method, nm); 3164 } 3165 } 3166 3167 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3168 if (directive->PrintAssemblyOption) { 3169 nm->print_code(); 3170 } 3171 DirectivesStack::release(directive); 3172 } 3173 } 3174 } // Unlock AdapterHandlerLibrary_lock 3175 3176 3177 // Install the generated code. 3178 if (nm != nullptr) { 3179 const char *msg = method->is_static() ? "(static)" : ""; 3180 CompileTask::print_ul(nm, msg); 3181 if (PrintCompilation) { 3182 ttyLocker ttyl; 3183 CompileTask::print(tty, nm, msg); 3184 } 3185 nm->post_compiled_method_load_event(); 3186 } 3187 } 3188 3189 // ------------------------------------------------------------------------- 3190 // Java-Java calling convention 3191 // (what you use when Java calls Java) 3192 3193 //------------------------------name_for_receiver---------------------------------- 3194 // For a given signature, return the VMReg for parameter 0. 3195 VMReg SharedRuntime::name_for_receiver() { 3196 VMRegPair regs; 3197 BasicType sig_bt = T_OBJECT; 3198 (void) java_calling_convention(&sig_bt, ®s, 1); 3199 // Return argument 0 register. In the LP64 build pointers 3200 // take 2 registers, but the VM wants only the 'main' name. 3201 return regs.first(); 3202 } 3203 3204 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3205 // This method is returning a data structure allocating as a 3206 // ResourceObject, so do not put any ResourceMarks in here. 3207 3208 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3209 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3210 int cnt = 0; 3211 if (has_receiver) { 3212 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3213 } 3214 3215 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3216 BasicType type = ss.type(); 3217 sig_bt[cnt++] = type; 3218 if (is_double_word_type(type)) 3219 sig_bt[cnt++] = T_VOID; 3220 } 3221 3222 if (has_appendix) { 3223 sig_bt[cnt++] = T_OBJECT; 3224 } 3225 3226 assert(cnt < 256, "grow table size"); 3227 3228 int comp_args_on_stack; 3229 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3230 3231 // the calling convention doesn't count out_preserve_stack_slots so 3232 // we must add that in to get "true" stack offsets. 3233 3234 if (comp_args_on_stack) { 3235 for (int i = 0; i < cnt; i++) { 3236 VMReg reg1 = regs[i].first(); 3237 if (reg1->is_stack()) { 3238 // Yuck 3239 reg1 = reg1->bias(out_preserve_stack_slots()); 3240 } 3241 VMReg reg2 = regs[i].second(); 3242 if (reg2->is_stack()) { 3243 // Yuck 3244 reg2 = reg2->bias(out_preserve_stack_slots()); 3245 } 3246 regs[i].set_pair(reg2, reg1); 3247 } 3248 } 3249 3250 // results 3251 *arg_size = cnt; 3252 return regs; 3253 } 3254 3255 // OSR Migration Code 3256 // 3257 // This code is used convert interpreter frames into compiled frames. It is 3258 // called from very start of a compiled OSR nmethod. A temp array is 3259 // allocated to hold the interesting bits of the interpreter frame. All 3260 // active locks are inflated to allow them to move. The displaced headers and 3261 // active interpreter locals are copied into the temp buffer. Then we return 3262 // back to the compiled code. The compiled code then pops the current 3263 // interpreter frame off the stack and pushes a new compiled frame. Then it 3264 // copies the interpreter locals and displaced headers where it wants. 3265 // Finally it calls back to free the temp buffer. 3266 // 3267 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3268 3269 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3270 assert(current == JavaThread::current(), "pre-condition"); 3271 3272 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3273 // frame. The stack watermark code below ensures that the interpreted frame is processed 3274 // before it gets unwound. This is helpful as the size of the compiled frame could be 3275 // larger than the interpreted frame, which could result in the new frame not being 3276 // processed correctly. 3277 StackWatermarkSet::before_unwind(current); 3278 3279 // 3280 // This code is dependent on the memory layout of the interpreter local 3281 // array and the monitors. On all of our platforms the layout is identical 3282 // so this code is shared. If some platform lays the their arrays out 3283 // differently then this code could move to platform specific code or 3284 // the code here could be modified to copy items one at a time using 3285 // frame accessor methods and be platform independent. 3286 3287 frame fr = current->last_frame(); 3288 assert(fr.is_interpreted_frame(), ""); 3289 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3290 3291 // Figure out how many monitors are active. 3292 int active_monitor_count = 0; 3293 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3294 kptr < fr.interpreter_frame_monitor_begin(); 3295 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3296 if (kptr->obj() != nullptr) active_monitor_count++; 3297 } 3298 3299 // QQQ we could place number of active monitors in the array so that compiled code 3300 // could double check it. 3301 3302 Method* moop = fr.interpreter_frame_method(); 3303 int max_locals = moop->max_locals(); 3304 // Allocate temp buffer, 1 word per local & 2 per active monitor 3305 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3306 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3307 3308 // Copy the locals. Order is preserved so that loading of longs works. 3309 // Since there's no GC I can copy the oops blindly. 3310 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3311 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3312 (HeapWord*)&buf[0], 3313 max_locals); 3314 3315 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3316 int i = max_locals; 3317 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3318 kptr2 < fr.interpreter_frame_monitor_begin(); 3319 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3320 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3321 BasicLock *lock = kptr2->lock(); 3322 if (LockingMode == LM_LEGACY) { 3323 // Inflate so the object's header no longer refers to the BasicLock. 3324 if (lock->displaced_header().is_unlocked()) { 3325 // The object is locked and the resulting ObjectMonitor* will also be 3326 // locked so it can't be async deflated until ownership is dropped. 3327 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3328 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3329 } 3330 // Now the displaced header is free to move because the 3331 // object's header no longer refers to it. 3332 buf[i] = (intptr_t)lock->displaced_header().value(); 3333 } 3334 #ifdef ASSERT 3335 else { 3336 buf[i] = badDispHeaderOSR; 3337 } 3338 #endif 3339 i++; 3340 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3341 } 3342 } 3343 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3344 3345 RegisterMap map(current, 3346 RegisterMap::UpdateMap::skip, 3347 RegisterMap::ProcessFrames::include, 3348 RegisterMap::WalkContinuation::skip); 3349 frame sender = fr.sender(&map); 3350 if (sender.is_interpreted_frame()) { 3351 current->push_cont_fastpath(sender.sp()); 3352 } 3353 3354 return buf; 3355 JRT_END 3356 3357 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3358 FREE_C_HEAP_ARRAY(intptr_t, buf); 3359 JRT_END 3360 3361 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3362 bool found = false; 3363 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3364 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3365 }; 3366 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3367 _adapter_handler_table->iterate(findblob); 3368 return found; 3369 } 3370 3371 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3372 bool found = false; 3373 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3374 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3375 found = true; 3376 st->print("Adapter for signature: "); 3377 a->print_adapter_on(st); 3378 return true; 3379 } else { 3380 return false; // keep looking 3381 } 3382 }; 3383 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3384 _adapter_handler_table->iterate(findblob); 3385 assert(found, "Should have found handler"); 3386 } 3387 3388 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3389 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3390 if (get_i2c_entry() != nullptr) { 3391 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3392 } 3393 if (get_c2i_entry() != nullptr) { 3394 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3395 } 3396 if (get_c2i_entry() != nullptr) { 3397 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3398 } 3399 if (get_c2i_entry() != nullptr) { 3400 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3401 } 3402 if (get_c2i_unverified_entry() != nullptr) { 3403 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3404 } 3405 if (get_c2i_unverified_entry() != nullptr) { 3406 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3407 } 3408 if (get_c2i_no_clinit_check_entry() != nullptr) { 3409 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3410 } 3411 st->cr(); 3412 } 3413 3414 #ifndef PRODUCT 3415 3416 void AdapterHandlerLibrary::print_statistics() { 3417 print_table_statistics(); 3418 } 3419 3420 #endif /* PRODUCT */ 3421 3422 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3423 assert(current == JavaThread::current(), "pre-condition"); 3424 StackOverflow* overflow_state = current->stack_overflow_state(); 3425 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3426 overflow_state->set_reserved_stack_activation(current->stack_base()); 3427 JRT_END 3428 3429 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3430 ResourceMark rm(current); 3431 frame activation; 3432 CompiledMethod* nm = nullptr; 3433 int count = 1; 3434 3435 assert(fr.is_java_frame(), "Must start on Java frame"); 3436 3437 RegisterMap map(JavaThread::current(), 3438 RegisterMap::UpdateMap::skip, 3439 RegisterMap::ProcessFrames::skip, 3440 RegisterMap::WalkContinuation::skip); // don't walk continuations 3441 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3442 if (!fr.is_java_frame()) { 3443 continue; 3444 } 3445 3446 Method* method = nullptr; 3447 bool found = false; 3448 if (fr.is_interpreted_frame()) { 3449 method = fr.interpreter_frame_method(); 3450 if (method != nullptr && method->has_reserved_stack_access()) { 3451 found = true; 3452 } 3453 } else { 3454 CodeBlob* cb = fr.cb(); 3455 if (cb != nullptr && cb->is_compiled()) { 3456 nm = cb->as_compiled_method(); 3457 method = nm->method(); 3458 // scope_desc_near() must be used, instead of scope_desc_at() because on 3459 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3460 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3461 method = sd->method(); 3462 if (method != nullptr && method->has_reserved_stack_access()) { 3463 found = true; 3464 } 3465 } 3466 } 3467 } 3468 if (found) { 3469 activation = fr; 3470 warning("Potentially dangerous stack overflow in " 3471 "ReservedStackAccess annotated method %s [%d]", 3472 method->name_and_sig_as_C_string(), count++); 3473 EventReservedStackActivation event; 3474 if (event.should_commit()) { 3475 event.set_method(method); 3476 event.commit(); 3477 } 3478 } 3479 } 3480 return activation; 3481 } 3482 3483 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3484 // After any safepoint, just before going back to compiled code, 3485 // we inform the GC that we will be doing initializing writes to 3486 // this object in the future without emitting card-marks, so 3487 // GC may take any compensating steps. 3488 3489 oop new_obj = current->vm_result(); 3490 if (new_obj == nullptr) return; 3491 3492 BarrierSet *bs = BarrierSet::barrier_set(); 3493 bs->on_slowpath_allocation_exit(current, new_obj); 3494 } 3495 3496 // We are at a compiled code to interpreter call. We need backing 3497 // buffers for all inline type arguments. Allocate an object array to 3498 // hold them (convenient because once we're done with it we don't have 3499 // to worry about freeing it). 3500 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 3501 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 3502 ResourceMark rm; 3503 3504 int nb_slots = 0; 3505 InstanceKlass* holder = callee->method_holder(); 3506 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 3507 if (allocate_receiver) { 3508 nb_slots++; 3509 } 3510 int arg_num = callee->is_static() ? 0 : 1; 3511 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3512 BasicType bt = ss.type(); 3513 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3514 nb_slots++; 3515 } 3516 if (bt != T_VOID) { 3517 arg_num++; 3518 } 3519 } 3520 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 3521 objArrayHandle array(THREAD, array_oop); 3522 arg_num = callee->is_static() ? 0 : 1; 3523 int i = 0; 3524 if (allocate_receiver) { 3525 InlineKlass* vk = InlineKlass::cast(holder); 3526 oop res = vk->allocate_instance(CHECK_NULL); 3527 array->obj_at_put(i++, res); 3528 } 3529 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3530 BasicType bt = ss.type(); 3531 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3532 InlineKlass* vk = ss.as_inline_klass(holder); 3533 assert(vk != nullptr, "Unexpected klass"); 3534 oop res = vk->allocate_instance(CHECK_NULL); 3535 array->obj_at_put(i++, res); 3536 } 3537 if (bt != T_VOID) { 3538 arg_num++; 3539 } 3540 } 3541 return array(); 3542 } 3543 3544 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 3545 methodHandle callee(current, callee_method); 3546 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 3547 current->set_vm_result(array); 3548 current->set_vm_result_2(callee()); // TODO: required to keep callee live? 3549 JRT_END 3550 3551 // We're returning from an interpreted method: load each field into a 3552 // register following the calling convention 3553 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 3554 { 3555 assert(res->klass()->is_inline_klass(), "only inline types here"); 3556 ResourceMark rm; 3557 RegisterMap reg_map(current, 3558 RegisterMap::UpdateMap::include, 3559 RegisterMap::ProcessFrames::include, 3560 RegisterMap::WalkContinuation::skip); 3561 frame stubFrame = current->last_frame(); 3562 frame callerFrame = stubFrame.sender(®_map); 3563 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3564 3565 InlineKlass* vk = InlineKlass::cast(res->klass()); 3566 3567 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3568 const Array<VMRegPair>* regs = vk->return_regs(); 3569 3570 if (regs == nullptr) { 3571 // The fields of the inline klass don't fit in registers, bail out 3572 return; 3573 } 3574 3575 int j = 1; 3576 for (int i = 0; i < sig_vk->length(); i++) { 3577 BasicType bt = sig_vk->at(i)._bt; 3578 if (bt == T_METADATA) { 3579 continue; 3580 } 3581 if (bt == T_VOID) { 3582 if (sig_vk->at(i-1)._bt == T_LONG || 3583 sig_vk->at(i-1)._bt == T_DOUBLE) { 3584 j++; 3585 } 3586 continue; 3587 } 3588 int off = sig_vk->at(i)._offset; 3589 assert(off > 0, "offset in object should be positive"); 3590 VMRegPair pair = regs->at(j); 3591 address loc = reg_map.location(pair.first(), nullptr); 3592 switch(bt) { 3593 case T_BOOLEAN: 3594 *(jboolean*)loc = res->bool_field(off); 3595 break; 3596 case T_CHAR: 3597 *(jchar*)loc = res->char_field(off); 3598 break; 3599 case T_BYTE: 3600 *(jbyte*)loc = res->byte_field(off); 3601 break; 3602 case T_SHORT: 3603 *(jshort*)loc = res->short_field(off); 3604 break; 3605 case T_INT: { 3606 *(jint*)loc = res->int_field(off); 3607 break; 3608 } 3609 case T_LONG: 3610 #ifdef _LP64 3611 *(intptr_t*)loc = res->long_field(off); 3612 #else 3613 Unimplemented(); 3614 #endif 3615 break; 3616 case T_OBJECT: 3617 case T_ARRAY: { 3618 *(oop*)loc = res->obj_field(off); 3619 break; 3620 } 3621 case T_FLOAT: 3622 *(jfloat*)loc = res->float_field(off); 3623 break; 3624 case T_DOUBLE: 3625 *(jdouble*)loc = res->double_field(off); 3626 break; 3627 default: 3628 ShouldNotReachHere(); 3629 } 3630 j++; 3631 } 3632 assert(j == regs->length(), "missed a field?"); 3633 3634 #ifdef ASSERT 3635 VMRegPair pair = regs->at(0); 3636 address loc = reg_map.location(pair.first(), nullptr); 3637 assert(*(oopDesc**)loc == res, "overwritten object"); 3638 #endif 3639 3640 current->set_vm_result(res); 3641 } 3642 JRT_END 3643 3644 // We've returned to an interpreted method, the interpreter needs a 3645 // reference to an inline type instance. Allocate it and initialize it 3646 // from field's values in registers. 3647 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 3648 { 3649 ResourceMark rm; 3650 RegisterMap reg_map(current, 3651 RegisterMap::UpdateMap::include, 3652 RegisterMap::ProcessFrames::include, 3653 RegisterMap::WalkContinuation::skip); 3654 frame stubFrame = current->last_frame(); 3655 frame callerFrame = stubFrame.sender(®_map); 3656 3657 #ifdef ASSERT 3658 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 3659 #endif 3660 3661 if (!is_set_nth_bit(res, 0)) { 3662 // We're not returning with inline type fields in registers (the 3663 // calling convention didn't allow it for this inline klass) 3664 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3665 current->set_vm_result((oopDesc*)res); 3666 assert(verif_vk == nullptr, "broken calling convention"); 3667 return; 3668 } 3669 3670 clear_nth_bit(res, 0); 3671 InlineKlass* vk = (InlineKlass*)res; 3672 assert(verif_vk == vk, "broken calling convention"); 3673 assert(Metaspace::contains((void*)res), "should be klass"); 3674 3675 // Allocate handles for every oop field so they are safe in case of 3676 // a safepoint when allocating 3677 GrowableArray<Handle> handles; 3678 vk->save_oop_fields(reg_map, handles); 3679 3680 // It's unsafe to safepoint until we are here 3681 JRT_BLOCK; 3682 { 3683 JavaThread* THREAD = current; 3684 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3685 current->set_vm_result(vt); 3686 } 3687 JRT_BLOCK_END; 3688 } 3689 JRT_END