1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/compiledMethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/access.hpp" 51 #include "oops/fieldStreams.inline.hpp" 52 #include "metaprogramming/primitiveConversions.hpp" 53 #include "oops/compiledICHolder.inline.hpp" 54 #include "oops/klass.hpp" 55 #include "oops/method.inline.hpp" 56 #include "oops/objArrayKlass.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "oops/inlineKlass.inline.hpp" 60 #include "prims/forte.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/nativeLookup.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/init.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/java.hpp" 71 #include "runtime/javaCalls.hpp" 72 #include "runtime/jniHandles.inline.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/stackWatermarkSet.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/synchronizer.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/dtrace.hpp" 82 #include "utilities/events.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 90 // Shared stub locations 91 RuntimeStub* SharedRuntime::_wrong_method_blob; 92 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 93 RuntimeStub* SharedRuntime::_ic_miss_blob; 94 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 95 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 96 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 97 98 DeoptimizationBlob* SharedRuntime::_deopt_blob; 99 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 100 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 101 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 102 103 #ifdef COMPILER2 104 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 105 #endif // COMPILER2 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 //----------------------------generate_stubs----------------------------------- 110 void SharedRuntime::generate_stubs() { 111 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 112 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 113 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 114 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 115 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 116 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 117 118 AdapterHandlerLibrary::initialize(); 119 120 #if COMPILER2_OR_JVMCI 121 // Vectors are generated only by C2 and JVMCI. 122 bool support_wide = is_wide_vector(MaxVectorSize); 123 if (support_wide) { 124 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 125 } 126 #endif // COMPILER2_OR_JVMCI 127 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 128 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 129 130 generate_deopt_blob(); 131 132 #ifdef COMPILER2 133 generate_uncommon_trap_blob(); 134 #endif // COMPILER2 135 } 136 137 #include <math.h> 138 139 // Implementation of SharedRuntime 140 141 #ifndef PRODUCT 142 // For statistics 143 int SharedRuntime::_ic_miss_ctr = 0; 144 int SharedRuntime::_wrong_method_ctr = 0; 145 int SharedRuntime::_resolve_static_ctr = 0; 146 int SharedRuntime::_resolve_virtual_ctr = 0; 147 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 148 int SharedRuntime::_implicit_null_throws = 0; 149 int SharedRuntime::_implicit_div0_throws = 0; 150 151 int64_t SharedRuntime::_nof_normal_calls = 0; 152 int64_t SharedRuntime::_nof_inlined_calls = 0; 153 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 154 int64_t SharedRuntime::_nof_static_calls = 0; 155 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 156 int64_t SharedRuntime::_nof_interface_calls = 0; 157 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 158 159 int SharedRuntime::_new_instance_ctr=0; 160 int SharedRuntime::_new_array_ctr=0; 161 int SharedRuntime::_multi2_ctr=0; 162 int SharedRuntime::_multi3_ctr=0; 163 int SharedRuntime::_multi4_ctr=0; 164 int SharedRuntime::_multi5_ctr=0; 165 int SharedRuntime::_mon_enter_stub_ctr=0; 166 int SharedRuntime::_mon_exit_stub_ctr=0; 167 int SharedRuntime::_mon_enter_ctr=0; 168 int SharedRuntime::_mon_exit_ctr=0; 169 int SharedRuntime::_partial_subtype_ctr=0; 170 int SharedRuntime::_jbyte_array_copy_ctr=0; 171 int SharedRuntime::_jshort_array_copy_ctr=0; 172 int SharedRuntime::_jint_array_copy_ctr=0; 173 int SharedRuntime::_jlong_array_copy_ctr=0; 174 int SharedRuntime::_oop_array_copy_ctr=0; 175 int SharedRuntime::_checkcast_array_copy_ctr=0; 176 int SharedRuntime::_unsafe_array_copy_ctr=0; 177 int SharedRuntime::_generic_array_copy_ctr=0; 178 int SharedRuntime::_slow_array_copy_ctr=0; 179 int SharedRuntime::_find_handler_ctr=0; 180 int SharedRuntime::_rethrow_ctr=0; 181 182 int SharedRuntime::_ICmiss_index = 0; 183 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 184 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 185 186 187 void SharedRuntime::trace_ic_miss(address at) { 188 for (int i = 0; i < _ICmiss_index; i++) { 189 if (_ICmiss_at[i] == at) { 190 _ICmiss_count[i]++; 191 return; 192 } 193 } 194 int index = _ICmiss_index++; 195 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 196 _ICmiss_at[index] = at; 197 _ICmiss_count[index] = 1; 198 } 199 200 void SharedRuntime::print_ic_miss_histogram() { 201 if (ICMissHistogram) { 202 tty->print_cr("IC Miss Histogram:"); 203 int tot_misses = 0; 204 for (int i = 0; i < _ICmiss_index; i++) { 205 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 206 tot_misses += _ICmiss_count[i]; 207 } 208 tty->print_cr("Total IC misses: %7d", tot_misses); 209 } 210 } 211 #endif // PRODUCT 212 213 214 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 215 return x * y; 216 JRT_END 217 218 219 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 220 if (x == min_jlong && y == CONST64(-1)) { 221 return x; 222 } else { 223 return x / y; 224 } 225 JRT_END 226 227 228 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 229 if (x == min_jlong && y == CONST64(-1)) { 230 return 0; 231 } else { 232 return x % y; 233 } 234 JRT_END 235 236 237 #ifdef _WIN64 238 const juint float_sign_mask = 0x7FFFFFFF; 239 const juint float_infinity = 0x7F800000; 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 241 const julong double_infinity = CONST64(0x7FF0000000000000); 242 #endif 243 244 #if !defined(X86) || !defined(TARGET_COMPILER_gcc) || defined(_WIN64) 245 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 246 #ifdef _WIN64 247 // 64-bit Windows on amd64 returns the wrong values for 248 // infinity operands. 249 juint xbits = PrimitiveConversions::cast<juint>(x); 250 juint ybits = PrimitiveConversions::cast<juint>(y); 251 // x Mod Infinity == x unless x is infinity 252 if (((xbits & float_sign_mask) != float_infinity) && 253 ((ybits & float_sign_mask) == float_infinity) ) { 254 return x; 255 } 256 return ((jfloat)fmod_winx64((double)x, (double)y)); 257 #else 258 return ((jfloat)fmod((double)x,(double)y)); 259 #endif 260 JRT_END 261 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 263 #ifdef _WIN64 264 julong xbits = PrimitiveConversions::cast<julong>(x); 265 julong ybits = PrimitiveConversions::cast<julong>(y); 266 // x Mod Infinity == x unless x is infinity 267 if (((xbits & double_sign_mask) != double_infinity) && 268 ((ybits & double_sign_mask) == double_infinity) ) { 269 return x; 270 } 271 return ((jdouble)fmod_winx64((double)x, (double)y)); 272 #else 273 return ((jdouble)fmod((double)x,(double)y)); 274 #endif 275 JRT_END 276 #endif // !X86 || !TARGET_COMPILER_gcc || _WIN64 277 278 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 279 return (jfloat)x; 280 JRT_END 281 282 #ifdef __SOFTFP__ 283 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 284 return x + y; 285 JRT_END 286 287 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 288 return x - y; 289 JRT_END 290 291 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 292 return x * y; 293 JRT_END 294 295 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 296 return x / y; 297 JRT_END 298 299 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 300 return x + y; 301 JRT_END 302 303 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 304 return x - y; 305 JRT_END 306 307 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 308 return x * y; 309 JRT_END 310 311 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 312 return x / y; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 316 return (jdouble)x; 317 JRT_END 318 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 320 return (jdouble)x; 321 JRT_END 322 323 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 324 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 325 JRT_END 326 327 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 328 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 329 JRT_END 330 331 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 332 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 333 JRT_END 334 335 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 336 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 337 JRT_END 338 339 // Functions to return the opposite of the aeabi functions for nan. 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 341 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 342 JRT_END 343 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 345 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 346 JRT_END 347 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 349 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 350 JRT_END 351 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 353 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 357 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 361 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 365 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 369 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 370 JRT_END 371 372 // Intrinsics make gcc generate code for these. 373 float SharedRuntime::fneg(float f) { 374 return -f; 375 } 376 377 double SharedRuntime::dneg(double f) { 378 return -f; 379 } 380 381 #endif // __SOFTFP__ 382 383 #if defined(__SOFTFP__) || defined(E500V2) 384 // Intrinsics make gcc generate code for these. 385 double SharedRuntime::dabs(double f) { 386 return (f <= (double)0.0) ? (double)0.0 - f : f; 387 } 388 389 #endif 390 391 #if defined(__SOFTFP__) || defined(PPC) 392 double SharedRuntime::dsqrt(double f) { 393 return sqrt(f); 394 } 395 #endif 396 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 398 if (g_isnan(x)) 399 return 0; 400 if (x >= (jfloat) max_jint) 401 return max_jint; 402 if (x <= (jfloat) min_jint) 403 return min_jint; 404 return (jint) x; 405 JRT_END 406 407 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 409 if (g_isnan(x)) 410 return 0; 411 if (x >= (jfloat) max_jlong) 412 return max_jlong; 413 if (x <= (jfloat) min_jlong) 414 return min_jlong; 415 return (jlong) x; 416 JRT_END 417 418 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 420 if (g_isnan(x)) 421 return 0; 422 if (x >= (jdouble) max_jint) 423 return max_jint; 424 if (x <= (jdouble) min_jint) 425 return min_jint; 426 return (jint) x; 427 JRT_END 428 429 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 431 if (g_isnan(x)) 432 return 0; 433 if (x >= (jdouble) max_jlong) 434 return max_jlong; 435 if (x <= (jdouble) min_jlong) 436 return min_jlong; 437 return (jlong) x; 438 JRT_END 439 440 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 442 return (jfloat)x; 443 JRT_END 444 445 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 447 return (jfloat)x; 448 JRT_END 449 450 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 452 return (jdouble)x; 453 JRT_END 454 455 456 // Exception handling across interpreter/compiler boundaries 457 // 458 // exception_handler_for_return_address(...) returns the continuation address. 459 // The continuation address is the entry point of the exception handler of the 460 // previous frame depending on the return address. 461 462 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 463 // Note: This is called when we have unwound the frame of the callee that did 464 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 465 // Notably, the stack is not walkable at this point, and hence the check must 466 // be deferred until later. Specifically, any of the handlers returned here in 467 // this function, will get dispatched to, and call deferred checks to 468 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 469 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 470 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 471 472 // Reset method handle flag. 473 current->set_is_method_handle_return(false); 474 475 #if INCLUDE_JVMCI 476 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 477 // and other exception handler continuations do not read it 478 current->set_exception_pc(nullptr); 479 #endif // INCLUDE_JVMCI 480 481 if (Continuation::is_return_barrier_entry(return_address)) { 482 return StubRoutines::cont_returnBarrierExc(); 483 } 484 485 // The fastest case first 486 CodeBlob* blob = CodeCache::find_blob(return_address); 487 CompiledMethod* nm = (blob != nullptr) ? blob->as_compiled_method_or_null() : nullptr; 488 if (nm != nullptr) { 489 // Set flag if return address is a method handle call site. 490 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 491 // native nmethods don't have exception handlers 492 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 493 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 494 if (nm->is_deopt_pc(return_address)) { 495 // If we come here because of a stack overflow, the stack may be 496 // unguarded. Reguard the stack otherwise if we return to the 497 // deopt blob and the stack bang causes a stack overflow we 498 // crash. 499 StackOverflow* overflow_state = current->stack_overflow_state(); 500 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 501 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 502 overflow_state->set_reserved_stack_activation(current->stack_base()); 503 } 504 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 505 // The deferred StackWatermarkSet::after_unwind check will be performed in 506 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 507 return SharedRuntime::deopt_blob()->unpack_with_exception(); 508 } else { 509 // The deferred StackWatermarkSet::after_unwind check will be performed in 510 // * OptoRuntime::handle_exception_C_helper for C2 code 511 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 512 return nm->exception_begin(); 513 } 514 } 515 516 // Entry code 517 if (StubRoutines::returns_to_call_stub(return_address)) { 518 // The deferred StackWatermarkSet::after_unwind check will be performed in 519 // JavaCallWrapper::~JavaCallWrapper 520 return StubRoutines::catch_exception_entry(); 521 } 522 if (blob != nullptr && blob->is_upcall_stub()) { 523 return ((UpcallStub*)blob)->exception_handler(); 524 } 525 // Interpreted code 526 if (Interpreter::contains(return_address)) { 527 // The deferred StackWatermarkSet::after_unwind check will be performed in 528 // InterpreterRuntime::exception_handler_for_exception 529 return Interpreter::rethrow_exception_entry(); 530 } 531 532 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 533 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 534 535 #ifndef PRODUCT 536 { ResourceMark rm; 537 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 538 os::print_location(tty, (intptr_t)return_address); 539 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 540 tty->print_cr("b) other problem"); 541 } 542 #endif // PRODUCT 543 544 ShouldNotReachHere(); 545 return nullptr; 546 } 547 548 549 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 550 return raw_exception_handler_for_return_address(current, return_address); 551 JRT_END 552 553 554 address SharedRuntime::get_poll_stub(address pc) { 555 address stub; 556 // Look up the code blob 557 CodeBlob *cb = CodeCache::find_blob(pc); 558 559 // Should be an nmethod 560 guarantee(cb != nullptr && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 561 562 // Look up the relocation information 563 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 564 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 565 566 #ifdef ASSERT 567 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 568 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 569 Disassembler::decode(cb); 570 fatal("Only polling locations are used for safepoint"); 571 } 572 #endif 573 574 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 575 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 576 if (at_poll_return) { 577 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 578 "polling page return stub not created yet"); 579 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 580 } else if (has_wide_vectors) { 581 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 582 "polling page vectors safepoint stub not created yet"); 583 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 584 } else { 585 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 586 "polling page safepoint stub not created yet"); 587 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 588 } 589 log_debug(safepoint)("... found polling page %s exception at pc = " 590 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 591 at_poll_return ? "return" : "loop", 592 (intptr_t)pc, (intptr_t)stub); 593 return stub; 594 } 595 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 597 if (JvmtiExport::can_post_on_exceptions()) { 598 vframeStream vfst(current, true); 599 methodHandle method = methodHandle(current, vfst.method()); 600 address bcp = method()->bcp_from(vfst.bci()); 601 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 602 } 603 604 #if INCLUDE_JVMCI 605 if (EnableJVMCI && UseJVMCICompiler) { 606 vframeStream vfst(current, true); 607 methodHandle method = methodHandle(current, vfst.method()); 608 int bci = vfst.bci(); 609 MethodData* trap_mdo = method->method_data(); 610 if (trap_mdo != nullptr) { 611 // Set exception_seen if the exceptional bytecode is an invoke 612 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 613 if (call.is_valid()) { 614 ResourceMark rm(current); 615 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 616 if (pdata != nullptr && pdata->is_BitData()) { 617 BitData* bit_data = (BitData*) pdata; 618 bit_data->set_exception_seen(); 619 } 620 } 621 } 622 } 623 #endif 624 625 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 626 } 627 628 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 629 Handle h_exception = Exceptions::new_exception(current, name, message); 630 throw_and_post_jvmti_exception(current, h_exception); 631 } 632 633 #if INCLUDE_JVMTI 634 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 635 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 636 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 637 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 638 JNIHandles::destroy_local(vthread); 639 JRT_END 640 641 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 642 assert(hide == JNI_TRUE, "must be VTMS transition start"); 643 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 644 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 645 JNIHandles::destroy_local(vthread); 646 JRT_END 647 648 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 649 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 650 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 651 JNIHandles::destroy_local(vthread); 652 JRT_END 653 654 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 655 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 656 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 657 JNIHandles::destroy_local(vthread); 658 JRT_END 659 #endif // INCLUDE_JVMTI 660 661 // The interpreter code to call this tracing function is only 662 // called/generated when UL is on for redefine, class and has the right level 663 // and tags. Since obsolete methods are never compiled, we don't have 664 // to modify the compilers to generate calls to this function. 665 // 666 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 667 JavaThread* thread, Method* method)) 668 if (method->is_obsolete()) { 669 // We are calling an obsolete method, but this is not necessarily 670 // an error. Our method could have been redefined just after we 671 // fetched the Method* from the constant pool. 672 ResourceMark rm; 673 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 674 } 675 return 0; 676 JRT_END 677 678 // ret_pc points into caller; we are returning caller's exception handler 679 // for given exception 680 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 681 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 682 assert(cm != nullptr, "must exist"); 683 ResourceMark rm; 684 685 #if INCLUDE_JVMCI 686 if (cm->is_compiled_by_jvmci()) { 687 // lookup exception handler for this pc 688 int catch_pco = ret_pc - cm->code_begin(); 689 ExceptionHandlerTable table(cm); 690 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 691 if (t != nullptr) { 692 return cm->code_begin() + t->pco(); 693 } else { 694 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 695 } 696 } 697 #endif // INCLUDE_JVMCI 698 699 nmethod* nm = cm->as_nmethod(); 700 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 701 // determine handler bci, if any 702 EXCEPTION_MARK; 703 704 int handler_bci = -1; 705 int scope_depth = 0; 706 if (!force_unwind) { 707 int bci = sd->bci(); 708 bool recursive_exception = false; 709 do { 710 bool skip_scope_increment = false; 711 // exception handler lookup 712 Klass* ek = exception->klass(); 713 methodHandle mh(THREAD, sd->method()); 714 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 715 if (HAS_PENDING_EXCEPTION) { 716 recursive_exception = true; 717 // We threw an exception while trying to find the exception handler. 718 // Transfer the new exception to the exception handle which will 719 // be set into thread local storage, and do another lookup for an 720 // exception handler for this exception, this time starting at the 721 // BCI of the exception handler which caused the exception to be 722 // thrown (bugs 4307310 and 4546590). Set "exception" reference 723 // argument to ensure that the correct exception is thrown (4870175). 724 recursive_exception_occurred = true; 725 exception = Handle(THREAD, PENDING_EXCEPTION); 726 CLEAR_PENDING_EXCEPTION; 727 if (handler_bci >= 0) { 728 bci = handler_bci; 729 handler_bci = -1; 730 skip_scope_increment = true; 731 } 732 } 733 else { 734 recursive_exception = false; 735 } 736 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 737 sd = sd->sender(); 738 if (sd != nullptr) { 739 bci = sd->bci(); 740 } 741 ++scope_depth; 742 } 743 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 744 } 745 746 // found handling method => lookup exception handler 747 int catch_pco = ret_pc - nm->code_begin(); 748 749 ExceptionHandlerTable table(nm); 750 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 751 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 752 // Allow abbreviated catch tables. The idea is to allow a method 753 // to materialize its exceptions without committing to the exact 754 // routing of exceptions. In particular this is needed for adding 755 // a synthetic handler to unlock monitors when inlining 756 // synchronized methods since the unlock path isn't represented in 757 // the bytecodes. 758 t = table.entry_for(catch_pco, -1, 0); 759 } 760 761 #ifdef COMPILER1 762 if (t == nullptr && nm->is_compiled_by_c1()) { 763 assert(nm->unwind_handler_begin() != nullptr, ""); 764 return nm->unwind_handler_begin(); 765 } 766 #endif 767 768 if (t == nullptr) { 769 ttyLocker ttyl; 770 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 771 tty->print_cr(" Exception:"); 772 exception->print(); 773 tty->cr(); 774 tty->print_cr(" Compiled exception table :"); 775 table.print(); 776 nm->print(); 777 nm->print_code(); 778 guarantee(false, "missing exception handler"); 779 return nullptr; 780 } 781 782 return nm->code_begin() + t->pco(); 783 } 784 785 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 786 // These errors occur only at call sites 787 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 788 JRT_END 789 790 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 791 // These errors occur only at call sites 792 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 793 JRT_END 794 795 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 796 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 797 JRT_END 798 799 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 800 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 801 JRT_END 802 803 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 804 // This entry point is effectively only used for NullPointerExceptions which occur at inline 805 // cache sites (when the callee activation is not yet set up) so we are at a call site 806 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 807 JRT_END 808 809 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 810 throw_StackOverflowError_common(current, false); 811 JRT_END 812 813 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 814 throw_StackOverflowError_common(current, true); 815 JRT_END 816 817 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 818 // We avoid using the normal exception construction in this case because 819 // it performs an upcall to Java, and we're already out of stack space. 820 JavaThread* THREAD = current; // For exception macros. 821 Klass* k = vmClasses::StackOverflowError_klass(); 822 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 823 if (delayed) { 824 java_lang_Throwable::set_message(exception_oop, 825 Universe::delayed_stack_overflow_error_message()); 826 } 827 Handle exception (current, exception_oop); 828 if (StackTraceInThrowable) { 829 java_lang_Throwable::fill_in_stack_trace(exception); 830 } 831 // Remove the ScopedValue bindings in case we got a 832 // StackOverflowError while we were trying to remove ScopedValue 833 // bindings. 834 current->clear_scopedValueBindings(); 835 // Increment counter for hs_err file reporting 836 Atomic::inc(&Exceptions::_stack_overflow_errors); 837 throw_and_post_jvmti_exception(current, exception); 838 } 839 840 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 841 address pc, 842 ImplicitExceptionKind exception_kind) 843 { 844 address target_pc = nullptr; 845 846 if (Interpreter::contains(pc)) { 847 switch (exception_kind) { 848 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 849 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 850 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 851 default: ShouldNotReachHere(); 852 } 853 } else { 854 switch (exception_kind) { 855 case STACK_OVERFLOW: { 856 // Stack overflow only occurs upon frame setup; the callee is 857 // going to be unwound. Dispatch to a shared runtime stub 858 // which will cause the StackOverflowError to be fabricated 859 // and processed. 860 // Stack overflow should never occur during deoptimization: 861 // the compiled method bangs the stack by as much as the 862 // interpreter would need in case of a deoptimization. The 863 // deoptimization blob and uncommon trap blob bang the stack 864 // in a debug VM to verify the correctness of the compiled 865 // method stack banging. 866 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 867 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 868 return StubRoutines::throw_StackOverflowError_entry(); 869 } 870 871 case IMPLICIT_NULL: { 872 if (VtableStubs::contains(pc)) { 873 // We haven't yet entered the callee frame. Fabricate an 874 // exception and begin dispatching it in the caller. Since 875 // the caller was at a call site, it's safe to destroy all 876 // caller-saved registers, as these entry points do. 877 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 878 879 // If vt_stub is null, then return null to signal handler to report the SEGV error. 880 if (vt_stub == nullptr) return nullptr; 881 882 if (vt_stub->is_abstract_method_error(pc)) { 883 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 884 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 885 // Instead of throwing the abstract method error here directly, we re-resolve 886 // and will throw the AbstractMethodError during resolve. As a result, we'll 887 // get a more detailed error message. 888 return SharedRuntime::get_handle_wrong_method_stub(); 889 } else { 890 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 891 // Assert that the signal comes from the expected location in stub code. 892 assert(vt_stub->is_null_pointer_exception(pc), 893 "obtained signal from unexpected location in stub code"); 894 return StubRoutines::throw_NullPointerException_at_call_entry(); 895 } 896 } else { 897 CodeBlob* cb = CodeCache::find_blob(pc); 898 899 // If code blob is null, then return null to signal handler to report the SEGV error. 900 if (cb == nullptr) return nullptr; 901 902 // Exception happened in CodeCache. Must be either: 903 // 1. Inline-cache check in C2I handler blob, 904 // 2. Inline-cache check in nmethod, or 905 // 3. Implicit null exception in nmethod 906 907 if (!cb->is_compiled()) { 908 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 909 if (!is_in_blob) { 910 // Allow normal crash reporting to handle this 911 return nullptr; 912 } 913 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 914 // There is no handler here, so we will simply unwind. 915 return StubRoutines::throw_NullPointerException_at_call_entry(); 916 } 917 918 // Otherwise, it's a compiled method. Consult its exception handlers. 919 CompiledMethod* cm = (CompiledMethod*)cb; 920 if (cm->inlinecache_check_contains(pc)) { 921 // exception happened inside inline-cache check code 922 // => the nmethod is not yet active (i.e., the frame 923 // is not set up yet) => use return address pushed by 924 // caller => don't push another return address 925 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 926 return StubRoutines::throw_NullPointerException_at_call_entry(); 927 } 928 929 if (cm->method()->is_method_handle_intrinsic()) { 930 // exception happened inside MH dispatch code, similar to a vtable stub 931 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 932 return StubRoutines::throw_NullPointerException_at_call_entry(); 933 } 934 935 #ifndef PRODUCT 936 _implicit_null_throws++; 937 #endif 938 target_pc = cm->continuation_for_implicit_null_exception(pc); 939 // If there's an unexpected fault, target_pc might be null, 940 // in which case we want to fall through into the normal 941 // error handling code. 942 } 943 944 break; // fall through 945 } 946 947 948 case IMPLICIT_DIVIDE_BY_ZERO: { 949 CompiledMethod* cm = CodeCache::find_compiled(pc); 950 guarantee(cm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 951 #ifndef PRODUCT 952 _implicit_div0_throws++; 953 #endif 954 target_pc = cm->continuation_for_implicit_div0_exception(pc); 955 // If there's an unexpected fault, target_pc might be null, 956 // in which case we want to fall through into the normal 957 // error handling code. 958 break; // fall through 959 } 960 961 default: ShouldNotReachHere(); 962 } 963 964 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 965 966 if (exception_kind == IMPLICIT_NULL) { 967 #ifndef PRODUCT 968 // for AbortVMOnException flag 969 Exceptions::debug_check_abort("java.lang.NullPointerException"); 970 #endif //PRODUCT 971 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 972 } else { 973 #ifndef PRODUCT 974 // for AbortVMOnException flag 975 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 976 #endif //PRODUCT 977 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 978 } 979 return target_pc; 980 } 981 982 ShouldNotReachHere(); 983 return nullptr; 984 } 985 986 987 /** 988 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 989 * installed in the native function entry of all native Java methods before 990 * they get linked to their actual native methods. 991 * 992 * \note 993 * This method actually never gets called! The reason is because 994 * the interpreter's native entries call NativeLookup::lookup() which 995 * throws the exception when the lookup fails. The exception is then 996 * caught and forwarded on the return from NativeLookup::lookup() call 997 * before the call to the native function. This might change in the future. 998 */ 999 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1000 { 1001 // We return a bad value here to make sure that the exception is 1002 // forwarded before we look at the return value. 1003 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1004 } 1005 JNI_END 1006 1007 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1008 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1009 } 1010 1011 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1012 #if INCLUDE_JVMCI 1013 if (!obj->klass()->has_finalizer()) { 1014 return; 1015 } 1016 #endif // INCLUDE_JVMCI 1017 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1018 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1019 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1020 JRT_END 1021 1022 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1023 assert(thread != nullptr, "No thread"); 1024 if (thread == nullptr) { 1025 return 0; 1026 } 1027 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1028 "current cannot touch oops after its GC barrier is detached."); 1029 oop obj = thread->threadObj(); 1030 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1031 } 1032 1033 /** 1034 * This function ought to be a void function, but cannot be because 1035 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1036 * 6254741. Once that is fixed we can remove the dummy return value. 1037 */ 1038 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1039 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1040 } 1041 1042 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1043 return dtrace_object_alloc(thread, o, o->size()); 1044 } 1045 1046 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1047 assert(DTraceAllocProbes, "wrong call"); 1048 Klass* klass = o->klass(); 1049 Symbol* name = klass->name(); 1050 HOTSPOT_OBJECT_ALLOC( 1051 get_java_tid(thread), 1052 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1053 return 0; 1054 } 1055 1056 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1057 JavaThread* current, Method* method)) 1058 assert(current == JavaThread::current(), "pre-condition"); 1059 1060 assert(DTraceMethodProbes, "wrong call"); 1061 Symbol* kname = method->klass_name(); 1062 Symbol* name = method->name(); 1063 Symbol* sig = method->signature(); 1064 HOTSPOT_METHOD_ENTRY( 1065 get_java_tid(current), 1066 (char *) kname->bytes(), kname->utf8_length(), 1067 (char *) name->bytes(), name->utf8_length(), 1068 (char *) sig->bytes(), sig->utf8_length()); 1069 return 0; 1070 JRT_END 1071 1072 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1073 JavaThread* current, Method* method)) 1074 assert(current == JavaThread::current(), "pre-condition"); 1075 assert(DTraceMethodProbes, "wrong call"); 1076 Symbol* kname = method->klass_name(); 1077 Symbol* name = method->name(); 1078 Symbol* sig = method->signature(); 1079 HOTSPOT_METHOD_RETURN( 1080 get_java_tid(current), 1081 (char *) kname->bytes(), kname->utf8_length(), 1082 (char *) name->bytes(), name->utf8_length(), 1083 (char *) sig->bytes(), sig->utf8_length()); 1084 return 0; 1085 JRT_END 1086 1087 1088 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1089 // for a call current in progress, i.e., arguments has been pushed on stack 1090 // put callee has not been invoked yet. Used by: resolve virtual/static, 1091 // vtable updates, etc. Caller frame must be compiled. 1092 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1093 JavaThread* current = THREAD; 1094 ResourceMark rm(current); 1095 1096 // last java frame on stack (which includes native call frames) 1097 vframeStream vfst(current, true); // Do not skip and javaCalls 1098 1099 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1100 } 1101 1102 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1103 CompiledMethod* caller = vfst.nm(); 1104 1105 address pc = vfst.frame_pc(); 1106 { // Get call instruction under lock because another thread may be busy patching it. 1107 CompiledICLocker ic_locker(caller); 1108 return caller->attached_method_before_pc(pc); 1109 } 1110 return nullptr; 1111 } 1112 1113 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1114 // for a call current in progress, i.e., arguments has been pushed on stack 1115 // but callee has not been invoked yet. Caller frame must be compiled. 1116 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1117 CallInfo& callinfo, TRAPS) { 1118 Handle receiver; 1119 Handle nullHandle; // create a handy null handle for exception returns 1120 JavaThread* current = THREAD; 1121 1122 assert(!vfst.at_end(), "Java frame must exist"); 1123 1124 // Find caller and bci from vframe 1125 methodHandle caller(current, vfst.method()); 1126 int bci = vfst.bci(); 1127 1128 if (caller->is_continuation_enter_intrinsic()) { 1129 bc = Bytecodes::_invokestatic; 1130 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1131 return receiver; 1132 } 1133 1134 // Substitutability test implementation piggy backs on static call resolution 1135 Bytecodes::Code code = caller->java_code_at(bci); 1136 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1137 bc = Bytecodes::_invokestatic; 1138 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1139 assert(attached_method.not_null(), "must have attached method"); 1140 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1141 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1142 #ifdef ASSERT 1143 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1144 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1145 #endif 1146 return receiver; 1147 } 1148 1149 Bytecode_invoke bytecode(caller, bci); 1150 int bytecode_index = bytecode.index(); 1151 bc = bytecode.invoke_code(); 1152 1153 methodHandle attached_method(current, extract_attached_method(vfst)); 1154 if (attached_method.not_null()) { 1155 Method* callee = bytecode.static_target(CHECK_NH); 1156 vmIntrinsics::ID id = callee->intrinsic_id(); 1157 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1158 // it attaches statically resolved method to the call site. 1159 if (MethodHandles::is_signature_polymorphic(id) && 1160 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1161 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1162 1163 // Adjust invocation mode according to the attached method. 1164 switch (bc) { 1165 case Bytecodes::_invokevirtual: 1166 if (attached_method->method_holder()->is_interface()) { 1167 bc = Bytecodes::_invokeinterface; 1168 } 1169 break; 1170 case Bytecodes::_invokeinterface: 1171 if (!attached_method->method_holder()->is_interface()) { 1172 bc = Bytecodes::_invokevirtual; 1173 } 1174 break; 1175 case Bytecodes::_invokehandle: 1176 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1177 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1178 : Bytecodes::_invokevirtual; 1179 } 1180 break; 1181 default: 1182 break; 1183 } 1184 } else { 1185 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1186 if (!attached_method->method_holder()->is_inline_klass()) { 1187 // Ignore the attached method in this case to not confuse below code 1188 attached_method = methodHandle(current, nullptr); 1189 } 1190 } 1191 } 1192 1193 assert(bc != Bytecodes::_illegal, "not initialized"); 1194 1195 bool has_receiver = bc != Bytecodes::_invokestatic && 1196 bc != Bytecodes::_invokedynamic && 1197 bc != Bytecodes::_invokehandle; 1198 bool check_null_and_abstract = true; 1199 1200 // Find receiver for non-static call 1201 if (has_receiver) { 1202 // This register map must be update since we need to find the receiver for 1203 // compiled frames. The receiver might be in a register. 1204 RegisterMap reg_map2(current, 1205 RegisterMap::UpdateMap::include, 1206 RegisterMap::ProcessFrames::include, 1207 RegisterMap::WalkContinuation::skip); 1208 frame stubFrame = current->last_frame(); 1209 // Caller-frame is a compiled frame 1210 frame callerFrame = stubFrame.sender(®_map2); 1211 1212 Method* callee = attached_method(); 1213 if (callee == nullptr) { 1214 callee = bytecode.static_target(CHECK_NH); 1215 if (callee == nullptr) { 1216 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1217 } 1218 } 1219 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->is_compiled_by_c1(); 1220 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1221 // If the receiver is an inline type that is passed as fields, no oop is available 1222 // Resolve the call without receiver null checking. 1223 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1224 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1225 if (bc == Bytecodes::_invokeinterface) { 1226 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1227 } 1228 check_null_and_abstract = false; 1229 } else { 1230 // Retrieve from a compiled argument list 1231 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1232 assert(oopDesc::is_oop_or_null(receiver()), ""); 1233 if (receiver.is_null()) { 1234 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1235 } 1236 } 1237 } 1238 1239 // Resolve method 1240 if (attached_method.not_null()) { 1241 // Parameterized by attached method. 1242 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1243 } else { 1244 // Parameterized by bytecode. 1245 constantPoolHandle constants(current, caller->constants()); 1246 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1247 } 1248 1249 #ifdef ASSERT 1250 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1251 if (has_receiver && check_null_and_abstract) { 1252 assert(receiver.not_null(), "should have thrown exception"); 1253 Klass* receiver_klass = receiver->klass(); 1254 Klass* rk = nullptr; 1255 if (attached_method.not_null()) { 1256 // In case there's resolved method attached, use its holder during the check. 1257 rk = attached_method->method_holder(); 1258 } else { 1259 // Klass is already loaded. 1260 constantPoolHandle constants(current, caller->constants()); 1261 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1262 } 1263 Klass* static_receiver_klass = rk; 1264 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1265 "actual receiver must be subclass of static receiver klass"); 1266 if (receiver_klass->is_instance_klass()) { 1267 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1268 tty->print_cr("ERROR: Klass not yet initialized!!"); 1269 receiver_klass->print(); 1270 } 1271 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1272 } 1273 } 1274 #endif 1275 1276 return receiver; 1277 } 1278 1279 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1280 JavaThread* current = THREAD; 1281 ResourceMark rm(current); 1282 // We need first to check if any Java activations (compiled, interpreted) 1283 // exist on the stack since last JavaCall. If not, we need 1284 // to get the target method from the JavaCall wrapper. 1285 vframeStream vfst(current, true); // Do not skip any javaCalls 1286 methodHandle callee_method; 1287 if (vfst.at_end()) { 1288 // No Java frames were found on stack since we did the JavaCall. 1289 // Hence the stack can only contain an entry_frame. We need to 1290 // find the target method from the stub frame. 1291 RegisterMap reg_map(current, 1292 RegisterMap::UpdateMap::skip, 1293 RegisterMap::ProcessFrames::include, 1294 RegisterMap::WalkContinuation::skip); 1295 frame fr = current->last_frame(); 1296 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1297 fr = fr.sender(®_map); 1298 assert(fr.is_entry_frame(), "must be"); 1299 // fr is now pointing to the entry frame. 1300 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1301 } else { 1302 Bytecodes::Code bc; 1303 CallInfo callinfo; 1304 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1305 // Calls via mismatching methods are always non-scalarized 1306 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1307 caller_is_c1 = true; 1308 } 1309 callee_method = methodHandle(current, callinfo.selected_method()); 1310 } 1311 assert(callee_method()->is_method(), "must be"); 1312 return callee_method; 1313 } 1314 1315 // Resolves a call. 1316 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1317 methodHandle callee_method; 1318 callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD); 1319 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1320 int retry_count = 0; 1321 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1322 callee_method->method_holder() != vmClasses::Object_klass()) { 1323 // If has a pending exception then there is no need to re-try to 1324 // resolve this method. 1325 // If the method has been redefined, we need to try again. 1326 // Hack: we have no way to update the vtables of arrays, so don't 1327 // require that java.lang.Object has been updated. 1328 1329 // It is very unlikely that method is redefined more than 100 times 1330 // in the middle of resolve. If it is looping here more than 100 times 1331 // means then there could be a bug here. 1332 guarantee((retry_count++ < 100), 1333 "Could not resolve to latest version of redefined method"); 1334 // method is redefined in the middle of resolve so re-try. 1335 callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD); 1336 } 1337 } 1338 return callee_method; 1339 } 1340 1341 // This fails if resolution required refilling of IC stubs 1342 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1343 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, bool& caller_is_c1, 1344 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1345 StaticCallInfo static_call_info; 1346 CompiledICInfo virtual_call_info; 1347 1348 // Make sure the callee nmethod does not get deoptimized and removed before 1349 // we are done patching the code. 1350 CompiledMethod* callee = callee_method->code(); 1351 1352 if (callee != nullptr) { 1353 assert(callee->is_compiled(), "must be nmethod for patching"); 1354 } 1355 1356 if (callee != nullptr && !callee->is_in_use()) { 1357 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1358 callee = nullptr; 1359 } 1360 #ifdef ASSERT 1361 address dest_entry_point = callee == nullptr ? 0 : callee->entry_point(); // used below 1362 #endif 1363 1364 bool is_nmethod = caller_nm->is_nmethod(); 1365 1366 if (is_virtual) { 1367 Klass* receiver_klass = nullptr; 1368 if (!caller_is_c1 && callee_method->is_scalarized_arg(0)) { 1369 // If the receiver is an inline type that is passed as fields, no oop is available 1370 receiver_klass = callee_method->method_holder(); 1371 } else { 1372 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1373 receiver_klass = invoke_code == Bytecodes::_invokehandle ? nullptr : receiver->klass(); 1374 } 1375 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1376 CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass, 1377 is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info, 1378 CHECK_false); 1379 } else { 1380 // static call 1381 CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info); 1382 } 1383 1384 // grab lock, check for deoptimization and potentially patch caller 1385 { 1386 CompiledICLocker ml(caller_nm); 1387 1388 // Lock blocks for safepoint during which both nmethods can change state. 1389 1390 // Now that we are ready to patch if the Method* was redefined then 1391 // don't update call site and let the caller retry. 1392 // Don't update call site if callee nmethod was unloaded or deoptimized. 1393 // Don't update call site if callee nmethod was replaced by an other nmethod 1394 // which may happen when multiply alive nmethod (tiered compilation) 1395 // will be supported. 1396 if (!callee_method->is_old() && 1397 (callee == nullptr || (callee->is_in_use() && callee_method->code() == callee))) { 1398 NoSafepointVerifier nsv; 1399 #ifdef ASSERT 1400 // We must not try to patch to jump to an already unloaded method. 1401 if (dest_entry_point != 0) { 1402 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1403 assert((cb != nullptr) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1404 "should not call unloaded nmethod"); 1405 } 1406 #endif 1407 if (is_virtual) { 1408 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1409 if (inline_cache->is_clean()) { 1410 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1411 return false; 1412 } 1413 } 1414 } else { 1415 if (VM_Version::supports_fast_class_init_checks() && 1416 invoke_code == Bytecodes::_invokestatic && 1417 callee_method->needs_clinit_barrier() && 1418 callee != nullptr && callee->is_compiled_by_jvmci()) { 1419 return true; // skip patching for JVMCI 1420 } 1421 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1422 if (is_nmethod && caller_nm->method()->is_continuation_enter_intrinsic()) { 1423 ssc->compute_entry_for_continuation_entry(callee_method, static_call_info); 1424 } 1425 if (ssc->is_clean()) ssc->set(static_call_info); 1426 } 1427 } 1428 } // unlock CompiledICLocker 1429 return true; 1430 } 1431 1432 // Resolves a call. The compilers generate code for calls that go here 1433 // and are patched with the real destination of the call. 1434 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1435 JavaThread* current = THREAD; 1436 ResourceMark rm(current); 1437 RegisterMap cbl_map(current, 1438 RegisterMap::UpdateMap::skip, 1439 RegisterMap::ProcessFrames::include, 1440 RegisterMap::WalkContinuation::skip); 1441 frame caller_frame = current->last_frame().sender(&cbl_map); 1442 1443 CodeBlob* caller_cb = caller_frame.cb(); 1444 guarantee(caller_cb != nullptr && caller_cb->is_compiled(), "must be called from compiled method"); 1445 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1446 1447 // determine call info & receiver 1448 // note: a) receiver is null for static calls 1449 // b) an exception is thrown if receiver is null for non-static calls 1450 CallInfo call_info; 1451 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1452 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1453 methodHandle callee_method(current, call_info.selected_method()); 1454 // Calls via mismatching methods are always non-scalarized 1455 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1456 caller_is_c1 = true; 1457 } 1458 1459 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1460 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1461 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1462 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1463 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1464 1465 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1466 1467 #ifndef PRODUCT 1468 // tracing/debugging/statistics 1469 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1470 (is_virtual) ? (&_resolve_virtual_ctr) : 1471 (&_resolve_static_ctr); 1472 Atomic::inc(addr); 1473 1474 if (TraceCallFixup) { 1475 ResourceMark rm(current); 1476 tty->print("resolving %s%s (%s) call to", 1477 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1478 Bytecodes::name(invoke_code)); 1479 callee_method->print_short_name(tty); 1480 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1481 p2i(caller_frame.pc()), p2i(callee_method->code())); 1482 } 1483 #endif 1484 1485 if (invoke_code == Bytecodes::_invokestatic) { 1486 assert(callee_method->method_holder()->is_initialized() || 1487 callee_method->method_holder()->is_init_thread(current), 1488 "invalid class initialization state for invoke_static"); 1489 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1490 // In order to keep class initialization check, do not patch call 1491 // site for static call when the class is not fully initialized. 1492 // Proper check is enforced by call site re-resolution on every invocation. 1493 // 1494 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1495 // explicit class initialization check is put in nmethod entry (VEP). 1496 assert(callee_method->method_holder()->is_linked(), "must be"); 1497 return callee_method; 1498 } 1499 } 1500 1501 // JSR 292 key invariant: 1502 // If the resolved method is a MethodHandle invoke target, the call 1503 // site must be a MethodHandle call site, because the lambda form might tail-call 1504 // leaving the stack in a state unknown to either caller or callee 1505 // TODO detune for now but we might need it again 1506 // assert(!callee_method->is_compiled_lambda_form() || 1507 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1508 1509 // Compute entry points. This might require generation of C2I converter 1510 // frames, so we cannot be holding any locks here. Furthermore, the 1511 // computation of the entry points is independent of patching the call. We 1512 // always return the entry-point, but we only patch the stub if the call has 1513 // not been deoptimized. Return values: For a virtual call this is an 1514 // (cached_oop, destination address) pair. For a static call/optimized 1515 // virtual this is just a destination address. 1516 1517 // Patching IC caches may fail if we run out if transition stubs. 1518 // We refill the ic stubs then and try again. 1519 for (;;) { 1520 ICRefillVerifier ic_refill_verifier; 1521 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1522 is_virtual, is_optimized, caller_is_c1, receiver, 1523 call_info, invoke_code, CHECK_(methodHandle())); 1524 if (successful) { 1525 return callee_method; 1526 } else { 1527 InlineCacheBuffer::refill_ic_stubs(); 1528 } 1529 } 1530 1531 } 1532 1533 1534 // Inline caches exist only in compiled code 1535 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1536 #ifdef ASSERT 1537 RegisterMap reg_map(current, 1538 RegisterMap::UpdateMap::skip, 1539 RegisterMap::ProcessFrames::include, 1540 RegisterMap::WalkContinuation::skip); 1541 frame stub_frame = current->last_frame(); 1542 assert(stub_frame.is_runtime_frame(), "sanity check"); 1543 frame caller_frame = stub_frame.sender(®_map); 1544 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1545 #endif /* ASSERT */ 1546 1547 methodHandle callee_method; 1548 bool is_optimized = false; 1549 bool caller_is_c1 = false; 1550 JRT_BLOCK 1551 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1552 // Return Method* through TLS 1553 current->set_vm_result_2(callee_method()); 1554 JRT_BLOCK_END 1555 // return compiled code entry point after potential safepoints 1556 return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1); 1557 JRT_END 1558 1559 1560 // Handle call site that has been made non-entrant 1561 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1562 // 6243940 We might end up in here if the callee is deoptimized 1563 // as we race to call it. We don't want to take a safepoint if 1564 // the caller was interpreted because the caller frame will look 1565 // interpreted to the stack walkers and arguments are now 1566 // "compiled" so it is much better to make this transition 1567 // invisible to the stack walking code. The i2c path will 1568 // place the callee method in the callee_target. It is stashed 1569 // there because if we try and find the callee by normal means a 1570 // safepoint is possible and have trouble gc'ing the compiled args. 1571 RegisterMap reg_map(current, 1572 RegisterMap::UpdateMap::skip, 1573 RegisterMap::ProcessFrames::include, 1574 RegisterMap::WalkContinuation::skip); 1575 frame stub_frame = current->last_frame(); 1576 assert(stub_frame.is_runtime_frame(), "sanity check"); 1577 frame caller_frame = stub_frame.sender(®_map); 1578 1579 if (caller_frame.is_interpreted_frame() || 1580 caller_frame.is_entry_frame() || 1581 caller_frame.is_upcall_stub_frame()) { 1582 Method* callee = current->callee_target(); 1583 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1584 current->set_vm_result_2(callee); 1585 current->set_callee_target(nullptr); 1586 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1587 // Bypass class initialization checks in c2i when caller is in native. 1588 // JNI calls to static methods don't have class initialization checks. 1589 // Fast class initialization checks are present in c2i adapters and call into 1590 // SharedRuntime::handle_wrong_method() on the slow path. 1591 // 1592 // JVM upcalls may land here as well, but there's a proper check present in 1593 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1594 // so bypassing it in c2i adapter is benign. 1595 return callee->get_c2i_no_clinit_check_entry(); 1596 } else { 1597 if (caller_frame.is_interpreted_frame()) { 1598 return callee->get_c2i_inline_entry(); 1599 } else { 1600 return callee->get_c2i_entry(); 1601 } 1602 } 1603 } 1604 1605 // Must be compiled to compiled path which is safe to stackwalk 1606 methodHandle callee_method; 1607 bool is_static_call = false; 1608 bool is_optimized = false; 1609 bool caller_is_c1 = false; 1610 JRT_BLOCK 1611 // Force resolving of caller (if we called from compiled frame) 1612 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1613 current->set_vm_result_2(callee_method()); 1614 JRT_BLOCK_END 1615 // return compiled code entry point after potential safepoints 1616 return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1); 1617 JRT_END 1618 1619 // Handle abstract method call 1620 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1621 // Verbose error message for AbstractMethodError. 1622 // Get the called method from the invoke bytecode. 1623 vframeStream vfst(current, true); 1624 assert(!vfst.at_end(), "Java frame must exist"); 1625 methodHandle caller(current, vfst.method()); 1626 Bytecode_invoke invoke(caller, vfst.bci()); 1627 DEBUG_ONLY( invoke.verify(); ) 1628 1629 // Find the compiled caller frame. 1630 RegisterMap reg_map(current, 1631 RegisterMap::UpdateMap::include, 1632 RegisterMap::ProcessFrames::include, 1633 RegisterMap::WalkContinuation::skip); 1634 frame stubFrame = current->last_frame(); 1635 assert(stubFrame.is_runtime_frame(), "must be"); 1636 frame callerFrame = stubFrame.sender(®_map); 1637 assert(callerFrame.is_compiled_frame(), "must be"); 1638 1639 // Install exception and return forward entry. 1640 address res = StubRoutines::throw_AbstractMethodError_entry(); 1641 JRT_BLOCK 1642 methodHandle callee(current, invoke.static_target(current)); 1643 if (!callee.is_null()) { 1644 oop recv = callerFrame.retrieve_receiver(®_map); 1645 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1646 res = StubRoutines::forward_exception_entry(); 1647 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1648 } 1649 JRT_BLOCK_END 1650 return res; 1651 JRT_END 1652 1653 1654 // resolve a static call and patch code 1655 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1656 methodHandle callee_method; 1657 bool caller_is_c1 = false; 1658 bool enter_special = false; 1659 JRT_BLOCK 1660 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1661 current->set_vm_result_2(callee_method()); 1662 1663 if (current->is_interp_only_mode()) { 1664 RegisterMap reg_map(current, 1665 RegisterMap::UpdateMap::skip, 1666 RegisterMap::ProcessFrames::include, 1667 RegisterMap::WalkContinuation::skip); 1668 frame stub_frame = current->last_frame(); 1669 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1670 frame caller = stub_frame.sender(®_map); 1671 enter_special = caller.cb() != nullptr && caller.cb()->is_compiled() 1672 && caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic(); 1673 } 1674 JRT_BLOCK_END 1675 1676 if (current->is_interp_only_mode() && enter_special) { 1677 // enterSpecial is compiled and calls this method to resolve the call to Continuation::enter 1678 // but in interp_only_mode we need to go to the interpreted entry 1679 // The c2i won't patch in this mode -- see fixup_callers_callsite 1680 // 1681 // This should probably be done in all cases, not just enterSpecial (see JDK-8218403), 1682 // but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no 1683 // interpreted version. 1684 return callee_method->get_c2i_entry(); 1685 } 1686 1687 // return compiled code entry point after potential safepoints 1688 address entry = caller_is_c1 ? 1689 callee_method->verified_inline_code_entry() : callee_method->verified_code_entry(); 1690 assert(entry != nullptr, "Jump to zero!"); 1691 return entry; 1692 JRT_END 1693 1694 1695 // resolve virtual call and update inline cache to monomorphic 1696 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1697 methodHandle callee_method; 1698 bool caller_is_c1 = false; 1699 JRT_BLOCK 1700 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1701 current->set_vm_result_2(callee_method()); 1702 JRT_BLOCK_END 1703 // return compiled code entry point after potential safepoints 1704 address entry = caller_is_c1 ? 1705 callee_method->verified_inline_code_entry() : callee_method->verified_inline_ro_code_entry(); 1706 assert(entry != nullptr, "Jump to zero!"); 1707 return entry; 1708 JRT_END 1709 1710 1711 // Resolve a virtual call that can be statically bound (e.g., always 1712 // monomorphic, so it has no inline cache). Patch code to resolved target. 1713 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1714 methodHandle callee_method; 1715 bool caller_is_c1 = false; 1716 JRT_BLOCK 1717 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1718 current->set_vm_result_2(callee_method()); 1719 JRT_BLOCK_END 1720 // return compiled code entry point after potential safepoints 1721 address entry = caller_is_c1 ? 1722 callee_method->verified_inline_code_entry() : callee_method->verified_code_entry(); 1723 assert(entry != nullptr, "Jump to zero!"); 1724 return entry; 1725 JRT_END 1726 1727 // The handle_ic_miss_helper_internal function returns false if it failed due 1728 // to either running out of vtable stubs or ic stubs due to IC transitions 1729 // to transitional states. The needs_ic_stub_refill value will be set if 1730 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1731 // refills the IC stubs and tries again. 1732 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1733 const frame& caller_frame, methodHandle callee_method, 1734 Bytecodes::Code bc, CallInfo& call_info, 1735 bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) { 1736 CompiledICLocker ml(caller_nm); 1737 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1738 bool should_be_mono = false; 1739 if (inline_cache->is_optimized()) { 1740 if (TraceCallFixup) { 1741 ResourceMark rm(THREAD); 1742 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1743 callee_method->print_short_name(tty); 1744 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1745 } 1746 is_optimized = true; 1747 should_be_mono = true; 1748 } else if (inline_cache->is_icholder_call()) { 1749 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1750 if (ic_oop != nullptr) { 1751 if (!ic_oop->is_loader_alive()) { 1752 // Deferred IC cleaning due to concurrent class unloading 1753 if (!inline_cache->set_to_clean()) { 1754 needs_ic_stub_refill = true; 1755 return false; 1756 } 1757 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1758 // This isn't a real miss. We must have seen that compiled code 1759 // is now available and we want the call site converted to a 1760 // monomorphic compiled call site. 1761 // We can't assert for callee_method->code() != nullptr because it 1762 // could have been deoptimized in the meantime 1763 if (TraceCallFixup) { 1764 ResourceMark rm(THREAD); 1765 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1766 callee_method->print_short_name(tty); 1767 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1768 } 1769 should_be_mono = true; 1770 } 1771 } 1772 } 1773 1774 if (should_be_mono) { 1775 // We have a path that was monomorphic but was going interpreted 1776 // and now we have (or had) a compiled entry. We correct the IC 1777 // by using a new icBuffer. 1778 CompiledICInfo info; 1779 Klass* receiver_klass = receiver()->klass(); 1780 inline_cache->compute_monomorphic_entry(callee_method, 1781 receiver_klass, 1782 inline_cache->is_optimized(), 1783 false, caller_nm->is_nmethod(), 1784 caller_is_c1, 1785 info, CHECK_false); 1786 if (!inline_cache->set_to_monomorphic(info)) { 1787 needs_ic_stub_refill = true; 1788 return false; 1789 } 1790 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1791 // Potential change to megamorphic 1792 1793 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false); 1794 if (needs_ic_stub_refill) { 1795 return false; 1796 } 1797 if (!successful) { 1798 if (!inline_cache->set_to_clean()) { 1799 needs_ic_stub_refill = true; 1800 return false; 1801 } 1802 } 1803 } else { 1804 // Either clean or megamorphic 1805 } 1806 return true; 1807 } 1808 1809 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1810 JavaThread* current = THREAD; 1811 ResourceMark rm(current); 1812 CallInfo call_info; 1813 Bytecodes::Code bc; 1814 1815 // receiver is null for static calls. An exception is thrown for null 1816 // receivers for non-static calls 1817 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1818 // Compiler1 can produce virtual call sites that can actually be statically bound 1819 // If we fell thru to below we would think that the site was going megamorphic 1820 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1821 // we'd try and do a vtable dispatch however methods that can be statically bound 1822 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1823 // reresolution of the call site (as if we did a handle_wrong_method and not an 1824 // plain ic_miss) and the site will be converted to an optimized virtual call site 1825 // never to miss again. I don't believe C2 will produce code like this but if it 1826 // did this would still be the correct thing to do for it too, hence no ifdef. 1827 // 1828 if (call_info.resolved_method()->can_be_statically_bound()) { 1829 bool is_static_call = false; 1830 methodHandle callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle())); 1831 assert(!is_static_call, "IC miss at static call?"); 1832 if (TraceCallFixup) { 1833 RegisterMap reg_map(current, 1834 RegisterMap::UpdateMap::skip, 1835 RegisterMap::ProcessFrames::include, 1836 RegisterMap::WalkContinuation::skip); 1837 frame caller_frame = current->last_frame().sender(®_map); 1838 ResourceMark rm(current); 1839 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1840 callee_method->print_short_name(tty); 1841 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1842 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1843 } 1844 return callee_method; 1845 } 1846 1847 methodHandle callee_method(current, call_info.selected_method()); 1848 1849 #ifndef PRODUCT 1850 Atomic::inc(&_ic_miss_ctr); 1851 1852 // Statistics & Tracing 1853 if (TraceCallFixup) { 1854 ResourceMark rm(current); 1855 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1856 callee_method->print_short_name(tty); 1857 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1858 } 1859 1860 if (ICMissHistogram) { 1861 MutexLocker m(VMStatistic_lock); 1862 RegisterMap reg_map(current, 1863 RegisterMap::UpdateMap::skip, 1864 RegisterMap::ProcessFrames::include, 1865 RegisterMap::WalkContinuation::skip); 1866 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1867 // produce statistics under the lock 1868 trace_ic_miss(f.pc()); 1869 } 1870 #endif 1871 1872 // install an event collector so that when a vtable stub is created the 1873 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1874 // event can't be posted when the stub is created as locks are held 1875 // - instead the event will be deferred until the event collector goes 1876 // out of scope. 1877 JvmtiDynamicCodeEventCollector event_collector; 1878 1879 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1880 // Transitioning IC caches may require transition stubs. If we run out 1881 // of transition stubs, we have to drop locks and perform a safepoint 1882 // that refills them. 1883 RegisterMap reg_map(current, 1884 RegisterMap::UpdateMap::skip, 1885 RegisterMap::ProcessFrames::include, 1886 RegisterMap::WalkContinuation::skip); 1887 frame caller_frame = current->last_frame().sender(®_map); 1888 CodeBlob* cb = caller_frame.cb(); 1889 CompiledMethod* caller_nm = cb->as_compiled_method(); 1890 // Calls via mismatching methods are always non-scalarized 1891 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1892 caller_is_c1 = true; 1893 } 1894 1895 for (;;) { 1896 ICRefillVerifier ic_refill_verifier; 1897 bool needs_ic_stub_refill = false; 1898 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1899 bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle())); 1900 if (successful || !needs_ic_stub_refill) { 1901 return callee_method; 1902 } else { 1903 InlineCacheBuffer::refill_ic_stubs(); 1904 } 1905 } 1906 } 1907 1908 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1909 CompiledICLocker ml(caller_nm); 1910 if (is_static_call) { 1911 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1912 if (!ssc->is_clean()) { 1913 return ssc->set_to_clean(); 1914 } 1915 } else { 1916 // compiled, dispatched call (which used to call an interpreted method) 1917 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1918 if (!inline_cache->is_clean()) { 1919 return inline_cache->set_to_clean(); 1920 } 1921 } 1922 return true; 1923 } 1924 1925 // 1926 // Resets a call-site in compiled code so it will get resolved again. 1927 // This routines handles both virtual call sites, optimized virtual call 1928 // sites, and static call sites. Typically used to change a call sites 1929 // destination from compiled to interpreted. 1930 // 1931 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1932 JavaThread* current = THREAD; 1933 ResourceMark rm(current); 1934 RegisterMap reg_map(current, 1935 RegisterMap::UpdateMap::skip, 1936 RegisterMap::ProcessFrames::include, 1937 RegisterMap::WalkContinuation::skip); 1938 frame stub_frame = current->last_frame(); 1939 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1940 frame caller = stub_frame.sender(®_map); 1941 if (caller.is_compiled_frame()) { 1942 caller_is_c1 = caller.cb()->is_compiled_by_c1(); 1943 } 1944 1945 // Do nothing if the frame isn't a live compiled frame. 1946 // nmethod could be deoptimized by the time we get here 1947 // so no update to the caller is needed. 1948 1949 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1950 1951 address pc = caller.pc(); 1952 1953 // Check for static or virtual call 1954 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1955 1956 // Default call_addr is the location of the "basic" call. 1957 // Determine the address of the call we a reresolving. With 1958 // Inline Caches we will always find a recognizable call. 1959 // With Inline Caches disabled we may or may not find a 1960 // recognizable call. We will always find a call for static 1961 // calls and for optimized virtual calls. For vanilla virtual 1962 // calls it depends on the state of the UseInlineCaches switch. 1963 // 1964 // With Inline Caches disabled we can get here for a virtual call 1965 // for two reasons: 1966 // 1 - calling an abstract method. The vtable for abstract methods 1967 // will run us thru handle_wrong_method and we will eventually 1968 // end up in the interpreter to throw the ame. 1969 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1970 // call and between the time we fetch the entry address and 1971 // we jump to it the target gets deoptimized. Similar to 1 1972 // we will wind up in the interprter (thru a c2i with c2). 1973 // 1974 address call_addr = nullptr; 1975 { 1976 // Get call instruction under lock because another thread may be 1977 // busy patching it. 1978 CompiledICLocker ml(caller_nm); 1979 // Location of call instruction 1980 call_addr = caller_nm->call_instruction_address(pc); 1981 } 1982 1983 // Check relocations for the matching call to 1) avoid false positives, 1984 // and 2) determine the type. 1985 if (call_addr != nullptr) { 1986 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1987 // bytes back in the instruction stream so we must also check for reloc info. 1988 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1989 bool ret = iter.next(); // Get item 1990 if (ret) { 1991 is_static_call = false; 1992 is_optimized = false; 1993 switch (iter.type()) { 1994 case relocInfo::static_call_type: 1995 is_static_call = true; 1996 1997 case relocInfo::virtual_call_type: 1998 case relocInfo::opt_virtual_call_type: 1999 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 2000 // Cleaning the inline cache will force a new resolve. This is more robust 2001 // than directly setting it to the new destination, since resolving of calls 2002 // is always done through the same code path. (experience shows that it 2003 // leads to very hard to track down bugs, if an inline cache gets updated 2004 // to a wrong method). It should not be performance critical, since the 2005 // resolve is only done once. 2006 guarantee(iter.addr() == call_addr, "must find call"); 2007 for (;;) { 2008 ICRefillVerifier ic_refill_verifier; 2009 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 2010 InlineCacheBuffer::refill_ic_stubs(); 2011 } else { 2012 break; 2013 } 2014 } 2015 break; 2016 default: 2017 break; 2018 } 2019 } 2020 } 2021 } 2022 2023 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 2024 2025 #ifndef PRODUCT 2026 Atomic::inc(&_wrong_method_ctr); 2027 2028 if (TraceCallFixup) { 2029 ResourceMark rm(current); 2030 tty->print("handle_wrong_method reresolving call to"); 2031 callee_method->print_short_name(tty); 2032 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 2033 } 2034 #endif 2035 2036 return callee_method; 2037 } 2038 2039 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 2040 // The faulting unsafe accesses should be changed to throw the error 2041 // synchronously instead. Meanwhile the faulting instruction will be 2042 // skipped over (effectively turning it into a no-op) and an 2043 // asynchronous exception will be raised which the thread will 2044 // handle at a later point. If the instruction is a load it will 2045 // return garbage. 2046 2047 // Request an async exception. 2048 thread->set_pending_unsafe_access_error(); 2049 2050 // Return address of next instruction to execute. 2051 return next_pc; 2052 } 2053 2054 #ifdef ASSERT 2055 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 2056 const BasicType* sig_bt, 2057 const VMRegPair* regs) { 2058 ResourceMark rm; 2059 const int total_args_passed = method->size_of_parameters(); 2060 const VMRegPair* regs_with_member_name = regs; 2061 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 2062 2063 const int member_arg_pos = total_args_passed - 1; 2064 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 2065 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 2066 2067 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 2068 2069 for (int i = 0; i < member_arg_pos; i++) { 2070 VMReg a = regs_with_member_name[i].first(); 2071 VMReg b = regs_without_member_name[i].first(); 2072 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 2073 } 2074 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 2075 } 2076 #endif 2077 2078 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 2079 if (destination != entry_point) { 2080 CodeBlob* callee = CodeCache::find_blob(destination); 2081 // callee == cb seems weird. It means calling interpreter thru stub. 2082 if (callee != nullptr && (callee == cb || callee->is_adapter_blob())) { 2083 // static call or optimized virtual 2084 if (TraceCallFixup) { 2085 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2086 moop->print_short_name(tty); 2087 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2088 } 2089 return true; 2090 } else { 2091 if (TraceCallFixup) { 2092 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2093 moop->print_short_name(tty); 2094 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2095 } 2096 // assert is too strong could also be resolve destinations. 2097 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 2098 } 2099 } else { 2100 if (TraceCallFixup) { 2101 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2102 moop->print_short_name(tty); 2103 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2104 } 2105 } 2106 return false; 2107 } 2108 2109 // --------------------------------------------------------------------------- 2110 // We are calling the interpreter via a c2i. Normally this would mean that 2111 // we were called by a compiled method. However we could have lost a race 2112 // where we went int -> i2c -> c2i and so the caller could in fact be 2113 // interpreted. If the caller is compiled we attempt to patch the caller 2114 // so he no longer calls into the interpreter. 2115 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 2116 Method* moop(method); 2117 2118 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 2119 2120 // It's possible that deoptimization can occur at a call site which hasn't 2121 // been resolved yet, in which case this function will be called from 2122 // an nmethod that has been patched for deopt and we can ignore the 2123 // request for a fixup. 2124 // Also it is possible that we lost a race in that from_compiled_entry 2125 // is now back to the i2c in that case we don't need to patch and if 2126 // we did we'd leap into space because the callsite needs to use 2127 // "to interpreter" stub in order to load up the Method*. Don't 2128 // ask me how I know this... 2129 2130 // Result from nmethod::is_unloading is not stable across safepoints. 2131 NoSafepointVerifier nsv; 2132 2133 CompiledMethod* callee = moop->code(); 2134 if (callee == nullptr) { 2135 return; 2136 } 2137 2138 CodeBlob* cb = CodeCache::find_blob(caller_pc); 2139 if (cb == nullptr || !cb->is_compiled() || callee->is_unloading()) { 2140 return; 2141 } 2142 2143 // The check above makes sure this is a nmethod. 2144 CompiledMethod* nm = cb->as_compiled_method_or_null(); 2145 assert(nm, "must be"); 2146 2147 // Get the return PC for the passed caller PC. 2148 address return_pc = caller_pc + frame::pc_return_offset; 2149 2150 assert(!JavaThread::current()->is_interp_only_mode() || !nm->method()->is_continuation_enter_intrinsic() 2151 || ContinuationEntry::is_interpreted_call(return_pc), "interp_only_mode but not in enterSpecial interpreted entry"); 2152 2153 // There is a benign race here. We could be attempting to patch to a compiled 2154 // entry point at the same time the callee is being deoptimized. If that is 2155 // the case then entry_point may in fact point to a c2i and we'd patch the 2156 // call site with the same old data. clear_code will set code() to null 2157 // at the end of it. If we happen to see that null then we can skip trying 2158 // to patch. If we hit the window where the callee has a c2i in the 2159 // from_compiled_entry and the null isn't present yet then we lose the race 2160 // and patch the code with the same old data. Asi es la vida. 2161 2162 if (moop->code() == nullptr) return; 2163 2164 if (nm->is_in_use()) { 2165 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 2166 CompiledICLocker ic_locker(nm); 2167 if (NativeCall::is_call_before(return_pc)) { 2168 ResourceMark mark; 2169 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 2170 // 2171 // bug 6281185. We might get here after resolving a call site to a vanilla 2172 // virtual call. Because the resolvee uses the verified entry it may then 2173 // see compiled code and attempt to patch the site by calling us. This would 2174 // then incorrectly convert the call site to optimized and its downhill from 2175 // there. If you're lucky you'll get the assert in the bugid, if not you've 2176 // just made a call site that could be megamorphic into a monomorphic site 2177 // for the rest of its life! Just another racing bug in the life of 2178 // fixup_callers_callsite ... 2179 // 2180 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 2181 iter.next(); 2182 assert(iter.has_current(), "must have a reloc at java call site"); 2183 relocInfo::relocType typ = iter.reloc()->type(); 2184 if (typ != relocInfo::static_call_type && 2185 typ != relocInfo::opt_virtual_call_type && 2186 typ != relocInfo::static_stub_type) { 2187 return; 2188 } 2189 if (nm->method()->is_continuation_enter_intrinsic()) { 2190 assert(ContinuationEntry::is_interpreted_call(call->instruction_address()) == JavaThread::current()->is_interp_only_mode(), 2191 "mode: %d", JavaThread::current()->is_interp_only_mode()); 2192 if (ContinuationEntry::is_interpreted_call(call->instruction_address())) { 2193 return; 2194 } 2195 } 2196 address destination = call->destination(); 2197 address entry_point = cb->is_compiled_by_c1() ? callee->verified_inline_entry_point() : callee->verified_entry_point(); 2198 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2199 call->set_destination_mt_safe(entry_point); 2200 } 2201 } 2202 } 2203 JRT_END 2204 2205 2206 // same as JVM_Arraycopy, but called directly from compiled code 2207 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2208 oopDesc* dest, jint dest_pos, 2209 jint length, 2210 JavaThread* current)) { 2211 #ifndef PRODUCT 2212 _slow_array_copy_ctr++; 2213 #endif 2214 // Check if we have null pointers 2215 if (src == nullptr || dest == nullptr) { 2216 THROW(vmSymbols::java_lang_NullPointerException()); 2217 } 2218 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2219 // even though the copy_array API also performs dynamic checks to ensure 2220 // that src and dest are truly arrays (and are conformable). 2221 // The copy_array mechanism is awkward and could be removed, but 2222 // the compilers don't call this function except as a last resort, 2223 // so it probably doesn't matter. 2224 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2225 (arrayOopDesc*)dest, dest_pos, 2226 length, current); 2227 } 2228 JRT_END 2229 2230 // The caller of generate_class_cast_message() (or one of its callers) 2231 // must use a ResourceMark in order to correctly free the result. 2232 char* SharedRuntime::generate_class_cast_message( 2233 JavaThread* thread, Klass* caster_klass) { 2234 2235 // Get target class name from the checkcast instruction 2236 vframeStream vfst(thread, true); 2237 assert(!vfst.at_end(), "Java frame must exist"); 2238 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2239 constantPoolHandle cpool(thread, vfst.method()->constants()); 2240 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2241 Symbol* target_klass_name = nullptr; 2242 if (target_klass == nullptr) { 2243 // This klass should be resolved, but just in case, get the name in the klass slot. 2244 target_klass_name = cpool->klass_name_at(cc.index()); 2245 } 2246 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2247 } 2248 2249 2250 // The caller of generate_class_cast_message() (or one of its callers) 2251 // must use a ResourceMark in order to correctly free the result. 2252 char* SharedRuntime::generate_class_cast_message( 2253 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2254 const char* caster_name = caster_klass->external_name(); 2255 2256 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 2257 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 2258 target_klass->external_name(); 2259 2260 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2261 2262 const char* caster_klass_description = ""; 2263 const char* target_klass_description = ""; 2264 const char* klass_separator = ""; 2265 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 2266 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2267 } else { 2268 caster_klass_description = caster_klass->class_in_module_of_loader(); 2269 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 2270 klass_separator = (target_klass != nullptr) ? "; " : ""; 2271 } 2272 2273 // add 3 for parenthesis and preceding space 2274 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2275 2276 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2277 if (message == nullptr) { 2278 // Shouldn't happen, but don't cause even more problems if it does 2279 message = const_cast<char*>(caster_klass->external_name()); 2280 } else { 2281 jio_snprintf(message, 2282 msglen, 2283 "class %s cannot be cast to class %s (%s%s%s)", 2284 caster_name, 2285 target_name, 2286 caster_klass_description, 2287 klass_separator, 2288 target_klass_description 2289 ); 2290 } 2291 return message; 2292 } 2293 2294 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2295 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2296 JRT_END 2297 2298 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2299 if (!SafepointSynchronize::is_synchronizing()) { 2300 // Only try quick_enter() if we're not trying to reach a safepoint 2301 // so that the calling thread reaches the safepoint more quickly. 2302 if (ObjectSynchronizer::quick_enter(obj, current, lock)) { 2303 return; 2304 } 2305 } 2306 // NO_ASYNC required because an async exception on the state transition destructor 2307 // would leave you with the lock held and it would never be released. 2308 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2309 // and the model is that an exception implies the method failed. 2310 JRT_BLOCK_NO_ASYNC 2311 Handle h_obj(THREAD, obj); 2312 ObjectSynchronizer::enter(h_obj, lock, current); 2313 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2314 JRT_BLOCK_END 2315 } 2316 2317 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2318 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2319 SharedRuntime::monitor_enter_helper(obj, lock, current); 2320 JRT_END 2321 2322 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2323 assert(JavaThread::current() == current, "invariant"); 2324 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2325 ExceptionMark em(current); 2326 // The object could become unlocked through a JNI call, which we have no other checks for. 2327 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2328 if (obj->is_unlocked()) { 2329 if (CheckJNICalls) { 2330 fatal("Object has been unlocked by JNI"); 2331 } 2332 return; 2333 } 2334 ObjectSynchronizer::exit(obj, lock, current); 2335 } 2336 2337 // Handles the uncommon cases of monitor unlocking in compiled code 2338 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2339 assert(current == JavaThread::current(), "pre-condition"); 2340 SharedRuntime::monitor_exit_helper(obj, lock, current); 2341 JRT_END 2342 2343 #ifndef PRODUCT 2344 2345 void SharedRuntime::print_statistics() { 2346 ttyLocker ttyl; 2347 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2348 2349 SharedRuntime::print_ic_miss_histogram(); 2350 2351 // Dump the JRT_ENTRY counters 2352 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2353 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2354 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2355 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2356 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2357 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2358 2359 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2360 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2361 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2362 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2363 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2364 2365 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2366 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2367 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2368 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2369 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2370 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2371 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2372 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2373 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2374 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2375 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2376 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2377 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2378 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2379 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2380 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2381 2382 AdapterHandlerLibrary::print_statistics(); 2383 2384 if (xtty != nullptr) xtty->tail("statistics"); 2385 } 2386 2387 inline double percent(int64_t x, int64_t y) { 2388 return 100.0 * x / MAX2(y, (int64_t)1); 2389 } 2390 2391 class MethodArityHistogram { 2392 public: 2393 enum { MAX_ARITY = 256 }; 2394 private: 2395 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2396 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2397 static uint64_t _total_compiled_calls; 2398 static uint64_t _max_compiled_calls_per_method; 2399 static int _max_arity; // max. arity seen 2400 static int _max_size; // max. arg size seen 2401 2402 static void add_method_to_histogram(nmethod* nm) { 2403 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2404 if (method != nullptr) { 2405 ArgumentCount args(method->signature()); 2406 int arity = args.size() + (method->is_static() ? 0 : 1); 2407 int argsize = method->size_of_parameters(); 2408 arity = MIN2(arity, MAX_ARITY-1); 2409 argsize = MIN2(argsize, MAX_ARITY-1); 2410 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2411 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2412 _total_compiled_calls += count; 2413 _arity_histogram[arity] += count; 2414 _size_histogram[argsize] += count; 2415 _max_arity = MAX2(_max_arity, arity); 2416 _max_size = MAX2(_max_size, argsize); 2417 } 2418 } 2419 2420 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2421 const int N = MIN2(9, n); 2422 double sum = 0; 2423 double weighted_sum = 0; 2424 for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2425 if (sum >= 1.0) { // prevent divide by zero or divide overflow 2426 double rest = sum; 2427 double percent = sum / 100; 2428 for (int i = 0; i <= N; i++) { 2429 rest -= histo[i]; 2430 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent); 2431 } 2432 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2433 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2434 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2435 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2436 } else { 2437 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2438 } 2439 } 2440 2441 void print_histogram() { 2442 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2443 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2444 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2445 print_histogram_helper(_max_size, _size_histogram, "size"); 2446 tty->cr(); 2447 } 2448 2449 public: 2450 MethodArityHistogram() { 2451 // Take the Compile_lock to protect against changes in the CodeBlob structures 2452 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2453 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2454 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2455 _max_arity = _max_size = 0; 2456 _total_compiled_calls = 0; 2457 _max_compiled_calls_per_method = 0; 2458 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2459 CodeCache::nmethods_do(add_method_to_histogram); 2460 print_histogram(); 2461 } 2462 }; 2463 2464 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2465 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2466 uint64_t MethodArityHistogram::_total_compiled_calls; 2467 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2468 int MethodArityHistogram::_max_arity; 2469 int MethodArityHistogram::_max_size; 2470 2471 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2472 tty->print_cr("Calls from compiled code:"); 2473 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2474 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2475 int64_t mono_i = _nof_interface_calls; 2476 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2477 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2478 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2479 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2480 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2481 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2482 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2483 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2484 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2485 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2486 tty->cr(); 2487 tty->print_cr("Note 1: counter updates are not MT-safe."); 2488 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2489 tty->print_cr(" %% in nested categories are relative to their category"); 2490 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2491 tty->cr(); 2492 2493 MethodArityHistogram h; 2494 } 2495 #endif 2496 2497 #ifndef PRODUCT 2498 static int _lookups; // number of calls to lookup 2499 static int _equals; // number of buckets checked with matching hash 2500 static int _hits; // number of successful lookups 2501 static int _compact; // number of equals calls with compact signature 2502 #endif 2503 2504 // A simple wrapper class around the calling convention information 2505 // that allows sharing of adapters for the same calling convention. 2506 class AdapterFingerPrint : public CHeapObj<mtCode> { 2507 private: 2508 enum { 2509 _basic_type_bits = 4, 2510 _basic_type_mask = right_n_bits(_basic_type_bits), 2511 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2512 _compact_int_count = 3 2513 }; 2514 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2515 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2516 2517 union { 2518 int _compact[_compact_int_count]; 2519 int* _fingerprint; 2520 } _value; 2521 int _length; // A negative length indicates the fingerprint is in the compact form, 2522 // Otherwise _value._fingerprint is the array. 2523 2524 // Remap BasicTypes that are handled equivalently by the adapters. 2525 // These are correct for the current system but someday it might be 2526 // necessary to make this mapping platform dependent. 2527 static BasicType adapter_encoding(BasicType in) { 2528 switch (in) { 2529 case T_BOOLEAN: 2530 case T_BYTE: 2531 case T_SHORT: 2532 case T_CHAR: 2533 // They are all promoted to T_INT in the calling convention 2534 return T_INT; 2535 2536 case T_OBJECT: 2537 case T_ARRAY: 2538 // In other words, we assume that any register good enough for 2539 // an int or long is good enough for a managed pointer. 2540 #ifdef _LP64 2541 return T_LONG; 2542 #else 2543 return T_INT; 2544 #endif 2545 2546 case T_INT: 2547 case T_LONG: 2548 case T_FLOAT: 2549 case T_DOUBLE: 2550 case T_VOID: 2551 return in; 2552 2553 default: 2554 ShouldNotReachHere(); 2555 return T_CONFLICT; 2556 } 2557 } 2558 2559 public: 2560 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2561 // The fingerprint is based on the BasicType signature encoded 2562 // into an array of ints with eight entries per int. 2563 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2564 int* ptr; 2565 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2566 if (len <= _compact_int_count) { 2567 assert(_compact_int_count == 3, "else change next line"); 2568 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2569 // Storing the signature encoded as signed chars hits about 98% 2570 // of the time. 2571 _length = -len; 2572 ptr = _value._compact; 2573 } else { 2574 _length = len; 2575 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2576 ptr = _value._fingerprint; 2577 } 2578 2579 // Now pack the BasicTypes with 8 per int 2580 int sig_index = 0; 2581 BasicType prev_bt = T_ILLEGAL; 2582 int vt_count = 0; 2583 for (int index = 0; index < len; index++) { 2584 int value = 0; 2585 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2586 BasicType bt = T_ILLEGAL; 2587 if (sig_index < total_args_passed) { 2588 bt = sig->at(sig_index++)._bt; 2589 if (bt == T_PRIMITIVE_OBJECT) { 2590 // Found start of inline type in signature 2591 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2592 if (sig_index == 1 && has_ro_adapter) { 2593 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2594 // with other adapters that have the same inline type as first argument and no receiver. 2595 bt = T_VOID; 2596 } 2597 vt_count++; 2598 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2599 // Found end of inline type in signature 2600 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2601 vt_count--; 2602 assert(vt_count >= 0, "invalid vt_count"); 2603 } else if (vt_count == 0) { 2604 // Widen fields that are not part of a scalarized inline type argument 2605 bt = adapter_encoding(bt); 2606 } 2607 prev_bt = bt; 2608 } 2609 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2610 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2611 value = (value << _basic_type_bits) | bt_val; 2612 } 2613 ptr[index] = value; 2614 } 2615 assert(vt_count == 0, "invalid vt_count"); 2616 } 2617 2618 ~AdapterFingerPrint() { 2619 if (_length > 0) { 2620 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2621 } 2622 } 2623 2624 int value(int index) { 2625 if (_length < 0) { 2626 return _value._compact[index]; 2627 } 2628 return _value._fingerprint[index]; 2629 } 2630 int length() { 2631 if (_length < 0) return -_length; 2632 return _length; 2633 } 2634 2635 bool is_compact() { 2636 return _length <= 0; 2637 } 2638 2639 unsigned int compute_hash() { 2640 int hash = 0; 2641 for (int i = 0; i < length(); i++) { 2642 int v = value(i); 2643 hash = (hash << 8) ^ v ^ (hash >> 5); 2644 } 2645 return (unsigned int)hash; 2646 } 2647 2648 const char* as_string() { 2649 stringStream st; 2650 st.print("0x"); 2651 for (int i = 0; i < length(); i++) { 2652 st.print("%x", value(i)); 2653 } 2654 return st.as_string(); 2655 } 2656 2657 #ifndef PRODUCT 2658 // Reconstitutes the basic type arguments from the fingerprint, 2659 // producing strings like LIJDF 2660 const char* as_basic_args_string() { 2661 stringStream st; 2662 bool long_prev = false; 2663 for (int i = 0; i < length(); i++) { 2664 unsigned val = (unsigned)value(i); 2665 // args are packed so that first/lower arguments are in the highest 2666 // bits of each int value, so iterate from highest to the lowest 2667 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2668 unsigned v = (val >> j) & _basic_type_mask; 2669 if (v == 0) { 2670 assert(i == length() - 1, "Only expect zeroes in the last word"); 2671 continue; 2672 } 2673 if (long_prev) { 2674 long_prev = false; 2675 if (v == T_VOID) { 2676 st.print("J"); 2677 } else { 2678 st.print("L"); 2679 } 2680 } else if (v == T_LONG) { 2681 long_prev = true; 2682 } else if (v != T_VOID){ 2683 st.print("%c", type2char((BasicType)v)); 2684 } 2685 } 2686 } 2687 if (long_prev) { 2688 st.print("L"); 2689 } 2690 return st.as_string(); 2691 } 2692 #endif // !product 2693 2694 bool equals(AdapterFingerPrint* other) { 2695 if (other->_length != _length) { 2696 return false; 2697 } 2698 if (_length < 0) { 2699 assert(_compact_int_count == 3, "else change next line"); 2700 return _value._compact[0] == other->_value._compact[0] && 2701 _value._compact[1] == other->_value._compact[1] && 2702 _value._compact[2] == other->_value._compact[2]; 2703 } else { 2704 for (int i = 0; i < _length; i++) { 2705 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2706 return false; 2707 } 2708 } 2709 } 2710 return true; 2711 } 2712 2713 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2714 NOT_PRODUCT(_equals++); 2715 return fp1->equals(fp2); 2716 } 2717 2718 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2719 return fp->compute_hash(); 2720 } 2721 }; 2722 2723 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2724 ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2725 AnyObj::C_HEAP, mtCode, 2726 AdapterFingerPrint::compute_hash, 2727 AdapterFingerPrint::equals> _adapter_handler_table; 2728 2729 // Find a entry with the same fingerprint if it exists 2730 static AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2731 NOT_PRODUCT(_lookups++); 2732 assert_lock_strong(AdapterHandlerLibrary_lock); 2733 AdapterFingerPrint fp(sig, has_ro_adapter); 2734 AdapterHandlerEntry** entry = _adapter_handler_table.get(&fp); 2735 if (entry != nullptr) { 2736 #ifndef PRODUCT 2737 if (fp.is_compact()) _compact++; 2738 _hits++; 2739 #endif 2740 return *entry; 2741 } 2742 return nullptr; 2743 } 2744 2745 #ifndef PRODUCT 2746 static void print_table_statistics() { 2747 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2748 return sizeof(*key) + sizeof(*a); 2749 }; 2750 TableStatistics ts = _adapter_handler_table.statistics_calculate(size); 2751 ts.print(tty, "AdapterHandlerTable"); 2752 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2753 _adapter_handler_table.table_size(), _adapter_handler_table.number_of_entries()); 2754 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2755 _lookups, _equals, _hits, _compact); 2756 } 2757 #endif 2758 2759 // --------------------------------------------------------------------------- 2760 // Implementation of AdapterHandlerLibrary 2761 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2762 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2763 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2764 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2765 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2766 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2767 const int AdapterHandlerLibrary_size = 48*K; 2768 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2769 2770 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2771 return _buffer; 2772 } 2773 2774 static void post_adapter_creation(const AdapterBlob* new_adapter, 2775 const AdapterHandlerEntry* entry) { 2776 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2777 char blob_id[256]; 2778 jio_snprintf(blob_id, 2779 sizeof(blob_id), 2780 "%s(%s)", 2781 new_adapter->name(), 2782 entry->fingerprint()->as_string()); 2783 if (Forte::is_enabled()) { 2784 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2785 } 2786 2787 if (JvmtiExport::should_post_dynamic_code_generated()) { 2788 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2789 } 2790 } 2791 } 2792 2793 void AdapterHandlerLibrary::initialize() { 2794 ResourceMark rm; 2795 AdapterBlob* no_arg_blob = nullptr; 2796 AdapterBlob* int_arg_blob = nullptr; 2797 AdapterBlob* obj_arg_blob = nullptr; 2798 AdapterBlob* obj_int_arg_blob = nullptr; 2799 AdapterBlob* obj_obj_arg_blob = nullptr; 2800 { 2801 MutexLocker mu(AdapterHandlerLibrary_lock); 2802 2803 // Create a special handler for abstract methods. Abstract methods 2804 // are never compiled so an i2c entry is somewhat meaningless, but 2805 // throw AbstractMethodError just in case. 2806 // Pass wrong_method_abstract for the c2i transitions to return 2807 // AbstractMethodError for invalid invocations. 2808 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2809 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2810 StubRoutines::throw_AbstractMethodError_entry(), 2811 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2812 wrong_method_abstract, wrong_method_abstract); 2813 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2814 2815 CompiledEntrySignature no_args; 2816 no_args.compute_calling_conventions(); 2817 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2818 2819 CompiledEntrySignature obj_args; 2820 SigEntry::add_entry(obj_args.sig(), T_OBJECT, nullptr); 2821 obj_args.compute_calling_conventions(); 2822 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2823 2824 CompiledEntrySignature int_args; 2825 SigEntry::add_entry(int_args.sig(), T_INT, nullptr); 2826 int_args.compute_calling_conventions(); 2827 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2828 2829 CompiledEntrySignature obj_int_args; 2830 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT, nullptr); 2831 SigEntry::add_entry(obj_int_args.sig(), T_INT, nullptr); 2832 obj_int_args.compute_calling_conventions(); 2833 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2834 2835 CompiledEntrySignature obj_obj_args; 2836 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2837 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2838 obj_obj_args.compute_calling_conventions(); 2839 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2840 2841 assert(no_arg_blob != nullptr && 2842 obj_arg_blob != nullptr && 2843 int_arg_blob != nullptr && 2844 obj_int_arg_blob != nullptr && 2845 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2846 } 2847 return; 2848 2849 // Outside of the lock 2850 post_adapter_creation(no_arg_blob, _no_arg_handler); 2851 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2852 post_adapter_creation(int_arg_blob, _int_arg_handler); 2853 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2854 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2855 } 2856 2857 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2858 address i2c_entry, 2859 address c2i_entry, 2860 address c2i_inline_entry, 2861 address c2i_inline_ro_entry, 2862 address c2i_unverified_entry, 2863 address c2i_unverified_inline_entry, 2864 address c2i_no_clinit_check_entry) { 2865 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 2866 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 2867 } 2868 2869 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2870 if (method->is_abstract()) { 2871 return nullptr; 2872 } 2873 int total_args_passed = method->size_of_parameters(); // All args on stack 2874 if (total_args_passed == 0) { 2875 return _no_arg_handler; 2876 } else if (total_args_passed == 1) { 2877 if (!method->is_static()) { 2878 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2879 return nullptr; 2880 } 2881 return _obj_arg_handler; 2882 } 2883 switch (method->signature()->char_at(1)) { 2884 case JVM_SIGNATURE_CLASS: { 2885 if (InlineTypePassFieldsAsArgs) { 2886 SignatureStream ss(method->signature()); 2887 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2888 if (vk != nullptr) { 2889 return nullptr; 2890 } 2891 } 2892 return _obj_arg_handler; 2893 } 2894 case JVM_SIGNATURE_ARRAY: 2895 return _obj_arg_handler; 2896 case JVM_SIGNATURE_INT: 2897 case JVM_SIGNATURE_BOOLEAN: 2898 case JVM_SIGNATURE_CHAR: 2899 case JVM_SIGNATURE_BYTE: 2900 case JVM_SIGNATURE_SHORT: 2901 return _int_arg_handler; 2902 } 2903 } else if (total_args_passed == 2 && 2904 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2905 switch (method->signature()->char_at(1)) { 2906 case JVM_SIGNATURE_CLASS: { 2907 if (InlineTypePassFieldsAsArgs) { 2908 SignatureStream ss(method->signature()); 2909 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2910 if (vk != nullptr) { 2911 return nullptr; 2912 } 2913 } 2914 return _obj_obj_arg_handler; 2915 } 2916 case JVM_SIGNATURE_ARRAY: 2917 return _obj_obj_arg_handler; 2918 case JVM_SIGNATURE_INT: 2919 case JVM_SIGNATURE_BOOLEAN: 2920 case JVM_SIGNATURE_CHAR: 2921 case JVM_SIGNATURE_BYTE: 2922 case JVM_SIGNATURE_SHORT: 2923 return _obj_int_arg_handler; 2924 } 2925 } 2926 return nullptr; 2927 } 2928 2929 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2930 _method(method), _num_inline_args(0), _has_inline_recv(false), 2931 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2932 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2933 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2934 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2935 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2936 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2937 } 2938 2939 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2940 // or the same entry for VEP and VIEP(RO). 2941 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2942 if (!has_scalarized_args()) { 2943 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2944 return CodeOffsets::Verified_Entry; 2945 } 2946 if (_method->is_static()) { 2947 // Static methods don't need VIEP(RO) 2948 return CodeOffsets::Verified_Entry; 2949 } 2950 2951 if (has_inline_recv()) { 2952 if (num_inline_args() == 1) { 2953 // Share same entry for VIEP and VIEP(RO). 2954 // This is quite common: we have an instance method in an InlineKlass that has 2955 // no inline type args other than <this>. 2956 return CodeOffsets::Verified_Inline_Entry; 2957 } else { 2958 assert(num_inline_args() > 1, "must be"); 2959 // No sharing: 2960 // VIEP(RO) -- <this> is passed as object 2961 // VEP -- <this> is passed as fields 2962 return CodeOffsets::Verified_Inline_Entry_RO; 2963 } 2964 } 2965 2966 // Either a static method, or <this> is not an inline type 2967 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2968 // No sharing: 2969 // Some arguments are passed on the stack, and we have inserted reserved entries 2970 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2971 return CodeOffsets::Verified_Inline_Entry_RO; 2972 } else { 2973 // Share same entry for VEP and VIEP(RO). 2974 return CodeOffsets::Verified_Entry; 2975 } 2976 } 2977 2978 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2979 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2980 if (_supers != nullptr) { 2981 return _supers; 2982 } 2983 _supers = new GrowableArray<Method*>(); 2984 // Skip private, static, and <init> methods 2985 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2986 return _supers; 2987 } 2988 Symbol* name = _method->name(); 2989 Symbol* signature = _method->signature(); 2990 const Klass* holder = _method->method_holder()->super(); 2991 Symbol* holder_name = holder->name(); 2992 ThreadInVMfromUnknown tiv; 2993 JavaThread* current = JavaThread::current(); 2994 HandleMark hm(current); 2995 Handle loader(current, _method->method_holder()->class_loader()); 2996 2997 // Walk up the class hierarchy and search for super methods 2998 while (holder != nullptr) { 2999 Method* super_method = holder->lookup_method(name, signature); 3000 if (super_method == nullptr) { 3001 break; 3002 } 3003 if (!super_method->is_static() && !super_method->is_private() && 3004 (!super_method->is_package_private() || 3005 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 3006 _supers->push(super_method); 3007 } 3008 holder = super_method->method_holder()->super(); 3009 } 3010 // Search interfaces for super methods 3011 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 3012 for (int i = 0; i < interfaces->length(); ++i) { 3013 Method* m = interfaces->at(i)->lookup_method(name, signature); 3014 if (m != nullptr && !m->is_static() && m->is_public()) { 3015 _supers->push(m); 3016 } 3017 } 3018 return _supers; 3019 } 3020 3021 // Iterate over arguments and compute scalarized and non-scalarized signatures 3022 void CompiledEntrySignature::compute_calling_conventions(bool init) { 3023 bool has_scalarized = false; 3024 if (_method != nullptr) { 3025 InstanceKlass* holder = _method->method_holder(); 3026 int arg_num = 0; 3027 if (!_method->is_static()) { 3028 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && 3029 (init || _method->is_scalarized_arg(arg_num))) { 3030 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 3031 has_scalarized = true; 3032 _has_inline_recv = true; 3033 _num_inline_args++; 3034 } else { 3035 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 3036 } 3037 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 3038 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 3039 arg_num++; 3040 } 3041 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 3042 BasicType bt = ss.type(); 3043 if (bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) { 3044 InlineKlass* vk = ss.as_inline_klass(holder); 3045 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 3046 // Check for a calling convention mismatch with super method(s) 3047 bool scalar_super = false; 3048 bool non_scalar_super = false; 3049 GrowableArray<Method*>* supers = get_supers(); 3050 for (int i = 0; i < supers->length(); ++i) { 3051 Method* super_method = supers->at(i); 3052 if (super_method->is_scalarized_arg(arg_num)) { 3053 scalar_super = true; 3054 } else { 3055 non_scalar_super = true; 3056 } 3057 } 3058 #ifdef ASSERT 3059 // Randomly enable below code paths for stress testing 3060 bool stress = init && StressCallingConvention; 3061 if (stress && (os::random() & 1) == 1) { 3062 non_scalar_super = true; 3063 if ((os::random() & 1) == 1) { 3064 scalar_super = true; 3065 } 3066 } 3067 #endif 3068 if (non_scalar_super) { 3069 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 3070 if (scalar_super) { 3071 // Found non-scalar *and* scalar super methods. We can't handle both. 3072 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 3073 for (int i = 0; i < supers->length(); ++i) { 3074 Method* super_method = supers->at(i); 3075 if (super_method->is_scalarized_arg(arg_num) debug_only(|| (stress && (os::random() & 1) == 1))) { 3076 super_method->set_mismatch(); 3077 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 3078 JavaThread* thread = JavaThread::current(); 3079 HandleMark hm(thread); 3080 methodHandle mh(thread, super_method); 3081 DeoptimizationScope deopt_scope; 3082 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 3083 deopt_scope.deoptimize_marked(); 3084 } 3085 } 3086 } 3087 // Fall back to non-scalarized calling convention 3088 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 3089 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 3090 } else { 3091 _num_inline_args++; 3092 has_scalarized = true; 3093 int last = _sig_cc->length(); 3094 int last_ro = _sig_cc_ro->length(); 3095 _sig_cc->appendAll(vk->extended_sig()); 3096 _sig_cc_ro->appendAll(vk->extended_sig()); 3097 if (bt == T_OBJECT) { 3098 // Nullable inline type argument, insert InlineTypeNode::IsInit field right after T_PRIMITIVE_OBJECT 3099 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr)); 3100 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr)); 3101 } 3102 } 3103 } else { 3104 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 3105 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 3106 } 3107 bt = T_OBJECT; 3108 } else { 3109 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 3110 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 3111 } 3112 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 3113 if (bt != T_VOID) { 3114 arg_num++; 3115 } 3116 } 3117 } 3118 3119 // Compute the non-scalarized calling convention 3120 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 3121 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 3122 3123 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 3124 if (has_scalarized && !_method->is_native()) { 3125 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 3126 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 3127 3128 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 3129 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 3130 3131 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 3132 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 3133 3134 // Upper bound on stack arguments to avoid hitting the argument limit and 3135 // bailing out of compilation ("unsupported incoming calling sequence"). 3136 // TODO we need a reasonable limit (flag?) here 3137 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 3138 return; // Success 3139 } 3140 } 3141 3142 // No scalarized args 3143 _sig_cc = _sig; 3144 _regs_cc = _regs; 3145 _args_on_stack_cc = _args_on_stack; 3146 3147 _sig_cc_ro = _sig; 3148 _regs_cc_ro = _regs; 3149 _args_on_stack_cc_ro = _args_on_stack; 3150 } 3151 3152 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 3153 // Use customized signature handler. Need to lock around updates to 3154 // the _adapter_handler_table (it is not safe for concurrent readers 3155 // and a single writer: this could be fixed if it becomes a 3156 // problem). 3157 3158 // Fast-path for trivial adapters 3159 AdapterHandlerEntry* entry = get_simple_adapter(method); 3160 if (entry != nullptr) { 3161 return entry; 3162 } 3163 3164 ResourceMark rm; 3165 AdapterBlob* new_adapter = nullptr; 3166 3167 CompiledEntrySignature ces(method()); 3168 ces.compute_calling_conventions(); 3169 if (ces.has_scalarized_args()) { 3170 method->set_has_scalarized_args(); 3171 if (ces.c1_needs_stack_repair()) { 3172 method->set_c1_needs_stack_repair(); 3173 } 3174 if (ces.c2_needs_stack_repair()) { 3175 method->set_c2_needs_stack_repair(); 3176 } 3177 } else if (method->is_abstract()) { 3178 return _abstract_method_handler; 3179 } 3180 3181 { 3182 MutexLocker mu(AdapterHandlerLibrary_lock); 3183 3184 if (ces.has_scalarized_args() && method->is_abstract()) { 3185 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 3186 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 3187 entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 3188 StubRoutines::throw_AbstractMethodError_entry(), 3189 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 3190 wrong_method_abstract, wrong_method_abstract); 3191 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 3192 heap_sig->appendAll(ces.sig_cc_ro()); 3193 entry->set_sig_cc(heap_sig); 3194 return entry; 3195 } 3196 3197 // Lookup method signature's fingerprint 3198 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 3199 3200 if (entry != nullptr) { 3201 #ifdef ASSERT 3202 if (VerifyAdapterSharing) { 3203 AdapterBlob* comparison_blob = nullptr; 3204 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false); 3205 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 3206 assert(comparison_entry->compare_code(entry), "code must match"); 3207 // Release the one just created and return the original 3208 delete comparison_entry; 3209 } 3210 #endif 3211 return entry; 3212 } 3213 3214 entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true); 3215 } 3216 3217 // Outside of the lock 3218 if (new_adapter != nullptr) { 3219 post_adapter_creation(new_adapter, entry); 3220 } 3221 return entry; 3222 } 3223 3224 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 3225 CompiledEntrySignature& ces, 3226 bool allocate_code_blob) { 3227 3228 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 3229 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 3230 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 3231 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 3232 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 3233 3234 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3235 CodeBuffer buffer(buf); 3236 short buffer_locs[20]; 3237 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3238 sizeof(buffer_locs)/sizeof(relocInfo)); 3239 3240 // Make a C heap allocated version of the fingerprint to store in the adapter 3241 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(ces.sig_cc(), ces.has_inline_recv()); 3242 MacroAssembler _masm(&buffer); 3243 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 3244 ces.args_on_stack(), 3245 ces.sig(), 3246 ces.regs(), 3247 ces.sig_cc(), 3248 ces.regs_cc(), 3249 ces.sig_cc_ro(), 3250 ces.regs_cc_ro(), 3251 fingerprint, 3252 new_adapter, 3253 allocate_code_blob); 3254 3255 if (ces.has_scalarized_args()) { 3256 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3257 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3258 heap_sig->appendAll(ces.sig_cc()); 3259 entry->set_sig_cc(heap_sig); 3260 } 3261 3262 #ifdef ASSERT 3263 if (VerifyAdapterSharing) { 3264 entry->save_code(buf->code_begin(), buffer.insts_size()); 3265 if (!allocate_code_blob) { 3266 return entry; 3267 } 3268 } 3269 #endif 3270 3271 NOT_PRODUCT(int insts_size = buffer.insts_size()); 3272 if (new_adapter == nullptr) { 3273 // CodeCache is full, disable compilation 3274 // Ought to log this but compile log is only per compile thread 3275 // and we're some non descript Java thread. 3276 return nullptr; 3277 } 3278 entry->relocate(new_adapter->content_begin()); 3279 #ifndef PRODUCT 3280 // debugging support 3281 if (PrintAdapterHandlers || PrintStubCode) { 3282 ttyLocker ttyl; 3283 entry->print_adapter_on(tty); 3284 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 3285 _adapter_handler_table.number_of_entries(), fingerprint->as_basic_args_string(), 3286 fingerprint->as_string(), insts_size); 3287 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 3288 if (Verbose || PrintStubCode) { 3289 address first_pc = entry->base_address(); 3290 if (first_pc != nullptr) { 3291 Disassembler::decode(first_pc, first_pc + insts_size, tty 3292 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 3293 tty->cr(); 3294 } 3295 } 3296 } 3297 #endif 3298 3299 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 3300 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 3301 if (contains_all_checks || !VerifyAdapterCalls) { 3302 assert_lock_strong(AdapterHandlerLibrary_lock); 3303 _adapter_handler_table.put(fingerprint, entry); 3304 } 3305 return entry; 3306 } 3307 3308 address AdapterHandlerEntry::base_address() { 3309 address base = _i2c_entry; 3310 if (base == nullptr) base = _c2i_entry; 3311 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3312 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3313 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3314 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3315 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3316 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3317 return base; 3318 } 3319 3320 void AdapterHandlerEntry::relocate(address new_base) { 3321 address old_base = base_address(); 3322 assert(old_base != nullptr, ""); 3323 ptrdiff_t delta = new_base - old_base; 3324 if (_i2c_entry != nullptr) 3325 _i2c_entry += delta; 3326 if (_c2i_entry != nullptr) 3327 _c2i_entry += delta; 3328 if (_c2i_inline_entry != nullptr) 3329 _c2i_inline_entry += delta; 3330 if (_c2i_inline_ro_entry != nullptr) 3331 _c2i_inline_ro_entry += delta; 3332 if (_c2i_unverified_entry != nullptr) 3333 _c2i_unverified_entry += delta; 3334 if (_c2i_unverified_inline_entry != nullptr) 3335 _c2i_unverified_inline_entry += delta; 3336 if (_c2i_no_clinit_check_entry != nullptr) 3337 _c2i_no_clinit_check_entry += delta; 3338 assert(base_address() == new_base, ""); 3339 } 3340 3341 3342 AdapterHandlerEntry::~AdapterHandlerEntry() { 3343 delete _fingerprint; 3344 if (_sig_cc != nullptr) { 3345 delete _sig_cc; 3346 } 3347 #ifdef ASSERT 3348 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3349 #endif 3350 } 3351 3352 3353 #ifdef ASSERT 3354 // Capture the code before relocation so that it can be compared 3355 // against other versions. If the code is captured after relocation 3356 // then relative instructions won't be equivalent. 3357 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3358 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3359 _saved_code_length = length; 3360 memcpy(_saved_code, buffer, length); 3361 } 3362 3363 3364 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3365 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3366 3367 if (other->_saved_code_length != _saved_code_length) { 3368 return false; 3369 } 3370 3371 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3372 } 3373 #endif 3374 3375 3376 /** 3377 * Create a native wrapper for this native method. The wrapper converts the 3378 * Java-compiled calling convention to the native convention, handles 3379 * arguments, and transitions to native. On return from the native we transition 3380 * back to java blocking if a safepoint is in progress. 3381 */ 3382 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3383 ResourceMark rm; 3384 nmethod* nm = nullptr; 3385 3386 // Check if memory should be freed before allocation 3387 CodeCache::gc_on_allocation(); 3388 3389 assert(method->is_native(), "must be native"); 3390 assert(method->is_special_native_intrinsic() || 3391 method->has_native_function(), "must have something valid to call!"); 3392 3393 { 3394 // Perform the work while holding the lock, but perform any printing outside the lock 3395 MutexLocker mu(AdapterHandlerLibrary_lock); 3396 // See if somebody beat us to it 3397 if (method->code() != nullptr) { 3398 return; 3399 } 3400 3401 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3402 assert(compile_id > 0, "Must generate native wrapper"); 3403 3404 3405 ResourceMark rm; 3406 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3407 if (buf != nullptr) { 3408 CodeBuffer buffer(buf); 3409 3410 if (method->is_continuation_enter_intrinsic()) { 3411 buffer.initialize_stubs_size(192); 3412 } 3413 3414 struct { double data[20]; } locs_buf; 3415 struct { double data[20]; } stubs_locs_buf; 3416 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3417 #if defined(AARCH64) || defined(PPC64) 3418 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3419 // in the constant pool to ensure ordering between the barrier and oops 3420 // accesses. For native_wrappers we need a constant. 3421 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3422 // static java call that is resolved in the runtime. 3423 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3424 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3425 } 3426 #endif 3427 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3428 MacroAssembler _masm(&buffer); 3429 3430 // Fill in the signature array, for the calling-convention call. 3431 const int total_args_passed = method->size_of_parameters(); 3432 3433 BasicType stack_sig_bt[16]; 3434 VMRegPair stack_regs[16]; 3435 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3436 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3437 3438 int i = 0; 3439 if (!method->is_static()) { // Pass in receiver first 3440 sig_bt[i++] = T_OBJECT; 3441 } 3442 SignatureStream ss(method->signature()); 3443 for (; !ss.at_return_type(); ss.next()) { 3444 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3445 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3446 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3447 } 3448 } 3449 assert(i == total_args_passed, ""); 3450 BasicType ret_type = ss.type(); 3451 3452 // Now get the compiled-Java arguments layout. 3453 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3454 3455 // Generate the compiled-to-native wrapper code 3456 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3457 3458 if (nm != nullptr) { 3459 { 3460 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 3461 if (nm->make_in_use()) { 3462 method->set_code(method, nm); 3463 } 3464 } 3465 3466 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3467 if (directive->PrintAssemblyOption) { 3468 nm->print_code(); 3469 } 3470 DirectivesStack::release(directive); 3471 } 3472 } 3473 } // Unlock AdapterHandlerLibrary_lock 3474 3475 3476 // Install the generated code. 3477 if (nm != nullptr) { 3478 const char *msg = method->is_static() ? "(static)" : ""; 3479 CompileTask::print_ul(nm, msg); 3480 if (PrintCompilation) { 3481 ttyLocker ttyl; 3482 CompileTask::print(tty, nm, msg); 3483 } 3484 nm->post_compiled_method_load_event(); 3485 } 3486 } 3487 3488 // ------------------------------------------------------------------------- 3489 // Java-Java calling convention 3490 // (what you use when Java calls Java) 3491 3492 //------------------------------name_for_receiver---------------------------------- 3493 // For a given signature, return the VMReg for parameter 0. 3494 VMReg SharedRuntime::name_for_receiver() { 3495 VMRegPair regs; 3496 BasicType sig_bt = T_OBJECT; 3497 (void) java_calling_convention(&sig_bt, ®s, 1); 3498 // Return argument 0 register. In the LP64 build pointers 3499 // take 2 registers, but the VM wants only the 'main' name. 3500 return regs.first(); 3501 } 3502 3503 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3504 // This method is returning a data structure allocating as a 3505 // ResourceObject, so do not put any ResourceMarks in here. 3506 3507 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3508 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3509 int cnt = 0; 3510 if (has_receiver) { 3511 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3512 } 3513 3514 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3515 BasicType type = ss.type(); 3516 sig_bt[cnt++] = type; 3517 if (is_double_word_type(type)) 3518 sig_bt[cnt++] = T_VOID; 3519 } 3520 3521 if (has_appendix) { 3522 sig_bt[cnt++] = T_OBJECT; 3523 } 3524 3525 assert(cnt < 256, "grow table size"); 3526 3527 int comp_args_on_stack; 3528 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3529 3530 // the calling convention doesn't count out_preserve_stack_slots so 3531 // we must add that in to get "true" stack offsets. 3532 3533 if (comp_args_on_stack) { 3534 for (int i = 0; i < cnt; i++) { 3535 VMReg reg1 = regs[i].first(); 3536 if (reg1->is_stack()) { 3537 // Yuck 3538 reg1 = reg1->bias(out_preserve_stack_slots()); 3539 } 3540 VMReg reg2 = regs[i].second(); 3541 if (reg2->is_stack()) { 3542 // Yuck 3543 reg2 = reg2->bias(out_preserve_stack_slots()); 3544 } 3545 regs[i].set_pair(reg2, reg1); 3546 } 3547 } 3548 3549 // results 3550 *arg_size = cnt; 3551 return regs; 3552 } 3553 3554 // OSR Migration Code 3555 // 3556 // This code is used convert interpreter frames into compiled frames. It is 3557 // called from very start of a compiled OSR nmethod. A temp array is 3558 // allocated to hold the interesting bits of the interpreter frame. All 3559 // active locks are inflated to allow them to move. The displaced headers and 3560 // active interpreter locals are copied into the temp buffer. Then we return 3561 // back to the compiled code. The compiled code then pops the current 3562 // interpreter frame off the stack and pushes a new compiled frame. Then it 3563 // copies the interpreter locals and displaced headers where it wants. 3564 // Finally it calls back to free the temp buffer. 3565 // 3566 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3567 3568 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3569 assert(current == JavaThread::current(), "pre-condition"); 3570 3571 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3572 // frame. The stack watermark code below ensures that the interpreted frame is processed 3573 // before it gets unwound. This is helpful as the size of the compiled frame could be 3574 // larger than the interpreted frame, which could result in the new frame not being 3575 // processed correctly. 3576 StackWatermarkSet::before_unwind(current); 3577 3578 // 3579 // This code is dependent on the memory layout of the interpreter local 3580 // array and the monitors. On all of our platforms the layout is identical 3581 // so this code is shared. If some platform lays the their arrays out 3582 // differently then this code could move to platform specific code or 3583 // the code here could be modified to copy items one at a time using 3584 // frame accessor methods and be platform independent. 3585 3586 frame fr = current->last_frame(); 3587 assert(fr.is_interpreted_frame(), ""); 3588 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3589 3590 // Figure out how many monitors are active. 3591 int active_monitor_count = 0; 3592 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3593 kptr < fr.interpreter_frame_monitor_begin(); 3594 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3595 if (kptr->obj() != nullptr) active_monitor_count++; 3596 } 3597 3598 // QQQ we could place number of active monitors in the array so that compiled code 3599 // could double check it. 3600 3601 Method* moop = fr.interpreter_frame_method(); 3602 int max_locals = moop->max_locals(); 3603 // Allocate temp buffer, 1 word per local & 2 per active monitor 3604 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3605 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3606 3607 // Copy the locals. Order is preserved so that loading of longs works. 3608 // Since there's no GC I can copy the oops blindly. 3609 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3610 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3611 (HeapWord*)&buf[0], 3612 max_locals); 3613 3614 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3615 int i = max_locals; 3616 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3617 kptr2 < fr.interpreter_frame_monitor_begin(); 3618 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3619 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3620 BasicLock *lock = kptr2->lock(); 3621 // Inflate so the object's header no longer refers to the BasicLock. 3622 if (lock->displaced_header().is_unlocked()) { 3623 // The object is locked and the resulting ObjectMonitor* will also be 3624 // locked so it can't be async deflated until ownership is dropped. 3625 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3626 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3627 } 3628 // Now the displaced header is free to move because the 3629 // object's header no longer refers to it. 3630 buf[i++] = (intptr_t)lock->displaced_header().value(); 3631 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3632 } 3633 } 3634 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3635 3636 RegisterMap map(current, 3637 RegisterMap::UpdateMap::skip, 3638 RegisterMap::ProcessFrames::include, 3639 RegisterMap::WalkContinuation::skip); 3640 frame sender = fr.sender(&map); 3641 if (sender.is_interpreted_frame()) { 3642 current->push_cont_fastpath(sender.sp()); 3643 } 3644 3645 return buf; 3646 JRT_END 3647 3648 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3649 FREE_C_HEAP_ARRAY(intptr_t, buf); 3650 JRT_END 3651 3652 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3653 bool found = false; 3654 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3655 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3656 }; 3657 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3658 _adapter_handler_table.iterate(findblob); 3659 return found; 3660 } 3661 3662 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3663 bool found = false; 3664 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3665 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3666 found = true; 3667 st->print("Adapter for signature: "); 3668 a->print_adapter_on(st); 3669 return true; 3670 } else { 3671 return false; // keep looking 3672 } 3673 }; 3674 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3675 _adapter_handler_table.iterate(findblob); 3676 assert(found, "Should have found handler"); 3677 } 3678 3679 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3680 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3681 if (get_i2c_entry() != nullptr) { 3682 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3683 } 3684 if (get_c2i_entry() != nullptr) { 3685 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3686 } 3687 if (get_c2i_entry() != nullptr) { 3688 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3689 } 3690 if (get_c2i_entry() != nullptr) { 3691 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3692 } 3693 if (get_c2i_unverified_entry() != nullptr) { 3694 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3695 } 3696 if (get_c2i_unverified_entry() != nullptr) { 3697 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3698 } 3699 if (get_c2i_no_clinit_check_entry() != nullptr) { 3700 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3701 } 3702 st->cr(); 3703 } 3704 3705 #ifndef PRODUCT 3706 3707 void AdapterHandlerLibrary::print_statistics() { 3708 print_table_statistics(); 3709 } 3710 3711 #endif /* PRODUCT */ 3712 3713 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3714 assert(current == JavaThread::current(), "pre-condition"); 3715 StackOverflow* overflow_state = current->stack_overflow_state(); 3716 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3717 overflow_state->set_reserved_stack_activation(current->stack_base()); 3718 JRT_END 3719 3720 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3721 ResourceMark rm(current); 3722 frame activation; 3723 CompiledMethod* nm = nullptr; 3724 int count = 1; 3725 3726 assert(fr.is_java_frame(), "Must start on Java frame"); 3727 3728 RegisterMap map(JavaThread::current(), 3729 RegisterMap::UpdateMap::skip, 3730 RegisterMap::ProcessFrames::skip, 3731 RegisterMap::WalkContinuation::skip); // don't walk continuations 3732 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3733 if (!fr.is_java_frame()) { 3734 continue; 3735 } 3736 3737 Method* method = nullptr; 3738 bool found = false; 3739 if (fr.is_interpreted_frame()) { 3740 method = fr.interpreter_frame_method(); 3741 if (method != nullptr && method->has_reserved_stack_access()) { 3742 found = true; 3743 } 3744 } else { 3745 CodeBlob* cb = fr.cb(); 3746 if (cb != nullptr && cb->is_compiled()) { 3747 nm = cb->as_compiled_method(); 3748 method = nm->method(); 3749 // scope_desc_near() must be used, instead of scope_desc_at() because on 3750 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3751 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3752 method = sd->method(); 3753 if (method != nullptr && method->has_reserved_stack_access()) { 3754 found = true; 3755 } 3756 } 3757 } 3758 } 3759 if (found) { 3760 activation = fr; 3761 warning("Potentially dangerous stack overflow in " 3762 "ReservedStackAccess annotated method %s [%d]", 3763 method->name_and_sig_as_C_string(), count++); 3764 EventReservedStackActivation event; 3765 if (event.should_commit()) { 3766 event.set_method(method); 3767 event.commit(); 3768 } 3769 } 3770 } 3771 return activation; 3772 } 3773 3774 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3775 // After any safepoint, just before going back to compiled code, 3776 // we inform the GC that we will be doing initializing writes to 3777 // this object in the future without emitting card-marks, so 3778 // GC may take any compensating steps. 3779 3780 oop new_obj = current->vm_result(); 3781 if (new_obj == nullptr) return; 3782 3783 BarrierSet *bs = BarrierSet::barrier_set(); 3784 bs->on_slowpath_allocation_exit(current, new_obj); 3785 } 3786 3787 // We are at a compiled code to interpreter call. We need backing 3788 // buffers for all inline type arguments. Allocate an object array to 3789 // hold them (convenient because once we're done with it we don't have 3790 // to worry about freeing it). 3791 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 3792 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 3793 ResourceMark rm; 3794 3795 int nb_slots = 0; 3796 InstanceKlass* holder = callee->method_holder(); 3797 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 3798 if (allocate_receiver) { 3799 nb_slots++; 3800 } 3801 int arg_num = callee->is_static() ? 0 : 1; 3802 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3803 BasicType bt = ss.type(); 3804 if ((bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) && callee->is_scalarized_arg(arg_num)) { 3805 nb_slots++; 3806 } 3807 if (bt != T_VOID) { 3808 arg_num++; 3809 } 3810 } 3811 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 3812 objArrayHandle array(THREAD, array_oop); 3813 arg_num = callee->is_static() ? 0 : 1; 3814 int i = 0; 3815 if (allocate_receiver) { 3816 InlineKlass* vk = InlineKlass::cast(holder); 3817 oop res = vk->allocate_instance(CHECK_NULL); 3818 array->obj_at_put(i++, res); 3819 } 3820 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3821 BasicType bt = ss.type(); 3822 if ((bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) && callee->is_scalarized_arg(arg_num)) { 3823 InlineKlass* vk = ss.as_inline_klass(holder); 3824 assert(vk != nullptr, "Unexpected klass"); 3825 oop res = vk->allocate_instance(CHECK_NULL); 3826 array->obj_at_put(i++, res); 3827 } 3828 if (bt != T_VOID) { 3829 arg_num++; 3830 } 3831 } 3832 return array(); 3833 } 3834 3835 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 3836 methodHandle callee(current, callee_method); 3837 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 3838 current->set_vm_result(array); 3839 current->set_vm_result_2(callee()); // TODO: required to keep callee live? 3840 JRT_END 3841 3842 // We're returning from an interpreted method: load each field into a 3843 // register following the calling convention 3844 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 3845 { 3846 assert(res->klass()->is_inline_klass(), "only inline types here"); 3847 ResourceMark rm; 3848 RegisterMap reg_map(current, 3849 RegisterMap::UpdateMap::include, 3850 RegisterMap::ProcessFrames::include, 3851 RegisterMap::WalkContinuation::skip); 3852 frame stubFrame = current->last_frame(); 3853 frame callerFrame = stubFrame.sender(®_map); 3854 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3855 3856 InlineKlass* vk = InlineKlass::cast(res->klass()); 3857 3858 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3859 const Array<VMRegPair>* regs = vk->return_regs(); 3860 3861 if (regs == nullptr) { 3862 // The fields of the inline klass don't fit in registers, bail out 3863 return; 3864 } 3865 3866 int j = 1; 3867 for (int i = 0; i < sig_vk->length(); i++) { 3868 BasicType bt = sig_vk->at(i)._bt; 3869 if (bt == T_PRIMITIVE_OBJECT) { 3870 continue; 3871 } 3872 if (bt == T_VOID) { 3873 if (sig_vk->at(i-1)._bt == T_LONG || 3874 sig_vk->at(i-1)._bt == T_DOUBLE) { 3875 j++; 3876 } 3877 continue; 3878 } 3879 int off = sig_vk->at(i)._offset; 3880 assert(off > 0, "offset in object should be positive"); 3881 VMRegPair pair = regs->at(j); 3882 address loc = reg_map.location(pair.first(), nullptr); 3883 switch(bt) { 3884 case T_BOOLEAN: 3885 *(jboolean*)loc = res->bool_field(off); 3886 break; 3887 case T_CHAR: 3888 *(jchar*)loc = res->char_field(off); 3889 break; 3890 case T_BYTE: 3891 *(jbyte*)loc = res->byte_field(off); 3892 break; 3893 case T_SHORT: 3894 *(jshort*)loc = res->short_field(off); 3895 break; 3896 case T_INT: { 3897 *(jint*)loc = res->int_field(off); 3898 break; 3899 } 3900 case T_LONG: 3901 #ifdef _LP64 3902 *(intptr_t*)loc = res->long_field(off); 3903 #else 3904 Unimplemented(); 3905 #endif 3906 break; 3907 case T_OBJECT: 3908 case T_ARRAY: { 3909 *(oop*)loc = res->obj_field(off); 3910 break; 3911 } 3912 case T_FLOAT: 3913 *(jfloat*)loc = res->float_field(off); 3914 break; 3915 case T_DOUBLE: 3916 *(jdouble*)loc = res->double_field(off); 3917 break; 3918 default: 3919 ShouldNotReachHere(); 3920 } 3921 j++; 3922 } 3923 assert(j == regs->length(), "missed a field?"); 3924 3925 #ifdef ASSERT 3926 VMRegPair pair = regs->at(0); 3927 address loc = reg_map.location(pair.first(), nullptr); 3928 assert(*(oopDesc**)loc == res, "overwritten object"); 3929 #endif 3930 3931 current->set_vm_result(res); 3932 } 3933 JRT_END 3934 3935 // We've returned to an interpreted method, the interpreter needs a 3936 // reference to an inline type instance. Allocate it and initialize it 3937 // from field's values in registers. 3938 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 3939 { 3940 ResourceMark rm; 3941 RegisterMap reg_map(current, 3942 RegisterMap::UpdateMap::include, 3943 RegisterMap::ProcessFrames::include, 3944 RegisterMap::WalkContinuation::skip); 3945 frame stubFrame = current->last_frame(); 3946 frame callerFrame = stubFrame.sender(®_map); 3947 3948 #ifdef ASSERT 3949 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 3950 #endif 3951 3952 if (!is_set_nth_bit(res, 0)) { 3953 // We're not returning with inline type fields in registers (the 3954 // calling convention didn't allow it for this inline klass) 3955 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3956 current->set_vm_result((oopDesc*)res); 3957 assert(verif_vk == nullptr, "broken calling convention"); 3958 return; 3959 } 3960 3961 clear_nth_bit(res, 0); 3962 InlineKlass* vk = (InlineKlass*)res; 3963 assert(verif_vk == vk, "broken calling convention"); 3964 assert(Metaspace::contains((void*)res), "should be klass"); 3965 3966 // Allocate handles for every oop field so they are safe in case of 3967 // a safepoint when allocating 3968 GrowableArray<Handle> handles; 3969 vk->save_oop_fields(reg_map, handles); 3970 3971 // It's unsafe to safepoint until we are here 3972 JRT_BLOCK; 3973 { 3974 JavaThread* THREAD = current; 3975 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3976 current->set_vm_result(vt); 3977 } 3978 JRT_BLOCK_END; 3979 } 3980 JRT_END 3981