1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/classLoader.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/nmethod.inline.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/abstractCompiler.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "jfr/jfrEvents.hpp" 44 #include "logging/log.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "memory/universe.hpp" 48 #include "oops/access.hpp" 49 #include "oops/fieldStreams.inline.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/objArrayOop.inline.hpp" 55 #include "oops/oop.inline.hpp" 56 #include "oops/inlineKlass.inline.hpp" 57 #include "prims/forte.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "prims/jvmtiThreadState.hpp" 60 #include "prims/methodHandles.hpp" 61 #include "prims/nativeLookup.hpp" 62 #include "runtime/arguments.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/basicLock.inline.hpp" 65 #include "runtime/frame.inline.hpp" 66 #include "runtime/handles.inline.hpp" 67 #include "runtime/init.hpp" 68 #include "runtime/interfaceSupport.inline.hpp" 69 #include "runtime/java.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/jniHandles.inline.hpp" 72 #include "runtime/perfData.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/stackWatermarkSet.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/synchronizer.inline.hpp" 77 #include "runtime/timerTrace.hpp" 78 #include "runtime/vframe.inline.hpp" 79 #include "runtime/vframeArray.hpp" 80 #include "runtime/vm_version.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/dtrace.hpp" 83 #include "utilities/events.hpp" 84 #include "utilities/globalDefinitions.hpp" 85 #include "utilities/resourceHash.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/xmlstream.hpp" 88 #ifdef COMPILER1 89 #include "c1/c1_Runtime1.hpp" 90 #endif 91 #if INCLUDE_JFR 92 #include "jfr/jfr.hpp" 93 #endif 94 95 // Shared runtime stub routines reside in their own unique blob with a 96 // single entry point 97 98 99 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 100 type SharedRuntime::BLOB_FIELD_NAME(name); 101 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 102 #undef SHARED_STUB_FIELD_DEFINE 103 104 nmethod* SharedRuntime::_cont_doYield_stub; 105 106 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 107 const char *SharedRuntime::_stub_names[] = { 108 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 109 }; 110 111 //----------------------------generate_stubs----------------------------------- 112 void SharedRuntime::generate_initial_stubs() { 113 // Build this early so it's available for the interpreter. 114 _throw_StackOverflowError_blob = 115 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 116 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 117 } 118 119 void SharedRuntime::generate_stubs() { 120 _wrong_method_blob = 121 generate_resolve_blob(SharedStubId::wrong_method_id, 122 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 123 _wrong_method_abstract_blob = 124 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 125 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 126 _ic_miss_blob = 127 generate_resolve_blob(SharedStubId::ic_miss_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 129 _resolve_opt_virtual_call_blob = 130 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 132 _resolve_virtual_call_blob = 133 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 135 _resolve_static_call_blob = 136 generate_resolve_blob(SharedStubId::resolve_static_call_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 138 139 _throw_delayed_StackOverflowError_blob = 140 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 141 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 142 143 _throw_AbstractMethodError_blob = 144 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 145 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 146 147 _throw_IncompatibleClassChangeError_blob = 148 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 149 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 150 151 _throw_NullPointerException_at_call_blob = 152 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 154 155 AdapterHandlerLibrary::initialize(); 156 157 #if COMPILER2_OR_JVMCI 158 // Vectors are generated only by C2 and JVMCI. 159 bool support_wide = is_wide_vector(MaxVectorSize); 160 if (support_wide) { 161 _polling_page_vectors_safepoint_handler_blob = 162 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 163 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 164 } 165 #endif // COMPILER2_OR_JVMCI 166 _polling_page_safepoint_handler_blob = 167 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 168 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 169 _polling_page_return_handler_blob = 170 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 171 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 172 173 generate_deopt_blob(); 174 } 175 176 #if INCLUDE_JFR 177 //------------------------------generate jfr runtime stubs ------ 178 void SharedRuntime::generate_jfr_stubs() { 179 ResourceMark rm; 180 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 181 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 182 183 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 184 _jfr_return_lease_blob = generate_jfr_return_lease(); 185 } 186 187 #endif // INCLUDE_JFR 188 189 #include <math.h> 190 191 // Implementation of SharedRuntime 192 193 #ifndef PRODUCT 194 // For statistics 195 uint SharedRuntime::_ic_miss_ctr = 0; 196 uint SharedRuntime::_wrong_method_ctr = 0; 197 uint SharedRuntime::_resolve_static_ctr = 0; 198 uint SharedRuntime::_resolve_virtual_ctr = 0; 199 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 200 uint SharedRuntime::_implicit_null_throws = 0; 201 uint SharedRuntime::_implicit_div0_throws = 0; 202 203 int64_t SharedRuntime::_nof_normal_calls = 0; 204 int64_t SharedRuntime::_nof_inlined_calls = 0; 205 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 206 int64_t SharedRuntime::_nof_static_calls = 0; 207 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 208 int64_t SharedRuntime::_nof_interface_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 210 211 uint SharedRuntime::_new_instance_ctr=0; 212 uint SharedRuntime::_new_array_ctr=0; 213 uint SharedRuntime::_multi2_ctr=0; 214 uint SharedRuntime::_multi3_ctr=0; 215 uint SharedRuntime::_multi4_ctr=0; 216 uint SharedRuntime::_multi5_ctr=0; 217 uint SharedRuntime::_mon_enter_stub_ctr=0; 218 uint SharedRuntime::_mon_exit_stub_ctr=0; 219 uint SharedRuntime::_mon_enter_ctr=0; 220 uint SharedRuntime::_mon_exit_ctr=0; 221 uint SharedRuntime::_partial_subtype_ctr=0; 222 uint SharedRuntime::_jbyte_array_copy_ctr=0; 223 uint SharedRuntime::_jshort_array_copy_ctr=0; 224 uint SharedRuntime::_jint_array_copy_ctr=0; 225 uint SharedRuntime::_jlong_array_copy_ctr=0; 226 uint SharedRuntime::_oop_array_copy_ctr=0; 227 uint SharedRuntime::_checkcast_array_copy_ctr=0; 228 uint SharedRuntime::_unsafe_array_copy_ctr=0; 229 uint SharedRuntime::_generic_array_copy_ctr=0; 230 uint SharedRuntime::_slow_array_copy_ctr=0; 231 uint SharedRuntime::_find_handler_ctr=0; 232 uint SharedRuntime::_rethrow_ctr=0; 233 uint SharedRuntime::_unsafe_set_memory_ctr=0; 234 235 int SharedRuntime::_ICmiss_index = 0; 236 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 237 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 238 239 240 void SharedRuntime::trace_ic_miss(address at) { 241 for (int i = 0; i < _ICmiss_index; i++) { 242 if (_ICmiss_at[i] == at) { 243 _ICmiss_count[i]++; 244 return; 245 } 246 } 247 int index = _ICmiss_index++; 248 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 249 _ICmiss_at[index] = at; 250 _ICmiss_count[index] = 1; 251 } 252 253 void SharedRuntime::print_ic_miss_histogram() { 254 if (ICMissHistogram) { 255 tty->print_cr("IC Miss Histogram:"); 256 int tot_misses = 0; 257 for (int i = 0; i < _ICmiss_index; i++) { 258 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 259 tot_misses += _ICmiss_count[i]; 260 } 261 tty->print_cr("Total IC misses: %7d", tot_misses); 262 } 263 } 264 #endif // PRODUCT 265 266 267 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 268 return x * y; 269 JRT_END 270 271 272 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 273 if (x == min_jlong && y == CONST64(-1)) { 274 return x; 275 } else { 276 return x / y; 277 } 278 JRT_END 279 280 281 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 282 if (x == min_jlong && y == CONST64(-1)) { 283 return 0; 284 } else { 285 return x % y; 286 } 287 JRT_END 288 289 290 #ifdef _WIN64 291 const juint float_sign_mask = 0x7FFFFFFF; 292 const juint float_infinity = 0x7F800000; 293 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 294 const julong double_infinity = CONST64(0x7FF0000000000000); 295 #endif 296 297 #if !defined(X86) 298 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 299 #ifdef _WIN64 300 // 64-bit Windows on amd64 returns the wrong values for 301 // infinity operands. 302 juint xbits = PrimitiveConversions::cast<juint>(x); 303 juint ybits = PrimitiveConversions::cast<juint>(y); 304 // x Mod Infinity == x unless x is infinity 305 if (((xbits & float_sign_mask) != float_infinity) && 306 ((ybits & float_sign_mask) == float_infinity) ) { 307 return x; 308 } 309 return ((jfloat)fmod_winx64((double)x, (double)y)); 310 #else 311 return ((jfloat)fmod((double)x,(double)y)); 312 #endif 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 316 #ifdef _WIN64 317 julong xbits = PrimitiveConversions::cast<julong>(x); 318 julong ybits = PrimitiveConversions::cast<julong>(y); 319 // x Mod Infinity == x unless x is infinity 320 if (((xbits & double_sign_mask) != double_infinity) && 321 ((ybits & double_sign_mask) == double_infinity) ) { 322 return x; 323 } 324 return ((jdouble)fmod_winx64((double)x, (double)y)); 325 #else 326 return ((jdouble)fmod((double)x,(double)y)); 327 #endif 328 JRT_END 329 #endif // !X86 330 331 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 332 return (jfloat)x; 333 JRT_END 334 335 #ifdef __SOFTFP__ 336 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 337 return x + y; 338 JRT_END 339 340 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 341 return x - y; 342 JRT_END 343 344 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 345 return x * y; 346 JRT_END 347 348 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 349 return x / y; 350 JRT_END 351 352 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 353 return x + y; 354 JRT_END 355 356 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 357 return x - y; 358 JRT_END 359 360 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 361 return x * y; 362 JRT_END 363 364 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 365 return x / y; 366 JRT_END 367 368 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 369 return (jdouble)x; 370 JRT_END 371 372 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 373 return (jdouble)x; 374 JRT_END 375 376 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 377 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 378 JRT_END 379 380 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 381 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 382 JRT_END 383 384 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 385 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 386 JRT_END 387 388 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 389 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 390 JRT_END 391 392 // Functions to return the opposite of the aeabi functions for nan. 393 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 394 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 395 JRT_END 396 397 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 398 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 399 JRT_END 400 401 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 402 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 403 JRT_END 404 405 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 406 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 407 JRT_END 408 409 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 410 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 411 JRT_END 412 413 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 414 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 415 JRT_END 416 417 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 418 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 419 JRT_END 420 421 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 422 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 423 JRT_END 424 425 // Intrinsics make gcc generate code for these. 426 float SharedRuntime::fneg(float f) { 427 return -f; 428 } 429 430 double SharedRuntime::dneg(double f) { 431 return -f; 432 } 433 434 #endif // __SOFTFP__ 435 436 #if defined(__SOFTFP__) || defined(E500V2) 437 // Intrinsics make gcc generate code for these. 438 double SharedRuntime::dabs(double f) { 439 return (f <= (double)0.0) ? (double)0.0 - f : f; 440 } 441 442 #endif 443 444 #if defined(__SOFTFP__) || defined(PPC) 445 double SharedRuntime::dsqrt(double f) { 446 return sqrt(f); 447 } 448 #endif 449 450 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 451 if (g_isnan(x)) 452 return 0; 453 if (x >= (jfloat) max_jint) 454 return max_jint; 455 if (x <= (jfloat) min_jint) 456 return min_jint; 457 return (jint) x; 458 JRT_END 459 460 461 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 462 if (g_isnan(x)) 463 return 0; 464 if (x >= (jfloat) max_jlong) 465 return max_jlong; 466 if (x <= (jfloat) min_jlong) 467 return min_jlong; 468 return (jlong) x; 469 JRT_END 470 471 472 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 473 if (g_isnan(x)) 474 return 0; 475 if (x >= (jdouble) max_jint) 476 return max_jint; 477 if (x <= (jdouble) min_jint) 478 return min_jint; 479 return (jint) x; 480 JRT_END 481 482 483 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 484 if (g_isnan(x)) 485 return 0; 486 if (x >= (jdouble) max_jlong) 487 return max_jlong; 488 if (x <= (jdouble) min_jlong) 489 return min_jlong; 490 return (jlong) x; 491 JRT_END 492 493 494 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 495 return (jfloat)x; 496 JRT_END 497 498 499 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 500 return (jfloat)x; 501 JRT_END 502 503 504 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 505 return (jdouble)x; 506 JRT_END 507 508 509 // Exception handling across interpreter/compiler boundaries 510 // 511 // exception_handler_for_return_address(...) returns the continuation address. 512 // The continuation address is the entry point of the exception handler of the 513 // previous frame depending on the return address. 514 515 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 516 // Note: This is called when we have unwound the frame of the callee that did 517 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 518 // Notably, the stack is not walkable at this point, and hence the check must 519 // be deferred until later. Specifically, any of the handlers returned here in 520 // this function, will get dispatched to, and call deferred checks to 521 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 522 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 523 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 524 525 // Reset method handle flag. 526 current->set_is_method_handle_return(false); 527 528 #if INCLUDE_JVMCI 529 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 530 // and other exception handler continuations do not read it 531 current->set_exception_pc(nullptr); 532 #endif // INCLUDE_JVMCI 533 534 if (Continuation::is_return_barrier_entry(return_address)) { 535 return StubRoutines::cont_returnBarrierExc(); 536 } 537 538 // The fastest case first 539 CodeBlob* blob = CodeCache::find_blob(return_address); 540 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 541 if (nm != nullptr) { 542 // Set flag if return address is a method handle call site. 543 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 544 // native nmethods don't have exception handlers 545 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 546 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 547 if (nm->is_deopt_pc(return_address)) { 548 // If we come here because of a stack overflow, the stack may be 549 // unguarded. Reguard the stack otherwise if we return to the 550 // deopt blob and the stack bang causes a stack overflow we 551 // crash. 552 StackOverflow* overflow_state = current->stack_overflow_state(); 553 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 554 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 555 overflow_state->set_reserved_stack_activation(current->stack_base()); 556 } 557 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 558 // The deferred StackWatermarkSet::after_unwind check will be performed in 559 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 560 return SharedRuntime::deopt_blob()->unpack_with_exception(); 561 } else { 562 // The deferred StackWatermarkSet::after_unwind check will be performed in 563 // * OptoRuntime::handle_exception_C_helper for C2 code 564 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 565 return nm->exception_begin(); 566 } 567 } 568 569 // Entry code 570 if (StubRoutines::returns_to_call_stub(return_address)) { 571 // The deferred StackWatermarkSet::after_unwind check will be performed in 572 // JavaCallWrapper::~JavaCallWrapper 573 return StubRoutines::catch_exception_entry(); 574 } 575 if (blob != nullptr && blob->is_upcall_stub()) { 576 return StubRoutines::upcall_stub_exception_handler(); 577 } 578 // Interpreted code 579 if (Interpreter::contains(return_address)) { 580 // The deferred StackWatermarkSet::after_unwind check will be performed in 581 // InterpreterRuntime::exception_handler_for_exception 582 return Interpreter::rethrow_exception_entry(); 583 } 584 585 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 586 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 587 588 #ifndef PRODUCT 589 { ResourceMark rm; 590 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 591 os::print_location(tty, (intptr_t)return_address); 592 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 593 tty->print_cr("b) other problem"); 594 } 595 #endif // PRODUCT 596 ShouldNotReachHere(); 597 return nullptr; 598 } 599 600 601 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 602 return raw_exception_handler_for_return_address(current, return_address); 603 JRT_END 604 605 606 address SharedRuntime::get_poll_stub(address pc) { 607 address stub; 608 // Look up the code blob 609 CodeBlob *cb = CodeCache::find_blob(pc); 610 611 // Should be an nmethod 612 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 613 614 // Look up the relocation information 615 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 616 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 617 618 #ifdef ASSERT 619 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 620 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 621 Disassembler::decode(cb); 622 fatal("Only polling locations are used for safepoint"); 623 } 624 #endif 625 626 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 627 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 628 if (at_poll_return) { 629 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 630 "polling page return stub not created yet"); 631 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 632 } else if (has_wide_vectors) { 633 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 634 "polling page vectors safepoint stub not created yet"); 635 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 636 } else { 637 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 638 "polling page safepoint stub not created yet"); 639 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 640 } 641 log_debug(safepoint)("... found polling page %s exception at pc = " 642 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 643 at_poll_return ? "return" : "loop", 644 (intptr_t)pc, (intptr_t)stub); 645 return stub; 646 } 647 648 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 649 if (JvmtiExport::can_post_on_exceptions()) { 650 vframeStream vfst(current, true); 651 methodHandle method = methodHandle(current, vfst.method()); 652 address bcp = method()->bcp_from(vfst.bci()); 653 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 654 } 655 656 #if INCLUDE_JVMCI 657 if (EnableJVMCI) { 658 vframeStream vfst(current, true); 659 methodHandle method = methodHandle(current, vfst.method()); 660 int bci = vfst.bci(); 661 MethodData* trap_mdo = method->method_data(); 662 if (trap_mdo != nullptr) { 663 // Set exception_seen if the exceptional bytecode is an invoke 664 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 665 if (call.is_valid()) { 666 ResourceMark rm(current); 667 668 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 669 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 670 671 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 672 if (pdata != nullptr && pdata->is_BitData()) { 673 BitData* bit_data = (BitData*) pdata; 674 bit_data->set_exception_seen(); 675 } 676 } 677 } 678 } 679 #endif 680 681 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 682 } 683 684 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 685 Handle h_exception = Exceptions::new_exception(current, name, message); 686 throw_and_post_jvmti_exception(current, h_exception); 687 } 688 689 #if INCLUDE_JVMTI 690 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 691 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 692 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 693 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 694 JNIHandles::destroy_local(vthread); 695 JRT_END 696 697 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 698 assert(hide == JNI_TRUE, "must be VTMS transition start"); 699 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 700 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 701 JNIHandles::destroy_local(vthread); 702 JRT_END 703 704 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 705 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 706 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 707 JNIHandles::destroy_local(vthread); 708 JRT_END 709 710 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 711 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 712 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 713 JNIHandles::destroy_local(vthread); 714 JRT_END 715 #endif // INCLUDE_JVMTI 716 717 // The interpreter code to call this tracing function is only 718 // called/generated when UL is on for redefine, class and has the right level 719 // and tags. Since obsolete methods are never compiled, we don't have 720 // to modify the compilers to generate calls to this function. 721 // 722 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 723 JavaThread* thread, Method* method)) 724 if (method->is_obsolete()) { 725 // We are calling an obsolete method, but this is not necessarily 726 // an error. Our method could have been redefined just after we 727 // fetched the Method* from the constant pool. 728 ResourceMark rm; 729 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 730 } 731 return 0; 732 JRT_END 733 734 // ret_pc points into caller; we are returning caller's exception handler 735 // for given exception 736 // Note that the implementation of this method assumes it's only called when an exception has actually occured 737 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 738 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 739 assert(nm != nullptr, "must exist"); 740 ResourceMark rm; 741 742 #if INCLUDE_JVMCI 743 if (nm->is_compiled_by_jvmci()) { 744 // lookup exception handler for this pc 745 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 746 ExceptionHandlerTable table(nm); 747 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 748 if (t != nullptr) { 749 return nm->code_begin() + t->pco(); 750 } else { 751 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 752 } 753 } 754 #endif // INCLUDE_JVMCI 755 756 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 757 // determine handler bci, if any 758 EXCEPTION_MARK; 759 760 int handler_bci = -1; 761 int scope_depth = 0; 762 if (!force_unwind) { 763 int bci = sd->bci(); 764 bool recursive_exception = false; 765 do { 766 bool skip_scope_increment = false; 767 // exception handler lookup 768 Klass* ek = exception->klass(); 769 methodHandle mh(THREAD, sd->method()); 770 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 771 if (HAS_PENDING_EXCEPTION) { 772 recursive_exception = true; 773 // We threw an exception while trying to find the exception handler. 774 // Transfer the new exception to the exception handle which will 775 // be set into thread local storage, and do another lookup for an 776 // exception handler for this exception, this time starting at the 777 // BCI of the exception handler which caused the exception to be 778 // thrown (bugs 4307310 and 4546590). Set "exception" reference 779 // argument to ensure that the correct exception is thrown (4870175). 780 recursive_exception_occurred = true; 781 exception = Handle(THREAD, PENDING_EXCEPTION); 782 CLEAR_PENDING_EXCEPTION; 783 if (handler_bci >= 0) { 784 bci = handler_bci; 785 handler_bci = -1; 786 skip_scope_increment = true; 787 } 788 } 789 else { 790 recursive_exception = false; 791 } 792 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 793 sd = sd->sender(); 794 if (sd != nullptr) { 795 bci = sd->bci(); 796 } 797 ++scope_depth; 798 } 799 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 800 } 801 802 // found handling method => lookup exception handler 803 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 804 805 ExceptionHandlerTable table(nm); 806 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 807 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 808 // Allow abbreviated catch tables. The idea is to allow a method 809 // to materialize its exceptions without committing to the exact 810 // routing of exceptions. In particular this is needed for adding 811 // a synthetic handler to unlock monitors when inlining 812 // synchronized methods since the unlock path isn't represented in 813 // the bytecodes. 814 t = table.entry_for(catch_pco, -1, 0); 815 } 816 817 #ifdef COMPILER1 818 if (t == nullptr && nm->is_compiled_by_c1()) { 819 assert(nm->unwind_handler_begin() != nullptr, ""); 820 return nm->unwind_handler_begin(); 821 } 822 #endif 823 824 if (t == nullptr) { 825 ttyLocker ttyl; 826 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 827 tty->print_cr(" Exception:"); 828 exception->print(); 829 tty->cr(); 830 tty->print_cr(" Compiled exception table :"); 831 table.print(); 832 nm->print(); 833 nm->print_code(); 834 guarantee(false, "missing exception handler"); 835 return nullptr; 836 } 837 838 if (handler_bci != -1) { // did we find a handler in this method? 839 sd->method()->set_exception_handler_entered(handler_bci); // profile 840 } 841 return nm->code_begin() + t->pco(); 842 } 843 844 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 845 // These errors occur only at call sites 846 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 847 JRT_END 848 849 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 850 // These errors occur only at call sites 851 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 852 JRT_END 853 854 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 855 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 856 JRT_END 857 858 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 859 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 860 JRT_END 861 862 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 863 // This entry point is effectively only used for NullPointerExceptions which occur at inline 864 // cache sites (when the callee activation is not yet set up) so we are at a call site 865 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 866 JRT_END 867 868 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 869 throw_StackOverflowError_common(current, false); 870 JRT_END 871 872 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 873 throw_StackOverflowError_common(current, true); 874 JRT_END 875 876 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 877 // We avoid using the normal exception construction in this case because 878 // it performs an upcall to Java, and we're already out of stack space. 879 JavaThread* THREAD = current; // For exception macros. 880 Klass* k = vmClasses::StackOverflowError_klass(); 881 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 882 if (delayed) { 883 java_lang_Throwable::set_message(exception_oop, 884 Universe::delayed_stack_overflow_error_message()); 885 } 886 Handle exception (current, exception_oop); 887 if (StackTraceInThrowable) { 888 java_lang_Throwable::fill_in_stack_trace(exception); 889 } 890 // Remove the ScopedValue bindings in case we got a 891 // StackOverflowError while we were trying to remove ScopedValue 892 // bindings. 893 current->clear_scopedValueBindings(); 894 // Increment counter for hs_err file reporting 895 Atomic::inc(&Exceptions::_stack_overflow_errors); 896 throw_and_post_jvmti_exception(current, exception); 897 } 898 899 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 900 address pc, 901 ImplicitExceptionKind exception_kind) 902 { 903 address target_pc = nullptr; 904 905 if (Interpreter::contains(pc)) { 906 switch (exception_kind) { 907 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 908 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 909 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 910 default: ShouldNotReachHere(); 911 } 912 } else { 913 switch (exception_kind) { 914 case STACK_OVERFLOW: { 915 // Stack overflow only occurs upon frame setup; the callee is 916 // going to be unwound. Dispatch to a shared runtime stub 917 // which will cause the StackOverflowError to be fabricated 918 // and processed. 919 // Stack overflow should never occur during deoptimization: 920 // the compiled method bangs the stack by as much as the 921 // interpreter would need in case of a deoptimization. The 922 // deoptimization blob and uncommon trap blob bang the stack 923 // in a debug VM to verify the correctness of the compiled 924 // method stack banging. 925 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 926 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 927 return SharedRuntime::throw_StackOverflowError_entry(); 928 } 929 930 case IMPLICIT_NULL: { 931 if (VtableStubs::contains(pc)) { 932 // We haven't yet entered the callee frame. Fabricate an 933 // exception and begin dispatching it in the caller. Since 934 // the caller was at a call site, it's safe to destroy all 935 // caller-saved registers, as these entry points do. 936 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 937 938 // If vt_stub is null, then return null to signal handler to report the SEGV error. 939 if (vt_stub == nullptr) return nullptr; 940 941 if (vt_stub->is_abstract_method_error(pc)) { 942 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 943 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 944 // Instead of throwing the abstract method error here directly, we re-resolve 945 // and will throw the AbstractMethodError during resolve. As a result, we'll 946 // get a more detailed error message. 947 return SharedRuntime::get_handle_wrong_method_stub(); 948 } else { 949 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 950 // Assert that the signal comes from the expected location in stub code. 951 assert(vt_stub->is_null_pointer_exception(pc), 952 "obtained signal from unexpected location in stub code"); 953 return SharedRuntime::throw_NullPointerException_at_call_entry(); 954 } 955 } else { 956 CodeBlob* cb = CodeCache::find_blob(pc); 957 958 // If code blob is null, then return null to signal handler to report the SEGV error. 959 if (cb == nullptr) return nullptr; 960 961 // Exception happened in CodeCache. Must be either: 962 // 1. Inline-cache check in C2I handler blob, 963 // 2. Inline-cache check in nmethod, or 964 // 3. Implicit null exception in nmethod 965 966 if (!cb->is_nmethod()) { 967 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 968 if (!is_in_blob) { 969 // Allow normal crash reporting to handle this 970 return nullptr; 971 } 972 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 973 // There is no handler here, so we will simply unwind. 974 return SharedRuntime::throw_NullPointerException_at_call_entry(); 975 } 976 977 // Otherwise, it's a compiled method. Consult its exception handlers. 978 nmethod* nm = cb->as_nmethod(); 979 if (nm->inlinecache_check_contains(pc)) { 980 // exception happened inside inline-cache check code 981 // => the nmethod is not yet active (i.e., the frame 982 // is not set up yet) => use return address pushed by 983 // caller => don't push another return address 984 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 985 return SharedRuntime::throw_NullPointerException_at_call_entry(); 986 } 987 988 if (nm->method()->is_method_handle_intrinsic()) { 989 // exception happened inside MH dispatch code, similar to a vtable stub 990 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 991 return SharedRuntime::throw_NullPointerException_at_call_entry(); 992 } 993 994 #ifndef PRODUCT 995 _implicit_null_throws++; 996 #endif 997 target_pc = nm->continuation_for_implicit_null_exception(pc); 998 // If there's an unexpected fault, target_pc might be null, 999 // in which case we want to fall through into the normal 1000 // error handling code. 1001 } 1002 1003 break; // fall through 1004 } 1005 1006 1007 case IMPLICIT_DIVIDE_BY_ZERO: { 1008 nmethod* nm = CodeCache::find_nmethod(pc); 1009 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1010 #ifndef PRODUCT 1011 _implicit_div0_throws++; 1012 #endif 1013 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1014 // If there's an unexpected fault, target_pc might be null, 1015 // in which case we want to fall through into the normal 1016 // error handling code. 1017 break; // fall through 1018 } 1019 1020 default: ShouldNotReachHere(); 1021 } 1022 1023 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1024 1025 if (exception_kind == IMPLICIT_NULL) { 1026 #ifndef PRODUCT 1027 // for AbortVMOnException flag 1028 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1029 #endif //PRODUCT 1030 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1031 } else { 1032 #ifndef PRODUCT 1033 // for AbortVMOnException flag 1034 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1035 #endif //PRODUCT 1036 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1037 } 1038 return target_pc; 1039 } 1040 1041 ShouldNotReachHere(); 1042 return nullptr; 1043 } 1044 1045 1046 /** 1047 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1048 * installed in the native function entry of all native Java methods before 1049 * they get linked to their actual native methods. 1050 * 1051 * \note 1052 * This method actually never gets called! The reason is because 1053 * the interpreter's native entries call NativeLookup::lookup() which 1054 * throws the exception when the lookup fails. The exception is then 1055 * caught and forwarded on the return from NativeLookup::lookup() call 1056 * before the call to the native function. This might change in the future. 1057 */ 1058 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1059 { 1060 // We return a bad value here to make sure that the exception is 1061 // forwarded before we look at the return value. 1062 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1063 } 1064 JNI_END 1065 1066 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1067 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1068 } 1069 1070 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1071 #if INCLUDE_JVMCI 1072 if (!obj->klass()->has_finalizer()) { 1073 return; 1074 } 1075 #endif // INCLUDE_JVMCI 1076 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1077 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1078 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1079 JRT_END 1080 1081 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1082 assert(thread != nullptr, "No thread"); 1083 if (thread == nullptr) { 1084 return 0; 1085 } 1086 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1087 "current cannot touch oops after its GC barrier is detached."); 1088 oop obj = thread->threadObj(); 1089 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1090 } 1091 1092 /** 1093 * This function ought to be a void function, but cannot be because 1094 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1095 * 6254741. Once that is fixed we can remove the dummy return value. 1096 */ 1097 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1098 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1099 } 1100 1101 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1102 return dtrace_object_alloc(thread, o, o->size()); 1103 } 1104 1105 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1106 assert(DTraceAllocProbes, "wrong call"); 1107 Klass* klass = o->klass(); 1108 Symbol* name = klass->name(); 1109 HOTSPOT_OBJECT_ALLOC( 1110 get_java_tid(thread), 1111 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1112 return 0; 1113 } 1114 1115 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1116 JavaThread* current, Method* method)) 1117 assert(current == JavaThread::current(), "pre-condition"); 1118 1119 assert(DTraceMethodProbes, "wrong call"); 1120 Symbol* kname = method->klass_name(); 1121 Symbol* name = method->name(); 1122 Symbol* sig = method->signature(); 1123 HOTSPOT_METHOD_ENTRY( 1124 get_java_tid(current), 1125 (char *) kname->bytes(), kname->utf8_length(), 1126 (char *) name->bytes(), name->utf8_length(), 1127 (char *) sig->bytes(), sig->utf8_length()); 1128 return 0; 1129 JRT_END 1130 1131 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1132 JavaThread* current, Method* method)) 1133 assert(current == JavaThread::current(), "pre-condition"); 1134 assert(DTraceMethodProbes, "wrong call"); 1135 Symbol* kname = method->klass_name(); 1136 Symbol* name = method->name(); 1137 Symbol* sig = method->signature(); 1138 HOTSPOT_METHOD_RETURN( 1139 get_java_tid(current), 1140 (char *) kname->bytes(), kname->utf8_length(), 1141 (char *) name->bytes(), name->utf8_length(), 1142 (char *) sig->bytes(), sig->utf8_length()); 1143 return 0; 1144 JRT_END 1145 1146 1147 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1148 // for a call current in progress, i.e., arguments has been pushed on stack 1149 // put callee has not been invoked yet. Used by: resolve virtual/static, 1150 // vtable updates, etc. Caller frame must be compiled. 1151 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1152 JavaThread* current = THREAD; 1153 ResourceMark rm(current); 1154 1155 // last java frame on stack (which includes native call frames) 1156 vframeStream vfst(current, true); // Do not skip and javaCalls 1157 1158 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1159 } 1160 1161 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1162 nmethod* caller = vfst.nm(); 1163 1164 address pc = vfst.frame_pc(); 1165 { // Get call instruction under lock because another thread may be busy patching it. 1166 CompiledICLocker ic_locker(caller); 1167 return caller->attached_method_before_pc(pc); 1168 } 1169 return nullptr; 1170 } 1171 1172 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1173 // for a call current in progress, i.e., arguments has been pushed on stack 1174 // but callee has not been invoked yet. Caller frame must be compiled. 1175 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1176 CallInfo& callinfo, TRAPS) { 1177 Handle receiver; 1178 Handle nullHandle; // create a handy null handle for exception returns 1179 JavaThread* current = THREAD; 1180 1181 assert(!vfst.at_end(), "Java frame must exist"); 1182 1183 // Find caller and bci from vframe 1184 methodHandle caller(current, vfst.method()); 1185 int bci = vfst.bci(); 1186 1187 if (caller->is_continuation_enter_intrinsic()) { 1188 bc = Bytecodes::_invokestatic; 1189 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1190 return receiver; 1191 } 1192 1193 // Substitutability test implementation piggy backs on static call resolution 1194 Bytecodes::Code code = caller->java_code_at(bci); 1195 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1196 bc = Bytecodes::_invokestatic; 1197 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1198 assert(attached_method.not_null(), "must have attached method"); 1199 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1200 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1201 #ifdef ASSERT 1202 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1203 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1204 #endif 1205 return receiver; 1206 } 1207 1208 Bytecode_invoke bytecode(caller, bci); 1209 int bytecode_index = bytecode.index(); 1210 bc = bytecode.invoke_code(); 1211 1212 methodHandle attached_method(current, extract_attached_method(vfst)); 1213 if (attached_method.not_null()) { 1214 Method* callee = bytecode.static_target(CHECK_NH); 1215 vmIntrinsics::ID id = callee->intrinsic_id(); 1216 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1217 // it attaches statically resolved method to the call site. 1218 if (MethodHandles::is_signature_polymorphic(id) && 1219 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1220 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1221 1222 // Adjust invocation mode according to the attached method. 1223 switch (bc) { 1224 case Bytecodes::_invokevirtual: 1225 if (attached_method->method_holder()->is_interface()) { 1226 bc = Bytecodes::_invokeinterface; 1227 } 1228 break; 1229 case Bytecodes::_invokeinterface: 1230 if (!attached_method->method_holder()->is_interface()) { 1231 bc = Bytecodes::_invokevirtual; 1232 } 1233 break; 1234 case Bytecodes::_invokehandle: 1235 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1236 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1237 : Bytecodes::_invokevirtual; 1238 } 1239 break; 1240 default: 1241 break; 1242 } 1243 } else { 1244 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1245 if (!attached_method->method_holder()->is_inline_klass()) { 1246 // Ignore the attached method in this case to not confuse below code 1247 attached_method = methodHandle(current, nullptr); 1248 } 1249 } 1250 } 1251 1252 assert(bc != Bytecodes::_illegal, "not initialized"); 1253 1254 bool has_receiver = bc != Bytecodes::_invokestatic && 1255 bc != Bytecodes::_invokedynamic && 1256 bc != Bytecodes::_invokehandle; 1257 bool check_null_and_abstract = true; 1258 1259 // Find receiver for non-static call 1260 if (has_receiver) { 1261 // This register map must be update since we need to find the receiver for 1262 // compiled frames. The receiver might be in a register. 1263 RegisterMap reg_map2(current, 1264 RegisterMap::UpdateMap::include, 1265 RegisterMap::ProcessFrames::include, 1266 RegisterMap::WalkContinuation::skip); 1267 frame stubFrame = current->last_frame(); 1268 // Caller-frame is a compiled frame 1269 frame callerFrame = stubFrame.sender(®_map2); 1270 1271 Method* callee = attached_method(); 1272 if (callee == nullptr) { 1273 callee = bytecode.static_target(CHECK_NH); 1274 if (callee == nullptr) { 1275 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1276 } 1277 } 1278 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1(); 1279 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1280 // If the receiver is an inline type that is passed as fields, no oop is available 1281 // Resolve the call without receiver null checking. 1282 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1283 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1284 if (bc == Bytecodes::_invokeinterface) { 1285 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1286 } 1287 check_null_and_abstract = false; 1288 } else { 1289 // Retrieve from a compiled argument list 1290 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1291 assert(oopDesc::is_oop_or_null(receiver()), ""); 1292 if (receiver.is_null()) { 1293 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1294 } 1295 } 1296 } 1297 1298 // Resolve method 1299 if (attached_method.not_null()) { 1300 // Parameterized by attached method. 1301 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1302 } else { 1303 // Parameterized by bytecode. 1304 constantPoolHandle constants(current, caller->constants()); 1305 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1306 } 1307 1308 #ifdef ASSERT 1309 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1310 if (has_receiver && check_null_and_abstract) { 1311 assert(receiver.not_null(), "should have thrown exception"); 1312 Klass* receiver_klass = receiver->klass(); 1313 Klass* rk = nullptr; 1314 if (attached_method.not_null()) { 1315 // In case there's resolved method attached, use its holder during the check. 1316 rk = attached_method->method_holder(); 1317 } else { 1318 // Klass is already loaded. 1319 constantPoolHandle constants(current, caller->constants()); 1320 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1321 } 1322 Klass* static_receiver_klass = rk; 1323 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1324 "actual receiver must be subclass of static receiver klass"); 1325 if (receiver_klass->is_instance_klass()) { 1326 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1327 tty->print_cr("ERROR: Klass not yet initialized!!"); 1328 receiver_klass->print(); 1329 } 1330 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1331 } 1332 } 1333 #endif 1334 1335 return receiver; 1336 } 1337 1338 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1339 JavaThread* current = THREAD; 1340 ResourceMark rm(current); 1341 // We need first to check if any Java activations (compiled, interpreted) 1342 // exist on the stack since last JavaCall. If not, we need 1343 // to get the target method from the JavaCall wrapper. 1344 vframeStream vfst(current, true); // Do not skip any javaCalls 1345 methodHandle callee_method; 1346 if (vfst.at_end()) { 1347 // No Java frames were found on stack since we did the JavaCall. 1348 // Hence the stack can only contain an entry_frame. We need to 1349 // find the target method from the stub frame. 1350 RegisterMap reg_map(current, 1351 RegisterMap::UpdateMap::skip, 1352 RegisterMap::ProcessFrames::include, 1353 RegisterMap::WalkContinuation::skip); 1354 frame fr = current->last_frame(); 1355 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1356 fr = fr.sender(®_map); 1357 assert(fr.is_entry_frame(), "must be"); 1358 // fr is now pointing to the entry frame. 1359 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1360 } else { 1361 Bytecodes::Code bc; 1362 CallInfo callinfo; 1363 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1364 // Calls via mismatching methods are always non-scalarized 1365 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1366 caller_is_c1 = true; 1367 } 1368 callee_method = methodHandle(current, callinfo.selected_method()); 1369 } 1370 assert(callee_method()->is_method(), "must be"); 1371 return callee_method; 1372 } 1373 1374 // Resolves a call. 1375 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1376 JavaThread* current = THREAD; 1377 ResourceMark rm(current); 1378 RegisterMap cbl_map(current, 1379 RegisterMap::UpdateMap::skip, 1380 RegisterMap::ProcessFrames::include, 1381 RegisterMap::WalkContinuation::skip); 1382 frame caller_frame = current->last_frame().sender(&cbl_map); 1383 1384 CodeBlob* caller_cb = caller_frame.cb(); 1385 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1386 nmethod* caller_nm = caller_cb->as_nmethod(); 1387 1388 // determine call info & receiver 1389 // note: a) receiver is null for static calls 1390 // b) an exception is thrown if receiver is null for non-static calls 1391 CallInfo call_info; 1392 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1393 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1394 1395 NoSafepointVerifier nsv; 1396 1397 methodHandle callee_method(current, call_info.selected_method()); 1398 // Calls via mismatching methods are always non-scalarized 1399 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1400 caller_is_c1 = true; 1401 } 1402 1403 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1404 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1405 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1406 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1407 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1408 1409 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1410 1411 #ifndef PRODUCT 1412 // tracing/debugging/statistics 1413 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1414 (is_virtual) ? (&_resolve_virtual_ctr) : 1415 (&_resolve_static_ctr); 1416 Atomic::inc(addr); 1417 1418 if (TraceCallFixup) { 1419 ResourceMark rm(current); 1420 tty->print("resolving %s%s (%s) call%s to", 1421 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1422 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1423 callee_method->print_short_name(tty); 1424 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1425 p2i(caller_frame.pc()), p2i(callee_method->code())); 1426 } 1427 #endif 1428 1429 if (invoke_code == Bytecodes::_invokestatic) { 1430 assert(callee_method->method_holder()->is_initialized() || 1431 callee_method->method_holder()->is_reentrant_initialization(current), 1432 "invalid class initialization state for invoke_static"); 1433 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1434 // In order to keep class initialization check, do not patch call 1435 // site for static call when the class is not fully initialized. 1436 // Proper check is enforced by call site re-resolution on every invocation. 1437 // 1438 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1439 // explicit class initialization check is put in nmethod entry (VEP). 1440 assert(callee_method->method_holder()->is_linked(), "must be"); 1441 return callee_method; 1442 } 1443 } 1444 1445 1446 // JSR 292 key invariant: 1447 // If the resolved method is a MethodHandle invoke target, the call 1448 // site must be a MethodHandle call site, because the lambda form might tail-call 1449 // leaving the stack in a state unknown to either caller or callee 1450 1451 // Compute entry points. The computation of the entry points is independent of 1452 // patching the call. 1453 1454 // Make sure the callee nmethod does not get deoptimized and removed before 1455 // we are done patching the code. 1456 1457 1458 CompiledICLocker ml(caller_nm); 1459 if (is_virtual && !is_optimized) { 1460 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1461 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1462 } else { 1463 // Callsite is a direct call - set it to the destination method 1464 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1465 callsite->set(callee_method, caller_is_c1); 1466 } 1467 1468 return callee_method; 1469 } 1470 1471 // Inline caches exist only in compiled code 1472 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1473 #ifdef ASSERT 1474 RegisterMap reg_map(current, 1475 RegisterMap::UpdateMap::skip, 1476 RegisterMap::ProcessFrames::include, 1477 RegisterMap::WalkContinuation::skip); 1478 frame stub_frame = current->last_frame(); 1479 assert(stub_frame.is_runtime_frame(), "sanity check"); 1480 frame caller_frame = stub_frame.sender(®_map); 1481 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1482 #endif /* ASSERT */ 1483 1484 methodHandle callee_method; 1485 bool is_optimized = false; 1486 bool caller_is_c1 = false; 1487 JRT_BLOCK 1488 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1489 // Return Method* through TLS 1490 current->set_vm_result_2(callee_method()); 1491 JRT_BLOCK_END 1492 // return compiled code entry point after potential safepoints 1493 return get_resolved_entry(current, callee_method, false, is_optimized, caller_is_c1); 1494 JRT_END 1495 1496 1497 // Handle call site that has been made non-entrant 1498 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1499 // 6243940 We might end up in here if the callee is deoptimized 1500 // as we race to call it. We don't want to take a safepoint if 1501 // the caller was interpreted because the caller frame will look 1502 // interpreted to the stack walkers and arguments are now 1503 // "compiled" so it is much better to make this transition 1504 // invisible to the stack walking code. The i2c path will 1505 // place the callee method in the callee_target. It is stashed 1506 // there because if we try and find the callee by normal means a 1507 // safepoint is possible and have trouble gc'ing the compiled args. 1508 RegisterMap reg_map(current, 1509 RegisterMap::UpdateMap::skip, 1510 RegisterMap::ProcessFrames::include, 1511 RegisterMap::WalkContinuation::skip); 1512 frame stub_frame = current->last_frame(); 1513 assert(stub_frame.is_runtime_frame(), "sanity check"); 1514 frame caller_frame = stub_frame.sender(®_map); 1515 1516 if (caller_frame.is_interpreted_frame() || 1517 caller_frame.is_entry_frame() || 1518 caller_frame.is_upcall_stub_frame()) { 1519 Method* callee = current->callee_target(); 1520 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1521 current->set_vm_result_2(callee); 1522 current->set_callee_target(nullptr); 1523 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1524 // Bypass class initialization checks in c2i when caller is in native. 1525 // JNI calls to static methods don't have class initialization checks. 1526 // Fast class initialization checks are present in c2i adapters and call into 1527 // SharedRuntime::handle_wrong_method() on the slow path. 1528 // 1529 // JVM upcalls may land here as well, but there's a proper check present in 1530 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1531 // so bypassing it in c2i adapter is benign. 1532 return callee->get_c2i_no_clinit_check_entry(); 1533 } else { 1534 if (caller_frame.is_interpreted_frame()) { 1535 return callee->get_c2i_inline_entry(); 1536 } else { 1537 return callee->get_c2i_entry(); 1538 } 1539 } 1540 } 1541 1542 // Must be compiled to compiled path which is safe to stackwalk 1543 methodHandle callee_method; 1544 bool is_static_call = false; 1545 bool is_optimized = false; 1546 bool caller_is_c1 = false; 1547 JRT_BLOCK 1548 // Force resolving of caller (if we called from compiled frame) 1549 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1550 current->set_vm_result_2(callee_method()); 1551 JRT_BLOCK_END 1552 // return compiled code entry point after potential safepoints 1553 return get_resolved_entry(current, callee_method, is_static_call, is_optimized, caller_is_c1); 1554 JRT_END 1555 1556 // Handle abstract method call 1557 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1558 // Verbose error message for AbstractMethodError. 1559 // Get the called method from the invoke bytecode. 1560 vframeStream vfst(current, true); 1561 assert(!vfst.at_end(), "Java frame must exist"); 1562 methodHandle caller(current, vfst.method()); 1563 Bytecode_invoke invoke(caller, vfst.bci()); 1564 DEBUG_ONLY( invoke.verify(); ) 1565 1566 // Find the compiled caller frame. 1567 RegisterMap reg_map(current, 1568 RegisterMap::UpdateMap::include, 1569 RegisterMap::ProcessFrames::include, 1570 RegisterMap::WalkContinuation::skip); 1571 frame stubFrame = current->last_frame(); 1572 assert(stubFrame.is_runtime_frame(), "must be"); 1573 frame callerFrame = stubFrame.sender(®_map); 1574 assert(callerFrame.is_compiled_frame(), "must be"); 1575 1576 // Install exception and return forward entry. 1577 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1578 JRT_BLOCK 1579 methodHandle callee(current, invoke.static_target(current)); 1580 if (!callee.is_null()) { 1581 oop recv = callerFrame.retrieve_receiver(®_map); 1582 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1583 res = StubRoutines::forward_exception_entry(); 1584 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1585 } 1586 JRT_BLOCK_END 1587 return res; 1588 JRT_END 1589 1590 // return verified_code_entry if interp_only_mode is not set for the current thread; 1591 // otherwise return c2i entry. 1592 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method, 1593 bool is_static_call, bool is_optimized, bool caller_is_c1) { 1594 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1595 // In interp_only_mode we need to go to the interpreted entry 1596 // The c2i won't patch in this mode -- see fixup_callers_callsite 1597 return callee_method->get_c2i_entry(); 1598 } 1599 1600 if (caller_is_c1) { 1601 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!"); 1602 return callee_method->verified_inline_code_entry(); 1603 } else if (is_static_call || is_optimized) { 1604 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!"); 1605 return callee_method->verified_code_entry(); 1606 } else { 1607 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!"); 1608 return callee_method->verified_inline_ro_code_entry(); 1609 } 1610 } 1611 1612 // resolve a static call and patch code 1613 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1614 methodHandle callee_method; 1615 bool caller_is_c1 = false; 1616 bool enter_special = false; 1617 JRT_BLOCK 1618 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1619 current->set_vm_result_2(callee_method()); 1620 JRT_BLOCK_END 1621 // return compiled code entry point after potential safepoints 1622 return get_resolved_entry(current, callee_method, true, false, caller_is_c1); 1623 JRT_END 1624 1625 // resolve virtual call and update inline cache to monomorphic 1626 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1627 methodHandle callee_method; 1628 bool caller_is_c1 = false; 1629 JRT_BLOCK 1630 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1631 current->set_vm_result_2(callee_method()); 1632 JRT_BLOCK_END 1633 // return compiled code entry point after potential safepoints 1634 return get_resolved_entry(current, callee_method, false, false, caller_is_c1); 1635 JRT_END 1636 1637 1638 // Resolve a virtual call that can be statically bound (e.g., always 1639 // monomorphic, so it has no inline cache). Patch code to resolved target. 1640 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1641 methodHandle callee_method; 1642 bool caller_is_c1 = false; 1643 JRT_BLOCK 1644 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1645 current->set_vm_result_2(callee_method()); 1646 JRT_BLOCK_END 1647 // return compiled code entry point after potential safepoints 1648 return get_resolved_entry(current, callee_method, false, true, caller_is_c1); 1649 JRT_END 1650 1651 1652 1653 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1654 JavaThread* current = THREAD; 1655 ResourceMark rm(current); 1656 CallInfo call_info; 1657 Bytecodes::Code bc; 1658 1659 // receiver is null for static calls. An exception is thrown for null 1660 // receivers for non-static calls 1661 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1662 1663 methodHandle callee_method(current, call_info.selected_method()); 1664 1665 #ifndef PRODUCT 1666 Atomic::inc(&_ic_miss_ctr); 1667 1668 // Statistics & Tracing 1669 if (TraceCallFixup) { 1670 ResourceMark rm(current); 1671 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1672 callee_method->print_short_name(tty); 1673 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1674 } 1675 1676 if (ICMissHistogram) { 1677 MutexLocker m(VMStatistic_lock); 1678 RegisterMap reg_map(current, 1679 RegisterMap::UpdateMap::skip, 1680 RegisterMap::ProcessFrames::include, 1681 RegisterMap::WalkContinuation::skip); 1682 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1683 // produce statistics under the lock 1684 trace_ic_miss(f.pc()); 1685 } 1686 #endif 1687 1688 // install an event collector so that when a vtable stub is created the 1689 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1690 // event can't be posted when the stub is created as locks are held 1691 // - instead the event will be deferred until the event collector goes 1692 // out of scope. 1693 JvmtiDynamicCodeEventCollector event_collector; 1694 1695 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1696 RegisterMap reg_map(current, 1697 RegisterMap::UpdateMap::skip, 1698 RegisterMap::ProcessFrames::include, 1699 RegisterMap::WalkContinuation::skip); 1700 frame caller_frame = current->last_frame().sender(®_map); 1701 CodeBlob* cb = caller_frame.cb(); 1702 nmethod* caller_nm = cb->as_nmethod(); 1703 // Calls via mismatching methods are always non-scalarized 1704 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1705 caller_is_c1 = true; 1706 } 1707 1708 CompiledICLocker ml(caller_nm); 1709 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1710 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1711 1712 return callee_method; 1713 } 1714 1715 // 1716 // Resets a call-site in compiled code so it will get resolved again. 1717 // This routines handles both virtual call sites, optimized virtual call 1718 // sites, and static call sites. Typically used to change a call sites 1719 // destination from compiled to interpreted. 1720 // 1721 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1722 JavaThread* current = THREAD; 1723 ResourceMark rm(current); 1724 RegisterMap reg_map(current, 1725 RegisterMap::UpdateMap::skip, 1726 RegisterMap::ProcessFrames::include, 1727 RegisterMap::WalkContinuation::skip); 1728 frame stub_frame = current->last_frame(); 1729 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1730 frame caller = stub_frame.sender(®_map); 1731 if (caller.is_compiled_frame()) { 1732 caller_is_c1 = caller.cb()->as_nmethod()->is_compiled_by_c1(); 1733 } 1734 1735 // Do nothing if the frame isn't a live compiled frame. 1736 // nmethod could be deoptimized by the time we get here 1737 // so no update to the caller is needed. 1738 1739 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1740 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1741 1742 address pc = caller.pc(); 1743 1744 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1745 assert(caller_nm != nullptr, "did not find caller nmethod"); 1746 1747 // Default call_addr is the location of the "basic" call. 1748 // Determine the address of the call we a reresolving. With 1749 // Inline Caches we will always find a recognizable call. 1750 // With Inline Caches disabled we may or may not find a 1751 // recognizable call. We will always find a call for static 1752 // calls and for optimized virtual calls. For vanilla virtual 1753 // calls it depends on the state of the UseInlineCaches switch. 1754 // 1755 // With Inline Caches disabled we can get here for a virtual call 1756 // for two reasons: 1757 // 1 - calling an abstract method. The vtable for abstract methods 1758 // will run us thru handle_wrong_method and we will eventually 1759 // end up in the interpreter to throw the ame. 1760 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1761 // call and between the time we fetch the entry address and 1762 // we jump to it the target gets deoptimized. Similar to 1 1763 // we will wind up in the interprter (thru a c2i with c2). 1764 // 1765 CompiledICLocker ml(caller_nm); 1766 address call_addr = caller_nm->call_instruction_address(pc); 1767 1768 if (call_addr != nullptr) { 1769 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1770 // bytes back in the instruction stream so we must also check for reloc info. 1771 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1772 bool ret = iter.next(); // Get item 1773 if (ret) { 1774 is_static_call = false; 1775 is_optimized = false; 1776 switch (iter.type()) { 1777 case relocInfo::static_call_type: 1778 is_static_call = true; 1779 case relocInfo::opt_virtual_call_type: { 1780 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1781 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1782 cdc->set_to_clean(); 1783 break; 1784 } 1785 case relocInfo::virtual_call_type: { 1786 // compiled, dispatched call (which used to call an interpreted method) 1787 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1788 inline_cache->set_to_clean(); 1789 break; 1790 } 1791 default: 1792 break; 1793 } 1794 } 1795 } 1796 } 1797 1798 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1799 1800 #ifndef PRODUCT 1801 Atomic::inc(&_wrong_method_ctr); 1802 1803 if (TraceCallFixup) { 1804 ResourceMark rm(current); 1805 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1806 callee_method->print_short_name(tty); 1807 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1808 } 1809 #endif 1810 1811 return callee_method; 1812 } 1813 1814 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1815 // The faulting unsafe accesses should be changed to throw the error 1816 // synchronously instead. Meanwhile the faulting instruction will be 1817 // skipped over (effectively turning it into a no-op) and an 1818 // asynchronous exception will be raised which the thread will 1819 // handle at a later point. If the instruction is a load it will 1820 // return garbage. 1821 1822 // Request an async exception. 1823 thread->set_pending_unsafe_access_error(); 1824 1825 // Return address of next instruction to execute. 1826 return next_pc; 1827 } 1828 1829 #ifdef ASSERT 1830 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1831 const BasicType* sig_bt, 1832 const VMRegPair* regs) { 1833 ResourceMark rm; 1834 const int total_args_passed = method->size_of_parameters(); 1835 const VMRegPair* regs_with_member_name = regs; 1836 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1837 1838 const int member_arg_pos = total_args_passed - 1; 1839 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1840 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1841 1842 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1843 1844 for (int i = 0; i < member_arg_pos; i++) { 1845 VMReg a = regs_with_member_name[i].first(); 1846 VMReg b = regs_without_member_name[i].first(); 1847 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1848 } 1849 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1850 } 1851 #endif 1852 1853 // --------------------------------------------------------------------------- 1854 // We are calling the interpreter via a c2i. Normally this would mean that 1855 // we were called by a compiled method. However we could have lost a race 1856 // where we went int -> i2c -> c2i and so the caller could in fact be 1857 // interpreted. If the caller is compiled we attempt to patch the caller 1858 // so he no longer calls into the interpreter. 1859 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1860 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1861 1862 // It's possible that deoptimization can occur at a call site which hasn't 1863 // been resolved yet, in which case this function will be called from 1864 // an nmethod that has been patched for deopt and we can ignore the 1865 // request for a fixup. 1866 // Also it is possible that we lost a race in that from_compiled_entry 1867 // is now back to the i2c in that case we don't need to patch and if 1868 // we did we'd leap into space because the callsite needs to use 1869 // "to interpreter" stub in order to load up the Method*. Don't 1870 // ask me how I know this... 1871 1872 // Result from nmethod::is_unloading is not stable across safepoints. 1873 NoSafepointVerifier nsv; 1874 1875 nmethod* callee = method->code(); 1876 if (callee == nullptr) { 1877 return; 1878 } 1879 1880 // write lock needed because we might patch call site by set_to_clean() 1881 // and is_unloading() can modify nmethod's state 1882 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1883 1884 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1885 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1886 return; 1887 } 1888 1889 // The check above makes sure this is an nmethod. 1890 nmethod* caller = cb->as_nmethod(); 1891 1892 // Get the return PC for the passed caller PC. 1893 address return_pc = caller_pc + frame::pc_return_offset; 1894 1895 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1896 return; 1897 } 1898 1899 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1900 CompiledICLocker ic_locker(caller); 1901 ResourceMark rm; 1902 1903 // If we got here through a static call or opt_virtual call, then we know where the 1904 // call address would be; let's peek at it 1905 address callsite_addr = (address)nativeCall_before(return_pc); 1906 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1907 if (!iter.next()) { 1908 // No reloc entry found; not a static or optimized virtual call 1909 return; 1910 } 1911 1912 relocInfo::relocType type = iter.reloc()->type(); 1913 if (type != relocInfo::static_call_type && 1914 type != relocInfo::opt_virtual_call_type) { 1915 return; 1916 } 1917 1918 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1919 callsite->set_to_clean(); 1920 JRT_END 1921 1922 1923 // same as JVM_Arraycopy, but called directly from compiled code 1924 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1925 oopDesc* dest, jint dest_pos, 1926 jint length, 1927 JavaThread* current)) { 1928 #ifndef PRODUCT 1929 _slow_array_copy_ctr++; 1930 #endif 1931 // Check if we have null pointers 1932 if (src == nullptr || dest == nullptr) { 1933 THROW(vmSymbols::java_lang_NullPointerException()); 1934 } 1935 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1936 // even though the copy_array API also performs dynamic checks to ensure 1937 // that src and dest are truly arrays (and are conformable). 1938 // The copy_array mechanism is awkward and could be removed, but 1939 // the compilers don't call this function except as a last resort, 1940 // so it probably doesn't matter. 1941 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1942 (arrayOopDesc*)dest, dest_pos, 1943 length, current); 1944 } 1945 JRT_END 1946 1947 // The caller of generate_class_cast_message() (or one of its callers) 1948 // must use a ResourceMark in order to correctly free the result. 1949 char* SharedRuntime::generate_class_cast_message( 1950 JavaThread* thread, Klass* caster_klass) { 1951 1952 // Get target class name from the checkcast instruction 1953 vframeStream vfst(thread, true); 1954 assert(!vfst.at_end(), "Java frame must exist"); 1955 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1956 constantPoolHandle cpool(thread, vfst.method()->constants()); 1957 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1958 Symbol* target_klass_name = nullptr; 1959 if (target_klass == nullptr) { 1960 // This klass should be resolved, but just in case, get the name in the klass slot. 1961 target_klass_name = cpool->klass_name_at(cc.index()); 1962 } 1963 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1964 } 1965 1966 1967 // The caller of generate_class_cast_message() (or one of its callers) 1968 // must use a ResourceMark in order to correctly free the result. 1969 char* SharedRuntime::generate_class_cast_message( 1970 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1971 const char* caster_name = caster_klass->external_name(); 1972 1973 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1974 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1975 target_klass->external_name(); 1976 1977 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1978 1979 const char* caster_klass_description = ""; 1980 const char* target_klass_description = ""; 1981 const char* klass_separator = ""; 1982 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1983 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1984 } else { 1985 caster_klass_description = caster_klass->class_in_module_of_loader(); 1986 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1987 klass_separator = (target_klass != nullptr) ? "; " : ""; 1988 } 1989 1990 // add 3 for parenthesis and preceding space 1991 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1992 1993 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1994 if (message == nullptr) { 1995 // Shouldn't happen, but don't cause even more problems if it does 1996 message = const_cast<char*>(caster_klass->external_name()); 1997 } else { 1998 jio_snprintf(message, 1999 msglen, 2000 "class %s cannot be cast to class %s (%s%s%s)", 2001 caster_name, 2002 target_name, 2003 caster_klass_description, 2004 klass_separator, 2005 target_klass_description 2006 ); 2007 } 2008 return message; 2009 } 2010 2011 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 2012 assert(klass->is_inline_klass(), "Must be a concrete value class"); 2013 const char* desc = "Cannot synchronize on an instance of value class "; 2014 const char* className = klass->external_name(); 2015 size_t msglen = strlen(desc) + strlen(className) + 1; 2016 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2017 if (nullptr == message) { 2018 // Out of memory: can't create detailed error message 2019 message = const_cast<char*>(klass->external_name()); 2020 } else { 2021 jio_snprintf(message, msglen, "%s%s", desc, className); 2022 } 2023 return message; 2024 } 2025 2026 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2027 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2028 JRT_END 2029 2030 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2031 if (!SafepointSynchronize::is_synchronizing()) { 2032 // Only try quick_enter() if we're not trying to reach a safepoint 2033 // so that the calling thread reaches the safepoint more quickly. 2034 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2035 return; 2036 } 2037 } 2038 // NO_ASYNC required because an async exception on the state transition destructor 2039 // would leave you with the lock held and it would never be released. 2040 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2041 // and the model is that an exception implies the method failed. 2042 JRT_BLOCK_NO_ASYNC 2043 Handle h_obj(THREAD, obj); 2044 ObjectSynchronizer::enter(h_obj, lock, current); 2045 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2046 JRT_BLOCK_END 2047 } 2048 2049 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2050 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2051 SharedRuntime::monitor_enter_helper(obj, lock, current); 2052 JRT_END 2053 2054 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2055 assert(JavaThread::current() == current, "invariant"); 2056 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2057 ExceptionMark em(current); 2058 2059 // Check if C2_MacroAssembler::fast_unlock() or 2060 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2061 // monitor before going slow path. Since there is no safepoint 2062 // polling when calling into the VM, we can be sure that the monitor 2063 // hasn't been deallocated. 2064 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2065 if (m != nullptr) { 2066 assert(!m->has_owner(current), "must be"); 2067 current->clear_unlocked_inflated_monitor(); 2068 2069 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2070 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2071 // Some other thread acquired the lock (or the monitor was 2072 // deflated). Either way we are done. 2073 current->dec_held_monitor_count(); 2074 return; 2075 } 2076 } 2077 2078 // The object could become unlocked through a JNI call, which we have no other checks for. 2079 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2080 if (obj->is_unlocked()) { 2081 if (CheckJNICalls) { 2082 fatal("Object has been unlocked by JNI"); 2083 } 2084 return; 2085 } 2086 ObjectSynchronizer::exit(obj, lock, current); 2087 } 2088 2089 // Handles the uncommon cases of monitor unlocking in compiled code 2090 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2091 assert(current == JavaThread::current(), "pre-condition"); 2092 SharedRuntime::monitor_exit_helper(obj, lock, current); 2093 JRT_END 2094 2095 // This is only called when CheckJNICalls is true, and only 2096 // for virtual thread termination. 2097 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2098 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2099 if (log_is_enabled(Debug, jni)) { 2100 JavaThread* current = JavaThread::current(); 2101 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2102 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2103 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2104 ") exiting with Objects still locked by JNI MonitorEnter.", 2105 vthread_id, carrier_id); 2106 } 2107 JRT_END 2108 2109 #ifndef PRODUCT 2110 2111 void SharedRuntime::print_statistics() { 2112 ttyLocker ttyl; 2113 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2114 2115 SharedRuntime::print_ic_miss_histogram(); 2116 2117 // Dump the JRT_ENTRY counters 2118 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2119 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2120 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2121 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2122 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2123 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2124 2125 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2126 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2127 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2128 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2129 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2130 2131 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2132 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2133 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2134 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2135 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2136 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2137 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2138 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2139 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2140 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2141 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2142 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2143 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2144 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2145 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2146 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2147 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2148 2149 AdapterHandlerLibrary::print_statistics(); 2150 2151 if (xtty != nullptr) xtty->tail("statistics"); 2152 } 2153 2154 inline double percent(int64_t x, int64_t y) { 2155 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2156 } 2157 2158 class MethodArityHistogram { 2159 public: 2160 enum { MAX_ARITY = 256 }; 2161 private: 2162 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2163 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2164 static uint64_t _total_compiled_calls; 2165 static uint64_t _max_compiled_calls_per_method; 2166 static int _max_arity; // max. arity seen 2167 static int _max_size; // max. arg size seen 2168 2169 static void add_method_to_histogram(nmethod* nm) { 2170 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2171 if (method != nullptr) { 2172 ArgumentCount args(method->signature()); 2173 int arity = args.size() + (method->is_static() ? 0 : 1); 2174 int argsize = method->size_of_parameters(); 2175 arity = MIN2(arity, MAX_ARITY-1); 2176 argsize = MIN2(argsize, MAX_ARITY-1); 2177 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2178 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2179 _total_compiled_calls += count; 2180 _arity_histogram[arity] += count; 2181 _size_histogram[argsize] += count; 2182 _max_arity = MAX2(_max_arity, arity); 2183 _max_size = MAX2(_max_size, argsize); 2184 } 2185 } 2186 2187 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2188 const int N = MIN2(9, n); 2189 double sum = 0; 2190 double weighted_sum = 0; 2191 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2192 if (sum >= 1) { // prevent divide by zero or divide overflow 2193 double rest = sum; 2194 double percent = sum / 100; 2195 for (int i = 0; i <= N; i++) { 2196 rest -= (double)histo[i]; 2197 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2198 } 2199 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2200 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2201 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2202 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2203 } else { 2204 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2205 } 2206 } 2207 2208 void print_histogram() { 2209 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2210 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2211 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2212 print_histogram_helper(_max_size, _size_histogram, "size"); 2213 tty->cr(); 2214 } 2215 2216 public: 2217 MethodArityHistogram() { 2218 // Take the Compile_lock to protect against changes in the CodeBlob structures 2219 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2220 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2221 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2222 _max_arity = _max_size = 0; 2223 _total_compiled_calls = 0; 2224 _max_compiled_calls_per_method = 0; 2225 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2226 CodeCache::nmethods_do(add_method_to_histogram); 2227 print_histogram(); 2228 } 2229 }; 2230 2231 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2232 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2233 uint64_t MethodArityHistogram::_total_compiled_calls; 2234 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2235 int MethodArityHistogram::_max_arity; 2236 int MethodArityHistogram::_max_size; 2237 2238 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2239 tty->print_cr("Calls from compiled code:"); 2240 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2241 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2242 int64_t mono_i = _nof_interface_calls; 2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2250 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2251 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2252 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2253 tty->cr(); 2254 tty->print_cr("Note 1: counter updates are not MT-safe."); 2255 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2256 tty->print_cr(" %% in nested categories are relative to their category"); 2257 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2258 tty->cr(); 2259 2260 MethodArityHistogram h; 2261 } 2262 #endif 2263 2264 #ifndef PRODUCT 2265 static int _lookups; // number of calls to lookup 2266 static int _equals; // number of buckets checked with matching hash 2267 static int _hits; // number of successful lookups 2268 static int _compact; // number of equals calls with compact signature 2269 #endif 2270 2271 // A simple wrapper class around the calling convention information 2272 // that allows sharing of adapters for the same calling convention. 2273 class AdapterFingerPrint : public CHeapObj<mtCode> { 2274 private: 2275 enum { 2276 _basic_type_bits = 5, 2277 _basic_type_mask = right_n_bits(_basic_type_bits), 2278 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2279 _compact_int_count = 3 2280 }; 2281 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2282 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2283 2284 union { 2285 int _compact[_compact_int_count]; 2286 int* _fingerprint; 2287 } _value; 2288 int _length; // A negative length indicates the fingerprint is in the compact form, 2289 // Otherwise _value._fingerprint is the array. 2290 2291 // Remap BasicTypes that are handled equivalently by the adapters. 2292 // These are correct for the current system but someday it might be 2293 // necessary to make this mapping platform dependent. 2294 static BasicType adapter_encoding(BasicType in) { 2295 switch (in) { 2296 case T_BOOLEAN: 2297 case T_BYTE: 2298 case T_SHORT: 2299 case T_CHAR: 2300 // They are all promoted to T_INT in the calling convention 2301 return T_INT; 2302 2303 case T_OBJECT: 2304 case T_ARRAY: 2305 // In other words, we assume that any register good enough for 2306 // an int or long is good enough for a managed pointer. 2307 #ifdef _LP64 2308 return T_LONG; 2309 #else 2310 return T_INT; 2311 #endif 2312 2313 case T_INT: 2314 case T_LONG: 2315 case T_FLOAT: 2316 case T_DOUBLE: 2317 case T_VOID: 2318 return in; 2319 2320 default: 2321 ShouldNotReachHere(); 2322 return T_CONFLICT; 2323 } 2324 } 2325 2326 public: 2327 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2328 // The fingerprint is based on the BasicType signature encoded 2329 // into an array of ints with eight entries per int. 2330 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2331 int* ptr; 2332 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2333 if (len <= _compact_int_count) { 2334 assert(_compact_int_count == 3, "else change next line"); 2335 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2336 // Storing the signature encoded as signed chars hits about 98% 2337 // of the time. 2338 _length = -len; 2339 ptr = _value._compact; 2340 } else { 2341 _length = len; 2342 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2343 ptr = _value._fingerprint; 2344 } 2345 2346 // Now pack the BasicTypes with 8 per int 2347 int sig_index = 0; 2348 BasicType prev_bt = T_ILLEGAL; 2349 int vt_count = 0; 2350 for (int index = 0; index < len; index++) { 2351 int value = 0; 2352 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2353 BasicType bt = T_ILLEGAL; 2354 if (sig_index < total_args_passed) { 2355 bt = sig->at(sig_index++)._bt; 2356 if (bt == T_METADATA) { 2357 // Found start of inline type in signature 2358 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2359 if (sig_index == 1 && has_ro_adapter) { 2360 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2361 // with other adapters that have the same inline type as first argument and no receiver. 2362 bt = T_VOID; 2363 } 2364 vt_count++; 2365 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2366 // Found end of inline type in signature 2367 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2368 vt_count--; 2369 assert(vt_count >= 0, "invalid vt_count"); 2370 } else if (vt_count == 0) { 2371 // Widen fields that are not part of a scalarized inline type argument 2372 bt = adapter_encoding(bt); 2373 } 2374 prev_bt = bt; 2375 } 2376 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2377 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2378 value = (value << _basic_type_bits) | bt_val; 2379 } 2380 ptr[index] = value; 2381 } 2382 assert(vt_count == 0, "invalid vt_count"); 2383 } 2384 2385 ~AdapterFingerPrint() { 2386 if (_length > 0) { 2387 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2388 } 2389 } 2390 2391 int value(int index) { 2392 if (_length < 0) { 2393 return _value._compact[index]; 2394 } 2395 return _value._fingerprint[index]; 2396 } 2397 int length() { 2398 if (_length < 0) return -_length; 2399 return _length; 2400 } 2401 2402 bool is_compact() { 2403 return _length <= 0; 2404 } 2405 2406 unsigned int compute_hash() { 2407 int hash = 0; 2408 for (int i = 0; i < length(); i++) { 2409 int v = value(i); 2410 hash = (hash << 8) ^ v ^ (hash >> 5); 2411 } 2412 return (unsigned int)hash; 2413 } 2414 2415 const char* as_string() { 2416 stringStream st; 2417 st.print("0x"); 2418 for (int i = 0; i < length(); i++) { 2419 st.print("%x", value(i)); 2420 } 2421 return st.as_string(); 2422 } 2423 2424 #ifndef PRODUCT 2425 // Reconstitutes the basic type arguments from the fingerprint, 2426 // producing strings like LIJDF 2427 const char* as_basic_args_string() { 2428 stringStream st; 2429 bool long_prev = false; 2430 for (int i = 0; i < length(); i++) { 2431 unsigned val = (unsigned)value(i); 2432 // args are packed so that first/lower arguments are in the highest 2433 // bits of each int value, so iterate from highest to the lowest 2434 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2435 unsigned v = (val >> j) & _basic_type_mask; 2436 if (v == 0) { 2437 assert(i == length() - 1, "Only expect zeroes in the last word"); 2438 continue; 2439 } 2440 if (long_prev) { 2441 long_prev = false; 2442 if (v == T_VOID) { 2443 st.print("J"); 2444 } else { 2445 st.print("L"); 2446 } 2447 } else if (v == T_LONG) { 2448 long_prev = true; 2449 } else if (v != T_VOID){ 2450 st.print("%c", type2char((BasicType)v)); 2451 } 2452 } 2453 } 2454 if (long_prev) { 2455 st.print("L"); 2456 } 2457 return st.as_string(); 2458 } 2459 #endif // !product 2460 2461 bool equals(AdapterFingerPrint* other) { 2462 if (other->_length != _length) { 2463 return false; 2464 } 2465 if (_length < 0) { 2466 assert(_compact_int_count == 3, "else change next line"); 2467 return _value._compact[0] == other->_value._compact[0] && 2468 _value._compact[1] == other->_value._compact[1] && 2469 _value._compact[2] == other->_value._compact[2]; 2470 } else { 2471 for (int i = 0; i < _length; i++) { 2472 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2473 return false; 2474 } 2475 } 2476 } 2477 return true; 2478 } 2479 2480 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2481 NOT_PRODUCT(_equals++); 2482 return fp1->equals(fp2); 2483 } 2484 2485 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2486 return fp->compute_hash(); 2487 } 2488 }; 2489 2490 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2491 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2492 AnyObj::C_HEAP, mtCode, 2493 AdapterFingerPrint::compute_hash, 2494 AdapterFingerPrint::equals>; 2495 static AdapterHandlerTable* _adapter_handler_table; 2496 2497 // Find a entry with the same fingerprint if it exists 2498 static AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2499 NOT_PRODUCT(_lookups++); 2500 assert_lock_strong(AdapterHandlerLibrary_lock); 2501 AdapterFingerPrint fp(sig, has_ro_adapter); 2502 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2503 if (entry != nullptr) { 2504 #ifndef PRODUCT 2505 if (fp.is_compact()) _compact++; 2506 _hits++; 2507 #endif 2508 return *entry; 2509 } 2510 return nullptr; 2511 } 2512 2513 #ifndef PRODUCT 2514 static void print_table_statistics() { 2515 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2516 return sizeof(*key) + sizeof(*a); 2517 }; 2518 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2519 ts.print(tty, "AdapterHandlerTable"); 2520 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2521 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2522 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2523 _lookups, _equals, _hits, _compact); 2524 } 2525 #endif 2526 2527 // --------------------------------------------------------------------------- 2528 // Implementation of AdapterHandlerLibrary 2529 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2530 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2531 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2532 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2533 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2534 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2535 const int AdapterHandlerLibrary_size = 48*K; 2536 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2537 2538 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2539 return _buffer; 2540 } 2541 2542 static void post_adapter_creation(const AdapterBlob* new_adapter, 2543 const AdapterHandlerEntry* entry) { 2544 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2545 char blob_id[256]; 2546 jio_snprintf(blob_id, 2547 sizeof(blob_id), 2548 "%s(%s)", 2549 new_adapter->name(), 2550 entry->fingerprint()->as_string()); 2551 if (Forte::is_enabled()) { 2552 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2553 } 2554 2555 if (JvmtiExport::should_post_dynamic_code_generated()) { 2556 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2557 } 2558 } 2559 } 2560 2561 void AdapterHandlerLibrary::initialize() { 2562 ResourceMark rm; 2563 AdapterBlob* no_arg_blob = nullptr; 2564 AdapterBlob* int_arg_blob = nullptr; 2565 AdapterBlob* obj_arg_blob = nullptr; 2566 AdapterBlob* obj_int_arg_blob = nullptr; 2567 AdapterBlob* obj_obj_arg_blob = nullptr; 2568 { 2569 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2570 MutexLocker mu(AdapterHandlerLibrary_lock); 2571 2572 // Create a special handler for abstract methods. Abstract methods 2573 // are never compiled so an i2c entry is somewhat meaningless, but 2574 // throw AbstractMethodError just in case. 2575 // Pass wrong_method_abstract for the c2i transitions to return 2576 // AbstractMethodError for invalid invocations. 2577 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2578 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2579 SharedRuntime::throw_AbstractMethodError_entry(), 2580 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2581 wrong_method_abstract, wrong_method_abstract); 2582 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2583 2584 CompiledEntrySignature no_args; 2585 no_args.compute_calling_conventions(); 2586 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2587 2588 CompiledEntrySignature obj_args; 2589 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 2590 obj_args.compute_calling_conventions(); 2591 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2592 2593 CompiledEntrySignature int_args; 2594 SigEntry::add_entry(int_args.sig(), T_INT); 2595 int_args.compute_calling_conventions(); 2596 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2597 2598 CompiledEntrySignature obj_int_args; 2599 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 2600 SigEntry::add_entry(obj_int_args.sig(), T_INT); 2601 obj_int_args.compute_calling_conventions(); 2602 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2603 2604 CompiledEntrySignature obj_obj_args; 2605 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2606 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2607 obj_obj_args.compute_calling_conventions(); 2608 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2609 2610 assert(no_arg_blob != nullptr && 2611 obj_arg_blob != nullptr && 2612 int_arg_blob != nullptr && 2613 obj_int_arg_blob != nullptr && 2614 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2615 } 2616 return; 2617 2618 // Outside of the lock 2619 post_adapter_creation(no_arg_blob, _no_arg_handler); 2620 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2621 post_adapter_creation(int_arg_blob, _int_arg_handler); 2622 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2623 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2624 } 2625 2626 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2627 address i2c_entry, 2628 address c2i_entry, 2629 address c2i_inline_entry, 2630 address c2i_inline_ro_entry, 2631 address c2i_unverified_entry, 2632 address c2i_unverified_inline_entry, 2633 address c2i_no_clinit_check_entry) { 2634 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 2635 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 2636 } 2637 2638 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2639 if (method->is_abstract()) { 2640 return nullptr; 2641 } 2642 int total_args_passed = method->size_of_parameters(); // All args on stack 2643 if (total_args_passed == 0) { 2644 return _no_arg_handler; 2645 } else if (total_args_passed == 1) { 2646 if (!method->is_static()) { 2647 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2648 return nullptr; 2649 } 2650 return _obj_arg_handler; 2651 } 2652 switch (method->signature()->char_at(1)) { 2653 case JVM_SIGNATURE_CLASS: { 2654 if (InlineTypePassFieldsAsArgs) { 2655 SignatureStream ss(method->signature()); 2656 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2657 if (vk != nullptr) { 2658 return nullptr; 2659 } 2660 } 2661 return _obj_arg_handler; 2662 } 2663 case JVM_SIGNATURE_ARRAY: 2664 return _obj_arg_handler; 2665 case JVM_SIGNATURE_INT: 2666 case JVM_SIGNATURE_BOOLEAN: 2667 case JVM_SIGNATURE_CHAR: 2668 case JVM_SIGNATURE_BYTE: 2669 case JVM_SIGNATURE_SHORT: 2670 return _int_arg_handler; 2671 } 2672 } else if (total_args_passed == 2 && 2673 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2674 switch (method->signature()->char_at(1)) { 2675 case JVM_SIGNATURE_CLASS: { 2676 if (InlineTypePassFieldsAsArgs) { 2677 SignatureStream ss(method->signature()); 2678 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2679 if (vk != nullptr) { 2680 return nullptr; 2681 } 2682 } 2683 return _obj_obj_arg_handler; 2684 } 2685 case JVM_SIGNATURE_ARRAY: 2686 return _obj_obj_arg_handler; 2687 case JVM_SIGNATURE_INT: 2688 case JVM_SIGNATURE_BOOLEAN: 2689 case JVM_SIGNATURE_CHAR: 2690 case JVM_SIGNATURE_BYTE: 2691 case JVM_SIGNATURE_SHORT: 2692 return _obj_int_arg_handler; 2693 } 2694 } 2695 return nullptr; 2696 } 2697 2698 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2699 _method(method), _num_inline_args(0), _has_inline_recv(false), 2700 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2701 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2702 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2703 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2704 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2705 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2706 } 2707 2708 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2709 // or the same entry for VEP and VIEP(RO). 2710 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2711 if (!has_scalarized_args()) { 2712 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2713 return CodeOffsets::Verified_Entry; 2714 } 2715 if (_method->is_static()) { 2716 // Static methods don't need VIEP(RO) 2717 return CodeOffsets::Verified_Entry; 2718 } 2719 2720 if (has_inline_recv()) { 2721 if (num_inline_args() == 1) { 2722 // Share same entry for VIEP and VIEP(RO). 2723 // This is quite common: we have an instance method in an InlineKlass that has 2724 // no inline type args other than <this>. 2725 return CodeOffsets::Verified_Inline_Entry; 2726 } else { 2727 assert(num_inline_args() > 1, "must be"); 2728 // No sharing: 2729 // VIEP(RO) -- <this> is passed as object 2730 // VEP -- <this> is passed as fields 2731 return CodeOffsets::Verified_Inline_Entry_RO; 2732 } 2733 } 2734 2735 // Either a static method, or <this> is not an inline type 2736 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2737 // No sharing: 2738 // Some arguments are passed on the stack, and we have inserted reserved entries 2739 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2740 return CodeOffsets::Verified_Inline_Entry_RO; 2741 } else { 2742 // Share same entry for VEP and VIEP(RO). 2743 return CodeOffsets::Verified_Entry; 2744 } 2745 } 2746 2747 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2748 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2749 if (_supers != nullptr) { 2750 return _supers; 2751 } 2752 _supers = new GrowableArray<Method*>(); 2753 // Skip private, static, and <init> methods 2754 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2755 return _supers; 2756 } 2757 Symbol* name = _method->name(); 2758 Symbol* signature = _method->signature(); 2759 const Klass* holder = _method->method_holder()->super(); 2760 Symbol* holder_name = holder->name(); 2761 ThreadInVMfromUnknown tiv; 2762 JavaThread* current = JavaThread::current(); 2763 HandleMark hm(current); 2764 Handle loader(current, _method->method_holder()->class_loader()); 2765 2766 // Walk up the class hierarchy and search for super methods 2767 while (holder != nullptr) { 2768 Method* super_method = holder->lookup_method(name, signature); 2769 if (super_method == nullptr) { 2770 break; 2771 } 2772 if (!super_method->is_static() && !super_method->is_private() && 2773 (!super_method->is_package_private() || 2774 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2775 _supers->push(super_method); 2776 } 2777 holder = super_method->method_holder()->super(); 2778 } 2779 // Search interfaces for super methods 2780 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2781 for (int i = 0; i < interfaces->length(); ++i) { 2782 Method* m = interfaces->at(i)->lookup_method(name, signature); 2783 if (m != nullptr && !m->is_static() && m->is_public()) { 2784 _supers->push(m); 2785 } 2786 } 2787 return _supers; 2788 } 2789 2790 // Iterate over arguments and compute scalarized and non-scalarized signatures 2791 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2792 bool has_scalarized = false; 2793 if (_method != nullptr) { 2794 InstanceKlass* holder = _method->method_holder(); 2795 int arg_num = 0; 2796 if (!_method->is_static()) { 2797 // We shouldn't scalarize 'this' in a value class constructor 2798 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2799 (init || _method->is_scalarized_arg(arg_num))) { 2800 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2801 has_scalarized = true; 2802 _has_inline_recv = true; 2803 _num_inline_args++; 2804 } else { 2805 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2806 } 2807 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2808 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2809 arg_num++; 2810 } 2811 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2812 BasicType bt = ss.type(); 2813 if (bt == T_OBJECT) { 2814 InlineKlass* vk = ss.as_inline_klass(holder); 2815 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2816 // Check for a calling convention mismatch with super method(s) 2817 bool scalar_super = false; 2818 bool non_scalar_super = false; 2819 GrowableArray<Method*>* supers = get_supers(); 2820 for (int i = 0; i < supers->length(); ++i) { 2821 Method* super_method = supers->at(i); 2822 if (super_method->is_scalarized_arg(arg_num)) { 2823 scalar_super = true; 2824 } else { 2825 non_scalar_super = true; 2826 } 2827 } 2828 #ifdef ASSERT 2829 // Randomly enable below code paths for stress testing 2830 bool stress = init && StressCallingConvention; 2831 if (stress && (os::random() & 1) == 1) { 2832 non_scalar_super = true; 2833 if ((os::random() & 1) == 1) { 2834 scalar_super = true; 2835 } 2836 } 2837 #endif 2838 if (non_scalar_super) { 2839 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2840 if (scalar_super) { 2841 // Found non-scalar *and* scalar super methods. We can't handle both. 2842 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2843 for (int i = 0; i < supers->length(); ++i) { 2844 Method* super_method = supers->at(i); 2845 if (super_method->is_scalarized_arg(arg_num) debug_only(|| (stress && (os::random() & 1) == 1))) { 2846 super_method->set_mismatch(); 2847 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2848 JavaThread* thread = JavaThread::current(); 2849 HandleMark hm(thread); 2850 methodHandle mh(thread, super_method); 2851 DeoptimizationScope deopt_scope; 2852 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2853 deopt_scope.deoptimize_marked(); 2854 } 2855 } 2856 } 2857 // Fall back to non-scalarized calling convention 2858 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2859 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2860 } else { 2861 _num_inline_args++; 2862 has_scalarized = true; 2863 int last = _sig_cc->length(); 2864 int last_ro = _sig_cc_ro->length(); 2865 _sig_cc->appendAll(vk->extended_sig()); 2866 _sig_cc_ro->appendAll(vk->extended_sig()); 2867 if (bt == T_OBJECT) { 2868 // Nullable inline type argument, insert InlineTypeNode::IsInit field right after T_METADATA delimiter 2869 // Set the sort_offset so that the field is detected as null marker by nmethod::print_nmethod_labels. 2870 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, 0)); 2871 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, 0)); 2872 } 2873 } 2874 } else { 2875 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2876 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2877 } 2878 bt = T_OBJECT; 2879 } else { 2880 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2881 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2882 } 2883 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2884 if (bt != T_VOID) { 2885 arg_num++; 2886 } 2887 } 2888 } 2889 2890 // Compute the non-scalarized calling convention 2891 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2892 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2893 2894 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2895 if (has_scalarized && !_method->is_native()) { 2896 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2897 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2898 2899 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2900 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2901 2902 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2903 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2904 2905 // Upper bound on stack arguments to avoid hitting the argument limit and 2906 // bailing out of compilation ("unsupported incoming calling sequence"). 2907 // TODO we need a reasonable limit (flag?) here 2908 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2909 return; // Success 2910 } 2911 } 2912 2913 // No scalarized args 2914 _sig_cc = _sig; 2915 _regs_cc = _regs; 2916 _args_on_stack_cc = _args_on_stack; 2917 2918 _sig_cc_ro = _sig; 2919 _regs_cc_ro = _regs; 2920 _args_on_stack_cc_ro = _args_on_stack; 2921 } 2922 2923 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2924 // Use customized signature handler. Need to lock around updates to 2925 // the _adapter_handler_table (it is not safe for concurrent readers 2926 // and a single writer: this could be fixed if it becomes a 2927 // problem). 2928 2929 // Fast-path for trivial adapters 2930 AdapterHandlerEntry* entry = get_simple_adapter(method); 2931 if (entry != nullptr) { 2932 return entry; 2933 } 2934 2935 ResourceMark rm; 2936 AdapterBlob* new_adapter = nullptr; 2937 2938 CompiledEntrySignature ces(method()); 2939 ces.compute_calling_conventions(); 2940 if (ces.has_scalarized_args()) { 2941 if (!method->has_scalarized_args()) { 2942 method->set_has_scalarized_args(); 2943 } 2944 if (ces.c1_needs_stack_repair()) { 2945 method->set_c1_needs_stack_repair(); 2946 } 2947 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 2948 method->set_c2_needs_stack_repair(); 2949 } 2950 } else if (method->is_abstract()) { 2951 return _abstract_method_handler; 2952 } 2953 2954 { 2955 MutexLocker mu(AdapterHandlerLibrary_lock); 2956 2957 if (ces.has_scalarized_args() && method->is_abstract()) { 2958 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 2959 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2960 entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2961 SharedRuntime::throw_AbstractMethodError_entry(), 2962 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2963 wrong_method_abstract, wrong_method_abstract); 2964 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 2965 heap_sig->appendAll(ces.sig_cc_ro()); 2966 entry->set_sig_cc(heap_sig); 2967 return entry; 2968 } 2969 2970 // Lookup method signature's fingerprint 2971 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 2972 2973 if (entry != nullptr) { 2974 #ifdef ASSERT 2975 if (VerifyAdapterSharing) { 2976 AdapterBlob* comparison_blob = nullptr; 2977 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false); 2978 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2979 assert(comparison_entry->compare_code(entry), "code must match"); 2980 // Release the one just created and return the original 2981 delete comparison_entry; 2982 } 2983 #endif 2984 return entry; 2985 } 2986 2987 entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true); 2988 } 2989 2990 // Outside of the lock 2991 if (new_adapter != nullptr) { 2992 post_adapter_creation(new_adapter, entry); 2993 } 2994 return entry; 2995 } 2996 2997 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2998 CompiledEntrySignature& ces, 2999 bool allocate_code_blob) { 3000 if (log_is_enabled(Info, perf, class, link)) { 3001 ClassLoader::perf_method_adapters_count()->inc(); 3002 } 3003 3004 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 3005 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 3006 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 3007 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 3008 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 3009 3010 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3011 CodeBuffer buffer(buf); 3012 short buffer_locs[20]; 3013 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3014 sizeof(buffer_locs)/sizeof(relocInfo)); 3015 3016 // Make a C heap allocated version of the fingerprint to store in the adapter 3017 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(ces.sig_cc(), ces.has_inline_recv()); 3018 MacroAssembler _masm(&buffer); 3019 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 3020 ces.args_on_stack(), 3021 ces.sig(), 3022 ces.regs(), 3023 ces.sig_cc(), 3024 ces.regs_cc(), 3025 ces.sig_cc_ro(), 3026 ces.regs_cc_ro(), 3027 fingerprint, 3028 new_adapter, 3029 allocate_code_blob); 3030 3031 if (ces.has_scalarized_args()) { 3032 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3033 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3034 heap_sig->appendAll(ces.sig_cc()); 3035 entry->set_sig_cc(heap_sig); 3036 } 3037 3038 #ifdef ASSERT 3039 if (VerifyAdapterSharing) { 3040 entry->save_code(buf->code_begin(), buffer.insts_size()); 3041 if (!allocate_code_blob) { 3042 return entry; 3043 } 3044 } 3045 #endif 3046 3047 NOT_PRODUCT(int insts_size = buffer.insts_size()); 3048 if (new_adapter == nullptr) { 3049 // CodeCache is full, disable compilation 3050 // Ought to log this but compile log is only per compile thread 3051 // and we're some non descript Java thread. 3052 return nullptr; 3053 } 3054 entry->relocate(new_adapter->content_begin()); 3055 #ifndef PRODUCT 3056 // debugging support 3057 if (PrintAdapterHandlers || PrintStubCode) { 3058 ttyLocker ttyl; 3059 entry->print_adapter_on(tty); 3060 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 3061 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 3062 fingerprint->as_string(), insts_size); 3063 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 3064 if (Verbose || PrintStubCode) { 3065 address first_pc = entry->base_address(); 3066 if (first_pc != nullptr) { 3067 Disassembler::decode(first_pc, first_pc + insts_size, tty 3068 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 3069 tty->cr(); 3070 } 3071 } 3072 } 3073 #endif 3074 3075 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 3076 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 3077 if (contains_all_checks || !VerifyAdapterCalls) { 3078 assert_lock_strong(AdapterHandlerLibrary_lock); 3079 _adapter_handler_table->put(fingerprint, entry); 3080 } 3081 return entry; 3082 } 3083 3084 address AdapterHandlerEntry::base_address() { 3085 address base = _i2c_entry; 3086 if (base == nullptr) base = _c2i_entry; 3087 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3088 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3089 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3090 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3091 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3092 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3093 return base; 3094 } 3095 3096 void AdapterHandlerEntry::relocate(address new_base) { 3097 address old_base = base_address(); 3098 assert(old_base != nullptr, ""); 3099 ptrdiff_t delta = new_base - old_base; 3100 if (_i2c_entry != nullptr) 3101 _i2c_entry += delta; 3102 if (_c2i_entry != nullptr) 3103 _c2i_entry += delta; 3104 if (_c2i_inline_entry != nullptr) 3105 _c2i_inline_entry += delta; 3106 if (_c2i_inline_ro_entry != nullptr) 3107 _c2i_inline_ro_entry += delta; 3108 if (_c2i_unverified_entry != nullptr) 3109 _c2i_unverified_entry += delta; 3110 if (_c2i_unverified_inline_entry != nullptr) 3111 _c2i_unverified_inline_entry += delta; 3112 if (_c2i_no_clinit_check_entry != nullptr) 3113 _c2i_no_clinit_check_entry += delta; 3114 assert(base_address() == new_base, ""); 3115 } 3116 3117 3118 AdapterHandlerEntry::~AdapterHandlerEntry() { 3119 delete _fingerprint; 3120 if (_sig_cc != nullptr) { 3121 delete _sig_cc; 3122 } 3123 #ifdef ASSERT 3124 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3125 #endif 3126 } 3127 3128 3129 #ifdef ASSERT 3130 // Capture the code before relocation so that it can be compared 3131 // against other versions. If the code is captured after relocation 3132 // then relative instructions won't be equivalent. 3133 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3134 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3135 _saved_code_length = length; 3136 memcpy(_saved_code, buffer, length); 3137 } 3138 3139 3140 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3141 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3142 3143 if (other->_saved_code_length != _saved_code_length) { 3144 return false; 3145 } 3146 3147 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3148 } 3149 #endif 3150 3151 3152 /** 3153 * Create a native wrapper for this native method. The wrapper converts the 3154 * Java-compiled calling convention to the native convention, handles 3155 * arguments, and transitions to native. On return from the native we transition 3156 * back to java blocking if a safepoint is in progress. 3157 */ 3158 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3159 ResourceMark rm; 3160 nmethod* nm = nullptr; 3161 3162 // Check if memory should be freed before allocation 3163 CodeCache::gc_on_allocation(); 3164 3165 assert(method->is_native(), "must be native"); 3166 assert(method->is_special_native_intrinsic() || 3167 method->has_native_function(), "must have something valid to call!"); 3168 3169 { 3170 // Perform the work while holding the lock, but perform any printing outside the lock 3171 MutexLocker mu(AdapterHandlerLibrary_lock); 3172 // See if somebody beat us to it 3173 if (method->code() != nullptr) { 3174 return; 3175 } 3176 3177 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3178 assert(compile_id > 0, "Must generate native wrapper"); 3179 3180 3181 ResourceMark rm; 3182 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3183 if (buf != nullptr) { 3184 CodeBuffer buffer(buf); 3185 3186 if (method->is_continuation_enter_intrinsic()) { 3187 buffer.initialize_stubs_size(192); 3188 } 3189 3190 struct { double data[20]; } locs_buf; 3191 struct { double data[20]; } stubs_locs_buf; 3192 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3193 #if defined(AARCH64) || defined(PPC64) 3194 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3195 // in the constant pool to ensure ordering between the barrier and oops 3196 // accesses. For native_wrappers we need a constant. 3197 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3198 // static java call that is resolved in the runtime. 3199 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3200 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3201 } 3202 #endif 3203 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3204 MacroAssembler _masm(&buffer); 3205 3206 // Fill in the signature array, for the calling-convention call. 3207 const int total_args_passed = method->size_of_parameters(); 3208 3209 BasicType stack_sig_bt[16]; 3210 VMRegPair stack_regs[16]; 3211 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3212 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3213 3214 int i = 0; 3215 if (!method->is_static()) { // Pass in receiver first 3216 sig_bt[i++] = T_OBJECT; 3217 } 3218 SignatureStream ss(method->signature()); 3219 for (; !ss.at_return_type(); ss.next()) { 3220 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3221 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3222 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3223 } 3224 } 3225 assert(i == total_args_passed, ""); 3226 BasicType ret_type = ss.type(); 3227 3228 // Now get the compiled-Java arguments layout. 3229 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3230 3231 // Generate the compiled-to-native wrapper code 3232 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3233 3234 if (nm != nullptr) { 3235 { 3236 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3237 if (nm->make_in_use()) { 3238 method->set_code(method, nm); 3239 } 3240 } 3241 3242 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3243 if (directive->PrintAssemblyOption) { 3244 nm->print_code(); 3245 } 3246 DirectivesStack::release(directive); 3247 } 3248 } 3249 } // Unlock AdapterHandlerLibrary_lock 3250 3251 3252 // Install the generated code. 3253 if (nm != nullptr) { 3254 const char *msg = method->is_static() ? "(static)" : ""; 3255 CompileTask::print_ul(nm, msg); 3256 if (PrintCompilation) { 3257 ttyLocker ttyl; 3258 CompileTask::print(tty, nm, msg); 3259 } 3260 nm->post_compiled_method_load_event(); 3261 } 3262 } 3263 3264 // ------------------------------------------------------------------------- 3265 // Java-Java calling convention 3266 // (what you use when Java calls Java) 3267 3268 //------------------------------name_for_receiver---------------------------------- 3269 // For a given signature, return the VMReg for parameter 0. 3270 VMReg SharedRuntime::name_for_receiver() { 3271 VMRegPair regs; 3272 BasicType sig_bt = T_OBJECT; 3273 (void) java_calling_convention(&sig_bt, ®s, 1); 3274 // Return argument 0 register. In the LP64 build pointers 3275 // take 2 registers, but the VM wants only the 'main' name. 3276 return regs.first(); 3277 } 3278 3279 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3280 // This method is returning a data structure allocating as a 3281 // ResourceObject, so do not put any ResourceMarks in here. 3282 3283 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3284 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3285 int cnt = 0; 3286 if (has_receiver) { 3287 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3288 } 3289 3290 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3291 BasicType type = ss.type(); 3292 sig_bt[cnt++] = type; 3293 if (is_double_word_type(type)) 3294 sig_bt[cnt++] = T_VOID; 3295 } 3296 3297 if (has_appendix) { 3298 sig_bt[cnt++] = T_OBJECT; 3299 } 3300 3301 assert(cnt < 256, "grow table size"); 3302 3303 int comp_args_on_stack; 3304 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3305 3306 // the calling convention doesn't count out_preserve_stack_slots so 3307 // we must add that in to get "true" stack offsets. 3308 3309 if (comp_args_on_stack) { 3310 for (int i = 0; i < cnt; i++) { 3311 VMReg reg1 = regs[i].first(); 3312 if (reg1->is_stack()) { 3313 // Yuck 3314 reg1 = reg1->bias(out_preserve_stack_slots()); 3315 } 3316 VMReg reg2 = regs[i].second(); 3317 if (reg2->is_stack()) { 3318 // Yuck 3319 reg2 = reg2->bias(out_preserve_stack_slots()); 3320 } 3321 regs[i].set_pair(reg2, reg1); 3322 } 3323 } 3324 3325 // results 3326 *arg_size = cnt; 3327 return regs; 3328 } 3329 3330 // OSR Migration Code 3331 // 3332 // This code is used convert interpreter frames into compiled frames. It is 3333 // called from very start of a compiled OSR nmethod. A temp array is 3334 // allocated to hold the interesting bits of the interpreter frame. All 3335 // active locks are inflated to allow them to move. The displaced headers and 3336 // active interpreter locals are copied into the temp buffer. Then we return 3337 // back to the compiled code. The compiled code then pops the current 3338 // interpreter frame off the stack and pushes a new compiled frame. Then it 3339 // copies the interpreter locals and displaced headers where it wants. 3340 // Finally it calls back to free the temp buffer. 3341 // 3342 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3343 3344 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3345 assert(current == JavaThread::current(), "pre-condition"); 3346 3347 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3348 // frame. The stack watermark code below ensures that the interpreted frame is processed 3349 // before it gets unwound. This is helpful as the size of the compiled frame could be 3350 // larger than the interpreted frame, which could result in the new frame not being 3351 // processed correctly. 3352 StackWatermarkSet::before_unwind(current); 3353 3354 // 3355 // This code is dependent on the memory layout of the interpreter local 3356 // array and the monitors. On all of our platforms the layout is identical 3357 // so this code is shared. If some platform lays the their arrays out 3358 // differently then this code could move to platform specific code or 3359 // the code here could be modified to copy items one at a time using 3360 // frame accessor methods and be platform independent. 3361 3362 frame fr = current->last_frame(); 3363 assert(fr.is_interpreted_frame(), ""); 3364 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3365 3366 // Figure out how many monitors are active. 3367 int active_monitor_count = 0; 3368 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3369 kptr < fr.interpreter_frame_monitor_begin(); 3370 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3371 if (kptr->obj() != nullptr) active_monitor_count++; 3372 } 3373 3374 // QQQ we could place number of active monitors in the array so that compiled code 3375 // could double check it. 3376 3377 Method* moop = fr.interpreter_frame_method(); 3378 int max_locals = moop->max_locals(); 3379 // Allocate temp buffer, 1 word per local & 2 per active monitor 3380 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3381 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3382 3383 // Copy the locals. Order is preserved so that loading of longs works. 3384 // Since there's no GC I can copy the oops blindly. 3385 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3386 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3387 (HeapWord*)&buf[0], 3388 max_locals); 3389 3390 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3391 int i = max_locals; 3392 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3393 kptr2 < fr.interpreter_frame_monitor_begin(); 3394 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3395 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3396 BasicLock *lock = kptr2->lock(); 3397 if (LockingMode == LM_LEGACY) { 3398 // Inflate so the object's header no longer refers to the BasicLock. 3399 if (lock->displaced_header().is_unlocked()) { 3400 // The object is locked and the resulting ObjectMonitor* will also be 3401 // locked so it can't be async deflated until ownership is dropped. 3402 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3403 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3404 } 3405 // Now the displaced header is free to move because the 3406 // object's header no longer refers to it. 3407 buf[i] = (intptr_t)lock->displaced_header().value(); 3408 } else if (UseObjectMonitorTable) { 3409 buf[i] = (intptr_t)lock->object_monitor_cache(); 3410 } 3411 #ifdef ASSERT 3412 else { 3413 buf[i] = badDispHeaderOSR; 3414 } 3415 #endif 3416 i++; 3417 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3418 } 3419 } 3420 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3421 3422 RegisterMap map(current, 3423 RegisterMap::UpdateMap::skip, 3424 RegisterMap::ProcessFrames::include, 3425 RegisterMap::WalkContinuation::skip); 3426 frame sender = fr.sender(&map); 3427 if (sender.is_interpreted_frame()) { 3428 current->push_cont_fastpath(sender.sp()); 3429 } 3430 3431 return buf; 3432 JRT_END 3433 3434 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3435 FREE_C_HEAP_ARRAY(intptr_t, buf); 3436 JRT_END 3437 3438 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3439 bool found = false; 3440 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3441 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3442 }; 3443 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3444 _adapter_handler_table->iterate(findblob); 3445 return found; 3446 } 3447 3448 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3449 bool found = false; 3450 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3451 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3452 found = true; 3453 st->print("Adapter for signature: "); 3454 a->print_adapter_on(st); 3455 return true; 3456 } else { 3457 return false; // keep looking 3458 } 3459 }; 3460 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3461 _adapter_handler_table->iterate(findblob); 3462 assert(found, "Should have found handler"); 3463 } 3464 3465 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3466 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3467 if (get_i2c_entry() != nullptr) { 3468 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3469 } 3470 if (get_c2i_entry() != nullptr) { 3471 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3472 } 3473 if (get_c2i_entry() != nullptr) { 3474 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3475 } 3476 if (get_c2i_entry() != nullptr) { 3477 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3478 } 3479 if (get_c2i_unverified_entry() != nullptr) { 3480 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3481 } 3482 if (get_c2i_unverified_entry() != nullptr) { 3483 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3484 } 3485 if (get_c2i_no_clinit_check_entry() != nullptr) { 3486 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3487 } 3488 st->cr(); 3489 } 3490 3491 #ifndef PRODUCT 3492 3493 void AdapterHandlerLibrary::print_statistics() { 3494 print_table_statistics(); 3495 } 3496 3497 #endif /* PRODUCT */ 3498 3499 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3500 assert(current == JavaThread::current(), "pre-condition"); 3501 StackOverflow* overflow_state = current->stack_overflow_state(); 3502 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3503 overflow_state->set_reserved_stack_activation(current->stack_base()); 3504 JRT_END 3505 3506 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3507 ResourceMark rm(current); 3508 frame activation; 3509 nmethod* nm = nullptr; 3510 int count = 1; 3511 3512 assert(fr.is_java_frame(), "Must start on Java frame"); 3513 3514 RegisterMap map(JavaThread::current(), 3515 RegisterMap::UpdateMap::skip, 3516 RegisterMap::ProcessFrames::skip, 3517 RegisterMap::WalkContinuation::skip); // don't walk continuations 3518 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3519 if (!fr.is_java_frame()) { 3520 continue; 3521 } 3522 3523 Method* method = nullptr; 3524 bool found = false; 3525 if (fr.is_interpreted_frame()) { 3526 method = fr.interpreter_frame_method(); 3527 if (method != nullptr && method->has_reserved_stack_access()) { 3528 found = true; 3529 } 3530 } else { 3531 CodeBlob* cb = fr.cb(); 3532 if (cb != nullptr && cb->is_nmethod()) { 3533 nm = cb->as_nmethod(); 3534 method = nm->method(); 3535 // scope_desc_near() must be used, instead of scope_desc_at() because on 3536 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3537 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3538 method = sd->method(); 3539 if (method != nullptr && method->has_reserved_stack_access()) { 3540 found = true; 3541 } 3542 } 3543 } 3544 } 3545 if (found) { 3546 activation = fr; 3547 warning("Potentially dangerous stack overflow in " 3548 "ReservedStackAccess annotated method %s [%d]", 3549 method->name_and_sig_as_C_string(), count++); 3550 EventReservedStackActivation event; 3551 if (event.should_commit()) { 3552 event.set_method(method); 3553 event.commit(); 3554 } 3555 } 3556 } 3557 return activation; 3558 } 3559 3560 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3561 // After any safepoint, just before going back to compiled code, 3562 // we inform the GC that we will be doing initializing writes to 3563 // this object in the future without emitting card-marks, so 3564 // GC may take any compensating steps. 3565 3566 oop new_obj = current->vm_result(); 3567 if (new_obj == nullptr) return; 3568 3569 BarrierSet *bs = BarrierSet::barrier_set(); 3570 bs->on_slowpath_allocation_exit(current, new_obj); 3571 } 3572 3573 // We are at a compiled code to interpreter call. We need backing 3574 // buffers for all inline type arguments. Allocate an object array to 3575 // hold them (convenient because once we're done with it we don't have 3576 // to worry about freeing it). 3577 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 3578 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 3579 ResourceMark rm; 3580 3581 int nb_slots = 0; 3582 InstanceKlass* holder = callee->method_holder(); 3583 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 3584 if (allocate_receiver) { 3585 nb_slots++; 3586 } 3587 int arg_num = callee->is_static() ? 0 : 1; 3588 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3589 BasicType bt = ss.type(); 3590 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3591 nb_slots++; 3592 } 3593 if (bt != T_VOID) { 3594 arg_num++; 3595 } 3596 } 3597 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 3598 objArrayHandle array(THREAD, array_oop); 3599 arg_num = callee->is_static() ? 0 : 1; 3600 int i = 0; 3601 if (allocate_receiver) { 3602 InlineKlass* vk = InlineKlass::cast(holder); 3603 oop res = vk->allocate_instance(CHECK_NULL); 3604 array->obj_at_put(i++, res); 3605 } 3606 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3607 BasicType bt = ss.type(); 3608 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3609 InlineKlass* vk = ss.as_inline_klass(holder); 3610 assert(vk != nullptr, "Unexpected klass"); 3611 oop res = vk->allocate_instance(CHECK_NULL); 3612 array->obj_at_put(i++, res); 3613 } 3614 if (bt != T_VOID) { 3615 arg_num++; 3616 } 3617 } 3618 return array(); 3619 } 3620 3621 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 3622 methodHandle callee(current, callee_method); 3623 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 3624 current->set_vm_result(array); 3625 current->set_vm_result_2(callee()); // TODO: required to keep callee live? 3626 JRT_END 3627 3628 // We're returning from an interpreted method: load each field into a 3629 // register following the calling convention 3630 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 3631 { 3632 assert(res->klass()->is_inline_klass(), "only inline types here"); 3633 ResourceMark rm; 3634 RegisterMap reg_map(current, 3635 RegisterMap::UpdateMap::include, 3636 RegisterMap::ProcessFrames::include, 3637 RegisterMap::WalkContinuation::skip); 3638 frame stubFrame = current->last_frame(); 3639 frame callerFrame = stubFrame.sender(®_map); 3640 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3641 3642 InlineKlass* vk = InlineKlass::cast(res->klass()); 3643 3644 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3645 const Array<VMRegPair>* regs = vk->return_regs(); 3646 3647 if (regs == nullptr) { 3648 // The fields of the inline klass don't fit in registers, bail out 3649 return; 3650 } 3651 3652 int j = 1; 3653 for (int i = 0; i < sig_vk->length(); i++) { 3654 BasicType bt = sig_vk->at(i)._bt; 3655 if (bt == T_METADATA) { 3656 continue; 3657 } 3658 if (bt == T_VOID) { 3659 if (sig_vk->at(i-1)._bt == T_LONG || 3660 sig_vk->at(i-1)._bt == T_DOUBLE) { 3661 j++; 3662 } 3663 continue; 3664 } 3665 int off = sig_vk->at(i)._offset; 3666 assert(off > 0, "offset in object should be positive"); 3667 VMRegPair pair = regs->at(j); 3668 address loc = reg_map.location(pair.first(), nullptr); 3669 switch(bt) { 3670 case T_BOOLEAN: 3671 *(jboolean*)loc = res->bool_field(off); 3672 break; 3673 case T_CHAR: 3674 *(jchar*)loc = res->char_field(off); 3675 break; 3676 case T_BYTE: 3677 *(jbyte*)loc = res->byte_field(off); 3678 break; 3679 case T_SHORT: 3680 *(jshort*)loc = res->short_field(off); 3681 break; 3682 case T_INT: { 3683 *(jint*)loc = res->int_field(off); 3684 break; 3685 } 3686 case T_LONG: 3687 #ifdef _LP64 3688 *(intptr_t*)loc = res->long_field(off); 3689 #else 3690 Unimplemented(); 3691 #endif 3692 break; 3693 case T_OBJECT: 3694 case T_ARRAY: { 3695 *(oop*)loc = res->obj_field(off); 3696 break; 3697 } 3698 case T_FLOAT: 3699 *(jfloat*)loc = res->float_field(off); 3700 break; 3701 case T_DOUBLE: 3702 *(jdouble*)loc = res->double_field(off); 3703 break; 3704 default: 3705 ShouldNotReachHere(); 3706 } 3707 j++; 3708 } 3709 assert(j == regs->length(), "missed a field?"); 3710 3711 #ifdef ASSERT 3712 VMRegPair pair = regs->at(0); 3713 address loc = reg_map.location(pair.first(), nullptr); 3714 assert(*(oopDesc**)loc == res, "overwritten object"); 3715 #endif 3716 3717 current->set_vm_result(res); 3718 } 3719 JRT_END 3720 3721 // We've returned to an interpreted method, the interpreter needs a 3722 // reference to an inline type instance. Allocate it and initialize it 3723 // from field's values in registers. 3724 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 3725 { 3726 ResourceMark rm; 3727 RegisterMap reg_map(current, 3728 RegisterMap::UpdateMap::include, 3729 RegisterMap::ProcessFrames::include, 3730 RegisterMap::WalkContinuation::skip); 3731 frame stubFrame = current->last_frame(); 3732 frame callerFrame = stubFrame.sender(®_map); 3733 3734 #ifdef ASSERT 3735 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 3736 #endif 3737 3738 if (!is_set_nth_bit(res, 0)) { 3739 // We're not returning with inline type fields in registers (the 3740 // calling convention didn't allow it for this inline klass) 3741 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3742 current->set_vm_result((oopDesc*)res); 3743 assert(verif_vk == nullptr, "broken calling convention"); 3744 return; 3745 } 3746 3747 clear_nth_bit(res, 0); 3748 InlineKlass* vk = (InlineKlass*)res; 3749 assert(verif_vk == vk, "broken calling convention"); 3750 assert(Metaspace::contains((void*)res), "should be klass"); 3751 3752 // Allocate handles for every oop field so they are safe in case of 3753 // a safepoint when allocating 3754 GrowableArray<Handle> handles; 3755 vk->save_oop_fields(reg_map, handles); 3756 3757 // It's unsafe to safepoint until we are here 3758 JRT_BLOCK; 3759 { 3760 JavaThread* THREAD = current; 3761 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3762 current->set_vm_result(vt); 3763 } 3764 JRT_BLOCK_END; 3765 } 3766 JRT_END