1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "metaprogramming/primitiveConversions.hpp"
  52 #include "oops/access.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/inlineKlass.inline.hpp"
  55 #include "oops/klass.hpp"
  56 #include "oops/method.inline.hpp"
  57 #include "oops/objArrayKlass.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/forte.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/nativeLookup.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomicAccess.hpp"
  67 #include "runtime/basicLock.inline.hpp"
  68 #include "runtime/frame.inline.hpp"
  69 #include "runtime/handles.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/interfaceSupport.inline.hpp"
  72 #include "runtime/java.hpp"
  73 #include "runtime/javaCalls.hpp"
  74 #include "runtime/jniHandles.inline.hpp"
  75 #include "runtime/osThread.hpp"
  76 #include "runtime/perfData.hpp"
  77 #include "runtime/sharedRuntime.hpp"
  78 #include "runtime/signature.hpp"
  79 #include "runtime/stackWatermarkSet.hpp"
  80 #include "runtime/stubRoutines.hpp"
  81 #include "runtime/synchronizer.hpp"
  82 #include "runtime/timerTrace.hpp"
  83 #include "runtime/vframe.inline.hpp"
  84 #include "runtime/vframeArray.hpp"
  85 #include "runtime/vm_version.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/globalDefinitions.hpp"
  90 #include "utilities/hashTable.hpp"
  91 #include "utilities/macros.hpp"
  92 #include "utilities/xmlstream.hpp"
  93 #ifdef COMPILER1
  94 #include "c1/c1_Runtime1.hpp"
  95 #endif
  96 #ifdef COMPILER2
  97 #include "opto/runtime.hpp"
  98 #endif
  99 #if INCLUDE_JFR
 100 #include "jfr/jfr.inline.hpp"
 101 #endif
 102 
 103 // Shared runtime stub routines reside in their own unique blob with a
 104 // single entry point
 105 
 106 
 107 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 108   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 109   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 110 #undef SHARED_STUB_FIELD_DEFINE
 111 
 112 nmethod*            SharedRuntime::_cont_doYield_stub;
 113 
 114 #if 0
 115 // TODO tweak global stub name generation to match this
 116 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 117 const char *SharedRuntime::_stub_names[] = {
 118   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 119 };
 120 #endif
 121 
 122 //----------------------------generate_stubs-----------------------------------
 123 void SharedRuntime::generate_initial_stubs() {
 124   // Build this early so it's available for the interpreter.
 125   _throw_StackOverflowError_blob =
 126     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 127                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 128 }
 129 
 130 void SharedRuntime::generate_stubs() {
 131   _wrong_method_blob =
 132     generate_resolve_blob(StubId::shared_wrong_method_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 134   _wrong_method_abstract_blob =
 135     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 137   _ic_miss_blob =
 138     generate_resolve_blob(StubId::shared_ic_miss_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 140   _resolve_opt_virtual_call_blob =
 141     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 142                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 143   _resolve_virtual_call_blob =
 144     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 145                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 146   _resolve_static_call_blob =
 147     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 148                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 149 
 150   _throw_delayed_StackOverflowError_blob =
 151     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 152                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 153 
 154   _throw_AbstractMethodError_blob =
 155     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 156                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 157 
 158   _throw_IncompatibleClassChangeError_blob =
 159     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 160                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 161 
 162   _throw_NullPointerException_at_call_blob =
 163     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 164                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 165 
 166 #if COMPILER2_OR_JVMCI
 167   // Vectors are generated only by C2 and JVMCI.
 168   bool support_wide = is_wide_vector(MaxVectorSize);
 169   if (support_wide) {
 170     _polling_page_vectors_safepoint_handler_blob =
 171       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 172                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 173   }
 174 #endif // COMPILER2_OR_JVMCI
 175   _polling_page_safepoint_handler_blob =
 176     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 177                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 178   _polling_page_return_handler_blob =
 179     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 180                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 181 
 182   generate_deopt_blob();
 183 }
 184 
 185 void SharedRuntime::init_adapter_library() {
 186   AdapterHandlerLibrary::initialize();
 187 }
 188 
 189 #if INCLUDE_JFR
 190 //------------------------------generate jfr runtime stubs ------
 191 void SharedRuntime::generate_jfr_stubs() {
 192   ResourceMark rm;
 193   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 194   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 195 
 196   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 197   _jfr_return_lease_blob = generate_jfr_return_lease();
 198 }
 199 
 200 #endif // INCLUDE_JFR
 201 
 202 #include <math.h>
 203 
 204 // Implementation of SharedRuntime
 205 
 206 #ifndef PRODUCT
 207 // For statistics
 208 uint SharedRuntime::_ic_miss_ctr = 0;
 209 uint SharedRuntime::_wrong_method_ctr = 0;
 210 uint SharedRuntime::_resolve_static_ctr = 0;
 211 uint SharedRuntime::_resolve_virtual_ctr = 0;
 212 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 213 uint SharedRuntime::_implicit_null_throws = 0;
 214 uint SharedRuntime::_implicit_div0_throws = 0;
 215 
 216 int64_t SharedRuntime::_nof_normal_calls = 0;
 217 int64_t SharedRuntime::_nof_inlined_calls = 0;
 218 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 219 int64_t SharedRuntime::_nof_static_calls = 0;
 220 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 221 int64_t SharedRuntime::_nof_interface_calls = 0;
 222 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 223 
 224 uint SharedRuntime::_new_instance_ctr=0;
 225 uint SharedRuntime::_new_array_ctr=0;
 226 uint SharedRuntime::_multi2_ctr=0;
 227 uint SharedRuntime::_multi3_ctr=0;
 228 uint SharedRuntime::_multi4_ctr=0;
 229 uint SharedRuntime::_multi5_ctr=0;
 230 uint SharedRuntime::_mon_enter_stub_ctr=0;
 231 uint SharedRuntime::_mon_exit_stub_ctr=0;
 232 uint SharedRuntime::_mon_enter_ctr=0;
 233 uint SharedRuntime::_mon_exit_ctr=0;
 234 uint SharedRuntime::_partial_subtype_ctr=0;
 235 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 236 uint SharedRuntime::_jshort_array_copy_ctr=0;
 237 uint SharedRuntime::_jint_array_copy_ctr=0;
 238 uint SharedRuntime::_jlong_array_copy_ctr=0;
 239 uint SharedRuntime::_oop_array_copy_ctr=0;
 240 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 241 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 242 uint SharedRuntime::_generic_array_copy_ctr=0;
 243 uint SharedRuntime::_slow_array_copy_ctr=0;
 244 uint SharedRuntime::_find_handler_ctr=0;
 245 uint SharedRuntime::_rethrow_ctr=0;
 246 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 247 
 248 int     SharedRuntime::_ICmiss_index                    = 0;
 249 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 250 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 251 
 252 
 253 void SharedRuntime::trace_ic_miss(address at) {
 254   for (int i = 0; i < _ICmiss_index; i++) {
 255     if (_ICmiss_at[i] == at) {
 256       _ICmiss_count[i]++;
 257       return;
 258     }
 259   }
 260   int index = _ICmiss_index++;
 261   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 262   _ICmiss_at[index] = at;
 263   _ICmiss_count[index] = 1;
 264 }
 265 
 266 void SharedRuntime::print_ic_miss_histogram() {
 267   if (ICMissHistogram) {
 268     tty->print_cr("IC Miss Histogram:");
 269     int tot_misses = 0;
 270     for (int i = 0; i < _ICmiss_index; i++) {
 271       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 272       tot_misses += _ICmiss_count[i];
 273     }
 274     tty->print_cr("Total IC misses: %7d", tot_misses);
 275   }
 276 }
 277 
 278 #ifdef COMPILER2
 279 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 280 void SharedRuntime::debug_print_value(jboolean x) {
 281   tty->print_cr("boolean %d", x);
 282 }
 283 
 284 void SharedRuntime::debug_print_value(jbyte x) {
 285   tty->print_cr("byte %d", x);
 286 }
 287 
 288 void SharedRuntime::debug_print_value(jshort x) {
 289   tty->print_cr("short %d", x);
 290 }
 291 
 292 void SharedRuntime::debug_print_value(jchar x) {
 293   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 294 }
 295 
 296 void SharedRuntime::debug_print_value(jint x) {
 297   tty->print_cr("int %d", x);
 298 }
 299 
 300 void SharedRuntime::debug_print_value(jlong x) {
 301   tty->print_cr("long " JLONG_FORMAT, x);
 302 }
 303 
 304 void SharedRuntime::debug_print_value(jfloat x) {
 305   tty->print_cr("float %f", x);
 306 }
 307 
 308 void SharedRuntime::debug_print_value(jdouble x) {
 309   tty->print_cr("double %lf", x);
 310 }
 311 
 312 void SharedRuntime::debug_print_value(oopDesc* x) {
 313   x->print();
 314 }
 315 #endif // COMPILER2
 316 
 317 #endif // PRODUCT
 318 
 319 
 320 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 321   return x * y;
 322 JRT_END
 323 
 324 
 325 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 326   if (x == min_jlong && y == CONST64(-1)) {
 327     return x;
 328   } else {
 329     return x / y;
 330   }
 331 JRT_END
 332 
 333 
 334 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 335   if (x == min_jlong && y == CONST64(-1)) {
 336     return 0;
 337   } else {
 338     return x % y;
 339   }
 340 JRT_END
 341 
 342 
 343 #ifdef _WIN64
 344 const juint  float_sign_mask  = 0x7FFFFFFF;
 345 const juint  float_infinity   = 0x7F800000;
 346 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 347 const julong double_infinity  = CONST64(0x7FF0000000000000);
 348 #endif
 349 
 350 #if !defined(X86)
 351 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 352 #ifdef _WIN64
 353   // 64-bit Windows on amd64 returns the wrong values for
 354   // infinity operands.
 355   juint xbits = PrimitiveConversions::cast<juint>(x);
 356   juint ybits = PrimitiveConversions::cast<juint>(y);
 357   // x Mod Infinity == x unless x is infinity
 358   if (((xbits & float_sign_mask) != float_infinity) &&
 359        ((ybits & float_sign_mask) == float_infinity) ) {
 360     return x;
 361   }
 362   return ((jfloat)fmod_winx64((double)x, (double)y));
 363 #else
 364   return ((jfloat)fmod((double)x,(double)y));
 365 #endif
 366 JRT_END
 367 
 368 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 369 #ifdef _WIN64
 370   julong xbits = PrimitiveConversions::cast<julong>(x);
 371   julong ybits = PrimitiveConversions::cast<julong>(y);
 372   // x Mod Infinity == x unless x is infinity
 373   if (((xbits & double_sign_mask) != double_infinity) &&
 374        ((ybits & double_sign_mask) == double_infinity) ) {
 375     return x;
 376   }
 377   return ((jdouble)fmod_winx64((double)x, (double)y));
 378 #else
 379   return ((jdouble)fmod((double)x,(double)y));
 380 #endif
 381 JRT_END
 382 #endif // !X86
 383 
 384 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 385   return (jfloat)x;
 386 JRT_END
 387 
 388 #ifdef __SOFTFP__
 389 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 390   return x + y;
 391 JRT_END
 392 
 393 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 394   return x - y;
 395 JRT_END
 396 
 397 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 398   return x * y;
 399 JRT_END
 400 
 401 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 402   return x / y;
 403 JRT_END
 404 
 405 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 406   return x + y;
 407 JRT_END
 408 
 409 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 410   return x - y;
 411 JRT_END
 412 
 413 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 414   return x * y;
 415 JRT_END
 416 
 417 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 418   return x / y;
 419 JRT_END
 420 
 421 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 422   return (jdouble)x;
 423 JRT_END
 424 
 425 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 426   return (jdouble)x;
 427 JRT_END
 428 
 429 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 430   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 431 JRT_END
 432 
 433 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 434   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 435 JRT_END
 436 
 437 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 438   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 439 JRT_END
 440 
 441 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 442   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 443 JRT_END
 444 
 445 // Functions to return the opposite of the aeabi functions for nan.
 446 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 447   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 448 JRT_END
 449 
 450 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 451   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 452 JRT_END
 453 
 454 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 455   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 456 JRT_END
 457 
 458 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 459   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 460 JRT_END
 461 
 462 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 463   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 464 JRT_END
 465 
 466 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 467   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 468 JRT_END
 469 
 470 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 471   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 472 JRT_END
 473 
 474 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 475   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 476 JRT_END
 477 
 478 // Intrinsics make gcc generate code for these.
 479 float  SharedRuntime::fneg(float f)   {
 480   return -f;
 481 }
 482 
 483 double SharedRuntime::dneg(double f)  {
 484   return -f;
 485 }
 486 
 487 #endif // __SOFTFP__
 488 
 489 #if defined(__SOFTFP__) || defined(E500V2)
 490 // Intrinsics make gcc generate code for these.
 491 double SharedRuntime::dabs(double f)  {
 492   return (f <= (double)0.0) ? (double)0.0 - f : f;
 493 }
 494 
 495 #endif
 496 
 497 #if defined(__SOFTFP__)
 498 double SharedRuntime::dsqrt(double f) {
 499   return sqrt(f);
 500 }
 501 #endif
 502 
 503 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 504   if (g_isnan(x))
 505     return 0;
 506   if (x >= (jfloat) max_jint)
 507     return max_jint;
 508   if (x <= (jfloat) min_jint)
 509     return min_jint;
 510   return (jint) x;
 511 JRT_END
 512 
 513 
 514 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 515   if (g_isnan(x))
 516     return 0;
 517   if (x >= (jfloat) max_jlong)
 518     return max_jlong;
 519   if (x <= (jfloat) min_jlong)
 520     return min_jlong;
 521   return (jlong) x;
 522 JRT_END
 523 
 524 
 525 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 526   if (g_isnan(x))
 527     return 0;
 528   if (x >= (jdouble) max_jint)
 529     return max_jint;
 530   if (x <= (jdouble) min_jint)
 531     return min_jint;
 532   return (jint) x;
 533 JRT_END
 534 
 535 
 536 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 537   if (g_isnan(x))
 538     return 0;
 539   if (x >= (jdouble) max_jlong)
 540     return max_jlong;
 541   if (x <= (jdouble) min_jlong)
 542     return min_jlong;
 543   return (jlong) x;
 544 JRT_END
 545 
 546 
 547 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 548   return (jfloat)x;
 549 JRT_END
 550 
 551 
 552 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 553   return (jfloat)x;
 554 JRT_END
 555 
 556 
 557 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 558   return (jdouble)x;
 559 JRT_END
 560 
 561 
 562 // Exception handling across interpreter/compiler boundaries
 563 //
 564 // exception_handler_for_return_address(...) returns the continuation address.
 565 // The continuation address is the entry point of the exception handler of the
 566 // previous frame depending on the return address.
 567 
 568 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 569   // Note: This is called when we have unwound the frame of the callee that did
 570   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 571   // Notably, the stack is not walkable at this point, and hence the check must
 572   // be deferred until later. Specifically, any of the handlers returned here in
 573   // this function, will get dispatched to, and call deferred checks to
 574   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 575   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 576   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 577 
 578 #if INCLUDE_JVMCI
 579   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 580   // and other exception handler continuations do not read it
 581   current->set_exception_pc(nullptr);
 582 #endif // INCLUDE_JVMCI
 583 
 584   if (Continuation::is_return_barrier_entry(return_address)) {
 585     return StubRoutines::cont_returnBarrierExc();
 586   }
 587 
 588   // The fastest case first
 589   CodeBlob* blob = CodeCache::find_blob(return_address);
 590   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 591   if (nm != nullptr) {
 592     // native nmethods don't have exception handlers
 593     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 594     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 595     if (nm->is_deopt_pc(return_address)) {
 596       // If we come here because of a stack overflow, the stack may be
 597       // unguarded. Reguard the stack otherwise if we return to the
 598       // deopt blob and the stack bang causes a stack overflow we
 599       // crash.
 600       StackOverflow* overflow_state = current->stack_overflow_state();
 601       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 602       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 603         overflow_state->set_reserved_stack_activation(current->stack_base());
 604       }
 605       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 606       // The deferred StackWatermarkSet::after_unwind check will be performed in
 607       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 608       return SharedRuntime::deopt_blob()->unpack_with_exception();
 609     } else {
 610       // The deferred StackWatermarkSet::after_unwind check will be performed in
 611       // * OptoRuntime::handle_exception_C_helper for C2 code
 612       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 613 #ifdef COMPILER2
 614       if (nm->compiler_type() == compiler_c2) {
 615         return OptoRuntime::exception_blob()->entry_point();
 616       }
 617 #endif // COMPILER2
 618       return nm->exception_begin();
 619     }
 620   }
 621 
 622   // Entry code
 623   if (StubRoutines::returns_to_call_stub(return_address)) {
 624     // The deferred StackWatermarkSet::after_unwind check will be performed in
 625     // JavaCallWrapper::~JavaCallWrapper
 626     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 627     return StubRoutines::catch_exception_entry();
 628   }
 629   if (blob != nullptr && blob->is_upcall_stub()) {
 630     return StubRoutines::upcall_stub_exception_handler();
 631   }
 632   // Interpreted code
 633   if (Interpreter::contains(return_address)) {
 634     // The deferred StackWatermarkSet::after_unwind check will be performed in
 635     // InterpreterRuntime::exception_handler_for_exception
 636     return Interpreter::rethrow_exception_entry();
 637   }
 638 
 639   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 640   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 641 
 642 #ifndef PRODUCT
 643   { ResourceMark rm;
 644     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 645     os::print_location(tty, (intptr_t)return_address);
 646     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 647     tty->print_cr("b) other problem");
 648   }
 649 #endif // PRODUCT
 650   ShouldNotReachHere();
 651   return nullptr;
 652 }
 653 
 654 
 655 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 656   return raw_exception_handler_for_return_address(current, return_address);
 657 JRT_END
 658 
 659 
 660 address SharedRuntime::get_poll_stub(address pc) {
 661   address stub;
 662   // Look up the code blob
 663   CodeBlob *cb = CodeCache::find_blob(pc);
 664 
 665   // Should be an nmethod
 666   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 667 
 668   // Look up the relocation information
 669   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 670       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 671 
 672 #ifdef ASSERT
 673   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 674     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 675     Disassembler::decode(cb);
 676     fatal("Only polling locations are used for safepoint");
 677   }
 678 #endif
 679 
 680   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 681   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 682   if (at_poll_return) {
 683     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 684            "polling page return stub not created yet");
 685     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 686   } else if (has_wide_vectors) {
 687     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 688            "polling page vectors safepoint stub not created yet");
 689     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 690   } else {
 691     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 692            "polling page safepoint stub not created yet");
 693     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 694   }
 695   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 696                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 697                        p2i(Thread::current()),
 698                        Thread::current()->osthread()->thread_id(),
 699                        p2i(pc),
 700                        at_poll_return ? "return" : "loop",
 701                        p2i(stub));
 702   return stub;
 703 }
 704 
 705 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 706   if (JvmtiExport::can_post_on_exceptions()) {
 707     vframeStream vfst(current, true);
 708     methodHandle method = methodHandle(current, vfst.method());
 709     address bcp = method()->bcp_from(vfst.bci());
 710     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 711   }
 712 
 713 #if INCLUDE_JVMCI
 714   if (EnableJVMCI) {
 715     vframeStream vfst(current, true);
 716     methodHandle method = methodHandle(current, vfst.method());
 717     int bci = vfst.bci();
 718     MethodData* trap_mdo = method->method_data();
 719     if (trap_mdo != nullptr) {
 720       // Set exception_seen if the exceptional bytecode is an invoke
 721       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 722       if (call.is_valid()) {
 723         ResourceMark rm(current);
 724 
 725         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 726         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 727 
 728         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 729         if (pdata != nullptr && pdata->is_BitData()) {
 730           BitData* bit_data = (BitData*) pdata;
 731           bit_data->set_exception_seen();
 732         }
 733       }
 734     }
 735   }
 736 #endif
 737 
 738   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 739 }
 740 
 741 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 742   Handle h_exception = Exceptions::new_exception(current, name, message);
 743   throw_and_post_jvmti_exception(current, h_exception);
 744 }
 745 
 746 // The interpreter code to call this tracing function is only
 747 // called/generated when UL is on for redefine, class and has the right level
 748 // and tags. Since obsolete methods are never compiled, we don't have
 749 // to modify the compilers to generate calls to this function.
 750 //
 751 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 752     JavaThread* thread, Method* method))
 753   if (method->is_obsolete()) {
 754     // We are calling an obsolete method, but this is not necessarily
 755     // an error. Our method could have been redefined just after we
 756     // fetched the Method* from the constant pool.
 757     ResourceMark rm;
 758     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 759   }
 760   return 0;
 761 JRT_END
 762 
 763 // ret_pc points into caller; we are returning caller's exception handler
 764 // for given exception
 765 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 766 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 767                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 768   assert(nm != nullptr, "must exist");
 769   ResourceMark rm;
 770 
 771 #if INCLUDE_JVMCI
 772   if (nm->is_compiled_by_jvmci()) {
 773     // lookup exception handler for this pc
 774     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 775     ExceptionHandlerTable table(nm);
 776     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 777     if (t != nullptr) {
 778       return nm->code_begin() + t->pco();
 779     } else {
 780       bool make_not_entrant = true;
 781       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 782     }
 783   }
 784 #endif // INCLUDE_JVMCI
 785 
 786   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 787   // determine handler bci, if any
 788   EXCEPTION_MARK;
 789 
 790   Handle orig_exception(THREAD, exception());
 791 
 792   int handler_bci = -1;
 793   int scope_depth = 0;
 794   if (!force_unwind) {
 795     int bci = sd->bci();
 796     bool recursive_exception = false;
 797     do {
 798       bool skip_scope_increment = false;
 799       // exception handler lookup
 800       Klass* ek = exception->klass();
 801       methodHandle mh(THREAD, sd->method());
 802       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 803       if (HAS_PENDING_EXCEPTION) {
 804         recursive_exception = true;
 805         // We threw an exception while trying to find the exception handler.
 806         // Transfer the new exception to the exception handle which will
 807         // be set into thread local storage, and do another lookup for an
 808         // exception handler for this exception, this time starting at the
 809         // BCI of the exception handler which caused the exception to be
 810         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 811         // argument to ensure that the correct exception is thrown (4870175).
 812         recursive_exception_occurred = true;
 813         exception.replace(PENDING_EXCEPTION);
 814         CLEAR_PENDING_EXCEPTION;
 815         if (handler_bci >= 0) {
 816           bci = handler_bci;
 817           handler_bci = -1;
 818           skip_scope_increment = true;
 819         }
 820       }
 821       else {
 822         recursive_exception = false;
 823       }
 824       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 825         sd = sd->sender();
 826         if (sd != nullptr) {
 827           bci = sd->bci();
 828         }
 829         ++scope_depth;
 830       }
 831     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 832   }
 833 
 834   // found handling method => lookup exception handler
 835   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 836 
 837   ExceptionHandlerTable table(nm);
 838   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 839 
 840   // If the compiler did not anticipate a recursive exception, resulting in an exception
 841   // thrown from the catch bci, then the compiled exception handler might be missing.
 842   // This is rare.  Just deoptimize and let the interpreter rethrow the original
 843   // exception at the original bci.
 844   if (t == nullptr && recursive_exception_occurred) {
 845     exception.replace(orig_exception()); // restore original exception
 846     bool make_not_entrant = false;
 847     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 848   }
 849 
 850   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 851     // Allow abbreviated catch tables.  The idea is to allow a method
 852     // to materialize its exceptions without committing to the exact
 853     // routing of exceptions.  In particular this is needed for adding
 854     // a synthetic handler to unlock monitors when inlining
 855     // synchronized methods since the unlock path isn't represented in
 856     // the bytecodes.
 857     t = table.entry_for(catch_pco, -1, 0);
 858   }
 859 
 860 #ifdef COMPILER1
 861   if (t == nullptr && nm->is_compiled_by_c1()) {
 862     assert(nm->unwind_handler_begin() != nullptr, "");
 863     return nm->unwind_handler_begin();
 864   }
 865 #endif
 866 
 867   if (t == nullptr) {
 868     ttyLocker ttyl;
 869     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 870     tty->print_cr("   Exception:");
 871     exception->print();
 872     tty->cr();
 873     tty->print_cr(" Compiled exception table :");
 874     table.print();
 875     nm->print();
 876     nm->print_code();
 877     guarantee(false, "missing exception handler");
 878     return nullptr;
 879   }
 880 
 881   if (handler_bci != -1) { // did we find a handler in this method?
 882     sd->method()->set_exception_handler_entered(handler_bci); // profile
 883   }
 884   return nm->code_begin() + t->pco();
 885 }
 886 
 887 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 888   // These errors occur only at call sites
 889   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 890 JRT_END
 891 
 892 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 893   // These errors occur only at call sites
 894   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 895 JRT_END
 896 
 897 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 898   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 899 JRT_END
 900 
 901 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 902   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 903 JRT_END
 904 
 905 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 906   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 907   // cache sites (when the callee activation is not yet set up) so we are at a call site
 908   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 909 JRT_END
 910 
 911 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 912   throw_StackOverflowError_common(current, false);
 913 JRT_END
 914 
 915 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 916   throw_StackOverflowError_common(current, true);
 917 JRT_END
 918 
 919 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 920   // We avoid using the normal exception construction in this case because
 921   // it performs an upcall to Java, and we're already out of stack space.
 922   JavaThread* THREAD = current; // For exception macros.
 923   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 924   oop exception_oop = k->allocate_instance(CHECK);
 925   if (delayed) {
 926     java_lang_Throwable::set_message(exception_oop,
 927                                      Universe::delayed_stack_overflow_error_message());
 928   }
 929   Handle exception (current, exception_oop);
 930   if (StackTraceInThrowable) {
 931     java_lang_Throwable::fill_in_stack_trace(exception);
 932   }
 933   // Remove the ScopedValue bindings in case we got a
 934   // StackOverflowError while we were trying to remove ScopedValue
 935   // bindings.
 936   current->clear_scopedValueBindings();
 937   // Increment counter for hs_err file reporting
 938   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 939   throw_and_post_jvmti_exception(current, exception);
 940 }
 941 
 942 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 943                                                            address pc,
 944                                                            ImplicitExceptionKind exception_kind)
 945 {
 946   address target_pc = nullptr;
 947 
 948   if (Interpreter::contains(pc)) {
 949     switch (exception_kind) {
 950       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 951       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 952       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 953       default:                      ShouldNotReachHere();
 954     }
 955   } else {
 956     switch (exception_kind) {
 957       case STACK_OVERFLOW: {
 958         // Stack overflow only occurs upon frame setup; the callee is
 959         // going to be unwound. Dispatch to a shared runtime stub
 960         // which will cause the StackOverflowError to be fabricated
 961         // and processed.
 962         // Stack overflow should never occur during deoptimization:
 963         // the compiled method bangs the stack by as much as the
 964         // interpreter would need in case of a deoptimization. The
 965         // deoptimization blob and uncommon trap blob bang the stack
 966         // in a debug VM to verify the correctness of the compiled
 967         // method stack banging.
 968         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 969         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 970         return SharedRuntime::throw_StackOverflowError_entry();
 971       }
 972 
 973       case IMPLICIT_NULL: {
 974         if (VtableStubs::contains(pc)) {
 975           // We haven't yet entered the callee frame. Fabricate an
 976           // exception and begin dispatching it in the caller. Since
 977           // the caller was at a call site, it's safe to destroy all
 978           // caller-saved registers, as these entry points do.
 979           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 980 
 981           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 982           if (vt_stub == nullptr) return nullptr;
 983 
 984           if (vt_stub->is_abstract_method_error(pc)) {
 985             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 986             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 987             // Instead of throwing the abstract method error here directly, we re-resolve
 988             // and will throw the AbstractMethodError during resolve. As a result, we'll
 989             // get a more detailed error message.
 990             return SharedRuntime::get_handle_wrong_method_stub();
 991           } else {
 992             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 993             // Assert that the signal comes from the expected location in stub code.
 994             assert(vt_stub->is_null_pointer_exception(pc),
 995                    "obtained signal from unexpected location in stub code");
 996             return SharedRuntime::throw_NullPointerException_at_call_entry();
 997           }
 998         } else {
 999           CodeBlob* cb = CodeCache::find_blob(pc);
1000 
1001           // If code blob is null, then return null to signal handler to report the SEGV error.
1002           if (cb == nullptr) return nullptr;
1003 
1004           // Exception happened in CodeCache. Must be either:
1005           // 1. Inline-cache check in C2I handler blob,
1006           // 2. Inline-cache check in nmethod, or
1007           // 3. Implicit null exception in nmethod
1008 
1009           if (!cb->is_nmethod()) {
1010             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1011             if (!is_in_blob) {
1012               // Allow normal crash reporting to handle this
1013               return nullptr;
1014             }
1015             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1016             // There is no handler here, so we will simply unwind.
1017             return SharedRuntime::throw_NullPointerException_at_call_entry();
1018           }
1019 
1020           // Otherwise, it's a compiled method.  Consult its exception handlers.
1021           nmethod* nm = cb->as_nmethod();
1022           if (nm->inlinecache_check_contains(pc)) {
1023             // exception happened inside inline-cache check code
1024             // => the nmethod is not yet active (i.e., the frame
1025             // is not set up yet) => use return address pushed by
1026             // caller => don't push another return address
1027             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1028             return SharedRuntime::throw_NullPointerException_at_call_entry();
1029           }
1030 
1031           if (nm->method()->is_method_handle_intrinsic()) {
1032             // exception happened inside MH dispatch code, similar to a vtable stub
1033             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1034             return SharedRuntime::throw_NullPointerException_at_call_entry();
1035           }
1036 
1037 #ifndef PRODUCT
1038           _implicit_null_throws++;
1039 #endif
1040           target_pc = nm->continuation_for_implicit_null_exception(pc);
1041           // If there's an unexpected fault, target_pc might be null,
1042           // in which case we want to fall through into the normal
1043           // error handling code.
1044         }
1045 
1046         break; // fall through
1047       }
1048 
1049 
1050       case IMPLICIT_DIVIDE_BY_ZERO: {
1051         nmethod* nm = CodeCache::find_nmethod(pc);
1052         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1053 #ifndef PRODUCT
1054         _implicit_div0_throws++;
1055 #endif
1056         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1057         // If there's an unexpected fault, target_pc might be null,
1058         // in which case we want to fall through into the normal
1059         // error handling code.
1060         break; // fall through
1061       }
1062 
1063       default: ShouldNotReachHere();
1064     }
1065 
1066     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1067 
1068     if (exception_kind == IMPLICIT_NULL) {
1069 #ifndef PRODUCT
1070       // for AbortVMOnException flag
1071       Exceptions::debug_check_abort("java.lang.NullPointerException");
1072 #endif //PRODUCT
1073       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1074     } else {
1075 #ifndef PRODUCT
1076       // for AbortVMOnException flag
1077       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1078 #endif //PRODUCT
1079       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1080     }
1081     return target_pc;
1082   }
1083 
1084   ShouldNotReachHere();
1085   return nullptr;
1086 }
1087 
1088 
1089 /**
1090  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1091  * installed in the native function entry of all native Java methods before
1092  * they get linked to their actual native methods.
1093  *
1094  * \note
1095  * This method actually never gets called!  The reason is because
1096  * the interpreter's native entries call NativeLookup::lookup() which
1097  * throws the exception when the lookup fails.  The exception is then
1098  * caught and forwarded on the return from NativeLookup::lookup() call
1099  * before the call to the native function.  This might change in the future.
1100  */
1101 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1102 {
1103   // We return a bad value here to make sure that the exception is
1104   // forwarded before we look at the return value.
1105   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1106 }
1107 JNI_END
1108 
1109 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1110   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1111 }
1112 
1113 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1114 #if INCLUDE_JVMCI
1115   if (!obj->klass()->has_finalizer()) {
1116     return;
1117   }
1118 #endif // INCLUDE_JVMCI
1119   assert(oopDesc::is_oop(obj), "must be a valid oop");
1120   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1121   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1122 JRT_END
1123 
1124 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1125   assert(thread != nullptr, "No thread");
1126   if (thread == nullptr) {
1127     return 0;
1128   }
1129   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1130             "current cannot touch oops after its GC barrier is detached.");
1131   oop obj = thread->threadObj();
1132   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1133 }
1134 
1135 /**
1136  * This function ought to be a void function, but cannot be because
1137  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1138  * 6254741.  Once that is fixed we can remove the dummy return value.
1139  */
1140 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1141   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1142 }
1143 
1144 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1145   return dtrace_object_alloc(thread, o, o->size());
1146 }
1147 
1148 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1149   assert(DTraceAllocProbes, "wrong call");
1150   Klass* klass = o->klass();
1151   Symbol* name = klass->name();
1152   HOTSPOT_OBJECT_ALLOC(
1153                    get_java_tid(thread),
1154                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1155   return 0;
1156 }
1157 
1158 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1159     JavaThread* current, Method* method))
1160   assert(current == JavaThread::current(), "pre-condition");
1161 
1162   assert(DTraceMethodProbes, "wrong call");
1163   Symbol* kname = method->klass_name();
1164   Symbol* name = method->name();
1165   Symbol* sig = method->signature();
1166   HOTSPOT_METHOD_ENTRY(
1167       get_java_tid(current),
1168       (char *) kname->bytes(), kname->utf8_length(),
1169       (char *) name->bytes(), name->utf8_length(),
1170       (char *) sig->bytes(), sig->utf8_length());
1171   return 0;
1172 JRT_END
1173 
1174 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1175     JavaThread* current, Method* method))
1176   assert(current == JavaThread::current(), "pre-condition");
1177   assert(DTraceMethodProbes, "wrong call");
1178   Symbol* kname = method->klass_name();
1179   Symbol* name = method->name();
1180   Symbol* sig = method->signature();
1181   HOTSPOT_METHOD_RETURN(
1182       get_java_tid(current),
1183       (char *) kname->bytes(), kname->utf8_length(),
1184       (char *) name->bytes(), name->utf8_length(),
1185       (char *) sig->bytes(), sig->utf8_length());
1186   return 0;
1187 JRT_END
1188 
1189 
1190 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1191 // for a call current in progress, i.e., arguments has been pushed on stack
1192 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1193 // vtable updates, etc.  Caller frame must be compiled.
1194 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1195   JavaThread* current = THREAD;
1196   ResourceMark rm(current);
1197 
1198   // last java frame on stack (which includes native call frames)
1199   vframeStream vfst(current, true);  // Do not skip and javaCalls
1200 
1201   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1202 }
1203 
1204 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1205   nmethod* caller = vfst.nm();
1206 
1207   address pc = vfst.frame_pc();
1208   { // Get call instruction under lock because another thread may be busy patching it.
1209     CompiledICLocker ic_locker(caller);
1210     return caller->attached_method_before_pc(pc);
1211   }
1212   return nullptr;
1213 }
1214 
1215 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1216 // for a call current in progress, i.e., arguments has been pushed on stack
1217 // but callee has not been invoked yet.  Caller frame must be compiled.
1218 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1219                                               CallInfo& callinfo, TRAPS) {
1220   Handle receiver;
1221   Handle nullHandle;  // create a handy null handle for exception returns
1222   JavaThread* current = THREAD;
1223 
1224   assert(!vfst.at_end(), "Java frame must exist");
1225 
1226   // Find caller and bci from vframe
1227   methodHandle caller(current, vfst.method());
1228   int          bci   = vfst.bci();
1229 
1230   if (caller->is_continuation_enter_intrinsic()) {
1231     bc = Bytecodes::_invokestatic;
1232     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1233     return receiver;
1234   }
1235 
1236   // Substitutability test implementation piggy backs on static call resolution
1237   Bytecodes::Code code = caller->java_code_at(bci);
1238   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1239     bc = Bytecodes::_invokestatic;
1240     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1241     assert(attached_method.not_null(), "must have attached method");
1242     vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH);
1243     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1244 #ifdef ASSERT
1245     Symbol* subst_method_name = UseAltSubstitutabilityMethod ? vmSymbols::isSubstitutableAlt_name() : vmSymbols::isSubstitutable_name();
1246     Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(subst_method_name, vmSymbols::object_object_boolean_signature());
1247     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1248 #endif
1249     return receiver;
1250   }
1251 
1252   Bytecode_invoke bytecode(caller, bci);
1253   int bytecode_index = bytecode.index();
1254   bc = bytecode.invoke_code();
1255 
1256   methodHandle attached_method(current, extract_attached_method(vfst));
1257   if (attached_method.not_null()) {
1258     Method* callee = bytecode.static_target(CHECK_NH);
1259     vmIntrinsics::ID id = callee->intrinsic_id();
1260     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1261     // it attaches statically resolved method to the call site.
1262     if (MethodHandles::is_signature_polymorphic(id) &&
1263         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1264       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1265 
1266       // Adjust invocation mode according to the attached method.
1267       switch (bc) {
1268         case Bytecodes::_invokevirtual:
1269           if (attached_method->method_holder()->is_interface()) {
1270             bc = Bytecodes::_invokeinterface;
1271           }
1272           break;
1273         case Bytecodes::_invokeinterface:
1274           if (!attached_method->method_holder()->is_interface()) {
1275             bc = Bytecodes::_invokevirtual;
1276           }
1277           break;
1278         case Bytecodes::_invokehandle:
1279           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1280             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1281                                               : Bytecodes::_invokevirtual;
1282           }
1283           break;
1284         default:
1285           break;
1286       }
1287     } else {
1288       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1289       if (!attached_method->method_holder()->is_inline_klass()) {
1290         // Ignore the attached method in this case to not confuse below code
1291         attached_method = methodHandle(current, nullptr);
1292       }
1293     }
1294   }
1295 
1296   assert(bc != Bytecodes::_illegal, "not initialized");
1297 
1298   bool has_receiver = bc != Bytecodes::_invokestatic &&
1299                       bc != Bytecodes::_invokedynamic &&
1300                       bc != Bytecodes::_invokehandle;
1301   bool check_null_and_abstract = true;
1302 
1303   // Find receiver for non-static call
1304   if (has_receiver) {
1305     // This register map must be update since we need to find the receiver for
1306     // compiled frames. The receiver might be in a register.
1307     RegisterMap reg_map2(current,
1308                          RegisterMap::UpdateMap::include,
1309                          RegisterMap::ProcessFrames::include,
1310                          RegisterMap::WalkContinuation::skip);
1311     frame stubFrame   = current->last_frame();
1312     // Caller-frame is a compiled frame
1313     frame callerFrame = stubFrame.sender(&reg_map2);
1314 
1315     Method* callee = attached_method();
1316     if (callee == nullptr) {
1317       callee = bytecode.static_target(CHECK_NH);
1318       if (callee == nullptr) {
1319         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1320       }
1321     }
1322     bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1();
1323     if (!caller_is_c1 && callee->is_scalarized_arg(0)) {
1324       // If the receiver is an inline type that is passed as fields, no oop is available
1325       // Resolve the call without receiver null checking.
1326       assert(!callee->mismatch(), "calls with inline type receivers should never mismatch");
1327       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1328       if (bc == Bytecodes::_invokeinterface) {
1329         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1330       }
1331       check_null_and_abstract = false;
1332     } else {
1333       // Retrieve from a compiled argument list
1334       receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1335       assert(oopDesc::is_oop_or_null(receiver()), "");
1336       if (receiver.is_null()) {
1337         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1338       }
1339     }
1340   }
1341 
1342   // Resolve method
1343   if (attached_method.not_null()) {
1344     // Parameterized by attached method.
1345     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1346   } else {
1347     // Parameterized by bytecode.
1348     constantPoolHandle constants(current, caller->constants());
1349     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1350   }
1351 
1352 #ifdef ASSERT
1353   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1354   if (has_receiver && check_null_and_abstract) {
1355     assert(receiver.not_null(), "should have thrown exception");
1356     Klass* receiver_klass = receiver->klass();
1357     Klass* rk = nullptr;
1358     if (attached_method.not_null()) {
1359       // In case there's resolved method attached, use its holder during the check.
1360       rk = attached_method->method_holder();
1361     } else {
1362       // Klass is already loaded.
1363       constantPoolHandle constants(current, caller->constants());
1364       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1365     }
1366     Klass* static_receiver_klass = rk;
1367     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1368            "actual receiver must be subclass of static receiver klass");
1369     if (receiver_klass->is_instance_klass()) {
1370       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1371         tty->print_cr("ERROR: Klass not yet initialized!!");
1372         receiver_klass->print();
1373       }
1374       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1375     }
1376   }
1377 #endif
1378 
1379   return receiver;
1380 }
1381 
1382 methodHandle SharedRuntime::find_callee_method(bool& caller_does_not_scalarize, TRAPS) {
1383   JavaThread* current = THREAD;
1384   ResourceMark rm(current);
1385   // We need first to check if any Java activations (compiled, interpreted)
1386   // exist on the stack since last JavaCall.  If not, we need
1387   // to get the target method from the JavaCall wrapper.
1388   vframeStream vfst(current, true);  // Do not skip any javaCalls
1389   methodHandle callee_method;
1390   if (vfst.at_end()) {
1391     // No Java frames were found on stack since we did the JavaCall.
1392     // Hence the stack can only contain an entry_frame.  We need to
1393     // find the target method from the stub frame.
1394     RegisterMap reg_map(current,
1395                         RegisterMap::UpdateMap::skip,
1396                         RegisterMap::ProcessFrames::include,
1397                         RegisterMap::WalkContinuation::skip);
1398     frame fr = current->last_frame();
1399     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1400     fr = fr.sender(&reg_map);
1401     assert(fr.is_entry_frame(), "must be");
1402     // fr is now pointing to the entry frame.
1403     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1404   } else {
1405     Bytecodes::Code bc;
1406     CallInfo callinfo;
1407     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1408     // Calls via mismatching methods are always non-scalarized
1409     if (callinfo.resolved_method()->mismatch()) {
1410       caller_does_not_scalarize = true;
1411     }
1412     callee_method = methodHandle(current, callinfo.selected_method());
1413   }
1414   assert(callee_method()->is_method(), "must be");
1415   return callee_method;
1416 }
1417 
1418 // Resolves a call.
1419 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1420   JavaThread* current = THREAD;
1421   ResourceMark rm(current);
1422   RegisterMap cbl_map(current,
1423                       RegisterMap::UpdateMap::skip,
1424                       RegisterMap::ProcessFrames::include,
1425                       RegisterMap::WalkContinuation::skip);
1426   frame caller_frame = current->last_frame().sender(&cbl_map);
1427 
1428   CodeBlob* caller_cb = caller_frame.cb();
1429   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1430   nmethod* caller_nm = caller_cb->as_nmethod();
1431 
1432   // determine call info & receiver
1433   // note: a) receiver is null for static calls
1434   //       b) an exception is thrown if receiver is null for non-static calls
1435   CallInfo call_info;
1436   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1437   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1438 
1439   NoSafepointVerifier nsv;
1440 
1441   methodHandle callee_method(current, call_info.selected_method());
1442   // Calls via mismatching methods are always non-scalarized
1443   if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1444     caller_does_not_scalarize = true;
1445   }
1446 
1447   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1448          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1449          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1450          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1451          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1452 
1453   assert(!caller_nm->is_unloading(), "It should not be unloading");
1454 
1455 #ifndef PRODUCT
1456   // tracing/debugging/statistics
1457   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1458                  (is_virtual) ? (&_resolve_virtual_ctr) :
1459                                 (&_resolve_static_ctr);
1460   AtomicAccess::inc(addr);
1461 
1462   if (TraceCallFixup) {
1463     ResourceMark rm(current);
1464     tty->print("resolving %s%s (%s) %s call to",
1465                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1466                Bytecodes::name(invoke_code), (caller_does_not_scalarize) ? "non-scalar" : "");
1467     callee_method->print_short_name(tty);
1468     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1469                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1470   }
1471 #endif
1472 
1473   if (invoke_code == Bytecodes::_invokestatic) {
1474     assert(callee_method->method_holder()->is_initialized() ||
1475            callee_method->method_holder()->is_reentrant_initialization(current),
1476            "invalid class initialization state for invoke_static");
1477     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1478       // In order to keep class initialization check, do not patch call
1479       // site for static call when the class is not fully initialized.
1480       // Proper check is enforced by call site re-resolution on every invocation.
1481       //
1482       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1483       // explicit class initialization check is put in nmethod entry (VEP).
1484       assert(callee_method->method_holder()->is_linked(), "must be");
1485       return callee_method;
1486     }
1487   }
1488 
1489 
1490   // JSR 292 key invariant:
1491   // If the resolved method is a MethodHandle invoke target, the call
1492   // site must be a MethodHandle call site, because the lambda form might tail-call
1493   // leaving the stack in a state unknown to either caller or callee
1494 
1495   // Compute entry points. The computation of the entry points is independent of
1496   // patching the call.
1497 
1498   // Make sure the callee nmethod does not get deoptimized and removed before
1499   // we are done patching the code.
1500 
1501 
1502   CompiledICLocker ml(caller_nm);
1503   if (is_virtual && !is_optimized) {
1504     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1505     inline_cache->update(&call_info, receiver->klass(), caller_does_not_scalarize);
1506   } else {
1507     // Callsite is a direct call - set it to the destination method
1508     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1509     callsite->set(callee_method, caller_does_not_scalarize);
1510   }
1511 
1512   return callee_method;
1513 }
1514 
1515 // Inline caches exist only in compiled code
1516 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1517 #ifdef ASSERT
1518   RegisterMap reg_map(current,
1519                       RegisterMap::UpdateMap::skip,
1520                       RegisterMap::ProcessFrames::include,
1521                       RegisterMap::WalkContinuation::skip);
1522   frame stub_frame = current->last_frame();
1523   assert(stub_frame.is_runtime_frame(), "sanity check");
1524   frame caller_frame = stub_frame.sender(&reg_map);
1525   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1526 #endif /* ASSERT */
1527 
1528   methodHandle callee_method;
1529   bool caller_does_not_scalarize = false;
1530   JRT_BLOCK
1531     callee_method = SharedRuntime::handle_ic_miss_helper(caller_does_not_scalarize, CHECK_NULL);
1532     // Return Method* through TLS
1533     current->set_vm_result_metadata(callee_method());
1534   JRT_BLOCK_END
1535   // return compiled code entry point after potential safepoints
1536   return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1537 JRT_END
1538 
1539 
1540 // Handle call site that has been made non-entrant
1541 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1542   // 6243940 We might end up in here if the callee is deoptimized
1543   // as we race to call it.  We don't want to take a safepoint if
1544   // the caller was interpreted because the caller frame will look
1545   // interpreted to the stack walkers and arguments are now
1546   // "compiled" so it is much better to make this transition
1547   // invisible to the stack walking code. The i2c path will
1548   // place the callee method in the callee_target. It is stashed
1549   // there because if we try and find the callee by normal means a
1550   // safepoint is possible and have trouble gc'ing the compiled args.
1551   RegisterMap reg_map(current,
1552                       RegisterMap::UpdateMap::skip,
1553                       RegisterMap::ProcessFrames::include,
1554                       RegisterMap::WalkContinuation::skip);
1555   frame stub_frame = current->last_frame();
1556   assert(stub_frame.is_runtime_frame(), "sanity check");
1557   frame caller_frame = stub_frame.sender(&reg_map);
1558 
1559   if (caller_frame.is_interpreted_frame() ||
1560       caller_frame.is_entry_frame() ||
1561       caller_frame.is_upcall_stub_frame()) {
1562     Method* callee = current->callee_target();
1563     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1564     current->set_vm_result_metadata(callee);
1565     current->set_callee_target(nullptr);
1566     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1567       // Bypass class initialization checks in c2i when caller is in native.
1568       // JNI calls to static methods don't have class initialization checks.
1569       // Fast class initialization checks are present in c2i adapters and call into
1570       // SharedRuntime::handle_wrong_method() on the slow path.
1571       //
1572       // JVM upcalls may land here as well, but there's a proper check present in
1573       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1574       // so bypassing it in c2i adapter is benign.
1575       return callee->get_c2i_no_clinit_check_entry();
1576     } else {
1577       if (caller_frame.is_interpreted_frame()) {
1578         return callee->get_c2i_inline_entry();
1579       } else {
1580         return callee->get_c2i_entry();
1581       }
1582     }
1583   }
1584 
1585   // Must be compiled to compiled path which is safe to stackwalk
1586   methodHandle callee_method;
1587   bool is_static_call = false;
1588   bool is_optimized = false;
1589   bool caller_does_not_scalarize = false;
1590   JRT_BLOCK
1591     // Force resolving of caller (if we called from compiled frame)
1592     callee_method = SharedRuntime::reresolve_call_site(is_optimized, caller_does_not_scalarize, CHECK_NULL);
1593     current->set_vm_result_metadata(callee_method());
1594   JRT_BLOCK_END
1595   // return compiled code entry point after potential safepoints
1596   return get_resolved_entry(current, callee_method, callee_method->is_static(), is_optimized, caller_does_not_scalarize);
1597 JRT_END
1598 
1599 // Handle abstract method call
1600 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1601   // Verbose error message for AbstractMethodError.
1602   // Get the called method from the invoke bytecode.
1603   vframeStream vfst(current, true);
1604   assert(!vfst.at_end(), "Java frame must exist");
1605   methodHandle caller(current, vfst.method());
1606   Bytecode_invoke invoke(caller, vfst.bci());
1607   DEBUG_ONLY( invoke.verify(); )
1608 
1609   // Find the compiled caller frame.
1610   RegisterMap reg_map(current,
1611                       RegisterMap::UpdateMap::include,
1612                       RegisterMap::ProcessFrames::include,
1613                       RegisterMap::WalkContinuation::skip);
1614   frame stubFrame = current->last_frame();
1615   assert(stubFrame.is_runtime_frame(), "must be");
1616   frame callerFrame = stubFrame.sender(&reg_map);
1617   assert(callerFrame.is_compiled_frame(), "must be");
1618 
1619   // Install exception and return forward entry.
1620   address res = SharedRuntime::throw_AbstractMethodError_entry();
1621   JRT_BLOCK
1622     methodHandle callee(current, invoke.static_target(current));
1623     if (!callee.is_null()) {
1624       oop recv = callerFrame.retrieve_receiver(&reg_map);
1625       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1626       res = StubRoutines::forward_exception_entry();
1627       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1628     }
1629   JRT_BLOCK_END
1630   return res;
1631 JRT_END
1632 
1633 // return verified_code_entry if interp_only_mode is not set for the current thread;
1634 // otherwise return c2i entry.
1635 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method,
1636                                           bool is_static_call, bool is_optimized, bool caller_does_not_scalarize) {
1637   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1638     // In interp_only_mode we need to go to the interpreted entry
1639     // The c2i won't patch in this mode -- see fixup_callers_callsite
1640     return callee_method->get_c2i_entry();
1641   }
1642 
1643   if (caller_does_not_scalarize) {
1644     assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!");
1645     return callee_method->verified_inline_code_entry();
1646   } else if (is_static_call || is_optimized) {
1647     assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!");
1648     return callee_method->verified_code_entry();
1649   } else {
1650     assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!");
1651     return callee_method->verified_inline_ro_code_entry();
1652   }
1653 }
1654 
1655 // resolve a static call and patch code
1656 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1657   methodHandle callee_method;
1658   bool caller_does_not_scalarize = false;
1659   bool enter_special = false;
1660   JRT_BLOCK
1661     callee_method = SharedRuntime::resolve_helper(false, false, caller_does_not_scalarize, CHECK_NULL);
1662     current->set_vm_result_metadata(callee_method());
1663   JRT_BLOCK_END
1664   // return compiled code entry point after potential safepoints
1665   return get_resolved_entry(current, callee_method, true, false, caller_does_not_scalarize);
1666 JRT_END
1667 
1668 // resolve virtual call and update inline cache to monomorphic
1669 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1670   methodHandle callee_method;
1671   bool caller_does_not_scalarize = false;
1672   JRT_BLOCK
1673     callee_method = SharedRuntime::resolve_helper(true, false, caller_does_not_scalarize, CHECK_NULL);
1674     current->set_vm_result_metadata(callee_method());
1675   JRT_BLOCK_END
1676   // return compiled code entry point after potential safepoints
1677   return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1678 JRT_END
1679 
1680 
1681 // Resolve a virtual call that can be statically bound (e.g., always
1682 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1683 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1684   methodHandle callee_method;
1685   bool caller_does_not_scalarize = false;
1686   JRT_BLOCK
1687     callee_method = SharedRuntime::resolve_helper(true, true, caller_does_not_scalarize, CHECK_NULL);
1688     current->set_vm_result_metadata(callee_method());
1689   JRT_BLOCK_END
1690   // return compiled code entry point after potential safepoints
1691   return get_resolved_entry(current, callee_method, false, true, caller_does_not_scalarize);
1692 JRT_END
1693 
1694 
1695 
1696 methodHandle SharedRuntime::handle_ic_miss_helper(bool& caller_does_not_scalarize, TRAPS) {
1697   JavaThread* current = THREAD;
1698   ResourceMark rm(current);
1699   CallInfo call_info;
1700   Bytecodes::Code bc;
1701 
1702   // receiver is null for static calls. An exception is thrown for null
1703   // receivers for non-static calls
1704   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1705 
1706   methodHandle callee_method(current, call_info.selected_method());
1707 
1708 #ifndef PRODUCT
1709   AtomicAccess::inc(&_ic_miss_ctr);
1710 
1711   // Statistics & Tracing
1712   if (TraceCallFixup) {
1713     ResourceMark rm(current);
1714     tty->print("IC miss (%s) %s call to", Bytecodes::name(bc), (caller_does_not_scalarize) ? "non-scalar" : "");
1715     callee_method->print_short_name(tty);
1716     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1717   }
1718 
1719   if (ICMissHistogram) {
1720     MutexLocker m(VMStatistic_lock);
1721     RegisterMap reg_map(current,
1722                         RegisterMap::UpdateMap::skip,
1723                         RegisterMap::ProcessFrames::include,
1724                         RegisterMap::WalkContinuation::skip);
1725     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1726     // produce statistics under the lock
1727     trace_ic_miss(f.pc());
1728   }
1729 #endif
1730 
1731   // install an event collector so that when a vtable stub is created the
1732   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1733   // event can't be posted when the stub is created as locks are held
1734   // - instead the event will be deferred until the event collector goes
1735   // out of scope.
1736   JvmtiDynamicCodeEventCollector event_collector;
1737 
1738   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1739   RegisterMap reg_map(current,
1740                       RegisterMap::UpdateMap::skip,
1741                       RegisterMap::ProcessFrames::include,
1742                       RegisterMap::WalkContinuation::skip);
1743   frame caller_frame = current->last_frame().sender(&reg_map);
1744   CodeBlob* cb = caller_frame.cb();
1745   nmethod* caller_nm = cb->as_nmethod();
1746   // Calls via mismatching methods are always non-scalarized
1747   if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1748     caller_does_not_scalarize = true;
1749   }
1750 
1751   CompiledICLocker ml(caller_nm);
1752   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1753   inline_cache->update(&call_info, receiver()->klass(), caller_does_not_scalarize);
1754 
1755   return callee_method;
1756 }
1757 
1758 //
1759 // Resets a call-site in compiled code so it will get resolved again.
1760 // This routines handles both virtual call sites, optimized virtual call
1761 // sites, and static call sites. Typically used to change a call sites
1762 // destination from compiled to interpreted.
1763 //
1764 methodHandle SharedRuntime::reresolve_call_site(bool& is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1765   JavaThread* current = THREAD;
1766   ResourceMark rm(current);
1767   RegisterMap reg_map(current,
1768                       RegisterMap::UpdateMap::skip,
1769                       RegisterMap::ProcessFrames::include,
1770                       RegisterMap::WalkContinuation::skip);
1771   frame stub_frame = current->last_frame();
1772   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1773   frame caller = stub_frame.sender(&reg_map);
1774   if (caller.is_compiled_frame()) {
1775     caller_does_not_scalarize = caller.cb()->as_nmethod()->is_compiled_by_c1();
1776   }
1777   assert(!caller.is_interpreted_frame(), "must be compiled");
1778 
1779   // If the frame isn't a live compiled frame (i.e. deoptimized by the time we get here), no IC clearing must be done
1780   // for the caller. However, when the caller is C2 compiled and the callee a C1 or C2 compiled method, then we still
1781   // need to figure out whether it was an optimized virtual call with an inline type receiver. Otherwise, we end up
1782   // using the wrong method entry point and accidentally skip the buffering of the receiver.
1783   methodHandle callee_method = find_callee_method(caller_does_not_scalarize, CHECK_(methodHandle()));
1784   const bool caller_is_compiled_and_not_deoptimized = caller.is_compiled_frame() && !caller.is_deoptimized_frame();
1785   const bool caller_is_continuation_enter_intrinsic =
1786     caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic();
1787   const bool do_IC_clearing = caller_is_compiled_and_not_deoptimized || caller_is_continuation_enter_intrinsic;
1788 
1789   const bool callee_compiled_with_scalarized_receiver = callee_method->has_compiled_code() &&
1790                                                         !callee_method()->is_static() &&
1791                                                         callee_method()->is_scalarized_arg(0);
1792   const bool compute_is_optimized = !caller_does_not_scalarize && callee_compiled_with_scalarized_receiver;
1793 
1794   if (do_IC_clearing || compute_is_optimized) {
1795     address pc = caller.pc();
1796 
1797     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1798     assert(caller_nm != nullptr, "did not find caller nmethod");
1799 
1800     // Default call_addr is the location of the "basic" call.
1801     // Determine the address of the call we a reresolving. With
1802     // Inline Caches we will always find a recognizable call.
1803     // With Inline Caches disabled we may or may not find a
1804     // recognizable call. We will always find a call for static
1805     // calls and for optimized virtual calls. For vanilla virtual
1806     // calls it depends on the state of the UseInlineCaches switch.
1807     //
1808     // With Inline Caches disabled we can get here for a virtual call
1809     // for two reasons:
1810     //   1 - calling an abstract method. The vtable for abstract methods
1811     //       will run us thru handle_wrong_method and we will eventually
1812     //       end up in the interpreter to throw the ame.
1813     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1814     //       call and between the time we fetch the entry address and
1815     //       we jump to it the target gets deoptimized. Similar to 1
1816     //       we will wind up in the interprter (thru a c2i with c2).
1817     //
1818     CompiledICLocker ml(caller_nm);
1819     address call_addr = caller_nm->call_instruction_address(pc);
1820 
1821     if (call_addr != nullptr) {
1822       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1823       // bytes back in the instruction stream so we must also check for reloc info.
1824       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1825       bool ret = iter.next(); // Get item
1826       if (ret) {
1827         is_optimized = false;
1828         switch (iter.type()) {
1829           case relocInfo::static_call_type:
1830             assert(callee_method->is_static(), "must be");
1831           case relocInfo::opt_virtual_call_type: {
1832             is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1833             if (do_IC_clearing) {
1834               CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1835               cdc->set_to_clean();
1836             }
1837             break;
1838           }
1839           case relocInfo::virtual_call_type: {
1840             if (do_IC_clearing) {
1841               // compiled, dispatched call (which used to call an interpreted method)
1842               CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1843               inline_cache->set_to_clean();
1844             }
1845             break;
1846           }
1847           default:
1848             break;
1849         }
1850       }
1851     }
1852   }
1853 
1854 #ifndef PRODUCT
1855   AtomicAccess::inc(&_wrong_method_ctr);
1856 
1857   if (TraceCallFixup) {
1858     ResourceMark rm(current);
1859     tty->print("handle_wrong_method reresolving %s call to", (caller_does_not_scalarize) ? "non-scalar" : "");
1860     callee_method->print_short_name(tty);
1861     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1862   }
1863 #endif
1864 
1865   return callee_method;
1866 }
1867 
1868 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1869   // The faulting unsafe accesses should be changed to throw the error
1870   // synchronously instead. Meanwhile the faulting instruction will be
1871   // skipped over (effectively turning it into a no-op) and an
1872   // asynchronous exception will be raised which the thread will
1873   // handle at a later point. If the instruction is a load it will
1874   // return garbage.
1875 
1876   // Request an async exception.
1877   thread->set_pending_unsafe_access_error();
1878 
1879   // Return address of next instruction to execute.
1880   return next_pc;
1881 }
1882 
1883 #ifdef ASSERT
1884 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1885                                                                 const BasicType* sig_bt,
1886                                                                 const VMRegPair* regs) {
1887   ResourceMark rm;
1888   const int total_args_passed = method->size_of_parameters();
1889   const VMRegPair*    regs_with_member_name = regs;
1890         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1891 
1892   const int member_arg_pos = total_args_passed - 1;
1893   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1894   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1895 
1896   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1897 
1898   for (int i = 0; i < member_arg_pos; i++) {
1899     VMReg a =    regs_with_member_name[i].first();
1900     VMReg b = regs_without_member_name[i].first();
1901     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1902   }
1903   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1904 }
1905 #endif
1906 
1907 // ---------------------------------------------------------------------------
1908 // We are calling the interpreter via a c2i. Normally this would mean that
1909 // we were called by a compiled method. However we could have lost a race
1910 // where we went int -> i2c -> c2i and so the caller could in fact be
1911 // interpreted. If the caller is compiled we attempt to patch the caller
1912 // so he no longer calls into the interpreter.
1913 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1914   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1915 
1916   // It's possible that deoptimization can occur at a call site which hasn't
1917   // been resolved yet, in which case this function will be called from
1918   // an nmethod that has been patched for deopt and we can ignore the
1919   // request for a fixup.
1920   // Also it is possible that we lost a race in that from_compiled_entry
1921   // is now back to the i2c in that case we don't need to patch and if
1922   // we did we'd leap into space because the callsite needs to use
1923   // "to interpreter" stub in order to load up the Method*. Don't
1924   // ask me how I know this...
1925 
1926   // Result from nmethod::is_unloading is not stable across safepoints.
1927   NoSafepointVerifier nsv;
1928 
1929   nmethod* callee = method->code();
1930   if (callee == nullptr) {
1931     return;
1932   }
1933 
1934   // write lock needed because we might patch call site by set_to_clean()
1935   // and is_unloading() can modify nmethod's state
1936   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1937 
1938   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1939   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1940     return;
1941   }
1942 
1943   // The check above makes sure this is an nmethod.
1944   nmethod* caller = cb->as_nmethod();
1945 
1946   // Get the return PC for the passed caller PC.
1947   address return_pc = caller_pc + frame::pc_return_offset;
1948 
1949   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1950     return;
1951   }
1952 
1953   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1954   CompiledICLocker ic_locker(caller);
1955   ResourceMark rm;
1956 
1957   // If we got here through a static call or opt_virtual call, then we know where the
1958   // call address would be; let's peek at it
1959   address callsite_addr = (address)nativeCall_before(return_pc);
1960   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1961   if (!iter.next()) {
1962     // No reloc entry found; not a static or optimized virtual call
1963     return;
1964   }
1965 
1966   relocInfo::relocType type = iter.reloc()->type();
1967   if (type != relocInfo::static_call_type &&
1968       type != relocInfo::opt_virtual_call_type) {
1969     return;
1970   }
1971 
1972   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1973   callsite->set_to_clean();
1974 JRT_END
1975 
1976 
1977 // same as JVM_Arraycopy, but called directly from compiled code
1978 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1979                                                 oopDesc* dest, jint dest_pos,
1980                                                 jint length,
1981                                                 JavaThread* current)) {
1982 #ifndef PRODUCT
1983   _slow_array_copy_ctr++;
1984 #endif
1985   // Check if we have null pointers
1986   if (src == nullptr || dest == nullptr) {
1987     THROW(vmSymbols::java_lang_NullPointerException());
1988   }
1989   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1990   // even though the copy_array API also performs dynamic checks to ensure
1991   // that src and dest are truly arrays (and are conformable).
1992   // The copy_array mechanism is awkward and could be removed, but
1993   // the compilers don't call this function except as a last resort,
1994   // so it probably doesn't matter.
1995   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1996                                         (arrayOopDesc*)dest, dest_pos,
1997                                         length, current);
1998 }
1999 JRT_END
2000 
2001 // The caller of generate_class_cast_message() (or one of its callers)
2002 // must use a ResourceMark in order to correctly free the result.
2003 char* SharedRuntime::generate_class_cast_message(
2004     JavaThread* thread, Klass* caster_klass) {
2005 
2006   // Get target class name from the checkcast instruction
2007   vframeStream vfst(thread, true);
2008   assert(!vfst.at_end(), "Java frame must exist");
2009   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2010   constantPoolHandle cpool(thread, vfst.method()->constants());
2011   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2012   Symbol* target_klass_name = nullptr;
2013   if (target_klass == nullptr) {
2014     // This klass should be resolved, but just in case, get the name in the klass slot.
2015     target_klass_name = cpool->klass_name_at(cc.index());
2016   }
2017   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2018 }
2019 
2020 
2021 // The caller of generate_class_cast_message() (or one of its callers)
2022 // must use a ResourceMark in order to correctly free the result.
2023 char* SharedRuntime::generate_class_cast_message(
2024     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2025   const char* caster_name = caster_klass->external_name();
2026 
2027   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2028   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2029                                                    target_klass->external_name();
2030 
2031   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2032 
2033   const char* caster_klass_description = "";
2034   const char* target_klass_description = "";
2035   const char* klass_separator = "";
2036   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2037     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2038   } else {
2039     caster_klass_description = caster_klass->class_in_module_of_loader();
2040     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2041     klass_separator = (target_klass != nullptr) ? "; " : "";
2042   }
2043 
2044   // add 3 for parenthesis and preceding space
2045   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2046 
2047   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2048   if (message == nullptr) {
2049     // Shouldn't happen, but don't cause even more problems if it does
2050     message = const_cast<char*>(caster_klass->external_name());
2051   } else {
2052     jio_snprintf(message,
2053                  msglen,
2054                  "class %s cannot be cast to class %s (%s%s%s)",
2055                  caster_name,
2056                  target_name,
2057                  caster_klass_description,
2058                  klass_separator,
2059                  target_klass_description
2060                  );
2061   }
2062   return message;
2063 }
2064 
2065 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) {
2066   assert(klass->is_inline_klass(), "Must be a concrete value class");
2067   const char* desc = "Cannot synchronize on an instance of value class ";
2068   const char* className = klass->external_name();
2069   size_t msglen = strlen(desc) + strlen(className) + 1;
2070   char* message = NEW_RESOURCE_ARRAY(char, msglen);
2071   if (nullptr == message) {
2072     // Out of memory: can't create detailed error message
2073     message = const_cast<char*>(klass->external_name());
2074   } else {
2075     jio_snprintf(message, msglen, "%s%s", desc, className);
2076   }
2077   return message;
2078 }
2079 
2080 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2081   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2082 JRT_END
2083 
2084 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2085   if (!SafepointSynchronize::is_synchronizing()) {
2086     // Only try quick_enter() if we're not trying to reach a safepoint
2087     // so that the calling thread reaches the safepoint more quickly.
2088     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2089       return;
2090     }
2091   }
2092   // NO_ASYNC required because an async exception on the state transition destructor
2093   // would leave you with the lock held and it would never be released.
2094   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2095   // and the model is that an exception implies the method failed.
2096   JRT_BLOCK_NO_ASYNC
2097   Handle h_obj(THREAD, obj);
2098   ObjectSynchronizer::enter(h_obj, lock, current);
2099   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2100   JRT_BLOCK_END
2101 }
2102 
2103 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2104 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2105   SharedRuntime::monitor_enter_helper(obj, lock, current);
2106 JRT_END
2107 
2108 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2109   assert(JavaThread::current() == current, "invariant");
2110   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2111   ExceptionMark em(current);
2112 
2113   // Check if C2_MacroAssembler::fast_unlock() or
2114   // C2_MacroAssembler::fast_unlock() unlocked an inflated
2115   // monitor before going slow path.  Since there is no safepoint
2116   // polling when calling into the VM, we can be sure that the monitor
2117   // hasn't been deallocated.
2118   ObjectMonitor* m = current->unlocked_inflated_monitor();
2119   if (m != nullptr) {
2120     assert(!m->has_owner(current), "must be");
2121     current->clear_unlocked_inflated_monitor();
2122 
2123     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2124     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2125       // Some other thread acquired the lock (or the monitor was
2126       // deflated). Either way we are done.
2127       return;
2128     }
2129   }
2130 
2131   // The object could become unlocked through a JNI call, which we have no other checks for.
2132   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2133   if (obj->is_unlocked()) {
2134     if (CheckJNICalls) {
2135       fatal("Object has been unlocked by JNI");
2136     }
2137     return;
2138   }
2139   ObjectSynchronizer::exit(obj, lock, current);
2140 }
2141 
2142 // Handles the uncommon cases of monitor unlocking in compiled code
2143 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2144   assert(current == JavaThread::current(), "pre-condition");
2145   SharedRuntime::monitor_exit_helper(obj, lock, current);
2146 JRT_END
2147 
2148 #ifndef PRODUCT
2149 
2150 void SharedRuntime::print_statistics() {
2151   ttyLocker ttyl;
2152   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2153 
2154   SharedRuntime::print_ic_miss_histogram();
2155 
2156   // Dump the JRT_ENTRY counters
2157   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2158   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2159   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2160   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2161   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2162   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2163 
2164   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2165   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2166   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2167   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2168   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2169 
2170   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2171   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2172   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2173   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2174   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2175   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2176   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2177   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2178   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2179   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2180   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2181   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2182   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2183   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2184   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2185   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2186   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2187 
2188   AdapterHandlerLibrary::print_statistics();
2189 
2190   if (xtty != nullptr)  xtty->tail("statistics");
2191 }
2192 
2193 inline double percent(int64_t x, int64_t y) {
2194   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2195 }
2196 
2197 class MethodArityHistogram {
2198  public:
2199   enum { MAX_ARITY = 256 };
2200  private:
2201   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2202   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2203   static uint64_t _total_compiled_calls;
2204   static uint64_t _max_compiled_calls_per_method;
2205   static int _max_arity;                       // max. arity seen
2206   static int _max_size;                        // max. arg size seen
2207 
2208   static void add_method_to_histogram(nmethod* nm) {
2209     Method* method = (nm == nullptr) ? nullptr : nm->method();
2210     if (method != nullptr) {
2211       ArgumentCount args(method->signature());
2212       int arity   = args.size() + (method->is_static() ? 0 : 1);
2213       int argsize = method->size_of_parameters();
2214       arity   = MIN2(arity, MAX_ARITY-1);
2215       argsize = MIN2(argsize, MAX_ARITY-1);
2216       uint64_t count = (uint64_t)method->compiled_invocation_count();
2217       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2218       _total_compiled_calls    += count;
2219       _arity_histogram[arity]  += count;
2220       _size_histogram[argsize] += count;
2221       _max_arity = MAX2(_max_arity, arity);
2222       _max_size  = MAX2(_max_size, argsize);
2223     }
2224   }
2225 
2226   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2227     const int N = MIN2(9, n);
2228     double sum = 0;
2229     double weighted_sum = 0;
2230     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2231     if (sum >= 1) { // prevent divide by zero or divide overflow
2232       double rest = sum;
2233       double percent = sum / 100;
2234       for (int i = 0; i <= N; i++) {
2235         rest -= (double)histo[i];
2236         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2237       }
2238       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2239       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2240       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2241       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2242     } else {
2243       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2244     }
2245   }
2246 
2247   void print_histogram() {
2248     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2249     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2250     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2251     print_histogram_helper(_max_size, _size_histogram, "size");
2252     tty->cr();
2253   }
2254 
2255  public:
2256   MethodArityHistogram() {
2257     // Take the Compile_lock to protect against changes in the CodeBlob structures
2258     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2259     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2260     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2261     _max_arity = _max_size = 0;
2262     _total_compiled_calls = 0;
2263     _max_compiled_calls_per_method = 0;
2264     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2265     CodeCache::nmethods_do(add_method_to_histogram);
2266     print_histogram();
2267   }
2268 };
2269 
2270 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2271 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2272 uint64_t MethodArityHistogram::_total_compiled_calls;
2273 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2274 int MethodArityHistogram::_max_arity;
2275 int MethodArityHistogram::_max_size;
2276 
2277 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2278   tty->print_cr("Calls from compiled code:");
2279   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2280   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2281   int64_t mono_i = _nof_interface_calls;
2282   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2283   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2284   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2285   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2286   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2287   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2288   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2289   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2290   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2291   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2292   tty->cr();
2293   tty->print_cr("Note 1: counter updates are not MT-safe.");
2294   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2295   tty->print_cr("        %% in nested categories are relative to their category");
2296   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2297   tty->cr();
2298 
2299   MethodArityHistogram h;
2300 }
2301 #endif
2302 
2303 #ifndef PRODUCT
2304 static int _lookups; // number of calls to lookup
2305 static int _equals;  // number of buckets checked with matching hash
2306 static int _archived_hits; // number of successful lookups in archived table
2307 static int _runtime_hits;  // number of successful lookups in runtime table
2308 #endif
2309 
2310 // A simple wrapper class around the calling convention information
2311 // that allows sharing of adapters for the same calling convention.
2312 class AdapterFingerPrint : public MetaspaceObj {
2313 public:
2314   class Element {
2315   private:
2316     // The highest byte is the type of the argument. The remaining bytes contain the offset of the
2317     // field if it is flattened in the calling convention, -1 otherwise.
2318     juint _payload;
2319 
2320     static constexpr int offset_bit_width = 24;
2321     static constexpr juint offset_bit_mask = (1 << offset_bit_width) - 1;
2322   public:
2323     Element(BasicType bt, int offset) : _payload((static_cast<juint>(bt) << offset_bit_width) | (juint(offset) & offset_bit_mask)) {
2324       assert(offset >= -1 && offset < jint(offset_bit_mask), "invalid offset %d", offset);
2325     }
2326 
2327     BasicType bt() const {
2328       return static_cast<BasicType>(_payload >> offset_bit_width);
2329     }
2330 
2331     int offset() const {
2332       juint res = _payload & offset_bit_mask;
2333       return res == offset_bit_mask ? -1 : res;
2334     }
2335 
2336     juint hash() const {
2337       return _payload;
2338     }
2339 
2340     bool operator!=(const Element& other) const {
2341       return _payload != other._payload;
2342     }
2343   };
2344 
2345 private:
2346   const bool _has_ro_adapter;
2347   const int _length;
2348 
2349   static int data_offset() { return sizeof(AdapterFingerPrint); }
2350   Element* data_pointer() {
2351     return reinterpret_cast<Element*>(reinterpret_cast<address>(this) + data_offset());
2352   }
2353 
2354   const Element& element_at(int index) {
2355     assert(index < length(), "index %d out of bounds for length %d", index, length());
2356     Element* data = data_pointer();
2357     return data[index];
2358   }
2359 
2360   // Private construtor. Use allocate() to get an instance.
2361   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter)
2362     : _has_ro_adapter(has_ro_adapter), _length(total_args_passed_in_sig(sig)) {
2363     Element* data = data_pointer();
2364     BasicType prev_bt = T_ILLEGAL;
2365     int vt_count = 0;
2366     for (int index = 0; index < _length; index++) {
2367       const SigEntry& sig_entry = sig->at(index);
2368       BasicType bt = sig_entry._bt;
2369       if (bt == T_METADATA) {
2370         // Found start of inline type in signature
2371         assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2372         vt_count++;
2373       } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2374         // Found end of inline type in signature
2375         assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2376         vt_count--;
2377         assert(vt_count >= 0, "invalid vt_count");
2378       } else if (vt_count == 0) {
2379         // Widen fields that are not part of a scalarized inline type argument
2380         assert(sig_entry._offset == -1, "invalid offset for argument that is not a flattened field %d", sig_entry._offset);
2381         bt = adapter_encoding(bt);
2382       }
2383 
2384       ::new(&data[index]) Element(bt, sig_entry._offset);
2385       prev_bt = bt;
2386     }
2387     assert(vt_count == 0, "invalid vt_count");
2388   }
2389 
2390   // Call deallocate instead
2391   ~AdapterFingerPrint() {
2392     ShouldNotCallThis();
2393   }
2394 
2395   static int total_args_passed_in_sig(const GrowableArray<SigEntry>* sig) {
2396     return (sig != nullptr) ? sig->length() : 0;
2397   }
2398 
2399   static int compute_size_in_words(int len) {
2400     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(Element)));
2401   }
2402 
2403   // Remap BasicTypes that are handled equivalently by the adapters.
2404   // These are correct for the current system but someday it might be
2405   // necessary to make this mapping platform dependent.
2406   static BasicType adapter_encoding(BasicType in) {
2407     switch (in) {
2408       case T_BOOLEAN:
2409       case T_BYTE:
2410       case T_SHORT:
2411       case T_CHAR:
2412         // They are all promoted to T_INT in the calling convention
2413         return T_INT;
2414 
2415       case T_OBJECT:
2416       case T_ARRAY:
2417         // In other words, we assume that any register good enough for
2418         // an int or long is good enough for a managed pointer.
2419 #ifdef _LP64
2420         return T_LONG;
2421 #else
2422         return T_INT;
2423 #endif
2424 
2425       case T_INT:
2426       case T_LONG:
2427       case T_FLOAT:
2428       case T_DOUBLE:
2429       case T_VOID:
2430         return in;
2431 
2432       default:
2433         ShouldNotReachHere();
2434         return T_CONFLICT;
2435     }
2436   }
2437 
2438   void* operator new(size_t size, size_t fp_size) throw() {
2439     assert(fp_size >= size, "sanity check");
2440     void* p = AllocateHeap(fp_size, mtCode);
2441     memset(p, 0, fp_size);
2442     return p;
2443   }
2444 
2445 public:
2446   template<typename Function>
2447   void iterate_args(Function function) {
2448     for (int i = 0; i < length(); i++) {
2449       function(element_at(i));
2450     }
2451   }
2452 
2453   static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2454     int len = total_args_passed_in_sig(sig);
2455     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2456     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter);
2457     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2458     return afp;
2459   }
2460 
2461   static void deallocate(AdapterFingerPrint* fp) {
2462     FreeHeap(fp);
2463   }
2464 
2465   bool has_ro_adapter() const {
2466     return _has_ro_adapter;
2467   }
2468 
2469   int length() const {
2470     return _length;
2471   }
2472 
2473   unsigned int compute_hash() {
2474     int hash = 0;
2475     for (int i = 0; i < length(); i++) {
2476       const Element& v = element_at(i);
2477       //Add arithmetic operation to the hash, like +3 to improve hashing
2478       hash = ((hash << 8) ^ v.hash() ^ (hash >> 5)) + 3;
2479     }
2480     return (unsigned int)hash;
2481   }
2482 
2483   const char* as_string() {
2484     stringStream st;
2485     st.print("{");
2486     if (_has_ro_adapter) {
2487       st.print("has_ro_adapter");
2488     } else {
2489       st.print("no_ro_adapter");
2490     }
2491     for (int i = 0; i < length(); i++) {
2492       st.print(", ");
2493       const Element& elem = element_at(i);
2494       st.print("{%s, %d}", type2name(elem.bt()), elem.offset());
2495     }
2496     st.print("}");
2497     return st.as_string();
2498   }
2499 
2500   const char* as_basic_args_string() {
2501     stringStream st;
2502     bool long_prev = false;
2503     iterate_args([&] (const Element& arg) {
2504       if (long_prev) {
2505         long_prev = false;
2506         if (arg.bt() == T_VOID) {
2507           st.print("J");
2508         } else {
2509           st.print("L");
2510         }
2511       }
2512       if (arg.bt() == T_LONG) {
2513         long_prev = true;
2514       } else if (arg.bt() != T_VOID) {
2515         st.print("%c", type2char(arg.bt()));
2516       }
2517     });
2518     if (long_prev) {
2519       st.print("L");
2520     }
2521     return st.as_string();
2522   }
2523 
2524   bool equals(AdapterFingerPrint* other) {
2525     if (other->_has_ro_adapter != _has_ro_adapter) {
2526       return false;
2527     } else if (other->_length != _length) {
2528       return false;
2529     } else {
2530       for (int i = 0; i < _length; i++) {
2531         if (element_at(i) != other->element_at(i)) {
2532           return false;
2533         }
2534       }
2535     }
2536     return true;
2537   }
2538 
2539   // methods required by virtue of being a MetaspaceObj
2540   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2541   int size() const { return compute_size_in_words(_length); }
2542   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2543 
2544   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2545     NOT_PRODUCT(_equals++);
2546     return fp1->equals(fp2);
2547   }
2548 
2549   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2550     return fp->compute_hash();
2551   }
2552 };
2553 
2554 #if INCLUDE_CDS
2555 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2556   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2557 }
2558 
2559 class ArchivedAdapterTable : public OffsetCompactHashtable<
2560   AdapterFingerPrint*,
2561   AdapterHandlerEntry*,
2562   adapter_fp_equals_compact_hashtable_entry> {};
2563 #endif // INCLUDE_CDS
2564 
2565 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2566 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2567                   AnyObj::C_HEAP, mtCode,
2568                   AdapterFingerPrint::compute_hash,
2569                   AdapterFingerPrint::equals>;
2570 static AdapterHandlerTable* _adapter_handler_table;
2571 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2572 
2573 // Find a entry with the same fingerprint if it exists
2574 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) {
2575   NOT_PRODUCT(_lookups++);
2576   assert_lock_strong(AdapterHandlerLibrary_lock);
2577   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter);
2578   AdapterHandlerEntry* entry = nullptr;
2579 #if INCLUDE_CDS
2580   // if we are building the archive then the archived adapter table is
2581   // not valid and we need to use the ones added to the runtime table
2582   if (AOTCodeCache::is_using_adapter()) {
2583     // Search archived table first. It is read-only table so can be searched without lock
2584     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2585 #ifndef PRODUCT
2586     if (entry != nullptr) {
2587       _archived_hits++;
2588     }
2589 #endif
2590   }
2591 #endif // INCLUDE_CDS
2592   if (entry == nullptr) {
2593     assert_lock_strong(AdapterHandlerLibrary_lock);
2594     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2595     if (entry_p != nullptr) {
2596       entry = *entry_p;
2597       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2598              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2599              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2600   #ifndef PRODUCT
2601       _runtime_hits++;
2602   #endif
2603     }
2604   }
2605   AdapterFingerPrint::deallocate(fp);
2606   return entry;
2607 }
2608 
2609 #ifndef PRODUCT
2610 static void print_table_statistics() {
2611   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2612     return sizeof(*key) + sizeof(*a);
2613   };
2614   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2615   ts.print(tty, "AdapterHandlerTable");
2616   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2617                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2618   int total_hits = _archived_hits + _runtime_hits;
2619   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2620                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2621 }
2622 #endif
2623 
2624 // ---------------------------------------------------------------------------
2625 // Implementation of AdapterHandlerLibrary
2626 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2627 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2628 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2629 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2630 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2631 #if INCLUDE_CDS
2632 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2633 #endif // INCLUDE_CDS
2634 static const int AdapterHandlerLibrary_size = 48*K;
2635 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2636 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2637 
2638 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2639   assert(_buffer != nullptr, "should be initialized");
2640   return _buffer;
2641 }
2642 
2643 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2644   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2645     AdapterBlob* adapter_blob = entry->adapter_blob();
2646     char blob_id[256];
2647     jio_snprintf(blob_id,
2648                  sizeof(blob_id),
2649                  "%s(%s)",
2650                  adapter_blob->name(),
2651                  entry->fingerprint()->as_string());
2652     if (Forte::is_enabled()) {
2653       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2654     }
2655 
2656     if (JvmtiExport::should_post_dynamic_code_generated()) {
2657       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2658     }
2659   }
2660 }
2661 
2662 void AdapterHandlerLibrary::initialize() {
2663   {
2664     ResourceMark rm;
2665     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2666     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2667   }
2668 
2669 #if INCLUDE_CDS
2670   // Link adapters in AOT Cache to their code in AOT Code Cache
2671   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2672     link_aot_adapters();
2673     lookup_simple_adapters();
2674     return;
2675   }
2676 #endif // INCLUDE_CDS
2677 
2678   ResourceMark rm;
2679   {
2680     MutexLocker mu(AdapterHandlerLibrary_lock);
2681 
2682     CompiledEntrySignature no_args;
2683     no_args.compute_calling_conventions();
2684     _no_arg_handler = create_adapter(no_args, true);
2685 
2686     CompiledEntrySignature obj_args;
2687     SigEntry::add_entry(obj_args.sig(), T_OBJECT);
2688     obj_args.compute_calling_conventions();
2689     _obj_arg_handler = create_adapter(obj_args, true);
2690 
2691     CompiledEntrySignature int_args;
2692     SigEntry::add_entry(int_args.sig(), T_INT);
2693     int_args.compute_calling_conventions();
2694     _int_arg_handler = create_adapter(int_args, true);
2695 
2696     CompiledEntrySignature obj_int_args;
2697     SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
2698     SigEntry::add_entry(obj_int_args.sig(), T_INT);
2699     obj_int_args.compute_calling_conventions();
2700     _obj_int_arg_handler = create_adapter(obj_int_args, true);
2701 
2702     CompiledEntrySignature obj_obj_args;
2703     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2704     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2705     obj_obj_args.compute_calling_conventions();
2706     _obj_obj_arg_handler = create_adapter(obj_obj_args, true);
2707 
2708     // we should always get an entry back but we don't have any
2709     // associated blob on Zero
2710     assert(_no_arg_handler != nullptr &&
2711            _obj_arg_handler != nullptr &&
2712            _int_arg_handler != nullptr &&
2713            _obj_int_arg_handler != nullptr &&
2714            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2715   }
2716 
2717   // Outside of the lock
2718 #ifndef ZERO
2719   // no blobs to register when we are on Zero
2720   post_adapter_creation(_no_arg_handler);
2721   post_adapter_creation(_obj_arg_handler);
2722   post_adapter_creation(_int_arg_handler);
2723   post_adapter_creation(_obj_int_arg_handler);
2724   post_adapter_creation(_obj_obj_arg_handler);
2725 #endif // ZERO
2726 }
2727 
2728 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2729   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2730   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2731   return AdapterHandlerEntry::allocate(id, fingerprint);
2732 }
2733 
2734 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2735   int total_args_passed = method->size_of_parameters(); // All args on stack
2736   if (total_args_passed == 0) {
2737     return _no_arg_handler;
2738   } else if (total_args_passed == 1) {
2739     if (!method->is_static()) {
2740       if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) {
2741         return nullptr;
2742       }
2743       return _obj_arg_handler;
2744     }
2745     switch (method->signature()->char_at(1)) {
2746       case JVM_SIGNATURE_CLASS: {
2747         if (InlineTypePassFieldsAsArgs) {
2748           SignatureStream ss(method->signature());
2749           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2750           if (vk != nullptr) {
2751             return nullptr;
2752           }
2753         }
2754         return _obj_arg_handler;
2755       }
2756       case JVM_SIGNATURE_ARRAY:
2757         return _obj_arg_handler;
2758       case JVM_SIGNATURE_INT:
2759       case JVM_SIGNATURE_BOOLEAN:
2760       case JVM_SIGNATURE_CHAR:
2761       case JVM_SIGNATURE_BYTE:
2762       case JVM_SIGNATURE_SHORT:
2763         return _int_arg_handler;
2764     }
2765   } else if (total_args_passed == 2 &&
2766              !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) {
2767     switch (method->signature()->char_at(1)) {
2768       case JVM_SIGNATURE_CLASS: {
2769         if (InlineTypePassFieldsAsArgs) {
2770           SignatureStream ss(method->signature());
2771           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2772           if (vk != nullptr) {
2773             return nullptr;
2774           }
2775         }
2776         return _obj_obj_arg_handler;
2777       }
2778       case JVM_SIGNATURE_ARRAY:
2779         return _obj_obj_arg_handler;
2780       case JVM_SIGNATURE_INT:
2781       case JVM_SIGNATURE_BOOLEAN:
2782       case JVM_SIGNATURE_CHAR:
2783       case JVM_SIGNATURE_BYTE:
2784       case JVM_SIGNATURE_SHORT:
2785         return _obj_int_arg_handler;
2786     }
2787   }
2788   return nullptr;
2789 }
2790 
2791 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2792   _method(method), _num_inline_args(0), _has_inline_recv(false),
2793   _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr),
2794   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2795   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) {
2796   _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2797   _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2798   _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2799 }
2800 
2801 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2802 // or the same entry for VEP and VIEP(RO).
2803 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2804   if (!has_scalarized_args()) {
2805     // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2806     return CodeOffsets::Verified_Entry;
2807   }
2808   if (_method->is_static()) {
2809     // Static methods don't need VIEP(RO)
2810     return CodeOffsets::Verified_Entry;
2811   }
2812 
2813   if (has_inline_recv()) {
2814     if (num_inline_args() == 1) {
2815       // Share same entry for VIEP and VIEP(RO).
2816       // This is quite common: we have an instance method in an InlineKlass that has
2817       // no inline type args other than <this>.
2818       return CodeOffsets::Verified_Inline_Entry;
2819     } else {
2820       assert(num_inline_args() > 1, "must be");
2821       // No sharing:
2822       //   VIEP(RO) -- <this> is passed as object
2823       //   VEP      -- <this> is passed as fields
2824       return CodeOffsets::Verified_Inline_Entry_RO;
2825     }
2826   }
2827 
2828   // Either a static method, or <this> is not an inline type
2829   if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2830     // No sharing:
2831     // Some arguments are passed on the stack, and we have inserted reserved entries
2832     // into the VEP, but we never insert reserved entries into the VIEP(RO).
2833     return CodeOffsets::Verified_Inline_Entry_RO;
2834   } else {
2835     // Share same entry for VEP and VIEP(RO).
2836     return CodeOffsets::Verified_Entry;
2837   }
2838 }
2839 
2840 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method.
2841 GrowableArray<Method*>* CompiledEntrySignature::get_supers() {
2842   if (_supers != nullptr) {
2843     return _supers;
2844   }
2845   _supers = new GrowableArray<Method*>();
2846   // Skip private, static, and <init> methods
2847   if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) {
2848     return _supers;
2849   }
2850   Symbol* name = _method->name();
2851   Symbol* signature = _method->signature();
2852   const Klass* holder = _method->method_holder()->super();
2853   Symbol* holder_name = holder->name();
2854   ThreadInVMfromUnknown tiv;
2855   JavaThread* current = JavaThread::current();
2856   HandleMark hm(current);
2857   Handle loader(current, _method->method_holder()->class_loader());
2858 
2859   // Walk up the class hierarchy and search for super methods
2860   while (holder != nullptr) {
2861     Method* super_method = holder->lookup_method(name, signature);
2862     if (super_method == nullptr) {
2863       break;
2864     }
2865     if (!super_method->is_static() && !super_method->is_private() &&
2866         (!super_method->is_package_private() ||
2867          super_method->method_holder()->is_same_class_package(loader(), holder_name))) {
2868       _supers->push(super_method);
2869     }
2870     holder = super_method->method_holder()->super();
2871   }
2872   // Search interfaces for super methods
2873   Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces();
2874   for (int i = 0; i < interfaces->length(); ++i) {
2875     Method* m = interfaces->at(i)->lookup_method(name, signature);
2876     if (m != nullptr && !m->is_static() && m->is_public()) {
2877       _supers->push(m);
2878     }
2879   }
2880   return _supers;
2881 }
2882 
2883 // Iterate over arguments and compute scalarized and non-scalarized signatures
2884 void CompiledEntrySignature::compute_calling_conventions(bool init) {
2885   bool has_scalarized = false;
2886   if (_method != nullptr) {
2887     InstanceKlass* holder = _method->method_holder();
2888     int arg_num = 0;
2889     if (!_method->is_static()) {
2890       // We shouldn't scalarize 'this' in a value class constructor
2891       if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() &&
2892           (init || _method->is_scalarized_arg(arg_num))) {
2893         _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2894         has_scalarized = true;
2895         _has_inline_recv = true;
2896         _num_inline_args++;
2897       } else {
2898         SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name());
2899       }
2900       SigEntry::add_entry(_sig, T_OBJECT, holder->name());
2901       SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name());
2902       arg_num++;
2903     }
2904     for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2905       BasicType bt = ss.type();
2906       if (bt == T_OBJECT) {
2907         InlineKlass* vk = ss.as_inline_klass(holder);
2908         if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) {
2909           // Check for a calling convention mismatch with super method(s)
2910           bool scalar_super = false;
2911           bool non_scalar_super = false;
2912           GrowableArray<Method*>* supers = get_supers();
2913           for (int i = 0; i < supers->length(); ++i) {
2914             Method* super_method = supers->at(i);
2915             if (super_method->is_scalarized_arg(arg_num)) {
2916               scalar_super = true;
2917             } else {
2918               non_scalar_super = true;
2919             }
2920           }
2921 #ifdef ASSERT
2922           // Randomly enable below code paths for stress testing
2923           bool stress = init && StressCallingConvention;
2924           if (stress && (os::random() & 1) == 1) {
2925             non_scalar_super = true;
2926             if ((os::random() & 1) == 1) {
2927               scalar_super = true;
2928             }
2929           }
2930 #endif
2931           if (non_scalar_super) {
2932             // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention.
2933             if (scalar_super) {
2934               // Found non-scalar *and* scalar super methods. We can't handle both.
2935               // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention.
2936               for (int i = 0; i < supers->length(); ++i) {
2937                 Method* super_method = supers->at(i);
2938                 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) {
2939                   super_method->set_mismatch();
2940                   MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag);
2941                   JavaThread* thread = JavaThread::current();
2942                   HandleMark hm(thread);
2943                   methodHandle mh(thread, super_method);
2944                   DeoptimizationScope deopt_scope;
2945                   CodeCache::mark_for_deoptimization(&deopt_scope, mh());
2946                   deopt_scope.deoptimize_marked();
2947                 }
2948               }
2949             }
2950             // Fall back to non-scalarized calling convention
2951             SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2952             SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2953           } else {
2954             _num_inline_args++;
2955             has_scalarized = true;
2956             int last = _sig_cc->length();
2957             int last_ro = _sig_cc_ro->length();
2958             _sig_cc->appendAll(vk->extended_sig());
2959             _sig_cc_ro->appendAll(vk->extended_sig());
2960             if (bt == T_OBJECT) {
2961               // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter
2962               _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2963               _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2964             }
2965           }
2966         } else {
2967           SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2968           SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2969         }
2970         bt = T_OBJECT;
2971       } else {
2972         SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol());
2973         SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol());
2974       }
2975       SigEntry::add_entry(_sig, bt, ss.as_symbol());
2976       if (bt != T_VOID) {
2977         arg_num++;
2978       }
2979     }
2980   }
2981 
2982   // Compute the non-scalarized calling convention
2983   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2984   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2985 
2986   // Compute the scalarized calling conventions if there are scalarized inline types in the signature
2987   if (has_scalarized && !_method->is_native()) {
2988     _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
2989     _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2990 
2991     _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
2992     _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
2993 
2994     _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2995     _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2996 
2997     // Upper bound on stack arguments to avoid hitting the argument limit and
2998     // bailing out of compilation ("unsupported incoming calling sequence").
2999     // TODO we need a reasonable limit (flag?) here
3000     if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) {
3001       return; // Success
3002     }
3003   }
3004 
3005   // No scalarized args
3006   _sig_cc = _sig;
3007   _regs_cc = _regs;
3008   _args_on_stack_cc = _args_on_stack;
3009 
3010   _sig_cc_ro = _sig;
3011   _regs_cc_ro = _regs;
3012   _args_on_stack_cc_ro = _args_on_stack;
3013 }
3014 
3015 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) {
3016   _has_inline_recv = fingerprint->has_ro_adapter();
3017 
3018   int value_object_count = 0;
3019   BasicType prev_bt = T_ILLEGAL;
3020   bool has_scalarized_arguments = false;
3021   bool long_prev = false;
3022   int long_prev_offset = -1;
3023 
3024   fingerprint->iterate_args([&] (const AdapterFingerPrint::Element& arg) {
3025     BasicType bt = arg.bt();
3026     int offset = arg.offset();
3027 
3028     if (long_prev) {
3029       long_prev = false;
3030       BasicType bt_to_add;
3031       if (bt == T_VOID) {
3032         bt_to_add = T_LONG;
3033       } else {
3034         bt_to_add = T_OBJECT;
3035       }
3036       if (value_object_count == 0) {
3037         SigEntry::add_entry(_sig, bt_to_add);
3038       }
3039       SigEntry::add_entry(_sig_cc, bt_to_add, nullptr, long_prev_offset);
3040       SigEntry::add_entry(_sig_cc_ro, bt_to_add, nullptr, long_prev_offset);
3041     }
3042 
3043     switch (bt) {
3044       case T_VOID:
3045         if (prev_bt != T_LONG && prev_bt != T_DOUBLE) {
3046           assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
3047           value_object_count--;
3048           SigEntry::add_entry(_sig_cc, T_VOID, nullptr, offset);
3049           SigEntry::add_entry(_sig_cc_ro, T_VOID, nullptr, offset);
3050           assert(value_object_count >= 0, "invalid value object count");
3051         } else {
3052           // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE.
3053         }
3054         break;
3055       case T_INT:
3056       case T_FLOAT:
3057       case T_DOUBLE:
3058         if (value_object_count == 0) {
3059           SigEntry::add_entry(_sig, bt);
3060         }
3061         SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3062         SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3063         break;
3064       case T_LONG:
3065         long_prev = true;
3066         long_prev_offset = offset;
3067         break;
3068       case T_BOOLEAN:
3069       case T_CHAR:
3070       case T_BYTE:
3071       case T_SHORT:
3072       case T_OBJECT:
3073       case T_ARRAY:
3074         assert(value_object_count > 0, "must be value object field");
3075         SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3076         SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3077         break;
3078       case T_METADATA:
3079         assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
3080         if (value_object_count == 0) {
3081           SigEntry::add_entry(_sig, T_OBJECT);
3082         }
3083         SigEntry::add_entry(_sig_cc, T_METADATA, nullptr, offset);
3084         SigEntry::add_entry(_sig_cc_ro, T_METADATA, nullptr, offset);
3085         value_object_count++;
3086         has_scalarized_arguments = true;
3087         break;
3088       default: {
3089         fatal("Unexpected BasicType: %s", basictype_to_str(bt));
3090       }
3091     }
3092     prev_bt = bt;
3093   });
3094 
3095   if (long_prev) {
3096     // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT.
3097     SigEntry::add_entry(_sig, T_OBJECT);
3098     SigEntry::add_entry(_sig_cc, T_OBJECT);
3099     SigEntry::add_entry(_sig_cc_ro, T_OBJECT);
3100   }
3101   assert(value_object_count == 0, "invalid value object count");
3102 
3103   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
3104   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
3105 
3106   // Compute the scalarized calling conventions if there are scalarized inline types in the signature
3107   if (has_scalarized_arguments) {
3108     _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
3109     _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
3110 
3111     _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
3112     _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
3113 
3114     _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3115     _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3116   } else {
3117     // No scalarized args
3118     _sig_cc = _sig;
3119     _regs_cc = _regs;
3120     _args_on_stack_cc = _args_on_stack;
3121 
3122     _sig_cc_ro = _sig;
3123     _regs_cc_ro = _regs;
3124     _args_on_stack_cc_ro = _args_on_stack;
3125   }
3126 
3127 #ifdef ASSERT
3128   {
3129     AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv);
3130     assert(fingerprint->equals(compare_fp), "%s - %s", fingerprint->as_string(), compare_fp->as_string());
3131     AdapterFingerPrint::deallocate(compare_fp);
3132   }
3133 #endif
3134 }
3135 
3136 const char* AdapterHandlerEntry::_entry_names[] = {
3137   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
3138 };
3139 
3140 #ifdef ASSERT
3141 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) {
3142   // we can only check for the same code if there is any
3143 #ifndef ZERO
3144   AdapterHandlerEntry* comparison_entry = create_adapter(ces, false, true);
3145   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
3146   assert(comparison_entry->compare_code(cached_entry), "code must match");
3147   // Release the one just created
3148   AdapterHandlerEntry::deallocate(comparison_entry);
3149 # endif // ZERO
3150 }
3151 #endif /* ASSERT*/
3152 
3153 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
3154   assert(!method->is_abstract(), "abstract methods do not have adapters");
3155   // Use customized signature handler.  Need to lock around updates to
3156   // the _adapter_handler_table (it is not safe for concurrent readers
3157   // and a single writer: this could be fixed if it becomes a
3158   // problem).
3159 
3160   // Fast-path for trivial adapters
3161   AdapterHandlerEntry* entry = get_simple_adapter(method);
3162   if (entry != nullptr) {
3163     return entry;
3164   }
3165 
3166   ResourceMark rm;
3167   bool new_entry = false;
3168 
3169   CompiledEntrySignature ces(method());
3170   ces.compute_calling_conventions();
3171   if (ces.has_scalarized_args()) {
3172     if (!method->has_scalarized_args()) {
3173       method->set_has_scalarized_args();
3174     }
3175     if (ces.c1_needs_stack_repair()) {
3176       method->set_c1_needs_stack_repair();
3177     }
3178     if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) {
3179       method->set_c2_needs_stack_repair();
3180     }
3181   }
3182 
3183   {
3184     MutexLocker mu(AdapterHandlerLibrary_lock);
3185 
3186     // Lookup method signature's fingerprint
3187     entry = lookup(ces.sig_cc(), ces.has_inline_recv());
3188 
3189     if (entry != nullptr) {
3190 #ifndef ZERO
3191       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
3192 #endif
3193 #ifdef ASSERT
3194       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
3195         verify_adapter_sharing(ces, entry);
3196       }
3197 #endif
3198     } else {
3199       entry = create_adapter(ces, /* allocate_code_blob */ true);
3200       if (entry != nullptr) {
3201         new_entry = true;
3202       }
3203     }
3204   }
3205 
3206   // Outside of the lock
3207   if (new_entry) {
3208     post_adapter_creation(entry);
3209   }
3210   return entry;
3211 }
3212 
3213 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
3214   ResourceMark rm;
3215   const char* name = AdapterHandlerLibrary::name(handler);
3216   const uint32_t id = AdapterHandlerLibrary::id(handler);
3217 
3218   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
3219   if (blob != nullptr) {
3220     handler->set_adapter_blob(blob->as_adapter_blob());
3221   }
3222 }
3223 
3224 #ifndef PRODUCT
3225 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
3226   ttyLocker ttyl;
3227   ResourceMark rm;
3228   int insts_size;
3229   // on Zero the blob may be null
3230   handler->print_adapter_on(tty);
3231   AdapterBlob* adapter_blob = handler->adapter_blob();
3232   if (adapter_blob == nullptr) {
3233     return;
3234   }
3235   insts_size = adapter_blob->code_size();
3236   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
3237                 handler->fingerprint()->as_basic_args_string(),
3238                 handler->fingerprint()->as_string(), insts_size);
3239   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
3240   if (Verbose || PrintStubCode) {
3241     address first_pc = adapter_blob->content_begin();
3242     if (first_pc != nullptr) {
3243       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
3244       st->cr();
3245     }
3246   }
3247 }
3248 #endif // PRODUCT
3249 
3250 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
3251                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
3252   entry_offset[AdapterBlob::I2C] = 0;
3253   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
3254   entry_offset[AdapterBlob::C2I_Inline] = entry_address[AdapterBlob::C2I_Inline] - entry_address[AdapterBlob::I2C];
3255   entry_offset[AdapterBlob::C2I_Inline_RO] = entry_address[AdapterBlob::C2I_Inline_RO] - entry_address[AdapterBlob::I2C];
3256   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
3257   entry_offset[AdapterBlob::C2I_Unverified_Inline] = entry_address[AdapterBlob::C2I_Unverified_Inline] - entry_address[AdapterBlob::I2C];
3258   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
3259     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
3260   } else {
3261     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
3262   }
3263 }
3264 
3265 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
3266                                                   CompiledEntrySignature& ces,
3267                                                   bool allocate_code_blob,
3268                                                   bool is_transient) {
3269   if (log_is_enabled(Info, perf, class, link)) {
3270     ClassLoader::perf_method_adapters_count()->inc();
3271   }
3272 
3273 #ifndef ZERO
3274   AdapterBlob* adapter_blob = nullptr;
3275   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3276   CodeBuffer buffer(buf);
3277   short buffer_locs[20];
3278   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3279                                          sizeof(buffer_locs)/sizeof(relocInfo));
3280   MacroAssembler masm(&buffer);
3281   address entry_address[AdapterBlob::ENTRY_COUNT];
3282 
3283   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
3284   SharedRuntime::generate_i2c2i_adapters(&masm,
3285                                          ces.args_on_stack(),
3286                                          ces.sig(),
3287                                          ces.regs(),
3288                                          ces.sig_cc(),
3289                                          ces.regs_cc(),
3290                                          ces.sig_cc_ro(),
3291                                          ces.regs_cc_ro(),
3292                                          entry_address,
3293                                          adapter_blob,
3294                                          allocate_code_blob);
3295 
3296   if (ces.has_scalarized_args()) {
3297     // Save a C heap allocated version of the scalarized signature and store it in the adapter
3298     GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
3299     heap_sig->appendAll(ces.sig_cc());
3300     handler->set_sig_cc(heap_sig);
3301   }
3302   // On zero there is no code to save and no need to create a blob and
3303   // or relocate the handler.
3304   int entry_offset[AdapterBlob::ENTRY_COUNT];
3305   address_to_offset(entry_address, entry_offset);
3306 #ifdef ASSERT
3307   if (VerifyAdapterSharing) {
3308     handler->save_code(buf->code_begin(), buffer.insts_size());
3309     if (is_transient) {
3310       return true;
3311     }
3312   }
3313 #endif
3314   if (adapter_blob == nullptr) {
3315     // CodeCache is full, disable compilation
3316     // Ought to log this but compile log is only per compile thread
3317     // and we're some non descript Java thread.
3318     return false;
3319   }
3320   handler->set_adapter_blob(adapter_blob);
3321   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
3322     // try to save generated code
3323     const char* name = AdapterHandlerLibrary::name(handler);
3324     const uint32_t id = AdapterHandlerLibrary::id(handler);
3325     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
3326     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
3327   }
3328 #endif // ZERO
3329 
3330 #ifndef PRODUCT
3331   // debugging support
3332   if (PrintAdapterHandlers || PrintStubCode) {
3333     print_adapter_handler_info(tty, handler);
3334   }
3335 #endif
3336 
3337   return true;
3338 }
3339 
3340 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(CompiledEntrySignature& ces,
3341                                                            bool allocate_code_blob,
3342                                                            bool is_transient) {
3343   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv());
3344 #ifdef ASSERT
3345   // Verify that we can successfully restore the compiled entry signature object.
3346   CompiledEntrySignature ces_verify;
3347   ces_verify.initialize_from_fingerprint(fp);
3348 #endif
3349   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
3350   if (!generate_adapter_code(handler, ces, allocate_code_blob, is_transient)) {
3351     AdapterHandlerEntry::deallocate(handler);
3352     return nullptr;
3353   }
3354   if (!is_transient) {
3355     assert_lock_strong(AdapterHandlerLibrary_lock);
3356     _adapter_handler_table->put(fp, handler);
3357   }
3358   return handler;
3359 }
3360 
3361 #if INCLUDE_CDS
3362 void AdapterHandlerEntry::remove_unshareable_info() {
3363 #ifdef ASSERT
3364    _saved_code = nullptr;
3365    _saved_code_length = 0;
3366 #endif // ASSERT
3367    _adapter_blob = nullptr;
3368    _linked = false;
3369    _sig_cc = nullptr;
3370 }
3371 
3372 class CopyAdapterTableToArchive : StackObj {
3373 private:
3374   CompactHashtableWriter* _writer;
3375   ArchiveBuilder* _builder;
3376 public:
3377   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3378                                                              _builder(ArchiveBuilder::current())
3379   {}
3380 
3381   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3382     LogStreamHandle(Trace, aot) lsh;
3383     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3384       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3385       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3386       assert(buffered_fp != nullptr,"sanity check");
3387       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3388       assert(buffered_entry != nullptr,"sanity check");
3389 
3390       uint hash = fp->compute_hash();
3391       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3392       _writer->add(hash, delta);
3393       if (lsh.is_enabled()) {
3394         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3395         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3396         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3397       }
3398     } else {
3399       if (lsh.is_enabled()) {
3400         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3401       }
3402     }
3403     return true;
3404   }
3405 };
3406 
3407 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3408   CompactHashtableStats stats;
3409   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3410   CopyAdapterTableToArchive copy(&writer);
3411   _adapter_handler_table->iterate(&copy);
3412   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3413 }
3414 
3415 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3416   _aot_adapter_handler_table.serialize_header(soc);
3417 }
3418 
3419 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3420 #ifdef ASSERT
3421   if (TestAOTAdapterLinkFailure) {
3422     return;
3423   }
3424 #endif
3425   lookup_aot_cache(handler);
3426 #ifndef PRODUCT
3427   // debugging support
3428   if (PrintAdapterHandlers || PrintStubCode) {
3429     print_adapter_handler_info(tty, handler);
3430   }
3431 #endif
3432 }
3433 
3434 // This method is used during production run to link archived adapters (stored in AOT Cache)
3435 // to their code in AOT Code Cache
3436 void AdapterHandlerEntry::link() {
3437   ResourceMark rm;
3438   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3439   bool generate_code = false;
3440   // Generate code only if AOTCodeCache is not available, or
3441   // caching adapters is disabled, or we fail to link
3442   // the AdapterHandlerEntry to its code in the AOTCodeCache
3443   if (AOTCodeCache::is_using_adapter()) {
3444     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3445     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3446     if (_adapter_blob == nullptr) {
3447       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3448       generate_code = true;
3449     }
3450 
3451     if (get_sig_cc() == nullptr) {
3452       // Calling conventions have to be regenerated at runtime and are accessed through method adapters,
3453       // which are archived in the AOT code cache. If the adapters are not regenerated, the
3454       // calling conventions should be regenerated here.
3455       CompiledEntrySignature ces;
3456       ces.initialize_from_fingerprint(_fingerprint);
3457       if (ces.has_scalarized_args()) {
3458         // Save a C heap allocated version of the scalarized signature and store it in the adapter
3459         GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
3460         heap_sig->appendAll(ces.sig_cc());
3461         set_sig_cc(heap_sig);
3462       }
3463     }
3464   } else {
3465     generate_code = true;
3466   }
3467 
3468   if (generate_code) {
3469     CompiledEntrySignature ces;
3470     ces.initialize_from_fingerprint(_fingerprint);
3471     if (!AdapterHandlerLibrary::generate_adapter_code(this, ces, true, false)) {
3472       // Don't throw exceptions during VM initialization because java.lang.* classes
3473       // might not have been initialized, causing problems when constructing the
3474       // Java exception object.
3475       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3476     }
3477   }
3478   if (_adapter_blob != nullptr) {
3479     post_adapter_creation(this);
3480   }
3481   assert(_linked, "AdapterHandlerEntry must now be linked");
3482 }
3483 
3484 void AdapterHandlerLibrary::link_aot_adapters() {
3485   uint max_id = 0;
3486   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3487   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3488    * That implies adapter ids of the adapters in the cache may not be contiguous.
3489    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3490    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3491    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3492    */
3493   _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) {
3494     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3495     entry->link();
3496     max_id = MAX2(max_id, entry->id());
3497   });
3498   // Set adapter id to the maximum id found in the AOTCache
3499   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3500   _id_counter = max_id;
3501 }
3502 
3503 // This method is called during production run to lookup simple adapters
3504 // in the archived adapter handler table
3505 void AdapterHandlerLibrary::lookup_simple_adapters() {
3506   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3507 
3508   MutexLocker mu(AdapterHandlerLibrary_lock);
3509   ResourceMark rm;
3510   CompiledEntrySignature no_args;
3511   no_args.compute_calling_conventions();
3512   _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv());
3513 
3514   CompiledEntrySignature obj_args;
3515   SigEntry::add_entry(obj_args.sig(), T_OBJECT);
3516   obj_args.compute_calling_conventions();
3517   _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv());
3518 
3519   CompiledEntrySignature int_args;
3520   SigEntry::add_entry(int_args.sig(), T_INT);
3521   int_args.compute_calling_conventions();
3522   _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv());
3523 
3524   CompiledEntrySignature obj_int_args;
3525   SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
3526   SigEntry::add_entry(obj_int_args.sig(), T_INT);
3527   obj_int_args.compute_calling_conventions();
3528   _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv());
3529 
3530   CompiledEntrySignature obj_obj_args;
3531   SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3532   SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3533   obj_obj_args.compute_calling_conventions();
3534   _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv());
3535 
3536   assert(_no_arg_handler != nullptr &&
3537          _obj_arg_handler != nullptr &&
3538          _int_arg_handler != nullptr &&
3539          _obj_int_arg_handler != nullptr &&
3540          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3541   assert(_no_arg_handler->is_linked() &&
3542          _obj_arg_handler->is_linked() &&
3543          _int_arg_handler->is_linked() &&
3544          _obj_int_arg_handler->is_linked() &&
3545          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3546 }
3547 #endif // INCLUDE_CDS
3548 
3549 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3550   LogStreamHandle(Trace, aot) lsh;
3551   if (lsh.is_enabled()) {
3552     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3553     lsh.cr();
3554   }
3555   it->push(&_fingerprint);
3556 }
3557 
3558 AdapterHandlerEntry::~AdapterHandlerEntry() {
3559   if (_fingerprint != nullptr) {
3560     AdapterFingerPrint::deallocate(_fingerprint);
3561     _fingerprint = nullptr;
3562   }
3563   if (_sig_cc != nullptr) {
3564     delete _sig_cc;
3565   }
3566 #ifdef ASSERT
3567   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3568 #endif
3569   FreeHeap(this);
3570 }
3571 
3572 
3573 #ifdef ASSERT
3574 // Capture the code before relocation so that it can be compared
3575 // against other versions.  If the code is captured after relocation
3576 // then relative instructions won't be equivalent.
3577 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3578   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3579   _saved_code_length = length;
3580   memcpy(_saved_code, buffer, length);
3581 }
3582 
3583 
3584 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3585   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3586 
3587   if (other->_saved_code_length != _saved_code_length) {
3588     return false;
3589   }
3590 
3591   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3592 }
3593 #endif
3594 
3595 
3596 /**
3597  * Create a native wrapper for this native method.  The wrapper converts the
3598  * Java-compiled calling convention to the native convention, handles
3599  * arguments, and transitions to native.  On return from the native we transition
3600  * back to java blocking if a safepoint is in progress.
3601  */
3602 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3603   ResourceMark rm;
3604   nmethod* nm = nullptr;
3605 
3606   // Check if memory should be freed before allocation
3607   CodeCache::gc_on_allocation();
3608 
3609   assert(method->is_native(), "must be native");
3610   assert(method->is_special_native_intrinsic() ||
3611          method->has_native_function(), "must have something valid to call!");
3612 
3613   {
3614     // Perform the work while holding the lock, but perform any printing outside the lock
3615     MutexLocker mu(AdapterHandlerLibrary_lock);
3616     // See if somebody beat us to it
3617     if (method->code() != nullptr) {
3618       return;
3619     }
3620 
3621     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3622     assert(compile_id > 0, "Must generate native wrapper");
3623 
3624 
3625     ResourceMark rm;
3626     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3627     if (buf != nullptr) {
3628       CodeBuffer buffer(buf);
3629 
3630       if (method->is_continuation_enter_intrinsic()) {
3631         buffer.initialize_stubs_size(192);
3632       }
3633 
3634       struct { double data[20]; } locs_buf;
3635       struct { double data[20]; } stubs_locs_buf;
3636       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3637 #if defined(AARCH64) || defined(PPC64)
3638       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3639       // in the constant pool to ensure ordering between the barrier and oops
3640       // accesses. For native_wrappers we need a constant.
3641       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3642       // static java call that is resolved in the runtime.
3643       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3644         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3645       }
3646 #endif
3647       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3648       MacroAssembler _masm(&buffer);
3649 
3650       // Fill in the signature array, for the calling-convention call.
3651       const int total_args_passed = method->size_of_parameters();
3652 
3653       BasicType stack_sig_bt[16];
3654       VMRegPair stack_regs[16];
3655       BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3656       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3657 
3658       int i = 0;
3659       if (!method->is_static()) {  // Pass in receiver first
3660         sig_bt[i++] = T_OBJECT;
3661       }
3662       SignatureStream ss(method->signature());
3663       for (; !ss.at_return_type(); ss.next()) {
3664         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3665         if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3666           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3667         }
3668       }
3669       assert(i == total_args_passed, "");
3670       BasicType ret_type = ss.type();
3671 
3672       // Now get the compiled-Java arguments layout.
3673       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3674 
3675       // Generate the compiled-to-native wrapper code
3676       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3677 
3678       if (nm != nullptr) {
3679         {
3680           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3681           if (nm->make_in_use()) {
3682             method->set_code(method, nm);
3683           }
3684         }
3685 
3686         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3687         if (directive->PrintAssemblyOption) {
3688           nm->print_code();
3689         }
3690         DirectivesStack::release(directive);
3691       }
3692     }
3693   } // Unlock AdapterHandlerLibrary_lock
3694 
3695 
3696   // Install the generated code.
3697   if (nm != nullptr) {
3698     const char *msg = method->is_static() ? "(static)" : "";
3699     CompileTask::print_ul(nm, msg);
3700     if (PrintCompilation) {
3701       ttyLocker ttyl;
3702       CompileTask::print(tty, nm, msg);
3703     }
3704     nm->post_compiled_method_load_event();
3705   }
3706 }
3707 
3708 // -------------------------------------------------------------------------
3709 // Java-Java calling convention
3710 // (what you use when Java calls Java)
3711 
3712 //------------------------------name_for_receiver----------------------------------
3713 // For a given signature, return the VMReg for parameter 0.
3714 VMReg SharedRuntime::name_for_receiver() {
3715   VMRegPair regs;
3716   BasicType sig_bt = T_OBJECT;
3717   (void) java_calling_convention(&sig_bt, &regs, 1);
3718   // Return argument 0 register.  In the LP64 build pointers
3719   // take 2 registers, but the VM wants only the 'main' name.
3720   return regs.first();
3721 }
3722 
3723 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3724   // This method is returning a data structure allocating as a
3725   // ResourceObject, so do not put any ResourceMarks in here.
3726 
3727   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3728   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3729   int cnt = 0;
3730   if (has_receiver) {
3731     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3732   }
3733 
3734   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3735     BasicType type = ss.type();
3736     sig_bt[cnt++] = type;
3737     if (is_double_word_type(type))
3738       sig_bt[cnt++] = T_VOID;
3739   }
3740 
3741   if (has_appendix) {
3742     sig_bt[cnt++] = T_OBJECT;
3743   }
3744 
3745   assert(cnt < 256, "grow table size");
3746 
3747   int comp_args_on_stack;
3748   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3749 
3750   // the calling convention doesn't count out_preserve_stack_slots so
3751   // we must add that in to get "true" stack offsets.
3752 
3753   if (comp_args_on_stack) {
3754     for (int i = 0; i < cnt; i++) {
3755       VMReg reg1 = regs[i].first();
3756       if (reg1->is_stack()) {
3757         // Yuck
3758         reg1 = reg1->bias(out_preserve_stack_slots());
3759       }
3760       VMReg reg2 = regs[i].second();
3761       if (reg2->is_stack()) {
3762         // Yuck
3763         reg2 = reg2->bias(out_preserve_stack_slots());
3764       }
3765       regs[i].set_pair(reg2, reg1);
3766     }
3767   }
3768 
3769   // results
3770   *arg_size = cnt;
3771   return regs;
3772 }
3773 
3774 // OSR Migration Code
3775 //
3776 // This code is used convert interpreter frames into compiled frames.  It is
3777 // called from very start of a compiled OSR nmethod.  A temp array is
3778 // allocated to hold the interesting bits of the interpreter frame.  All
3779 // active locks are inflated to allow them to move.  The displaced headers and
3780 // active interpreter locals are copied into the temp buffer.  Then we return
3781 // back to the compiled code.  The compiled code then pops the current
3782 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3783 // copies the interpreter locals and displaced headers where it wants.
3784 // Finally it calls back to free the temp buffer.
3785 //
3786 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3787 
3788 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3789   assert(current == JavaThread::current(), "pre-condition");
3790   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3791   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3792   // frame. The stack watermark code below ensures that the interpreted frame is processed
3793   // before it gets unwound. This is helpful as the size of the compiled frame could be
3794   // larger than the interpreted frame, which could result in the new frame not being
3795   // processed correctly.
3796   StackWatermarkSet::before_unwind(current);
3797 
3798   //
3799   // This code is dependent on the memory layout of the interpreter local
3800   // array and the monitors. On all of our platforms the layout is identical
3801   // so this code is shared. If some platform lays the their arrays out
3802   // differently then this code could move to platform specific code or
3803   // the code here could be modified to copy items one at a time using
3804   // frame accessor methods and be platform independent.
3805 
3806   frame fr = current->last_frame();
3807   assert(fr.is_interpreted_frame(), "");
3808   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3809 
3810   // Figure out how many monitors are active.
3811   int active_monitor_count = 0;
3812   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3813        kptr < fr.interpreter_frame_monitor_begin();
3814        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3815     if (kptr->obj() != nullptr) active_monitor_count++;
3816   }
3817 
3818   // QQQ we could place number of active monitors in the array so that compiled code
3819   // could double check it.
3820 
3821   Method* moop = fr.interpreter_frame_method();
3822   int max_locals = moop->max_locals();
3823   // Allocate temp buffer, 1 word per local & 2 per active monitor
3824   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3825   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3826 
3827   // Copy the locals.  Order is preserved so that loading of longs works.
3828   // Since there's no GC I can copy the oops blindly.
3829   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3830   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3831                        (HeapWord*)&buf[0],
3832                        max_locals);
3833 
3834   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3835   int i = max_locals;
3836   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3837        kptr2 < fr.interpreter_frame_monitor_begin();
3838        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3839     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3840       BasicLock *lock = kptr2->lock();
3841       if (UseObjectMonitorTable) {
3842         buf[i] = (intptr_t)lock->object_monitor_cache();
3843       }
3844 #ifdef ASSERT
3845       else {
3846         buf[i] = badDispHeaderOSR;
3847       }
3848 #endif
3849       i++;
3850       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3851     }
3852   }
3853   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3854 
3855   RegisterMap map(current,
3856                   RegisterMap::UpdateMap::skip,
3857                   RegisterMap::ProcessFrames::include,
3858                   RegisterMap::WalkContinuation::skip);
3859   frame sender = fr.sender(&map);
3860   if (sender.is_interpreted_frame()) {
3861     current->push_cont_fastpath(sender.sp());
3862   }
3863 
3864   return buf;
3865 JRT_END
3866 
3867 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3868   FREE_C_HEAP_ARRAY(intptr_t, buf);
3869 JRT_END
3870 
3871 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3872   return handler->fingerprint()->as_basic_args_string();
3873 }
3874 
3875 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3876   return handler->id();
3877 }
3878 
3879 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3880   bool found = false;
3881 #if INCLUDE_CDS
3882   if (AOTCodeCache::is_using_adapter()) {
3883     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3884       if (b == handler->adapter_blob()) {
3885         found = true;
3886         st->print("Adapter for signature: ");
3887         handler->print_adapter_on(st);
3888         return false; // abort iteration
3889       } else {
3890         return true; // keep looking
3891       }
3892     };
3893     _aot_adapter_handler_table.iterate(findblob_archived_table);
3894   }
3895 #endif // INCLUDE_CDS
3896   if (!found) {
3897     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) {
3898       if (b == handler->adapter_blob()) {
3899         found = true;
3900         st->print("Adapter for signature: ");
3901         handler->print_adapter_on(st);
3902         return false; // abort iteration
3903       } else {
3904         return true; // keep looking
3905       }
3906     };
3907     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3908     _adapter_handler_table->iterate(findblob_runtime_table);
3909   }
3910   assert(found, "Should have found handler");
3911 }
3912 
3913 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3914   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3915   if (adapter_blob() != nullptr) {
3916     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3917     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3918     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3919     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3920     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3921     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3922     if (get_c2i_no_clinit_check_entry() != nullptr) {
3923       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3924     }
3925   }
3926   st->cr();
3927 }
3928 
3929 #ifndef PRODUCT
3930 
3931 void AdapterHandlerLibrary::print_statistics() {
3932   print_table_statistics();
3933 }
3934 
3935 #endif /* PRODUCT */
3936 
3937 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3938   assert(current == JavaThread::current(), "pre-condition");
3939   StackOverflow* overflow_state = current->stack_overflow_state();
3940   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3941   overflow_state->set_reserved_stack_activation(current->stack_base());
3942 JRT_END
3943 
3944 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3945   ResourceMark rm(current);
3946   frame activation;
3947   nmethod* nm = nullptr;
3948   int count = 1;
3949 
3950   assert(fr.is_java_frame(), "Must start on Java frame");
3951 
3952   RegisterMap map(JavaThread::current(),
3953                   RegisterMap::UpdateMap::skip,
3954                   RegisterMap::ProcessFrames::skip,
3955                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3956   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3957     if (!fr.is_java_frame()) {
3958       continue;
3959     }
3960 
3961     Method* method = nullptr;
3962     bool found = false;
3963     if (fr.is_interpreted_frame()) {
3964       method = fr.interpreter_frame_method();
3965       if (method != nullptr && method->has_reserved_stack_access()) {
3966         found = true;
3967       }
3968     } else {
3969       CodeBlob* cb = fr.cb();
3970       if (cb != nullptr && cb->is_nmethod()) {
3971         nm = cb->as_nmethod();
3972         method = nm->method();
3973         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3974           method = sd->method();
3975           if (method != nullptr && method->has_reserved_stack_access()) {
3976             found = true;
3977           }
3978         }
3979       }
3980     }
3981     if (found) {
3982       activation = fr;
3983       warning("Potentially dangerous stack overflow in "
3984               "ReservedStackAccess annotated method %s [%d]",
3985               method->name_and_sig_as_C_string(), count++);
3986       EventReservedStackActivation event;
3987       if (event.should_commit()) {
3988         event.set_method(method);
3989         event.commit();
3990       }
3991     }
3992   }
3993   return activation;
3994 }
3995 
3996 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3997   // After any safepoint, just before going back to compiled code,
3998   // we inform the GC that we will be doing initializing writes to
3999   // this object in the future without emitting card-marks, so
4000   // GC may take any compensating steps.
4001 
4002   oop new_obj = current->vm_result_oop();
4003   if (new_obj == nullptr) return;
4004 
4005   BarrierSet *bs = BarrierSet::barrier_set();
4006   bs->on_slowpath_allocation_exit(current, new_obj);
4007 }
4008 
4009 // We are at a compiled code to interpreter call. We need backing
4010 // buffers for all inline type arguments. Allocate an object array to
4011 // hold them (convenient because once we're done with it we don't have
4012 // to worry about freeing it).
4013 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
4014   assert(InlineTypePassFieldsAsArgs, "no reason to call this");
4015   ResourceMark rm;
4016 
4017   int nb_slots = 0;
4018   InstanceKlass* holder = callee->method_holder();
4019   allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0);
4020   if (allocate_receiver) {
4021     nb_slots++;
4022   }
4023   int arg_num = callee->is_static() ? 0 : 1;
4024   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4025     BasicType bt = ss.type();
4026     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4027       nb_slots++;
4028     }
4029     if (bt != T_VOID) {
4030       arg_num++;
4031     }
4032   }
4033   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
4034   objArrayHandle array(THREAD, array_oop);
4035   arg_num = callee->is_static() ? 0 : 1;
4036   int i = 0;
4037   if (allocate_receiver) {
4038     InlineKlass* vk = InlineKlass::cast(holder);
4039     oop res = vk->allocate_instance(CHECK_NULL);
4040     array->obj_at_put(i++, res);
4041   }
4042   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4043     BasicType bt = ss.type();
4044     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4045       InlineKlass* vk = ss.as_inline_klass(holder);
4046       assert(vk != nullptr, "Unexpected klass");
4047       oop res = vk->allocate_instance(CHECK_NULL);
4048       array->obj_at_put(i++, res);
4049     }
4050     if (bt != T_VOID) {
4051       arg_num++;
4052     }
4053   }
4054   return array();
4055 }
4056 
4057 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
4058   methodHandle callee(current, callee_method);
4059   oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
4060   current->set_vm_result_oop(array);
4061   current->set_vm_result_metadata(callee()); // TODO: required to keep callee live?
4062 JRT_END
4063 
4064 // We're returning from an interpreted method: load each field into a
4065 // register following the calling convention
4066 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
4067 {
4068   assert(res->klass()->is_inline_klass(), "only inline types here");
4069   ResourceMark rm;
4070   RegisterMap reg_map(current,
4071                       RegisterMap::UpdateMap::include,
4072                       RegisterMap::ProcessFrames::include,
4073                       RegisterMap::WalkContinuation::skip);
4074   frame stubFrame = current->last_frame();
4075   frame callerFrame = stubFrame.sender(&reg_map);
4076   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
4077 
4078   InlineKlass* vk = InlineKlass::cast(res->klass());
4079 
4080   const Array<SigEntry>* sig_vk = vk->extended_sig();
4081   const Array<VMRegPair>* regs = vk->return_regs();
4082 
4083   if (regs == nullptr) {
4084     // The fields of the inline klass don't fit in registers, bail out
4085     return;
4086   }
4087 
4088   int j = 1;
4089   for (int i = 0; i < sig_vk->length(); i++) {
4090     BasicType bt = sig_vk->at(i)._bt;
4091     if (bt == T_METADATA) {
4092       continue;
4093     }
4094     if (bt == T_VOID) {
4095       if (sig_vk->at(i-1)._bt == T_LONG ||
4096           sig_vk->at(i-1)._bt == T_DOUBLE) {
4097         j++;
4098       }
4099       continue;
4100     }
4101     int off = sig_vk->at(i)._offset;
4102     assert(off > 0, "offset in object should be positive");
4103     VMRegPair pair = regs->at(j);
4104     address loc = reg_map.location(pair.first(), nullptr);
4105     switch(bt) {
4106     case T_BOOLEAN:
4107       *(jboolean*)loc = res->bool_field(off);
4108       break;
4109     case T_CHAR:
4110       *(jchar*)loc = res->char_field(off);
4111       break;
4112     case T_BYTE:
4113       *(jbyte*)loc = res->byte_field(off);
4114       break;
4115     case T_SHORT:
4116       *(jshort*)loc = res->short_field(off);
4117       break;
4118     case T_INT: {
4119       *(jint*)loc = res->int_field(off);
4120       break;
4121     }
4122     case T_LONG:
4123 #ifdef _LP64
4124       *(intptr_t*)loc = res->long_field(off);
4125 #else
4126       Unimplemented();
4127 #endif
4128       break;
4129     case T_OBJECT:
4130     case T_ARRAY: {
4131       *(oop*)loc = res->obj_field(off);
4132       break;
4133     }
4134     case T_FLOAT:
4135       *(jfloat*)loc = res->float_field(off);
4136       break;
4137     case T_DOUBLE:
4138       *(jdouble*)loc = res->double_field(off);
4139       break;
4140     default:
4141       ShouldNotReachHere();
4142     }
4143     j++;
4144   }
4145   assert(j == regs->length(), "missed a field?");
4146 
4147 #ifdef ASSERT
4148   VMRegPair pair = regs->at(0);
4149   address loc = reg_map.location(pair.first(), nullptr);
4150   assert(*(oopDesc**)loc == res, "overwritten object");
4151 #endif
4152 
4153   current->set_vm_result_oop(res);
4154 }
4155 JRT_END
4156 
4157 // We've returned to an interpreted method, the interpreter needs a
4158 // reference to an inline type instance. Allocate it and initialize it
4159 // from field's values in registers.
4160 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
4161 {
4162   ResourceMark rm;
4163   RegisterMap reg_map(current,
4164                       RegisterMap::UpdateMap::include,
4165                       RegisterMap::ProcessFrames::include,
4166                       RegisterMap::WalkContinuation::skip);
4167   frame stubFrame = current->last_frame();
4168   frame callerFrame = stubFrame.sender(&reg_map);
4169 
4170 #ifdef ASSERT
4171   InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
4172 #endif
4173 
4174   if (!is_set_nth_bit(res, 0)) {
4175     // We're not returning with inline type fields in registers (the
4176     // calling convention didn't allow it for this inline klass)
4177     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
4178     current->set_vm_result_oop((oopDesc*)res);
4179     assert(verif_vk == nullptr, "broken calling convention");
4180     return;
4181   }
4182 
4183   clear_nth_bit(res, 0);
4184   InlineKlass* vk = (InlineKlass*)res;
4185   assert(verif_vk == vk, "broken calling convention");
4186   assert(Metaspace::contains((void*)res), "should be klass");
4187 
4188   // Allocate handles for every oop field so they are safe in case of
4189   // a safepoint when allocating
4190   GrowableArray<Handle> handles;
4191   vk->save_oop_fields(reg_map, handles);
4192 
4193   // It's unsafe to safepoint until we are here
4194   JRT_BLOCK;
4195   {
4196     JavaThread* THREAD = current;
4197     oop vt = vk->realloc_result(reg_map, handles, CHECK);
4198     current->set_vm_result_oop(vt);
4199   }
4200   JRT_BLOCK_END;
4201 }
4202 JRT_END