1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/oopFactory.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "oops/access.hpp" 52 #include "oops/fieldStreams.inline.hpp" 53 #include "metaprogramming/primitiveConversions.hpp" 54 #include "oops/klass.hpp" 55 #include "oops/method.inline.hpp" 56 #include "oops/objArrayKlass.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "oops/inlineKlass.inline.hpp" 60 #include "prims/forte.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/nativeLookup.hpp" 65 #include "runtime/arguments.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/basicLock.inline.hpp" 68 #include "runtime/frame.inline.hpp" 69 #include "runtime/handles.inline.hpp" 70 #include "runtime/init.hpp" 71 #include "runtime/interfaceSupport.inline.hpp" 72 #include "runtime/java.hpp" 73 #include "runtime/javaCalls.hpp" 74 #include "runtime/jniHandles.inline.hpp" 75 #include "runtime/perfData.hpp" 76 #include "runtime/sharedRuntime.hpp" 77 #include "runtime/stackWatermarkSet.hpp" 78 #include "runtime/stubRoutines.hpp" 79 #include "runtime/synchronizer.inline.hpp" 80 #include "runtime/timerTrace.hpp" 81 #include "runtime/vframe.inline.hpp" 82 #include "runtime/vframeArray.hpp" 83 #include "runtime/vm_version.hpp" 84 #include "utilities/copy.hpp" 85 #include "utilities/dtrace.hpp" 86 #include "utilities/events.hpp" 87 #include "utilities/globalDefinitions.hpp" 88 #include "utilities/resourceHash.hpp" 89 #include "utilities/macros.hpp" 90 #include "utilities/xmlstream.hpp" 91 #ifdef COMPILER1 92 #include "c1/c1_Runtime1.hpp" 93 #endif 94 #if INCLUDE_JFR 95 #include "jfr/jfr.inline.hpp" 96 #endif 97 98 // Shared runtime stub routines reside in their own unique blob with a 99 // single entry point 100 101 102 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 103 type SharedRuntime::BLOB_FIELD_NAME(name); 104 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 105 #undef SHARED_STUB_FIELD_DEFINE 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 110 const char *SharedRuntime::_stub_names[] = { 111 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 112 }; 113 114 //----------------------------generate_stubs----------------------------------- 115 void SharedRuntime::generate_initial_stubs() { 116 // Build this early so it's available for the interpreter. 117 _throw_StackOverflowError_blob = 118 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 119 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 120 } 121 122 void SharedRuntime::generate_stubs() { 123 _wrong_method_blob = 124 generate_resolve_blob(SharedStubId::wrong_method_id, 125 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 126 _wrong_method_abstract_blob = 127 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 129 _ic_miss_blob = 130 generate_resolve_blob(SharedStubId::ic_miss_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 132 _resolve_opt_virtual_call_blob = 133 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 135 _resolve_virtual_call_blob = 136 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 138 _resolve_static_call_blob = 139 generate_resolve_blob(SharedStubId::resolve_static_call_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 141 142 _throw_delayed_StackOverflowError_blob = 143 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 144 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 145 146 _throw_AbstractMethodError_blob = 147 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 148 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 149 150 _throw_IncompatibleClassChangeError_blob = 151 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 152 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 153 154 _throw_NullPointerException_at_call_blob = 155 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 156 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 157 158 #if COMPILER2_OR_JVMCI 159 // Vectors are generated only by C2 and JVMCI. 160 bool support_wide = is_wide_vector(MaxVectorSize); 161 if (support_wide) { 162 _polling_page_vectors_safepoint_handler_blob = 163 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 164 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 165 } 166 #endif // COMPILER2_OR_JVMCI 167 _polling_page_safepoint_handler_blob = 168 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 169 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 170 _polling_page_return_handler_blob = 171 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 173 174 generate_deopt_blob(); 175 } 176 177 void SharedRuntime::init_adapter_library() { 178 AdapterHandlerLibrary::initialize(); 179 } 180 181 #if INCLUDE_JFR 182 //------------------------------generate jfr runtime stubs ------ 183 void SharedRuntime::generate_jfr_stubs() { 184 ResourceMark rm; 185 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 186 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 187 188 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 189 _jfr_return_lease_blob = generate_jfr_return_lease(); 190 } 191 192 #endif // INCLUDE_JFR 193 194 #include <math.h> 195 196 // Implementation of SharedRuntime 197 198 #ifndef PRODUCT 199 // For statistics 200 uint SharedRuntime::_ic_miss_ctr = 0; 201 uint SharedRuntime::_wrong_method_ctr = 0; 202 uint SharedRuntime::_resolve_static_ctr = 0; 203 uint SharedRuntime::_resolve_virtual_ctr = 0; 204 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 205 uint SharedRuntime::_implicit_null_throws = 0; 206 uint SharedRuntime::_implicit_div0_throws = 0; 207 208 int64_t SharedRuntime::_nof_normal_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_calls = 0; 210 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 211 int64_t SharedRuntime::_nof_static_calls = 0; 212 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 213 int64_t SharedRuntime::_nof_interface_calls = 0; 214 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 215 216 uint SharedRuntime::_new_instance_ctr=0; 217 uint SharedRuntime::_new_array_ctr=0; 218 uint SharedRuntime::_multi2_ctr=0; 219 uint SharedRuntime::_multi3_ctr=0; 220 uint SharedRuntime::_multi4_ctr=0; 221 uint SharedRuntime::_multi5_ctr=0; 222 uint SharedRuntime::_mon_enter_stub_ctr=0; 223 uint SharedRuntime::_mon_exit_stub_ctr=0; 224 uint SharedRuntime::_mon_enter_ctr=0; 225 uint SharedRuntime::_mon_exit_ctr=0; 226 uint SharedRuntime::_partial_subtype_ctr=0; 227 uint SharedRuntime::_jbyte_array_copy_ctr=0; 228 uint SharedRuntime::_jshort_array_copy_ctr=0; 229 uint SharedRuntime::_jint_array_copy_ctr=0; 230 uint SharedRuntime::_jlong_array_copy_ctr=0; 231 uint SharedRuntime::_oop_array_copy_ctr=0; 232 uint SharedRuntime::_checkcast_array_copy_ctr=0; 233 uint SharedRuntime::_unsafe_array_copy_ctr=0; 234 uint SharedRuntime::_generic_array_copy_ctr=0; 235 uint SharedRuntime::_slow_array_copy_ctr=0; 236 uint SharedRuntime::_find_handler_ctr=0; 237 uint SharedRuntime::_rethrow_ctr=0; 238 uint SharedRuntime::_unsafe_set_memory_ctr=0; 239 240 int SharedRuntime::_ICmiss_index = 0; 241 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 242 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 243 244 245 void SharedRuntime::trace_ic_miss(address at) { 246 for (int i = 0; i < _ICmiss_index; i++) { 247 if (_ICmiss_at[i] == at) { 248 _ICmiss_count[i]++; 249 return; 250 } 251 } 252 int index = _ICmiss_index++; 253 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 254 _ICmiss_at[index] = at; 255 _ICmiss_count[index] = 1; 256 } 257 258 void SharedRuntime::print_ic_miss_histogram() { 259 if (ICMissHistogram) { 260 tty->print_cr("IC Miss Histogram:"); 261 int tot_misses = 0; 262 for (int i = 0; i < _ICmiss_index; i++) { 263 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 264 tot_misses += _ICmiss_count[i]; 265 } 266 tty->print_cr("Total IC misses: %7d", tot_misses); 267 } 268 } 269 #endif // PRODUCT 270 271 272 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 273 return x * y; 274 JRT_END 275 276 277 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 278 if (x == min_jlong && y == CONST64(-1)) { 279 return x; 280 } else { 281 return x / y; 282 } 283 JRT_END 284 285 286 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 287 if (x == min_jlong && y == CONST64(-1)) { 288 return 0; 289 } else { 290 return x % y; 291 } 292 JRT_END 293 294 295 #ifdef _WIN64 296 const juint float_sign_mask = 0x7FFFFFFF; 297 const juint float_infinity = 0x7F800000; 298 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 299 const julong double_infinity = CONST64(0x7FF0000000000000); 300 #endif 301 302 #if !defined(X86) 303 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 304 #ifdef _WIN64 305 // 64-bit Windows on amd64 returns the wrong values for 306 // infinity operands. 307 juint xbits = PrimitiveConversions::cast<juint>(x); 308 juint ybits = PrimitiveConversions::cast<juint>(y); 309 // x Mod Infinity == x unless x is infinity 310 if (((xbits & float_sign_mask) != float_infinity) && 311 ((ybits & float_sign_mask) == float_infinity) ) { 312 return x; 313 } 314 return ((jfloat)fmod_winx64((double)x, (double)y)); 315 #else 316 return ((jfloat)fmod((double)x,(double)y)); 317 #endif 318 JRT_END 319 320 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 321 #ifdef _WIN64 322 julong xbits = PrimitiveConversions::cast<julong>(x); 323 julong ybits = PrimitiveConversions::cast<julong>(y); 324 // x Mod Infinity == x unless x is infinity 325 if (((xbits & double_sign_mask) != double_infinity) && 326 ((ybits & double_sign_mask) == double_infinity) ) { 327 return x; 328 } 329 return ((jdouble)fmod_winx64((double)x, (double)y)); 330 #else 331 return ((jdouble)fmod((double)x,(double)y)); 332 #endif 333 JRT_END 334 #endif // !X86 335 336 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 337 return (jfloat)x; 338 JRT_END 339 340 #ifdef __SOFTFP__ 341 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 342 return x + y; 343 JRT_END 344 345 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 346 return x - y; 347 JRT_END 348 349 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 350 return x * y; 351 JRT_END 352 353 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 354 return x / y; 355 JRT_END 356 357 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 358 return x + y; 359 JRT_END 360 361 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 362 return x - y; 363 JRT_END 364 365 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 366 return x * y; 367 JRT_END 368 369 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 370 return x / y; 371 JRT_END 372 373 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 374 return (jdouble)x; 375 JRT_END 376 377 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 378 return (jdouble)x; 379 JRT_END 380 381 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 382 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 383 JRT_END 384 385 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 386 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 387 JRT_END 388 389 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 390 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 391 JRT_END 392 393 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 394 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 395 JRT_END 396 397 // Functions to return the opposite of the aeabi functions for nan. 398 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 399 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 400 JRT_END 401 402 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 403 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 404 JRT_END 405 406 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 407 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 408 JRT_END 409 410 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 411 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 412 JRT_END 413 414 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 415 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 416 JRT_END 417 418 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 419 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 420 JRT_END 421 422 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 423 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 424 JRT_END 425 426 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 427 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 428 JRT_END 429 430 // Intrinsics make gcc generate code for these. 431 float SharedRuntime::fneg(float f) { 432 return -f; 433 } 434 435 double SharedRuntime::dneg(double f) { 436 return -f; 437 } 438 439 #endif // __SOFTFP__ 440 441 #if defined(__SOFTFP__) || defined(E500V2) 442 // Intrinsics make gcc generate code for these. 443 double SharedRuntime::dabs(double f) { 444 return (f <= (double)0.0) ? (double)0.0 - f : f; 445 } 446 447 #endif 448 449 #if defined(__SOFTFP__) 450 double SharedRuntime::dsqrt(double f) { 451 return sqrt(f); 452 } 453 #endif 454 455 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 456 if (g_isnan(x)) 457 return 0; 458 if (x >= (jfloat) max_jint) 459 return max_jint; 460 if (x <= (jfloat) min_jint) 461 return min_jint; 462 return (jint) x; 463 JRT_END 464 465 466 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 467 if (g_isnan(x)) 468 return 0; 469 if (x >= (jfloat) max_jlong) 470 return max_jlong; 471 if (x <= (jfloat) min_jlong) 472 return min_jlong; 473 return (jlong) x; 474 JRT_END 475 476 477 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 478 if (g_isnan(x)) 479 return 0; 480 if (x >= (jdouble) max_jint) 481 return max_jint; 482 if (x <= (jdouble) min_jint) 483 return min_jint; 484 return (jint) x; 485 JRT_END 486 487 488 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 489 if (g_isnan(x)) 490 return 0; 491 if (x >= (jdouble) max_jlong) 492 return max_jlong; 493 if (x <= (jdouble) min_jlong) 494 return min_jlong; 495 return (jlong) x; 496 JRT_END 497 498 499 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 500 return (jfloat)x; 501 JRT_END 502 503 504 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 505 return (jfloat)x; 506 JRT_END 507 508 509 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 510 return (jdouble)x; 511 JRT_END 512 513 514 // Exception handling across interpreter/compiler boundaries 515 // 516 // exception_handler_for_return_address(...) returns the continuation address. 517 // The continuation address is the entry point of the exception handler of the 518 // previous frame depending on the return address. 519 520 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 521 // Note: This is called when we have unwound the frame of the callee that did 522 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 523 // Notably, the stack is not walkable at this point, and hence the check must 524 // be deferred until later. Specifically, any of the handlers returned here in 525 // this function, will get dispatched to, and call deferred checks to 526 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 527 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 528 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 529 530 // Reset method handle flag. 531 current->set_is_method_handle_return(false); 532 533 #if INCLUDE_JVMCI 534 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 535 // and other exception handler continuations do not read it 536 current->set_exception_pc(nullptr); 537 #endif // INCLUDE_JVMCI 538 539 if (Continuation::is_return_barrier_entry(return_address)) { 540 return StubRoutines::cont_returnBarrierExc(); 541 } 542 543 // The fastest case first 544 CodeBlob* blob = CodeCache::find_blob(return_address); 545 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 546 if (nm != nullptr) { 547 // Set flag if return address is a method handle call site. 548 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 549 // native nmethods don't have exception handlers 550 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 551 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 552 if (nm->is_deopt_pc(return_address)) { 553 // If we come here because of a stack overflow, the stack may be 554 // unguarded. Reguard the stack otherwise if we return to the 555 // deopt blob and the stack bang causes a stack overflow we 556 // crash. 557 StackOverflow* overflow_state = current->stack_overflow_state(); 558 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 559 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 560 overflow_state->set_reserved_stack_activation(current->stack_base()); 561 } 562 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 563 // The deferred StackWatermarkSet::after_unwind check will be performed in 564 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 565 return SharedRuntime::deopt_blob()->unpack_with_exception(); 566 } else { 567 // The deferred StackWatermarkSet::after_unwind check will be performed in 568 // * OptoRuntime::handle_exception_C_helper for C2 code 569 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 570 return nm->exception_begin(); 571 } 572 } 573 574 // Entry code 575 if (StubRoutines::returns_to_call_stub(return_address)) { 576 // The deferred StackWatermarkSet::after_unwind check will be performed in 577 // JavaCallWrapper::~JavaCallWrapper 578 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 579 return StubRoutines::catch_exception_entry(); 580 } 581 if (blob != nullptr && blob->is_upcall_stub()) { 582 return StubRoutines::upcall_stub_exception_handler(); 583 } 584 // Interpreted code 585 if (Interpreter::contains(return_address)) { 586 // The deferred StackWatermarkSet::after_unwind check will be performed in 587 // InterpreterRuntime::exception_handler_for_exception 588 return Interpreter::rethrow_exception_entry(); 589 } 590 591 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 592 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 593 594 #ifndef PRODUCT 595 { ResourceMark rm; 596 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 597 os::print_location(tty, (intptr_t)return_address); 598 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 599 tty->print_cr("b) other problem"); 600 } 601 #endif // PRODUCT 602 ShouldNotReachHere(); 603 return nullptr; 604 } 605 606 607 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 608 return raw_exception_handler_for_return_address(current, return_address); 609 JRT_END 610 611 612 address SharedRuntime::get_poll_stub(address pc) { 613 address stub; 614 // Look up the code blob 615 CodeBlob *cb = CodeCache::find_blob(pc); 616 617 // Should be an nmethod 618 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 619 620 // Look up the relocation information 621 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 622 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 623 624 #ifdef ASSERT 625 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 626 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 627 Disassembler::decode(cb); 628 fatal("Only polling locations are used for safepoint"); 629 } 630 #endif 631 632 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 633 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 634 if (at_poll_return) { 635 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 636 "polling page return stub not created yet"); 637 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 638 } else if (has_wide_vectors) { 639 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 640 "polling page vectors safepoint stub not created yet"); 641 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 642 } else { 643 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 644 "polling page safepoint stub not created yet"); 645 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 646 } 647 log_debug(safepoint)("... found polling page %s exception at pc = " 648 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 649 at_poll_return ? "return" : "loop", 650 (intptr_t)pc, (intptr_t)stub); 651 return stub; 652 } 653 654 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 655 if (JvmtiExport::can_post_on_exceptions()) { 656 vframeStream vfst(current, true); 657 methodHandle method = methodHandle(current, vfst.method()); 658 address bcp = method()->bcp_from(vfst.bci()); 659 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 660 } 661 662 #if INCLUDE_JVMCI 663 if (EnableJVMCI) { 664 vframeStream vfst(current, true); 665 methodHandle method = methodHandle(current, vfst.method()); 666 int bci = vfst.bci(); 667 MethodData* trap_mdo = method->method_data(); 668 if (trap_mdo != nullptr) { 669 // Set exception_seen if the exceptional bytecode is an invoke 670 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 671 if (call.is_valid()) { 672 ResourceMark rm(current); 673 674 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 675 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 676 677 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 678 if (pdata != nullptr && pdata->is_BitData()) { 679 BitData* bit_data = (BitData*) pdata; 680 bit_data->set_exception_seen(); 681 } 682 } 683 } 684 } 685 #endif 686 687 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 688 } 689 690 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 691 Handle h_exception = Exceptions::new_exception(current, name, message); 692 throw_and_post_jvmti_exception(current, h_exception); 693 } 694 695 #if INCLUDE_JVMTI 696 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 697 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 698 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 699 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 700 JNIHandles::destroy_local(vthread); 701 JRT_END 702 703 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 704 assert(hide == JNI_TRUE, "must be VTMS transition start"); 705 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 706 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 707 JNIHandles::destroy_local(vthread); 708 JRT_END 709 710 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 711 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 712 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 713 JNIHandles::destroy_local(vthread); 714 JRT_END 715 716 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 717 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 718 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 719 JNIHandles::destroy_local(vthread); 720 JRT_END 721 #endif // INCLUDE_JVMTI 722 723 // The interpreter code to call this tracing function is only 724 // called/generated when UL is on for redefine, class and has the right level 725 // and tags. Since obsolete methods are never compiled, we don't have 726 // to modify the compilers to generate calls to this function. 727 // 728 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 729 JavaThread* thread, Method* method)) 730 if (method->is_obsolete()) { 731 // We are calling an obsolete method, but this is not necessarily 732 // an error. Our method could have been redefined just after we 733 // fetched the Method* from the constant pool. 734 ResourceMark rm; 735 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 736 } 737 return 0; 738 JRT_END 739 740 // ret_pc points into caller; we are returning caller's exception handler 741 // for given exception 742 // Note that the implementation of this method assumes it's only called when an exception has actually occured 743 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 744 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 745 assert(nm != nullptr, "must exist"); 746 ResourceMark rm; 747 748 #if INCLUDE_JVMCI 749 if (nm->is_compiled_by_jvmci()) { 750 // lookup exception handler for this pc 751 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 752 ExceptionHandlerTable table(nm); 753 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 754 if (t != nullptr) { 755 return nm->code_begin() + t->pco(); 756 } else { 757 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 758 } 759 } 760 #endif // INCLUDE_JVMCI 761 762 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 763 // determine handler bci, if any 764 EXCEPTION_MARK; 765 766 int handler_bci = -1; 767 int scope_depth = 0; 768 if (!force_unwind) { 769 int bci = sd->bci(); 770 bool recursive_exception = false; 771 do { 772 bool skip_scope_increment = false; 773 // exception handler lookup 774 Klass* ek = exception->klass(); 775 methodHandle mh(THREAD, sd->method()); 776 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 777 if (HAS_PENDING_EXCEPTION) { 778 recursive_exception = true; 779 // We threw an exception while trying to find the exception handler. 780 // Transfer the new exception to the exception handle which will 781 // be set into thread local storage, and do another lookup for an 782 // exception handler for this exception, this time starting at the 783 // BCI of the exception handler which caused the exception to be 784 // thrown (bugs 4307310 and 4546590). Set "exception" reference 785 // argument to ensure that the correct exception is thrown (4870175). 786 recursive_exception_occurred = true; 787 exception = Handle(THREAD, PENDING_EXCEPTION); 788 CLEAR_PENDING_EXCEPTION; 789 if (handler_bci >= 0) { 790 bci = handler_bci; 791 handler_bci = -1; 792 skip_scope_increment = true; 793 } 794 } 795 else { 796 recursive_exception = false; 797 } 798 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 799 sd = sd->sender(); 800 if (sd != nullptr) { 801 bci = sd->bci(); 802 } 803 ++scope_depth; 804 } 805 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 806 } 807 808 // found handling method => lookup exception handler 809 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 810 811 ExceptionHandlerTable table(nm); 812 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 813 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 814 // Allow abbreviated catch tables. The idea is to allow a method 815 // to materialize its exceptions without committing to the exact 816 // routing of exceptions. In particular this is needed for adding 817 // a synthetic handler to unlock monitors when inlining 818 // synchronized methods since the unlock path isn't represented in 819 // the bytecodes. 820 t = table.entry_for(catch_pco, -1, 0); 821 } 822 823 #ifdef COMPILER1 824 if (t == nullptr && nm->is_compiled_by_c1()) { 825 assert(nm->unwind_handler_begin() != nullptr, ""); 826 return nm->unwind_handler_begin(); 827 } 828 #endif 829 830 if (t == nullptr) { 831 ttyLocker ttyl; 832 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 833 tty->print_cr(" Exception:"); 834 exception->print(); 835 tty->cr(); 836 tty->print_cr(" Compiled exception table :"); 837 table.print(); 838 nm->print(); 839 nm->print_code(); 840 guarantee(false, "missing exception handler"); 841 return nullptr; 842 } 843 844 if (handler_bci != -1) { // did we find a handler in this method? 845 sd->method()->set_exception_handler_entered(handler_bci); // profile 846 } 847 return nm->code_begin() + t->pco(); 848 } 849 850 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 851 // These errors occur only at call sites 852 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 853 JRT_END 854 855 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 856 // These errors occur only at call sites 857 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 858 JRT_END 859 860 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 861 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 862 JRT_END 863 864 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 865 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 866 JRT_END 867 868 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 869 // This entry point is effectively only used for NullPointerExceptions which occur at inline 870 // cache sites (when the callee activation is not yet set up) so we are at a call site 871 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 872 JRT_END 873 874 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 875 throw_StackOverflowError_common(current, false); 876 JRT_END 877 878 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 879 throw_StackOverflowError_common(current, true); 880 JRT_END 881 882 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 883 // We avoid using the normal exception construction in this case because 884 // it performs an upcall to Java, and we're already out of stack space. 885 JavaThread* THREAD = current; // For exception macros. 886 Klass* k = vmClasses::StackOverflowError_klass(); 887 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 888 if (delayed) { 889 java_lang_Throwable::set_message(exception_oop, 890 Universe::delayed_stack_overflow_error_message()); 891 } 892 Handle exception (current, exception_oop); 893 if (StackTraceInThrowable) { 894 java_lang_Throwable::fill_in_stack_trace(exception); 895 } 896 // Remove the ScopedValue bindings in case we got a 897 // StackOverflowError while we were trying to remove ScopedValue 898 // bindings. 899 current->clear_scopedValueBindings(); 900 // Increment counter for hs_err file reporting 901 Atomic::inc(&Exceptions::_stack_overflow_errors); 902 throw_and_post_jvmti_exception(current, exception); 903 } 904 905 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 906 address pc, 907 ImplicitExceptionKind exception_kind) 908 { 909 address target_pc = nullptr; 910 911 if (Interpreter::contains(pc)) { 912 switch (exception_kind) { 913 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 914 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 915 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 916 default: ShouldNotReachHere(); 917 } 918 } else { 919 switch (exception_kind) { 920 case STACK_OVERFLOW: { 921 // Stack overflow only occurs upon frame setup; the callee is 922 // going to be unwound. Dispatch to a shared runtime stub 923 // which will cause the StackOverflowError to be fabricated 924 // and processed. 925 // Stack overflow should never occur during deoptimization: 926 // the compiled method bangs the stack by as much as the 927 // interpreter would need in case of a deoptimization. The 928 // deoptimization blob and uncommon trap blob bang the stack 929 // in a debug VM to verify the correctness of the compiled 930 // method stack banging. 931 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 932 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 933 return SharedRuntime::throw_StackOverflowError_entry(); 934 } 935 936 case IMPLICIT_NULL: { 937 if (VtableStubs::contains(pc)) { 938 // We haven't yet entered the callee frame. Fabricate an 939 // exception and begin dispatching it in the caller. Since 940 // the caller was at a call site, it's safe to destroy all 941 // caller-saved registers, as these entry points do. 942 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 943 944 // If vt_stub is null, then return null to signal handler to report the SEGV error. 945 if (vt_stub == nullptr) return nullptr; 946 947 if (vt_stub->is_abstract_method_error(pc)) { 948 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 949 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 950 // Instead of throwing the abstract method error here directly, we re-resolve 951 // and will throw the AbstractMethodError during resolve. As a result, we'll 952 // get a more detailed error message. 953 return SharedRuntime::get_handle_wrong_method_stub(); 954 } else { 955 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 956 // Assert that the signal comes from the expected location in stub code. 957 assert(vt_stub->is_null_pointer_exception(pc), 958 "obtained signal from unexpected location in stub code"); 959 return SharedRuntime::throw_NullPointerException_at_call_entry(); 960 } 961 } else { 962 CodeBlob* cb = CodeCache::find_blob(pc); 963 964 // If code blob is null, then return null to signal handler to report the SEGV error. 965 if (cb == nullptr) return nullptr; 966 967 // Exception happened in CodeCache. Must be either: 968 // 1. Inline-cache check in C2I handler blob, 969 // 2. Inline-cache check in nmethod, or 970 // 3. Implicit null exception in nmethod 971 972 if (!cb->is_nmethod()) { 973 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 974 if (!is_in_blob) { 975 // Allow normal crash reporting to handle this 976 return nullptr; 977 } 978 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 979 // There is no handler here, so we will simply unwind. 980 return SharedRuntime::throw_NullPointerException_at_call_entry(); 981 } 982 983 // Otherwise, it's a compiled method. Consult its exception handlers. 984 nmethod* nm = cb->as_nmethod(); 985 if (nm->inlinecache_check_contains(pc)) { 986 // exception happened inside inline-cache check code 987 // => the nmethod is not yet active (i.e., the frame 988 // is not set up yet) => use return address pushed by 989 // caller => don't push another return address 990 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 991 return SharedRuntime::throw_NullPointerException_at_call_entry(); 992 } 993 994 if (nm->method()->is_method_handle_intrinsic()) { 995 // exception happened inside MH dispatch code, similar to a vtable stub 996 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 997 return SharedRuntime::throw_NullPointerException_at_call_entry(); 998 } 999 1000 #ifndef PRODUCT 1001 _implicit_null_throws++; 1002 #endif 1003 target_pc = nm->continuation_for_implicit_null_exception(pc); 1004 // If there's an unexpected fault, target_pc might be null, 1005 // in which case we want to fall through into the normal 1006 // error handling code. 1007 } 1008 1009 break; // fall through 1010 } 1011 1012 1013 case IMPLICIT_DIVIDE_BY_ZERO: { 1014 nmethod* nm = CodeCache::find_nmethod(pc); 1015 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1016 #ifndef PRODUCT 1017 _implicit_div0_throws++; 1018 #endif 1019 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1020 // If there's an unexpected fault, target_pc might be null, 1021 // in which case we want to fall through into the normal 1022 // error handling code. 1023 break; // fall through 1024 } 1025 1026 default: ShouldNotReachHere(); 1027 } 1028 1029 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1030 1031 if (exception_kind == IMPLICIT_NULL) { 1032 #ifndef PRODUCT 1033 // for AbortVMOnException flag 1034 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1035 #endif //PRODUCT 1036 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1037 } else { 1038 #ifndef PRODUCT 1039 // for AbortVMOnException flag 1040 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1041 #endif //PRODUCT 1042 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1043 } 1044 return target_pc; 1045 } 1046 1047 ShouldNotReachHere(); 1048 return nullptr; 1049 } 1050 1051 1052 /** 1053 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1054 * installed in the native function entry of all native Java methods before 1055 * they get linked to their actual native methods. 1056 * 1057 * \note 1058 * This method actually never gets called! The reason is because 1059 * the interpreter's native entries call NativeLookup::lookup() which 1060 * throws the exception when the lookup fails. The exception is then 1061 * caught and forwarded on the return from NativeLookup::lookup() call 1062 * before the call to the native function. This might change in the future. 1063 */ 1064 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1065 { 1066 // We return a bad value here to make sure that the exception is 1067 // forwarded before we look at the return value. 1068 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1069 } 1070 JNI_END 1071 1072 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1073 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1074 } 1075 1076 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1077 #if INCLUDE_JVMCI 1078 if (!obj->klass()->has_finalizer()) { 1079 return; 1080 } 1081 #endif // INCLUDE_JVMCI 1082 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1083 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1084 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1085 JRT_END 1086 1087 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1088 assert(thread != nullptr, "No thread"); 1089 if (thread == nullptr) { 1090 return 0; 1091 } 1092 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1093 "current cannot touch oops after its GC barrier is detached."); 1094 oop obj = thread->threadObj(); 1095 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1096 } 1097 1098 /** 1099 * This function ought to be a void function, but cannot be because 1100 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1101 * 6254741. Once that is fixed we can remove the dummy return value. 1102 */ 1103 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1104 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1105 } 1106 1107 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1108 return dtrace_object_alloc(thread, o, o->size()); 1109 } 1110 1111 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1112 assert(DTraceAllocProbes, "wrong call"); 1113 Klass* klass = o->klass(); 1114 Symbol* name = klass->name(); 1115 HOTSPOT_OBJECT_ALLOC( 1116 get_java_tid(thread), 1117 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1118 return 0; 1119 } 1120 1121 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1122 JavaThread* current, Method* method)) 1123 assert(current == JavaThread::current(), "pre-condition"); 1124 1125 assert(DTraceMethodProbes, "wrong call"); 1126 Symbol* kname = method->klass_name(); 1127 Symbol* name = method->name(); 1128 Symbol* sig = method->signature(); 1129 HOTSPOT_METHOD_ENTRY( 1130 get_java_tid(current), 1131 (char *) kname->bytes(), kname->utf8_length(), 1132 (char *) name->bytes(), name->utf8_length(), 1133 (char *) sig->bytes(), sig->utf8_length()); 1134 return 0; 1135 JRT_END 1136 1137 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1138 JavaThread* current, Method* method)) 1139 assert(current == JavaThread::current(), "pre-condition"); 1140 assert(DTraceMethodProbes, "wrong call"); 1141 Symbol* kname = method->klass_name(); 1142 Symbol* name = method->name(); 1143 Symbol* sig = method->signature(); 1144 HOTSPOT_METHOD_RETURN( 1145 get_java_tid(current), 1146 (char *) kname->bytes(), kname->utf8_length(), 1147 (char *) name->bytes(), name->utf8_length(), 1148 (char *) sig->bytes(), sig->utf8_length()); 1149 return 0; 1150 JRT_END 1151 1152 1153 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1154 // for a call current in progress, i.e., arguments has been pushed on stack 1155 // put callee has not been invoked yet. Used by: resolve virtual/static, 1156 // vtable updates, etc. Caller frame must be compiled. 1157 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1158 JavaThread* current = THREAD; 1159 ResourceMark rm(current); 1160 1161 // last java frame on stack (which includes native call frames) 1162 vframeStream vfst(current, true); // Do not skip and javaCalls 1163 1164 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1165 } 1166 1167 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1168 nmethod* caller = vfst.nm(); 1169 1170 address pc = vfst.frame_pc(); 1171 { // Get call instruction under lock because another thread may be busy patching it. 1172 CompiledICLocker ic_locker(caller); 1173 return caller->attached_method_before_pc(pc); 1174 } 1175 return nullptr; 1176 } 1177 1178 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1179 // for a call current in progress, i.e., arguments has been pushed on stack 1180 // but callee has not been invoked yet. Caller frame must be compiled. 1181 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1182 CallInfo& callinfo, TRAPS) { 1183 Handle receiver; 1184 Handle nullHandle; // create a handy null handle for exception returns 1185 JavaThread* current = THREAD; 1186 1187 assert(!vfst.at_end(), "Java frame must exist"); 1188 1189 // Find caller and bci from vframe 1190 methodHandle caller(current, vfst.method()); 1191 int bci = vfst.bci(); 1192 1193 if (caller->is_continuation_enter_intrinsic()) { 1194 bc = Bytecodes::_invokestatic; 1195 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1196 return receiver; 1197 } 1198 1199 // Substitutability test implementation piggy backs on static call resolution 1200 Bytecodes::Code code = caller->java_code_at(bci); 1201 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1202 bc = Bytecodes::_invokestatic; 1203 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1204 assert(attached_method.not_null(), "must have attached method"); 1205 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1206 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1207 #ifdef ASSERT 1208 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1209 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1210 #endif 1211 return receiver; 1212 } 1213 1214 Bytecode_invoke bytecode(caller, bci); 1215 int bytecode_index = bytecode.index(); 1216 bc = bytecode.invoke_code(); 1217 1218 methodHandle attached_method(current, extract_attached_method(vfst)); 1219 if (attached_method.not_null()) { 1220 Method* callee = bytecode.static_target(CHECK_NH); 1221 vmIntrinsics::ID id = callee->intrinsic_id(); 1222 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1223 // it attaches statically resolved method to the call site. 1224 if (MethodHandles::is_signature_polymorphic(id) && 1225 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1226 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1227 1228 // Adjust invocation mode according to the attached method. 1229 switch (bc) { 1230 case Bytecodes::_invokevirtual: 1231 if (attached_method->method_holder()->is_interface()) { 1232 bc = Bytecodes::_invokeinterface; 1233 } 1234 break; 1235 case Bytecodes::_invokeinterface: 1236 if (!attached_method->method_holder()->is_interface()) { 1237 bc = Bytecodes::_invokevirtual; 1238 } 1239 break; 1240 case Bytecodes::_invokehandle: 1241 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1242 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1243 : Bytecodes::_invokevirtual; 1244 } 1245 break; 1246 default: 1247 break; 1248 } 1249 } else { 1250 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1251 if (!attached_method->method_holder()->is_inline_klass()) { 1252 // Ignore the attached method in this case to not confuse below code 1253 attached_method = methodHandle(current, nullptr); 1254 } 1255 } 1256 } 1257 1258 assert(bc != Bytecodes::_illegal, "not initialized"); 1259 1260 bool has_receiver = bc != Bytecodes::_invokestatic && 1261 bc != Bytecodes::_invokedynamic && 1262 bc != Bytecodes::_invokehandle; 1263 bool check_null_and_abstract = true; 1264 1265 // Find receiver for non-static call 1266 if (has_receiver) { 1267 // This register map must be update since we need to find the receiver for 1268 // compiled frames. The receiver might be in a register. 1269 RegisterMap reg_map2(current, 1270 RegisterMap::UpdateMap::include, 1271 RegisterMap::ProcessFrames::include, 1272 RegisterMap::WalkContinuation::skip); 1273 frame stubFrame = current->last_frame(); 1274 // Caller-frame is a compiled frame 1275 frame callerFrame = stubFrame.sender(®_map2); 1276 1277 Method* callee = attached_method(); 1278 if (callee == nullptr) { 1279 callee = bytecode.static_target(CHECK_NH); 1280 if (callee == nullptr) { 1281 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1282 } 1283 } 1284 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1(); 1285 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1286 // If the receiver is an inline type that is passed as fields, no oop is available 1287 // Resolve the call without receiver null checking. 1288 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1289 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1290 if (bc == Bytecodes::_invokeinterface) { 1291 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1292 } 1293 check_null_and_abstract = false; 1294 } else { 1295 // Retrieve from a compiled argument list 1296 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1297 assert(oopDesc::is_oop_or_null(receiver()), ""); 1298 if (receiver.is_null()) { 1299 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1300 } 1301 } 1302 } 1303 1304 // Resolve method 1305 if (attached_method.not_null()) { 1306 // Parameterized by attached method. 1307 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1308 } else { 1309 // Parameterized by bytecode. 1310 constantPoolHandle constants(current, caller->constants()); 1311 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1312 } 1313 1314 #ifdef ASSERT 1315 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1316 if (has_receiver && check_null_and_abstract) { 1317 assert(receiver.not_null(), "should have thrown exception"); 1318 Klass* receiver_klass = receiver->klass(); 1319 Klass* rk = nullptr; 1320 if (attached_method.not_null()) { 1321 // In case there's resolved method attached, use its holder during the check. 1322 rk = attached_method->method_holder(); 1323 } else { 1324 // Klass is already loaded. 1325 constantPoolHandle constants(current, caller->constants()); 1326 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1327 } 1328 Klass* static_receiver_klass = rk; 1329 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1330 "actual receiver must be subclass of static receiver klass"); 1331 if (receiver_klass->is_instance_klass()) { 1332 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1333 tty->print_cr("ERROR: Klass not yet initialized!!"); 1334 receiver_klass->print(); 1335 } 1336 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1337 } 1338 } 1339 #endif 1340 1341 return receiver; 1342 } 1343 1344 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1345 JavaThread* current = THREAD; 1346 ResourceMark rm(current); 1347 // We need first to check if any Java activations (compiled, interpreted) 1348 // exist on the stack since last JavaCall. If not, we need 1349 // to get the target method from the JavaCall wrapper. 1350 vframeStream vfst(current, true); // Do not skip any javaCalls 1351 methodHandle callee_method; 1352 if (vfst.at_end()) { 1353 // No Java frames were found on stack since we did the JavaCall. 1354 // Hence the stack can only contain an entry_frame. We need to 1355 // find the target method from the stub frame. 1356 RegisterMap reg_map(current, 1357 RegisterMap::UpdateMap::skip, 1358 RegisterMap::ProcessFrames::include, 1359 RegisterMap::WalkContinuation::skip); 1360 frame fr = current->last_frame(); 1361 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1362 fr = fr.sender(®_map); 1363 assert(fr.is_entry_frame(), "must be"); 1364 // fr is now pointing to the entry frame. 1365 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1366 } else { 1367 Bytecodes::Code bc; 1368 CallInfo callinfo; 1369 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1370 // Calls via mismatching methods are always non-scalarized 1371 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1372 caller_is_c1 = true; 1373 } 1374 callee_method = methodHandle(current, callinfo.selected_method()); 1375 } 1376 assert(callee_method()->is_method(), "must be"); 1377 return callee_method; 1378 } 1379 1380 // Resolves a call. 1381 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1382 JavaThread* current = THREAD; 1383 ResourceMark rm(current); 1384 RegisterMap cbl_map(current, 1385 RegisterMap::UpdateMap::skip, 1386 RegisterMap::ProcessFrames::include, 1387 RegisterMap::WalkContinuation::skip); 1388 frame caller_frame = current->last_frame().sender(&cbl_map); 1389 1390 CodeBlob* caller_cb = caller_frame.cb(); 1391 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1392 nmethod* caller_nm = caller_cb->as_nmethod(); 1393 1394 // determine call info & receiver 1395 // note: a) receiver is null for static calls 1396 // b) an exception is thrown if receiver is null for non-static calls 1397 CallInfo call_info; 1398 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1399 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1400 1401 NoSafepointVerifier nsv; 1402 1403 methodHandle callee_method(current, call_info.selected_method()); 1404 // Calls via mismatching methods are always non-scalarized 1405 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1406 caller_is_c1 = true; 1407 } 1408 1409 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1410 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1411 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1412 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1413 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1414 1415 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1416 1417 #ifndef PRODUCT 1418 // tracing/debugging/statistics 1419 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1420 (is_virtual) ? (&_resolve_virtual_ctr) : 1421 (&_resolve_static_ctr); 1422 Atomic::inc(addr); 1423 1424 if (TraceCallFixup) { 1425 ResourceMark rm(current); 1426 tty->print("resolving %s%s (%s) call%s to", 1427 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1428 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1429 callee_method->print_short_name(tty); 1430 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1431 p2i(caller_frame.pc()), p2i(callee_method->code())); 1432 } 1433 #endif 1434 1435 if (invoke_code == Bytecodes::_invokestatic) { 1436 assert(callee_method->method_holder()->is_initialized() || 1437 callee_method->method_holder()->is_reentrant_initialization(current), 1438 "invalid class initialization state for invoke_static"); 1439 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1440 // In order to keep class initialization check, do not patch call 1441 // site for static call when the class is not fully initialized. 1442 // Proper check is enforced by call site re-resolution on every invocation. 1443 // 1444 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1445 // explicit class initialization check is put in nmethod entry (VEP). 1446 assert(callee_method->method_holder()->is_linked(), "must be"); 1447 return callee_method; 1448 } 1449 } 1450 1451 1452 // JSR 292 key invariant: 1453 // If the resolved method is a MethodHandle invoke target, the call 1454 // site must be a MethodHandle call site, because the lambda form might tail-call 1455 // leaving the stack in a state unknown to either caller or callee 1456 1457 // Compute entry points. The computation of the entry points is independent of 1458 // patching the call. 1459 1460 // Make sure the callee nmethod does not get deoptimized and removed before 1461 // we are done patching the code. 1462 1463 1464 CompiledICLocker ml(caller_nm); 1465 if (is_virtual && !is_optimized) { 1466 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1467 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1468 } else { 1469 // Callsite is a direct call - set it to the destination method 1470 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1471 callsite->set(callee_method, caller_is_c1); 1472 } 1473 1474 return callee_method; 1475 } 1476 1477 // Inline caches exist only in compiled code 1478 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1479 #ifdef ASSERT 1480 RegisterMap reg_map(current, 1481 RegisterMap::UpdateMap::skip, 1482 RegisterMap::ProcessFrames::include, 1483 RegisterMap::WalkContinuation::skip); 1484 frame stub_frame = current->last_frame(); 1485 assert(stub_frame.is_runtime_frame(), "sanity check"); 1486 frame caller_frame = stub_frame.sender(®_map); 1487 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1488 #endif /* ASSERT */ 1489 1490 methodHandle callee_method; 1491 bool is_optimized = false; 1492 bool caller_is_c1 = false; 1493 JRT_BLOCK 1494 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1495 // Return Method* through TLS 1496 current->set_vm_result_metadata(callee_method()); 1497 JRT_BLOCK_END 1498 // return compiled code entry point after potential safepoints 1499 return get_resolved_entry(current, callee_method, false, is_optimized, caller_is_c1); 1500 JRT_END 1501 1502 1503 // Handle call site that has been made non-entrant 1504 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1505 // 6243940 We might end up in here if the callee is deoptimized 1506 // as we race to call it. We don't want to take a safepoint if 1507 // the caller was interpreted because the caller frame will look 1508 // interpreted to the stack walkers and arguments are now 1509 // "compiled" so it is much better to make this transition 1510 // invisible to the stack walking code. The i2c path will 1511 // place the callee method in the callee_target. It is stashed 1512 // there because if we try and find the callee by normal means a 1513 // safepoint is possible and have trouble gc'ing the compiled args. 1514 RegisterMap reg_map(current, 1515 RegisterMap::UpdateMap::skip, 1516 RegisterMap::ProcessFrames::include, 1517 RegisterMap::WalkContinuation::skip); 1518 frame stub_frame = current->last_frame(); 1519 assert(stub_frame.is_runtime_frame(), "sanity check"); 1520 frame caller_frame = stub_frame.sender(®_map); 1521 1522 if (caller_frame.is_interpreted_frame() || 1523 caller_frame.is_entry_frame() || 1524 caller_frame.is_upcall_stub_frame()) { 1525 Method* callee = current->callee_target(); 1526 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1527 current->set_vm_result_metadata(callee); 1528 current->set_callee_target(nullptr); 1529 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1530 // Bypass class initialization checks in c2i when caller is in native. 1531 // JNI calls to static methods don't have class initialization checks. 1532 // Fast class initialization checks are present in c2i adapters and call into 1533 // SharedRuntime::handle_wrong_method() on the slow path. 1534 // 1535 // JVM upcalls may land here as well, but there's a proper check present in 1536 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1537 // so bypassing it in c2i adapter is benign. 1538 return callee->get_c2i_no_clinit_check_entry(); 1539 } else { 1540 if (caller_frame.is_interpreted_frame()) { 1541 return callee->get_c2i_inline_entry(); 1542 } else { 1543 return callee->get_c2i_entry(); 1544 } 1545 } 1546 } 1547 1548 // Must be compiled to compiled path which is safe to stackwalk 1549 methodHandle callee_method; 1550 bool is_static_call = false; 1551 bool is_optimized = false; 1552 bool caller_is_c1 = false; 1553 JRT_BLOCK 1554 // Force resolving of caller (if we called from compiled frame) 1555 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1556 current->set_vm_result_metadata(callee_method()); 1557 JRT_BLOCK_END 1558 // return compiled code entry point after potential safepoints 1559 return get_resolved_entry(current, callee_method, is_static_call, is_optimized, caller_is_c1); 1560 JRT_END 1561 1562 // Handle abstract method call 1563 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1564 // Verbose error message for AbstractMethodError. 1565 // Get the called method from the invoke bytecode. 1566 vframeStream vfst(current, true); 1567 assert(!vfst.at_end(), "Java frame must exist"); 1568 methodHandle caller(current, vfst.method()); 1569 Bytecode_invoke invoke(caller, vfst.bci()); 1570 DEBUG_ONLY( invoke.verify(); ) 1571 1572 // Find the compiled caller frame. 1573 RegisterMap reg_map(current, 1574 RegisterMap::UpdateMap::include, 1575 RegisterMap::ProcessFrames::include, 1576 RegisterMap::WalkContinuation::skip); 1577 frame stubFrame = current->last_frame(); 1578 assert(stubFrame.is_runtime_frame(), "must be"); 1579 frame callerFrame = stubFrame.sender(®_map); 1580 assert(callerFrame.is_compiled_frame(), "must be"); 1581 1582 // Install exception and return forward entry. 1583 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1584 JRT_BLOCK 1585 methodHandle callee(current, invoke.static_target(current)); 1586 if (!callee.is_null()) { 1587 oop recv = callerFrame.retrieve_receiver(®_map); 1588 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1589 res = StubRoutines::forward_exception_entry(); 1590 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1591 } 1592 JRT_BLOCK_END 1593 return res; 1594 JRT_END 1595 1596 // return verified_code_entry if interp_only_mode is not set for the current thread; 1597 // otherwise return c2i entry. 1598 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method, 1599 bool is_static_call, bool is_optimized, bool caller_is_c1) { 1600 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1601 // In interp_only_mode we need to go to the interpreted entry 1602 // The c2i won't patch in this mode -- see fixup_callers_callsite 1603 return callee_method->get_c2i_entry(); 1604 } 1605 1606 if (caller_is_c1) { 1607 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!"); 1608 return callee_method->verified_inline_code_entry(); 1609 } else if (is_static_call || is_optimized) { 1610 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!"); 1611 return callee_method->verified_code_entry(); 1612 } else { 1613 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!"); 1614 return callee_method->verified_inline_ro_code_entry(); 1615 } 1616 } 1617 1618 // resolve a static call and patch code 1619 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1620 methodHandle callee_method; 1621 bool caller_is_c1 = false; 1622 bool enter_special = false; 1623 JRT_BLOCK 1624 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1625 current->set_vm_result_metadata(callee_method()); 1626 JRT_BLOCK_END 1627 // return compiled code entry point after potential safepoints 1628 return get_resolved_entry(current, callee_method, true, false, caller_is_c1); 1629 JRT_END 1630 1631 // resolve virtual call and update inline cache to monomorphic 1632 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1633 methodHandle callee_method; 1634 bool caller_is_c1 = false; 1635 JRT_BLOCK 1636 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1637 current->set_vm_result_metadata(callee_method()); 1638 JRT_BLOCK_END 1639 // return compiled code entry point after potential safepoints 1640 return get_resolved_entry(current, callee_method, false, false, caller_is_c1); 1641 JRT_END 1642 1643 1644 // Resolve a virtual call that can be statically bound (e.g., always 1645 // monomorphic, so it has no inline cache). Patch code to resolved target. 1646 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1647 methodHandle callee_method; 1648 bool caller_is_c1 = false; 1649 JRT_BLOCK 1650 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1651 current->set_vm_result_metadata(callee_method()); 1652 JRT_BLOCK_END 1653 // return compiled code entry point after potential safepoints 1654 return get_resolved_entry(current, callee_method, false, true, caller_is_c1); 1655 JRT_END 1656 1657 1658 1659 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1660 JavaThread* current = THREAD; 1661 ResourceMark rm(current); 1662 CallInfo call_info; 1663 Bytecodes::Code bc; 1664 1665 // receiver is null for static calls. An exception is thrown for null 1666 // receivers for non-static calls 1667 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1668 1669 methodHandle callee_method(current, call_info.selected_method()); 1670 1671 #ifndef PRODUCT 1672 Atomic::inc(&_ic_miss_ctr); 1673 1674 // Statistics & Tracing 1675 if (TraceCallFixup) { 1676 ResourceMark rm(current); 1677 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1678 callee_method->print_short_name(tty); 1679 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1680 } 1681 1682 if (ICMissHistogram) { 1683 MutexLocker m(VMStatistic_lock); 1684 RegisterMap reg_map(current, 1685 RegisterMap::UpdateMap::skip, 1686 RegisterMap::ProcessFrames::include, 1687 RegisterMap::WalkContinuation::skip); 1688 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1689 // produce statistics under the lock 1690 trace_ic_miss(f.pc()); 1691 } 1692 #endif 1693 1694 // install an event collector so that when a vtable stub is created the 1695 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1696 // event can't be posted when the stub is created as locks are held 1697 // - instead the event will be deferred until the event collector goes 1698 // out of scope. 1699 JvmtiDynamicCodeEventCollector event_collector; 1700 1701 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1702 RegisterMap reg_map(current, 1703 RegisterMap::UpdateMap::skip, 1704 RegisterMap::ProcessFrames::include, 1705 RegisterMap::WalkContinuation::skip); 1706 frame caller_frame = current->last_frame().sender(®_map); 1707 CodeBlob* cb = caller_frame.cb(); 1708 nmethod* caller_nm = cb->as_nmethod(); 1709 // Calls via mismatching methods are always non-scalarized 1710 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1711 caller_is_c1 = true; 1712 } 1713 1714 CompiledICLocker ml(caller_nm); 1715 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1716 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1717 1718 return callee_method; 1719 } 1720 1721 // 1722 // Resets a call-site in compiled code so it will get resolved again. 1723 // This routines handles both virtual call sites, optimized virtual call 1724 // sites, and static call sites. Typically used to change a call sites 1725 // destination from compiled to interpreted. 1726 // 1727 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1728 JavaThread* current = THREAD; 1729 ResourceMark rm(current); 1730 RegisterMap reg_map(current, 1731 RegisterMap::UpdateMap::skip, 1732 RegisterMap::ProcessFrames::include, 1733 RegisterMap::WalkContinuation::skip); 1734 frame stub_frame = current->last_frame(); 1735 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1736 frame caller = stub_frame.sender(®_map); 1737 if (caller.is_compiled_frame()) { 1738 caller_is_c1 = caller.cb()->as_nmethod()->is_compiled_by_c1(); 1739 } 1740 1741 // Do nothing if the frame isn't a live compiled frame. 1742 // nmethod could be deoptimized by the time we get here 1743 // so no update to the caller is needed. 1744 1745 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1746 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1747 1748 address pc = caller.pc(); 1749 1750 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1751 assert(caller_nm != nullptr, "did not find caller nmethod"); 1752 1753 // Default call_addr is the location of the "basic" call. 1754 // Determine the address of the call we a reresolving. With 1755 // Inline Caches we will always find a recognizable call. 1756 // With Inline Caches disabled we may or may not find a 1757 // recognizable call. We will always find a call for static 1758 // calls and for optimized virtual calls. For vanilla virtual 1759 // calls it depends on the state of the UseInlineCaches switch. 1760 // 1761 // With Inline Caches disabled we can get here for a virtual call 1762 // for two reasons: 1763 // 1 - calling an abstract method. The vtable for abstract methods 1764 // will run us thru handle_wrong_method and we will eventually 1765 // end up in the interpreter to throw the ame. 1766 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1767 // call and between the time we fetch the entry address and 1768 // we jump to it the target gets deoptimized. Similar to 1 1769 // we will wind up in the interprter (thru a c2i with c2). 1770 // 1771 CompiledICLocker ml(caller_nm); 1772 address call_addr = caller_nm->call_instruction_address(pc); 1773 1774 if (call_addr != nullptr) { 1775 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1776 // bytes back in the instruction stream so we must also check for reloc info. 1777 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1778 bool ret = iter.next(); // Get item 1779 if (ret) { 1780 is_static_call = false; 1781 is_optimized = false; 1782 switch (iter.type()) { 1783 case relocInfo::static_call_type: 1784 is_static_call = true; 1785 case relocInfo::opt_virtual_call_type: { 1786 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1787 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1788 cdc->set_to_clean(); 1789 break; 1790 } 1791 case relocInfo::virtual_call_type: { 1792 // compiled, dispatched call (which used to call an interpreted method) 1793 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1794 inline_cache->set_to_clean(); 1795 break; 1796 } 1797 default: 1798 break; 1799 } 1800 } 1801 } 1802 } 1803 1804 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1805 1806 #ifndef PRODUCT 1807 Atomic::inc(&_wrong_method_ctr); 1808 1809 if (TraceCallFixup) { 1810 ResourceMark rm(current); 1811 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1812 callee_method->print_short_name(tty); 1813 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1814 } 1815 #endif 1816 1817 return callee_method; 1818 } 1819 1820 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1821 // The faulting unsafe accesses should be changed to throw the error 1822 // synchronously instead. Meanwhile the faulting instruction will be 1823 // skipped over (effectively turning it into a no-op) and an 1824 // asynchronous exception will be raised which the thread will 1825 // handle at a later point. If the instruction is a load it will 1826 // return garbage. 1827 1828 // Request an async exception. 1829 thread->set_pending_unsafe_access_error(); 1830 1831 // Return address of next instruction to execute. 1832 return next_pc; 1833 } 1834 1835 #ifdef ASSERT 1836 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1837 const BasicType* sig_bt, 1838 const VMRegPair* regs) { 1839 ResourceMark rm; 1840 const int total_args_passed = method->size_of_parameters(); 1841 const VMRegPair* regs_with_member_name = regs; 1842 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1843 1844 const int member_arg_pos = total_args_passed - 1; 1845 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1846 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1847 1848 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1849 1850 for (int i = 0; i < member_arg_pos; i++) { 1851 VMReg a = regs_with_member_name[i].first(); 1852 VMReg b = regs_without_member_name[i].first(); 1853 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1854 } 1855 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1856 } 1857 #endif 1858 1859 // --------------------------------------------------------------------------- 1860 // We are calling the interpreter via a c2i. Normally this would mean that 1861 // we were called by a compiled method. However we could have lost a race 1862 // where we went int -> i2c -> c2i and so the caller could in fact be 1863 // interpreted. If the caller is compiled we attempt to patch the caller 1864 // so he no longer calls into the interpreter. 1865 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1866 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1867 1868 // It's possible that deoptimization can occur at a call site which hasn't 1869 // been resolved yet, in which case this function will be called from 1870 // an nmethod that has been patched for deopt and we can ignore the 1871 // request for a fixup. 1872 // Also it is possible that we lost a race in that from_compiled_entry 1873 // is now back to the i2c in that case we don't need to patch and if 1874 // we did we'd leap into space because the callsite needs to use 1875 // "to interpreter" stub in order to load up the Method*. Don't 1876 // ask me how I know this... 1877 1878 // Result from nmethod::is_unloading is not stable across safepoints. 1879 NoSafepointVerifier nsv; 1880 1881 nmethod* callee = method->code(); 1882 if (callee == nullptr) { 1883 return; 1884 } 1885 1886 // write lock needed because we might patch call site by set_to_clean() 1887 // and is_unloading() can modify nmethod's state 1888 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1889 1890 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1891 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1892 return; 1893 } 1894 1895 // The check above makes sure this is an nmethod. 1896 nmethod* caller = cb->as_nmethod(); 1897 1898 // Get the return PC for the passed caller PC. 1899 address return_pc = caller_pc + frame::pc_return_offset; 1900 1901 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1902 return; 1903 } 1904 1905 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1906 CompiledICLocker ic_locker(caller); 1907 ResourceMark rm; 1908 1909 // If we got here through a static call or opt_virtual call, then we know where the 1910 // call address would be; let's peek at it 1911 address callsite_addr = (address)nativeCall_before(return_pc); 1912 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1913 if (!iter.next()) { 1914 // No reloc entry found; not a static or optimized virtual call 1915 return; 1916 } 1917 1918 relocInfo::relocType type = iter.reloc()->type(); 1919 if (type != relocInfo::static_call_type && 1920 type != relocInfo::opt_virtual_call_type) { 1921 return; 1922 } 1923 1924 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1925 callsite->set_to_clean(); 1926 JRT_END 1927 1928 1929 // same as JVM_Arraycopy, but called directly from compiled code 1930 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1931 oopDesc* dest, jint dest_pos, 1932 jint length, 1933 JavaThread* current)) { 1934 #ifndef PRODUCT 1935 _slow_array_copy_ctr++; 1936 #endif 1937 // Check if we have null pointers 1938 if (src == nullptr || dest == nullptr) { 1939 THROW(vmSymbols::java_lang_NullPointerException()); 1940 } 1941 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1942 // even though the copy_array API also performs dynamic checks to ensure 1943 // that src and dest are truly arrays (and are conformable). 1944 // The copy_array mechanism is awkward and could be removed, but 1945 // the compilers don't call this function except as a last resort, 1946 // so it probably doesn't matter. 1947 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1948 (arrayOopDesc*)dest, dest_pos, 1949 length, current); 1950 } 1951 JRT_END 1952 1953 // The caller of generate_class_cast_message() (or one of its callers) 1954 // must use a ResourceMark in order to correctly free the result. 1955 char* SharedRuntime::generate_class_cast_message( 1956 JavaThread* thread, Klass* caster_klass) { 1957 1958 // Get target class name from the checkcast instruction 1959 vframeStream vfst(thread, true); 1960 assert(!vfst.at_end(), "Java frame must exist"); 1961 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1962 constantPoolHandle cpool(thread, vfst.method()->constants()); 1963 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1964 Symbol* target_klass_name = nullptr; 1965 if (target_klass == nullptr) { 1966 // This klass should be resolved, but just in case, get the name in the klass slot. 1967 target_klass_name = cpool->klass_name_at(cc.index()); 1968 } 1969 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1970 } 1971 1972 1973 // The caller of generate_class_cast_message() (or one of its callers) 1974 // must use a ResourceMark in order to correctly free the result. 1975 char* SharedRuntime::generate_class_cast_message( 1976 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1977 const char* caster_name = caster_klass->external_name(); 1978 1979 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1980 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1981 target_klass->external_name(); 1982 1983 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1984 1985 const char* caster_klass_description = ""; 1986 const char* target_klass_description = ""; 1987 const char* klass_separator = ""; 1988 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1989 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1990 } else { 1991 caster_klass_description = caster_klass->class_in_module_of_loader(); 1992 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1993 klass_separator = (target_klass != nullptr) ? "; " : ""; 1994 } 1995 1996 // add 3 for parenthesis and preceding space 1997 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1998 1999 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2000 if (message == nullptr) { 2001 // Shouldn't happen, but don't cause even more problems if it does 2002 message = const_cast<char*>(caster_klass->external_name()); 2003 } else { 2004 jio_snprintf(message, 2005 msglen, 2006 "class %s cannot be cast to class %s (%s%s%s)", 2007 caster_name, 2008 target_name, 2009 caster_klass_description, 2010 klass_separator, 2011 target_klass_description 2012 ); 2013 } 2014 return message; 2015 } 2016 2017 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 2018 assert(klass->is_inline_klass(), "Must be a concrete value class"); 2019 const char* desc = "Cannot synchronize on an instance of value class "; 2020 const char* className = klass->external_name(); 2021 size_t msglen = strlen(desc) + strlen(className) + 1; 2022 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2023 if (nullptr == message) { 2024 // Out of memory: can't create detailed error message 2025 message = const_cast<char*>(klass->external_name()); 2026 } else { 2027 jio_snprintf(message, msglen, "%s%s", desc, className); 2028 } 2029 return message; 2030 } 2031 2032 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2033 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2034 JRT_END 2035 2036 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2037 if (!SafepointSynchronize::is_synchronizing()) { 2038 // Only try quick_enter() if we're not trying to reach a safepoint 2039 // so that the calling thread reaches the safepoint more quickly. 2040 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2041 return; 2042 } 2043 } 2044 // NO_ASYNC required because an async exception on the state transition destructor 2045 // would leave you with the lock held and it would never be released. 2046 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2047 // and the model is that an exception implies the method failed. 2048 JRT_BLOCK_NO_ASYNC 2049 Handle h_obj(THREAD, obj); 2050 ObjectSynchronizer::enter(h_obj, lock, current); 2051 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2052 JRT_BLOCK_END 2053 } 2054 2055 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2056 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2057 SharedRuntime::monitor_enter_helper(obj, lock, current); 2058 JRT_END 2059 2060 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2061 assert(JavaThread::current() == current, "invariant"); 2062 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2063 ExceptionMark em(current); 2064 2065 // Check if C2_MacroAssembler::fast_unlock() or 2066 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2067 // monitor before going slow path. Since there is no safepoint 2068 // polling when calling into the VM, we can be sure that the monitor 2069 // hasn't been deallocated. 2070 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2071 if (m != nullptr) { 2072 assert(!m->has_owner(current), "must be"); 2073 current->clear_unlocked_inflated_monitor(); 2074 2075 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2076 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2077 // Some other thread acquired the lock (or the monitor was 2078 // deflated). Either way we are done. 2079 current->dec_held_monitor_count(); 2080 return; 2081 } 2082 } 2083 2084 // The object could become unlocked through a JNI call, which we have no other checks for. 2085 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2086 if (obj->is_unlocked()) { 2087 if (CheckJNICalls) { 2088 fatal("Object has been unlocked by JNI"); 2089 } 2090 return; 2091 } 2092 ObjectSynchronizer::exit(obj, lock, current); 2093 } 2094 2095 // Handles the uncommon cases of monitor unlocking in compiled code 2096 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2097 assert(current == JavaThread::current(), "pre-condition"); 2098 SharedRuntime::monitor_exit_helper(obj, lock, current); 2099 JRT_END 2100 2101 // This is only called when CheckJNICalls is true, and only 2102 // for virtual thread termination. 2103 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2104 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2105 if (log_is_enabled(Debug, jni)) { 2106 JavaThread* current = JavaThread::current(); 2107 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2108 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2109 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2110 ") exiting with Objects still locked by JNI MonitorEnter.", 2111 vthread_id, carrier_id); 2112 } 2113 JRT_END 2114 2115 #ifndef PRODUCT 2116 2117 void SharedRuntime::print_statistics() { 2118 ttyLocker ttyl; 2119 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2120 2121 SharedRuntime::print_ic_miss_histogram(); 2122 2123 // Dump the JRT_ENTRY counters 2124 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2125 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2126 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2127 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2128 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2129 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2130 2131 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2132 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2133 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2134 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2135 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2136 2137 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2138 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2139 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2140 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2141 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2142 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2143 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2144 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2145 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2146 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2147 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2148 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2149 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2150 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2151 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2152 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2153 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2154 2155 AdapterHandlerLibrary::print_statistics(); 2156 2157 if (xtty != nullptr) xtty->tail("statistics"); 2158 } 2159 2160 inline double percent(int64_t x, int64_t y) { 2161 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2162 } 2163 2164 class MethodArityHistogram { 2165 public: 2166 enum { MAX_ARITY = 256 }; 2167 private: 2168 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2169 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2170 static uint64_t _total_compiled_calls; 2171 static uint64_t _max_compiled_calls_per_method; 2172 static int _max_arity; // max. arity seen 2173 static int _max_size; // max. arg size seen 2174 2175 static void add_method_to_histogram(nmethod* nm) { 2176 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2177 if (method != nullptr) { 2178 ArgumentCount args(method->signature()); 2179 int arity = args.size() + (method->is_static() ? 0 : 1); 2180 int argsize = method->size_of_parameters(); 2181 arity = MIN2(arity, MAX_ARITY-1); 2182 argsize = MIN2(argsize, MAX_ARITY-1); 2183 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2184 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2185 _total_compiled_calls += count; 2186 _arity_histogram[arity] += count; 2187 _size_histogram[argsize] += count; 2188 _max_arity = MAX2(_max_arity, arity); 2189 _max_size = MAX2(_max_size, argsize); 2190 } 2191 } 2192 2193 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2194 const int N = MIN2(9, n); 2195 double sum = 0; 2196 double weighted_sum = 0; 2197 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2198 if (sum >= 1) { // prevent divide by zero or divide overflow 2199 double rest = sum; 2200 double percent = sum / 100; 2201 for (int i = 0; i <= N; i++) { 2202 rest -= (double)histo[i]; 2203 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2204 } 2205 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2206 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2207 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2208 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2209 } else { 2210 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2211 } 2212 } 2213 2214 void print_histogram() { 2215 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2216 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2217 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2218 print_histogram_helper(_max_size, _size_histogram, "size"); 2219 tty->cr(); 2220 } 2221 2222 public: 2223 MethodArityHistogram() { 2224 // Take the Compile_lock to protect against changes in the CodeBlob structures 2225 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2226 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2227 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2228 _max_arity = _max_size = 0; 2229 _total_compiled_calls = 0; 2230 _max_compiled_calls_per_method = 0; 2231 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2232 CodeCache::nmethods_do(add_method_to_histogram); 2233 print_histogram(); 2234 } 2235 }; 2236 2237 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2238 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2239 uint64_t MethodArityHistogram::_total_compiled_calls; 2240 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2241 int MethodArityHistogram::_max_arity; 2242 int MethodArityHistogram::_max_size; 2243 2244 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2245 tty->print_cr("Calls from compiled code:"); 2246 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2247 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2248 int64_t mono_i = _nof_interface_calls; 2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2250 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2251 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2252 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2253 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2254 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2255 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2256 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2257 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2258 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2259 tty->cr(); 2260 tty->print_cr("Note 1: counter updates are not MT-safe."); 2261 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2262 tty->print_cr(" %% in nested categories are relative to their category"); 2263 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2264 tty->cr(); 2265 2266 MethodArityHistogram h; 2267 } 2268 #endif 2269 2270 #ifndef PRODUCT 2271 static int _lookups; // number of calls to lookup 2272 static int _equals; // number of buckets checked with matching hash 2273 static int _archived_hits; // number of successful lookups in archived table 2274 static int _runtime_hits; // number of successful lookups in runtime table 2275 #endif 2276 2277 // A simple wrapper class around the calling convention information 2278 // that allows sharing of adapters for the same calling convention. 2279 class AdapterFingerPrint : public MetaspaceObj { 2280 private: 2281 enum { 2282 _basic_type_bits = 5, 2283 _basic_type_mask = right_n_bits(_basic_type_bits), 2284 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2285 }; 2286 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2287 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2288 2289 int _length; 2290 2291 static int data_offset() { return sizeof(AdapterFingerPrint); } 2292 int* data_pointer() { 2293 return (int*)((address)this + data_offset()); 2294 } 2295 2296 // Private construtor. Use allocate() to get an instance. 2297 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2298 int* data = data_pointer(); 2299 // Pack the BasicTypes with 8 per int 2300 int total_args_passed = total_args_passed_in_sig(sig); 2301 _length = length(total_args_passed); 2302 int sig_index = 0; 2303 BasicType prev_bt = T_ILLEGAL; 2304 int vt_count = 0; 2305 for (int index = 0; index < _length; index++) { 2306 int value = 0; 2307 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2308 BasicType bt = T_ILLEGAL; 2309 if (sig_index < total_args_passed) { 2310 bt = sig->at(sig_index++)._bt; 2311 if (bt == T_METADATA) { 2312 // Found start of inline type in signature 2313 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2314 if (sig_index == 1 && has_ro_adapter) { 2315 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2316 // with other adapters that have the same inline type as first argument and no receiver. 2317 bt = T_VOID; 2318 } 2319 vt_count++; 2320 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2321 // Found end of inline type in signature 2322 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2323 vt_count--; 2324 assert(vt_count >= 0, "invalid vt_count"); 2325 } else if (vt_count == 0) { 2326 // Widen fields that are not part of a scalarized inline type argument 2327 bt = adapter_encoding(bt); 2328 } 2329 prev_bt = bt; 2330 } 2331 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2332 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2333 value = (value << _basic_type_bits) | bt_val; 2334 } 2335 data[index] = value; 2336 } 2337 assert(vt_count == 0, "invalid vt_count"); 2338 } 2339 2340 // Call deallocate instead 2341 ~AdapterFingerPrint() { 2342 ShouldNotCallThis(); 2343 } 2344 2345 static int total_args_passed_in_sig(const GrowableArray<SigEntry>* sig) { 2346 return (sig != nullptr) ? sig->length() : 0; 2347 } 2348 2349 static int length(int total_args) { 2350 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2351 } 2352 2353 static int compute_size_in_words(int len) { 2354 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2355 } 2356 2357 // Remap BasicTypes that are handled equivalently by the adapters. 2358 // These are correct for the current system but someday it might be 2359 // necessary to make this mapping platform dependent. 2360 static BasicType adapter_encoding(BasicType in) { 2361 switch (in) { 2362 case T_BOOLEAN: 2363 case T_BYTE: 2364 case T_SHORT: 2365 case T_CHAR: 2366 // They are all promoted to T_INT in the calling convention 2367 return T_INT; 2368 2369 case T_OBJECT: 2370 case T_ARRAY: 2371 // In other words, we assume that any register good enough for 2372 // an int or long is good enough for a managed pointer. 2373 #ifdef _LP64 2374 return T_LONG; 2375 #else 2376 return T_INT; 2377 #endif 2378 2379 case T_INT: 2380 case T_LONG: 2381 case T_FLOAT: 2382 case T_DOUBLE: 2383 case T_VOID: 2384 return in; 2385 2386 default: 2387 ShouldNotReachHere(); 2388 return T_CONFLICT; 2389 } 2390 } 2391 2392 void* operator new(size_t size, size_t fp_size) throw() { 2393 assert(fp_size >= size, "sanity check"); 2394 void* p = AllocateHeap(fp_size, mtCode); 2395 memset(p, 0, fp_size); 2396 return p; 2397 } 2398 2399 public: 2400 template<typename Function> 2401 void iterate_args(Function function) { 2402 for (int i = 0; i < length(); i++) { 2403 unsigned val = (unsigned)value(i); 2404 // args are packed so that first/lower arguments are in the highest 2405 // bits of each int value, so iterate from highest to the lowest 2406 int first_entry = _basic_types_per_int * _basic_type_bits; 2407 for (int j = first_entry; j >= 0; j -= _basic_type_bits) { 2408 unsigned v = (val >> j) & _basic_type_mask; 2409 if (v == 0) { 2410 continue; 2411 } 2412 function(v); 2413 } 2414 } 2415 } 2416 2417 static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2418 int total_args_passed = total_args_passed_in_sig(sig); 2419 int len = length(total_args_passed); 2420 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2421 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter); 2422 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2423 return afp; 2424 } 2425 2426 static void deallocate(AdapterFingerPrint* fp) { 2427 FreeHeap(fp); 2428 } 2429 2430 int value(int index) { 2431 int* data = data_pointer(); 2432 return data[index]; 2433 } 2434 2435 int length() { 2436 return _length; 2437 } 2438 2439 unsigned int compute_hash() { 2440 int hash = 0; 2441 for (int i = 0; i < length(); i++) { 2442 int v = value(i); 2443 //Add arithmetic operation to the hash, like +3 to improve hashing 2444 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2445 } 2446 return (unsigned int)hash; 2447 } 2448 2449 const char* as_string() { 2450 stringStream st; 2451 st.print("0x"); 2452 for (int i = 0; i < length(); i++) { 2453 st.print("%x", value(i)); 2454 } 2455 return st.as_string(); 2456 } 2457 2458 const char* as_basic_args_string() { 2459 stringStream st; 2460 bool long_prev = false; 2461 iterate_args([&] (int arg) { 2462 if (long_prev) { 2463 long_prev = false; 2464 if (arg == T_VOID) { 2465 st.print("J"); 2466 } else { 2467 st.print("L"); 2468 } 2469 } 2470 if (arg == T_LONG) { 2471 long_prev = true; 2472 } else if (arg != T_VOID) { 2473 st.print("%c", type2char((BasicType)arg)); 2474 } 2475 }); 2476 if (long_prev) { 2477 st.print("L"); 2478 } 2479 return st.as_string(); 2480 } 2481 2482 bool equals(AdapterFingerPrint* other) { 2483 if (other->_length != _length) { 2484 return false; 2485 } else { 2486 for (int i = 0; i < _length; i++) { 2487 if (value(i) != other->value(i)) { 2488 return false; 2489 } 2490 } 2491 } 2492 return true; 2493 } 2494 2495 // methods required by virtue of being a MetaspaceObj 2496 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2497 int size() const { return compute_size_in_words(_length); } 2498 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2499 2500 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2501 NOT_PRODUCT(_equals++); 2502 return fp1->equals(fp2); 2503 } 2504 2505 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2506 return fp->compute_hash(); 2507 } 2508 }; 2509 2510 #if INCLUDE_CDS 2511 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2512 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2513 } 2514 2515 class ArchivedAdapterTable : public OffsetCompactHashtable< 2516 AdapterFingerPrint*, 2517 AdapterHandlerEntry*, 2518 adapter_fp_equals_compact_hashtable_entry> {}; 2519 #endif // INCLUDE_CDS 2520 2521 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2522 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2523 AnyObj::C_HEAP, mtCode, 2524 AdapterFingerPrint::compute_hash, 2525 AdapterFingerPrint::equals>; 2526 static AdapterHandlerTable* _adapter_handler_table; 2527 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2528 2529 // Find a entry with the same fingerprint if it exists 2530 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) { 2531 NOT_PRODUCT(_lookups++); 2532 assert_lock_strong(AdapterHandlerLibrary_lock); 2533 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter); 2534 AdapterHandlerEntry* entry = nullptr; 2535 #if INCLUDE_CDS 2536 // if we are building the archive then the archived adapter table is 2537 // not valid and we need to use the ones added to the runtime table 2538 if (AOTCodeCache::is_using_adapter()) { 2539 // Search archived table first. It is read-only table so can be searched without lock 2540 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2541 #ifndef PRODUCT 2542 if (entry != nullptr) { 2543 _archived_hits++; 2544 } 2545 #endif 2546 } 2547 #endif // INCLUDE_CDS 2548 if (entry == nullptr) { 2549 assert_lock_strong(AdapterHandlerLibrary_lock); 2550 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2551 if (entry_p != nullptr) { 2552 entry = *entry_p; 2553 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2554 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2555 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2556 #ifndef PRODUCT 2557 _runtime_hits++; 2558 #endif 2559 } 2560 } 2561 AdapterFingerPrint::deallocate(fp); 2562 return entry; 2563 } 2564 2565 #ifndef PRODUCT 2566 static void print_table_statistics() { 2567 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2568 return sizeof(*key) + sizeof(*a); 2569 }; 2570 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2571 ts.print(tty, "AdapterHandlerTable"); 2572 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2573 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2574 int total_hits = _archived_hits + _runtime_hits; 2575 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2576 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2577 } 2578 #endif 2579 2580 // --------------------------------------------------------------------------- 2581 // Implementation of AdapterHandlerLibrary 2582 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2583 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2584 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2585 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2586 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2587 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2588 #if INCLUDE_CDS 2589 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2590 #endif // INCLUDE_CDS 2591 static const int AdapterHandlerLibrary_size = 48*K; 2592 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2593 2594 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2595 assert(_buffer != nullptr, "should be initialized"); 2596 return _buffer; 2597 } 2598 2599 static void post_adapter_creation(const AdapterBlob* new_adapter, 2600 const AdapterHandlerEntry* entry) { 2601 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2602 char blob_id[256]; 2603 jio_snprintf(blob_id, 2604 sizeof(blob_id), 2605 "%s(%s)", 2606 new_adapter->name(), 2607 entry->fingerprint()->as_string()); 2608 if (Forte::is_enabled()) { 2609 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2610 } 2611 2612 if (JvmtiExport::should_post_dynamic_code_generated()) { 2613 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2614 } 2615 } 2616 } 2617 2618 void AdapterHandlerLibrary::create_abstract_method_handler() { 2619 assert_lock_strong(AdapterHandlerLibrary_lock); 2620 // Create a special handler for abstract methods. Abstract methods 2621 // are never compiled so an i2c entry is somewhat meaningless, but 2622 // throw AbstractMethodError just in case. 2623 // Pass wrong_method_abstract for the c2i transitions to return 2624 // AbstractMethodError for invalid invocations. 2625 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2626 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 2627 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2628 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2629 wrong_method_abstract, wrong_method_abstract); 2630 } 2631 2632 void AdapterHandlerLibrary::initialize() { 2633 { 2634 ResourceMark rm; 2635 MutexLocker mu(AdapterHandlerLibrary_lock); 2636 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2637 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2638 create_abstract_method_handler(); 2639 } 2640 2641 #if INCLUDE_CDS 2642 // Link adapters in AOT Cache to their code in AOT Code Cache 2643 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2644 link_aot_adapters(); 2645 lookup_simple_adapters(); 2646 return; 2647 } 2648 #endif // INCLUDE_CDS 2649 2650 ResourceMark rm; 2651 AdapterBlob* no_arg_blob = nullptr; 2652 AdapterBlob* int_arg_blob = nullptr; 2653 AdapterBlob* obj_arg_blob = nullptr; 2654 AdapterBlob* obj_int_arg_blob = nullptr; 2655 AdapterBlob* obj_obj_arg_blob = nullptr; 2656 { 2657 MutexLocker mu(AdapterHandlerLibrary_lock); 2658 2659 CompiledEntrySignature no_args; 2660 no_args.compute_calling_conventions(); 2661 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2662 2663 CompiledEntrySignature obj_args; 2664 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 2665 obj_args.compute_calling_conventions(); 2666 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2667 2668 CompiledEntrySignature int_args; 2669 SigEntry::add_entry(int_args.sig(), T_INT); 2670 int_args.compute_calling_conventions(); 2671 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2672 2673 CompiledEntrySignature obj_int_args; 2674 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 2675 SigEntry::add_entry(obj_int_args.sig(), T_INT); 2676 obj_int_args.compute_calling_conventions(); 2677 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2678 2679 CompiledEntrySignature obj_obj_args; 2680 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2681 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2682 obj_obj_args.compute_calling_conventions(); 2683 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2684 2685 assert(no_arg_blob != nullptr && 2686 obj_arg_blob != nullptr && 2687 int_arg_blob != nullptr && 2688 obj_int_arg_blob != nullptr && 2689 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2690 } 2691 2692 // Outside of the lock 2693 post_adapter_creation(no_arg_blob, _no_arg_handler); 2694 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2695 post_adapter_creation(int_arg_blob, _int_arg_handler); 2696 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2697 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2698 } 2699 2700 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2701 return AdapterHandlerEntry::allocate(fingerprint); 2702 } 2703 2704 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2705 if (method->is_abstract()) { 2706 return nullptr; 2707 } 2708 int total_args_passed = method->size_of_parameters(); // All args on stack 2709 if (total_args_passed == 0) { 2710 return _no_arg_handler; 2711 } else if (total_args_passed == 1) { 2712 if (!method->is_static()) { 2713 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2714 return nullptr; 2715 } 2716 return _obj_arg_handler; 2717 } 2718 switch (method->signature()->char_at(1)) { 2719 case JVM_SIGNATURE_CLASS: { 2720 if (InlineTypePassFieldsAsArgs) { 2721 SignatureStream ss(method->signature()); 2722 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2723 if (vk != nullptr) { 2724 return nullptr; 2725 } 2726 } 2727 return _obj_arg_handler; 2728 } 2729 case JVM_SIGNATURE_ARRAY: 2730 return _obj_arg_handler; 2731 case JVM_SIGNATURE_INT: 2732 case JVM_SIGNATURE_BOOLEAN: 2733 case JVM_SIGNATURE_CHAR: 2734 case JVM_SIGNATURE_BYTE: 2735 case JVM_SIGNATURE_SHORT: 2736 return _int_arg_handler; 2737 } 2738 } else if (total_args_passed == 2 && 2739 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2740 switch (method->signature()->char_at(1)) { 2741 case JVM_SIGNATURE_CLASS: { 2742 if (InlineTypePassFieldsAsArgs) { 2743 SignatureStream ss(method->signature()); 2744 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2745 if (vk != nullptr) { 2746 return nullptr; 2747 } 2748 } 2749 return _obj_obj_arg_handler; 2750 } 2751 case JVM_SIGNATURE_ARRAY: 2752 return _obj_obj_arg_handler; 2753 case JVM_SIGNATURE_INT: 2754 case JVM_SIGNATURE_BOOLEAN: 2755 case JVM_SIGNATURE_CHAR: 2756 case JVM_SIGNATURE_BYTE: 2757 case JVM_SIGNATURE_SHORT: 2758 return _obj_int_arg_handler; 2759 } 2760 } 2761 return nullptr; 2762 } 2763 2764 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2765 _method(method), _num_inline_args(0), _has_inline_recv(false), 2766 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2767 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2768 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2769 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2770 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2771 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2772 } 2773 2774 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2775 // or the same entry for VEP and VIEP(RO). 2776 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2777 if (!has_scalarized_args()) { 2778 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2779 return CodeOffsets::Verified_Entry; 2780 } 2781 if (_method->is_static()) { 2782 // Static methods don't need VIEP(RO) 2783 return CodeOffsets::Verified_Entry; 2784 } 2785 2786 if (has_inline_recv()) { 2787 if (num_inline_args() == 1) { 2788 // Share same entry for VIEP and VIEP(RO). 2789 // This is quite common: we have an instance method in an InlineKlass that has 2790 // no inline type args other than <this>. 2791 return CodeOffsets::Verified_Inline_Entry; 2792 } else { 2793 assert(num_inline_args() > 1, "must be"); 2794 // No sharing: 2795 // VIEP(RO) -- <this> is passed as object 2796 // VEP -- <this> is passed as fields 2797 return CodeOffsets::Verified_Inline_Entry_RO; 2798 } 2799 } 2800 2801 // Either a static method, or <this> is not an inline type 2802 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2803 // No sharing: 2804 // Some arguments are passed on the stack, and we have inserted reserved entries 2805 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2806 return CodeOffsets::Verified_Inline_Entry_RO; 2807 } else { 2808 // Share same entry for VEP and VIEP(RO). 2809 return CodeOffsets::Verified_Entry; 2810 } 2811 } 2812 2813 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2814 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2815 if (_supers != nullptr) { 2816 return _supers; 2817 } 2818 _supers = new GrowableArray<Method*>(); 2819 // Skip private, static, and <init> methods 2820 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2821 return _supers; 2822 } 2823 Symbol* name = _method->name(); 2824 Symbol* signature = _method->signature(); 2825 const Klass* holder = _method->method_holder()->super(); 2826 Symbol* holder_name = holder->name(); 2827 ThreadInVMfromUnknown tiv; 2828 JavaThread* current = JavaThread::current(); 2829 HandleMark hm(current); 2830 Handle loader(current, _method->method_holder()->class_loader()); 2831 2832 // Walk up the class hierarchy and search for super methods 2833 while (holder != nullptr) { 2834 Method* super_method = holder->lookup_method(name, signature); 2835 if (super_method == nullptr) { 2836 break; 2837 } 2838 if (!super_method->is_static() && !super_method->is_private() && 2839 (!super_method->is_package_private() || 2840 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2841 _supers->push(super_method); 2842 } 2843 holder = super_method->method_holder()->super(); 2844 } 2845 // Search interfaces for super methods 2846 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2847 for (int i = 0; i < interfaces->length(); ++i) { 2848 Method* m = interfaces->at(i)->lookup_method(name, signature); 2849 if (m != nullptr && !m->is_static() && m->is_public()) { 2850 _supers->push(m); 2851 } 2852 } 2853 return _supers; 2854 } 2855 2856 // Iterate over arguments and compute scalarized and non-scalarized signatures 2857 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2858 bool has_scalarized = false; 2859 if (_method != nullptr) { 2860 InstanceKlass* holder = _method->method_holder(); 2861 int arg_num = 0; 2862 if (!_method->is_static()) { 2863 // We shouldn't scalarize 'this' in a value class constructor 2864 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2865 (init || _method->is_scalarized_arg(arg_num))) { 2866 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2867 has_scalarized = true; 2868 _has_inline_recv = true; 2869 _num_inline_args++; 2870 } else { 2871 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2872 } 2873 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2874 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2875 arg_num++; 2876 } 2877 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2878 BasicType bt = ss.type(); 2879 if (bt == T_OBJECT) { 2880 InlineKlass* vk = ss.as_inline_klass(holder); 2881 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2882 // Check for a calling convention mismatch with super method(s) 2883 bool scalar_super = false; 2884 bool non_scalar_super = false; 2885 GrowableArray<Method*>* supers = get_supers(); 2886 for (int i = 0; i < supers->length(); ++i) { 2887 Method* super_method = supers->at(i); 2888 if (super_method->is_scalarized_arg(arg_num)) { 2889 scalar_super = true; 2890 } else { 2891 non_scalar_super = true; 2892 } 2893 } 2894 #ifdef ASSERT 2895 // Randomly enable below code paths for stress testing 2896 bool stress = init && StressCallingConvention; 2897 if (stress && (os::random() & 1) == 1) { 2898 non_scalar_super = true; 2899 if ((os::random() & 1) == 1) { 2900 scalar_super = true; 2901 } 2902 } 2903 #endif 2904 if (non_scalar_super) { 2905 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2906 if (scalar_super) { 2907 // Found non-scalar *and* scalar super methods. We can't handle both. 2908 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2909 for (int i = 0; i < supers->length(); ++i) { 2910 Method* super_method = supers->at(i); 2911 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) { 2912 super_method->set_mismatch(); 2913 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2914 JavaThread* thread = JavaThread::current(); 2915 HandleMark hm(thread); 2916 methodHandle mh(thread, super_method); 2917 DeoptimizationScope deopt_scope; 2918 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2919 deopt_scope.deoptimize_marked(); 2920 } 2921 } 2922 } 2923 // Fall back to non-scalarized calling convention 2924 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2925 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2926 } else { 2927 _num_inline_args++; 2928 has_scalarized = true; 2929 int last = _sig_cc->length(); 2930 int last_ro = _sig_cc_ro->length(); 2931 _sig_cc->appendAll(vk->extended_sig()); 2932 _sig_cc_ro->appendAll(vk->extended_sig()); 2933 if (bt == T_OBJECT) { 2934 // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter 2935 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2936 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2937 } 2938 } 2939 } else { 2940 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2941 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2942 } 2943 bt = T_OBJECT; 2944 } else { 2945 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2946 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2947 } 2948 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2949 if (bt != T_VOID) { 2950 arg_num++; 2951 } 2952 } 2953 } 2954 2955 // Compute the non-scalarized calling convention 2956 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2957 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2958 2959 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2960 if (has_scalarized && !_method->is_native()) { 2961 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2962 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2963 2964 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2965 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2966 2967 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2968 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2969 2970 // Upper bound on stack arguments to avoid hitting the argument limit and 2971 // bailing out of compilation ("unsupported incoming calling sequence"). 2972 // TODO we need a reasonable limit (flag?) here 2973 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2974 return; // Success 2975 } 2976 } 2977 2978 // No scalarized args 2979 _sig_cc = _sig; 2980 _regs_cc = _regs; 2981 _args_on_stack_cc = _args_on_stack; 2982 2983 _sig_cc_ro = _sig; 2984 _regs_cc_ro = _regs; 2985 _args_on_stack_cc_ro = _args_on_stack; 2986 } 2987 2988 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) { 2989 int value_object_count = 0; 2990 bool is_receiver = true; 2991 BasicType prev_bt = T_ILLEGAL; 2992 bool long_prev = false; 2993 bool has_scalarized_arguments = false; 2994 2995 fingerprint->iterate_args([&] (int arg) { 2996 BasicType bt = (BasicType)arg; 2997 if (long_prev) { 2998 long_prev = false; 2999 BasicType bt_to_add; 3000 if (bt == T_VOID) { 3001 bt_to_add = T_LONG; 3002 } else { 3003 bt_to_add = T_OBJECT; // it could be T_ARRAY; it shouldn't matter 3004 } 3005 SigEntry::add_entry(_sig_cc, bt_to_add); 3006 SigEntry::add_entry(_sig_cc_ro, bt_to_add); 3007 if (value_object_count == 0) { 3008 SigEntry::add_entry(_sig, bt_to_add); 3009 } 3010 } 3011 switch (bt) { 3012 case T_VOID: 3013 if (is_receiver) { 3014 // 'this' when ro adapter is available 3015 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3016 value_object_count++; 3017 has_scalarized_arguments = true; 3018 _has_inline_recv = true; 3019 SigEntry::add_entry(_sig, T_OBJECT); 3020 SigEntry::add_entry(_sig_cc, T_METADATA); 3021 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3022 } else if (prev_bt != T_LONG && prev_bt != T_DOUBLE) { 3023 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 3024 value_object_count--; 3025 SigEntry::add_entry(_sig_cc, T_VOID); 3026 SigEntry::add_entry(_sig_cc_ro, T_VOID); 3027 assert(value_object_count >= 0, "invalid value object count"); 3028 } else { 3029 // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE. 3030 } 3031 break; 3032 case T_INT: 3033 case T_FLOAT: 3034 case T_DOUBLE: 3035 if (value_object_count == 0) { 3036 SigEntry::add_entry(_sig, bt); 3037 } 3038 SigEntry::add_entry(_sig_cc, bt); 3039 SigEntry::add_entry(_sig_cc_ro, bt); 3040 break; 3041 case T_LONG: 3042 long_prev = true; 3043 break; 3044 case T_BOOLEAN: 3045 case T_CHAR: 3046 case T_BYTE: 3047 case T_SHORT: 3048 case T_OBJECT: 3049 case T_ARRAY: 3050 assert(value_object_count > 0 && !is_receiver, "must be value object field"); 3051 SigEntry::add_entry(_sig_cc, bt); 3052 SigEntry::add_entry(_sig_cc_ro, bt); 3053 break; 3054 case T_METADATA: 3055 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3056 value_object_count++; 3057 has_scalarized_arguments = true; 3058 SigEntry::add_entry(_sig, T_OBJECT); 3059 SigEntry::add_entry(_sig_cc, T_METADATA); 3060 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3061 break; 3062 default: { 3063 fatal("Unexpected BasicType: %s", basictype_to_str(bt)); 3064 } 3065 } 3066 prev_bt = bt; 3067 is_receiver = false; 3068 }); 3069 3070 if (long_prev) { 3071 // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT. 3072 SigEntry::add_entry(_sig, T_OBJECT); 3073 SigEntry::add_entry(_sig_cc, T_OBJECT); 3074 SigEntry::add_entry(_sig_cc_ro, T_OBJECT); 3075 } 3076 assert(value_object_count == 0, "invalid value object count"); 3077 3078 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 3079 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 3080 3081 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 3082 if (has_scalarized_arguments) { 3083 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 3084 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 3085 3086 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 3087 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 3088 3089 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 3090 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 3091 } else { 3092 // No scalarized args 3093 _sig_cc = _sig; 3094 _regs_cc = _regs; 3095 _args_on_stack_cc = _args_on_stack; 3096 3097 _sig_cc_ro = _sig; 3098 _regs_cc_ro = _regs; 3099 _args_on_stack_cc_ro = _args_on_stack; 3100 } 3101 3102 #ifdef ASSERT 3103 { 3104 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv); 3105 assert(fingerprint->equals(compare_fp), "sanity check"); 3106 AdapterFingerPrint::deallocate(compare_fp); 3107 } 3108 #endif 3109 } 3110 3111 const char* AdapterHandlerEntry::_entry_names[] = { 3112 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 3113 }; 3114 3115 #ifdef ASSERT 3116 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) { 3117 AdapterBlob* comparison_blob = nullptr; 3118 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false, true); 3119 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 3120 assert(comparison_entry->compare_code(cached_entry), "code must match"); 3121 // Release the one just created 3122 AdapterHandlerEntry::deallocate(comparison_entry); 3123 } 3124 #endif /* ASSERT*/ 3125 3126 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 3127 // Use customized signature handler. Need to lock around updates to 3128 // the _adapter_handler_table (it is not safe for concurrent readers 3129 // and a single writer: this could be fixed if it becomes a 3130 // problem). 3131 3132 // Fast-path for trivial adapters 3133 AdapterHandlerEntry* entry = get_simple_adapter(method); 3134 if (entry != nullptr) { 3135 return entry; 3136 } 3137 3138 ResourceMark rm; 3139 AdapterBlob* adapter_blob = nullptr; 3140 3141 CompiledEntrySignature ces(method()); 3142 ces.compute_calling_conventions(); 3143 if (ces.has_scalarized_args()) { 3144 if (!method->has_scalarized_args()) { 3145 method->set_has_scalarized_args(); 3146 } 3147 if (ces.c1_needs_stack_repair()) { 3148 method->set_c1_needs_stack_repair(); 3149 } 3150 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 3151 method->set_c2_needs_stack_repair(); 3152 } 3153 } else if (method->is_abstract()) { 3154 return _abstract_method_handler; 3155 } 3156 3157 { 3158 MutexLocker mu(AdapterHandlerLibrary_lock); 3159 3160 if (ces.has_scalarized_args() && method->is_abstract()) { 3161 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 3162 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 3163 entry = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 3164 entry->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 3165 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 3166 wrong_method_abstract, wrong_method_abstract); 3167 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 3168 heap_sig->appendAll(ces.sig_cc_ro()); 3169 entry->set_sig_cc(heap_sig); 3170 return entry; 3171 } 3172 3173 // Lookup method signature's fingerprint 3174 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 3175 3176 if (entry != nullptr) { 3177 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 3178 #ifdef ASSERT 3179 if (!entry->is_shared() && VerifyAdapterSharing) { 3180 verify_adapter_sharing(ces, entry); 3181 } 3182 #endif 3183 } else { 3184 entry = create_adapter(adapter_blob, ces, /* allocate_code_blob */ true); 3185 } 3186 } 3187 3188 // Outside of the lock 3189 if (adapter_blob != nullptr) { 3190 post_adapter_creation(adapter_blob, entry); 3191 } 3192 return entry; 3193 } 3194 3195 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 3196 ResourceMark rm; 3197 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3198 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3199 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 3200 3201 AdapterBlob* adapter_blob = nullptr; 3202 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 3203 if (blob != nullptr) { 3204 adapter_blob = blob->as_adapter_blob(); 3205 address i2c_entry = adapter_blob->content_begin(); 3206 assert(offsets[0] == 0, "sanity check"); 3207 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3], 3208 i2c_entry + offsets[4], i2c_entry + offsets[5], i2c_entry + offsets[6]); 3209 } 3210 return adapter_blob; 3211 } 3212 3213 #ifndef PRODUCT 3214 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 3215 ttyLocker ttyl; 3216 ResourceMark rm; 3217 int insts_size = adapter_blob->code_size(); 3218 handler->print_adapter_on(tty); 3219 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 3220 handler->fingerprint()->as_basic_args_string(), 3221 handler->fingerprint()->as_string(), insts_size); 3222 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 3223 if (Verbose || PrintStubCode) { 3224 address first_pc = handler->base_address(); 3225 if (first_pc != nullptr) { 3226 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 3227 st->cr(); 3228 } 3229 } 3230 } 3231 #endif // PRODUCT 3232 3233 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 3234 AdapterHandlerEntry* handler, 3235 CompiledEntrySignature& ces, 3236 bool allocate_code_blob, 3237 bool is_transient) { 3238 if (log_is_enabled(Info, perf, class, link)) { 3239 ClassLoader::perf_method_adapters_count()->inc(); 3240 } 3241 3242 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3243 CodeBuffer buffer(buf); 3244 short buffer_locs[20]; 3245 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3246 sizeof(buffer_locs)/sizeof(relocInfo)); 3247 MacroAssembler masm(&buffer); 3248 3249 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 3250 SharedRuntime::generate_i2c2i_adapters(&masm, 3251 ces.args_on_stack(), 3252 ces.sig(), 3253 ces.regs(), 3254 ces.sig_cc(), 3255 ces.regs_cc(), 3256 ces.sig_cc_ro(), 3257 ces.regs_cc_ro(), 3258 handler, 3259 adapter_blob, 3260 allocate_code_blob); 3261 3262 if (ces.has_scalarized_args()) { 3263 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3264 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3265 heap_sig->appendAll(ces.sig_cc()); 3266 handler->set_sig_cc(heap_sig); 3267 } 3268 #ifdef ASSERT 3269 if (VerifyAdapterSharing) { 3270 handler->save_code(buf->code_begin(), buffer.insts_size()); 3271 if (is_transient) { 3272 return true; 3273 } 3274 } 3275 #endif 3276 3277 if (adapter_blob == nullptr) { 3278 // CodeCache is full, disable compilation 3279 // Ought to log this but compile log is only per compile thread 3280 // and we're some non descript Java thread. 3281 return false; 3282 } 3283 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 3284 // try to save generated code 3285 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3286 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3287 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 3288 assert(AdapterHandlerEntry::ENTRIES_COUNT == 7, "sanity"); 3289 address i2c_entry = handler->get_i2c_entry(); 3290 entry_offset[0] = 0; // i2c_entry offset 3291 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 3292 entry_offset[2] = handler->get_c2i_inline_entry() - i2c_entry; 3293 entry_offset[3] = handler->get_c2i_inline_ro_entry() - i2c_entry; 3294 entry_offset[4] = handler->get_c2i_unverified_entry() - i2c_entry; 3295 entry_offset[5] = handler->get_c2i_unverified_inline_entry() - i2c_entry; 3296 entry_offset[6] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 3297 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 3298 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 3299 } 3300 handler->relocate(adapter_blob->content_begin()); 3301 #ifndef PRODUCT 3302 // debugging support 3303 if (PrintAdapterHandlers || PrintStubCode) { 3304 print_adapter_handler_info(tty, handler, adapter_blob); 3305 } 3306 #endif 3307 return true; 3308 } 3309 3310 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 3311 CompiledEntrySignature& ces, 3312 bool allocate_code_blob, 3313 bool is_transient) { 3314 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv()); 3315 #ifdef ASSERT 3316 // Verify that we can successfully restore the compiled entry signature object. 3317 CompiledEntrySignature ces_verify; 3318 ces_verify.initialize_from_fingerprint(fp); 3319 #endif 3320 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 3321 if (!generate_adapter_code(adapter_blob, handler, ces, allocate_code_blob, is_transient)) { 3322 AdapterHandlerEntry::deallocate(handler); 3323 return nullptr; 3324 } 3325 if (!is_transient) { 3326 assert_lock_strong(AdapterHandlerLibrary_lock); 3327 _adapter_handler_table->put(fp, handler); 3328 } 3329 return handler; 3330 } 3331 3332 #if INCLUDE_CDS 3333 void AdapterHandlerEntry::remove_unshareable_info() { 3334 #ifdef ASSERT 3335 _saved_code = nullptr; 3336 _saved_code_length = 0; 3337 #endif // ASSERT 3338 set_entry_points(nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, false); 3339 } 3340 3341 class CopyAdapterTableToArchive : StackObj { 3342 private: 3343 CompactHashtableWriter* _writer; 3344 ArchiveBuilder* _builder; 3345 public: 3346 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 3347 _builder(ArchiveBuilder::current()) 3348 {} 3349 3350 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3351 LogStreamHandle(Trace, aot) lsh; 3352 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3353 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3354 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3355 assert(buffered_fp != nullptr,"sanity check"); 3356 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3357 assert(buffered_entry != nullptr,"sanity check"); 3358 3359 uint hash = fp->compute_hash(); 3360 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3361 _writer->add(hash, delta); 3362 if (lsh.is_enabled()) { 3363 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3364 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3365 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3366 } 3367 } else { 3368 if (lsh.is_enabled()) { 3369 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3370 } 3371 } 3372 return true; 3373 } 3374 }; 3375 3376 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3377 CompactHashtableStats stats; 3378 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3379 CopyAdapterTableToArchive copy(&writer); 3380 _adapter_handler_table->iterate(©); 3381 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3382 } 3383 3384 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3385 _aot_adapter_handler_table.serialize_header(soc); 3386 } 3387 3388 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3389 #ifdef ASSERT 3390 if (TestAOTAdapterLinkFailure) { 3391 return nullptr; 3392 } 3393 #endif 3394 AdapterBlob* blob = lookup_aot_cache(handler); 3395 #ifndef PRODUCT 3396 // debugging support 3397 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 3398 print_adapter_handler_info(tty, handler, blob); 3399 } 3400 #endif 3401 return blob; 3402 } 3403 3404 // This method is used during production run to link archived adapters (stored in AOT Cache) 3405 // to their code in AOT Code Cache 3406 void AdapterHandlerEntry::link() { 3407 AdapterBlob* adapter_blob = nullptr; 3408 ResourceMark rm; 3409 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3410 bool generate_code = false; 3411 // Generate code only if AOTCodeCache is not available, or 3412 // caching adapters is disabled, or we fail to link 3413 // the AdapterHandlerEntry to its code in the AOTCodeCache 3414 if (AOTCodeCache::is_using_adapter()) { 3415 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 3416 if (adapter_blob == nullptr) { 3417 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3418 generate_code = true; 3419 } 3420 } else { 3421 generate_code = true; 3422 } 3423 if (generate_code) { 3424 CompiledEntrySignature ces; 3425 ces.initialize_from_fingerprint(_fingerprint); 3426 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, ces, true, false)) { 3427 // Don't throw exceptions during VM initialization because java.lang.* classes 3428 // might not have been initialized, causing problems when constructing the 3429 // Java exception object. 3430 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3431 } 3432 } 3433 // Outside of the lock 3434 if (adapter_blob != nullptr) { 3435 post_adapter_creation(adapter_blob, this); 3436 } 3437 assert(_linked, "AdapterHandlerEntry must now be linked"); 3438 } 3439 3440 void AdapterHandlerLibrary::link_aot_adapters() { 3441 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3442 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3443 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3444 entry->link(); 3445 }); 3446 } 3447 3448 // This method is called during production run to lookup simple adapters 3449 // in the archived adapter handler table 3450 void AdapterHandlerLibrary::lookup_simple_adapters() { 3451 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3452 3453 MutexLocker mu(AdapterHandlerLibrary_lock); 3454 ResourceMark rm; 3455 CompiledEntrySignature no_args; 3456 no_args.compute_calling_conventions(); 3457 _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv()); 3458 3459 CompiledEntrySignature obj_args; 3460 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 3461 obj_args.compute_calling_conventions(); 3462 _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv()); 3463 3464 CompiledEntrySignature int_args; 3465 SigEntry::add_entry(int_args.sig(), T_INT); 3466 int_args.compute_calling_conventions(); 3467 _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv()); 3468 3469 CompiledEntrySignature obj_int_args; 3470 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 3471 SigEntry::add_entry(obj_int_args.sig(), T_INT); 3472 obj_int_args.compute_calling_conventions(); 3473 _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv()); 3474 3475 CompiledEntrySignature obj_obj_args; 3476 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3477 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3478 obj_obj_args.compute_calling_conventions(); 3479 _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv()); 3480 3481 assert(_no_arg_handler != nullptr && 3482 _obj_arg_handler != nullptr && 3483 _int_arg_handler != nullptr && 3484 _obj_int_arg_handler != nullptr && 3485 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3486 assert(_no_arg_handler->is_linked() && 3487 _obj_arg_handler->is_linked() && 3488 _int_arg_handler->is_linked() && 3489 _obj_int_arg_handler->is_linked() && 3490 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3491 } 3492 #endif // INCLUDE_CDS 3493 3494 address AdapterHandlerEntry::base_address() { 3495 address base = _i2c_entry; 3496 if (base == nullptr) base = _c2i_entry; 3497 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3498 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3499 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3500 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3501 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3502 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3503 return base; 3504 } 3505 3506 void AdapterHandlerEntry::relocate(address new_base) { 3507 address old_base = base_address(); 3508 assert(old_base != nullptr, ""); 3509 ptrdiff_t delta = new_base - old_base; 3510 if (_i2c_entry != nullptr) 3511 _i2c_entry += delta; 3512 if (_c2i_entry != nullptr) 3513 _c2i_entry += delta; 3514 if (_c2i_inline_entry != nullptr) 3515 _c2i_inline_entry += delta; 3516 if (_c2i_inline_ro_entry != nullptr) 3517 _c2i_inline_ro_entry += delta; 3518 if (_c2i_unverified_entry != nullptr) 3519 _c2i_unverified_entry += delta; 3520 if (_c2i_unverified_inline_entry != nullptr) 3521 _c2i_unverified_inline_entry += delta; 3522 if (_c2i_no_clinit_check_entry != nullptr) 3523 _c2i_no_clinit_check_entry += delta; 3524 assert(base_address() == new_base, ""); 3525 } 3526 3527 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3528 LogStreamHandle(Trace, aot) lsh; 3529 if (lsh.is_enabled()) { 3530 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3531 lsh.cr(); 3532 } 3533 it->push(&_fingerprint); 3534 } 3535 3536 AdapterHandlerEntry::~AdapterHandlerEntry() { 3537 if (_fingerprint != nullptr) { 3538 AdapterFingerPrint::deallocate(_fingerprint); 3539 _fingerprint = nullptr; 3540 } 3541 if (_sig_cc != nullptr) { 3542 delete _sig_cc; 3543 } 3544 #ifdef ASSERT 3545 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3546 #endif 3547 FreeHeap(this); 3548 } 3549 3550 3551 #ifdef ASSERT 3552 // Capture the code before relocation so that it can be compared 3553 // against other versions. If the code is captured after relocation 3554 // then relative instructions won't be equivalent. 3555 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3556 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3557 _saved_code_length = length; 3558 memcpy(_saved_code, buffer, length); 3559 } 3560 3561 3562 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3563 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3564 3565 if (other->_saved_code_length != _saved_code_length) { 3566 return false; 3567 } 3568 3569 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3570 } 3571 #endif 3572 3573 3574 /** 3575 * Create a native wrapper for this native method. The wrapper converts the 3576 * Java-compiled calling convention to the native convention, handles 3577 * arguments, and transitions to native. On return from the native we transition 3578 * back to java blocking if a safepoint is in progress. 3579 */ 3580 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3581 ResourceMark rm; 3582 nmethod* nm = nullptr; 3583 3584 // Check if memory should be freed before allocation 3585 CodeCache::gc_on_allocation(); 3586 3587 assert(method->is_native(), "must be native"); 3588 assert(method->is_special_native_intrinsic() || 3589 method->has_native_function(), "must have something valid to call!"); 3590 3591 { 3592 // Perform the work while holding the lock, but perform any printing outside the lock 3593 MutexLocker mu(AdapterHandlerLibrary_lock); 3594 // See if somebody beat us to it 3595 if (method->code() != nullptr) { 3596 return; 3597 } 3598 3599 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3600 assert(compile_id > 0, "Must generate native wrapper"); 3601 3602 3603 ResourceMark rm; 3604 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3605 if (buf != nullptr) { 3606 CodeBuffer buffer(buf); 3607 3608 if (method->is_continuation_enter_intrinsic()) { 3609 buffer.initialize_stubs_size(192); 3610 } 3611 3612 struct { double data[20]; } locs_buf; 3613 struct { double data[20]; } stubs_locs_buf; 3614 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3615 #if defined(AARCH64) || defined(PPC64) 3616 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3617 // in the constant pool to ensure ordering between the barrier and oops 3618 // accesses. For native_wrappers we need a constant. 3619 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3620 // static java call that is resolved in the runtime. 3621 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3622 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3623 } 3624 #endif 3625 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3626 MacroAssembler _masm(&buffer); 3627 3628 // Fill in the signature array, for the calling-convention call. 3629 const int total_args_passed = method->size_of_parameters(); 3630 3631 BasicType stack_sig_bt[16]; 3632 VMRegPair stack_regs[16]; 3633 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3634 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3635 3636 int i = 0; 3637 if (!method->is_static()) { // Pass in receiver first 3638 sig_bt[i++] = T_OBJECT; 3639 } 3640 SignatureStream ss(method->signature()); 3641 for (; !ss.at_return_type(); ss.next()) { 3642 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3643 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3644 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3645 } 3646 } 3647 assert(i == total_args_passed, ""); 3648 BasicType ret_type = ss.type(); 3649 3650 // Now get the compiled-Java arguments layout. 3651 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3652 3653 // Generate the compiled-to-native wrapper code 3654 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3655 3656 if (nm != nullptr) { 3657 { 3658 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3659 if (nm->make_in_use()) { 3660 method->set_code(method, nm); 3661 } 3662 } 3663 3664 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3665 if (directive->PrintAssemblyOption) { 3666 nm->print_code(); 3667 } 3668 DirectivesStack::release(directive); 3669 } 3670 } 3671 } // Unlock AdapterHandlerLibrary_lock 3672 3673 3674 // Install the generated code. 3675 if (nm != nullptr) { 3676 const char *msg = method->is_static() ? "(static)" : ""; 3677 CompileTask::print_ul(nm, msg); 3678 if (PrintCompilation) { 3679 ttyLocker ttyl; 3680 CompileTask::print(tty, nm, msg); 3681 } 3682 nm->post_compiled_method_load_event(); 3683 } 3684 } 3685 3686 // ------------------------------------------------------------------------- 3687 // Java-Java calling convention 3688 // (what you use when Java calls Java) 3689 3690 //------------------------------name_for_receiver---------------------------------- 3691 // For a given signature, return the VMReg for parameter 0. 3692 VMReg SharedRuntime::name_for_receiver() { 3693 VMRegPair regs; 3694 BasicType sig_bt = T_OBJECT; 3695 (void) java_calling_convention(&sig_bt, ®s, 1); 3696 // Return argument 0 register. In the LP64 build pointers 3697 // take 2 registers, but the VM wants only the 'main' name. 3698 return regs.first(); 3699 } 3700 3701 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3702 // This method is returning a data structure allocating as a 3703 // ResourceObject, so do not put any ResourceMarks in here. 3704 3705 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3706 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3707 int cnt = 0; 3708 if (has_receiver) { 3709 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3710 } 3711 3712 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3713 BasicType type = ss.type(); 3714 sig_bt[cnt++] = type; 3715 if (is_double_word_type(type)) 3716 sig_bt[cnt++] = T_VOID; 3717 } 3718 3719 if (has_appendix) { 3720 sig_bt[cnt++] = T_OBJECT; 3721 } 3722 3723 assert(cnt < 256, "grow table size"); 3724 3725 int comp_args_on_stack; 3726 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3727 3728 // the calling convention doesn't count out_preserve_stack_slots so 3729 // we must add that in to get "true" stack offsets. 3730 3731 if (comp_args_on_stack) { 3732 for (int i = 0; i < cnt; i++) { 3733 VMReg reg1 = regs[i].first(); 3734 if (reg1->is_stack()) { 3735 // Yuck 3736 reg1 = reg1->bias(out_preserve_stack_slots()); 3737 } 3738 VMReg reg2 = regs[i].second(); 3739 if (reg2->is_stack()) { 3740 // Yuck 3741 reg2 = reg2->bias(out_preserve_stack_slots()); 3742 } 3743 regs[i].set_pair(reg2, reg1); 3744 } 3745 } 3746 3747 // results 3748 *arg_size = cnt; 3749 return regs; 3750 } 3751 3752 // OSR Migration Code 3753 // 3754 // This code is used convert interpreter frames into compiled frames. It is 3755 // called from very start of a compiled OSR nmethod. A temp array is 3756 // allocated to hold the interesting bits of the interpreter frame. All 3757 // active locks are inflated to allow them to move. The displaced headers and 3758 // active interpreter locals are copied into the temp buffer. Then we return 3759 // back to the compiled code. The compiled code then pops the current 3760 // interpreter frame off the stack and pushes a new compiled frame. Then it 3761 // copies the interpreter locals and displaced headers where it wants. 3762 // Finally it calls back to free the temp buffer. 3763 // 3764 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3765 3766 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3767 assert(current == JavaThread::current(), "pre-condition"); 3768 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3769 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3770 // frame. The stack watermark code below ensures that the interpreted frame is processed 3771 // before it gets unwound. This is helpful as the size of the compiled frame could be 3772 // larger than the interpreted frame, which could result in the new frame not being 3773 // processed correctly. 3774 StackWatermarkSet::before_unwind(current); 3775 3776 // 3777 // This code is dependent on the memory layout of the interpreter local 3778 // array and the monitors. On all of our platforms the layout is identical 3779 // so this code is shared. If some platform lays the their arrays out 3780 // differently then this code could move to platform specific code or 3781 // the code here could be modified to copy items one at a time using 3782 // frame accessor methods and be platform independent. 3783 3784 frame fr = current->last_frame(); 3785 assert(fr.is_interpreted_frame(), ""); 3786 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3787 3788 // Figure out how many monitors are active. 3789 int active_monitor_count = 0; 3790 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3791 kptr < fr.interpreter_frame_monitor_begin(); 3792 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3793 if (kptr->obj() != nullptr) active_monitor_count++; 3794 } 3795 3796 // QQQ we could place number of active monitors in the array so that compiled code 3797 // could double check it. 3798 3799 Method* moop = fr.interpreter_frame_method(); 3800 int max_locals = moop->max_locals(); 3801 // Allocate temp buffer, 1 word per local & 2 per active monitor 3802 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3803 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3804 3805 // Copy the locals. Order is preserved so that loading of longs works. 3806 // Since there's no GC I can copy the oops blindly. 3807 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3808 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3809 (HeapWord*)&buf[0], 3810 max_locals); 3811 3812 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3813 int i = max_locals; 3814 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3815 kptr2 < fr.interpreter_frame_monitor_begin(); 3816 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3817 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3818 BasicLock *lock = kptr2->lock(); 3819 if (LockingMode == LM_LEGACY) { 3820 // Inflate so the object's header no longer refers to the BasicLock. 3821 if (lock->displaced_header().is_unlocked()) { 3822 // The object is locked and the resulting ObjectMonitor* will also be 3823 // locked so it can't be async deflated until ownership is dropped. 3824 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3825 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3826 } 3827 // Now the displaced header is free to move because the 3828 // object's header no longer refers to it. 3829 buf[i] = (intptr_t)lock->displaced_header().value(); 3830 } else if (UseObjectMonitorTable) { 3831 buf[i] = (intptr_t)lock->object_monitor_cache(); 3832 } 3833 #ifdef ASSERT 3834 else { 3835 buf[i] = badDispHeaderOSR; 3836 } 3837 #endif 3838 i++; 3839 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3840 } 3841 } 3842 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3843 3844 RegisterMap map(current, 3845 RegisterMap::UpdateMap::skip, 3846 RegisterMap::ProcessFrames::include, 3847 RegisterMap::WalkContinuation::skip); 3848 frame sender = fr.sender(&map); 3849 if (sender.is_interpreted_frame()) { 3850 current->push_cont_fastpath(sender.sp()); 3851 } 3852 3853 return buf; 3854 JRT_END 3855 3856 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3857 FREE_C_HEAP_ARRAY(intptr_t, buf); 3858 JRT_END 3859 3860 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3861 bool found = false; 3862 #if INCLUDE_CDS 3863 if (AOTCodeCache::is_using_adapter()) { 3864 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3865 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3866 }; 3867 _aot_adapter_handler_table.iterate(findblob_archived_table); 3868 } 3869 #endif // INCLUDE_CDS 3870 if (!found) { 3871 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3872 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3873 }; 3874 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3875 _adapter_handler_table->iterate(findblob_runtime_table); 3876 } 3877 return found; 3878 } 3879 3880 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3881 return fingerprint->as_basic_args_string(); 3882 } 3883 3884 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3885 unsigned int hash = fingerprint->compute_hash(); 3886 return hash; 3887 } 3888 3889 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3890 bool found = false; 3891 #if INCLUDE_CDS 3892 if (AOTCodeCache::is_using_adapter()) { 3893 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3894 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3895 found = true; 3896 st->print("Adapter for signature: "); 3897 handler->print_adapter_on(st); 3898 return true; 3899 } else { 3900 return false; // keep looking 3901 } 3902 }; 3903 _aot_adapter_handler_table.iterate(findblob_archived_table); 3904 } 3905 #endif // INCLUDE_CDS 3906 if (!found) { 3907 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3908 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3909 found = true; 3910 st->print("Adapter for signature: "); 3911 a->print_adapter_on(st); 3912 return true; 3913 } else { 3914 return false; // keep looking 3915 } 3916 }; 3917 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3918 _adapter_handler_table->iterate(findblob_runtime_table); 3919 } 3920 assert(found, "Should have found handler"); 3921 } 3922 3923 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3924 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3925 if (get_i2c_entry() != nullptr) { 3926 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3927 } 3928 if (get_c2i_entry() != nullptr) { 3929 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3930 } 3931 if (get_c2i_entry() != nullptr) { 3932 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3933 } 3934 if (get_c2i_entry() != nullptr) { 3935 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3936 } 3937 if (get_c2i_unverified_entry() != nullptr) { 3938 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3939 } 3940 if (get_c2i_unverified_entry() != nullptr) { 3941 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3942 } 3943 if (get_c2i_no_clinit_check_entry() != nullptr) { 3944 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3945 } 3946 st->cr(); 3947 } 3948 3949 #ifndef PRODUCT 3950 3951 void AdapterHandlerLibrary::print_statistics() { 3952 print_table_statistics(); 3953 } 3954 3955 #endif /* PRODUCT */ 3956 3957 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3958 if (entry == _abstract_method_handler) { 3959 return true; 3960 } 3961 return false; 3962 } 3963 3964 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3965 assert(current == JavaThread::current(), "pre-condition"); 3966 StackOverflow* overflow_state = current->stack_overflow_state(); 3967 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3968 overflow_state->set_reserved_stack_activation(current->stack_base()); 3969 JRT_END 3970 3971 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3972 ResourceMark rm(current); 3973 frame activation; 3974 nmethod* nm = nullptr; 3975 int count = 1; 3976 3977 assert(fr.is_java_frame(), "Must start on Java frame"); 3978 3979 RegisterMap map(JavaThread::current(), 3980 RegisterMap::UpdateMap::skip, 3981 RegisterMap::ProcessFrames::skip, 3982 RegisterMap::WalkContinuation::skip); // don't walk continuations 3983 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3984 if (!fr.is_java_frame()) { 3985 continue; 3986 } 3987 3988 Method* method = nullptr; 3989 bool found = false; 3990 if (fr.is_interpreted_frame()) { 3991 method = fr.interpreter_frame_method(); 3992 if (method != nullptr && method->has_reserved_stack_access()) { 3993 found = true; 3994 } 3995 } else { 3996 CodeBlob* cb = fr.cb(); 3997 if (cb != nullptr && cb->is_nmethod()) { 3998 nm = cb->as_nmethod(); 3999 method = nm->method(); 4000 // scope_desc_near() must be used, instead of scope_desc_at() because on 4001 // SPARC, the pcDesc can be on the delay slot after the call instruction. 4002 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 4003 method = sd->method(); 4004 if (method != nullptr && method->has_reserved_stack_access()) { 4005 found = true; 4006 } 4007 } 4008 } 4009 } 4010 if (found) { 4011 activation = fr; 4012 warning("Potentially dangerous stack overflow in " 4013 "ReservedStackAccess annotated method %s [%d]", 4014 method->name_and_sig_as_C_string(), count++); 4015 EventReservedStackActivation event; 4016 if (event.should_commit()) { 4017 event.set_method(method); 4018 event.commit(); 4019 } 4020 } 4021 } 4022 return activation; 4023 } 4024 4025 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 4026 // After any safepoint, just before going back to compiled code, 4027 // we inform the GC that we will be doing initializing writes to 4028 // this object in the future without emitting card-marks, so 4029 // GC may take any compensating steps. 4030 4031 oop new_obj = current->vm_result_oop(); 4032 if (new_obj == nullptr) return; 4033 4034 BarrierSet *bs = BarrierSet::barrier_set(); 4035 bs->on_slowpath_allocation_exit(current, new_obj); 4036 } 4037 4038 // We are at a compiled code to interpreter call. We need backing 4039 // buffers for all inline type arguments. Allocate an object array to 4040 // hold them (convenient because once we're done with it we don't have 4041 // to worry about freeing it). 4042 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 4043 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 4044 ResourceMark rm; 4045 4046 int nb_slots = 0; 4047 InstanceKlass* holder = callee->method_holder(); 4048 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 4049 if (allocate_receiver) { 4050 nb_slots++; 4051 } 4052 int arg_num = callee->is_static() ? 0 : 1; 4053 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4054 BasicType bt = ss.type(); 4055 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4056 nb_slots++; 4057 } 4058 if (bt != T_VOID) { 4059 arg_num++; 4060 } 4061 } 4062 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 4063 objArrayHandle array(THREAD, array_oop); 4064 arg_num = callee->is_static() ? 0 : 1; 4065 int i = 0; 4066 if (allocate_receiver) { 4067 InlineKlass* vk = InlineKlass::cast(holder); 4068 oop res = vk->allocate_instance(CHECK_NULL); 4069 array->obj_at_put(i++, res); 4070 } 4071 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4072 BasicType bt = ss.type(); 4073 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4074 InlineKlass* vk = ss.as_inline_klass(holder); 4075 assert(vk != nullptr, "Unexpected klass"); 4076 oop res = vk->allocate_instance(CHECK_NULL); 4077 array->obj_at_put(i++, res); 4078 } 4079 if (bt != T_VOID) { 4080 arg_num++; 4081 } 4082 } 4083 return array(); 4084 } 4085 4086 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 4087 methodHandle callee(current, callee_method); 4088 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 4089 current->set_vm_result_oop(array); 4090 current->set_vm_result_metadata(callee()); // TODO: required to keep callee live? 4091 JRT_END 4092 4093 // We're returning from an interpreted method: load each field into a 4094 // register following the calling convention 4095 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 4096 { 4097 assert(res->klass()->is_inline_klass(), "only inline types here"); 4098 ResourceMark rm; 4099 RegisterMap reg_map(current, 4100 RegisterMap::UpdateMap::include, 4101 RegisterMap::ProcessFrames::include, 4102 RegisterMap::WalkContinuation::skip); 4103 frame stubFrame = current->last_frame(); 4104 frame callerFrame = stubFrame.sender(®_map); 4105 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 4106 4107 InlineKlass* vk = InlineKlass::cast(res->klass()); 4108 4109 const Array<SigEntry>* sig_vk = vk->extended_sig(); 4110 const Array<VMRegPair>* regs = vk->return_regs(); 4111 4112 if (regs == nullptr) { 4113 // The fields of the inline klass don't fit in registers, bail out 4114 return; 4115 } 4116 4117 int j = 1; 4118 for (int i = 0; i < sig_vk->length(); i++) { 4119 BasicType bt = sig_vk->at(i)._bt; 4120 if (bt == T_METADATA) { 4121 continue; 4122 } 4123 if (bt == T_VOID) { 4124 if (sig_vk->at(i-1)._bt == T_LONG || 4125 sig_vk->at(i-1)._bt == T_DOUBLE) { 4126 j++; 4127 } 4128 continue; 4129 } 4130 int off = sig_vk->at(i)._offset; 4131 assert(off > 0, "offset in object should be positive"); 4132 VMRegPair pair = regs->at(j); 4133 address loc = reg_map.location(pair.first(), nullptr); 4134 switch(bt) { 4135 case T_BOOLEAN: 4136 *(jboolean*)loc = res->bool_field(off); 4137 break; 4138 case T_CHAR: 4139 *(jchar*)loc = res->char_field(off); 4140 break; 4141 case T_BYTE: 4142 *(jbyte*)loc = res->byte_field(off); 4143 break; 4144 case T_SHORT: 4145 *(jshort*)loc = res->short_field(off); 4146 break; 4147 case T_INT: { 4148 *(jint*)loc = res->int_field(off); 4149 break; 4150 } 4151 case T_LONG: 4152 #ifdef _LP64 4153 *(intptr_t*)loc = res->long_field(off); 4154 #else 4155 Unimplemented(); 4156 #endif 4157 break; 4158 case T_OBJECT: 4159 case T_ARRAY: { 4160 *(oop*)loc = res->obj_field(off); 4161 break; 4162 } 4163 case T_FLOAT: 4164 *(jfloat*)loc = res->float_field(off); 4165 break; 4166 case T_DOUBLE: 4167 *(jdouble*)loc = res->double_field(off); 4168 break; 4169 default: 4170 ShouldNotReachHere(); 4171 } 4172 j++; 4173 } 4174 assert(j == regs->length(), "missed a field?"); 4175 4176 #ifdef ASSERT 4177 VMRegPair pair = regs->at(0); 4178 address loc = reg_map.location(pair.first(), nullptr); 4179 assert(*(oopDesc**)loc == res, "overwritten object"); 4180 #endif 4181 4182 current->set_vm_result_oop(res); 4183 } 4184 JRT_END 4185 4186 // We've returned to an interpreted method, the interpreter needs a 4187 // reference to an inline type instance. Allocate it and initialize it 4188 // from field's values in registers. 4189 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 4190 { 4191 ResourceMark rm; 4192 RegisterMap reg_map(current, 4193 RegisterMap::UpdateMap::include, 4194 RegisterMap::ProcessFrames::include, 4195 RegisterMap::WalkContinuation::skip); 4196 frame stubFrame = current->last_frame(); 4197 frame callerFrame = stubFrame.sender(®_map); 4198 4199 #ifdef ASSERT 4200 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 4201 #endif 4202 4203 if (!is_set_nth_bit(res, 0)) { 4204 // We're not returning with inline type fields in registers (the 4205 // calling convention didn't allow it for this inline klass) 4206 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 4207 current->set_vm_result_oop((oopDesc*)res); 4208 assert(verif_vk == nullptr, "broken calling convention"); 4209 return; 4210 } 4211 4212 clear_nth_bit(res, 0); 4213 InlineKlass* vk = (InlineKlass*)res; 4214 assert(verif_vk == vk, "broken calling convention"); 4215 assert(Metaspace::contains((void*)res), "should be klass"); 4216 4217 // Allocate handles for every oop field so they are safe in case of 4218 // a safepoint when allocating 4219 GrowableArray<Handle> handles; 4220 vk->save_oop_fields(reg_map, handles); 4221 4222 // It's unsafe to safepoint until we are here 4223 JRT_BLOCK; 4224 { 4225 JavaThread* THREAD = current; 4226 oop vt = vk->realloc_result(reg_map, handles, CHECK); 4227 current->set_vm_result_oop(vt); 4228 } 4229 JRT_BLOCK_END; 4230 } 4231 JRT_END