1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveBuilder.hpp"
26 #include "cds/archiveUtils.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/javaClasses.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/vmClasses.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/aotCodeCache.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/compiledIC.hpp"
35 #include "code/nmethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "jvm.h"
47 #include "logging/log.hpp"
48 #include "memory/oopFactory.hpp"
49 #include "memory/resourceArea.hpp"
50 #include "memory/universe.hpp"
51 #include "metaprogramming/primitiveConversions.hpp"
52 #include "oops/access.hpp"
53 #include "oops/fieldStreams.inline.hpp"
54 #include "oops/inlineKlass.inline.hpp"
55 #include "oops/klass.hpp"
56 #include "oops/method.inline.hpp"
57 #include "oops/objArrayKlass.hpp"
58 #include "oops/objArrayOop.inline.hpp"
59 #include "oops/oop.inline.hpp"
60 #include "prims/forte.hpp"
61 #include "prims/jvmtiExport.hpp"
62 #include "prims/jvmtiThreadState.hpp"
63 #include "prims/methodHandles.hpp"
64 #include "prims/nativeLookup.hpp"
65 #include "runtime/arguments.hpp"
66 #include "runtime/atomicAccess.hpp"
67 #include "runtime/basicLock.inline.hpp"
68 #include "runtime/frame.inline.hpp"
69 #include "runtime/handles.inline.hpp"
70 #include "runtime/init.hpp"
71 #include "runtime/interfaceSupport.inline.hpp"
72 #include "runtime/java.hpp"
73 #include "runtime/javaCalls.hpp"
74 #include "runtime/jniHandles.inline.hpp"
75 #include "runtime/osThread.hpp"
76 #include "runtime/perfData.hpp"
77 #include "runtime/sharedRuntime.hpp"
78 #include "runtime/signature.hpp"
79 #include "runtime/stackWatermarkSet.hpp"
80 #include "runtime/stubRoutines.hpp"
81 #include "runtime/synchronizer.hpp"
82 #include "runtime/timerTrace.hpp"
83 #include "runtime/vframe.inline.hpp"
84 #include "runtime/vframeArray.hpp"
85 #include "runtime/vm_version.hpp"
86 #include "utilities/copy.hpp"
87 #include "utilities/dtrace.hpp"
88 #include "utilities/events.hpp"
89 #include "utilities/globalDefinitions.hpp"
90 #include "utilities/hashTable.hpp"
91 #include "utilities/macros.hpp"
92 #include "utilities/xmlstream.hpp"
93 #ifdef COMPILER1
94 #include "c1/c1_Runtime1.hpp"
95 #endif
96 #ifdef COMPILER2
97 #include "opto/runtime.hpp"
98 #endif
99 #if INCLUDE_JFR
100 #include "jfr/jfr.inline.hpp"
101 #endif
102
103 // Shared runtime stub routines reside in their own unique blob with a
104 // single entry point
105
106
107 #define SHARED_STUB_FIELD_DEFINE(name, type) \
108 type* SharedRuntime::BLOB_FIELD_NAME(name);
109 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
110 #undef SHARED_STUB_FIELD_DEFINE
111
112 nmethod* SharedRuntime::_cont_doYield_stub;
113
114 #if 0
115 // TODO tweak global stub name generation to match this
116 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
117 const char *SharedRuntime::_stub_names[] = {
118 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
119 };
120 #endif
121
122 //----------------------------generate_stubs-----------------------------------
123 void SharedRuntime::generate_initial_stubs() {
124 // Build this early so it's available for the interpreter.
125 _throw_StackOverflowError_blob =
126 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
127 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
128 }
129
130 void SharedRuntime::generate_stubs() {
131 _wrong_method_blob =
132 generate_resolve_blob(StubId::shared_wrong_method_id,
133 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
134 _wrong_method_abstract_blob =
135 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
136 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
137 _ic_miss_blob =
138 generate_resolve_blob(StubId::shared_ic_miss_id,
139 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
140 _resolve_opt_virtual_call_blob =
141 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
142 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
143 _resolve_virtual_call_blob =
144 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
145 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
146 _resolve_static_call_blob =
147 generate_resolve_blob(StubId::shared_resolve_static_call_id,
148 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
149
150 _throw_delayed_StackOverflowError_blob =
151 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
152 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
153
154 _throw_AbstractMethodError_blob =
155 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
156 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
157
158 _throw_IncompatibleClassChangeError_blob =
159 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
160 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
161
162 _throw_NullPointerException_at_call_blob =
163 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
164 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
165
166 #if COMPILER2_OR_JVMCI
167 // Vectors are generated only by C2 and JVMCI.
168 bool support_wide = is_wide_vector(MaxVectorSize);
169 if (support_wide) {
170 _polling_page_vectors_safepoint_handler_blob =
171 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
173 }
174 #endif // COMPILER2_OR_JVMCI
175 _polling_page_safepoint_handler_blob =
176 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
177 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
178 _polling_page_return_handler_blob =
179 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
180 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
181
182 generate_deopt_blob();
183 }
184
185 void SharedRuntime::init_adapter_library() {
186 AdapterHandlerLibrary::initialize();
187 }
188
189 #if INCLUDE_JFR
190 //------------------------------generate jfr runtime stubs ------
191 void SharedRuntime::generate_jfr_stubs() {
192 ResourceMark rm;
193 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
194 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
195
196 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
197 _jfr_return_lease_blob = generate_jfr_return_lease();
198 }
199
200 #endif // INCLUDE_JFR
201
202 #include <math.h>
203
204 // Implementation of SharedRuntime
205
206 #ifndef PRODUCT
207 // For statistics
208 uint SharedRuntime::_ic_miss_ctr = 0;
209 uint SharedRuntime::_wrong_method_ctr = 0;
210 uint SharedRuntime::_resolve_static_ctr = 0;
211 uint SharedRuntime::_resolve_virtual_ctr = 0;
212 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
213 uint SharedRuntime::_implicit_null_throws = 0;
214 uint SharedRuntime::_implicit_div0_throws = 0;
215
216 int64_t SharedRuntime::_nof_normal_calls = 0;
217 int64_t SharedRuntime::_nof_inlined_calls = 0;
218 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
219 int64_t SharedRuntime::_nof_static_calls = 0;
220 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
221 int64_t SharedRuntime::_nof_interface_calls = 0;
222 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
223
224 uint SharedRuntime::_new_instance_ctr=0;
225 uint SharedRuntime::_new_array_ctr=0;
226 uint SharedRuntime::_multi2_ctr=0;
227 uint SharedRuntime::_multi3_ctr=0;
228 uint SharedRuntime::_multi4_ctr=0;
229 uint SharedRuntime::_multi5_ctr=0;
230 uint SharedRuntime::_mon_enter_stub_ctr=0;
231 uint SharedRuntime::_mon_exit_stub_ctr=0;
232 uint SharedRuntime::_mon_enter_ctr=0;
233 uint SharedRuntime::_mon_exit_ctr=0;
234 uint SharedRuntime::_partial_subtype_ctr=0;
235 uint SharedRuntime::_jbyte_array_copy_ctr=0;
236 uint SharedRuntime::_jshort_array_copy_ctr=0;
237 uint SharedRuntime::_jint_array_copy_ctr=0;
238 uint SharedRuntime::_jlong_array_copy_ctr=0;
239 uint SharedRuntime::_oop_array_copy_ctr=0;
240 uint SharedRuntime::_checkcast_array_copy_ctr=0;
241 uint SharedRuntime::_unsafe_array_copy_ctr=0;
242 uint SharedRuntime::_generic_array_copy_ctr=0;
243 uint SharedRuntime::_slow_array_copy_ctr=0;
244 uint SharedRuntime::_find_handler_ctr=0;
245 uint SharedRuntime::_rethrow_ctr=0;
246 uint SharedRuntime::_unsafe_set_memory_ctr=0;
247
248 int SharedRuntime::_ICmiss_index = 0;
249 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
250 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
251
252
253 void SharedRuntime::trace_ic_miss(address at) {
254 for (int i = 0; i < _ICmiss_index; i++) {
255 if (_ICmiss_at[i] == at) {
256 _ICmiss_count[i]++;
257 return;
258 }
259 }
260 int index = _ICmiss_index++;
261 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
262 _ICmiss_at[index] = at;
263 _ICmiss_count[index] = 1;
264 }
265
266 void SharedRuntime::print_ic_miss_histogram() {
267 if (ICMissHistogram) {
268 tty->print_cr("IC Miss Histogram:");
269 int tot_misses = 0;
270 for (int i = 0; i < _ICmiss_index; i++) {
271 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
272 tot_misses += _ICmiss_count[i];
273 }
274 tty->print_cr("Total IC misses: %7d", tot_misses);
275 }
276 }
277
278 #ifdef COMPILER2
279 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
280 void SharedRuntime::debug_print_value(jboolean x) {
281 tty->print_cr("boolean %d", x);
282 }
283
284 void SharedRuntime::debug_print_value(jbyte x) {
285 tty->print_cr("byte %d", x);
286 }
287
288 void SharedRuntime::debug_print_value(jshort x) {
289 tty->print_cr("short %d", x);
290 }
291
292 void SharedRuntime::debug_print_value(jchar x) {
293 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
294 }
295
296 void SharedRuntime::debug_print_value(jint x) {
297 tty->print_cr("int %d", x);
298 }
299
300 void SharedRuntime::debug_print_value(jlong x) {
301 tty->print_cr("long " JLONG_FORMAT, x);
302 }
303
304 void SharedRuntime::debug_print_value(jfloat x) {
305 tty->print_cr("float %f", x);
306 }
307
308 void SharedRuntime::debug_print_value(jdouble x) {
309 tty->print_cr("double %lf", x);
310 }
311
312 void SharedRuntime::debug_print_value(oopDesc* x) {
313 x->print();
314 }
315 #endif // COMPILER2
316
317 #endif // PRODUCT
318
319
320 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
321 return x * y;
322 JRT_END
323
324
325 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
326 if (x == min_jlong && y == CONST64(-1)) {
327 return x;
328 } else {
329 return x / y;
330 }
331 JRT_END
332
333
334 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
335 if (x == min_jlong && y == CONST64(-1)) {
336 return 0;
337 } else {
338 return x % y;
339 }
340 JRT_END
341
342
343 #ifdef _WIN64
344 const juint float_sign_mask = 0x7FFFFFFF;
345 const juint float_infinity = 0x7F800000;
346 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
347 const julong double_infinity = CONST64(0x7FF0000000000000);
348 #endif
349
350 #if !defined(X86)
351 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
352 #ifdef _WIN64
353 // 64-bit Windows on amd64 returns the wrong values for
354 // infinity operands.
355 juint xbits = PrimitiveConversions::cast<juint>(x);
356 juint ybits = PrimitiveConversions::cast<juint>(y);
357 // x Mod Infinity == x unless x is infinity
358 if (((xbits & float_sign_mask) != float_infinity) &&
359 ((ybits & float_sign_mask) == float_infinity) ) {
360 return x;
361 }
362 return ((jfloat)fmod_winx64((double)x, (double)y));
363 #else
364 return ((jfloat)fmod((double)x,(double)y));
365 #endif
366 JRT_END
367
368 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
369 #ifdef _WIN64
370 julong xbits = PrimitiveConversions::cast<julong>(x);
371 julong ybits = PrimitiveConversions::cast<julong>(y);
372 // x Mod Infinity == x unless x is infinity
373 if (((xbits & double_sign_mask) != double_infinity) &&
374 ((ybits & double_sign_mask) == double_infinity) ) {
375 return x;
376 }
377 return ((jdouble)fmod_winx64((double)x, (double)y));
378 #else
379 return ((jdouble)fmod((double)x,(double)y));
380 #endif
381 JRT_END
382 #endif // !X86
383
384 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
385 return (jfloat)x;
386 JRT_END
387
388 #ifdef __SOFTFP__
389 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
390 return x + y;
391 JRT_END
392
393 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
394 return x - y;
395 JRT_END
396
397 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
398 return x * y;
399 JRT_END
400
401 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
402 return x / y;
403 JRT_END
404
405 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
406 return x + y;
407 JRT_END
408
409 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
410 return x - y;
411 JRT_END
412
413 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
414 return x * y;
415 JRT_END
416
417 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
418 return x / y;
419 JRT_END
420
421 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
422 return (jdouble)x;
423 JRT_END
424
425 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
426 return (jdouble)x;
427 JRT_END
428
429 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
430 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
431 JRT_END
432
433 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
434 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
435 JRT_END
436
437 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
438 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
439 JRT_END
440
441 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
442 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
443 JRT_END
444
445 // Functions to return the opposite of the aeabi functions for nan.
446 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
447 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
448 JRT_END
449
450 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
451 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
452 JRT_END
453
454 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
455 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
456 JRT_END
457
458 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
459 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
460 JRT_END
461
462 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
463 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
464 JRT_END
465
466 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
467 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
468 JRT_END
469
470 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
471 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
472 JRT_END
473
474 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
475 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
476 JRT_END
477
478 // Intrinsics make gcc generate code for these.
479 float SharedRuntime::fneg(float f) {
480 return -f;
481 }
482
483 double SharedRuntime::dneg(double f) {
484 return -f;
485 }
486
487 #endif // __SOFTFP__
488
489 #if defined(__SOFTFP__) || defined(E500V2)
490 // Intrinsics make gcc generate code for these.
491 double SharedRuntime::dabs(double f) {
492 return (f <= (double)0.0) ? (double)0.0 - f : f;
493 }
494
495 #endif
496
497 #if defined(__SOFTFP__)
498 double SharedRuntime::dsqrt(double f) {
499 return sqrt(f);
500 }
501 #endif
502
503 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
504 if (g_isnan(x))
505 return 0;
506 if (x >= (jfloat) max_jint)
507 return max_jint;
508 if (x <= (jfloat) min_jint)
509 return min_jint;
510 return (jint) x;
511 JRT_END
512
513
514 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
515 if (g_isnan(x))
516 return 0;
517 if (x >= (jfloat) max_jlong)
518 return max_jlong;
519 if (x <= (jfloat) min_jlong)
520 return min_jlong;
521 return (jlong) x;
522 JRT_END
523
524
525 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
526 if (g_isnan(x))
527 return 0;
528 if (x >= (jdouble) max_jint)
529 return max_jint;
530 if (x <= (jdouble) min_jint)
531 return min_jint;
532 return (jint) x;
533 JRT_END
534
535
536 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
537 if (g_isnan(x))
538 return 0;
539 if (x >= (jdouble) max_jlong)
540 return max_jlong;
541 if (x <= (jdouble) min_jlong)
542 return min_jlong;
543 return (jlong) x;
544 JRT_END
545
546
547 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
548 return (jfloat)x;
549 JRT_END
550
551
552 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
553 return (jfloat)x;
554 JRT_END
555
556
557 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
558 return (jdouble)x;
559 JRT_END
560
561
562 // Exception handling across interpreter/compiler boundaries
563 //
564 // exception_handler_for_return_address(...) returns the continuation address.
565 // The continuation address is the entry point of the exception handler of the
566 // previous frame depending on the return address.
567
568 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
569 // Note: This is called when we have unwound the frame of the callee that did
570 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
571 // Notably, the stack is not walkable at this point, and hence the check must
572 // be deferred until later. Specifically, any of the handlers returned here in
573 // this function, will get dispatched to, and call deferred checks to
574 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
575 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
576 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
577
578 #if INCLUDE_JVMCI
579 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
580 // and other exception handler continuations do not read it
581 current->set_exception_pc(nullptr);
582 #endif // INCLUDE_JVMCI
583
584 if (Continuation::is_return_barrier_entry(return_address)) {
585 return StubRoutines::cont_returnBarrierExc();
586 }
587
588 // The fastest case first
589 CodeBlob* blob = CodeCache::find_blob(return_address);
590 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
591 if (nm != nullptr) {
592 // native nmethods don't have exception handlers
593 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
594 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
595 if (nm->is_deopt_pc(return_address)) {
596 // If we come here because of a stack overflow, the stack may be
597 // unguarded. Reguard the stack otherwise if we return to the
598 // deopt blob and the stack bang causes a stack overflow we
599 // crash.
600 StackOverflow* overflow_state = current->stack_overflow_state();
601 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
602 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
603 overflow_state->set_reserved_stack_activation(current->stack_base());
604 }
605 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
606 // The deferred StackWatermarkSet::after_unwind check will be performed in
607 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
608 return SharedRuntime::deopt_blob()->unpack_with_exception();
609 } else {
610 // The deferred StackWatermarkSet::after_unwind check will be performed in
611 // * OptoRuntime::handle_exception_C_helper for C2 code
612 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
613 #ifdef COMPILER2
614 if (nm->compiler_type() == compiler_c2) {
615 return OptoRuntime::exception_blob()->entry_point();
616 }
617 #endif // COMPILER2
618 return nm->exception_begin();
619 }
620 }
621
622 // Entry code
623 if (StubRoutines::returns_to_call_stub(return_address)) {
624 // The deferred StackWatermarkSet::after_unwind check will be performed in
625 // JavaCallWrapper::~JavaCallWrapper
626 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
627 return StubRoutines::catch_exception_entry();
628 }
629 if (blob != nullptr && blob->is_upcall_stub()) {
630 return StubRoutines::upcall_stub_exception_handler();
631 }
632 // Interpreted code
633 if (Interpreter::contains(return_address)) {
634 // The deferred StackWatermarkSet::after_unwind check will be performed in
635 // InterpreterRuntime::exception_handler_for_exception
636 return Interpreter::rethrow_exception_entry();
637 }
638
639 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
640 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
641
642 #ifndef PRODUCT
643 { ResourceMark rm;
644 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
645 os::print_location(tty, (intptr_t)return_address);
646 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
647 tty->print_cr("b) other problem");
648 }
649 #endif // PRODUCT
650 ShouldNotReachHere();
651 return nullptr;
652 }
653
654
655 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
656 return raw_exception_handler_for_return_address(current, return_address);
657 JRT_END
658
659
660 address SharedRuntime::get_poll_stub(address pc) {
661 address stub;
662 // Look up the code blob
663 CodeBlob *cb = CodeCache::find_blob(pc);
664
665 // Should be an nmethod
666 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
667
668 // Look up the relocation information
669 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
670 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
671
672 #ifdef ASSERT
673 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
674 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
675 Disassembler::decode(cb);
676 fatal("Only polling locations are used for safepoint");
677 }
678 #endif
679
680 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
681 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
682 if (at_poll_return) {
683 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
684 "polling page return stub not created yet");
685 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
686 } else if (has_wide_vectors) {
687 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
688 "polling page vectors safepoint stub not created yet");
689 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
690 } else {
691 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
692 "polling page safepoint stub not created yet");
693 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
694 }
695 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
696 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
697 p2i(Thread::current()),
698 Thread::current()->osthread()->thread_id(),
699 p2i(pc),
700 at_poll_return ? "return" : "loop",
701 p2i(stub));
702 return stub;
703 }
704
705 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
706 if (JvmtiExport::can_post_on_exceptions()) {
707 vframeStream vfst(current, true);
708 methodHandle method = methodHandle(current, vfst.method());
709 address bcp = method()->bcp_from(vfst.bci());
710 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
711 }
712
713 #if INCLUDE_JVMCI
714 if (EnableJVMCI) {
715 vframeStream vfst(current, true);
716 methodHandle method = methodHandle(current, vfst.method());
717 int bci = vfst.bci();
718 MethodData* trap_mdo = method->method_data();
719 if (trap_mdo != nullptr) {
720 // Set exception_seen if the exceptional bytecode is an invoke
721 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
722 if (call.is_valid()) {
723 ResourceMark rm(current);
724
725 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
726 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
727
728 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
729 if (pdata != nullptr && pdata->is_BitData()) {
730 BitData* bit_data = (BitData*) pdata;
731 bit_data->set_exception_seen();
732 }
733 }
734 }
735 }
736 #endif
737
738 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
739 }
740
741 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
742 Handle h_exception = Exceptions::new_exception(current, name, message);
743 throw_and_post_jvmti_exception(current, h_exception);
744 }
745
746 // The interpreter code to call this tracing function is only
747 // called/generated when UL is on for redefine, class and has the right level
748 // and tags. Since obsolete methods are never compiled, we don't have
749 // to modify the compilers to generate calls to this function.
750 //
751 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
752 JavaThread* thread, Method* method))
753 if (method->is_obsolete()) {
754 // We are calling an obsolete method, but this is not necessarily
755 // an error. Our method could have been redefined just after we
756 // fetched the Method* from the constant pool.
757 ResourceMark rm;
758 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
759 }
760 return 0;
761 JRT_END
762
763 // ret_pc points into caller; we are returning caller's exception handler
764 // for given exception
765 // Note that the implementation of this method assumes it's only called when an exception has actually occured
766 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
767 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
768 assert(nm != nullptr, "must exist");
769 ResourceMark rm;
770
771 #if INCLUDE_JVMCI
772 if (nm->is_compiled_by_jvmci()) {
773 // lookup exception handler for this pc
774 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
775 ExceptionHandlerTable table(nm);
776 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
777 if (t != nullptr) {
778 return nm->code_begin() + t->pco();
779 } else {
780 bool make_not_entrant = true;
781 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
782 }
783 }
784 #endif // INCLUDE_JVMCI
785
786 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
787 // determine handler bci, if any
788 EXCEPTION_MARK;
789
790 Handle orig_exception(THREAD, exception());
791
792 int handler_bci = -1;
793 int scope_depth = 0;
794 if (!force_unwind) {
795 int bci = sd->bci();
796 bool recursive_exception = false;
797 do {
798 bool skip_scope_increment = false;
799 // exception handler lookup
800 Klass* ek = exception->klass();
801 methodHandle mh(THREAD, sd->method());
802 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
803 if (HAS_PENDING_EXCEPTION) {
804 recursive_exception = true;
805 // We threw an exception while trying to find the exception handler.
806 // Transfer the new exception to the exception handle which will
807 // be set into thread local storage, and do another lookup for an
808 // exception handler for this exception, this time starting at the
809 // BCI of the exception handler which caused the exception to be
810 // thrown (bugs 4307310 and 4546590). Set "exception" reference
811 // argument to ensure that the correct exception is thrown (4870175).
812 recursive_exception_occurred = true;
813 exception.replace(PENDING_EXCEPTION);
814 CLEAR_PENDING_EXCEPTION;
815 if (handler_bci >= 0) {
816 bci = handler_bci;
817 handler_bci = -1;
818 skip_scope_increment = true;
819 }
820 }
821 else {
822 recursive_exception = false;
823 }
824 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
825 sd = sd->sender();
826 if (sd != nullptr) {
827 bci = sd->bci();
828 }
829 ++scope_depth;
830 }
831 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
832 }
833
834 // found handling method => lookup exception handler
835 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
836
837 ExceptionHandlerTable table(nm);
838 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
839
840 // If the compiler did not anticipate a recursive exception, resulting in an exception
841 // thrown from the catch bci, then the compiled exception handler might be missing.
842 // This is rare. Just deoptimize and let the interpreter rethrow the original
843 // exception at the original bci.
844 if (t == nullptr && recursive_exception_occurred) {
845 exception.replace(orig_exception()); // restore original exception
846 bool make_not_entrant = false;
847 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
848 }
849
850 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
851 // Allow abbreviated catch tables. The idea is to allow a method
852 // to materialize its exceptions without committing to the exact
853 // routing of exceptions. In particular this is needed for adding
854 // a synthetic handler to unlock monitors when inlining
855 // synchronized methods since the unlock path isn't represented in
856 // the bytecodes.
857 t = table.entry_for(catch_pco, -1, 0);
858 }
859
860 #ifdef COMPILER1
861 if (t == nullptr && nm->is_compiled_by_c1()) {
862 assert(nm->unwind_handler_begin() != nullptr, "");
863 return nm->unwind_handler_begin();
864 }
865 #endif
866
867 if (t == nullptr) {
868 ttyLocker ttyl;
869 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
870 tty->print_cr(" Exception:");
871 exception->print();
872 tty->cr();
873 tty->print_cr(" Compiled exception table :");
874 table.print();
875 nm->print();
876 nm->print_code();
877 guarantee(false, "missing exception handler");
878 return nullptr;
879 }
880
881 if (handler_bci != -1) { // did we find a handler in this method?
882 sd->method()->set_exception_handler_entered(handler_bci); // profile
883 }
884 return nm->code_begin() + t->pco();
885 }
886
887 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
888 // These errors occur only at call sites
889 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
890 JRT_END
891
892 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
893 // These errors occur only at call sites
894 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
895 JRT_END
896
897 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
898 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
899 JRT_END
900
901 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
902 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
903 JRT_END
904
905 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
906 // This entry point is effectively only used for NullPointerExceptions which occur at inline
907 // cache sites (when the callee activation is not yet set up) so we are at a call site
908 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
909 JRT_END
910
911 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
912 throw_StackOverflowError_common(current, false);
913 JRT_END
914
915 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
916 throw_StackOverflowError_common(current, true);
917 JRT_END
918
919 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
920 // We avoid using the normal exception construction in this case because
921 // it performs an upcall to Java, and we're already out of stack space.
922 JavaThread* THREAD = current; // For exception macros.
923 InstanceKlass* k = vmClasses::StackOverflowError_klass();
924 oop exception_oop = k->allocate_instance(CHECK);
925 if (delayed) {
926 java_lang_Throwable::set_message(exception_oop,
927 Universe::delayed_stack_overflow_error_message());
928 }
929 Handle exception (current, exception_oop);
930 if (StackTraceInThrowable) {
931 java_lang_Throwable::fill_in_stack_trace(exception);
932 }
933 // Remove the ScopedValue bindings in case we got a
934 // StackOverflowError while we were trying to remove ScopedValue
935 // bindings.
936 current->clear_scopedValueBindings();
937 // Increment counter for hs_err file reporting
938 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
939 throw_and_post_jvmti_exception(current, exception);
940 }
941
942 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
943 address pc,
944 ImplicitExceptionKind exception_kind)
945 {
946 address target_pc = nullptr;
947
948 if (Interpreter::contains(pc)) {
949 switch (exception_kind) {
950 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
951 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
952 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
953 default: ShouldNotReachHere();
954 }
955 } else {
956 switch (exception_kind) {
957 case STACK_OVERFLOW: {
958 // Stack overflow only occurs upon frame setup; the callee is
959 // going to be unwound. Dispatch to a shared runtime stub
960 // which will cause the StackOverflowError to be fabricated
961 // and processed.
962 // Stack overflow should never occur during deoptimization:
963 // the compiled method bangs the stack by as much as the
964 // interpreter would need in case of a deoptimization. The
965 // deoptimization blob and uncommon trap blob bang the stack
966 // in a debug VM to verify the correctness of the compiled
967 // method stack banging.
968 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
969 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
970 return SharedRuntime::throw_StackOverflowError_entry();
971 }
972
973 case IMPLICIT_NULL: {
974 if (VtableStubs::contains(pc)) {
975 // We haven't yet entered the callee frame. Fabricate an
976 // exception and begin dispatching it in the caller. Since
977 // the caller was at a call site, it's safe to destroy all
978 // caller-saved registers, as these entry points do.
979 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
980
981 // If vt_stub is null, then return null to signal handler to report the SEGV error.
982 if (vt_stub == nullptr) return nullptr;
983
984 if (vt_stub->is_abstract_method_error(pc)) {
985 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
986 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
987 // Instead of throwing the abstract method error here directly, we re-resolve
988 // and will throw the AbstractMethodError during resolve. As a result, we'll
989 // get a more detailed error message.
990 return SharedRuntime::get_handle_wrong_method_stub();
991 } else {
992 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
993 // Assert that the signal comes from the expected location in stub code.
994 assert(vt_stub->is_null_pointer_exception(pc),
995 "obtained signal from unexpected location in stub code");
996 return SharedRuntime::throw_NullPointerException_at_call_entry();
997 }
998 } else {
999 CodeBlob* cb = CodeCache::find_blob(pc);
1000
1001 // If code blob is null, then return null to signal handler to report the SEGV error.
1002 if (cb == nullptr) return nullptr;
1003
1004 // Exception happened in CodeCache. Must be either:
1005 // 1. Inline-cache check in C2I handler blob,
1006 // 2. Inline-cache check in nmethod, or
1007 // 3. Implicit null exception in nmethod
1008
1009 if (!cb->is_nmethod()) {
1010 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1011 if (!is_in_blob) {
1012 // Allow normal crash reporting to handle this
1013 return nullptr;
1014 }
1015 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1016 // There is no handler here, so we will simply unwind.
1017 return SharedRuntime::throw_NullPointerException_at_call_entry();
1018 }
1019
1020 // Otherwise, it's a compiled method. Consult its exception handlers.
1021 nmethod* nm = cb->as_nmethod();
1022 if (nm->inlinecache_check_contains(pc)) {
1023 // exception happened inside inline-cache check code
1024 // => the nmethod is not yet active (i.e., the frame
1025 // is not set up yet) => use return address pushed by
1026 // caller => don't push another return address
1027 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1028 return SharedRuntime::throw_NullPointerException_at_call_entry();
1029 }
1030
1031 if (nm->method()->is_method_handle_intrinsic()) {
1032 // exception happened inside MH dispatch code, similar to a vtable stub
1033 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1034 return SharedRuntime::throw_NullPointerException_at_call_entry();
1035 }
1036
1037 #ifndef PRODUCT
1038 _implicit_null_throws++;
1039 #endif
1040 target_pc = nm->continuation_for_implicit_null_exception(pc);
1041 // If there's an unexpected fault, target_pc might be null,
1042 // in which case we want to fall through into the normal
1043 // error handling code.
1044 }
1045
1046 break; // fall through
1047 }
1048
1049
1050 case IMPLICIT_DIVIDE_BY_ZERO: {
1051 nmethod* nm = CodeCache::find_nmethod(pc);
1052 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1053 #ifndef PRODUCT
1054 _implicit_div0_throws++;
1055 #endif
1056 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1057 // If there's an unexpected fault, target_pc might be null,
1058 // in which case we want to fall through into the normal
1059 // error handling code.
1060 break; // fall through
1061 }
1062
1063 default: ShouldNotReachHere();
1064 }
1065
1066 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1067
1068 if (exception_kind == IMPLICIT_NULL) {
1069 #ifndef PRODUCT
1070 // for AbortVMOnException flag
1071 Exceptions::debug_check_abort("java.lang.NullPointerException");
1072 #endif //PRODUCT
1073 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1074 } else {
1075 #ifndef PRODUCT
1076 // for AbortVMOnException flag
1077 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1078 #endif //PRODUCT
1079 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1080 }
1081 return target_pc;
1082 }
1083
1084 ShouldNotReachHere();
1085 return nullptr;
1086 }
1087
1088
1089 /**
1090 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1091 * installed in the native function entry of all native Java methods before
1092 * they get linked to their actual native methods.
1093 *
1094 * \note
1095 * This method actually never gets called! The reason is because
1096 * the interpreter's native entries call NativeLookup::lookup() which
1097 * throws the exception when the lookup fails. The exception is then
1098 * caught and forwarded on the return from NativeLookup::lookup() call
1099 * before the call to the native function. This might change in the future.
1100 */
1101 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1102 {
1103 // We return a bad value here to make sure that the exception is
1104 // forwarded before we look at the return value.
1105 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1106 }
1107 JNI_END
1108
1109 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1110 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1111 }
1112
1113 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1114 #if INCLUDE_JVMCI
1115 if (!obj->klass()->has_finalizer()) {
1116 return;
1117 }
1118 #endif // INCLUDE_JVMCI
1119 assert(oopDesc::is_oop(obj), "must be a valid oop");
1120 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1121 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1122 JRT_END
1123
1124 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1125 assert(thread != nullptr, "No thread");
1126 if (thread == nullptr) {
1127 return 0;
1128 }
1129 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1130 "current cannot touch oops after its GC barrier is detached.");
1131 oop obj = thread->threadObj();
1132 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1133 }
1134
1135 /**
1136 * This function ought to be a void function, but cannot be because
1137 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1138 * 6254741. Once that is fixed we can remove the dummy return value.
1139 */
1140 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1141 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1142 }
1143
1144 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1145 return dtrace_object_alloc(thread, o, o->size());
1146 }
1147
1148 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1149 assert(DTraceAllocProbes, "wrong call");
1150 Klass* klass = o->klass();
1151 Symbol* name = klass->name();
1152 HOTSPOT_OBJECT_ALLOC(
1153 get_java_tid(thread),
1154 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1155 return 0;
1156 }
1157
1158 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1159 JavaThread* current, Method* method))
1160 assert(current == JavaThread::current(), "pre-condition");
1161
1162 assert(DTraceMethodProbes, "wrong call");
1163 Symbol* kname = method->klass_name();
1164 Symbol* name = method->name();
1165 Symbol* sig = method->signature();
1166 HOTSPOT_METHOD_ENTRY(
1167 get_java_tid(current),
1168 (char *) kname->bytes(), kname->utf8_length(),
1169 (char *) name->bytes(), name->utf8_length(),
1170 (char *) sig->bytes(), sig->utf8_length());
1171 return 0;
1172 JRT_END
1173
1174 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1175 JavaThread* current, Method* method))
1176 assert(current == JavaThread::current(), "pre-condition");
1177 assert(DTraceMethodProbes, "wrong call");
1178 Symbol* kname = method->klass_name();
1179 Symbol* name = method->name();
1180 Symbol* sig = method->signature();
1181 HOTSPOT_METHOD_RETURN(
1182 get_java_tid(current),
1183 (char *) kname->bytes(), kname->utf8_length(),
1184 (char *) name->bytes(), name->utf8_length(),
1185 (char *) sig->bytes(), sig->utf8_length());
1186 return 0;
1187 JRT_END
1188
1189
1190 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1191 // for a call current in progress, i.e., arguments has been pushed on stack
1192 // put callee has not been invoked yet. Used by: resolve virtual/static,
1193 // vtable updates, etc. Caller frame must be compiled.
1194 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1195 JavaThread* current = THREAD;
1196 ResourceMark rm(current);
1197
1198 // last java frame on stack (which includes native call frames)
1199 vframeStream vfst(current, true); // Do not skip and javaCalls
1200
1201 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1202 }
1203
1204 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1205 nmethod* caller = vfst.nm();
1206
1207 address pc = vfst.frame_pc();
1208 { // Get call instruction under lock because another thread may be busy patching it.
1209 CompiledICLocker ic_locker(caller);
1210 return caller->attached_method_before_pc(pc);
1211 }
1212 return nullptr;
1213 }
1214
1215 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1216 // for a call current in progress, i.e., arguments has been pushed on stack
1217 // but callee has not been invoked yet. Caller frame must be compiled.
1218 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1219 CallInfo& callinfo, TRAPS) {
1220 Handle receiver;
1221 Handle nullHandle; // create a handy null handle for exception returns
1222 JavaThread* current = THREAD;
1223
1224 assert(!vfst.at_end(), "Java frame must exist");
1225
1226 // Find caller and bci from vframe
1227 methodHandle caller(current, vfst.method());
1228 int bci = vfst.bci();
1229
1230 if (caller->is_continuation_enter_intrinsic()) {
1231 bc = Bytecodes::_invokestatic;
1232 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1233 return receiver;
1234 }
1235
1236 // Substitutability test implementation piggy backs on static call resolution
1237 Bytecodes::Code code = caller->java_code_at(bci);
1238 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1239 bc = Bytecodes::_invokestatic;
1240 methodHandle attached_method(THREAD, extract_attached_method(vfst));
1241 assert(attached_method.not_null(), "must have attached method");
1242 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH);
1243 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1244 #ifdef ASSERT
1245 Symbol* subst_method_name = UseAltSubstitutabilityMethod ? vmSymbols::isSubstitutableAlt_name() : vmSymbols::isSubstitutable_name();
1246 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(subst_method_name, vmSymbols::object_object_boolean_signature());
1247 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1248 #endif
1249 return receiver;
1250 }
1251
1252 Bytecode_invoke bytecode(caller, bci);
1253 int bytecode_index = bytecode.index();
1254 bc = bytecode.invoke_code();
1255
1256 methodHandle attached_method(current, extract_attached_method(vfst));
1257 if (attached_method.not_null()) {
1258 Method* callee = bytecode.static_target(CHECK_NH);
1259 vmIntrinsics::ID id = callee->intrinsic_id();
1260 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1261 // it attaches statically resolved method to the call site.
1262 if (MethodHandles::is_signature_polymorphic(id) &&
1263 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1264 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1265
1266 // Adjust invocation mode according to the attached method.
1267 switch (bc) {
1268 case Bytecodes::_invokevirtual:
1269 if (attached_method->method_holder()->is_interface()) {
1270 bc = Bytecodes::_invokeinterface;
1271 }
1272 break;
1273 case Bytecodes::_invokeinterface:
1274 if (!attached_method->method_holder()->is_interface()) {
1275 bc = Bytecodes::_invokevirtual;
1276 }
1277 break;
1278 case Bytecodes::_invokehandle:
1279 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1280 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1281 : Bytecodes::_invokevirtual;
1282 }
1283 break;
1284 default:
1285 break;
1286 }
1287 } else {
1288 assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1289 if (!attached_method->method_holder()->is_inline_klass()) {
1290 // Ignore the attached method in this case to not confuse below code
1291 attached_method = methodHandle(current, nullptr);
1292 }
1293 }
1294 }
1295
1296 assert(bc != Bytecodes::_illegal, "not initialized");
1297
1298 bool has_receiver = bc != Bytecodes::_invokestatic &&
1299 bc != Bytecodes::_invokedynamic &&
1300 bc != Bytecodes::_invokehandle;
1301 bool check_null_and_abstract = true;
1302
1303 // Find receiver for non-static call
1304 if (has_receiver) {
1305 // This register map must be update since we need to find the receiver for
1306 // compiled frames. The receiver might be in a register.
1307 RegisterMap reg_map2(current,
1308 RegisterMap::UpdateMap::include,
1309 RegisterMap::ProcessFrames::include,
1310 RegisterMap::WalkContinuation::skip);
1311 frame stubFrame = current->last_frame();
1312 // Caller-frame is a compiled frame
1313 frame callerFrame = stubFrame.sender(®_map2);
1314
1315 Method* callee = attached_method();
1316 if (callee == nullptr) {
1317 callee = bytecode.static_target(CHECK_NH);
1318 if (callee == nullptr) {
1319 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1320 }
1321 }
1322 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1();
1323 if (!caller_is_c1 && callee->is_scalarized_arg(0)) {
1324 // If the receiver is an inline type that is passed as fields, no oop is available
1325 // Resolve the call without receiver null checking.
1326 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch");
1327 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1328 if (bc == Bytecodes::_invokeinterface) {
1329 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1330 }
1331 check_null_and_abstract = false;
1332 } else {
1333 // Retrieve from a compiled argument list
1334 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1335 assert(oopDesc::is_oop_or_null(receiver()), "");
1336 if (receiver.is_null()) {
1337 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1338 }
1339 }
1340 }
1341
1342 // Resolve method
1343 if (attached_method.not_null()) {
1344 // Parameterized by attached method.
1345 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1346 } else {
1347 // Parameterized by bytecode.
1348 constantPoolHandle constants(current, caller->constants());
1349 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1350 }
1351
1352 #ifdef ASSERT
1353 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1354 if (has_receiver && check_null_and_abstract) {
1355 assert(receiver.not_null(), "should have thrown exception");
1356 Klass* receiver_klass = receiver->klass();
1357 Klass* rk = nullptr;
1358 if (attached_method.not_null()) {
1359 // In case there's resolved method attached, use its holder during the check.
1360 rk = attached_method->method_holder();
1361 } else {
1362 // Klass is already loaded.
1363 constantPoolHandle constants(current, caller->constants());
1364 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1365 }
1366 Klass* static_receiver_klass = rk;
1367 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1368 "actual receiver must be subclass of static receiver klass");
1369 if (receiver_klass->is_instance_klass()) {
1370 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1371 tty->print_cr("ERROR: Klass not yet initialized!!");
1372 receiver_klass->print();
1373 }
1374 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1375 }
1376 }
1377 #endif
1378
1379 return receiver;
1380 }
1381
1382 methodHandle SharedRuntime::find_callee_method(bool& caller_does_not_scalarize, TRAPS) {
1383 JavaThread* current = THREAD;
1384 ResourceMark rm(current);
1385 // We need first to check if any Java activations (compiled, interpreted)
1386 // exist on the stack since last JavaCall. If not, we need
1387 // to get the target method from the JavaCall wrapper.
1388 vframeStream vfst(current, true); // Do not skip any javaCalls
1389 methodHandle callee_method;
1390 if (vfst.at_end()) {
1391 // No Java frames were found on stack since we did the JavaCall.
1392 // Hence the stack can only contain an entry_frame. We need to
1393 // find the target method from the stub frame.
1394 RegisterMap reg_map(current,
1395 RegisterMap::UpdateMap::skip,
1396 RegisterMap::ProcessFrames::include,
1397 RegisterMap::WalkContinuation::skip);
1398 frame fr = current->last_frame();
1399 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1400 fr = fr.sender(®_map);
1401 assert(fr.is_entry_frame(), "must be");
1402 // fr is now pointing to the entry frame.
1403 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1404 } else {
1405 Bytecodes::Code bc;
1406 CallInfo callinfo;
1407 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1408 // Calls via mismatching methods are always non-scalarized
1409 if (callinfo.resolved_method()->mismatch()) {
1410 caller_does_not_scalarize = true;
1411 }
1412 callee_method = methodHandle(current, callinfo.selected_method());
1413 }
1414 assert(callee_method()->is_method(), "must be");
1415 return callee_method;
1416 }
1417
1418 // Resolves a call.
1419 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1420 JavaThread* current = THREAD;
1421 ResourceMark rm(current);
1422 RegisterMap cbl_map(current,
1423 RegisterMap::UpdateMap::skip,
1424 RegisterMap::ProcessFrames::include,
1425 RegisterMap::WalkContinuation::skip);
1426 frame caller_frame = current->last_frame().sender(&cbl_map);
1427
1428 CodeBlob* caller_cb = caller_frame.cb();
1429 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1430 nmethod* caller_nm = caller_cb->as_nmethod();
1431
1432 // determine call info & receiver
1433 // note: a) receiver is null for static calls
1434 // b) an exception is thrown if receiver is null for non-static calls
1435 CallInfo call_info;
1436 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1437 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1438
1439 NoSafepointVerifier nsv;
1440
1441 methodHandle callee_method(current, call_info.selected_method());
1442 // Calls via mismatching methods are always non-scalarized
1443 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1444 caller_does_not_scalarize = true;
1445 }
1446
1447 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1448 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1449 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1450 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1451 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1452
1453 assert(!caller_nm->is_unloading(), "It should not be unloading");
1454
1455 #ifndef PRODUCT
1456 // tracing/debugging/statistics
1457 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1458 (is_virtual) ? (&_resolve_virtual_ctr) :
1459 (&_resolve_static_ctr);
1460 AtomicAccess::inc(addr);
1461
1462 if (TraceCallFixup) {
1463 ResourceMark rm(current);
1464 tty->print("resolving %s%s (%s) %s call to",
1465 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1466 Bytecodes::name(invoke_code), (caller_does_not_scalarize) ? "non-scalar" : "");
1467 callee_method->print_short_name(tty);
1468 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1469 p2i(caller_frame.pc()), p2i(callee_method->code()));
1470 }
1471 #endif
1472
1473 if (invoke_code == Bytecodes::_invokestatic) {
1474 assert(callee_method->method_holder()->is_initialized() ||
1475 callee_method->method_holder()->is_reentrant_initialization(current),
1476 "invalid class initialization state for invoke_static");
1477 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1478 // In order to keep class initialization check, do not patch call
1479 // site for static call when the class is not fully initialized.
1480 // Proper check is enforced by call site re-resolution on every invocation.
1481 //
1482 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1483 // explicit class initialization check is put in nmethod entry (VEP).
1484 assert(callee_method->method_holder()->is_linked(), "must be");
1485 return callee_method;
1486 }
1487 }
1488
1489
1490 // JSR 292 key invariant:
1491 // If the resolved method is a MethodHandle invoke target, the call
1492 // site must be a MethodHandle call site, because the lambda form might tail-call
1493 // leaving the stack in a state unknown to either caller or callee
1494
1495 // Compute entry points. The computation of the entry points is independent of
1496 // patching the call.
1497
1498 // Make sure the callee nmethod does not get deoptimized and removed before
1499 // we are done patching the code.
1500
1501
1502 CompiledICLocker ml(caller_nm);
1503 if (is_virtual && !is_optimized) {
1504 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1505 inline_cache->update(&call_info, receiver->klass(), caller_does_not_scalarize);
1506 } else {
1507 // Callsite is a direct call - set it to the destination method
1508 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1509 callsite->set(callee_method, caller_does_not_scalarize);
1510 }
1511
1512 return callee_method;
1513 }
1514
1515 // Inline caches exist only in compiled code
1516 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1517 #ifdef ASSERT
1518 RegisterMap reg_map(current,
1519 RegisterMap::UpdateMap::skip,
1520 RegisterMap::ProcessFrames::include,
1521 RegisterMap::WalkContinuation::skip);
1522 frame stub_frame = current->last_frame();
1523 assert(stub_frame.is_runtime_frame(), "sanity check");
1524 frame caller_frame = stub_frame.sender(®_map);
1525 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1526 #endif /* ASSERT */
1527
1528 methodHandle callee_method;
1529 bool caller_does_not_scalarize = false;
1530 JRT_BLOCK
1531 callee_method = SharedRuntime::handle_ic_miss_helper(caller_does_not_scalarize, CHECK_NULL);
1532 // Return Method* through TLS
1533 current->set_vm_result_metadata(callee_method());
1534 JRT_BLOCK_END
1535 // return compiled code entry point after potential safepoints
1536 return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1537 JRT_END
1538
1539
1540 // Handle call site that has been made non-entrant
1541 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1542 // 6243940 We might end up in here if the callee is deoptimized
1543 // as we race to call it. We don't want to take a safepoint if
1544 // the caller was interpreted because the caller frame will look
1545 // interpreted to the stack walkers and arguments are now
1546 // "compiled" so it is much better to make this transition
1547 // invisible to the stack walking code. The i2c path will
1548 // place the callee method in the callee_target. It is stashed
1549 // there because if we try and find the callee by normal means a
1550 // safepoint is possible and have trouble gc'ing the compiled args.
1551 RegisterMap reg_map(current,
1552 RegisterMap::UpdateMap::skip,
1553 RegisterMap::ProcessFrames::include,
1554 RegisterMap::WalkContinuation::skip);
1555 frame stub_frame = current->last_frame();
1556 assert(stub_frame.is_runtime_frame(), "sanity check");
1557 frame caller_frame = stub_frame.sender(®_map);
1558
1559 if (caller_frame.is_interpreted_frame() ||
1560 caller_frame.is_entry_frame() ||
1561 caller_frame.is_upcall_stub_frame()) {
1562 Method* callee = current->callee_target();
1563 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1564 current->set_vm_result_metadata(callee);
1565 current->set_callee_target(nullptr);
1566 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1567 // Bypass class initialization checks in c2i when caller is in native.
1568 // JNI calls to static methods don't have class initialization checks.
1569 // Fast class initialization checks are present in c2i adapters and call into
1570 // SharedRuntime::handle_wrong_method() on the slow path.
1571 //
1572 // JVM upcalls may land here as well, but there's a proper check present in
1573 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1574 // so bypassing it in c2i adapter is benign.
1575 return callee->get_c2i_no_clinit_check_entry();
1576 } else {
1577 if (caller_frame.is_interpreted_frame()) {
1578 return callee->get_c2i_inline_entry();
1579 } else {
1580 return callee->get_c2i_entry();
1581 }
1582 }
1583 }
1584
1585 // Must be compiled to compiled path which is safe to stackwalk
1586 methodHandle callee_method;
1587 bool is_static_call = false;
1588 bool is_optimized = false;
1589 bool caller_does_not_scalarize = false;
1590 JRT_BLOCK
1591 // Force resolving of caller (if we called from compiled frame)
1592 callee_method = SharedRuntime::reresolve_call_site(is_optimized, caller_does_not_scalarize, CHECK_NULL);
1593 current->set_vm_result_metadata(callee_method());
1594 JRT_BLOCK_END
1595 // return compiled code entry point after potential safepoints
1596 return get_resolved_entry(current, callee_method, callee_method->is_static(), is_optimized, caller_does_not_scalarize);
1597 JRT_END
1598
1599 // Handle abstract method call
1600 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1601 // Verbose error message for AbstractMethodError.
1602 // Get the called method from the invoke bytecode.
1603 vframeStream vfst(current, true);
1604 assert(!vfst.at_end(), "Java frame must exist");
1605 methodHandle caller(current, vfst.method());
1606 Bytecode_invoke invoke(caller, vfst.bci());
1607 DEBUG_ONLY( invoke.verify(); )
1608
1609 // Find the compiled caller frame.
1610 RegisterMap reg_map(current,
1611 RegisterMap::UpdateMap::include,
1612 RegisterMap::ProcessFrames::include,
1613 RegisterMap::WalkContinuation::skip);
1614 frame stubFrame = current->last_frame();
1615 assert(stubFrame.is_runtime_frame(), "must be");
1616 frame callerFrame = stubFrame.sender(®_map);
1617 assert(callerFrame.is_compiled_frame(), "must be");
1618
1619 // Install exception and return forward entry.
1620 address res = SharedRuntime::throw_AbstractMethodError_entry();
1621 JRT_BLOCK
1622 methodHandle callee(current, invoke.static_target(current));
1623 if (!callee.is_null()) {
1624 oop recv = callerFrame.retrieve_receiver(®_map);
1625 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1626 res = StubRoutines::forward_exception_entry();
1627 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1628 }
1629 JRT_BLOCK_END
1630 return res;
1631 JRT_END
1632
1633 // return verified_code_entry if interp_only_mode is not set for the current thread;
1634 // otherwise return c2i entry.
1635 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method,
1636 bool is_static_call, bool is_optimized, bool caller_does_not_scalarize) {
1637 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1638 // In interp_only_mode we need to go to the interpreted entry
1639 // The c2i won't patch in this mode -- see fixup_callers_callsite
1640 return callee_method->get_c2i_entry();
1641 }
1642
1643 if (caller_does_not_scalarize) {
1644 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!");
1645 return callee_method->verified_inline_code_entry();
1646 } else if (is_static_call || is_optimized) {
1647 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!");
1648 return callee_method->verified_code_entry();
1649 } else {
1650 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!");
1651 return callee_method->verified_inline_ro_code_entry();
1652 }
1653 }
1654
1655 // resolve a static call and patch code
1656 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1657 methodHandle callee_method;
1658 bool caller_does_not_scalarize = false;
1659 bool enter_special = false;
1660 JRT_BLOCK
1661 callee_method = SharedRuntime::resolve_helper(false, false, caller_does_not_scalarize, CHECK_NULL);
1662 current->set_vm_result_metadata(callee_method());
1663 JRT_BLOCK_END
1664 // return compiled code entry point after potential safepoints
1665 return get_resolved_entry(current, callee_method, true, false, caller_does_not_scalarize);
1666 JRT_END
1667
1668 // resolve virtual call and update inline cache to monomorphic
1669 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1670 methodHandle callee_method;
1671 bool caller_does_not_scalarize = false;
1672 JRT_BLOCK
1673 callee_method = SharedRuntime::resolve_helper(true, false, caller_does_not_scalarize, CHECK_NULL);
1674 current->set_vm_result_metadata(callee_method());
1675 JRT_BLOCK_END
1676 // return compiled code entry point after potential safepoints
1677 return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1678 JRT_END
1679
1680
1681 // Resolve a virtual call that can be statically bound (e.g., always
1682 // monomorphic, so it has no inline cache). Patch code to resolved target.
1683 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1684 methodHandle callee_method;
1685 bool caller_does_not_scalarize = false;
1686 JRT_BLOCK
1687 callee_method = SharedRuntime::resolve_helper(true, true, caller_does_not_scalarize, CHECK_NULL);
1688 current->set_vm_result_metadata(callee_method());
1689 JRT_BLOCK_END
1690 // return compiled code entry point after potential safepoints
1691 return get_resolved_entry(current, callee_method, false, true, caller_does_not_scalarize);
1692 JRT_END
1693
1694
1695
1696 methodHandle SharedRuntime::handle_ic_miss_helper(bool& caller_does_not_scalarize, TRAPS) {
1697 JavaThread* current = THREAD;
1698 ResourceMark rm(current);
1699 CallInfo call_info;
1700 Bytecodes::Code bc;
1701
1702 // receiver is null for static calls. An exception is thrown for null
1703 // receivers for non-static calls
1704 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1705
1706 methodHandle callee_method(current, call_info.selected_method());
1707
1708 #ifndef PRODUCT
1709 AtomicAccess::inc(&_ic_miss_ctr);
1710
1711 // Statistics & Tracing
1712 if (TraceCallFixup) {
1713 ResourceMark rm(current);
1714 tty->print("IC miss (%s) %s call to", Bytecodes::name(bc), (caller_does_not_scalarize) ? "non-scalar" : "");
1715 callee_method->print_short_name(tty);
1716 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1717 }
1718
1719 if (ICMissHistogram) {
1720 MutexLocker m(VMStatistic_lock);
1721 RegisterMap reg_map(current,
1722 RegisterMap::UpdateMap::skip,
1723 RegisterMap::ProcessFrames::include,
1724 RegisterMap::WalkContinuation::skip);
1725 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1726 // produce statistics under the lock
1727 trace_ic_miss(f.pc());
1728 }
1729 #endif
1730
1731 // install an event collector so that when a vtable stub is created the
1732 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1733 // event can't be posted when the stub is created as locks are held
1734 // - instead the event will be deferred until the event collector goes
1735 // out of scope.
1736 JvmtiDynamicCodeEventCollector event_collector;
1737
1738 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1739 RegisterMap reg_map(current,
1740 RegisterMap::UpdateMap::skip,
1741 RegisterMap::ProcessFrames::include,
1742 RegisterMap::WalkContinuation::skip);
1743 frame caller_frame = current->last_frame().sender(®_map);
1744 CodeBlob* cb = caller_frame.cb();
1745 nmethod* caller_nm = cb->as_nmethod();
1746 // Calls via mismatching methods are always non-scalarized
1747 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1748 caller_does_not_scalarize = true;
1749 }
1750
1751 CompiledICLocker ml(caller_nm);
1752 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1753 inline_cache->update(&call_info, receiver()->klass(), caller_does_not_scalarize);
1754
1755 return callee_method;
1756 }
1757
1758 //
1759 // Resets a call-site in compiled code so it will get resolved again.
1760 // This routines handles both virtual call sites, optimized virtual call
1761 // sites, and static call sites. Typically used to change a call sites
1762 // destination from compiled to interpreted.
1763 //
1764 methodHandle SharedRuntime::reresolve_call_site(bool& is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1765 JavaThread* current = THREAD;
1766 ResourceMark rm(current);
1767 RegisterMap reg_map(current,
1768 RegisterMap::UpdateMap::skip,
1769 RegisterMap::ProcessFrames::include,
1770 RegisterMap::WalkContinuation::skip);
1771 frame stub_frame = current->last_frame();
1772 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1773 frame caller = stub_frame.sender(®_map);
1774 if (caller.is_compiled_frame()) {
1775 caller_does_not_scalarize = caller.cb()->as_nmethod()->is_compiled_by_c1();
1776 }
1777 assert(!caller.is_interpreted_frame(), "must be compiled");
1778
1779 // If the frame isn't a live compiled frame (i.e. deoptimized by the time we get here), no IC clearing must be done
1780 // for the caller. However, when the caller is C2 compiled and the callee a C1 or C2 compiled method, then we still
1781 // need to figure out whether it was an optimized virtual call with an inline type receiver. Otherwise, we end up
1782 // using the wrong method entry point and accidentally skip the buffering of the receiver.
1783 methodHandle callee_method = find_callee_method(caller_does_not_scalarize, CHECK_(methodHandle()));
1784 const bool caller_is_compiled_and_not_deoptimized = caller.is_compiled_frame() && !caller.is_deoptimized_frame();
1785 const bool caller_is_continuation_enter_intrinsic =
1786 caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic();
1787 const bool do_IC_clearing = caller_is_compiled_and_not_deoptimized || caller_is_continuation_enter_intrinsic;
1788
1789 const bool callee_compiled_with_scalarized_receiver = callee_method->has_compiled_code() &&
1790 !callee_method()->is_static() &&
1791 callee_method()->is_scalarized_arg(0);
1792 const bool compute_is_optimized = !caller_does_not_scalarize && callee_compiled_with_scalarized_receiver;
1793
1794 if (do_IC_clearing || compute_is_optimized) {
1795 address pc = caller.pc();
1796
1797 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1798 assert(caller_nm != nullptr, "did not find caller nmethod");
1799
1800 // Default call_addr is the location of the "basic" call.
1801 // Determine the address of the call we a reresolving. With
1802 // Inline Caches we will always find a recognizable call.
1803 // With Inline Caches disabled we may or may not find a
1804 // recognizable call. We will always find a call for static
1805 // calls and for optimized virtual calls. For vanilla virtual
1806 // calls it depends on the state of the UseInlineCaches switch.
1807 //
1808 // With Inline Caches disabled we can get here for a virtual call
1809 // for two reasons:
1810 // 1 - calling an abstract method. The vtable for abstract methods
1811 // will run us thru handle_wrong_method and we will eventually
1812 // end up in the interpreter to throw the ame.
1813 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1814 // call and between the time we fetch the entry address and
1815 // we jump to it the target gets deoptimized. Similar to 1
1816 // we will wind up in the interprter (thru a c2i with c2).
1817 //
1818 CompiledICLocker ml(caller_nm);
1819 address call_addr = caller_nm->call_instruction_address(pc);
1820
1821 if (call_addr != nullptr) {
1822 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1823 // bytes back in the instruction stream so we must also check for reloc info.
1824 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1825 bool ret = iter.next(); // Get item
1826 if (ret) {
1827 is_optimized = false;
1828 switch (iter.type()) {
1829 case relocInfo::static_call_type:
1830 assert(callee_method->is_static(), "must be");
1831 case relocInfo::opt_virtual_call_type: {
1832 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1833 if (do_IC_clearing) {
1834 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1835 cdc->set_to_clean();
1836 }
1837 break;
1838 }
1839 case relocInfo::virtual_call_type: {
1840 if (do_IC_clearing) {
1841 // compiled, dispatched call (which used to call an interpreted method)
1842 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1843 inline_cache->set_to_clean();
1844 }
1845 break;
1846 }
1847 default:
1848 break;
1849 }
1850 }
1851 }
1852 }
1853
1854 #ifndef PRODUCT
1855 AtomicAccess::inc(&_wrong_method_ctr);
1856
1857 if (TraceCallFixup) {
1858 ResourceMark rm(current);
1859 tty->print("handle_wrong_method reresolving %s call to", (caller_does_not_scalarize) ? "non-scalar" : "");
1860 callee_method->print_short_name(tty);
1861 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1862 }
1863 #endif
1864
1865 return callee_method;
1866 }
1867
1868 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1869 // The faulting unsafe accesses should be changed to throw the error
1870 // synchronously instead. Meanwhile the faulting instruction will be
1871 // skipped over (effectively turning it into a no-op) and an
1872 // asynchronous exception will be raised which the thread will
1873 // handle at a later point. If the instruction is a load it will
1874 // return garbage.
1875
1876 // Request an async exception.
1877 thread->set_pending_unsafe_access_error();
1878
1879 // Return address of next instruction to execute.
1880 return next_pc;
1881 }
1882
1883 #ifdef ASSERT
1884 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1885 const BasicType* sig_bt,
1886 const VMRegPair* regs) {
1887 ResourceMark rm;
1888 const int total_args_passed = method->size_of_parameters();
1889 const VMRegPair* regs_with_member_name = regs;
1890 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1891
1892 const int member_arg_pos = total_args_passed - 1;
1893 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1894 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1895
1896 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1897
1898 for (int i = 0; i < member_arg_pos; i++) {
1899 VMReg a = regs_with_member_name[i].first();
1900 VMReg b = regs_without_member_name[i].first();
1901 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1902 }
1903 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1904 }
1905 #endif
1906
1907 // ---------------------------------------------------------------------------
1908 // We are calling the interpreter via a c2i. Normally this would mean that
1909 // we were called by a compiled method. However we could have lost a race
1910 // where we went int -> i2c -> c2i and so the caller could in fact be
1911 // interpreted. If the caller is compiled we attempt to patch the caller
1912 // so he no longer calls into the interpreter.
1913 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1914 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1915
1916 // It's possible that deoptimization can occur at a call site which hasn't
1917 // been resolved yet, in which case this function will be called from
1918 // an nmethod that has been patched for deopt and we can ignore the
1919 // request for a fixup.
1920 // Also it is possible that we lost a race in that from_compiled_entry
1921 // is now back to the i2c in that case we don't need to patch and if
1922 // we did we'd leap into space because the callsite needs to use
1923 // "to interpreter" stub in order to load up the Method*. Don't
1924 // ask me how I know this...
1925
1926 // Result from nmethod::is_unloading is not stable across safepoints.
1927 NoSafepointVerifier nsv;
1928
1929 nmethod* callee = method->code();
1930 if (callee == nullptr) {
1931 return;
1932 }
1933
1934 // write lock needed because we might patch call site by set_to_clean()
1935 // and is_unloading() can modify nmethod's state
1936 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1937
1938 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1939 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1940 return;
1941 }
1942
1943 // The check above makes sure this is an nmethod.
1944 nmethod* caller = cb->as_nmethod();
1945
1946 // Get the return PC for the passed caller PC.
1947 address return_pc = caller_pc + frame::pc_return_offset;
1948
1949 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1950 return;
1951 }
1952
1953 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1954 CompiledICLocker ic_locker(caller);
1955 ResourceMark rm;
1956
1957 // If we got here through a static call or opt_virtual call, then we know where the
1958 // call address would be; let's peek at it
1959 address callsite_addr = (address)nativeCall_before(return_pc);
1960 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1961 if (!iter.next()) {
1962 // No reloc entry found; not a static or optimized virtual call
1963 return;
1964 }
1965
1966 relocInfo::relocType type = iter.reloc()->type();
1967 if (type != relocInfo::static_call_type &&
1968 type != relocInfo::opt_virtual_call_type) {
1969 return;
1970 }
1971
1972 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1973 callsite->set_to_clean();
1974 JRT_END
1975
1976
1977 // same as JVM_Arraycopy, but called directly from compiled code
1978 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1979 oopDesc* dest, jint dest_pos,
1980 jint length,
1981 JavaThread* current)) {
1982 #ifndef PRODUCT
1983 _slow_array_copy_ctr++;
1984 #endif
1985 // Check if we have null pointers
1986 if (src == nullptr || dest == nullptr) {
1987 THROW(vmSymbols::java_lang_NullPointerException());
1988 }
1989 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1990 // even though the copy_array API also performs dynamic checks to ensure
1991 // that src and dest are truly arrays (and are conformable).
1992 // The copy_array mechanism is awkward and could be removed, but
1993 // the compilers don't call this function except as a last resort,
1994 // so it probably doesn't matter.
1995 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1996 (arrayOopDesc*)dest, dest_pos,
1997 length, current);
1998 }
1999 JRT_END
2000
2001 // The caller of generate_class_cast_message() (or one of its callers)
2002 // must use a ResourceMark in order to correctly free the result.
2003 char* SharedRuntime::generate_class_cast_message(
2004 JavaThread* thread, Klass* caster_klass) {
2005
2006 // Get target class name from the checkcast instruction
2007 vframeStream vfst(thread, true);
2008 assert(!vfst.at_end(), "Java frame must exist");
2009 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2010 constantPoolHandle cpool(thread, vfst.method()->constants());
2011 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2012 Symbol* target_klass_name = nullptr;
2013 if (target_klass == nullptr) {
2014 // This klass should be resolved, but just in case, get the name in the klass slot.
2015 target_klass_name = cpool->klass_name_at(cc.index());
2016 }
2017 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2018 }
2019
2020
2021 // The caller of generate_class_cast_message() (or one of its callers)
2022 // must use a ResourceMark in order to correctly free the result.
2023 char* SharedRuntime::generate_class_cast_message(
2024 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2025 const char* caster_name = caster_klass->external_name();
2026
2027 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2028 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2029 target_klass->external_name();
2030
2031 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2032
2033 const char* caster_klass_description = "";
2034 const char* target_klass_description = "";
2035 const char* klass_separator = "";
2036 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2037 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2038 } else {
2039 caster_klass_description = caster_klass->class_in_module_of_loader();
2040 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2041 klass_separator = (target_klass != nullptr) ? "; " : "";
2042 }
2043
2044 // add 3 for parenthesis and preceding space
2045 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2046
2047 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2048 if (message == nullptr) {
2049 // Shouldn't happen, but don't cause even more problems if it does
2050 message = const_cast<char*>(caster_klass->external_name());
2051 } else {
2052 jio_snprintf(message,
2053 msglen,
2054 "class %s cannot be cast to class %s (%s%s%s)",
2055 caster_name,
2056 target_name,
2057 caster_klass_description,
2058 klass_separator,
2059 target_klass_description
2060 );
2061 }
2062 return message;
2063 }
2064
2065 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) {
2066 assert(klass->is_inline_klass(), "Must be a concrete value class");
2067 const char* desc = "Cannot synchronize on an instance of value class ";
2068 const char* className = klass->external_name();
2069 size_t msglen = strlen(desc) + strlen(className) + 1;
2070 char* message = NEW_RESOURCE_ARRAY(char, msglen);
2071 if (nullptr == message) {
2072 // Out of memory: can't create detailed error message
2073 message = const_cast<char*>(klass->external_name());
2074 } else {
2075 jio_snprintf(message, msglen, "%s%s", desc, className);
2076 }
2077 return message;
2078 }
2079
2080 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2081 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2082 JRT_END
2083
2084 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2085 if (!SafepointSynchronize::is_synchronizing()) {
2086 // Only try quick_enter() if we're not trying to reach a safepoint
2087 // so that the calling thread reaches the safepoint more quickly.
2088 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2089 return;
2090 }
2091 }
2092 // NO_ASYNC required because an async exception on the state transition destructor
2093 // would leave you with the lock held and it would never be released.
2094 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2095 // and the model is that an exception implies the method failed.
2096 JRT_BLOCK_NO_ASYNC
2097 Handle h_obj(THREAD, obj);
2098 ObjectSynchronizer::enter(h_obj, lock, current);
2099 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2100 JRT_BLOCK_END
2101 }
2102
2103 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2104 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2105 SharedRuntime::monitor_enter_helper(obj, lock, current);
2106 JRT_END
2107
2108 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2109 assert(JavaThread::current() == current, "invariant");
2110 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2111 ExceptionMark em(current);
2112
2113 // Check if C2_MacroAssembler::fast_unlock() or
2114 // C2_MacroAssembler::fast_unlock() unlocked an inflated
2115 // monitor before going slow path. Since there is no safepoint
2116 // polling when calling into the VM, we can be sure that the monitor
2117 // hasn't been deallocated.
2118 ObjectMonitor* m = current->unlocked_inflated_monitor();
2119 if (m != nullptr) {
2120 assert(!m->has_owner(current), "must be");
2121 current->clear_unlocked_inflated_monitor();
2122
2123 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2124 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2125 // Some other thread acquired the lock (or the monitor was
2126 // deflated). Either way we are done.
2127 return;
2128 }
2129 }
2130
2131 // The object could become unlocked through a JNI call, which we have no other checks for.
2132 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2133 if (obj->is_unlocked()) {
2134 if (CheckJNICalls) {
2135 fatal("Object has been unlocked by JNI");
2136 }
2137 return;
2138 }
2139 ObjectSynchronizer::exit(obj, lock, current);
2140 }
2141
2142 // Handles the uncommon cases of monitor unlocking in compiled code
2143 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2144 assert(current == JavaThread::current(), "pre-condition");
2145 SharedRuntime::monitor_exit_helper(obj, lock, current);
2146 JRT_END
2147
2148 #ifndef PRODUCT
2149
2150 void SharedRuntime::print_statistics() {
2151 ttyLocker ttyl;
2152 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2153
2154 SharedRuntime::print_ic_miss_histogram();
2155
2156 // Dump the JRT_ENTRY counters
2157 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2158 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2159 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2160 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2161 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2162 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2163
2164 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2165 tty->print_cr("%5u wrong method", _wrong_method_ctr);
2166 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2167 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2168 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2169
2170 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2171 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2172 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2173 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2174 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2175 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2176 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2177 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2178 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2179 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2180 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2181 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2182 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2183 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2184 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2185 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2186 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2187
2188 AdapterHandlerLibrary::print_statistics();
2189
2190 if (xtty != nullptr) xtty->tail("statistics");
2191 }
2192
2193 inline double percent(int64_t x, int64_t y) {
2194 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2195 }
2196
2197 class MethodArityHistogram {
2198 public:
2199 enum { MAX_ARITY = 256 };
2200 private:
2201 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2202 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2203 static uint64_t _total_compiled_calls;
2204 static uint64_t _max_compiled_calls_per_method;
2205 static int _max_arity; // max. arity seen
2206 static int _max_size; // max. arg size seen
2207
2208 static void add_method_to_histogram(nmethod* nm) {
2209 Method* method = (nm == nullptr) ? nullptr : nm->method();
2210 if (method != nullptr) {
2211 ArgumentCount args(method->signature());
2212 int arity = args.size() + (method->is_static() ? 0 : 1);
2213 int argsize = method->size_of_parameters();
2214 arity = MIN2(arity, MAX_ARITY-1);
2215 argsize = MIN2(argsize, MAX_ARITY-1);
2216 uint64_t count = (uint64_t)method->compiled_invocation_count();
2217 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2218 _total_compiled_calls += count;
2219 _arity_histogram[arity] += count;
2220 _size_histogram[argsize] += count;
2221 _max_arity = MAX2(_max_arity, arity);
2222 _max_size = MAX2(_max_size, argsize);
2223 }
2224 }
2225
2226 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2227 const int N = MIN2(9, n);
2228 double sum = 0;
2229 double weighted_sum = 0;
2230 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2231 if (sum >= 1) { // prevent divide by zero or divide overflow
2232 double rest = sum;
2233 double percent = sum / 100;
2234 for (int i = 0; i <= N; i++) {
2235 rest -= (double)histo[i];
2236 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2237 }
2238 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2239 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2240 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2241 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2242 } else {
2243 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2244 }
2245 }
2246
2247 void print_histogram() {
2248 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2249 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2250 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2251 print_histogram_helper(_max_size, _size_histogram, "size");
2252 tty->cr();
2253 }
2254
2255 public:
2256 MethodArityHistogram() {
2257 // Take the Compile_lock to protect against changes in the CodeBlob structures
2258 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2259 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2260 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2261 _max_arity = _max_size = 0;
2262 _total_compiled_calls = 0;
2263 _max_compiled_calls_per_method = 0;
2264 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2265 CodeCache::nmethods_do(add_method_to_histogram);
2266 print_histogram();
2267 }
2268 };
2269
2270 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2271 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2272 uint64_t MethodArityHistogram::_total_compiled_calls;
2273 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2274 int MethodArityHistogram::_max_arity;
2275 int MethodArityHistogram::_max_size;
2276
2277 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2278 tty->print_cr("Calls from compiled code:");
2279 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2280 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2281 int64_t mono_i = _nof_interface_calls;
2282 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2283 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2284 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2285 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2286 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2287 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2288 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2289 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2290 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2291 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2292 tty->cr();
2293 tty->print_cr("Note 1: counter updates are not MT-safe.");
2294 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2295 tty->print_cr(" %% in nested categories are relative to their category");
2296 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2297 tty->cr();
2298
2299 MethodArityHistogram h;
2300 }
2301 #endif
2302
2303 #ifndef PRODUCT
2304 static int _lookups; // number of calls to lookup
2305 static int _equals; // number of buckets checked with matching hash
2306 static int _archived_hits; // number of successful lookups in archived table
2307 static int _runtime_hits; // number of successful lookups in runtime table
2308 #endif
2309
2310 // A simple wrapper class around the calling convention information
2311 // that allows sharing of adapters for the same calling convention.
2312 class AdapterFingerPrint : public MetaspaceObj {
2313 public:
2314 class Element {
2315 private:
2316 // The highest byte is the type of the argument. The remaining bytes contain the offset of the
2317 // field if it is flattened in the calling convention, -1 otherwise.
2318 juint _payload;
2319
2320 static constexpr int offset_bit_width = 24;
2321 static constexpr juint offset_bit_mask = (1 << offset_bit_width) - 1;
2322 public:
2323 Element(BasicType bt, int offset) : _payload((static_cast<juint>(bt) << offset_bit_width) | (juint(offset) & offset_bit_mask)) {
2324 assert(offset >= -1 && offset < jint(offset_bit_mask), "invalid offset %d", offset);
2325 }
2326
2327 BasicType bt() const {
2328 return static_cast<BasicType>(_payload >> offset_bit_width);
2329 }
2330
2331 int offset() const {
2332 juint res = _payload & offset_bit_mask;
2333 return res == offset_bit_mask ? -1 : res;
2334 }
2335
2336 juint hash() const {
2337 return _payload;
2338 }
2339
2340 bool operator!=(const Element& other) const {
2341 return _payload != other._payload;
2342 }
2343 };
2344
2345 private:
2346 const bool _has_ro_adapter;
2347 const int _length;
2348
2349 static int data_offset() { return sizeof(AdapterFingerPrint); }
2350 Element* data_pointer() {
2351 return reinterpret_cast<Element*>(reinterpret_cast<address>(this) + data_offset());
2352 }
2353
2354 const Element& element_at(int index) {
2355 assert(index < length(), "index %d out of bounds for length %d", index, length());
2356 Element* data = data_pointer();
2357 return data[index];
2358 }
2359
2360 // Private construtor. Use allocate() to get an instance.
2361 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter)
2362 : _has_ro_adapter(has_ro_adapter), _length(total_args_passed_in_sig(sig)) {
2363 Element* data = data_pointer();
2364 BasicType prev_bt = T_ILLEGAL;
2365 int vt_count = 0;
2366 for (int index = 0; index < _length; index++) {
2367 const SigEntry& sig_entry = sig->at(index);
2368 BasicType bt = sig_entry._bt;
2369 if (bt == T_METADATA) {
2370 // Found start of inline type in signature
2371 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2372 vt_count++;
2373 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2374 // Found end of inline type in signature
2375 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2376 vt_count--;
2377 assert(vt_count >= 0, "invalid vt_count");
2378 } else if (vt_count == 0) {
2379 // Widen fields that are not part of a scalarized inline type argument
2380 assert(sig_entry._offset == -1, "invalid offset for argument that is not a flattened field %d", sig_entry._offset);
2381 bt = adapter_encoding(bt);
2382 }
2383
2384 ::new(&data[index]) Element(bt, sig_entry._offset);
2385 prev_bt = bt;
2386 }
2387 assert(vt_count == 0, "invalid vt_count");
2388 }
2389
2390 // Call deallocate instead
2391 ~AdapterFingerPrint() {
2392 ShouldNotCallThis();
2393 }
2394
2395 static int total_args_passed_in_sig(const GrowableArray<SigEntry>* sig) {
2396 return (sig != nullptr) ? sig->length() : 0;
2397 }
2398
2399 static int compute_size_in_words(int len) {
2400 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(Element)));
2401 }
2402
2403 // Remap BasicTypes that are handled equivalently by the adapters.
2404 // These are correct for the current system but someday it might be
2405 // necessary to make this mapping platform dependent.
2406 static BasicType adapter_encoding(BasicType in) {
2407 switch (in) {
2408 case T_BOOLEAN:
2409 case T_BYTE:
2410 case T_SHORT:
2411 case T_CHAR:
2412 // They are all promoted to T_INT in the calling convention
2413 return T_INT;
2414
2415 case T_OBJECT:
2416 case T_ARRAY:
2417 // In other words, we assume that any register good enough for
2418 // an int or long is good enough for a managed pointer.
2419 #ifdef _LP64
2420 return T_LONG;
2421 #else
2422 return T_INT;
2423 #endif
2424
2425 case T_INT:
2426 case T_LONG:
2427 case T_FLOAT:
2428 case T_DOUBLE:
2429 case T_VOID:
2430 return in;
2431
2432 default:
2433 ShouldNotReachHere();
2434 return T_CONFLICT;
2435 }
2436 }
2437
2438 void* operator new(size_t size, size_t fp_size) throw() {
2439 assert(fp_size >= size, "sanity check");
2440 void* p = AllocateHeap(fp_size, mtCode);
2441 memset(p, 0, fp_size);
2442 return p;
2443 }
2444
2445 public:
2446 template<typename Function>
2447 void iterate_args(Function function) {
2448 for (int i = 0; i < length(); i++) {
2449 function(element_at(i));
2450 }
2451 }
2452
2453 static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2454 int len = total_args_passed_in_sig(sig);
2455 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2456 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter);
2457 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2458 return afp;
2459 }
2460
2461 static void deallocate(AdapterFingerPrint* fp) {
2462 FreeHeap(fp);
2463 }
2464
2465 bool has_ro_adapter() const {
2466 return _has_ro_adapter;
2467 }
2468
2469 int length() const {
2470 return _length;
2471 }
2472
2473 unsigned int compute_hash() {
2474 int hash = 0;
2475 for (int i = 0; i < length(); i++) {
2476 const Element& v = element_at(i);
2477 //Add arithmetic operation to the hash, like +3 to improve hashing
2478 hash = ((hash << 8) ^ v.hash() ^ (hash >> 5)) + 3;
2479 }
2480 return (unsigned int)hash;
2481 }
2482
2483 const char* as_string() {
2484 stringStream st;
2485 st.print("{");
2486 if (_has_ro_adapter) {
2487 st.print("has_ro_adapter");
2488 } else {
2489 st.print("no_ro_adapter");
2490 }
2491 for (int i = 0; i < length(); i++) {
2492 st.print(", ");
2493 const Element& elem = element_at(i);
2494 st.print("{%s, %d}", type2name(elem.bt()), elem.offset());
2495 }
2496 st.print("}");
2497 return st.as_string();
2498 }
2499
2500 const char* as_basic_args_string() {
2501 stringStream st;
2502 bool long_prev = false;
2503 iterate_args([&] (const Element& arg) {
2504 if (long_prev) {
2505 long_prev = false;
2506 if (arg.bt() == T_VOID) {
2507 st.print("J");
2508 } else {
2509 st.print("L");
2510 }
2511 }
2512 if (arg.bt() == T_LONG) {
2513 long_prev = true;
2514 } else if (arg.bt() != T_VOID) {
2515 st.print("%c", type2char(arg.bt()));
2516 }
2517 });
2518 if (long_prev) {
2519 st.print("L");
2520 }
2521 return st.as_string();
2522 }
2523
2524 bool equals(AdapterFingerPrint* other) {
2525 if (other->_has_ro_adapter != _has_ro_adapter) {
2526 return false;
2527 } else if (other->_length != _length) {
2528 return false;
2529 } else {
2530 for (int i = 0; i < _length; i++) {
2531 if (element_at(i) != other->element_at(i)) {
2532 return false;
2533 }
2534 }
2535 }
2536 return true;
2537 }
2538
2539 // methods required by virtue of being a MetaspaceObj
2540 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2541 int size() const { return compute_size_in_words(_length); }
2542 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2543
2544 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2545 NOT_PRODUCT(_equals++);
2546 return fp1->equals(fp2);
2547 }
2548
2549 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2550 return fp->compute_hash();
2551 }
2552 };
2553
2554 #if INCLUDE_CDS
2555 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2556 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2557 }
2558
2559 class ArchivedAdapterTable : public OffsetCompactHashtable<
2560 AdapterFingerPrint*,
2561 AdapterHandlerEntry*,
2562 adapter_fp_equals_compact_hashtable_entry> {};
2563 #endif // INCLUDE_CDS
2564
2565 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2566 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2567 AnyObj::C_HEAP, mtCode,
2568 AdapterFingerPrint::compute_hash,
2569 AdapterFingerPrint::equals>;
2570 static AdapterHandlerTable* _adapter_handler_table;
2571 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2572
2573 // Find a entry with the same fingerprint if it exists
2574 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) {
2575 NOT_PRODUCT(_lookups++);
2576 assert_lock_strong(AdapterHandlerLibrary_lock);
2577 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter);
2578 AdapterHandlerEntry* entry = nullptr;
2579 #if INCLUDE_CDS
2580 // if we are building the archive then the archived adapter table is
2581 // not valid and we need to use the ones added to the runtime table
2582 if (AOTCodeCache::is_using_adapter()) {
2583 // Search archived table first. It is read-only table so can be searched without lock
2584 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2585 #ifndef PRODUCT
2586 if (entry != nullptr) {
2587 _archived_hits++;
2588 }
2589 #endif
2590 }
2591 #endif // INCLUDE_CDS
2592 if (entry == nullptr) {
2593 assert_lock_strong(AdapterHandlerLibrary_lock);
2594 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2595 if (entry_p != nullptr) {
2596 entry = *entry_p;
2597 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2598 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2599 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2600 #ifndef PRODUCT
2601 _runtime_hits++;
2602 #endif
2603 }
2604 }
2605 AdapterFingerPrint::deallocate(fp);
2606 return entry;
2607 }
2608
2609 #ifndef PRODUCT
2610 static void print_table_statistics() {
2611 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2612 return sizeof(*key) + sizeof(*a);
2613 };
2614 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2615 ts.print(tty, "AdapterHandlerTable");
2616 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2617 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2618 int total_hits = _archived_hits + _runtime_hits;
2619 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2620 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2621 }
2622 #endif
2623
2624 // ---------------------------------------------------------------------------
2625 // Implementation of AdapterHandlerLibrary
2626 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2627 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2628 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2629 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2630 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2631 #if INCLUDE_CDS
2632 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2633 #endif // INCLUDE_CDS
2634 static const int AdapterHandlerLibrary_size = 48*K;
2635 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2636 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2637
2638 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2639 assert(_buffer != nullptr, "should be initialized");
2640 return _buffer;
2641 }
2642
2643 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2644 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2645 AdapterBlob* adapter_blob = entry->adapter_blob();
2646 char blob_id[256];
2647 jio_snprintf(blob_id,
2648 sizeof(blob_id),
2649 "%s(%s)",
2650 adapter_blob->name(),
2651 entry->fingerprint()->as_string());
2652 if (Forte::is_enabled()) {
2653 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2654 }
2655
2656 if (JvmtiExport::should_post_dynamic_code_generated()) {
2657 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2658 }
2659 }
2660 }
2661
2662 void AdapterHandlerLibrary::initialize() {
2663 {
2664 ResourceMark rm;
2665 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2666 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2667 }
2668
2669 #if INCLUDE_CDS
2670 // Link adapters in AOT Cache to their code in AOT Code Cache
2671 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2672 link_aot_adapters();
2673 lookup_simple_adapters();
2674 return;
2675 }
2676 #endif // INCLUDE_CDS
2677
2678 ResourceMark rm;
2679 {
2680 MutexLocker mu(AdapterHandlerLibrary_lock);
2681
2682 CompiledEntrySignature no_args;
2683 no_args.compute_calling_conventions();
2684 _no_arg_handler = create_adapter(no_args, true);
2685
2686 CompiledEntrySignature obj_args;
2687 SigEntry::add_entry(obj_args.sig(), T_OBJECT);
2688 obj_args.compute_calling_conventions();
2689 _obj_arg_handler = create_adapter(obj_args, true);
2690
2691 CompiledEntrySignature int_args;
2692 SigEntry::add_entry(int_args.sig(), T_INT);
2693 int_args.compute_calling_conventions();
2694 _int_arg_handler = create_adapter(int_args, true);
2695
2696 CompiledEntrySignature obj_int_args;
2697 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
2698 SigEntry::add_entry(obj_int_args.sig(), T_INT);
2699 obj_int_args.compute_calling_conventions();
2700 _obj_int_arg_handler = create_adapter(obj_int_args, true);
2701
2702 CompiledEntrySignature obj_obj_args;
2703 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2704 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2705 obj_obj_args.compute_calling_conventions();
2706 _obj_obj_arg_handler = create_adapter(obj_obj_args, true);
2707
2708 // we should always get an entry back but we don't have any
2709 // associated blob on Zero
2710 assert(_no_arg_handler != nullptr &&
2711 _obj_arg_handler != nullptr &&
2712 _int_arg_handler != nullptr &&
2713 _obj_int_arg_handler != nullptr &&
2714 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2715 }
2716
2717 // Outside of the lock
2718 #ifndef ZERO
2719 // no blobs to register when we are on Zero
2720 post_adapter_creation(_no_arg_handler);
2721 post_adapter_creation(_obj_arg_handler);
2722 post_adapter_creation(_int_arg_handler);
2723 post_adapter_creation(_obj_int_arg_handler);
2724 post_adapter_creation(_obj_obj_arg_handler);
2725 #endif // ZERO
2726 }
2727
2728 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2729 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2730 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2731 return AdapterHandlerEntry::allocate(id, fingerprint);
2732 }
2733
2734 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2735 int total_args_passed = method->size_of_parameters(); // All args on stack
2736 if (total_args_passed == 0) {
2737 return _no_arg_handler;
2738 } else if (total_args_passed == 1) {
2739 if (!method->is_static()) {
2740 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) {
2741 return nullptr;
2742 }
2743 return _obj_arg_handler;
2744 }
2745 switch (method->signature()->char_at(1)) {
2746 case JVM_SIGNATURE_CLASS: {
2747 if (InlineTypePassFieldsAsArgs) {
2748 SignatureStream ss(method->signature());
2749 InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2750 if (vk != nullptr) {
2751 return nullptr;
2752 }
2753 }
2754 return _obj_arg_handler;
2755 }
2756 case JVM_SIGNATURE_ARRAY:
2757 return _obj_arg_handler;
2758 case JVM_SIGNATURE_INT:
2759 case JVM_SIGNATURE_BOOLEAN:
2760 case JVM_SIGNATURE_CHAR:
2761 case JVM_SIGNATURE_BYTE:
2762 case JVM_SIGNATURE_SHORT:
2763 return _int_arg_handler;
2764 }
2765 } else if (total_args_passed == 2 &&
2766 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) {
2767 switch (method->signature()->char_at(1)) {
2768 case JVM_SIGNATURE_CLASS: {
2769 if (InlineTypePassFieldsAsArgs) {
2770 SignatureStream ss(method->signature());
2771 InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2772 if (vk != nullptr) {
2773 return nullptr;
2774 }
2775 }
2776 return _obj_obj_arg_handler;
2777 }
2778 case JVM_SIGNATURE_ARRAY:
2779 return _obj_obj_arg_handler;
2780 case JVM_SIGNATURE_INT:
2781 case JVM_SIGNATURE_BOOLEAN:
2782 case JVM_SIGNATURE_CHAR:
2783 case JVM_SIGNATURE_BYTE:
2784 case JVM_SIGNATURE_SHORT:
2785 return _obj_int_arg_handler;
2786 }
2787 }
2788 return nullptr;
2789 }
2790
2791 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2792 _method(method), _num_inline_args(0), _has_inline_recv(false),
2793 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr),
2794 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2795 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) {
2796 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2797 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2798 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2799 }
2800
2801 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2802 // or the same entry for VEP and VIEP(RO).
2803 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2804 if (!has_scalarized_args()) {
2805 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2806 return CodeOffsets::Verified_Entry;
2807 }
2808 if (_method->is_static()) {
2809 // Static methods don't need VIEP(RO)
2810 return CodeOffsets::Verified_Entry;
2811 }
2812
2813 if (has_inline_recv()) {
2814 if (num_inline_args() == 1) {
2815 // Share same entry for VIEP and VIEP(RO).
2816 // This is quite common: we have an instance method in an InlineKlass that has
2817 // no inline type args other than <this>.
2818 return CodeOffsets::Verified_Inline_Entry;
2819 } else {
2820 assert(num_inline_args() > 1, "must be");
2821 // No sharing:
2822 // VIEP(RO) -- <this> is passed as object
2823 // VEP -- <this> is passed as fields
2824 return CodeOffsets::Verified_Inline_Entry_RO;
2825 }
2826 }
2827
2828 // Either a static method, or <this> is not an inline type
2829 if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2830 // No sharing:
2831 // Some arguments are passed on the stack, and we have inserted reserved entries
2832 // into the VEP, but we never insert reserved entries into the VIEP(RO).
2833 return CodeOffsets::Verified_Inline_Entry_RO;
2834 } else {
2835 // Share same entry for VEP and VIEP(RO).
2836 return CodeOffsets::Verified_Entry;
2837 }
2838 }
2839
2840 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method.
2841 GrowableArray<Method*>* CompiledEntrySignature::get_supers() {
2842 if (_supers != nullptr) {
2843 return _supers;
2844 }
2845 _supers = new GrowableArray<Method*>();
2846 // Skip private, static, and <init> methods
2847 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) {
2848 return _supers;
2849 }
2850 Symbol* name = _method->name();
2851 Symbol* signature = _method->signature();
2852 const Klass* holder = _method->method_holder()->super();
2853 Symbol* holder_name = holder->name();
2854 ThreadInVMfromUnknown tiv;
2855 JavaThread* current = JavaThread::current();
2856 HandleMark hm(current);
2857 Handle loader(current, _method->method_holder()->class_loader());
2858
2859 // Walk up the class hierarchy and search for super methods
2860 while (holder != nullptr) {
2861 Method* super_method = holder->lookup_method(name, signature);
2862 if (super_method == nullptr) {
2863 break;
2864 }
2865 if (!super_method->is_static() && !super_method->is_private() &&
2866 (!super_method->is_package_private() ||
2867 super_method->method_holder()->is_same_class_package(loader(), holder_name))) {
2868 _supers->push(super_method);
2869 }
2870 holder = super_method->method_holder()->super();
2871 }
2872 // Search interfaces for super methods
2873 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces();
2874 for (int i = 0; i < interfaces->length(); ++i) {
2875 Method* m = interfaces->at(i)->lookup_method(name, signature);
2876 if (m != nullptr && !m->is_static() && m->is_public()) {
2877 _supers->push(m);
2878 }
2879 }
2880 return _supers;
2881 }
2882
2883 // Iterate over arguments and compute scalarized and non-scalarized signatures
2884 void CompiledEntrySignature::compute_calling_conventions(bool init) {
2885 bool has_scalarized = false;
2886 if (_method != nullptr) {
2887 InstanceKlass* holder = _method->method_holder();
2888 int arg_num = 0;
2889 if (!_method->is_static()) {
2890 // We shouldn't scalarize 'this' in a value class constructor
2891 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() &&
2892 (init || _method->is_scalarized_arg(arg_num))) {
2893 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2894 has_scalarized = true;
2895 _has_inline_recv = true;
2896 _num_inline_args++;
2897 } else {
2898 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name());
2899 }
2900 SigEntry::add_entry(_sig, T_OBJECT, holder->name());
2901 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name());
2902 arg_num++;
2903 }
2904 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2905 BasicType bt = ss.type();
2906 if (bt == T_OBJECT) {
2907 InlineKlass* vk = ss.as_inline_klass(holder);
2908 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) {
2909 // Check for a calling convention mismatch with super method(s)
2910 bool scalar_super = false;
2911 bool non_scalar_super = false;
2912 GrowableArray<Method*>* supers = get_supers();
2913 for (int i = 0; i < supers->length(); ++i) {
2914 Method* super_method = supers->at(i);
2915 if (super_method->is_scalarized_arg(arg_num)) {
2916 scalar_super = true;
2917 } else {
2918 non_scalar_super = true;
2919 }
2920 }
2921 #ifdef ASSERT
2922 // Randomly enable below code paths for stress testing
2923 bool stress = init && StressCallingConvention;
2924 if (stress && (os::random() & 1) == 1) {
2925 non_scalar_super = true;
2926 if ((os::random() & 1) == 1) {
2927 scalar_super = true;
2928 }
2929 }
2930 #endif
2931 if (non_scalar_super) {
2932 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention.
2933 if (scalar_super) {
2934 // Found non-scalar *and* scalar super methods. We can't handle both.
2935 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention.
2936 for (int i = 0; i < supers->length(); ++i) {
2937 Method* super_method = supers->at(i);
2938 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) {
2939 super_method->set_mismatch();
2940 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag);
2941 JavaThread* thread = JavaThread::current();
2942 HandleMark hm(thread);
2943 methodHandle mh(thread, super_method);
2944 DeoptimizationScope deopt_scope;
2945 CodeCache::mark_for_deoptimization(&deopt_scope, mh());
2946 deopt_scope.deoptimize_marked();
2947 }
2948 }
2949 }
2950 // Fall back to non-scalarized calling convention
2951 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2952 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2953 } else {
2954 _num_inline_args++;
2955 has_scalarized = true;
2956 int last = _sig_cc->length();
2957 int last_ro = _sig_cc_ro->length();
2958 _sig_cc->appendAll(vk->extended_sig());
2959 _sig_cc_ro->appendAll(vk->extended_sig());
2960 if (bt == T_OBJECT) {
2961 // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter
2962 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2963 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2964 }
2965 }
2966 } else {
2967 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2968 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2969 }
2970 bt = T_OBJECT;
2971 } else {
2972 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol());
2973 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol());
2974 }
2975 SigEntry::add_entry(_sig, bt, ss.as_symbol());
2976 if (bt != T_VOID) {
2977 arg_num++;
2978 }
2979 }
2980 }
2981
2982 // Compute the non-scalarized calling convention
2983 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2984 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2985
2986 // Compute the scalarized calling conventions if there are scalarized inline types in the signature
2987 if (has_scalarized && !_method->is_native()) {
2988 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
2989 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2990
2991 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
2992 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
2993
2994 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2995 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2996
2997 // Upper bound on stack arguments to avoid hitting the argument limit and
2998 // bailing out of compilation ("unsupported incoming calling sequence").
2999 // TODO we need a reasonable limit (flag?) here
3000 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) {
3001 return; // Success
3002 }
3003 }
3004
3005 // No scalarized args
3006 _sig_cc = _sig;
3007 _regs_cc = _regs;
3008 _args_on_stack_cc = _args_on_stack;
3009
3010 _sig_cc_ro = _sig;
3011 _regs_cc_ro = _regs;
3012 _args_on_stack_cc_ro = _args_on_stack;
3013 }
3014
3015 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) {
3016 _has_inline_recv = fingerprint->has_ro_adapter();
3017
3018 int value_object_count = 0;
3019 BasicType prev_bt = T_ILLEGAL;
3020 bool has_scalarized_arguments = false;
3021 bool long_prev = false;
3022 int long_prev_offset = -1;
3023
3024 fingerprint->iterate_args([&] (const AdapterFingerPrint::Element& arg) {
3025 BasicType bt = arg.bt();
3026 int offset = arg.offset();
3027
3028 if (long_prev) {
3029 long_prev = false;
3030 BasicType bt_to_add;
3031 if (bt == T_VOID) {
3032 bt_to_add = T_LONG;
3033 } else {
3034 bt_to_add = T_OBJECT;
3035 }
3036 if (value_object_count == 0) {
3037 SigEntry::add_entry(_sig, bt_to_add);
3038 }
3039 SigEntry::add_entry(_sig_cc, bt_to_add, nullptr, long_prev_offset);
3040 SigEntry::add_entry(_sig_cc_ro, bt_to_add, nullptr, long_prev_offset);
3041 }
3042
3043 switch (bt) {
3044 case T_VOID:
3045 if (prev_bt != T_LONG && prev_bt != T_DOUBLE) {
3046 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
3047 value_object_count--;
3048 SigEntry::add_entry(_sig_cc, T_VOID, nullptr, offset);
3049 SigEntry::add_entry(_sig_cc_ro, T_VOID, nullptr, offset);
3050 assert(value_object_count >= 0, "invalid value object count");
3051 } else {
3052 // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE.
3053 }
3054 break;
3055 case T_INT:
3056 case T_FLOAT:
3057 case T_DOUBLE:
3058 if (value_object_count == 0) {
3059 SigEntry::add_entry(_sig, bt);
3060 }
3061 SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3062 SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3063 break;
3064 case T_LONG:
3065 long_prev = true;
3066 long_prev_offset = offset;
3067 break;
3068 case T_BOOLEAN:
3069 case T_CHAR:
3070 case T_BYTE:
3071 case T_SHORT:
3072 case T_OBJECT:
3073 case T_ARRAY:
3074 assert(value_object_count > 0, "must be value object field");
3075 SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3076 SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3077 break;
3078 case T_METADATA:
3079 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
3080 if (value_object_count == 0) {
3081 SigEntry::add_entry(_sig, T_OBJECT);
3082 }
3083 SigEntry::add_entry(_sig_cc, T_METADATA, nullptr, offset);
3084 SigEntry::add_entry(_sig_cc_ro, T_METADATA, nullptr, offset);
3085 value_object_count++;
3086 has_scalarized_arguments = true;
3087 break;
3088 default: {
3089 fatal("Unexpected BasicType: %s", basictype_to_str(bt));
3090 }
3091 }
3092 prev_bt = bt;
3093 });
3094
3095 if (long_prev) {
3096 // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT.
3097 SigEntry::add_entry(_sig, T_OBJECT);
3098 SigEntry::add_entry(_sig_cc, T_OBJECT);
3099 SigEntry::add_entry(_sig_cc_ro, T_OBJECT);
3100 }
3101 assert(value_object_count == 0, "invalid value object count");
3102
3103 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
3104 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
3105
3106 // Compute the scalarized calling conventions if there are scalarized inline types in the signature
3107 if (has_scalarized_arguments) {
3108 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
3109 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
3110
3111 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
3112 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
3113
3114 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3115 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3116 } else {
3117 // No scalarized args
3118 _sig_cc = _sig;
3119 _regs_cc = _regs;
3120 _args_on_stack_cc = _args_on_stack;
3121
3122 _sig_cc_ro = _sig;
3123 _regs_cc_ro = _regs;
3124 _args_on_stack_cc_ro = _args_on_stack;
3125 }
3126
3127 #ifdef ASSERT
3128 {
3129 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv);
3130 assert(fingerprint->equals(compare_fp), "%s - %s", fingerprint->as_string(), compare_fp->as_string());
3131 AdapterFingerPrint::deallocate(compare_fp);
3132 }
3133 #endif
3134 }
3135
3136 const char* AdapterHandlerEntry::_entry_names[] = {
3137 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
3138 };
3139
3140 #ifdef ASSERT
3141 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) {
3142 // we can only check for the same code if there is any
3143 #ifndef ZERO
3144 AdapterHandlerEntry* comparison_entry = create_adapter(ces, false, true);
3145 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
3146 assert(comparison_entry->compare_code(cached_entry), "code must match");
3147 // Release the one just created
3148 AdapterHandlerEntry::deallocate(comparison_entry);
3149 # endif // ZERO
3150 }
3151 #endif /* ASSERT*/
3152
3153 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
3154 assert(!method->is_abstract(), "abstract methods do not have adapters");
3155 // Use customized signature handler. Need to lock around updates to
3156 // the _adapter_handler_table (it is not safe for concurrent readers
3157 // and a single writer: this could be fixed if it becomes a
3158 // problem).
3159
3160 // Fast-path for trivial adapters
3161 AdapterHandlerEntry* entry = get_simple_adapter(method);
3162 if (entry != nullptr) {
3163 return entry;
3164 }
3165
3166 ResourceMark rm;
3167 bool new_entry = false;
3168
3169 CompiledEntrySignature ces(method());
3170 ces.compute_calling_conventions();
3171 if (ces.has_scalarized_args()) {
3172 if (!method->has_scalarized_args()) {
3173 method->set_has_scalarized_args();
3174 }
3175 if (ces.c1_needs_stack_repair()) {
3176 method->set_c1_needs_stack_repair();
3177 }
3178 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) {
3179 method->set_c2_needs_stack_repair();
3180 }
3181 }
3182
3183 {
3184 MutexLocker mu(AdapterHandlerLibrary_lock);
3185
3186 // Lookup method signature's fingerprint
3187 entry = lookup(ces.sig_cc(), ces.has_inline_recv());
3188
3189 if (entry != nullptr) {
3190 #ifndef ZERO
3191 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
3192 #endif
3193 #ifdef ASSERT
3194 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
3195 verify_adapter_sharing(ces, entry);
3196 }
3197 #endif
3198 } else {
3199 entry = create_adapter(ces, /* allocate_code_blob */ true);
3200 if (entry != nullptr) {
3201 new_entry = true;
3202 }
3203 }
3204 }
3205
3206 // Outside of the lock
3207 if (new_entry) {
3208 post_adapter_creation(entry);
3209 }
3210 return entry;
3211 }
3212
3213 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
3214 ResourceMark rm;
3215 const char* name = AdapterHandlerLibrary::name(handler);
3216 const uint32_t id = AdapterHandlerLibrary::id(handler);
3217
3218 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
3219 if (blob != nullptr) {
3220 handler->set_adapter_blob(blob->as_adapter_blob());
3221 }
3222 }
3223
3224 #ifndef PRODUCT
3225 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
3226 ttyLocker ttyl;
3227 ResourceMark rm;
3228 int insts_size;
3229 // on Zero the blob may be null
3230 handler->print_adapter_on(tty);
3231 AdapterBlob* adapter_blob = handler->adapter_blob();
3232 if (adapter_blob == nullptr) {
3233 return;
3234 }
3235 insts_size = adapter_blob->code_size();
3236 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
3237 handler->fingerprint()->as_basic_args_string(),
3238 handler->fingerprint()->as_string(), insts_size);
3239 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
3240 if (Verbose || PrintStubCode) {
3241 address first_pc = adapter_blob->content_begin();
3242 if (first_pc != nullptr) {
3243 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
3244 st->cr();
3245 }
3246 }
3247 }
3248 #endif // PRODUCT
3249
3250 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
3251 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
3252 entry_offset[AdapterBlob::I2C] = 0;
3253 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
3254 entry_offset[AdapterBlob::C2I_Inline] = entry_address[AdapterBlob::C2I_Inline] - entry_address[AdapterBlob::I2C];
3255 entry_offset[AdapterBlob::C2I_Inline_RO] = entry_address[AdapterBlob::C2I_Inline_RO] - entry_address[AdapterBlob::I2C];
3256 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
3257 entry_offset[AdapterBlob::C2I_Unverified_Inline] = entry_address[AdapterBlob::C2I_Unverified_Inline] - entry_address[AdapterBlob::I2C];
3258 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
3259 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
3260 } else {
3261 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
3262 }
3263 }
3264
3265 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
3266 CompiledEntrySignature& ces,
3267 bool allocate_code_blob,
3268 bool is_transient) {
3269 if (log_is_enabled(Info, perf, class, link)) {
3270 ClassLoader::perf_method_adapters_count()->inc();
3271 }
3272
3273 #ifndef ZERO
3274 AdapterBlob* adapter_blob = nullptr;
3275 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3276 CodeBuffer buffer(buf);
3277 short buffer_locs[20];
3278 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3279 sizeof(buffer_locs)/sizeof(relocInfo));
3280 MacroAssembler masm(&buffer);
3281 address entry_address[AdapterBlob::ENTRY_COUNT];
3282
3283 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
3284 SharedRuntime::generate_i2c2i_adapters(&masm,
3285 ces.args_on_stack(),
3286 ces.sig(),
3287 ces.regs(),
3288 ces.sig_cc(),
3289 ces.regs_cc(),
3290 ces.sig_cc_ro(),
3291 ces.regs_cc_ro(),
3292 entry_address,
3293 adapter_blob,
3294 allocate_code_blob);
3295
3296 if (ces.has_scalarized_args()) {
3297 // Save a C heap allocated version of the scalarized signature and store it in the adapter
3298 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
3299 heap_sig->appendAll(ces.sig_cc());
3300 handler->set_sig_cc(heap_sig);
3301 }
3302 // On zero there is no code to save and no need to create a blob and
3303 // or relocate the handler.
3304 int entry_offset[AdapterBlob::ENTRY_COUNT];
3305 address_to_offset(entry_address, entry_offset);
3306 #ifdef ASSERT
3307 if (VerifyAdapterSharing) {
3308 handler->save_code(buf->code_begin(), buffer.insts_size());
3309 if (is_transient) {
3310 return true;
3311 }
3312 }
3313 #endif
3314 if (adapter_blob == nullptr) {
3315 // CodeCache is full, disable compilation
3316 // Ought to log this but compile log is only per compile thread
3317 // and we're some non descript Java thread.
3318 return false;
3319 }
3320 handler->set_adapter_blob(adapter_blob);
3321 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
3322 // try to save generated code
3323 const char* name = AdapterHandlerLibrary::name(handler);
3324 const uint32_t id = AdapterHandlerLibrary::id(handler);
3325 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
3326 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
3327 }
3328 #endif // ZERO
3329
3330 #ifndef PRODUCT
3331 // debugging support
3332 if (PrintAdapterHandlers || PrintStubCode) {
3333 print_adapter_handler_info(tty, handler);
3334 }
3335 #endif
3336
3337 return true;
3338 }
3339
3340 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(CompiledEntrySignature& ces,
3341 bool allocate_code_blob,
3342 bool is_transient) {
3343 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv());
3344 #ifdef ASSERT
3345 // Verify that we can successfully restore the compiled entry signature object.
3346 CompiledEntrySignature ces_verify;
3347 ces_verify.initialize_from_fingerprint(fp);
3348 #endif
3349 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
3350 if (!generate_adapter_code(handler, ces, allocate_code_blob, is_transient)) {
3351 AdapterHandlerEntry::deallocate(handler);
3352 return nullptr;
3353 }
3354 if (!is_transient) {
3355 assert_lock_strong(AdapterHandlerLibrary_lock);
3356 _adapter_handler_table->put(fp, handler);
3357 }
3358 return handler;
3359 }
3360
3361 #if INCLUDE_CDS
3362 void AdapterHandlerEntry::remove_unshareable_info() {
3363 #ifdef ASSERT
3364 _saved_code = nullptr;
3365 _saved_code_length = 0;
3366 #endif // ASSERT
3367 _adapter_blob = nullptr;
3368 _linked = false;
3369 _sig_cc = nullptr;
3370 }
3371
3372 class CopyAdapterTableToArchive : StackObj {
3373 private:
3374 CompactHashtableWriter* _writer;
3375 ArchiveBuilder* _builder;
3376 public:
3377 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3378 _builder(ArchiveBuilder::current())
3379 {}
3380
3381 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3382 LogStreamHandle(Trace, aot) lsh;
3383 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3384 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3385 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3386 assert(buffered_fp != nullptr,"sanity check");
3387 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3388 assert(buffered_entry != nullptr,"sanity check");
3389
3390 uint hash = fp->compute_hash();
3391 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3392 _writer->add(hash, delta);
3393 if (lsh.is_enabled()) {
3394 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3395 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3396 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3397 }
3398 } else {
3399 if (lsh.is_enabled()) {
3400 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3401 }
3402 }
3403 return true;
3404 }
3405 };
3406
3407 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3408 CompactHashtableStats stats;
3409 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3410 CopyAdapterTableToArchive copy(&writer);
3411 _adapter_handler_table->iterate(©);
3412 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3413 }
3414
3415 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3416 _aot_adapter_handler_table.serialize_header(soc);
3417 }
3418
3419 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3420 #ifdef ASSERT
3421 if (TestAOTAdapterLinkFailure) {
3422 return;
3423 }
3424 #endif
3425 lookup_aot_cache(handler);
3426 #ifndef PRODUCT
3427 // debugging support
3428 if (PrintAdapterHandlers || PrintStubCode) {
3429 print_adapter_handler_info(tty, handler);
3430 }
3431 #endif
3432 }
3433
3434 // This method is used during production run to link archived adapters (stored in AOT Cache)
3435 // to their code in AOT Code Cache
3436 void AdapterHandlerEntry::link() {
3437 ResourceMark rm;
3438 assert(_fingerprint != nullptr, "_fingerprint must not be null");
3439 bool generate_code = false;
3440 // Generate code only if AOTCodeCache is not available, or
3441 // caching adapters is disabled, or we fail to link
3442 // the AdapterHandlerEntry to its code in the AOTCodeCache
3443 if (AOTCodeCache::is_using_adapter()) {
3444 AdapterHandlerLibrary::link_aot_adapter_handler(this);
3445 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3446 if (_adapter_blob == nullptr) {
3447 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3448 generate_code = true;
3449 }
3450
3451 if (get_sig_cc() == nullptr) {
3452 // Calling conventions have to be regenerated at runtime and are accessed through method adapters,
3453 // which are archived in the AOT code cache. If the adapters are not regenerated, the
3454 // calling conventions should be regenerated here.
3455 CompiledEntrySignature ces;
3456 ces.initialize_from_fingerprint(_fingerprint);
3457 if (ces.has_scalarized_args()) {
3458 // Save a C heap allocated version of the scalarized signature and store it in the adapter
3459 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
3460 heap_sig->appendAll(ces.sig_cc());
3461 set_sig_cc(heap_sig);
3462 }
3463 }
3464 } else {
3465 generate_code = true;
3466 }
3467
3468 if (generate_code) {
3469 CompiledEntrySignature ces;
3470 ces.initialize_from_fingerprint(_fingerprint);
3471 if (!AdapterHandlerLibrary::generate_adapter_code(this, ces, true, false)) {
3472 // Don't throw exceptions during VM initialization because java.lang.* classes
3473 // might not have been initialized, causing problems when constructing the
3474 // Java exception object.
3475 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3476 }
3477 }
3478 if (_adapter_blob != nullptr) {
3479 post_adapter_creation(this);
3480 }
3481 assert(_linked, "AdapterHandlerEntry must now be linked");
3482 }
3483
3484 void AdapterHandlerLibrary::link_aot_adapters() {
3485 uint max_id = 0;
3486 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3487 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3488 * That implies adapter ids of the adapters in the cache may not be contiguous.
3489 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3490 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3491 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3492 */
3493 _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) {
3494 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3495 entry->link();
3496 max_id = MAX2(max_id, entry->id());
3497 });
3498 // Set adapter id to the maximum id found in the AOTCache
3499 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3500 _id_counter = max_id;
3501 }
3502
3503 // This method is called during production run to lookup simple adapters
3504 // in the archived adapter handler table
3505 void AdapterHandlerLibrary::lookup_simple_adapters() {
3506 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3507
3508 MutexLocker mu(AdapterHandlerLibrary_lock);
3509 ResourceMark rm;
3510 CompiledEntrySignature no_args;
3511 no_args.compute_calling_conventions();
3512 _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv());
3513
3514 CompiledEntrySignature obj_args;
3515 SigEntry::add_entry(obj_args.sig(), T_OBJECT);
3516 obj_args.compute_calling_conventions();
3517 _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv());
3518
3519 CompiledEntrySignature int_args;
3520 SigEntry::add_entry(int_args.sig(), T_INT);
3521 int_args.compute_calling_conventions();
3522 _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv());
3523
3524 CompiledEntrySignature obj_int_args;
3525 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
3526 SigEntry::add_entry(obj_int_args.sig(), T_INT);
3527 obj_int_args.compute_calling_conventions();
3528 _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv());
3529
3530 CompiledEntrySignature obj_obj_args;
3531 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3532 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3533 obj_obj_args.compute_calling_conventions();
3534 _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv());
3535
3536 assert(_no_arg_handler != nullptr &&
3537 _obj_arg_handler != nullptr &&
3538 _int_arg_handler != nullptr &&
3539 _obj_int_arg_handler != nullptr &&
3540 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3541 assert(_no_arg_handler->is_linked() &&
3542 _obj_arg_handler->is_linked() &&
3543 _int_arg_handler->is_linked() &&
3544 _obj_int_arg_handler->is_linked() &&
3545 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3546 }
3547 #endif // INCLUDE_CDS
3548
3549 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3550 LogStreamHandle(Trace, aot) lsh;
3551 if (lsh.is_enabled()) {
3552 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3553 lsh.cr();
3554 }
3555 it->push(&_fingerprint);
3556 }
3557
3558 AdapterHandlerEntry::~AdapterHandlerEntry() {
3559 if (_fingerprint != nullptr) {
3560 AdapterFingerPrint::deallocate(_fingerprint);
3561 _fingerprint = nullptr;
3562 }
3563 if (_sig_cc != nullptr) {
3564 delete _sig_cc;
3565 }
3566 #ifdef ASSERT
3567 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3568 #endif
3569 FreeHeap(this);
3570 }
3571
3572
3573 #ifdef ASSERT
3574 // Capture the code before relocation so that it can be compared
3575 // against other versions. If the code is captured after relocation
3576 // then relative instructions won't be equivalent.
3577 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3578 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3579 _saved_code_length = length;
3580 memcpy(_saved_code, buffer, length);
3581 }
3582
3583
3584 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3585 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3586
3587 if (other->_saved_code_length != _saved_code_length) {
3588 return false;
3589 }
3590
3591 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3592 }
3593 #endif
3594
3595
3596 /**
3597 * Create a native wrapper for this native method. The wrapper converts the
3598 * Java-compiled calling convention to the native convention, handles
3599 * arguments, and transitions to native. On return from the native we transition
3600 * back to java blocking if a safepoint is in progress.
3601 */
3602 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3603 ResourceMark rm;
3604 nmethod* nm = nullptr;
3605
3606 // Check if memory should be freed before allocation
3607 CodeCache::gc_on_allocation();
3608
3609 assert(method->is_native(), "must be native");
3610 assert(method->is_special_native_intrinsic() ||
3611 method->has_native_function(), "must have something valid to call!");
3612
3613 {
3614 // Perform the work while holding the lock, but perform any printing outside the lock
3615 MutexLocker mu(AdapterHandlerLibrary_lock);
3616 // See if somebody beat us to it
3617 if (method->code() != nullptr) {
3618 return;
3619 }
3620
3621 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3622 assert(compile_id > 0, "Must generate native wrapper");
3623
3624
3625 ResourceMark rm;
3626 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3627 if (buf != nullptr) {
3628 CodeBuffer buffer(buf);
3629
3630 if (method->is_continuation_enter_intrinsic()) {
3631 buffer.initialize_stubs_size(192);
3632 }
3633
3634 struct { double data[20]; } locs_buf;
3635 struct { double data[20]; } stubs_locs_buf;
3636 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3637 #if defined(AARCH64) || defined(PPC64)
3638 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3639 // in the constant pool to ensure ordering between the barrier and oops
3640 // accesses. For native_wrappers we need a constant.
3641 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3642 // static java call that is resolved in the runtime.
3643 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3644 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3645 }
3646 #endif
3647 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3648 MacroAssembler _masm(&buffer);
3649
3650 // Fill in the signature array, for the calling-convention call.
3651 const int total_args_passed = method->size_of_parameters();
3652
3653 BasicType stack_sig_bt[16];
3654 VMRegPair stack_regs[16];
3655 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3656 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3657
3658 int i = 0;
3659 if (!method->is_static()) { // Pass in receiver first
3660 sig_bt[i++] = T_OBJECT;
3661 }
3662 SignatureStream ss(method->signature());
3663 for (; !ss.at_return_type(); ss.next()) {
3664 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
3665 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3666 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
3667 }
3668 }
3669 assert(i == total_args_passed, "");
3670 BasicType ret_type = ss.type();
3671
3672 // Now get the compiled-Java arguments layout.
3673 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3674
3675 // Generate the compiled-to-native wrapper code
3676 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3677
3678 if (nm != nullptr) {
3679 {
3680 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3681 if (nm->make_in_use()) {
3682 method->set_code(method, nm);
3683 }
3684 }
3685
3686 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3687 if (directive->PrintAssemblyOption) {
3688 nm->print_code();
3689 }
3690 DirectivesStack::release(directive);
3691 }
3692 }
3693 } // Unlock AdapterHandlerLibrary_lock
3694
3695
3696 // Install the generated code.
3697 if (nm != nullptr) {
3698 const char *msg = method->is_static() ? "(static)" : "";
3699 CompileTask::print_ul(nm, msg);
3700 if (PrintCompilation) {
3701 ttyLocker ttyl;
3702 CompileTask::print(tty, nm, msg);
3703 }
3704 nm->post_compiled_method_load_event();
3705 }
3706 }
3707
3708 // -------------------------------------------------------------------------
3709 // Java-Java calling convention
3710 // (what you use when Java calls Java)
3711
3712 //------------------------------name_for_receiver----------------------------------
3713 // For a given signature, return the VMReg for parameter 0.
3714 VMReg SharedRuntime::name_for_receiver() {
3715 VMRegPair regs;
3716 BasicType sig_bt = T_OBJECT;
3717 (void) java_calling_convention(&sig_bt, ®s, 1);
3718 // Return argument 0 register. In the LP64 build pointers
3719 // take 2 registers, but the VM wants only the 'main' name.
3720 return regs.first();
3721 }
3722
3723 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3724 // This method is returning a data structure allocating as a
3725 // ResourceObject, so do not put any ResourceMarks in here.
3726
3727 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3728 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3729 int cnt = 0;
3730 if (has_receiver) {
3731 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3732 }
3733
3734 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3735 BasicType type = ss.type();
3736 sig_bt[cnt++] = type;
3737 if (is_double_word_type(type))
3738 sig_bt[cnt++] = T_VOID;
3739 }
3740
3741 if (has_appendix) {
3742 sig_bt[cnt++] = T_OBJECT;
3743 }
3744
3745 assert(cnt < 256, "grow table size");
3746
3747 int comp_args_on_stack;
3748 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3749
3750 // the calling convention doesn't count out_preserve_stack_slots so
3751 // we must add that in to get "true" stack offsets.
3752
3753 if (comp_args_on_stack) {
3754 for (int i = 0; i < cnt; i++) {
3755 VMReg reg1 = regs[i].first();
3756 if (reg1->is_stack()) {
3757 // Yuck
3758 reg1 = reg1->bias(out_preserve_stack_slots());
3759 }
3760 VMReg reg2 = regs[i].second();
3761 if (reg2->is_stack()) {
3762 // Yuck
3763 reg2 = reg2->bias(out_preserve_stack_slots());
3764 }
3765 regs[i].set_pair(reg2, reg1);
3766 }
3767 }
3768
3769 // results
3770 *arg_size = cnt;
3771 return regs;
3772 }
3773
3774 // OSR Migration Code
3775 //
3776 // This code is used convert interpreter frames into compiled frames. It is
3777 // called from very start of a compiled OSR nmethod. A temp array is
3778 // allocated to hold the interesting bits of the interpreter frame. All
3779 // active locks are inflated to allow them to move. The displaced headers and
3780 // active interpreter locals are copied into the temp buffer. Then we return
3781 // back to the compiled code. The compiled code then pops the current
3782 // interpreter frame off the stack and pushes a new compiled frame. Then it
3783 // copies the interpreter locals and displaced headers where it wants.
3784 // Finally it calls back to free the temp buffer.
3785 //
3786 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3787
3788 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3789 assert(current == JavaThread::current(), "pre-condition");
3790 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3791 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3792 // frame. The stack watermark code below ensures that the interpreted frame is processed
3793 // before it gets unwound. This is helpful as the size of the compiled frame could be
3794 // larger than the interpreted frame, which could result in the new frame not being
3795 // processed correctly.
3796 StackWatermarkSet::before_unwind(current);
3797
3798 //
3799 // This code is dependent on the memory layout of the interpreter local
3800 // array and the monitors. On all of our platforms the layout is identical
3801 // so this code is shared. If some platform lays the their arrays out
3802 // differently then this code could move to platform specific code or
3803 // the code here could be modified to copy items one at a time using
3804 // frame accessor methods and be platform independent.
3805
3806 frame fr = current->last_frame();
3807 assert(fr.is_interpreted_frame(), "");
3808 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3809
3810 // Figure out how many monitors are active.
3811 int active_monitor_count = 0;
3812 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3813 kptr < fr.interpreter_frame_monitor_begin();
3814 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3815 if (kptr->obj() != nullptr) active_monitor_count++;
3816 }
3817
3818 // QQQ we could place number of active monitors in the array so that compiled code
3819 // could double check it.
3820
3821 Method* moop = fr.interpreter_frame_method();
3822 int max_locals = moop->max_locals();
3823 // Allocate temp buffer, 1 word per local & 2 per active monitor
3824 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3825 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3826
3827 // Copy the locals. Order is preserved so that loading of longs works.
3828 // Since there's no GC I can copy the oops blindly.
3829 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3830 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3831 (HeapWord*)&buf[0],
3832 max_locals);
3833
3834 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3835 int i = max_locals;
3836 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3837 kptr2 < fr.interpreter_frame_monitor_begin();
3838 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3839 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3840 BasicLock *lock = kptr2->lock();
3841 if (UseObjectMonitorTable) {
3842 buf[i] = (intptr_t)lock->object_monitor_cache();
3843 }
3844 #ifdef ASSERT
3845 else {
3846 buf[i] = badDispHeaderOSR;
3847 }
3848 #endif
3849 i++;
3850 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3851 }
3852 }
3853 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3854
3855 RegisterMap map(current,
3856 RegisterMap::UpdateMap::skip,
3857 RegisterMap::ProcessFrames::include,
3858 RegisterMap::WalkContinuation::skip);
3859 frame sender = fr.sender(&map);
3860 if (sender.is_interpreted_frame()) {
3861 current->push_cont_fastpath(sender.sp());
3862 }
3863
3864 return buf;
3865 JRT_END
3866
3867 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3868 FREE_C_HEAP_ARRAY(intptr_t, buf);
3869 JRT_END
3870
3871 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3872 return handler->fingerprint()->as_basic_args_string();
3873 }
3874
3875 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3876 return handler->id();
3877 }
3878
3879 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3880 bool found = false;
3881 #if INCLUDE_CDS
3882 if (AOTCodeCache::is_using_adapter()) {
3883 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3884 if (b == handler->adapter_blob()) {
3885 found = true;
3886 st->print("Adapter for signature: ");
3887 handler->print_adapter_on(st);
3888 return false; // abort iteration
3889 } else {
3890 return true; // keep looking
3891 }
3892 };
3893 _aot_adapter_handler_table.iterate(findblob_archived_table);
3894 }
3895 #endif // INCLUDE_CDS
3896 if (!found) {
3897 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) {
3898 if (b == handler->adapter_blob()) {
3899 found = true;
3900 st->print("Adapter for signature: ");
3901 handler->print_adapter_on(st);
3902 return false; // abort iteration
3903 } else {
3904 return true; // keep looking
3905 }
3906 };
3907 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3908 _adapter_handler_table->iterate(findblob_runtime_table);
3909 }
3910 assert(found, "Should have found handler");
3911 }
3912
3913 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3914 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3915 if (adapter_blob() != nullptr) {
3916 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3917 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3918 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3919 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3920 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3921 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3922 if (get_c2i_no_clinit_check_entry() != nullptr) {
3923 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3924 }
3925 }
3926 st->cr();
3927 }
3928
3929 #ifndef PRODUCT
3930
3931 void AdapterHandlerLibrary::print_statistics() {
3932 print_table_statistics();
3933 }
3934
3935 #endif /* PRODUCT */
3936
3937 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3938 assert(current == JavaThread::current(), "pre-condition");
3939 StackOverflow* overflow_state = current->stack_overflow_state();
3940 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3941 overflow_state->set_reserved_stack_activation(current->stack_base());
3942 JRT_END
3943
3944 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3945 ResourceMark rm(current);
3946 frame activation;
3947 nmethod* nm = nullptr;
3948 int count = 1;
3949
3950 assert(fr.is_java_frame(), "Must start on Java frame");
3951
3952 RegisterMap map(JavaThread::current(),
3953 RegisterMap::UpdateMap::skip,
3954 RegisterMap::ProcessFrames::skip,
3955 RegisterMap::WalkContinuation::skip); // don't walk continuations
3956 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3957 if (!fr.is_java_frame()) {
3958 continue;
3959 }
3960
3961 Method* method = nullptr;
3962 bool found = false;
3963 if (fr.is_interpreted_frame()) {
3964 method = fr.interpreter_frame_method();
3965 if (method != nullptr && method->has_reserved_stack_access()) {
3966 found = true;
3967 }
3968 } else {
3969 CodeBlob* cb = fr.cb();
3970 if (cb != nullptr && cb->is_nmethod()) {
3971 nm = cb->as_nmethod();
3972 method = nm->method();
3973 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3974 method = sd->method();
3975 if (method != nullptr && method->has_reserved_stack_access()) {
3976 found = true;
3977 }
3978 }
3979 }
3980 }
3981 if (found) {
3982 activation = fr;
3983 warning("Potentially dangerous stack overflow in "
3984 "ReservedStackAccess annotated method %s [%d]",
3985 method->name_and_sig_as_C_string(), count++);
3986 EventReservedStackActivation event;
3987 if (event.should_commit()) {
3988 event.set_method(method);
3989 event.commit();
3990 }
3991 }
3992 }
3993 return activation;
3994 }
3995
3996 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3997 // After any safepoint, just before going back to compiled code,
3998 // we inform the GC that we will be doing initializing writes to
3999 // this object in the future without emitting card-marks, so
4000 // GC may take any compensating steps.
4001
4002 oop new_obj = current->vm_result_oop();
4003 if (new_obj == nullptr) return;
4004
4005 BarrierSet *bs = BarrierSet::barrier_set();
4006 bs->on_slowpath_allocation_exit(current, new_obj);
4007 }
4008
4009 // We are at a compiled code to interpreter call. We need backing
4010 // buffers for all inline type arguments. Allocate an object array to
4011 // hold them (convenient because once we're done with it we don't have
4012 // to worry about freeing it).
4013 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
4014 assert(InlineTypePassFieldsAsArgs, "no reason to call this");
4015 ResourceMark rm;
4016
4017 int nb_slots = 0;
4018 InstanceKlass* holder = callee->method_holder();
4019 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0);
4020 if (allocate_receiver) {
4021 nb_slots++;
4022 }
4023 int arg_num = callee->is_static() ? 0 : 1;
4024 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4025 BasicType bt = ss.type();
4026 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4027 nb_slots++;
4028 }
4029 if (bt != T_VOID) {
4030 arg_num++;
4031 }
4032 }
4033 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
4034 objArrayHandle array(THREAD, array_oop);
4035 arg_num = callee->is_static() ? 0 : 1;
4036 int i = 0;
4037 if (allocate_receiver) {
4038 InlineKlass* vk = InlineKlass::cast(holder);
4039 oop res = vk->allocate_instance(CHECK_NULL);
4040 array->obj_at_put(i++, res);
4041 }
4042 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4043 BasicType bt = ss.type();
4044 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4045 InlineKlass* vk = ss.as_inline_klass(holder);
4046 assert(vk != nullptr, "Unexpected klass");
4047 oop res = vk->allocate_instance(CHECK_NULL);
4048 array->obj_at_put(i++, res);
4049 }
4050 if (bt != T_VOID) {
4051 arg_num++;
4052 }
4053 }
4054 return array();
4055 }
4056
4057 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
4058 methodHandle callee(current, callee_method);
4059 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
4060 current->set_vm_result_oop(array);
4061 current->set_vm_result_metadata(callee()); // TODO: required to keep callee live?
4062 JRT_END
4063
4064 // We're returning from an interpreted method: load each field into a
4065 // register following the calling convention
4066 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
4067 {
4068 assert(res->klass()->is_inline_klass(), "only inline types here");
4069 ResourceMark rm;
4070 RegisterMap reg_map(current,
4071 RegisterMap::UpdateMap::include,
4072 RegisterMap::ProcessFrames::include,
4073 RegisterMap::WalkContinuation::skip);
4074 frame stubFrame = current->last_frame();
4075 frame callerFrame = stubFrame.sender(®_map);
4076 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
4077
4078 InlineKlass* vk = InlineKlass::cast(res->klass());
4079
4080 const Array<SigEntry>* sig_vk = vk->extended_sig();
4081 const Array<VMRegPair>* regs = vk->return_regs();
4082
4083 if (regs == nullptr) {
4084 // The fields of the inline klass don't fit in registers, bail out
4085 return;
4086 }
4087
4088 int j = 1;
4089 for (int i = 0; i < sig_vk->length(); i++) {
4090 BasicType bt = sig_vk->at(i)._bt;
4091 if (bt == T_METADATA) {
4092 continue;
4093 }
4094 if (bt == T_VOID) {
4095 if (sig_vk->at(i-1)._bt == T_LONG ||
4096 sig_vk->at(i-1)._bt == T_DOUBLE) {
4097 j++;
4098 }
4099 continue;
4100 }
4101 int off = sig_vk->at(i)._offset;
4102 assert(off > 0, "offset in object should be positive");
4103 VMRegPair pair = regs->at(j);
4104 address loc = reg_map.location(pair.first(), nullptr);
4105 switch(bt) {
4106 case T_BOOLEAN:
4107 *(jboolean*)loc = res->bool_field(off);
4108 break;
4109 case T_CHAR:
4110 *(jchar*)loc = res->char_field(off);
4111 break;
4112 case T_BYTE:
4113 *(jbyte*)loc = res->byte_field(off);
4114 break;
4115 case T_SHORT:
4116 *(jshort*)loc = res->short_field(off);
4117 break;
4118 case T_INT: {
4119 *(jint*)loc = res->int_field(off);
4120 break;
4121 }
4122 case T_LONG:
4123 #ifdef _LP64
4124 *(intptr_t*)loc = res->long_field(off);
4125 #else
4126 Unimplemented();
4127 #endif
4128 break;
4129 case T_OBJECT:
4130 case T_ARRAY: {
4131 *(oop*)loc = res->obj_field(off);
4132 break;
4133 }
4134 case T_FLOAT:
4135 *(jfloat*)loc = res->float_field(off);
4136 break;
4137 case T_DOUBLE:
4138 *(jdouble*)loc = res->double_field(off);
4139 break;
4140 default:
4141 ShouldNotReachHere();
4142 }
4143 j++;
4144 }
4145 assert(j == regs->length(), "missed a field?");
4146
4147 #ifdef ASSERT
4148 VMRegPair pair = regs->at(0);
4149 address loc = reg_map.location(pair.first(), nullptr);
4150 assert(*(oopDesc**)loc == res, "overwritten object");
4151 #endif
4152
4153 current->set_vm_result_oop(res);
4154 }
4155 JRT_END
4156
4157 // We've returned to an interpreted method, the interpreter needs a
4158 // reference to an inline type instance. Allocate it and initialize it
4159 // from field's values in registers.
4160 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
4161 {
4162 ResourceMark rm;
4163 RegisterMap reg_map(current,
4164 RegisterMap::UpdateMap::include,
4165 RegisterMap::ProcessFrames::include,
4166 RegisterMap::WalkContinuation::skip);
4167 frame stubFrame = current->last_frame();
4168 frame callerFrame = stubFrame.sender(®_map);
4169
4170 #ifdef ASSERT
4171 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
4172 #endif
4173
4174 if (!is_set_nth_bit(res, 0)) {
4175 // We're not returning with inline type fields in registers (the
4176 // calling convention didn't allow it for this inline klass)
4177 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
4178 current->set_vm_result_oop((oopDesc*)res);
4179 assert(verif_vk == nullptr, "broken calling convention");
4180 return;
4181 }
4182
4183 clear_nth_bit(res, 0);
4184 InlineKlass* vk = (InlineKlass*)res;
4185 assert(verif_vk == vk, "broken calling convention");
4186 assert(Metaspace::contains((void*)res), "should be klass");
4187
4188 // Allocate handles for every oop field so they are safe in case of
4189 // a safepoint when allocating
4190 GrowableArray<Handle> handles;
4191 vk->save_oop_fields(reg_map, handles);
4192
4193 // It's unsafe to safepoint until we are here
4194 JRT_BLOCK;
4195 {
4196 JavaThread* THREAD = current;
4197 oop vt = vk->realloc_result(reg_map, handles, CHECK);
4198 current->set_vm_result_oop(vt);
4199 }
4200 JRT_BLOCK_END;
4201 }
4202 JRT_END