1 /*
   2  * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "jvm.h"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.inline.hpp"
  52 #include "oops/compiledICHolder.inline.hpp"
  53 #include "oops/klass.hpp"
  54 #include "oops/method.inline.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/inlineKlass.inline.hpp"
  59 #include "prims/forte.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/nativeLookup.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/init.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/synchronizer.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vm_version.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/dtrace.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/hashtable.inline.hpp"
  81 #include "utilities/macros.hpp"
  82 #include "utilities/xmlstream.hpp"
  83 #ifdef COMPILER1
  84 #include "c1/c1_Runtime1.hpp"
  85 #endif
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113 
 114   AdapterHandlerLibrary::initialize();
 115 
 116 #if COMPILER2_OR_JVMCI
 117   // Vectors are generated only by C2 and JVMCI.
 118   bool support_wide = is_wide_vector(MaxVectorSize);
 119   if (support_wide) {
 120     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 121   }
 122 #endif // COMPILER2_OR_JVMCI
 123   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 124   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 125 
 126   generate_deopt_blob();
 127 
 128 #ifdef COMPILER2
 129   generate_uncommon_trap_blob();
 130 #endif // COMPILER2
 131 }
 132 
 133 #include <math.h>
 134 
 135 // Implementation of SharedRuntime
 136 
 137 #ifndef PRODUCT
 138 // For statistics
 139 int SharedRuntime::_ic_miss_ctr = 0;
 140 int SharedRuntime::_wrong_method_ctr = 0;
 141 int SharedRuntime::_resolve_static_ctr = 0;
 142 int SharedRuntime::_resolve_virtual_ctr = 0;
 143 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 144 int SharedRuntime::_implicit_null_throws = 0;
 145 int SharedRuntime::_implicit_div0_throws = 0;
 146 
 147 int64_t SharedRuntime::_nof_normal_calls = 0;
 148 int64_t SharedRuntime::_nof_optimized_calls = 0;
 149 int64_t SharedRuntime::_nof_inlined_calls = 0;
 150 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 151 int64_t SharedRuntime::_nof_static_calls = 0;
 152 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 153 int64_t SharedRuntime::_nof_interface_calls = 0;
 154 int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 
 158 int SharedRuntime::_new_instance_ctr=0;
 159 int SharedRuntime::_new_array_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 460   // Note: This is called when we have unwound the frame of the callee that did
 461   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 462   // Notably, the stack is not walkable at this point, and hence the check must
 463   // be deferred until later. Specifically, any of the handlers returned here in
 464   // this function, will get dispatched to, and call deferred checks to
 465   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 466   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 467   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 468 
 469   // Reset method handle flag.
 470   current->set_is_method_handle_return(false);
 471 
 472 #if INCLUDE_JVMCI
 473   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 474   // and other exception handler continuations do not read it
 475   current->set_exception_pc(NULL);
 476 #endif // INCLUDE_JVMCI
 477 
 478   // The fastest case first
 479   CodeBlob* blob = CodeCache::find_blob(return_address);
 480   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 481   if (nm != NULL) {
 482     // Set flag if return address is a method handle call site.
 483     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 484     // native nmethods don't have exception handlers
 485     assert(!nm->is_native_method(), "no exception handler");
 486     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 487     if (nm->is_deopt_pc(return_address)) {
 488       // If we come here because of a stack overflow, the stack may be
 489       // unguarded. Reguard the stack otherwise if we return to the
 490       // deopt blob and the stack bang causes a stack overflow we
 491       // crash.
 492       StackOverflow* overflow_state = current->stack_overflow_state();
 493       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 494       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 495         overflow_state->set_reserved_stack_activation(current->stack_base());
 496       }
 497       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 498       // The deferred StackWatermarkSet::after_unwind check will be performed in
 499       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 500       return SharedRuntime::deopt_blob()->unpack_with_exception();
 501     } else {
 502       // The deferred StackWatermarkSet::after_unwind check will be performed in
 503       // * OptoRuntime::handle_exception_C_helper for C2 code
 504       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 505       return nm->exception_begin();
 506     }
 507   }
 508 
 509   // Entry code
 510   if (StubRoutines::returns_to_call_stub(return_address)) {
 511     // The deferred StackWatermarkSet::after_unwind check will be performed in
 512     // JavaCallWrapper::~JavaCallWrapper
 513     return StubRoutines::catch_exception_entry();
 514   }
 515   if (blob != NULL && blob->is_optimized_entry_blob()) {
 516     return ((OptimizedEntryBlob*)blob)->exception_handler();
 517   }
 518   // Interpreted code
 519   if (Interpreter::contains(return_address)) {
 520     // The deferred StackWatermarkSet::after_unwind check will be performed in
 521     // InterpreterRuntime::exception_handler_for_exception
 522     return Interpreter::rethrow_exception_entry();
 523   }
 524 
 525   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 526   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 527 
 528 #ifndef PRODUCT
 529   { ResourceMark rm;
 530     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 531     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 532     tty->print_cr("b) other problem");
 533   }
 534 #endif // PRODUCT
 535 
 536   ShouldNotReachHere();
 537   return NULL;
 538 }
 539 
 540 
 541 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 542   return raw_exception_handler_for_return_address(current, return_address);
 543 JRT_END
 544 
 545 
 546 address SharedRuntime::get_poll_stub(address pc) {
 547   address stub;
 548   // Look up the code blob
 549   CodeBlob *cb = CodeCache::find_blob(pc);
 550 
 551   // Should be an nmethod
 552   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 553 
 554   // Look up the relocation information
 555   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 556     "safepoint polling: type must be poll");
 557 
 558 #ifdef ASSERT
 559   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 560     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 561     Disassembler::decode(cb);
 562     fatal("Only polling locations are used for safepoint");
 563   }
 564 #endif
 565 
 566   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 567   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 568   if (at_poll_return) {
 569     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 570            "polling page return stub not created yet");
 571     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 572   } else if (has_wide_vectors) {
 573     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 574            "polling page vectors safepoint stub not created yet");
 575     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581   log_debug(safepoint)("... found polling page %s exception at pc = "
 582                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 583                        at_poll_return ? "return" : "loop",
 584                        (intptr_t)pc, (intptr_t)stub);
 585   return stub;
 586 }
 587 
 588 
 589 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 590   assert(caller.is_interpreted_frame(), "");
 591   int args_size = ArgumentSizeComputer(sig).size() + 1;
 592   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 593   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 594   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 595   return result;
 596 }
 597 
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 600   if (JvmtiExport::can_post_on_exceptions()) {
 601     vframeStream vfst(current, true);
 602     methodHandle method = methodHandle(current, vfst.method());
 603     address bcp = method()->bcp_from(vfst.bci());
 604     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 605   }
 606 
 607 #if INCLUDE_JVMCI
 608   if (EnableJVMCI && UseJVMCICompiler) {
 609     vframeStream vfst(current, true);
 610     methodHandle method = methodHandle(current, vfst.method());
 611     int bci = vfst.bci();
 612     MethodData* trap_mdo = method->method_data();
 613     if (trap_mdo != NULL) {
 614       // Set exception_seen if the exceptional bytecode is an invoke
 615       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 616       if (call.is_valid()) {
 617         ResourceMark rm(current);
 618         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
 619         if (pdata != NULL && pdata->is_BitData()) {
 620           BitData* bit_data = (BitData*) pdata;
 621           bit_data->set_exception_seen();
 622         }
 623       }
 624     }
 625   }
 626 #endif
 627 
 628   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 629 }
 630 
 631 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 632   Handle h_exception = Exceptions::new_exception(current, name, message);
 633   throw_and_post_jvmti_exception(current, h_exception);
 634 }
 635 
 636 // The interpreter code to call this tracing function is only
 637 // called/generated when UL is on for redefine, class and has the right level
 638 // and tags. Since obsolete methods are never compiled, we don't have
 639 // to modify the compilers to generate calls to this function.
 640 //
 641 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 642     JavaThread* thread, Method* method))
 643   if (method->is_obsolete()) {
 644     // We are calling an obsolete method, but this is not necessarily
 645     // an error. Our method could have been redefined just after we
 646     // fetched the Method* from the constant pool.
 647     ResourceMark rm;
 648     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 649   }
 650   return 0;
 651 JRT_END
 652 
 653 // ret_pc points into caller; we are returning caller's exception handler
 654 // for given exception
 655 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 656                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 657   assert(cm != NULL, "must exist");
 658   ResourceMark rm;
 659 
 660 #if INCLUDE_JVMCI
 661   if (cm->is_compiled_by_jvmci()) {
 662     // lookup exception handler for this pc
 663     int catch_pco = ret_pc - cm->code_begin();
 664     ExceptionHandlerTable table(cm);
 665     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 666     if (t != NULL) {
 667       return cm->code_begin() + t->pco();
 668     } else {
 669       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 670     }
 671   }
 672 #endif // INCLUDE_JVMCI
 673 
 674   nmethod* nm = cm->as_nmethod();
 675   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 676   // determine handler bci, if any
 677   EXCEPTION_MARK;
 678 
 679   int handler_bci = -1;
 680   int scope_depth = 0;
 681   if (!force_unwind) {
 682     int bci = sd->bci();
 683     bool recursive_exception = false;
 684     do {
 685       bool skip_scope_increment = false;
 686       // exception handler lookup
 687       Klass* ek = exception->klass();
 688       methodHandle mh(THREAD, sd->method());
 689       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 690       if (HAS_PENDING_EXCEPTION) {
 691         recursive_exception = true;
 692         // We threw an exception while trying to find the exception handler.
 693         // Transfer the new exception to the exception handle which will
 694         // be set into thread local storage, and do another lookup for an
 695         // exception handler for this exception, this time starting at the
 696         // BCI of the exception handler which caused the exception to be
 697         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 698         // argument to ensure that the correct exception is thrown (4870175).
 699         recursive_exception_occurred = true;
 700         exception = Handle(THREAD, PENDING_EXCEPTION);
 701         CLEAR_PENDING_EXCEPTION;
 702         if (handler_bci >= 0) {
 703           bci = handler_bci;
 704           handler_bci = -1;
 705           skip_scope_increment = true;
 706         }
 707       }
 708       else {
 709         recursive_exception = false;
 710       }
 711       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 712         sd = sd->sender();
 713         if (sd != NULL) {
 714           bci = sd->bci();
 715         }
 716         ++scope_depth;
 717       }
 718     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 719   }
 720 
 721   // found handling method => lookup exception handler
 722   int catch_pco = ret_pc - nm->code_begin();
 723 
 724   ExceptionHandlerTable table(nm);
 725   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 726   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 727     // Allow abbreviated catch tables.  The idea is to allow a method
 728     // to materialize its exceptions without committing to the exact
 729     // routing of exceptions.  In particular this is needed for adding
 730     // a synthetic handler to unlock monitors when inlining
 731     // synchronized methods since the unlock path isn't represented in
 732     // the bytecodes.
 733     t = table.entry_for(catch_pco, -1, 0);
 734   }
 735 
 736 #ifdef COMPILER1
 737   if (t == NULL && nm->is_compiled_by_c1()) {
 738     assert(nm->unwind_handler_begin() != NULL, "");
 739     return nm->unwind_handler_begin();
 740   }
 741 #endif
 742 
 743   if (t == NULL) {
 744     ttyLocker ttyl;
 745     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 746     tty->print_cr("   Exception:");
 747     exception->print();
 748     tty->cr();
 749     tty->print_cr(" Compiled exception table :");
 750     table.print();
 751     nm->print_code();
 752     guarantee(false, "missing exception handler");
 753     return NULL;
 754   }
 755 
 756   return nm->code_begin() + t->pco();
 757 }
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 760   // These errors occur only at call sites
 761   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 765   // These errors occur only at call sites
 766   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 770   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 774   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
 775 JRT_END
 776 
 777 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 778   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 779   // cache sites (when the callee activation is not yet set up) so we are at a call site
 780   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
 781 JRT_END
 782 
 783 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 784   throw_StackOverflowError_common(current, false);
 785 JRT_END
 786 
 787 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 788   throw_StackOverflowError_common(current, true);
 789 JRT_END
 790 
 791 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 792   // We avoid using the normal exception construction in this case because
 793   // it performs an upcall to Java, and we're already out of stack space.
 794   JavaThread* THREAD = current; // For exception macros.
 795   Klass* k = vmClasses::StackOverflowError_klass();
 796   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 797   if (delayed) {
 798     java_lang_Throwable::set_message(exception_oop,
 799                                      Universe::delayed_stack_overflow_error_message());
 800   }
 801   Handle exception (current, exception_oop);
 802   if (StackTraceInThrowable) {
 803     java_lang_Throwable::fill_in_stack_trace(exception);
 804   }
 805   // Increment counter for hs_err file reporting
 806   Atomic::inc(&Exceptions::_stack_overflow_errors);
 807   throw_and_post_jvmti_exception(current, exception);
 808 }
 809 
 810 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 811                                                            address pc,
 812                                                            ImplicitExceptionKind exception_kind)
 813 {
 814   address target_pc = NULL;
 815 
 816   if (Interpreter::contains(pc)) {
 817     switch (exception_kind) {
 818       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 819       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 820       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 821       default:                      ShouldNotReachHere();
 822     }
 823   } else {
 824     switch (exception_kind) {
 825       case STACK_OVERFLOW: {
 826         // Stack overflow only occurs upon frame setup; the callee is
 827         // going to be unwound. Dispatch to a shared runtime stub
 828         // which will cause the StackOverflowError to be fabricated
 829         // and processed.
 830         // Stack overflow should never occur during deoptimization:
 831         // the compiled method bangs the stack by as much as the
 832         // interpreter would need in case of a deoptimization. The
 833         // deoptimization blob and uncommon trap blob bang the stack
 834         // in a debug VM to verify the correctness of the compiled
 835         // method stack banging.
 836         assert(current->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 837         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 838         return StubRoutines::throw_StackOverflowError_entry();
 839       }
 840 
 841       case IMPLICIT_NULL: {
 842         if (VtableStubs::contains(pc)) {
 843           // We haven't yet entered the callee frame. Fabricate an
 844           // exception and begin dispatching it in the caller. Since
 845           // the caller was at a call site, it's safe to destroy all
 846           // caller-saved registers, as these entry points do.
 847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 848 
 849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (vt_stub == NULL) return NULL;
 851 
 852           if (vt_stub->is_abstract_method_error(pc)) {
 853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 854             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 855             // Instead of throwing the abstract method error here directly, we re-resolve
 856             // and will throw the AbstractMethodError during resolve. As a result, we'll
 857             // get a more detailed error message.
 858             return SharedRuntime::get_handle_wrong_method_stub();
 859           } else {
 860             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 861             // Assert that the signal comes from the expected location in stub code.
 862             assert(vt_stub->is_null_pointer_exception(pc),
 863                    "obtained signal from unexpected location in stub code");
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866         } else {
 867           CodeBlob* cb = CodeCache::find_blob(pc);
 868 
 869           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 870           if (cb == NULL) return NULL;
 871 
 872           // Exception happened in CodeCache. Must be either:
 873           // 1. Inline-cache check in C2I handler blob,
 874           // 2. Inline-cache check in nmethod, or
 875           // 3. Implicit null exception in nmethod
 876 
 877           if (!cb->is_compiled()) {
 878             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 879             if (!is_in_blob) {
 880               // Allow normal crash reporting to handle this
 881               return NULL;
 882             }
 883             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 884             // There is no handler here, so we will simply unwind.
 885             return StubRoutines::throw_NullPointerException_at_call_entry();
 886           }
 887 
 888           // Otherwise, it's a compiled method.  Consult its exception handlers.
 889           CompiledMethod* cm = (CompiledMethod*)cb;
 890           if (cm->inlinecache_check_contains(pc)) {
 891             // exception happened inside inline-cache check code
 892             // => the nmethod is not yet active (i.e., the frame
 893             // is not set up yet) => use return address pushed by
 894             // caller => don't push another return address
 895             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899           if (cm->method()->is_method_handle_intrinsic()) {
 900             // exception happened inside MH dispatch code, similar to a vtable stub
 901             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 902             return StubRoutines::throw_NullPointerException_at_call_entry();
 903           }
 904 
 905 #ifndef PRODUCT
 906           _implicit_null_throws++;
 907 #endif
 908           target_pc = cm->continuation_for_implicit_null_exception(pc);
 909           // If there's an unexpected fault, target_pc might be NULL,
 910           // in which case we want to fall through into the normal
 911           // error handling code.
 912         }
 913 
 914         break; // fall through
 915       }
 916 
 917 
 918       case IMPLICIT_DIVIDE_BY_ZERO: {
 919         CompiledMethod* cm = CodeCache::find_compiled(pc);
 920         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 921 #ifndef PRODUCT
 922         _implicit_div0_throws++;
 923 #endif
 924         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 925         // If there's an unexpected fault, target_pc might be NULL,
 926         // in which case we want to fall through into the normal
 927         // error handling code.
 928         break; // fall through
 929       }
 930 
 931       default: ShouldNotReachHere();
 932     }
 933 
 934     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 935 
 936     if (exception_kind == IMPLICIT_NULL) {
 937 #ifndef PRODUCT
 938       // for AbortVMOnException flag
 939       Exceptions::debug_check_abort("java.lang.NullPointerException");
 940 #endif //PRODUCT
 941       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 942     } else {
 943 #ifndef PRODUCT
 944       // for AbortVMOnException flag
 945       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 946 #endif //PRODUCT
 947       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 948     }
 949     return target_pc;
 950   }
 951 
 952   ShouldNotReachHere();
 953   return NULL;
 954 }
 955 
 956 
 957 /**
 958  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 959  * installed in the native function entry of all native Java methods before
 960  * they get linked to their actual native methods.
 961  *
 962  * \note
 963  * This method actually never gets called!  The reason is because
 964  * the interpreter's native entries call NativeLookup::lookup() which
 965  * throws the exception when the lookup fails.  The exception is then
 966  * caught and forwarded on the return from NativeLookup::lookup() call
 967  * before the call to the native function.  This might change in the future.
 968  */
 969 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 970 {
 971   // We return a bad value here to make sure that the exception is
 972   // forwarded before we look at the return value.
 973   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 974 }
 975 JNI_END
 976 
 977 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 978   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 979 }
 980 
 981 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
 982 #if INCLUDE_JVMCI
 983   if (!obj->klass()->has_finalizer()) {
 984     return;
 985   }
 986 #endif // INCLUDE_JVMCI
 987   assert(oopDesc::is_oop(obj), "must be a valid oop");
 988   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 989   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 990 JRT_END
 991 
 992 
 993 jlong SharedRuntime::get_java_tid(Thread* thread) {
 994   if (thread != NULL) {
 995     if (thread->is_Java_thread()) {
 996       oop obj = JavaThread::cast(thread)->threadObj();
 997       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 998     }
 999   }
1000   return 0;
1001 }
1002 
1003 /**
1004  * This function ought to be a void function, but cannot be because
1005  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1006  * 6254741.  Once that is fixed we can remove the dummy return value.
1007  */
1008 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1009   return dtrace_object_alloc(Thread::current(), o, o->size());
1010 }
1011 
1012 int SharedRuntime::dtrace_object_alloc(Thread* thread, oopDesc* o) {
1013   return dtrace_object_alloc(thread, o, o->size());
1014 }
1015 
1016 int SharedRuntime::dtrace_object_alloc(Thread* thread, oopDesc* o, size_t size) {
1017   assert(DTraceAllocProbes, "wrong call");
1018   Klass* klass = o->klass();
1019   Symbol* name = klass->name();
1020   HOTSPOT_OBJECT_ALLOC(
1021                    get_java_tid(thread),
1022                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1023   return 0;
1024 }
1025 
1026 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1027     JavaThread* current, Method* method))
1028   assert(DTraceMethodProbes, "wrong call");
1029   Symbol* kname = method->klass_name();
1030   Symbol* name = method->name();
1031   Symbol* sig = method->signature();
1032   HOTSPOT_METHOD_ENTRY(
1033       get_java_tid(current),
1034       (char *) kname->bytes(), kname->utf8_length(),
1035       (char *) name->bytes(), name->utf8_length(),
1036       (char *) sig->bytes(), sig->utf8_length());
1037   return 0;
1038 JRT_END
1039 
1040 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1041     JavaThread* current, Method* method))
1042   assert(DTraceMethodProbes, "wrong call");
1043   Symbol* kname = method->klass_name();
1044   Symbol* name = method->name();
1045   Symbol* sig = method->signature();
1046   HOTSPOT_METHOD_RETURN(
1047       get_java_tid(current),
1048       (char *) kname->bytes(), kname->utf8_length(),
1049       (char *) name->bytes(), name->utf8_length(),
1050       (char *) sig->bytes(), sig->utf8_length());
1051   return 0;
1052 JRT_END
1053 
1054 
1055 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1056 // for a call current in progress, i.e., arguments has been pushed on stack
1057 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1058 // vtable updates, etc.  Caller frame must be compiled.
1059 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1060   JavaThread* current = THREAD;
1061   ResourceMark rm(current);
1062 
1063   // last java frame on stack (which includes native call frames)
1064   vframeStream vfst(current, true);  // Do not skip and javaCalls
1065 
1066   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1067 }
1068 
1069 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1070   CompiledMethod* caller = vfst.nm();
1071 
1072   nmethodLocker caller_lock(caller);
1073 
1074   address pc = vfst.frame_pc();
1075   { // Get call instruction under lock because another thread may be busy patching it.
1076     CompiledICLocker ic_locker(caller);
1077     return caller->attached_method_before_pc(pc);
1078   }
1079   return NULL;
1080 }
1081 
1082 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1083 // for a call current in progress, i.e., arguments has been pushed on stack
1084 // but callee has not been invoked yet.  Caller frame must be compiled.
1085 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1086                                               CallInfo& callinfo, TRAPS) {
1087   Handle receiver;
1088   Handle nullHandle;  // create a handy null handle for exception returns
1089   JavaThread* current = THREAD;
1090 
1091   assert(!vfst.at_end(), "Java frame must exist");
1092 
1093   // Find caller and bci from vframe
1094   methodHandle caller(current, vfst.method());
1095   int          bci   = vfst.bci();
1096 
1097   // Substitutability test implementation piggy backs on static call resolution
1098   Bytecodes::Code code = caller->java_code_at(bci);
1099   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1100     bc = Bytecodes::_invokestatic;
1101     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1102     assert(attached_method.not_null(), "must have attached method");
1103     vmClasses::PrimitiveObjectMethods_klass()->initialize(CHECK_NH);
1104     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1105 #ifdef ASSERT
1106     Method* is_subst = vmClasses::PrimitiveObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1107     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1108 #endif
1109     return receiver;
1110   }
1111 
1112   Bytecode_invoke bytecode(caller, bci);
1113   int bytecode_index = bytecode.index();
1114   bc = bytecode.invoke_code();
1115 
1116   methodHandle attached_method(current, extract_attached_method(vfst));
1117   if (attached_method.not_null()) {
1118     Method* callee = bytecode.static_target(CHECK_NH);
1119     vmIntrinsics::ID id = callee->intrinsic_id();
1120     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1121     // it attaches statically resolved method to the call site.
1122     if (MethodHandles::is_signature_polymorphic(id) &&
1123         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1124       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1125 
1126       // Adjust invocation mode according to the attached method.
1127       switch (bc) {
1128         case Bytecodes::_invokevirtual:
1129           if (attached_method->method_holder()->is_interface()) {
1130             bc = Bytecodes::_invokeinterface;
1131           }
1132           break;
1133         case Bytecodes::_invokeinterface:
1134           if (!attached_method->method_holder()->is_interface()) {
1135             bc = Bytecodes::_invokevirtual;
1136           }
1137           break;
1138         case Bytecodes::_invokehandle:
1139           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1140             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1141                                               : Bytecodes::_invokevirtual;
1142           }
1143           break;
1144         default:
1145           break;
1146       }
1147     } else {
1148       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1149       if (!attached_method->method_holder()->is_inline_klass()) {
1150         // Ignore the attached method in this case to not confuse below code
1151         attached_method = methodHandle(current, NULL);
1152       }
1153     }
1154   }
1155 
1156   assert(bc != Bytecodes::_illegal, "not initialized");
1157 
1158   bool has_receiver = bc != Bytecodes::_invokestatic &&
1159                       bc != Bytecodes::_invokedynamic &&
1160                       bc != Bytecodes::_invokehandle;
1161   bool check_null_and_abstract = true;
1162 
1163   // Find receiver for non-static call
1164   if (has_receiver) {
1165     // This register map must be update since we need to find the receiver for
1166     // compiled frames. The receiver might be in a register.
1167     RegisterMap reg_map2(current);
1168     frame stubFrame   = current->last_frame();
1169     // Caller-frame is a compiled frame
1170     frame callerFrame = stubFrame.sender(&reg_map2);
1171     bool caller_is_c1 = false;
1172 
1173     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1174       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1175     }
1176 
1177     Method* callee = attached_method();
1178     if (callee == NULL) {
1179       callee = bytecode.static_target(CHECK_NH);
1180       if (callee == NULL) {
1181         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1182       }
1183     }
1184     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_inline_klass() &&
1185         InlineKlass::cast(callee->method_holder())->can_be_passed_as_fields()) {
1186       // If the receiver is an inline type that is passed as fields, no oop is available
1187       // Resolve the call without receiver null checking.
1188       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1189       if (bc == Bytecodes::_invokeinterface) {
1190         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1191       }
1192       check_null_and_abstract = false;
1193     } else {
1194       // Retrieve from a compiled argument list
1195       receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1196       if (receiver.is_null()) {
1197         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1198       }
1199     }
1200   }
1201 
1202   // Resolve method
1203   if (attached_method.not_null()) {
1204     // Parameterized by attached method.
1205     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1206   } else {
1207     // Parameterized by bytecode.
1208     constantPoolHandle constants(current, caller->constants());
1209     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1210   }
1211 
1212 #ifdef ASSERT
1213   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1214   if (has_receiver && check_null_and_abstract) {
1215     assert(receiver.not_null(), "should have thrown exception");
1216     Klass* receiver_klass = receiver->klass();
1217     Klass* rk = NULL;
1218     if (attached_method.not_null()) {
1219       // In case there's resolved method attached, use its holder during the check.
1220       rk = attached_method->method_holder();
1221     } else {
1222       // Klass is already loaded.
1223       constantPoolHandle constants(current, caller->constants());
1224       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1225     }
1226     Klass* static_receiver_klass = rk;
1227     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1228            "actual receiver must be subclass of static receiver klass");
1229     if (receiver_klass->is_instance_klass()) {
1230       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1231         tty->print_cr("ERROR: Klass not yet initialized!!");
1232         receiver_klass->print();
1233       }
1234       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1235     }
1236   }
1237 #endif
1238 
1239   return receiver;
1240 }
1241 
1242 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1243   JavaThread* current = THREAD;
1244   ResourceMark rm(current);
1245   // We need first to check if any Java activations (compiled, interpreted)
1246   // exist on the stack since last JavaCall.  If not, we need
1247   // to get the target method from the JavaCall wrapper.
1248   vframeStream vfst(current, true);  // Do not skip any javaCalls
1249   methodHandle callee_method;
1250   if (vfst.at_end()) {
1251     // No Java frames were found on stack since we did the JavaCall.
1252     // Hence the stack can only contain an entry_frame.  We need to
1253     // find the target method from the stub frame.
1254     RegisterMap reg_map(current, false);
1255     frame fr = current->last_frame();
1256     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1257     fr = fr.sender(&reg_map);
1258     assert(fr.is_entry_frame(), "must be");
1259     // fr is now pointing to the entry frame.
1260     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1261   } else {
1262     Bytecodes::Code bc;
1263     CallInfo callinfo;
1264     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1265     callee_method = methodHandle(current, callinfo.selected_method());
1266   }
1267   assert(callee_method()->is_method(), "must be");
1268   return callee_method;
1269 }
1270 
1271 // Resolves a call.
1272 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool* caller_is_c1, TRAPS) {
1273   methodHandle callee_method;
1274   callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD);
1275   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1276     int retry_count = 0;
1277     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1278            callee_method->method_holder() != vmClasses::Object_klass()) {
1279       // If has a pending exception then there is no need to re-try to
1280       // resolve this method.
1281       // If the method has been redefined, we need to try again.
1282       // Hack: we have no way to update the vtables of arrays, so don't
1283       // require that java.lang.Object has been updated.
1284 
1285       // It is very unlikely that method is redefined more than 100 times
1286       // in the middle of resolve. If it is looping here more than 100 times
1287       // means then there could be a bug here.
1288       guarantee((retry_count++ < 100),
1289                 "Could not resolve to latest version of redefined method");
1290       // method is redefined in the middle of resolve so re-try.
1291       callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD);
1292     }
1293   }
1294   return callee_method;
1295 }
1296 
1297 // This fails if resolution required refilling of IC stubs
1298 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1299                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1300                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1301   StaticCallInfo static_call_info;
1302   CompiledICInfo virtual_call_info;
1303 
1304   // Make sure the callee nmethod does not get deoptimized and removed before
1305   // we are done patching the code.
1306   CompiledMethod* callee = callee_method->code();
1307 
1308   if (callee != NULL) {
1309     assert(callee->is_compiled(), "must be nmethod for patching");
1310   }
1311 
1312   if (callee != NULL && !callee->is_in_use()) {
1313     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1314     callee = NULL;
1315   }
1316   nmethodLocker nl_callee(callee);
1317 #ifdef ASSERT
1318   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1319 #endif
1320 
1321   bool is_nmethod = caller_nm->is_nmethod();
1322   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1323 
1324   if (is_virtual) {
1325     Klass* receiver_klass = NULL;
1326     if (!caller_is_c1 && callee_method->has_scalarized_args() && callee_method->method_holder()->is_inline_klass() &&
1327         InlineKlass::cast(callee_method->method_holder())->can_be_passed_as_fields()) {
1328       // If the receiver is an inline type that is passed as fields, no oop is available
1329       receiver_klass = callee_method->method_holder();
1330     } else {
1331       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1332       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1333     }
1334     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1335     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1336                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,
1337                      CHECK_false);
1338   } else {
1339     // static call
1340     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1341   }
1342 
1343   // grab lock, check for deoptimization and potentially patch caller
1344   {
1345     CompiledICLocker ml(caller_nm);
1346 
1347     // Lock blocks for safepoint during which both nmethods can change state.
1348 
1349     // Now that we are ready to patch if the Method* was redefined then
1350     // don't update call site and let the caller retry.
1351     // Don't update call site if callee nmethod was unloaded or deoptimized.
1352     // Don't update call site if callee nmethod was replaced by an other nmethod
1353     // which may happen when multiply alive nmethod (tiered compilation)
1354     // will be supported.
1355     if (!callee_method->is_old() &&
1356         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1357       NoSafepointVerifier nsv;
1358 #ifdef ASSERT
1359       // We must not try to patch to jump to an already unloaded method.
1360       if (dest_entry_point != 0) {
1361         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1362         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1363                "should not call unloaded nmethod");
1364       }
1365 #endif
1366       if (is_virtual) {
1367         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1368         if (inline_cache->is_clean()) {
1369           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1370             return false;
1371           }
1372         }
1373       } else {
1374         if (VM_Version::supports_fast_class_init_checks() &&
1375             invoke_code == Bytecodes::_invokestatic &&
1376             callee_method->needs_clinit_barrier() &&
1377             callee != NULL && callee->is_compiled_by_jvmci()) {
1378           return true; // skip patching for JVMCI
1379         }
1380         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1381         if (ssc->is_clean()) ssc->set(static_call_info);
1382       }
1383     }
1384   } // unlock CompiledICLocker
1385   return true;
1386 }
1387 
1388 // Resolves a call.  The compilers generate code for calls that go here
1389 // and are patched with the real destination of the call.
1390 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, bool* caller_is_c1, TRAPS) {
1391   JavaThread* current = THREAD;
1392   ResourceMark rm(current);
1393   RegisterMap cbl_map(current, false);
1394   frame caller_frame = current->last_frame().sender(&cbl_map);
1395 
1396   CodeBlob* caller_cb = caller_frame.cb();
1397   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1398   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1399   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1400 
1401   // make sure caller is not getting deoptimized
1402   // and removed before we are done with it.
1403   // CLEANUP - with lazy deopt shouldn't need this lock
1404   nmethodLocker caller_lock(caller_nm);
1405 
1406   // determine call info & receiver
1407   // note: a) receiver is NULL for static calls
1408   //       b) an exception is thrown if receiver is NULL for non-static calls
1409   CallInfo call_info;
1410   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1411   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1412   methodHandle callee_method(current, call_info.selected_method());
1413 
1414   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1415          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1416          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1417          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1418          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1419 
1420   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1421 
1422 #ifndef PRODUCT
1423   // tracing/debugging/statistics
1424   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1425                 (is_virtual) ? (&_resolve_virtual_ctr) :
1426                                (&_resolve_static_ctr);
1427   Atomic::inc(addr);
1428 
1429   if (TraceCallFixup) {
1430     ResourceMark rm(current);
1431     tty->print("resolving %s%s (%s) call to",
1432                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1433                Bytecodes::name(invoke_code));
1434     callee_method->print_short_name(tty);
1435     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1436                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1437   }
1438 #endif
1439 
1440   if (invoke_code == Bytecodes::_invokestatic) {
1441     assert(callee_method->method_holder()->is_initialized() ||
1442            callee_method->method_holder()->is_reentrant_initialization(current),
1443            "invalid class initialization state for invoke_static");
1444     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1445       // In order to keep class initialization check, do not patch call
1446       // site for static call when the class is not fully initialized.
1447       // Proper check is enforced by call site re-resolution on every invocation.
1448       //
1449       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1450       // explicit class initialization check is put in nmethod entry (VEP).
1451       assert(callee_method->method_holder()->is_linked(), "must be");
1452       return callee_method;
1453     }
1454   }
1455 
1456   // JSR 292 key invariant:
1457   // If the resolved method is a MethodHandle invoke target, the call
1458   // site must be a MethodHandle call site, because the lambda form might tail-call
1459   // leaving the stack in a state unknown to either caller or callee
1460   // TODO detune for now but we might need it again
1461 //  assert(!callee_method->is_compiled_lambda_form() ||
1462 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1463 
1464   // Compute entry points. This might require generation of C2I converter
1465   // frames, so we cannot be holding any locks here. Furthermore, the
1466   // computation of the entry points is independent of patching the call.  We
1467   // always return the entry-point, but we only patch the stub if the call has
1468   // not been deoptimized.  Return values: For a virtual call this is an
1469   // (cached_oop, destination address) pair. For a static call/optimized
1470   // virtual this is just a destination address.
1471 
1472   // Patching IC caches may fail if we run out if transition stubs.
1473   // We refill the ic stubs then and try again.
1474   for (;;) {
1475     ICRefillVerifier ic_refill_verifier;
1476     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1477                                                   is_virtual, is_optimized, receiver,
1478                                                   call_info, invoke_code, CHECK_(methodHandle()));
1479     if (successful) {
1480       return callee_method;
1481     } else {
1482       InlineCacheBuffer::refill_ic_stubs();
1483     }
1484   }
1485 
1486 }
1487 
1488 
1489 // Inline caches exist only in compiled code
1490 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1491 #ifdef ASSERT
1492   RegisterMap reg_map(current, false);
1493   frame stub_frame = current->last_frame();
1494   assert(stub_frame.is_runtime_frame(), "sanity check");
1495   frame caller_frame = stub_frame.sender(&reg_map);
1496   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame()  && !caller_frame.is_optimized_entry_frame(), "unexpected frame");
1497 #endif /* ASSERT */
1498 
1499   methodHandle callee_method;
1500   bool is_optimized = false;
1501   bool caller_is_c1 = false;
1502   JRT_BLOCK
1503     callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL);
1504     // Return Method* through TLS
1505     current->set_vm_result_2(callee_method());
1506   JRT_BLOCK_END
1507   // return compiled code entry point after potential safepoints
1508   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);
1509 JRT_END
1510 
1511 
1512 // Handle call site that has been made non-entrant
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1514   // 6243940 We might end up in here if the callee is deoptimized
1515   // as we race to call it.  We don't want to take a safepoint if
1516   // the caller was interpreted because the caller frame will look
1517   // interpreted to the stack walkers and arguments are now
1518   // "compiled" so it is much better to make this transition
1519   // invisible to the stack walking code. The i2c path will
1520   // place the callee method in the callee_target. It is stashed
1521   // there because if we try and find the callee by normal means a
1522   // safepoint is possible and have trouble gc'ing the compiled args.
1523   RegisterMap reg_map(current, false);
1524   frame stub_frame = current->last_frame();
1525   assert(stub_frame.is_runtime_frame(), "sanity check");
1526   frame caller_frame = stub_frame.sender(&reg_map);
1527 
1528   if (caller_frame.is_interpreted_frame() ||
1529       caller_frame.is_entry_frame() ||
1530       caller_frame.is_optimized_entry_frame()) {
1531     Method* callee = current->callee_target();
1532     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1533     current->set_vm_result_2(callee);
1534     current->set_callee_target(NULL);
1535     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1536       // Bypass class initialization checks in c2i when caller is in native.
1537       // JNI calls to static methods don't have class initialization checks.
1538       // Fast class initialization checks are present in c2i adapters and call into
1539       // SharedRuntime::handle_wrong_method() on the slow path.
1540       //
1541       // JVM upcalls may land here as well, but there's a proper check present in
1542       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1543       // so bypassing it in c2i adapter is benign.
1544       return callee->get_c2i_no_clinit_check_entry();
1545     } else {
1546       return callee->get_c2i_entry();
1547     }
1548   }
1549 
1550   // Must be compiled to compiled path which is safe to stackwalk
1551   methodHandle callee_method;
1552   bool is_static_call = false;
1553   bool is_optimized = false;
1554   bool caller_is_c1 = false;
1555   JRT_BLOCK
1556     // Force resolving of caller (if we called from compiled frame)
1557     callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1558     current->set_vm_result_2(callee_method());
1559   JRT_BLOCK_END
1560   // return compiled code entry point after potential safepoints
1561   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);
1562 JRT_END
1563 
1564 // Handle abstract method call
1565 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1566   // Verbose error message for AbstractMethodError.
1567   // Get the called method from the invoke bytecode.
1568   vframeStream vfst(current, true);
1569   assert(!vfst.at_end(), "Java frame must exist");
1570   methodHandle caller(current, vfst.method());
1571   Bytecode_invoke invoke(caller, vfst.bci());
1572   DEBUG_ONLY( invoke.verify(); )
1573 
1574   // Find the compiled caller frame.
1575   RegisterMap reg_map(current);
1576   frame stubFrame = current->last_frame();
1577   assert(stubFrame.is_runtime_frame(), "must be");
1578   frame callerFrame = stubFrame.sender(&reg_map);
1579   assert(callerFrame.is_compiled_frame(), "must be");
1580 
1581   // Install exception and return forward entry.
1582   address res = StubRoutines::throw_AbstractMethodError_entry();
1583   JRT_BLOCK
1584     methodHandle callee(current, invoke.static_target(current));
1585     if (!callee.is_null()) {
1586       oop recv = callerFrame.retrieve_receiver(&reg_map);
1587       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1588       res = StubRoutines::forward_exception_entry();
1589       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1590     }
1591   JRT_BLOCK_END
1592   return res;
1593 JRT_END
1594 
1595 
1596 // resolve a static call and patch code
1597 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1598   methodHandle callee_method;
1599   bool caller_is_c1;
1600   JRT_BLOCK
1601     callee_method = SharedRuntime::resolve_helper(false, false, &caller_is_c1, CHECK_NULL);
1602     current->set_vm_result_2(callee_method());
1603   JRT_BLOCK_END
1604   // return compiled code entry point after potential safepoints
1605   address entry = caller_is_c1 ?
1606     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1607   assert(entry != NULL, "Jump to zero!");
1608   return entry;
1609 JRT_END
1610 
1611 
1612 // resolve virtual call and update inline cache to monomorphic
1613 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1614   methodHandle callee_method;
1615   bool caller_is_c1;
1616   JRT_BLOCK
1617     callee_method = SharedRuntime::resolve_helper(true, false, &caller_is_c1, CHECK_NULL);
1618     current->set_vm_result_2(callee_method());
1619   JRT_BLOCK_END
1620   // return compiled code entry point after potential safepoints
1621   address entry = caller_is_c1 ?
1622     callee_method->verified_inline_code_entry() : callee_method->verified_inline_ro_code_entry();
1623   assert(entry != NULL, "Jump to zero!");
1624   return entry;
1625 JRT_END
1626 
1627 
1628 // Resolve a virtual call that can be statically bound (e.g., always
1629 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1630 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1631   methodHandle callee_method;
1632   bool caller_is_c1;
1633   JRT_BLOCK
1634     callee_method = SharedRuntime::resolve_helper(true, true, &caller_is_c1, CHECK_NULL);
1635     current->set_vm_result_2(callee_method());
1636   JRT_BLOCK_END
1637   // return compiled code entry point after potential safepoints
1638   address entry = caller_is_c1 ?
1639     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1640   assert(entry != NULL, "Jump to zero!");
1641   return entry;
1642 JRT_END
1643 
1644 // The handle_ic_miss_helper_internal function returns false if it failed due
1645 // to either running out of vtable stubs or ic stubs due to IC transitions
1646 // to transitional states. The needs_ic_stub_refill value will be set if
1647 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1648 // refills the IC stubs and tries again.
1649 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1650                                                    const frame& caller_frame, methodHandle callee_method,
1651                                                    Bytecodes::Code bc, CallInfo& call_info,
1652                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1653   CompiledICLocker ml(caller_nm);
1654   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1655   bool should_be_mono = false;
1656   if (inline_cache->is_optimized()) {
1657     if (TraceCallFixup) {
1658       ResourceMark rm(THREAD);
1659       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1660       callee_method->print_short_name(tty);
1661       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1662     }
1663     is_optimized = true;
1664     should_be_mono = true;
1665   } else if (inline_cache->is_icholder_call()) {
1666     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1667     if (ic_oop != NULL) {
1668       if (!ic_oop->is_loader_alive()) {
1669         // Deferred IC cleaning due to concurrent class unloading
1670         if (!inline_cache->set_to_clean()) {
1671           needs_ic_stub_refill = true;
1672           return false;
1673         }
1674       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1675         // This isn't a real miss. We must have seen that compiled code
1676         // is now available and we want the call site converted to a
1677         // monomorphic compiled call site.
1678         // We can't assert for callee_method->code() != NULL because it
1679         // could have been deoptimized in the meantime
1680         if (TraceCallFixup) {
1681           ResourceMark rm(THREAD);
1682           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1683           callee_method->print_short_name(tty);
1684           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1685         }
1686         should_be_mono = true;
1687       }
1688     }
1689   }
1690 
1691   if (should_be_mono) {
1692     // We have a path that was monomorphic but was going interpreted
1693     // and now we have (or had) a compiled entry. We correct the IC
1694     // by using a new icBuffer.
1695     CompiledICInfo info;
1696     Klass* receiver_klass = receiver()->klass();
1697     inline_cache->compute_monomorphic_entry(callee_method,
1698                                             receiver_klass,
1699                                             inline_cache->is_optimized(),
1700                                             false, caller_nm->is_nmethod(),
1701                                             caller_nm->is_compiled_by_c1(),
1702                                             info, CHECK_false);
1703     if (!inline_cache->set_to_monomorphic(info)) {
1704       needs_ic_stub_refill = true;
1705       return false;
1706     }
1707   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1708     // Potential change to megamorphic
1709 
1710     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1711     if (needs_ic_stub_refill) {
1712       return false;
1713     }
1714     if (!successful) {
1715       if (!inline_cache->set_to_clean()) {
1716         needs_ic_stub_refill = true;
1717         return false;
1718       }
1719     }
1720   } else {
1721     // Either clean or megamorphic
1722   }
1723   return true;
1724 }
1725 
1726 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) {
1727   JavaThread* current = THREAD;
1728   ResourceMark rm(current);
1729   CallInfo call_info;
1730   Bytecodes::Code bc;
1731 
1732   // receiver is NULL for static calls. An exception is thrown for NULL
1733   // receivers for non-static calls
1734   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1735   // Compiler1 can produce virtual call sites that can actually be statically bound
1736   // If we fell thru to below we would think that the site was going megamorphic
1737   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1738   // we'd try and do a vtable dispatch however methods that can be statically bound
1739   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1740   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1741   // plain ic_miss) and the site will be converted to an optimized virtual call site
1742   // never to miss again. I don't believe C2 will produce code like this but if it
1743   // did this would still be the correct thing to do for it too, hence no ifdef.
1744   //
1745   if (call_info.resolved_method()->can_be_statically_bound()) {
1746     bool is_static_call = false;
1747     methodHandle callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1748     assert(!is_static_call, "IC miss at static call?");
1749     if (TraceCallFixup) {
1750       RegisterMap reg_map(current, false);
1751       frame caller_frame = current->last_frame().sender(&reg_map);
1752       ResourceMark rm(current);
1753       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1754       callee_method->print_short_name(tty);
1755       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1756       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1757     }
1758     return callee_method;
1759   }
1760 
1761   methodHandle callee_method(current, call_info.selected_method());
1762 
1763 #ifndef PRODUCT
1764   Atomic::inc(&_ic_miss_ctr);
1765 
1766   // Statistics & Tracing
1767   if (TraceCallFixup) {
1768     ResourceMark rm(current);
1769     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1770     callee_method->print_short_name(tty);
1771     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1772   }
1773 
1774   if (ICMissHistogram) {
1775     MutexLocker m(VMStatistic_lock);
1776     RegisterMap reg_map(current, false);
1777     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1778     // produce statistics under the lock
1779     trace_ic_miss(f.pc());
1780   }
1781 #endif
1782 
1783   // install an event collector so that when a vtable stub is created the
1784   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1785   // event can't be posted when the stub is created as locks are held
1786   // - instead the event will be deferred until the event collector goes
1787   // out of scope.
1788   JvmtiDynamicCodeEventCollector event_collector;
1789 
1790   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1791   // Transitioning IC caches may require transition stubs. If we run out
1792   // of transition stubs, we have to drop locks and perform a safepoint
1793   // that refills them.
1794   RegisterMap reg_map(current, false);
1795   frame caller_frame = current->last_frame().sender(&reg_map);
1796   CodeBlob* cb = caller_frame.cb();
1797   CompiledMethod* caller_nm = cb->as_compiled_method();
1798   caller_is_c1 = caller_nm->is_compiled_by_c1();
1799 
1800   for (;;) {
1801     ICRefillVerifier ic_refill_verifier;
1802     bool needs_ic_stub_refill = false;
1803     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1804                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1805     if (successful || !needs_ic_stub_refill) {
1806       return callee_method;
1807     } else {
1808       InlineCacheBuffer::refill_ic_stubs();
1809     }
1810   }
1811 }
1812 
1813 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1814   CompiledICLocker ml(caller_nm);
1815   if (is_static_call) {
1816     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1817     if (!ssc->is_clean()) {
1818       return ssc->set_to_clean();
1819     }
1820   } else {
1821     // compiled, dispatched call (which used to call an interpreted method)
1822     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1823     if (!inline_cache->is_clean()) {
1824       return inline_cache->set_to_clean();
1825     }
1826   }
1827   return true;
1828 }
1829 
1830 //
1831 // Resets a call-site in compiled code so it will get resolved again.
1832 // This routines handles both virtual call sites, optimized virtual call
1833 // sites, and static call sites. Typically used to change a call sites
1834 // destination from compiled to interpreted.
1835 //
1836 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1837   JavaThread* current = THREAD;
1838   ResourceMark rm(current);
1839   RegisterMap reg_map(current, false);
1840   frame stub_frame = current->last_frame();
1841   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1842   frame caller = stub_frame.sender(&reg_map);
1843 
1844   // Do nothing if the frame isn't a live compiled frame.
1845   // nmethod could be deoptimized by the time we get here
1846   // so no update to the caller is needed.
1847 
1848   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1849 
1850     address pc = caller.pc();
1851 
1852     // Check for static or virtual call
1853     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1854     caller_is_c1 = caller_nm->is_compiled_by_c1();
1855 
1856     // Default call_addr is the location of the "basic" call.
1857     // Determine the address of the call we a reresolving. With
1858     // Inline Caches we will always find a recognizable call.
1859     // With Inline Caches disabled we may or may not find a
1860     // recognizable call. We will always find a call for static
1861     // calls and for optimized virtual calls. For vanilla virtual
1862     // calls it depends on the state of the UseInlineCaches switch.
1863     //
1864     // With Inline Caches disabled we can get here for a virtual call
1865     // for two reasons:
1866     //   1 - calling an abstract method. The vtable for abstract methods
1867     //       will run us thru handle_wrong_method and we will eventually
1868     //       end up in the interpreter to throw the ame.
1869     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1870     //       call and between the time we fetch the entry address and
1871     //       we jump to it the target gets deoptimized. Similar to 1
1872     //       we will wind up in the interprter (thru a c2i with c2).
1873     //
1874     address call_addr = NULL;
1875     {
1876       // Get call instruction under lock because another thread may be
1877       // busy patching it.
1878       CompiledICLocker ml(caller_nm);
1879       // Location of call instruction
1880       call_addr = caller_nm->call_instruction_address(pc);
1881     }
1882     // Make sure nmethod doesn't get deoptimized and removed until
1883     // this is done with it.
1884     // CLEANUP - with lazy deopt shouldn't need this lock
1885     nmethodLocker nmlock(caller_nm);
1886 
1887     if (call_addr != NULL) {
1888       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1889       int ret = iter.next(); // Get item
1890       if (ret) {
1891         assert(iter.addr() == call_addr, "must find call");
1892         if (iter.type() == relocInfo::static_call_type) {
1893           is_static_call = true;
1894         } else {
1895           assert(iter.type() == relocInfo::virtual_call_type ||
1896                  iter.type() == relocInfo::opt_virtual_call_type
1897                 , "unexpected relocInfo. type");
1898           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1899         }
1900       } else {
1901         assert(!UseInlineCaches, "relocation info. must exist for this address");
1902       }
1903 
1904       // Cleaning the inline cache will force a new resolve. This is more robust
1905       // than directly setting it to the new destination, since resolving of calls
1906       // is always done through the same code path. (experience shows that it
1907       // leads to very hard to track down bugs, if an inline cache gets updated
1908       // to a wrong method). It should not be performance critical, since the
1909       // resolve is only done once.
1910 
1911       for (;;) {
1912         ICRefillVerifier ic_refill_verifier;
1913         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1914           InlineCacheBuffer::refill_ic_stubs();
1915         } else {
1916           break;
1917         }
1918       }
1919     }
1920   }
1921 
1922   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1923 
1924 #ifndef PRODUCT
1925   Atomic::inc(&_wrong_method_ctr);
1926 
1927   if (TraceCallFixup) {
1928     ResourceMark rm(current);
1929     tty->print("handle_wrong_method reresolving call to");
1930     callee_method->print_short_name(tty);
1931     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1932   }
1933 #endif
1934 
1935   return callee_method;
1936 }
1937 
1938 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1939   // The faulting unsafe accesses should be changed to throw the error
1940   // synchronously instead. Meanwhile the faulting instruction will be
1941   // skipped over (effectively turning it into a no-op) and an
1942   // asynchronous exception will be raised which the thread will
1943   // handle at a later point. If the instruction is a load it will
1944   // return garbage.
1945 
1946   // Request an async exception.
1947   thread->set_pending_unsafe_access_error();
1948 
1949   // Return address of next instruction to execute.
1950   return next_pc;
1951 }
1952 
1953 #ifdef ASSERT
1954 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1955                                                                 const BasicType* sig_bt,
1956                                                                 const VMRegPair* regs) {
1957   ResourceMark rm;
1958   const int total_args_passed = method->size_of_parameters();
1959   const VMRegPair*    regs_with_member_name = regs;
1960         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1961 
1962   const int member_arg_pos = total_args_passed - 1;
1963   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1964   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1965 
1966   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1967 
1968   for (int i = 0; i < member_arg_pos; i++) {
1969     VMReg a =    regs_with_member_name[i].first();
1970     VMReg b = regs_without_member_name[i].first();
1971     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1972   }
1973   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1974 }
1975 #endif
1976 
1977 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1978   if (destination != entry_point) {
1979     CodeBlob* callee = CodeCache::find_blob(destination);
1980     // callee == cb seems weird. It means calling interpreter thru stub.
1981     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1982       // static call or optimized virtual
1983       if (TraceCallFixup) {
1984         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1985         moop->print_short_name(tty);
1986         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1987       }
1988       return true;
1989     } else {
1990       if (TraceCallFixup) {
1991         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1992         moop->print_short_name(tty);
1993         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1994       }
1995       // assert is too strong could also be resolve destinations.
1996       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1997     }
1998   } else {
1999     if (TraceCallFixup) {
2000       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
2001       moop->print_short_name(tty);
2002       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
2003     }
2004   }
2005   return false;
2006 }
2007 
2008 // ---------------------------------------------------------------------------
2009 // We are calling the interpreter via a c2i. Normally this would mean that
2010 // we were called by a compiled method. However we could have lost a race
2011 // where we went int -> i2c -> c2i and so the caller could in fact be
2012 // interpreted. If the caller is compiled we attempt to patch the caller
2013 // so he no longer calls into the interpreter.
2014 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
2015   Method* moop(method);
2016 
2017   // It's possible that deoptimization can occur at a call site which hasn't
2018   // been resolved yet, in which case this function will be called from
2019   // an nmethod that has been patched for deopt and we can ignore the
2020   // request for a fixup.
2021   // Also it is possible that we lost a race in that from_compiled_entry
2022   // is now back to the i2c in that case we don't need to patch and if
2023   // we did we'd leap into space because the callsite needs to use
2024   // "to interpreter" stub in order to load up the Method*. Don't
2025   // ask me how I know this...
2026 
2027   CodeBlob* cb = CodeCache::find_blob(caller_pc);
2028   if (cb == NULL || !cb->is_compiled()) {
2029     return;
2030   }
2031   address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1());
2032   if (entry_point == moop->get_c2i_entry()) {
2033     return;
2034   }
2035 
2036   // The check above makes sure this is a nmethod.
2037   CompiledMethod* nm = cb->as_compiled_method_or_null();
2038   assert(nm, "must be");
2039 
2040   // Get the return PC for the passed caller PC.
2041   address return_pc = caller_pc + frame::pc_return_offset;
2042 
2043   // There is a benign race here. We could be attempting to patch to a compiled
2044   // entry point at the same time the callee is being deoptimized. If that is
2045   // the case then entry_point may in fact point to a c2i and we'd patch the
2046   // call site with the same old data. clear_code will set code() to NULL
2047   // at the end of it. If we happen to see that NULL then we can skip trying
2048   // to patch. If we hit the window where the callee has a c2i in the
2049   // from_compiled_entry and the NULL isn't present yet then we lose the race
2050   // and patch the code with the same old data. Asi es la vida.
2051 
2052   if (moop->code() == NULL) return;
2053 
2054   if (nm->is_in_use()) {
2055     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2056     CompiledICLocker ic_locker(nm);
2057     if (NativeCall::is_call_before(return_pc)) {
2058       ResourceMark mark;
2059       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2060       //
2061       // bug 6281185. We might get here after resolving a call site to a vanilla
2062       // virtual call. Because the resolvee uses the verified entry it may then
2063       // see compiled code and attempt to patch the site by calling us. This would
2064       // then incorrectly convert the call site to optimized and its downhill from
2065       // there. If you're lucky you'll get the assert in the bugid, if not you've
2066       // just made a call site that could be megamorphic into a monomorphic site
2067       // for the rest of its life! Just another racing bug in the life of
2068       // fixup_callers_callsite ...
2069       //
2070       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2071       iter.next();
2072       assert(iter.has_current(), "must have a reloc at java call site");
2073       relocInfo::relocType typ = iter.reloc()->type();
2074       if (typ != relocInfo::static_call_type &&
2075            typ != relocInfo::opt_virtual_call_type &&
2076            typ != relocInfo::static_stub_type) {
2077         return;
2078       }
2079       address destination = call->destination();
2080       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2081         call->set_destination_mt_safe(entry_point);
2082       }
2083     }
2084   }
2085 JRT_END
2086 
2087 
2088 // same as JVM_Arraycopy, but called directly from compiled code
2089 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2090                                                 oopDesc* dest, jint dest_pos,
2091                                                 jint length,
2092                                                 JavaThread* current)) {
2093 #ifndef PRODUCT
2094   _slow_array_copy_ctr++;
2095 #endif
2096   // Check if we have null pointers
2097   if (src == NULL || dest == NULL) {
2098     THROW(vmSymbols::java_lang_NullPointerException());
2099   }
2100   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2101   // even though the copy_array API also performs dynamic checks to ensure
2102   // that src and dest are truly arrays (and are conformable).
2103   // The copy_array mechanism is awkward and could be removed, but
2104   // the compilers don't call this function except as a last resort,
2105   // so it probably doesn't matter.
2106   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2107                                         (arrayOopDesc*)dest, dest_pos,
2108                                         length, current);
2109 }
2110 JRT_END
2111 
2112 // The caller of generate_class_cast_message() (or one of its callers)
2113 // must use a ResourceMark in order to correctly free the result.
2114 char* SharedRuntime::generate_class_cast_message(
2115     JavaThread* thread, Klass* caster_klass) {
2116 
2117   // Get target class name from the checkcast instruction
2118   vframeStream vfst(thread, true);
2119   assert(!vfst.at_end(), "Java frame must exist");
2120   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2121   constantPoolHandle cpool(thread, vfst.method()->constants());
2122   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2123   Symbol* target_klass_name = NULL;
2124   if (target_klass == NULL) {
2125     // This klass should be resolved, but just in case, get the name in the klass slot.
2126     target_klass_name = cpool->klass_name_at(cc.index());
2127   }
2128   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2129 }
2130 
2131 
2132 // The caller of generate_class_cast_message() (or one of its callers)
2133 // must use a ResourceMark in order to correctly free the result.
2134 char* SharedRuntime::generate_class_cast_message(
2135     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2136   const char* caster_name = caster_klass->external_name();
2137 
2138   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2139   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2140                                                    target_klass->external_name();
2141 
2142   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2143 
2144   const char* caster_klass_description = "";
2145   const char* target_klass_description = "";
2146   const char* klass_separator = "";
2147   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2148     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2149   } else {
2150     caster_klass_description = caster_klass->class_in_module_of_loader();
2151     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2152     klass_separator = (target_klass != NULL) ? "; " : "";
2153   }
2154 
2155   // add 3 for parenthesis and preceeding space
2156   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2157 
2158   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2159   if (message == NULL) {
2160     // Shouldn't happen, but don't cause even more problems if it does
2161     message = const_cast<char*>(caster_klass->external_name());
2162   } else {
2163     jio_snprintf(message,
2164                  msglen,
2165                  "class %s cannot be cast to class %s (%s%s%s)",
2166                  caster_name,
2167                  target_name,
2168                  caster_klass_description,
2169                  klass_separator,
2170                  target_klass_description
2171                  );
2172   }
2173   return message;
2174 }
2175 
2176 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2177   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2178 JRT_END
2179 
2180 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2181   if (!SafepointSynchronize::is_synchronizing()) {
2182     // Only try quick_enter() if we're not trying to reach a safepoint
2183     // so that the calling thread reaches the safepoint more quickly.
2184     if (ObjectSynchronizer::quick_enter(obj, current, lock)) return;
2185   }
2186   // NO_ASYNC required because an async exception on the state transition destructor
2187   // would leave you with the lock held and it would never be released.
2188   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2189   // and the model is that an exception implies the method failed.
2190   JRT_BLOCK_NO_ASYNC
2191   Handle h_obj(THREAD, obj);
2192   ObjectSynchronizer::enter(h_obj, lock, current);
2193   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2194   JRT_BLOCK_END
2195 }
2196 
2197 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2198 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2199   SharedRuntime::monitor_enter_helper(obj, lock, current);
2200 JRT_END
2201 
2202 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2203   assert(JavaThread::current() == current, "invariant");
2204   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2205   ExceptionMark em(current);
2206   // The object could become unlocked through a JNI call, which we have no other checks for.
2207   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2208   if (obj->is_unlocked()) {
2209     if (CheckJNICalls) {
2210       fatal("Object has been unlocked by JNI");
2211     }
2212     return;
2213   }
2214   ObjectSynchronizer::exit(obj, lock, current);
2215 }
2216 
2217 // Handles the uncommon cases of monitor unlocking in compiled code
2218 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2219   SharedRuntime::monitor_exit_helper(obj, lock, current);
2220 JRT_END
2221 
2222 #ifndef PRODUCT
2223 
2224 void SharedRuntime::print_statistics() {
2225   ttyLocker ttyl;
2226   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2227 
2228   SharedRuntime::print_ic_miss_histogram();
2229 
2230   // Dump the JRT_ENTRY counters
2231   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2232   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2233   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2234   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2235   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2236   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2237 
2238   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2239   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2240   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2241   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2242   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2243 
2244   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2245   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2246   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2247   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2248   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2249   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2250   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2251   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2252   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2253   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2254   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2255   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2256   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2257   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2258   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2259   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2260 
2261   AdapterHandlerLibrary::print_statistics();
2262 
2263   if (xtty != NULL)  xtty->tail("statistics");
2264 }
2265 
2266 inline double percent(int x, int y) {
2267   return 100.0 * x / MAX2(y, 1);
2268 }
2269 
2270 inline double percent(int64_t x, int64_t y) {
2271   return 100.0 * x / MAX2(y, (int64_t)1);
2272 }
2273 
2274 class MethodArityHistogram {
2275  public:
2276   enum { MAX_ARITY = 256 };
2277  private:
2278   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2279   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2280   static uint64_t _total_compiled_calls;
2281   static uint64_t _max_compiled_calls_per_method;
2282   static int _max_arity;                       // max. arity seen
2283   static int _max_size;                        // max. arg size seen
2284 
2285   static void add_method_to_histogram(nmethod* nm) {
2286     Method* method = (nm == NULL) ? NULL : nm->method();
2287     if ((method != NULL) && nm->is_alive()) {
2288       ArgumentCount args(method->signature());
2289       int arity   = args.size() + (method->is_static() ? 0 : 1);
2290       int argsize = method->size_of_parameters();
2291       arity   = MIN2(arity, MAX_ARITY-1);
2292       argsize = MIN2(argsize, MAX_ARITY-1);
2293       uint64_t count = (uint64_t)method->compiled_invocation_count();
2294       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2295       _total_compiled_calls    += count;
2296       _arity_histogram[arity]  += count;
2297       _size_histogram[argsize] += count;
2298       _max_arity = MAX2(_max_arity, arity);
2299       _max_size  = MAX2(_max_size, argsize);
2300     }
2301   }
2302 
2303   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2304     const int N = MIN2(9, n);
2305     double sum = 0;
2306     double weighted_sum = 0;
2307     for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2308     if (sum >= 1.0) { // prevent divide by zero or divide overflow
2309       double rest = sum;
2310       double percent = sum / 100;
2311       for (int i = 0; i <= N; i++) {
2312         rest -= histo[i];
2313         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
2314       }
2315       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2316       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2317       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2318       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2319     } else {
2320       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2321     }
2322   }
2323 
2324   void print_histogram() {
2325     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2326     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2327     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2328     print_histogram_helper(_max_size, _size_histogram, "size");
2329     tty->cr();
2330   }
2331 
2332  public:
2333   MethodArityHistogram() {
2334     // Take the Compile_lock to protect against changes in the CodeBlob structures
2335     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2336     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2337     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2338     _max_arity = _max_size = 0;
2339     _total_compiled_calls = 0;
2340     _max_compiled_calls_per_method = 0;
2341     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2342     CodeCache::nmethods_do(add_method_to_histogram);
2343     print_histogram();
2344   }
2345 };
2346 
2347 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2348 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2349 uint64_t MethodArityHistogram::_total_compiled_calls;
2350 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2351 int MethodArityHistogram::_max_arity;
2352 int MethodArityHistogram::_max_size;
2353 
2354 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2355   tty->print_cr("Calls from compiled code:");
2356   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2357   int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2358   int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2359   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2360   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2361   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2362   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2363   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2364   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2365   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2366   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2367   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2368   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2369   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2370   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2371   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2372   tty->cr();
2373   tty->print_cr("Note 1: counter updates are not MT-safe.");
2374   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2375   tty->print_cr("        %% in nested categories are relative to their category");
2376   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2377   tty->cr();
2378 
2379   MethodArityHistogram h;
2380 }
2381 #endif
2382 
2383 
2384 // A simple wrapper class around the calling convention information
2385 // that allows sharing of adapters for the same calling convention.
2386 class AdapterFingerPrint : public CHeapObj<mtCode> {
2387  private:
2388   enum {
2389     _basic_type_bits = 4,
2390     _basic_type_mask = right_n_bits(_basic_type_bits),
2391     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2392     _compact_int_count = 3
2393   };
2394   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2395   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2396 
2397   union {
2398     int  _compact[_compact_int_count];
2399     int* _fingerprint;
2400   } _value;
2401   int _length; // A negative length indicates the fingerprint is in the compact form,
2402                // Otherwise _value._fingerprint is the array.
2403 
2404   // Remap BasicTypes that are handled equivalently by the adapters.
2405   // These are correct for the current system but someday it might be
2406   // necessary to make this mapping platform dependent.
2407   static BasicType adapter_encoding(BasicType in) {
2408     switch (in) {
2409       case T_BOOLEAN:
2410       case T_BYTE:
2411       case T_SHORT:
2412       case T_CHAR:
2413         // They are all promoted to T_INT in the calling convention
2414         return T_INT;
2415 
2416       case T_OBJECT:
2417       case T_ARRAY:
2418         // In other words, we assume that any register good enough for
2419         // an int or long is good enough for a managed pointer.
2420 #ifdef _LP64
2421         return T_LONG;
2422 #else
2423         return T_INT;
2424 #endif
2425 
2426       case T_INT:
2427       case T_LONG:
2428       case T_FLOAT:
2429       case T_DOUBLE:
2430       case T_VOID:
2431         return in;
2432 
2433       default:
2434         ShouldNotReachHere();
2435         return T_CONFLICT;
2436     }
2437   }
2438 
2439  public:
2440   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2441     // The fingerprint is based on the BasicType signature encoded
2442     // into an array of ints with eight entries per int.
2443     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2444     int* ptr;
2445     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2446     if (len <= _compact_int_count) {
2447       assert(_compact_int_count == 3, "else change next line");
2448       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2449       // Storing the signature encoded as signed chars hits about 98%
2450       // of the time.
2451       _length = -len;
2452       ptr = _value._compact;
2453     } else {
2454       _length = len;
2455       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2456       ptr = _value._fingerprint;
2457     }
2458 
2459     // Now pack the BasicTypes with 8 per int
2460     int sig_index = 0;
2461     BasicType prev_bt = T_ILLEGAL;
2462     int vt_count = 0;
2463     for (int index = 0; index < len; index++) {
2464       int value = 0;
2465       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2466         BasicType bt = T_ILLEGAL;
2467         if (sig_index < total_args_passed) {
2468           bt = sig->at(sig_index++)._bt;
2469           if (bt == T_INLINE_TYPE) {
2470             // Found start of inline type in signature
2471             assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2472             if (sig_index == 1 && has_ro_adapter) {
2473               // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching
2474               // with other adapters that have the same inline type as first argument and no receiver.
2475               bt = T_VOID;
2476             }
2477             vt_count++;
2478           } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2479             // Found end of inline type in signature
2480             assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2481             vt_count--;
2482             assert(vt_count >= 0, "invalid vt_count");
2483           } else if (vt_count == 0) {
2484             // Widen fields that are not part of a scalarized inline type argument
2485             bt = adapter_encoding(bt);
2486           }
2487           prev_bt = bt;
2488         }
2489         int bt_val = (bt == T_ILLEGAL) ? 0 : bt;
2490         assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits");
2491         value = (value << _basic_type_bits) | bt_val;
2492       }
2493       ptr[index] = value;
2494     }
2495     assert(vt_count == 0, "invalid vt_count");
2496   }
2497 
2498   ~AdapterFingerPrint() {
2499     if (_length > 0) {
2500       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2501     }
2502   }
2503 
2504   int value(int index) {
2505     if (_length < 0) {
2506       return _value._compact[index];
2507     }
2508     return _value._fingerprint[index];
2509   }
2510   int length() {
2511     if (_length < 0) return -_length;
2512     return _length;
2513   }
2514 
2515   bool is_compact() {
2516     return _length <= 0;
2517   }
2518 
2519   unsigned int compute_hash() {
2520     int hash = 0;
2521     for (int i = 0; i < length(); i++) {
2522       int v = value(i);
2523       hash = (hash << 8) ^ v ^ (hash >> 5);
2524     }
2525     return (unsigned int)hash;
2526   }
2527 
2528   const char* as_string() {
2529     stringStream st;
2530     st.print("0x");
2531     for (int i = 0; i < length(); i++) {
2532       st.print("%x", value(i));
2533     }
2534     return st.as_string();
2535   }
2536 
2537 #ifndef PRODUCT
2538   // Reconstitutes the basic type arguments from the fingerprint,
2539   // producing strings like LIJDF
2540   const char* as_basic_args_string() {
2541     stringStream st;
2542     bool long_prev = false;
2543     for (int i = 0; i < length(); i++) {
2544       unsigned val = (unsigned)value(i);
2545       // args are packed so that first/lower arguments are in the highest
2546       // bits of each int value, so iterate from highest to the lowest
2547       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2548         unsigned v = (val >> j) & _basic_type_mask;
2549         if (v == 0) {
2550           assert(i == length() - 1, "Only expect zeroes in the last word");
2551           continue;
2552         }
2553         if (long_prev) {
2554           long_prev = false;
2555           if (v == T_VOID) {
2556             st.print("J");
2557           } else {
2558             st.print("L");
2559           }
2560         } else if (v == T_LONG) {
2561           long_prev = true;
2562         } else if (v != T_VOID){
2563           st.print("%c", type2char((BasicType)v));
2564         }
2565       }
2566     }
2567     if (long_prev) {
2568       st.print("L");
2569     }
2570     return st.as_string();
2571   }
2572 #endif // !product
2573 
2574   bool equals(AdapterFingerPrint* other) {
2575     if (other->_length != _length) {
2576       return false;
2577     }
2578     if (_length < 0) {
2579       assert(_compact_int_count == 3, "else change next line");
2580       return _value._compact[0] == other->_value._compact[0] &&
2581              _value._compact[1] == other->_value._compact[1] &&
2582              _value._compact[2] == other->_value._compact[2];
2583     } else {
2584       for (int i = 0; i < _length; i++) {
2585         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2586           return false;
2587         }
2588       }
2589     }
2590     return true;
2591   }
2592 };
2593 
2594 
2595 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2596 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2597   friend class AdapterHandlerTableIterator;
2598 
2599  private:
2600 
2601 #ifndef PRODUCT
2602   static int _lookups; // number of calls to lookup
2603   static int _buckets; // number of buckets checked
2604   static int _equals;  // number of buckets checked with matching hash
2605   static int _hits;    // number of successful lookups
2606   static int _compact; // number of equals calls with compact signature
2607 #endif
2608 
2609   AdapterHandlerEntry* bucket(int i) {
2610     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2611   }
2612 
2613  public:
2614   AdapterHandlerTable()
2615     : BasicHashtable<mtCode>(293, (sizeof(AdapterHandlerEntry))) { }
2616 
2617   // Create a new entry suitable for insertion in the table
2618   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2619                                  address c2i_inline_entry, address c2i_inline_ro_entry,
2620                                  address c2i_unverified_entry, address c2i_unverified_inline_entry, address c2i_no_clinit_check_entry) {
2621     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2622     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry,
2623                 c2i_unverified_entry, c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
2624     return entry;
2625   }
2626 
2627   // Insert an entry into the table
2628   void add(AdapterHandlerEntry* entry) {
2629     int index = hash_to_index(entry->hash());
2630     add_entry(index, entry);
2631   }
2632 
2633   void free_entry(AdapterHandlerEntry* entry) {
2634     entry->deallocate();
2635     BasicHashtable<mtCode>::free_entry(entry);
2636   }
2637 
2638   // Find a entry with the same fingerprint if it exists
2639   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2640     NOT_PRODUCT(_lookups++);
2641     AdapterFingerPrint fp(sig, has_ro_adapter);
2642     unsigned int hash = fp.compute_hash();
2643     int index = hash_to_index(hash);
2644     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2645       NOT_PRODUCT(_buckets++);
2646       if (e->hash() == hash) {
2647         NOT_PRODUCT(_equals++);
2648         if (fp.equals(e->fingerprint())) {
2649 #ifndef PRODUCT
2650           if (fp.is_compact()) _compact++;
2651           _hits++;
2652 #endif
2653           return e;
2654         }
2655       }
2656     }
2657     return NULL;
2658   }
2659 
2660 #ifndef PRODUCT
2661   void print_statistics() {
2662     ResourceMark rm;
2663     int longest = 0;
2664     int empty = 0;
2665     int total = 0;
2666     int nonempty = 0;
2667     for (int index = 0; index < table_size(); index++) {
2668       int count = 0;
2669       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2670         count++;
2671       }
2672       if (count != 0) nonempty++;
2673       if (count == 0) empty++;
2674       if (count > longest) longest = count;
2675       total += count;
2676     }
2677     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2678                   empty, longest, total, total / (double)nonempty);
2679     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2680                   _lookups, _buckets, _equals, _hits, _compact);
2681   }
2682 #endif
2683 };
2684 
2685 
2686 #ifndef PRODUCT
2687 
2688 int AdapterHandlerTable::_lookups;
2689 int AdapterHandlerTable::_buckets;
2690 int AdapterHandlerTable::_equals;
2691 int AdapterHandlerTable::_hits;
2692 int AdapterHandlerTable::_compact;
2693 
2694 #endif
2695 
2696 class AdapterHandlerTableIterator : public StackObj {
2697  private:
2698   AdapterHandlerTable* _table;
2699   int _index;
2700   AdapterHandlerEntry* _current;
2701 
2702   void scan() {
2703     while (_index < _table->table_size()) {
2704       AdapterHandlerEntry* a = _table->bucket(_index);
2705       _index++;
2706       if (a != NULL) {
2707         _current = a;
2708         return;
2709       }
2710     }
2711   }
2712 
2713  public:
2714   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2715     scan();
2716   }
2717   bool has_next() {
2718     return _current != NULL;
2719   }
2720   AdapterHandlerEntry* next() {
2721     if (_current != NULL) {
2722       AdapterHandlerEntry* result = _current;
2723       _current = _current->next();
2724       if (_current == NULL) scan();
2725       return result;
2726     } else {
2727       return NULL;
2728     }
2729   }
2730 };
2731 
2732 
2733 // ---------------------------------------------------------------------------
2734 // Implementation of AdapterHandlerLibrary
2735 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2736 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2737 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = NULL;
2738 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = NULL;
2739 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = NULL;
2740 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = NULL;
2741 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = NULL;
2742 const int AdapterHandlerLibrary_size = 32*K;
2743 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2744 
2745 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2746   return _buffer;
2747 }
2748 
2749 extern "C" void unexpected_adapter_call() {
2750   ShouldNotCallThis();
2751 }
2752 
2753 static void post_adapter_creation(const AdapterBlob* new_adapter, const AdapterHandlerEntry* entry) {
2754   char blob_id[256];
2755   jio_snprintf(blob_id,
2756                 sizeof(blob_id),
2757                 "%s(%s)",
2758                 new_adapter->name(),
2759                 entry->fingerprint()->as_string());
2760   Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2761 
2762   if (JvmtiExport::should_post_dynamic_code_generated()) {
2763     JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2764   }
2765 }
2766 
2767 void AdapterHandlerLibrary::initialize() {
2768   ResourceMark rm;
2769   AdapterBlob* no_arg_blob = NULL;
2770   AdapterBlob* int_arg_blob = NULL;
2771   AdapterBlob* obj_arg_blob = NULL;
2772   AdapterBlob* obj_int_arg_blob = NULL;
2773   AdapterBlob* obj_obj_arg_blob = NULL;
2774   {
2775     MutexLocker mu(AdapterHandlerLibrary_lock);
2776     assert(_adapters == NULL, "Initializing more than once");
2777 
2778     _adapters = new AdapterHandlerTable();
2779 
2780     // Create a special handler for abstract methods.  Abstract methods
2781     // are never compiled so an i2c entry is somewhat meaningless, but
2782     // throw AbstractMethodError just in case.
2783     // Pass wrong_method_abstract for the c2i transitions to return
2784     // AbstractMethodError for invalid invocations.
2785     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2786     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2787                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2788                                                                 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2789                                                                 wrong_method_abstract, wrong_method_abstract);
2790     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2791 
2792     CompiledEntrySignature no_args;
2793     no_args.compute_calling_conventions();
2794     _no_arg_handler = create_adapter(no_arg_blob, no_args, true);
2795 
2796     CompiledEntrySignature obj_args;
2797     SigEntry::add_entry(&obj_args.sig(), T_OBJECT, NULL);
2798     obj_args.compute_calling_conventions();
2799     _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true);
2800 
2801     CompiledEntrySignature int_args;
2802     SigEntry::add_entry(&int_args.sig(), T_INT, NULL);
2803     int_args.compute_calling_conventions();
2804     _int_arg_handler = create_adapter(int_arg_blob, int_args, true);
2805 
2806     CompiledEntrySignature obj_int_args;
2807     SigEntry::add_entry(&obj_int_args.sig(), T_OBJECT, NULL);
2808     SigEntry::add_entry(&obj_int_args.sig(), T_INT, NULL);
2809     obj_int_args.compute_calling_conventions();
2810     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true);
2811 
2812     CompiledEntrySignature obj_obj_args;
2813     SigEntry::add_entry(&obj_obj_args.sig(), T_OBJECT, NULL);
2814     SigEntry::add_entry(&obj_obj_args.sig(), T_OBJECT, NULL);
2815     obj_obj_args.compute_calling_conventions();
2816     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true);
2817 
2818     assert(no_arg_blob != NULL &&
2819           obj_arg_blob != NULL &&
2820           int_arg_blob != NULL &&
2821           obj_int_arg_blob != NULL &&
2822           obj_obj_arg_blob != NULL, "Initial adapters must be properly created");
2823   }
2824   return;
2825 
2826   // Outside of the lock
2827   post_adapter_creation(no_arg_blob, _no_arg_handler);
2828   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2829   post_adapter_creation(int_arg_blob, _int_arg_handler);
2830   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2831   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2832 }
2833 
2834 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2835                                                       address i2c_entry,
2836                                                       address c2i_entry,
2837                                                       address c2i_inline_entry,
2838                                                       address c2i_inline_ro_entry,
2839                                                       address c2i_unverified_entry,
2840                                                       address c2i_unverified_inline_entry,
2841                                                       address c2i_no_clinit_check_entry) {
2842   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry,
2843                               c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
2844 }
2845 
2846 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2847   if (method->is_abstract()) {
2848     return NULL;
2849   }
2850   int total_args_passed = method->size_of_parameters(); // All args on stack
2851   if (total_args_passed == 0) {
2852     return _no_arg_handler;
2853   } else if (total_args_passed == 1) {
2854     if (!method->is_static() && !method->method_holder()->is_inline_klass()) {
2855       return _obj_arg_handler;
2856     }
2857     switch (method->signature()->char_at(1)) {
2858       case JVM_SIGNATURE_CLASS:
2859       case JVM_SIGNATURE_ARRAY:
2860         return _obj_arg_handler;
2861       case JVM_SIGNATURE_INT:
2862       case JVM_SIGNATURE_BOOLEAN:
2863       case JVM_SIGNATURE_CHAR:
2864       case JVM_SIGNATURE_BYTE:
2865       case JVM_SIGNATURE_SHORT:
2866         return _int_arg_handler;
2867     }
2868   } else if (total_args_passed == 2 &&
2869              !method->is_static() && !method->method_holder()->is_inline_klass()) {
2870     switch (method->signature()->char_at(1)) {
2871       case JVM_SIGNATURE_CLASS:
2872       case JVM_SIGNATURE_ARRAY:
2873         return _obj_obj_arg_handler;
2874       case JVM_SIGNATURE_INT:
2875       case JVM_SIGNATURE_BOOLEAN:
2876       case JVM_SIGNATURE_CHAR:
2877       case JVM_SIGNATURE_BYTE:
2878       case JVM_SIGNATURE_SHORT:
2879         return _obj_int_arg_handler;
2880     }
2881   }
2882   return NULL;
2883 }
2884 
2885 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2886   _method(method), _num_inline_args(0), _has_inline_recv(false),
2887   _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL),
2888   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2889   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false) {
2890   _sig = new GrowableArray<SigEntry>((method != NULL) ? method->size_of_parameters() : 1);
2891   _sig_cc = _sig;
2892   _sig_cc_ro = _sig;
2893 }
2894 
2895 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2896   InstanceKlass* holder = _method->method_holder();
2897   sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters());
2898   if (!_method->is_static()) {
2899     if (holder->is_inline_klass() && scalar_receiver && InlineKlass::cast(holder)->can_be_passed_as_fields()) {
2900       sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2901     } else {
2902       SigEntry::add_entry(sig_cc, T_OBJECT, holder->name());
2903     }
2904   }
2905   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2906     if (ss.type() == T_INLINE_TYPE) {
2907       InlineKlass* vk = ss.as_inline_klass(holder);
2908       if (vk->can_be_passed_as_fields()) {
2909         sig_cc->appendAll(vk->extended_sig());
2910       } else {
2911         SigEntry::add_entry(sig_cc, T_OBJECT, ss.as_symbol());
2912       }
2913     } else {
2914       SigEntry::add_entry(sig_cc, ss.type(), ss.as_symbol());
2915     }
2916   }
2917   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2918   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2919 }
2920 
2921 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2922 // or the same entry for VEP and VIEP(RO).
2923 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2924   if (!has_scalarized_args()) {
2925     // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2926     return CodeOffsets::Verified_Entry;
2927   }
2928   if (_method->is_static()) {
2929     // Static methods don't need VIEP(RO)
2930     return CodeOffsets::Verified_Entry;
2931   }
2932 
2933   if (has_inline_recv()) {
2934     if (num_inline_args() == 1) {
2935       // Share same entry for VIEP and VIEP(RO).
2936       // This is quite common: we have an instance method in an InlineKlass that has
2937       // no inline type args other than <this>.
2938       return CodeOffsets::Verified_Inline_Entry;
2939     } else {
2940       assert(num_inline_args() > 1, "must be");
2941       // No sharing:
2942       //   VIEP(RO) -- <this> is passed as object
2943       //   VEP      -- <this> is passed as fields
2944       return CodeOffsets::Verified_Inline_Entry_RO;
2945     }
2946   }
2947 
2948   // Either a static method, or <this> is not an inline type
2949   if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2950     // No sharing:
2951     // Some arguments are passed on the stack, and we have inserted reserved entries
2952     // into the VEP, but we never insert reserved entries into the VIEP(RO).
2953     return CodeOffsets::Verified_Inline_Entry_RO;
2954   } else {
2955     // Share same entry for VEP and VIEP(RO).
2956     return CodeOffsets::Verified_Entry;
2957   }
2958 }
2959 
2960 void CompiledEntrySignature::compute_calling_conventions() {
2961   // Get the (non-scalarized) signature and check for inline type arguments
2962   if (_method != NULL) {
2963     if (!_method->is_static()) {
2964       if (_method->method_holder()->is_inline_klass() && InlineKlass::cast(_method->method_holder())->can_be_passed_as_fields()) {
2965         _has_inline_recv = true;
2966         _num_inline_args++;
2967       }
2968       SigEntry::add_entry(_sig, T_OBJECT, _method->name());
2969     }
2970     for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2971       BasicType bt = ss.type();
2972       if (bt == T_INLINE_TYPE) {
2973         if (ss.as_inline_klass(_method->method_holder())->can_be_passed_as_fields()) {
2974           _num_inline_args++;
2975         }
2976         bt = T_OBJECT;
2977       }
2978       SigEntry::add_entry(_sig, bt, ss.as_symbol());
2979     }
2980     if (_method->is_abstract() && !has_inline_arg()) {
2981       return;
2982     }
2983   }
2984 
2985   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2986   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2987   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2988 
2989   // Now compute the scalarized calling convention if there are inline types in the signature
2990   _regs_cc = _regs;
2991   _regs_cc_ro = _regs;
2992   _args_on_stack_cc = _args_on_stack;
2993   _args_on_stack_cc_ro = _args_on_stack;
2994 
2995   if (has_inline_arg() && !_method->is_native()) {
2996     _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true);
2997 
2998     _sig_cc_ro = _sig_cc;
2999     _regs_cc_ro = _regs_cc;
3000     _args_on_stack_cc_ro = _args_on_stack_cc;
3001     if (_has_inline_recv) {
3002       // For interface calls, we need another entry point / adapter to unpack the receiver
3003       _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
3004     }
3005 
3006     // Upper bound on stack arguments to avoid hitting the argument limit and
3007     // bailing out of compilation ("unsupported incoming calling sequence").
3008     // TODO we need a reasonable limit (flag?) here
3009     if (_args_on_stack_cc > 50) {
3010       // Don't scalarize inline type arguments
3011       _sig_cc = _sig;
3012       _sig_cc_ro = _sig;
3013       _regs_cc = _regs;
3014       _regs_cc_ro = _regs;
3015       _args_on_stack_cc = _args_on_stack;
3016       _args_on_stack_cc_ro = _args_on_stack;
3017     } else {
3018       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3019       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3020     }
3021   }
3022 }
3023 
3024 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
3025   // Use customized signature handler.  Need to lock around updates to
3026   // the AdapterHandlerTable (it is not safe for concurrent readers
3027   // and a single writer: this could be fixed if it becomes a
3028   // problem).
3029   assert(_adapters != NULL, "Uninitialized");
3030 
3031   // Fast-path for trivial adapters
3032   AdapterHandlerEntry* entry = get_simple_adapter(method);
3033   if (entry != NULL) {
3034     return entry;
3035   }
3036 
3037   ResourceMark rm;
3038   AdapterBlob* new_adapter = NULL;
3039 
3040   CompiledEntrySignature ces(method());
3041   ces.compute_calling_conventions();
3042   if (ces.has_scalarized_args()) {
3043     method->set_has_scalarized_args(true);
3044     method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
3045     method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
3046   } else if (method->is_abstract()) {
3047     return _abstract_method_handler;
3048   }
3049 
3050   {
3051     MutexLocker mu(AdapterHandlerLibrary_lock);
3052 
3053     if (ces.has_scalarized_args() && method->is_abstract()) {
3054       // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments
3055       address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
3056       entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
3057                                                StubRoutines::throw_AbstractMethodError_entry(),
3058                                                wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
3059                                                wrong_method_abstract, wrong_method_abstract);
3060       GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro().length(), mtInternal);
3061       heap_sig->appendAll(&ces.sig_cc_ro());
3062       entry->set_sig_cc(heap_sig);
3063       return entry;
3064     }
3065 
3066     // Lookup method signature's fingerprint
3067     entry = _adapters->lookup(&ces.sig_cc(), ces.regs_cc() != ces.regs_cc_ro());
3068 
3069     if (entry != NULL) {
3070 #ifdef ASSERT
3071       if (VerifyAdapterSharing) {
3072         AdapterBlob* comparison_blob = NULL;
3073         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false);
3074         assert(comparison_blob == NULL, "no blob should be created when creating an adapter for comparison");
3075         assert(comparison_entry->compare_code(entry), "code must match");
3076         // Release the one just created and return the original
3077         _adapters->free_entry(comparison_entry);
3078       }
3079 #endif
3080       return entry;
3081     }
3082 
3083     entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true);
3084   }
3085 
3086   // Outside of the lock
3087   if (new_adapter != NULL) {
3088     post_adapter_creation(new_adapter, entry);
3089   }
3090   return entry;
3091 }
3092 
3093 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
3094                                                            CompiledEntrySignature& ces,
3095                                                            bool allocate_code_blob) {
3096 
3097   // StubRoutines::code2() is initialized after this function can be called. As a result,
3098   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
3099   // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
3100   // stub that ensure that an I2C stub is called from an interpreter frame.
3101   bool contains_all_checks = StubRoutines::code2() != NULL;
3102 
3103   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3104   CodeBuffer buffer(buf);
3105   short buffer_locs[20];
3106   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3107                                           sizeof(buffer_locs)/sizeof(relocInfo));
3108 
3109   // Make a C heap allocated version of the fingerprint to store in the adapter
3110   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(&ces.sig_cc(), ces.regs_cc() != ces.regs_cc_ro());
3111   MacroAssembler _masm(&buffer);
3112   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
3113                                                 ces.args_on_stack(),
3114                                                 &ces.sig(),
3115                                                 ces.regs(),
3116                                                 &ces.sig_cc(),
3117                                                 ces.regs_cc(),
3118                                                 &ces.sig_cc_ro(),
3119                                                 ces.regs_cc_ro(),
3120                                                 fingerprint,
3121                                                 new_adapter,
3122                                                 allocate_code_blob);
3123 
3124   if (ces.has_scalarized_args()) {
3125     // Save a C heap allocated version of the scalarized signature and store it in the adapter
3126     GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(ces.sig_cc().length(), mtInternal);
3127     heap_sig->appendAll(&ces.sig_cc());
3128     entry->set_sig_cc(heap_sig);
3129   }
3130 
3131 #ifdef ASSERT
3132   if (VerifyAdapterSharing) {
3133     entry->save_code(buf->code_begin(), buffer.insts_size());
3134     if (!allocate_code_blob) {
3135       return entry;
3136     }
3137   }
3138 #endif
3139 
3140   NOT_PRODUCT(int insts_size = buffer.insts_size());
3141   if (new_adapter == NULL) {
3142     // CodeCache is full, disable compilation
3143     // Ought to log this but compile log is only per compile thread
3144     // and we're some non descript Java thread.
3145     return NULL;
3146   }
3147   entry->relocate(new_adapter->content_begin());
3148 #ifndef PRODUCT
3149   // debugging suppport
3150   if (PrintAdapterHandlers || PrintStubCode) {
3151     ttyLocker ttyl;
3152     entry->print_adapter_on(tty);
3153     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
3154                   _adapters->number_of_entries(), fingerprint->as_basic_args_string(),
3155                   fingerprint->as_string(), insts_size);
3156     tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3157     if (Verbose || PrintStubCode) {
3158       address first_pc = entry->base_address();
3159       if (first_pc != NULL) {
3160         Disassembler::decode(first_pc, first_pc + insts_size, tty
3161                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
3162         tty->cr();
3163       }
3164     }
3165   }
3166 #endif
3167 
3168   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3169   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3170   if (contains_all_checks || !VerifyAdapterCalls) {
3171     _adapters->add(entry);
3172   }
3173   return entry;
3174 }
3175 
3176 address AdapterHandlerEntry::base_address() {
3177   address base = _i2c_entry;
3178   if (base == NULL)  base = _c2i_entry;
3179   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3180   assert(base <= _c2i_inline_entry || _c2i_inline_entry == NULL, "");
3181   assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == NULL, "");
3182   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3183   assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == NULL, "");
3184   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
3185   return base;
3186 }
3187 
3188 void AdapterHandlerEntry::relocate(address new_base) {
3189   address old_base = base_address();
3190   assert(old_base != NULL, "");
3191   ptrdiff_t delta = new_base - old_base;
3192   if (_i2c_entry != NULL)
3193     _i2c_entry += delta;
3194   if (_c2i_entry != NULL)
3195     _c2i_entry += delta;
3196   if (_c2i_inline_entry != NULL)
3197     _c2i_inline_entry += delta;
3198   if (_c2i_inline_ro_entry != NULL)
3199     _c2i_inline_ro_entry += delta;
3200   if (_c2i_unverified_entry != NULL)
3201     _c2i_unverified_entry += delta;
3202   if (_c2i_unverified_inline_entry != NULL)
3203     _c2i_unverified_inline_entry += delta;
3204   if (_c2i_no_clinit_check_entry != NULL)
3205     _c2i_no_clinit_check_entry += delta;
3206   assert(base_address() == new_base, "");
3207 }
3208 
3209 
3210 void AdapterHandlerEntry::deallocate() {
3211   delete _fingerprint;
3212   if (_sig_cc != NULL) {
3213     delete _sig_cc;
3214   }
3215 #ifdef ASSERT
3216   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3217 #endif
3218 }
3219 
3220 
3221 #ifdef ASSERT
3222 // Capture the code before relocation so that it can be compared
3223 // against other versions.  If the code is captured after relocation
3224 // then relative instructions won't be equivalent.
3225 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3226   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3227   _saved_code_length = length;
3228   memcpy(_saved_code, buffer, length);
3229 }
3230 
3231 
3232 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3233   assert(_saved_code != NULL && other->_saved_code != NULL, "code not saved");
3234 
3235   if (other->_saved_code_length != _saved_code_length) {
3236     return false;
3237   }
3238 
3239   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3240 }
3241 #endif
3242 
3243 
3244 /**
3245  * Create a native wrapper for this native method.  The wrapper converts the
3246  * Java-compiled calling convention to the native convention, handles
3247  * arguments, and transitions to native.  On return from the native we transition
3248  * back to java blocking if a safepoint is in progress.
3249  */
3250 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3251   ResourceMark rm;
3252   nmethod* nm = NULL;
3253 
3254   assert(method->is_native(), "must be native");
3255   assert(method->is_method_handle_intrinsic() ||
3256          method->has_native_function(), "must have something valid to call!");
3257 
3258   {
3259     // Perform the work while holding the lock, but perform any printing outside the lock
3260     MutexLocker mu(AdapterHandlerLibrary_lock);
3261     // See if somebody beat us to it
3262     if (method->code() != NULL) {
3263       return;
3264     }
3265 
3266     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3267     assert(compile_id > 0, "Must generate native wrapper");
3268 
3269 
3270     ResourceMark rm;
3271     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3272     if (buf != NULL) {
3273       CodeBuffer buffer(buf);
3274       struct { double data[20]; } locs_buf;
3275       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3276 #if defined(AARCH64)
3277       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3278       // in the constant pool to ensure ordering between the barrier and oops
3279       // accesses. For native_wrappers we need a constant.
3280       buffer.initialize_consts_size(8);
3281 #endif
3282       MacroAssembler _masm(&buffer);
3283 
3284       // Fill in the signature array, for the calling-convention call.
3285       const int total_args_passed = method->size_of_parameters();
3286 
3287       BasicType stack_sig_bt[16];
3288       VMRegPair stack_regs[16];
3289       BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3290       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3291 
3292       int i = 0;
3293       if (!method->is_static()) {  // Pass in receiver first
3294         sig_bt[i++] = T_OBJECT;
3295       }
3296       SignatureStream ss(method->signature());
3297       for (; !ss.at_return_type(); ss.next()) {
3298         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3299         if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3300           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3301         }
3302       }
3303       assert(i == total_args_passed, "");
3304       BasicType ret_type = ss.type();
3305 
3306       // Now get the compiled-Java arguments layout.
3307       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3308 
3309       // Generate the compiled-to-native wrapper code
3310       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3311 
3312       if (nm != NULL) {
3313         {
3314           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3315           if (nm->make_in_use()) {
3316             method->set_code(method, nm);
3317           }
3318         }
3319 
3320         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3321         if (directive->PrintAssemblyOption) {
3322           nm->print_code();
3323         }
3324         DirectivesStack::release(directive);
3325       }
3326     }
3327   } // Unlock AdapterHandlerLibrary_lock
3328 
3329 
3330   // Install the generated code.
3331   if (nm != NULL) {
3332     const char *msg = method->is_static() ? "(static)" : "";
3333     CompileTask::print_ul(nm, msg);
3334     if (PrintCompilation) {
3335       ttyLocker ttyl;
3336       CompileTask::print(tty, nm, msg);
3337     }
3338     nm->post_compiled_method_load_event();
3339   }
3340 }
3341 
3342 // -------------------------------------------------------------------------
3343 // Java-Java calling convention
3344 // (what you use when Java calls Java)
3345 
3346 //------------------------------name_for_receiver----------------------------------
3347 // For a given signature, return the VMReg for parameter 0.
3348 VMReg SharedRuntime::name_for_receiver() {
3349   VMRegPair regs;
3350   BasicType sig_bt = T_OBJECT;
3351   (void) java_calling_convention(&sig_bt, &regs, 1);
3352   // Return argument 0 register.  In the LP64 build pointers
3353   // take 2 registers, but the VM wants only the 'main' name.
3354   return regs.first();
3355 }
3356 
3357 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3358   // This method is returning a data structure allocating as a
3359   // ResourceObject, so do not put any ResourceMarks in here.
3360 
3361   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3362   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3363   int cnt = 0;
3364   if (has_receiver) {
3365     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3366   }
3367 
3368   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3369     BasicType type = ss.type();
3370     sig_bt[cnt++] = type;
3371     if (is_double_word_type(type))
3372       sig_bt[cnt++] = T_VOID;
3373   }
3374 
3375   if (has_appendix) {
3376     sig_bt[cnt++] = T_OBJECT;
3377   }
3378 
3379   assert(cnt < 256, "grow table size");
3380 
3381   int comp_args_on_stack;
3382   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3383 
3384   // the calling convention doesn't count out_preserve_stack_slots so
3385   // we must add that in to get "true" stack offsets.
3386 
3387   if (comp_args_on_stack) {
3388     for (int i = 0; i < cnt; i++) {
3389       VMReg reg1 = regs[i].first();
3390       if (reg1->is_stack()) {
3391         // Yuck
3392         reg1 = reg1->bias(out_preserve_stack_slots());
3393       }
3394       VMReg reg2 = regs[i].second();
3395       if (reg2->is_stack()) {
3396         // Yuck
3397         reg2 = reg2->bias(out_preserve_stack_slots());
3398       }
3399       regs[i].set_pair(reg2, reg1);
3400     }
3401   }
3402 
3403   // results
3404   *arg_size = cnt;
3405   return regs;
3406 }
3407 
3408 // OSR Migration Code
3409 //
3410 // This code is used convert interpreter frames into compiled frames.  It is
3411 // called from very start of a compiled OSR nmethod.  A temp array is
3412 // allocated to hold the interesting bits of the interpreter frame.  All
3413 // active locks are inflated to allow them to move.  The displaced headers and
3414 // active interpreter locals are copied into the temp buffer.  Then we return
3415 // back to the compiled code.  The compiled code then pops the current
3416 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3417 // copies the interpreter locals and displaced headers where it wants.
3418 // Finally it calls back to free the temp buffer.
3419 //
3420 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3421 
3422 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3423   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3424   // frame. The stack watermark code below ensures that the interpreted frame is processed
3425   // before it gets unwound. This is helpful as the size of the compiled frame could be
3426   // larger than the interpreted frame, which could result in the new frame not being
3427   // processed correctly.
3428   StackWatermarkSet::before_unwind(current);
3429 
3430   //
3431   // This code is dependent on the memory layout of the interpreter local
3432   // array and the monitors. On all of our platforms the layout is identical
3433   // so this code is shared. If some platform lays the their arrays out
3434   // differently then this code could move to platform specific code or
3435   // the code here could be modified to copy items one at a time using
3436   // frame accessor methods and be platform independent.
3437 
3438   frame fr = current->last_frame();
3439   assert(fr.is_interpreted_frame(), "");
3440   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3441 
3442   // Figure out how many monitors are active.
3443   int active_monitor_count = 0;
3444   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3445        kptr < fr.interpreter_frame_monitor_begin();
3446        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3447     if (kptr->obj() != NULL) active_monitor_count++;
3448   }
3449 
3450   // QQQ we could place number of active monitors in the array so that compiled code
3451   // could double check it.
3452 
3453   Method* moop = fr.interpreter_frame_method();
3454   int max_locals = moop->max_locals();
3455   // Allocate temp buffer, 1 word per local & 2 per active monitor
3456   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3457   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3458 
3459   // Copy the locals.  Order is preserved so that loading of longs works.
3460   // Since there's no GC I can copy the oops blindly.
3461   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3462   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3463                        (HeapWord*)&buf[0],
3464                        max_locals);
3465 
3466   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3467   int i = max_locals;
3468   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3469        kptr2 < fr.interpreter_frame_monitor_begin();
3470        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3471     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3472       BasicLock *lock = kptr2->lock();
3473       // Inflate so the object's header no longer refers to the BasicLock.
3474       if (lock->displaced_header().is_unlocked()) {
3475         // The object is locked and the resulting ObjectMonitor* will also be
3476         // locked so it can't be async deflated until ownership is dropped.
3477         // See the big comment in basicLock.cpp: BasicLock::move_to().
3478         ObjectSynchronizer::inflate_helper(kptr2->obj());
3479       }
3480       // Now the displaced header is free to move because the
3481       // object's header no longer refers to it.
3482       buf[i++] = (intptr_t)lock->displaced_header().value();
3483       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3484     }
3485   }
3486   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3487 
3488   return buf;
3489 JRT_END
3490 
3491 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3492   FREE_C_HEAP_ARRAY(intptr_t, buf);
3493 JRT_END
3494 
3495 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3496   AdapterHandlerTableIterator iter(_adapters);
3497   while (iter.has_next()) {
3498     AdapterHandlerEntry* a = iter.next();
3499     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3500   }
3501   return false;
3502 }
3503 
3504 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3505   AdapterHandlerTableIterator iter(_adapters);
3506   while (iter.has_next()) {
3507     AdapterHandlerEntry* a = iter.next();
3508     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3509       st->print("Adapter for signature: ");
3510       a->print_adapter_on(tty);
3511       return;
3512     }
3513   }
3514   assert(false, "Should have found handler");
3515 }
3516 
3517 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3518   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3519   if (get_i2c_entry() != NULL) {
3520     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3521   }
3522   if (get_c2i_entry() != NULL) {
3523     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3524   }
3525   if (get_c2i_entry() != NULL) {
3526     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3527   }
3528   if (get_c2i_entry() != NULL) {
3529     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3530   }
3531   if (get_c2i_unverified_entry() != NULL) {
3532     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3533   }
3534   if (get_c2i_unverified_entry() != NULL) {
3535     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3536   }
3537   if (get_c2i_no_clinit_check_entry() != NULL) {
3538     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3539   }
3540   st->cr();
3541 }
3542 
3543 #ifndef PRODUCT
3544 
3545 void AdapterHandlerLibrary::print_statistics() {
3546   _adapters->print_statistics();
3547 }
3548 
3549 #endif /* PRODUCT */
3550 
3551 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3552   StackOverflow* overflow_state = current->stack_overflow_state();
3553   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3554   overflow_state->set_reserved_stack_activation(current->stack_base());
3555 JRT_END
3556 
3557 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3558   ResourceMark rm(current);
3559   frame activation;
3560   CompiledMethod* nm = NULL;
3561   int count = 1;
3562 
3563   assert(fr.is_java_frame(), "Must start on Java frame");
3564 
3565   while (true) {
3566     Method* method = NULL;
3567     bool found = false;
3568     if (fr.is_interpreted_frame()) {
3569       method = fr.interpreter_frame_method();
3570       if (method != NULL && method->has_reserved_stack_access()) {
3571         found = true;
3572       }
3573     } else {
3574       CodeBlob* cb = fr.cb();
3575       if (cb != NULL && cb->is_compiled()) {
3576         nm = cb->as_compiled_method();
3577         method = nm->method();
3578         // scope_desc_near() must be used, instead of scope_desc_at() because on
3579         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3580         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3581           method = sd->method();
3582           if (method != NULL && method->has_reserved_stack_access()) {
3583             found = true;
3584       }
3585     }
3586       }
3587     }
3588     if (found) {
3589       activation = fr;
3590       warning("Potentially dangerous stack overflow in "
3591               "ReservedStackAccess annotated method %s [%d]",
3592               method->name_and_sig_as_C_string(), count++);
3593       EventReservedStackActivation event;
3594       if (event.should_commit()) {
3595         event.set_method(method);
3596         event.commit();
3597       }
3598     }
3599     if (fr.is_first_java_frame()) {
3600       break;
3601     } else {
3602       fr = fr.java_sender();
3603     }
3604   }
3605   return activation;
3606 }
3607 
3608 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3609   // After any safepoint, just before going back to compiled code,
3610   // we inform the GC that we will be doing initializing writes to
3611   // this object in the future without emitting card-marks, so
3612   // GC may take any compensating steps.
3613 
3614   oop new_obj = current->vm_result();
3615   if (new_obj == NULL) return;
3616 
3617   BarrierSet *bs = BarrierSet::barrier_set();
3618   bs->on_slowpath_allocation_exit(current, new_obj);
3619 }
3620 
3621 // We are at a compiled code to interpreter call. We need backing
3622 // buffers for all inline type arguments. Allocate an object array to
3623 // hold them (convenient because once we're done with it we don't have
3624 // to worry about freeing it).
3625 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
3626   assert(InlineTypePassFieldsAsArgs, "no reason to call this");
3627   ResourceMark rm;
3628 
3629   int nb_slots = 0;
3630   InstanceKlass* holder = callee->method_holder();
3631   allocate_receiver &= !callee->is_static() && holder->is_inline_klass();
3632   if (allocate_receiver) {
3633     nb_slots++;
3634   }
3635   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3636     if (ss.type() == T_INLINE_TYPE) {
3637       nb_slots++;
3638     }
3639   }
3640   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3641   objArrayHandle array(THREAD, array_oop);
3642   int i = 0;
3643   if (allocate_receiver) {
3644     InlineKlass* vk = InlineKlass::cast(holder);
3645     oop res = vk->allocate_instance(CHECK_NULL);
3646     array->obj_at_put(i, res);
3647     i++;
3648   }
3649   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3650     if (ss.type() == T_INLINE_TYPE) {
3651       InlineKlass* vk = ss.as_inline_klass(holder);
3652       oop res = vk->allocate_instance(CHECK_NULL);
3653       array->obj_at_put(i, res);
3654       i++;
3655     }
3656   }
3657   return array();
3658 }
3659 
3660 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
3661   methodHandle callee(current, callee_method);
3662   oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
3663   current->set_vm_result(array);
3664   current->set_vm_result_2(callee()); // TODO: required to keep callee live?
3665 JRT_END
3666 
3667 // We're returning from an interpreted method: load each field into a
3668 // register following the calling convention
3669 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
3670 {
3671   assert(res->klass()->is_inline_klass(), "only inline types here");
3672   ResourceMark rm;
3673   RegisterMap reg_map(current);
3674   frame stubFrame = current->last_frame();
3675   frame callerFrame = stubFrame.sender(&reg_map);
3676   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3677 
3678   InlineKlass* vk = InlineKlass::cast(res->klass());
3679 
3680   const Array<SigEntry>* sig_vk = vk->extended_sig();
3681   const Array<VMRegPair>* regs = vk->return_regs();
3682 
3683   if (regs == NULL) {
3684     // The fields of the inline klass don't fit in registers, bail out
3685     return;
3686   }
3687 
3688   int j = 1;
3689   for (int i = 0; i < sig_vk->length(); i++) {
3690     BasicType bt = sig_vk->at(i)._bt;
3691     if (bt == T_INLINE_TYPE) {
3692       continue;
3693     }
3694     if (bt == T_VOID) {
3695       if (sig_vk->at(i-1)._bt == T_LONG ||
3696           sig_vk->at(i-1)._bt == T_DOUBLE) {
3697         j++;
3698       }
3699       continue;
3700     }
3701     int off = sig_vk->at(i)._offset;
3702     assert(off > 0, "offset in object should be positive");
3703     VMRegPair pair = regs->at(j);
3704     address loc = reg_map.location(pair.first());
3705     switch(bt) {
3706     case T_BOOLEAN:
3707       *(jboolean*)loc = res->bool_field(off);
3708       break;
3709     case T_CHAR:
3710       *(jchar*)loc = res->char_field(off);
3711       break;
3712     case T_BYTE:
3713       *(jbyte*)loc = res->byte_field(off);
3714       break;
3715     case T_SHORT:
3716       *(jshort*)loc = res->short_field(off);
3717       break;
3718     case T_INT: {
3719       *(jint*)loc = res->int_field(off);
3720       break;
3721     }
3722     case T_LONG:
3723 #ifdef _LP64
3724       *(intptr_t*)loc = res->long_field(off);
3725 #else
3726       Unimplemented();
3727 #endif
3728       break;
3729     case T_OBJECT:
3730     case T_ARRAY: {
3731       *(oop*)loc = res->obj_field(off);
3732       break;
3733     }
3734     case T_FLOAT:
3735       *(jfloat*)loc = res->float_field(off);
3736       break;
3737     case T_DOUBLE:
3738       *(jdouble*)loc = res->double_field(off);
3739       break;
3740     default:
3741       ShouldNotReachHere();
3742     }
3743     j++;
3744   }
3745   assert(j == regs->length(), "missed a field?");
3746 
3747 #ifdef ASSERT
3748   VMRegPair pair = regs->at(0);
3749   address loc = reg_map.location(pair.first());
3750   assert(*(oopDesc**)loc == res, "overwritten object");
3751 #endif
3752 
3753   current->set_vm_result(res);
3754 }
3755 JRT_END
3756 
3757 // We've returned to an interpreted method, the interpreter needs a
3758 // reference to an inline type instance. Allocate it and initialize it
3759 // from field's values in registers.
3760 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
3761 {
3762   ResourceMark rm;
3763   RegisterMap reg_map(current);
3764   frame stubFrame = current->last_frame();
3765   frame callerFrame = stubFrame.sender(&reg_map);
3766 
3767 #ifdef ASSERT
3768   InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
3769 #endif
3770 
3771   if (!is_set_nth_bit(res, 0)) {
3772     // We're not returning with inline type fields in registers (the
3773     // calling convention didn't allow it for this inline klass)
3774     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3775     current->set_vm_result((oopDesc*)res);
3776     assert(verif_vk == NULL, "broken calling convention");
3777     return;
3778   }
3779 
3780   clear_nth_bit(res, 0);
3781   InlineKlass* vk = (InlineKlass*)res;
3782   assert(verif_vk == vk, "broken calling convention");
3783   assert(Metaspace::contains((void*)res), "should be klass");
3784 
3785   // Allocate handles for every oop field so they are safe in case of
3786   // a safepoint when allocating
3787   GrowableArray<Handle> handles;
3788   vk->save_oop_fields(reg_map, handles);
3789 
3790   // It's unsafe to safepoint until we are here
3791   JRT_BLOCK;
3792   {
3793     JavaThread* THREAD = current;
3794     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3795     current->set_vm_result(vt);
3796   }
3797   JRT_BLOCK_END;
3798 }
3799 JRT_END
3800