1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/oopFactory.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "oops/access.hpp" 52 #include "oops/fieldStreams.inline.hpp" 53 #include "metaprogramming/primitiveConversions.hpp" 54 #include "oops/klass.hpp" 55 #include "oops/method.inline.hpp" 56 #include "oops/objArrayKlass.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "oops/inlineKlass.inline.hpp" 60 #include "prims/forte.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/nativeLookup.hpp" 65 #include "runtime/arguments.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/basicLock.inline.hpp" 68 #include "runtime/frame.inline.hpp" 69 #include "runtime/handles.inline.hpp" 70 #include "runtime/init.hpp" 71 #include "runtime/interfaceSupport.inline.hpp" 72 #include "runtime/java.hpp" 73 #include "runtime/javaCalls.hpp" 74 #include "runtime/jniHandles.inline.hpp" 75 #include "runtime/perfData.hpp" 76 #include "runtime/sharedRuntime.hpp" 77 #include "runtime/stackWatermarkSet.hpp" 78 #include "runtime/stubRoutines.hpp" 79 #include "runtime/synchronizer.inline.hpp" 80 #include "runtime/timerTrace.hpp" 81 #include "runtime/vframe.inline.hpp" 82 #include "runtime/vframeArray.hpp" 83 #include "runtime/vm_version.hpp" 84 #include "utilities/copy.hpp" 85 #include "utilities/dtrace.hpp" 86 #include "utilities/events.hpp" 87 #include "utilities/globalDefinitions.hpp" 88 #include "utilities/hashTable.hpp" 89 #include "utilities/macros.hpp" 90 #include "utilities/xmlstream.hpp" 91 #ifdef COMPILER1 92 #include "c1/c1_Runtime1.hpp" 93 #endif 94 #if INCLUDE_JFR 95 #include "jfr/jfr.inline.hpp" 96 #endif 97 98 // Shared runtime stub routines reside in their own unique blob with a 99 // single entry point 100 101 102 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 103 type* SharedRuntime::BLOB_FIELD_NAME(name); 104 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 105 #undef SHARED_STUB_FIELD_DEFINE 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 #if 0 110 // TODO tweak global stub name generation to match this 111 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 112 const char *SharedRuntime::_stub_names[] = { 113 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 114 }; 115 #endif 116 117 //----------------------------generate_stubs----------------------------------- 118 void SharedRuntime::generate_initial_stubs() { 119 // Build this early so it's available for the interpreter. 120 _throw_StackOverflowError_blob = 121 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 122 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 123 } 124 125 void SharedRuntime::generate_stubs() { 126 _wrong_method_blob = 127 generate_resolve_blob(StubId::shared_wrong_method_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 129 _wrong_method_abstract_blob = 130 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 132 _ic_miss_blob = 133 generate_resolve_blob(StubId::shared_ic_miss_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 135 _resolve_opt_virtual_call_blob = 136 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 138 _resolve_virtual_call_blob = 139 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 141 _resolve_static_call_blob = 142 generate_resolve_blob(StubId::shared_resolve_static_call_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 144 145 _throw_delayed_StackOverflowError_blob = 146 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 148 149 _throw_AbstractMethodError_blob = 150 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 152 153 _throw_IncompatibleClassChangeError_blob = 154 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 155 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 156 157 _throw_NullPointerException_at_call_blob = 158 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 159 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 160 161 #if COMPILER2_OR_JVMCI 162 // Vectors are generated only by C2 and JVMCI. 163 bool support_wide = is_wide_vector(MaxVectorSize); 164 if (support_wide) { 165 _polling_page_vectors_safepoint_handler_blob = 166 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 } 169 #endif // COMPILER2_OR_JVMCI 170 _polling_page_safepoint_handler_blob = 171 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 173 _polling_page_return_handler_blob = 174 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 176 177 generate_deopt_blob(); 178 } 179 180 void SharedRuntime::init_adapter_library() { 181 AdapterHandlerLibrary::initialize(); 182 } 183 184 #if INCLUDE_JFR 185 //------------------------------generate jfr runtime stubs ------ 186 void SharedRuntime::generate_jfr_stubs() { 187 ResourceMark rm; 188 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 189 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 190 191 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 192 _jfr_return_lease_blob = generate_jfr_return_lease(); 193 } 194 195 #endif // INCLUDE_JFR 196 197 #include <math.h> 198 199 // Implementation of SharedRuntime 200 201 #ifndef PRODUCT 202 // For statistics 203 uint SharedRuntime::_ic_miss_ctr = 0; 204 uint SharedRuntime::_wrong_method_ctr = 0; 205 uint SharedRuntime::_resolve_static_ctr = 0; 206 uint SharedRuntime::_resolve_virtual_ctr = 0; 207 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 208 uint SharedRuntime::_implicit_null_throws = 0; 209 uint SharedRuntime::_implicit_div0_throws = 0; 210 211 int64_t SharedRuntime::_nof_normal_calls = 0; 212 int64_t SharedRuntime::_nof_inlined_calls = 0; 213 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 214 int64_t SharedRuntime::_nof_static_calls = 0; 215 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 216 int64_t SharedRuntime::_nof_interface_calls = 0; 217 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 218 219 uint SharedRuntime::_new_instance_ctr=0; 220 uint SharedRuntime::_new_array_ctr=0; 221 uint SharedRuntime::_multi2_ctr=0; 222 uint SharedRuntime::_multi3_ctr=0; 223 uint SharedRuntime::_multi4_ctr=0; 224 uint SharedRuntime::_multi5_ctr=0; 225 uint SharedRuntime::_mon_enter_stub_ctr=0; 226 uint SharedRuntime::_mon_exit_stub_ctr=0; 227 uint SharedRuntime::_mon_enter_ctr=0; 228 uint SharedRuntime::_mon_exit_ctr=0; 229 uint SharedRuntime::_partial_subtype_ctr=0; 230 uint SharedRuntime::_jbyte_array_copy_ctr=0; 231 uint SharedRuntime::_jshort_array_copy_ctr=0; 232 uint SharedRuntime::_jint_array_copy_ctr=0; 233 uint SharedRuntime::_jlong_array_copy_ctr=0; 234 uint SharedRuntime::_oop_array_copy_ctr=0; 235 uint SharedRuntime::_checkcast_array_copy_ctr=0; 236 uint SharedRuntime::_unsafe_array_copy_ctr=0; 237 uint SharedRuntime::_generic_array_copy_ctr=0; 238 uint SharedRuntime::_slow_array_copy_ctr=0; 239 uint SharedRuntime::_find_handler_ctr=0; 240 uint SharedRuntime::_rethrow_ctr=0; 241 uint SharedRuntime::_unsafe_set_memory_ctr=0; 242 243 int SharedRuntime::_ICmiss_index = 0; 244 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 245 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 246 247 248 void SharedRuntime::trace_ic_miss(address at) { 249 for (int i = 0; i < _ICmiss_index; i++) { 250 if (_ICmiss_at[i] == at) { 251 _ICmiss_count[i]++; 252 return; 253 } 254 } 255 int index = _ICmiss_index++; 256 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 257 _ICmiss_at[index] = at; 258 _ICmiss_count[index] = 1; 259 } 260 261 void SharedRuntime::print_ic_miss_histogram() { 262 if (ICMissHistogram) { 263 tty->print_cr("IC Miss Histogram:"); 264 int tot_misses = 0; 265 for (int i = 0; i < _ICmiss_index; i++) { 266 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 267 tot_misses += _ICmiss_count[i]; 268 } 269 tty->print_cr("Total IC misses: %7d", tot_misses); 270 } 271 } 272 #endif // PRODUCT 273 274 275 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 276 return x * y; 277 JRT_END 278 279 280 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 281 if (x == min_jlong && y == CONST64(-1)) { 282 return x; 283 } else { 284 return x / y; 285 } 286 JRT_END 287 288 289 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 290 if (x == min_jlong && y == CONST64(-1)) { 291 return 0; 292 } else { 293 return x % y; 294 } 295 JRT_END 296 297 298 #ifdef _WIN64 299 const juint float_sign_mask = 0x7FFFFFFF; 300 const juint float_infinity = 0x7F800000; 301 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 302 const julong double_infinity = CONST64(0x7FF0000000000000); 303 #endif 304 305 #if !defined(X86) 306 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 307 #ifdef _WIN64 308 // 64-bit Windows on amd64 returns the wrong values for 309 // infinity operands. 310 juint xbits = PrimitiveConversions::cast<juint>(x); 311 juint ybits = PrimitiveConversions::cast<juint>(y); 312 // x Mod Infinity == x unless x is infinity 313 if (((xbits & float_sign_mask) != float_infinity) && 314 ((ybits & float_sign_mask) == float_infinity) ) { 315 return x; 316 } 317 return ((jfloat)fmod_winx64((double)x, (double)y)); 318 #else 319 return ((jfloat)fmod((double)x,(double)y)); 320 #endif 321 JRT_END 322 323 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 324 #ifdef _WIN64 325 julong xbits = PrimitiveConversions::cast<julong>(x); 326 julong ybits = PrimitiveConversions::cast<julong>(y); 327 // x Mod Infinity == x unless x is infinity 328 if (((xbits & double_sign_mask) != double_infinity) && 329 ((ybits & double_sign_mask) == double_infinity) ) { 330 return x; 331 } 332 return ((jdouble)fmod_winx64((double)x, (double)y)); 333 #else 334 return ((jdouble)fmod((double)x,(double)y)); 335 #endif 336 JRT_END 337 #endif // !X86 338 339 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 340 return (jfloat)x; 341 JRT_END 342 343 #ifdef __SOFTFP__ 344 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 345 return x + y; 346 JRT_END 347 348 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 349 return x - y; 350 JRT_END 351 352 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 353 return x * y; 354 JRT_END 355 356 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 357 return x / y; 358 JRT_END 359 360 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 361 return x + y; 362 JRT_END 363 364 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 365 return x - y; 366 JRT_END 367 368 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 369 return x * y; 370 JRT_END 371 372 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 373 return x / y; 374 JRT_END 375 376 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 377 return (jdouble)x; 378 JRT_END 379 380 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 381 return (jdouble)x; 382 JRT_END 383 384 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 385 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 386 JRT_END 387 388 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 389 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 390 JRT_END 391 392 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 393 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 394 JRT_END 395 396 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 397 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 398 JRT_END 399 400 // Functions to return the opposite of the aeabi functions for nan. 401 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 402 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 403 JRT_END 404 405 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 406 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 407 JRT_END 408 409 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 410 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 411 JRT_END 412 413 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 414 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 415 JRT_END 416 417 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 418 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 419 JRT_END 420 421 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 422 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 423 JRT_END 424 425 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 426 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 427 JRT_END 428 429 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 430 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 431 JRT_END 432 433 // Intrinsics make gcc generate code for these. 434 float SharedRuntime::fneg(float f) { 435 return -f; 436 } 437 438 double SharedRuntime::dneg(double f) { 439 return -f; 440 } 441 442 #endif // __SOFTFP__ 443 444 #if defined(__SOFTFP__) || defined(E500V2) 445 // Intrinsics make gcc generate code for these. 446 double SharedRuntime::dabs(double f) { 447 return (f <= (double)0.0) ? (double)0.0 - f : f; 448 } 449 450 #endif 451 452 #if defined(__SOFTFP__) 453 double SharedRuntime::dsqrt(double f) { 454 return sqrt(f); 455 } 456 #endif 457 458 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 459 if (g_isnan(x)) 460 return 0; 461 if (x >= (jfloat) max_jint) 462 return max_jint; 463 if (x <= (jfloat) min_jint) 464 return min_jint; 465 return (jint) x; 466 JRT_END 467 468 469 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 470 if (g_isnan(x)) 471 return 0; 472 if (x >= (jfloat) max_jlong) 473 return max_jlong; 474 if (x <= (jfloat) min_jlong) 475 return min_jlong; 476 return (jlong) x; 477 JRT_END 478 479 480 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 481 if (g_isnan(x)) 482 return 0; 483 if (x >= (jdouble) max_jint) 484 return max_jint; 485 if (x <= (jdouble) min_jint) 486 return min_jint; 487 return (jint) x; 488 JRT_END 489 490 491 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 492 if (g_isnan(x)) 493 return 0; 494 if (x >= (jdouble) max_jlong) 495 return max_jlong; 496 if (x <= (jdouble) min_jlong) 497 return min_jlong; 498 return (jlong) x; 499 JRT_END 500 501 502 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 503 return (jfloat)x; 504 JRT_END 505 506 507 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 508 return (jfloat)x; 509 JRT_END 510 511 512 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 513 return (jdouble)x; 514 JRT_END 515 516 517 // Exception handling across interpreter/compiler boundaries 518 // 519 // exception_handler_for_return_address(...) returns the continuation address. 520 // The continuation address is the entry point of the exception handler of the 521 // previous frame depending on the return address. 522 523 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 524 // Note: This is called when we have unwound the frame of the callee that did 525 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 526 // Notably, the stack is not walkable at this point, and hence the check must 527 // be deferred until later. Specifically, any of the handlers returned here in 528 // this function, will get dispatched to, and call deferred checks to 529 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 530 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 531 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 532 533 // Reset method handle flag. 534 current->set_is_method_handle_return(false); 535 536 #if INCLUDE_JVMCI 537 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 538 // and other exception handler continuations do not read it 539 current->set_exception_pc(nullptr); 540 #endif // INCLUDE_JVMCI 541 542 if (Continuation::is_return_barrier_entry(return_address)) { 543 return StubRoutines::cont_returnBarrierExc(); 544 } 545 546 // The fastest case first 547 CodeBlob* blob = CodeCache::find_blob(return_address); 548 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 549 if (nm != nullptr) { 550 // Set flag if return address is a method handle call site. 551 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 552 // native nmethods don't have exception handlers 553 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 554 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 555 if (nm->is_deopt_pc(return_address)) { 556 // If we come here because of a stack overflow, the stack may be 557 // unguarded. Reguard the stack otherwise if we return to the 558 // deopt blob and the stack bang causes a stack overflow we 559 // crash. 560 StackOverflow* overflow_state = current->stack_overflow_state(); 561 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 562 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 563 overflow_state->set_reserved_stack_activation(current->stack_base()); 564 } 565 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 566 // The deferred StackWatermarkSet::after_unwind check will be performed in 567 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 568 return SharedRuntime::deopt_blob()->unpack_with_exception(); 569 } else { 570 // The deferred StackWatermarkSet::after_unwind check will be performed in 571 // * OptoRuntime::handle_exception_C_helper for C2 code 572 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 573 return nm->exception_begin(); 574 } 575 } 576 577 // Entry code 578 if (StubRoutines::returns_to_call_stub(return_address)) { 579 // The deferred StackWatermarkSet::after_unwind check will be performed in 580 // JavaCallWrapper::~JavaCallWrapper 581 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 582 return StubRoutines::catch_exception_entry(); 583 } 584 if (blob != nullptr && blob->is_upcall_stub()) { 585 return StubRoutines::upcall_stub_exception_handler(); 586 } 587 // Interpreted code 588 if (Interpreter::contains(return_address)) { 589 // The deferred StackWatermarkSet::after_unwind check will be performed in 590 // InterpreterRuntime::exception_handler_for_exception 591 return Interpreter::rethrow_exception_entry(); 592 } 593 594 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 595 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 596 597 #ifndef PRODUCT 598 { ResourceMark rm; 599 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 600 os::print_location(tty, (intptr_t)return_address); 601 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 602 tty->print_cr("b) other problem"); 603 } 604 #endif // PRODUCT 605 ShouldNotReachHere(); 606 return nullptr; 607 } 608 609 610 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 611 return raw_exception_handler_for_return_address(current, return_address); 612 JRT_END 613 614 615 address SharedRuntime::get_poll_stub(address pc) { 616 address stub; 617 // Look up the code blob 618 CodeBlob *cb = CodeCache::find_blob(pc); 619 620 // Should be an nmethod 621 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 622 623 // Look up the relocation information 624 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 625 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 626 627 #ifdef ASSERT 628 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 629 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 630 Disassembler::decode(cb); 631 fatal("Only polling locations are used for safepoint"); 632 } 633 #endif 634 635 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 636 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 637 if (at_poll_return) { 638 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 639 "polling page return stub not created yet"); 640 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 641 } else if (has_wide_vectors) { 642 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 643 "polling page vectors safepoint stub not created yet"); 644 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 645 } else { 646 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 647 "polling page safepoint stub not created yet"); 648 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 649 } 650 log_debug(safepoint)("... found polling page %s exception at pc = " 651 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 652 at_poll_return ? "return" : "loop", 653 (intptr_t)pc, (intptr_t)stub); 654 return stub; 655 } 656 657 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 658 if (JvmtiExport::can_post_on_exceptions()) { 659 vframeStream vfst(current, true); 660 methodHandle method = methodHandle(current, vfst.method()); 661 address bcp = method()->bcp_from(vfst.bci()); 662 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 663 } 664 665 #if INCLUDE_JVMCI 666 if (EnableJVMCI) { 667 vframeStream vfst(current, true); 668 methodHandle method = methodHandle(current, vfst.method()); 669 int bci = vfst.bci(); 670 MethodData* trap_mdo = method->method_data(); 671 if (trap_mdo != nullptr) { 672 // Set exception_seen if the exceptional bytecode is an invoke 673 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 674 if (call.is_valid()) { 675 ResourceMark rm(current); 676 677 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 678 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 679 680 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 681 if (pdata != nullptr && pdata->is_BitData()) { 682 BitData* bit_data = (BitData*) pdata; 683 bit_data->set_exception_seen(); 684 } 685 } 686 } 687 } 688 #endif 689 690 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 691 } 692 693 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 694 Handle h_exception = Exceptions::new_exception(current, name, message); 695 throw_and_post_jvmti_exception(current, h_exception); 696 } 697 698 #if INCLUDE_JVMTI 699 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 700 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 701 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 702 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 703 JNIHandles::destroy_local(vthread); 704 JRT_END 705 706 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 707 assert(hide == JNI_TRUE, "must be VTMS transition start"); 708 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 709 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 710 JNIHandles::destroy_local(vthread); 711 JRT_END 712 713 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 714 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 715 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 716 JNIHandles::destroy_local(vthread); 717 JRT_END 718 719 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 720 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 721 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 722 JNIHandles::destroy_local(vthread); 723 JRT_END 724 #endif // INCLUDE_JVMTI 725 726 // The interpreter code to call this tracing function is only 727 // called/generated when UL is on for redefine, class and has the right level 728 // and tags. Since obsolete methods are never compiled, we don't have 729 // to modify the compilers to generate calls to this function. 730 // 731 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 732 JavaThread* thread, Method* method)) 733 if (method->is_obsolete()) { 734 // We are calling an obsolete method, but this is not necessarily 735 // an error. Our method could have been redefined just after we 736 // fetched the Method* from the constant pool. 737 ResourceMark rm; 738 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 739 } 740 return 0; 741 JRT_END 742 743 // ret_pc points into caller; we are returning caller's exception handler 744 // for given exception 745 // Note that the implementation of this method assumes it's only called when an exception has actually occured 746 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 747 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 748 assert(nm != nullptr, "must exist"); 749 ResourceMark rm; 750 751 #if INCLUDE_JVMCI 752 if (nm->is_compiled_by_jvmci()) { 753 // lookup exception handler for this pc 754 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 755 ExceptionHandlerTable table(nm); 756 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 757 if (t != nullptr) { 758 return nm->code_begin() + t->pco(); 759 } else { 760 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 761 } 762 } 763 #endif // INCLUDE_JVMCI 764 765 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 766 // determine handler bci, if any 767 EXCEPTION_MARK; 768 769 int handler_bci = -1; 770 int scope_depth = 0; 771 if (!force_unwind) { 772 int bci = sd->bci(); 773 bool recursive_exception = false; 774 do { 775 bool skip_scope_increment = false; 776 // exception handler lookup 777 Klass* ek = exception->klass(); 778 methodHandle mh(THREAD, sd->method()); 779 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 780 if (HAS_PENDING_EXCEPTION) { 781 recursive_exception = true; 782 // We threw an exception while trying to find the exception handler. 783 // Transfer the new exception to the exception handle which will 784 // be set into thread local storage, and do another lookup for an 785 // exception handler for this exception, this time starting at the 786 // BCI of the exception handler which caused the exception to be 787 // thrown (bugs 4307310 and 4546590). Set "exception" reference 788 // argument to ensure that the correct exception is thrown (4870175). 789 recursive_exception_occurred = true; 790 exception = Handle(THREAD, PENDING_EXCEPTION); 791 CLEAR_PENDING_EXCEPTION; 792 if (handler_bci >= 0) { 793 bci = handler_bci; 794 handler_bci = -1; 795 skip_scope_increment = true; 796 } 797 } 798 else { 799 recursive_exception = false; 800 } 801 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 802 sd = sd->sender(); 803 if (sd != nullptr) { 804 bci = sd->bci(); 805 } 806 ++scope_depth; 807 } 808 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 809 } 810 811 // found handling method => lookup exception handler 812 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 813 814 ExceptionHandlerTable table(nm); 815 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 816 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 817 // Allow abbreviated catch tables. The idea is to allow a method 818 // to materialize its exceptions without committing to the exact 819 // routing of exceptions. In particular this is needed for adding 820 // a synthetic handler to unlock monitors when inlining 821 // synchronized methods since the unlock path isn't represented in 822 // the bytecodes. 823 t = table.entry_for(catch_pco, -1, 0); 824 } 825 826 #ifdef COMPILER1 827 if (t == nullptr && nm->is_compiled_by_c1()) { 828 assert(nm->unwind_handler_begin() != nullptr, ""); 829 return nm->unwind_handler_begin(); 830 } 831 #endif 832 833 if (t == nullptr) { 834 ttyLocker ttyl; 835 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 836 tty->print_cr(" Exception:"); 837 exception->print(); 838 tty->cr(); 839 tty->print_cr(" Compiled exception table :"); 840 table.print(); 841 nm->print(); 842 nm->print_code(); 843 guarantee(false, "missing exception handler"); 844 return nullptr; 845 } 846 847 if (handler_bci != -1) { // did we find a handler in this method? 848 sd->method()->set_exception_handler_entered(handler_bci); // profile 849 } 850 return nm->code_begin() + t->pco(); 851 } 852 853 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 854 // These errors occur only at call sites 855 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 856 JRT_END 857 858 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 859 // These errors occur only at call sites 860 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 861 JRT_END 862 863 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 864 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 865 JRT_END 866 867 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 868 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 869 JRT_END 870 871 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 872 // This entry point is effectively only used for NullPointerExceptions which occur at inline 873 // cache sites (when the callee activation is not yet set up) so we are at a call site 874 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 875 JRT_END 876 877 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 878 throw_StackOverflowError_common(current, false); 879 JRT_END 880 881 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 882 throw_StackOverflowError_common(current, true); 883 JRT_END 884 885 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 886 // We avoid using the normal exception construction in this case because 887 // it performs an upcall to Java, and we're already out of stack space. 888 JavaThread* THREAD = current; // For exception macros. 889 Klass* k = vmClasses::StackOverflowError_klass(); 890 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 891 if (delayed) { 892 java_lang_Throwable::set_message(exception_oop, 893 Universe::delayed_stack_overflow_error_message()); 894 } 895 Handle exception (current, exception_oop); 896 if (StackTraceInThrowable) { 897 java_lang_Throwable::fill_in_stack_trace(exception); 898 } 899 // Remove the ScopedValue bindings in case we got a 900 // StackOverflowError while we were trying to remove ScopedValue 901 // bindings. 902 current->clear_scopedValueBindings(); 903 // Increment counter for hs_err file reporting 904 Atomic::inc(&Exceptions::_stack_overflow_errors); 905 throw_and_post_jvmti_exception(current, exception); 906 } 907 908 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 909 address pc, 910 ImplicitExceptionKind exception_kind) 911 { 912 address target_pc = nullptr; 913 914 if (Interpreter::contains(pc)) { 915 switch (exception_kind) { 916 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 917 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 918 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 919 default: ShouldNotReachHere(); 920 } 921 } else { 922 switch (exception_kind) { 923 case STACK_OVERFLOW: { 924 // Stack overflow only occurs upon frame setup; the callee is 925 // going to be unwound. Dispatch to a shared runtime stub 926 // which will cause the StackOverflowError to be fabricated 927 // and processed. 928 // Stack overflow should never occur during deoptimization: 929 // the compiled method bangs the stack by as much as the 930 // interpreter would need in case of a deoptimization. The 931 // deoptimization blob and uncommon trap blob bang the stack 932 // in a debug VM to verify the correctness of the compiled 933 // method stack banging. 934 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 935 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 936 return SharedRuntime::throw_StackOverflowError_entry(); 937 } 938 939 case IMPLICIT_NULL: { 940 if (VtableStubs::contains(pc)) { 941 // We haven't yet entered the callee frame. Fabricate an 942 // exception and begin dispatching it in the caller. Since 943 // the caller was at a call site, it's safe to destroy all 944 // caller-saved registers, as these entry points do. 945 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 946 947 // If vt_stub is null, then return null to signal handler to report the SEGV error. 948 if (vt_stub == nullptr) return nullptr; 949 950 if (vt_stub->is_abstract_method_error(pc)) { 951 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 952 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 953 // Instead of throwing the abstract method error here directly, we re-resolve 954 // and will throw the AbstractMethodError during resolve. As a result, we'll 955 // get a more detailed error message. 956 return SharedRuntime::get_handle_wrong_method_stub(); 957 } else { 958 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 959 // Assert that the signal comes from the expected location in stub code. 960 assert(vt_stub->is_null_pointer_exception(pc), 961 "obtained signal from unexpected location in stub code"); 962 return SharedRuntime::throw_NullPointerException_at_call_entry(); 963 } 964 } else { 965 CodeBlob* cb = CodeCache::find_blob(pc); 966 967 // If code blob is null, then return null to signal handler to report the SEGV error. 968 if (cb == nullptr) return nullptr; 969 970 // Exception happened in CodeCache. Must be either: 971 // 1. Inline-cache check in C2I handler blob, 972 // 2. Inline-cache check in nmethod, or 973 // 3. Implicit null exception in nmethod 974 975 if (!cb->is_nmethod()) { 976 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 977 if (!is_in_blob) { 978 // Allow normal crash reporting to handle this 979 return nullptr; 980 } 981 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 982 // There is no handler here, so we will simply unwind. 983 return SharedRuntime::throw_NullPointerException_at_call_entry(); 984 } 985 986 // Otherwise, it's a compiled method. Consult its exception handlers. 987 nmethod* nm = cb->as_nmethod(); 988 if (nm->inlinecache_check_contains(pc)) { 989 // exception happened inside inline-cache check code 990 // => the nmethod is not yet active (i.e., the frame 991 // is not set up yet) => use return address pushed by 992 // caller => don't push another return address 993 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 994 return SharedRuntime::throw_NullPointerException_at_call_entry(); 995 } 996 997 if (nm->method()->is_method_handle_intrinsic()) { 998 // exception happened inside MH dispatch code, similar to a vtable stub 999 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1000 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1001 } 1002 1003 #ifndef PRODUCT 1004 _implicit_null_throws++; 1005 #endif 1006 target_pc = nm->continuation_for_implicit_null_exception(pc); 1007 // If there's an unexpected fault, target_pc might be null, 1008 // in which case we want to fall through into the normal 1009 // error handling code. 1010 } 1011 1012 break; // fall through 1013 } 1014 1015 1016 case IMPLICIT_DIVIDE_BY_ZERO: { 1017 nmethod* nm = CodeCache::find_nmethod(pc); 1018 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1019 #ifndef PRODUCT 1020 _implicit_div0_throws++; 1021 #endif 1022 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1023 // If there's an unexpected fault, target_pc might be null, 1024 // in which case we want to fall through into the normal 1025 // error handling code. 1026 break; // fall through 1027 } 1028 1029 default: ShouldNotReachHere(); 1030 } 1031 1032 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1033 1034 if (exception_kind == IMPLICIT_NULL) { 1035 #ifndef PRODUCT 1036 // for AbortVMOnException flag 1037 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1038 #endif //PRODUCT 1039 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1040 } else { 1041 #ifndef PRODUCT 1042 // for AbortVMOnException flag 1043 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1044 #endif //PRODUCT 1045 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1046 } 1047 return target_pc; 1048 } 1049 1050 ShouldNotReachHere(); 1051 return nullptr; 1052 } 1053 1054 1055 /** 1056 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1057 * installed in the native function entry of all native Java methods before 1058 * they get linked to their actual native methods. 1059 * 1060 * \note 1061 * This method actually never gets called! The reason is because 1062 * the interpreter's native entries call NativeLookup::lookup() which 1063 * throws the exception when the lookup fails. The exception is then 1064 * caught and forwarded on the return from NativeLookup::lookup() call 1065 * before the call to the native function. This might change in the future. 1066 */ 1067 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1068 { 1069 // We return a bad value here to make sure that the exception is 1070 // forwarded before we look at the return value. 1071 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1072 } 1073 JNI_END 1074 1075 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1076 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1077 } 1078 1079 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1080 #if INCLUDE_JVMCI 1081 if (!obj->klass()->has_finalizer()) { 1082 return; 1083 } 1084 #endif // INCLUDE_JVMCI 1085 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1086 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1087 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1088 JRT_END 1089 1090 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1091 assert(thread != nullptr, "No thread"); 1092 if (thread == nullptr) { 1093 return 0; 1094 } 1095 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1096 "current cannot touch oops after its GC barrier is detached."); 1097 oop obj = thread->threadObj(); 1098 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1099 } 1100 1101 /** 1102 * This function ought to be a void function, but cannot be because 1103 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1104 * 6254741. Once that is fixed we can remove the dummy return value. 1105 */ 1106 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1107 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1108 } 1109 1110 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1111 return dtrace_object_alloc(thread, o, o->size()); 1112 } 1113 1114 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1115 assert(DTraceAllocProbes, "wrong call"); 1116 Klass* klass = o->klass(); 1117 Symbol* name = klass->name(); 1118 HOTSPOT_OBJECT_ALLOC( 1119 get_java_tid(thread), 1120 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1121 return 0; 1122 } 1123 1124 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1125 JavaThread* current, Method* method)) 1126 assert(current == JavaThread::current(), "pre-condition"); 1127 1128 assert(DTraceMethodProbes, "wrong call"); 1129 Symbol* kname = method->klass_name(); 1130 Symbol* name = method->name(); 1131 Symbol* sig = method->signature(); 1132 HOTSPOT_METHOD_ENTRY( 1133 get_java_tid(current), 1134 (char *) kname->bytes(), kname->utf8_length(), 1135 (char *) name->bytes(), name->utf8_length(), 1136 (char *) sig->bytes(), sig->utf8_length()); 1137 return 0; 1138 JRT_END 1139 1140 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1141 JavaThread* current, Method* method)) 1142 assert(current == JavaThread::current(), "pre-condition"); 1143 assert(DTraceMethodProbes, "wrong call"); 1144 Symbol* kname = method->klass_name(); 1145 Symbol* name = method->name(); 1146 Symbol* sig = method->signature(); 1147 HOTSPOT_METHOD_RETURN( 1148 get_java_tid(current), 1149 (char *) kname->bytes(), kname->utf8_length(), 1150 (char *) name->bytes(), name->utf8_length(), 1151 (char *) sig->bytes(), sig->utf8_length()); 1152 return 0; 1153 JRT_END 1154 1155 1156 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1157 // for a call current in progress, i.e., arguments has been pushed on stack 1158 // put callee has not been invoked yet. Used by: resolve virtual/static, 1159 // vtable updates, etc. Caller frame must be compiled. 1160 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1161 JavaThread* current = THREAD; 1162 ResourceMark rm(current); 1163 1164 // last java frame on stack (which includes native call frames) 1165 vframeStream vfst(current, true); // Do not skip and javaCalls 1166 1167 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1168 } 1169 1170 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1171 nmethod* caller = vfst.nm(); 1172 1173 address pc = vfst.frame_pc(); 1174 { // Get call instruction under lock because another thread may be busy patching it. 1175 CompiledICLocker ic_locker(caller); 1176 return caller->attached_method_before_pc(pc); 1177 } 1178 return nullptr; 1179 } 1180 1181 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1182 // for a call current in progress, i.e., arguments has been pushed on stack 1183 // but callee has not been invoked yet. Caller frame must be compiled. 1184 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1185 CallInfo& callinfo, TRAPS) { 1186 Handle receiver; 1187 Handle nullHandle; // create a handy null handle for exception returns 1188 JavaThread* current = THREAD; 1189 1190 assert(!vfst.at_end(), "Java frame must exist"); 1191 1192 // Find caller and bci from vframe 1193 methodHandle caller(current, vfst.method()); 1194 int bci = vfst.bci(); 1195 1196 if (caller->is_continuation_enter_intrinsic()) { 1197 bc = Bytecodes::_invokestatic; 1198 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1199 return receiver; 1200 } 1201 1202 // Substitutability test implementation piggy backs on static call resolution 1203 Bytecodes::Code code = caller->java_code_at(bci); 1204 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1205 bc = Bytecodes::_invokestatic; 1206 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1207 assert(attached_method.not_null(), "must have attached method"); 1208 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1209 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1210 #ifdef ASSERT 1211 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1212 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1213 #endif 1214 return receiver; 1215 } 1216 1217 Bytecode_invoke bytecode(caller, bci); 1218 int bytecode_index = bytecode.index(); 1219 bc = bytecode.invoke_code(); 1220 1221 methodHandle attached_method(current, extract_attached_method(vfst)); 1222 if (attached_method.not_null()) { 1223 Method* callee = bytecode.static_target(CHECK_NH); 1224 vmIntrinsics::ID id = callee->intrinsic_id(); 1225 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1226 // it attaches statically resolved method to the call site. 1227 if (MethodHandles::is_signature_polymorphic(id) && 1228 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1229 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1230 1231 // Adjust invocation mode according to the attached method. 1232 switch (bc) { 1233 case Bytecodes::_invokevirtual: 1234 if (attached_method->method_holder()->is_interface()) { 1235 bc = Bytecodes::_invokeinterface; 1236 } 1237 break; 1238 case Bytecodes::_invokeinterface: 1239 if (!attached_method->method_holder()->is_interface()) { 1240 bc = Bytecodes::_invokevirtual; 1241 } 1242 break; 1243 case Bytecodes::_invokehandle: 1244 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1245 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1246 : Bytecodes::_invokevirtual; 1247 } 1248 break; 1249 default: 1250 break; 1251 } 1252 } else { 1253 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1254 if (!attached_method->method_holder()->is_inline_klass()) { 1255 // Ignore the attached method in this case to not confuse below code 1256 attached_method = methodHandle(current, nullptr); 1257 } 1258 } 1259 } 1260 1261 assert(bc != Bytecodes::_illegal, "not initialized"); 1262 1263 bool has_receiver = bc != Bytecodes::_invokestatic && 1264 bc != Bytecodes::_invokedynamic && 1265 bc != Bytecodes::_invokehandle; 1266 bool check_null_and_abstract = true; 1267 1268 // Find receiver for non-static call 1269 if (has_receiver) { 1270 // This register map must be update since we need to find the receiver for 1271 // compiled frames. The receiver might be in a register. 1272 RegisterMap reg_map2(current, 1273 RegisterMap::UpdateMap::include, 1274 RegisterMap::ProcessFrames::include, 1275 RegisterMap::WalkContinuation::skip); 1276 frame stubFrame = current->last_frame(); 1277 // Caller-frame is a compiled frame 1278 frame callerFrame = stubFrame.sender(®_map2); 1279 1280 Method* callee = attached_method(); 1281 if (callee == nullptr) { 1282 callee = bytecode.static_target(CHECK_NH); 1283 if (callee == nullptr) { 1284 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1285 } 1286 } 1287 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1(); 1288 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1289 // If the receiver is an inline type that is passed as fields, no oop is available 1290 // Resolve the call without receiver null checking. 1291 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1292 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1293 if (bc == Bytecodes::_invokeinterface) { 1294 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1295 } 1296 check_null_and_abstract = false; 1297 } else { 1298 // Retrieve from a compiled argument list 1299 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1300 assert(oopDesc::is_oop_or_null(receiver()), ""); 1301 if (receiver.is_null()) { 1302 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1303 } 1304 } 1305 } 1306 1307 // Resolve method 1308 if (attached_method.not_null()) { 1309 // Parameterized by attached method. 1310 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1311 } else { 1312 // Parameterized by bytecode. 1313 constantPoolHandle constants(current, caller->constants()); 1314 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1315 } 1316 1317 #ifdef ASSERT 1318 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1319 if (has_receiver && check_null_and_abstract) { 1320 assert(receiver.not_null(), "should have thrown exception"); 1321 Klass* receiver_klass = receiver->klass(); 1322 Klass* rk = nullptr; 1323 if (attached_method.not_null()) { 1324 // In case there's resolved method attached, use its holder during the check. 1325 rk = attached_method->method_holder(); 1326 } else { 1327 // Klass is already loaded. 1328 constantPoolHandle constants(current, caller->constants()); 1329 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1330 } 1331 Klass* static_receiver_klass = rk; 1332 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1333 "actual receiver must be subclass of static receiver klass"); 1334 if (receiver_klass->is_instance_klass()) { 1335 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1336 tty->print_cr("ERROR: Klass not yet initialized!!"); 1337 receiver_klass->print(); 1338 } 1339 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1340 } 1341 } 1342 #endif 1343 1344 return receiver; 1345 } 1346 1347 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1348 JavaThread* current = THREAD; 1349 ResourceMark rm(current); 1350 // We need first to check if any Java activations (compiled, interpreted) 1351 // exist on the stack since last JavaCall. If not, we need 1352 // to get the target method from the JavaCall wrapper. 1353 vframeStream vfst(current, true); // Do not skip any javaCalls 1354 methodHandle callee_method; 1355 if (vfst.at_end()) { 1356 // No Java frames were found on stack since we did the JavaCall. 1357 // Hence the stack can only contain an entry_frame. We need to 1358 // find the target method from the stub frame. 1359 RegisterMap reg_map(current, 1360 RegisterMap::UpdateMap::skip, 1361 RegisterMap::ProcessFrames::include, 1362 RegisterMap::WalkContinuation::skip); 1363 frame fr = current->last_frame(); 1364 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1365 fr = fr.sender(®_map); 1366 assert(fr.is_entry_frame(), "must be"); 1367 // fr is now pointing to the entry frame. 1368 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1369 } else { 1370 Bytecodes::Code bc; 1371 CallInfo callinfo; 1372 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1373 // Calls via mismatching methods are always non-scalarized 1374 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1375 caller_is_c1 = true; 1376 } 1377 callee_method = methodHandle(current, callinfo.selected_method()); 1378 } 1379 assert(callee_method()->is_method(), "must be"); 1380 return callee_method; 1381 } 1382 1383 // Resolves a call. 1384 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1385 JavaThread* current = THREAD; 1386 ResourceMark rm(current); 1387 RegisterMap cbl_map(current, 1388 RegisterMap::UpdateMap::skip, 1389 RegisterMap::ProcessFrames::include, 1390 RegisterMap::WalkContinuation::skip); 1391 frame caller_frame = current->last_frame().sender(&cbl_map); 1392 1393 CodeBlob* caller_cb = caller_frame.cb(); 1394 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1395 nmethod* caller_nm = caller_cb->as_nmethod(); 1396 1397 // determine call info & receiver 1398 // note: a) receiver is null for static calls 1399 // b) an exception is thrown if receiver is null for non-static calls 1400 CallInfo call_info; 1401 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1402 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1403 1404 NoSafepointVerifier nsv; 1405 1406 methodHandle callee_method(current, call_info.selected_method()); 1407 // Calls via mismatching methods are always non-scalarized 1408 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1409 caller_is_c1 = true; 1410 } 1411 1412 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1413 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1414 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1415 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1416 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1417 1418 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1419 1420 #ifndef PRODUCT 1421 // tracing/debugging/statistics 1422 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1423 (is_virtual) ? (&_resolve_virtual_ctr) : 1424 (&_resolve_static_ctr); 1425 Atomic::inc(addr); 1426 1427 if (TraceCallFixup) { 1428 ResourceMark rm(current); 1429 tty->print("resolving %s%s (%s) call%s to", 1430 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1431 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1432 callee_method->print_short_name(tty); 1433 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1434 p2i(caller_frame.pc()), p2i(callee_method->code())); 1435 } 1436 #endif 1437 1438 if (invoke_code == Bytecodes::_invokestatic) { 1439 assert(callee_method->method_holder()->is_initialized() || 1440 callee_method->method_holder()->is_reentrant_initialization(current), 1441 "invalid class initialization state for invoke_static"); 1442 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1443 // In order to keep class initialization check, do not patch call 1444 // site for static call when the class is not fully initialized. 1445 // Proper check is enforced by call site re-resolution on every invocation. 1446 // 1447 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1448 // explicit class initialization check is put in nmethod entry (VEP). 1449 assert(callee_method->method_holder()->is_linked(), "must be"); 1450 return callee_method; 1451 } 1452 } 1453 1454 1455 // JSR 292 key invariant: 1456 // If the resolved method is a MethodHandle invoke target, the call 1457 // site must be a MethodHandle call site, because the lambda form might tail-call 1458 // leaving the stack in a state unknown to either caller or callee 1459 1460 // Compute entry points. The computation of the entry points is independent of 1461 // patching the call. 1462 1463 // Make sure the callee nmethod does not get deoptimized and removed before 1464 // we are done patching the code. 1465 1466 1467 CompiledICLocker ml(caller_nm); 1468 if (is_virtual && !is_optimized) { 1469 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1470 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1471 } else { 1472 // Callsite is a direct call - set it to the destination method 1473 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1474 callsite->set(callee_method, caller_is_c1); 1475 } 1476 1477 return callee_method; 1478 } 1479 1480 // Inline caches exist only in compiled code 1481 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1482 #ifdef ASSERT 1483 RegisterMap reg_map(current, 1484 RegisterMap::UpdateMap::skip, 1485 RegisterMap::ProcessFrames::include, 1486 RegisterMap::WalkContinuation::skip); 1487 frame stub_frame = current->last_frame(); 1488 assert(stub_frame.is_runtime_frame(), "sanity check"); 1489 frame caller_frame = stub_frame.sender(®_map); 1490 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1491 #endif /* ASSERT */ 1492 1493 methodHandle callee_method; 1494 bool is_optimized = false; 1495 bool caller_is_c1 = false; 1496 JRT_BLOCK 1497 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1498 // Return Method* through TLS 1499 current->set_vm_result_metadata(callee_method()); 1500 JRT_BLOCK_END 1501 // return compiled code entry point after potential safepoints 1502 return get_resolved_entry(current, callee_method, false, is_optimized, caller_is_c1); 1503 JRT_END 1504 1505 1506 // Handle call site that has been made non-entrant 1507 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1508 // 6243940 We might end up in here if the callee is deoptimized 1509 // as we race to call it. We don't want to take a safepoint if 1510 // the caller was interpreted because the caller frame will look 1511 // interpreted to the stack walkers and arguments are now 1512 // "compiled" so it is much better to make this transition 1513 // invisible to the stack walking code. The i2c path will 1514 // place the callee method in the callee_target. It is stashed 1515 // there because if we try and find the callee by normal means a 1516 // safepoint is possible and have trouble gc'ing the compiled args. 1517 RegisterMap reg_map(current, 1518 RegisterMap::UpdateMap::skip, 1519 RegisterMap::ProcessFrames::include, 1520 RegisterMap::WalkContinuation::skip); 1521 frame stub_frame = current->last_frame(); 1522 assert(stub_frame.is_runtime_frame(), "sanity check"); 1523 frame caller_frame = stub_frame.sender(®_map); 1524 1525 if (caller_frame.is_interpreted_frame() || 1526 caller_frame.is_entry_frame() || 1527 caller_frame.is_upcall_stub_frame()) { 1528 Method* callee = current->callee_target(); 1529 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1530 current->set_vm_result_metadata(callee); 1531 current->set_callee_target(nullptr); 1532 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1533 // Bypass class initialization checks in c2i when caller is in native. 1534 // JNI calls to static methods don't have class initialization checks. 1535 // Fast class initialization checks are present in c2i adapters and call into 1536 // SharedRuntime::handle_wrong_method() on the slow path. 1537 // 1538 // JVM upcalls may land here as well, but there's a proper check present in 1539 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1540 // so bypassing it in c2i adapter is benign. 1541 return callee->get_c2i_no_clinit_check_entry(); 1542 } else { 1543 if (caller_frame.is_interpreted_frame()) { 1544 return callee->get_c2i_inline_entry(); 1545 } else { 1546 return callee->get_c2i_entry(); 1547 } 1548 } 1549 } 1550 1551 // Must be compiled to compiled path which is safe to stackwalk 1552 methodHandle callee_method; 1553 bool is_static_call = false; 1554 bool is_optimized = false; 1555 bool caller_is_c1 = false; 1556 JRT_BLOCK 1557 // Force resolving of caller (if we called from compiled frame) 1558 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1559 current->set_vm_result_metadata(callee_method()); 1560 JRT_BLOCK_END 1561 // return compiled code entry point after potential safepoints 1562 return get_resolved_entry(current, callee_method, is_static_call, is_optimized, caller_is_c1); 1563 JRT_END 1564 1565 // Handle abstract method call 1566 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1567 // Verbose error message for AbstractMethodError. 1568 // Get the called method from the invoke bytecode. 1569 vframeStream vfst(current, true); 1570 assert(!vfst.at_end(), "Java frame must exist"); 1571 methodHandle caller(current, vfst.method()); 1572 Bytecode_invoke invoke(caller, vfst.bci()); 1573 DEBUG_ONLY( invoke.verify(); ) 1574 1575 // Find the compiled caller frame. 1576 RegisterMap reg_map(current, 1577 RegisterMap::UpdateMap::include, 1578 RegisterMap::ProcessFrames::include, 1579 RegisterMap::WalkContinuation::skip); 1580 frame stubFrame = current->last_frame(); 1581 assert(stubFrame.is_runtime_frame(), "must be"); 1582 frame callerFrame = stubFrame.sender(®_map); 1583 assert(callerFrame.is_compiled_frame(), "must be"); 1584 1585 // Install exception and return forward entry. 1586 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1587 JRT_BLOCK 1588 methodHandle callee(current, invoke.static_target(current)); 1589 if (!callee.is_null()) { 1590 oop recv = callerFrame.retrieve_receiver(®_map); 1591 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1592 res = StubRoutines::forward_exception_entry(); 1593 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1594 } 1595 JRT_BLOCK_END 1596 return res; 1597 JRT_END 1598 1599 // return verified_code_entry if interp_only_mode is not set for the current thread; 1600 // otherwise return c2i entry. 1601 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method, 1602 bool is_static_call, bool is_optimized, bool caller_is_c1) { 1603 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1604 // In interp_only_mode we need to go to the interpreted entry 1605 // The c2i won't patch in this mode -- see fixup_callers_callsite 1606 return callee_method->get_c2i_entry(); 1607 } 1608 1609 if (caller_is_c1) { 1610 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!"); 1611 return callee_method->verified_inline_code_entry(); 1612 } else if (is_static_call || is_optimized) { 1613 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!"); 1614 return callee_method->verified_code_entry(); 1615 } else { 1616 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!"); 1617 return callee_method->verified_inline_ro_code_entry(); 1618 } 1619 } 1620 1621 // resolve a static call and patch code 1622 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1623 methodHandle callee_method; 1624 bool caller_is_c1 = false; 1625 bool enter_special = false; 1626 JRT_BLOCK 1627 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1628 current->set_vm_result_metadata(callee_method()); 1629 JRT_BLOCK_END 1630 // return compiled code entry point after potential safepoints 1631 return get_resolved_entry(current, callee_method, true, false, caller_is_c1); 1632 JRT_END 1633 1634 // resolve virtual call and update inline cache to monomorphic 1635 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1636 methodHandle callee_method; 1637 bool caller_is_c1 = false; 1638 JRT_BLOCK 1639 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1640 current->set_vm_result_metadata(callee_method()); 1641 JRT_BLOCK_END 1642 // return compiled code entry point after potential safepoints 1643 return get_resolved_entry(current, callee_method, false, false, caller_is_c1); 1644 JRT_END 1645 1646 1647 // Resolve a virtual call that can be statically bound (e.g., always 1648 // monomorphic, so it has no inline cache). Patch code to resolved target. 1649 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1650 methodHandle callee_method; 1651 bool caller_is_c1 = false; 1652 JRT_BLOCK 1653 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1654 current->set_vm_result_metadata(callee_method()); 1655 JRT_BLOCK_END 1656 // return compiled code entry point after potential safepoints 1657 return get_resolved_entry(current, callee_method, false, true, caller_is_c1); 1658 JRT_END 1659 1660 1661 1662 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1663 JavaThread* current = THREAD; 1664 ResourceMark rm(current); 1665 CallInfo call_info; 1666 Bytecodes::Code bc; 1667 1668 // receiver is null for static calls. An exception is thrown for null 1669 // receivers for non-static calls 1670 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1671 1672 methodHandle callee_method(current, call_info.selected_method()); 1673 1674 #ifndef PRODUCT 1675 Atomic::inc(&_ic_miss_ctr); 1676 1677 // Statistics & Tracing 1678 if (TraceCallFixup) { 1679 ResourceMark rm(current); 1680 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1681 callee_method->print_short_name(tty); 1682 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1683 } 1684 1685 if (ICMissHistogram) { 1686 MutexLocker m(VMStatistic_lock); 1687 RegisterMap reg_map(current, 1688 RegisterMap::UpdateMap::skip, 1689 RegisterMap::ProcessFrames::include, 1690 RegisterMap::WalkContinuation::skip); 1691 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1692 // produce statistics under the lock 1693 trace_ic_miss(f.pc()); 1694 } 1695 #endif 1696 1697 // install an event collector so that when a vtable stub is created the 1698 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1699 // event can't be posted when the stub is created as locks are held 1700 // - instead the event will be deferred until the event collector goes 1701 // out of scope. 1702 JvmtiDynamicCodeEventCollector event_collector; 1703 1704 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1705 RegisterMap reg_map(current, 1706 RegisterMap::UpdateMap::skip, 1707 RegisterMap::ProcessFrames::include, 1708 RegisterMap::WalkContinuation::skip); 1709 frame caller_frame = current->last_frame().sender(®_map); 1710 CodeBlob* cb = caller_frame.cb(); 1711 nmethod* caller_nm = cb->as_nmethod(); 1712 // Calls via mismatching methods are always non-scalarized 1713 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1714 caller_is_c1 = true; 1715 } 1716 1717 CompiledICLocker ml(caller_nm); 1718 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1719 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1720 1721 return callee_method; 1722 } 1723 1724 // 1725 // Resets a call-site in compiled code so it will get resolved again. 1726 // This routines handles both virtual call sites, optimized virtual call 1727 // sites, and static call sites. Typically used to change a call sites 1728 // destination from compiled to interpreted. 1729 // 1730 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1731 JavaThread* current = THREAD; 1732 ResourceMark rm(current); 1733 RegisterMap reg_map(current, 1734 RegisterMap::UpdateMap::skip, 1735 RegisterMap::ProcessFrames::include, 1736 RegisterMap::WalkContinuation::skip); 1737 frame stub_frame = current->last_frame(); 1738 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1739 frame caller = stub_frame.sender(®_map); 1740 if (caller.is_compiled_frame()) { 1741 caller_is_c1 = caller.cb()->as_nmethod()->is_compiled_by_c1(); 1742 } 1743 1744 // Do nothing if the frame isn't a live compiled frame. 1745 // nmethod could be deoptimized by the time we get here 1746 // so no update to the caller is needed. 1747 1748 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1749 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1750 1751 address pc = caller.pc(); 1752 1753 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1754 assert(caller_nm != nullptr, "did not find caller nmethod"); 1755 1756 // Default call_addr is the location of the "basic" call. 1757 // Determine the address of the call we a reresolving. With 1758 // Inline Caches we will always find a recognizable call. 1759 // With Inline Caches disabled we may or may not find a 1760 // recognizable call. We will always find a call for static 1761 // calls and for optimized virtual calls. For vanilla virtual 1762 // calls it depends on the state of the UseInlineCaches switch. 1763 // 1764 // With Inline Caches disabled we can get here for a virtual call 1765 // for two reasons: 1766 // 1 - calling an abstract method. The vtable for abstract methods 1767 // will run us thru handle_wrong_method and we will eventually 1768 // end up in the interpreter to throw the ame. 1769 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1770 // call and between the time we fetch the entry address and 1771 // we jump to it the target gets deoptimized. Similar to 1 1772 // we will wind up in the interprter (thru a c2i with c2). 1773 // 1774 CompiledICLocker ml(caller_nm); 1775 address call_addr = caller_nm->call_instruction_address(pc); 1776 1777 if (call_addr != nullptr) { 1778 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1779 // bytes back in the instruction stream so we must also check for reloc info. 1780 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1781 bool ret = iter.next(); // Get item 1782 if (ret) { 1783 is_static_call = false; 1784 is_optimized = false; 1785 switch (iter.type()) { 1786 case relocInfo::static_call_type: 1787 is_static_call = true; 1788 case relocInfo::opt_virtual_call_type: { 1789 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1790 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1791 cdc->set_to_clean(); 1792 break; 1793 } 1794 case relocInfo::virtual_call_type: { 1795 // compiled, dispatched call (which used to call an interpreted method) 1796 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1797 inline_cache->set_to_clean(); 1798 break; 1799 } 1800 default: 1801 break; 1802 } 1803 } 1804 } 1805 } 1806 1807 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1808 1809 #ifndef PRODUCT 1810 Atomic::inc(&_wrong_method_ctr); 1811 1812 if (TraceCallFixup) { 1813 ResourceMark rm(current); 1814 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1815 callee_method->print_short_name(tty); 1816 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1817 } 1818 #endif 1819 1820 return callee_method; 1821 } 1822 1823 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1824 // The faulting unsafe accesses should be changed to throw the error 1825 // synchronously instead. Meanwhile the faulting instruction will be 1826 // skipped over (effectively turning it into a no-op) and an 1827 // asynchronous exception will be raised which the thread will 1828 // handle at a later point. If the instruction is a load it will 1829 // return garbage. 1830 1831 // Request an async exception. 1832 thread->set_pending_unsafe_access_error(); 1833 1834 // Return address of next instruction to execute. 1835 return next_pc; 1836 } 1837 1838 #ifdef ASSERT 1839 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1840 const BasicType* sig_bt, 1841 const VMRegPair* regs) { 1842 ResourceMark rm; 1843 const int total_args_passed = method->size_of_parameters(); 1844 const VMRegPair* regs_with_member_name = regs; 1845 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1846 1847 const int member_arg_pos = total_args_passed - 1; 1848 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1849 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1850 1851 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1852 1853 for (int i = 0; i < member_arg_pos; i++) { 1854 VMReg a = regs_with_member_name[i].first(); 1855 VMReg b = regs_without_member_name[i].first(); 1856 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1857 } 1858 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1859 } 1860 #endif 1861 1862 // --------------------------------------------------------------------------- 1863 // We are calling the interpreter via a c2i. Normally this would mean that 1864 // we were called by a compiled method. However we could have lost a race 1865 // where we went int -> i2c -> c2i and so the caller could in fact be 1866 // interpreted. If the caller is compiled we attempt to patch the caller 1867 // so he no longer calls into the interpreter. 1868 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1869 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1870 1871 // It's possible that deoptimization can occur at a call site which hasn't 1872 // been resolved yet, in which case this function will be called from 1873 // an nmethod that has been patched for deopt and we can ignore the 1874 // request for a fixup. 1875 // Also it is possible that we lost a race in that from_compiled_entry 1876 // is now back to the i2c in that case we don't need to patch and if 1877 // we did we'd leap into space because the callsite needs to use 1878 // "to interpreter" stub in order to load up the Method*. Don't 1879 // ask me how I know this... 1880 1881 // Result from nmethod::is_unloading is not stable across safepoints. 1882 NoSafepointVerifier nsv; 1883 1884 nmethod* callee = method->code(); 1885 if (callee == nullptr) { 1886 return; 1887 } 1888 1889 // write lock needed because we might patch call site by set_to_clean() 1890 // and is_unloading() can modify nmethod's state 1891 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1892 1893 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1894 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1895 return; 1896 } 1897 1898 // The check above makes sure this is an nmethod. 1899 nmethod* caller = cb->as_nmethod(); 1900 1901 // Get the return PC for the passed caller PC. 1902 address return_pc = caller_pc + frame::pc_return_offset; 1903 1904 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1905 return; 1906 } 1907 1908 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1909 CompiledICLocker ic_locker(caller); 1910 ResourceMark rm; 1911 1912 // If we got here through a static call or opt_virtual call, then we know where the 1913 // call address would be; let's peek at it 1914 address callsite_addr = (address)nativeCall_before(return_pc); 1915 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1916 if (!iter.next()) { 1917 // No reloc entry found; not a static or optimized virtual call 1918 return; 1919 } 1920 1921 relocInfo::relocType type = iter.reloc()->type(); 1922 if (type != relocInfo::static_call_type && 1923 type != relocInfo::opt_virtual_call_type) { 1924 return; 1925 } 1926 1927 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1928 callsite->set_to_clean(); 1929 JRT_END 1930 1931 1932 // same as JVM_Arraycopy, but called directly from compiled code 1933 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1934 oopDesc* dest, jint dest_pos, 1935 jint length, 1936 JavaThread* current)) { 1937 #ifndef PRODUCT 1938 _slow_array_copy_ctr++; 1939 #endif 1940 // Check if we have null pointers 1941 if (src == nullptr || dest == nullptr) { 1942 THROW(vmSymbols::java_lang_NullPointerException()); 1943 } 1944 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1945 // even though the copy_array API also performs dynamic checks to ensure 1946 // that src and dest are truly arrays (and are conformable). 1947 // The copy_array mechanism is awkward and could be removed, but 1948 // the compilers don't call this function except as a last resort, 1949 // so it probably doesn't matter. 1950 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1951 (arrayOopDesc*)dest, dest_pos, 1952 length, current); 1953 } 1954 JRT_END 1955 1956 // The caller of generate_class_cast_message() (or one of its callers) 1957 // must use a ResourceMark in order to correctly free the result. 1958 char* SharedRuntime::generate_class_cast_message( 1959 JavaThread* thread, Klass* caster_klass) { 1960 1961 // Get target class name from the checkcast instruction 1962 vframeStream vfst(thread, true); 1963 assert(!vfst.at_end(), "Java frame must exist"); 1964 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1965 constantPoolHandle cpool(thread, vfst.method()->constants()); 1966 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1967 Symbol* target_klass_name = nullptr; 1968 if (target_klass == nullptr) { 1969 // This klass should be resolved, but just in case, get the name in the klass slot. 1970 target_klass_name = cpool->klass_name_at(cc.index()); 1971 } 1972 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1973 } 1974 1975 1976 // The caller of generate_class_cast_message() (or one of its callers) 1977 // must use a ResourceMark in order to correctly free the result. 1978 char* SharedRuntime::generate_class_cast_message( 1979 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1980 const char* caster_name = caster_klass->external_name(); 1981 1982 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1983 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1984 target_klass->external_name(); 1985 1986 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1987 1988 const char* caster_klass_description = ""; 1989 const char* target_klass_description = ""; 1990 const char* klass_separator = ""; 1991 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1992 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1993 } else { 1994 caster_klass_description = caster_klass->class_in_module_of_loader(); 1995 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1996 klass_separator = (target_klass != nullptr) ? "; " : ""; 1997 } 1998 1999 // add 3 for parenthesis and preceding space 2000 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2001 2002 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2003 if (message == nullptr) { 2004 // Shouldn't happen, but don't cause even more problems if it does 2005 message = const_cast<char*>(caster_klass->external_name()); 2006 } else { 2007 jio_snprintf(message, 2008 msglen, 2009 "class %s cannot be cast to class %s (%s%s%s)", 2010 caster_name, 2011 target_name, 2012 caster_klass_description, 2013 klass_separator, 2014 target_klass_description 2015 ); 2016 } 2017 return message; 2018 } 2019 2020 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 2021 assert(klass->is_inline_klass(), "Must be a concrete value class"); 2022 const char* desc = "Cannot synchronize on an instance of value class "; 2023 const char* className = klass->external_name(); 2024 size_t msglen = strlen(desc) + strlen(className) + 1; 2025 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2026 if (nullptr == message) { 2027 // Out of memory: can't create detailed error message 2028 message = const_cast<char*>(klass->external_name()); 2029 } else { 2030 jio_snprintf(message, msglen, "%s%s", desc, className); 2031 } 2032 return message; 2033 } 2034 2035 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2036 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2037 JRT_END 2038 2039 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2040 if (!SafepointSynchronize::is_synchronizing()) { 2041 // Only try quick_enter() if we're not trying to reach a safepoint 2042 // so that the calling thread reaches the safepoint more quickly. 2043 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2044 return; 2045 } 2046 } 2047 // NO_ASYNC required because an async exception on the state transition destructor 2048 // would leave you with the lock held and it would never be released. 2049 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2050 // and the model is that an exception implies the method failed. 2051 JRT_BLOCK_NO_ASYNC 2052 Handle h_obj(THREAD, obj); 2053 ObjectSynchronizer::enter(h_obj, lock, current); 2054 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2055 JRT_BLOCK_END 2056 } 2057 2058 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2059 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2060 SharedRuntime::monitor_enter_helper(obj, lock, current); 2061 JRT_END 2062 2063 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2064 assert(JavaThread::current() == current, "invariant"); 2065 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2066 ExceptionMark em(current); 2067 2068 // Check if C2_MacroAssembler::fast_unlock() or 2069 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2070 // monitor before going slow path. Since there is no safepoint 2071 // polling when calling into the VM, we can be sure that the monitor 2072 // hasn't been deallocated. 2073 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2074 if (m != nullptr) { 2075 assert(!m->has_owner(current), "must be"); 2076 current->clear_unlocked_inflated_monitor(); 2077 2078 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2079 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2080 // Some other thread acquired the lock (or the monitor was 2081 // deflated). Either way we are done. 2082 current->dec_held_monitor_count(); 2083 return; 2084 } 2085 } 2086 2087 // The object could become unlocked through a JNI call, which we have no other checks for. 2088 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2089 if (obj->is_unlocked()) { 2090 if (CheckJNICalls) { 2091 fatal("Object has been unlocked by JNI"); 2092 } 2093 return; 2094 } 2095 ObjectSynchronizer::exit(obj, lock, current); 2096 } 2097 2098 // Handles the uncommon cases of monitor unlocking in compiled code 2099 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2100 assert(current == JavaThread::current(), "pre-condition"); 2101 SharedRuntime::monitor_exit_helper(obj, lock, current); 2102 JRT_END 2103 2104 // This is only called when CheckJNICalls is true, and only 2105 // for virtual thread termination. 2106 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2107 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2108 if (log_is_enabled(Debug, jni)) { 2109 JavaThread* current = JavaThread::current(); 2110 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2111 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2112 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2113 ") exiting with Objects still locked by JNI MonitorEnter.", 2114 vthread_id, carrier_id); 2115 } 2116 JRT_END 2117 2118 #ifndef PRODUCT 2119 2120 void SharedRuntime::print_statistics() { 2121 ttyLocker ttyl; 2122 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2123 2124 SharedRuntime::print_ic_miss_histogram(); 2125 2126 // Dump the JRT_ENTRY counters 2127 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2128 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2129 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2130 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2131 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2132 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2133 2134 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2135 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2136 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2137 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2138 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2139 2140 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2141 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2142 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2143 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2144 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2145 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2146 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2147 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2148 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2149 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2150 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2151 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2152 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2153 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2154 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2155 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2156 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2157 2158 AdapterHandlerLibrary::print_statistics(); 2159 2160 if (xtty != nullptr) xtty->tail("statistics"); 2161 } 2162 2163 inline double percent(int64_t x, int64_t y) { 2164 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2165 } 2166 2167 class MethodArityHistogram { 2168 public: 2169 enum { MAX_ARITY = 256 }; 2170 private: 2171 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2172 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2173 static uint64_t _total_compiled_calls; 2174 static uint64_t _max_compiled_calls_per_method; 2175 static int _max_arity; // max. arity seen 2176 static int _max_size; // max. arg size seen 2177 2178 static void add_method_to_histogram(nmethod* nm) { 2179 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2180 if (method != nullptr) { 2181 ArgumentCount args(method->signature()); 2182 int arity = args.size() + (method->is_static() ? 0 : 1); 2183 int argsize = method->size_of_parameters(); 2184 arity = MIN2(arity, MAX_ARITY-1); 2185 argsize = MIN2(argsize, MAX_ARITY-1); 2186 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2187 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2188 _total_compiled_calls += count; 2189 _arity_histogram[arity] += count; 2190 _size_histogram[argsize] += count; 2191 _max_arity = MAX2(_max_arity, arity); 2192 _max_size = MAX2(_max_size, argsize); 2193 } 2194 } 2195 2196 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2197 const int N = MIN2(9, n); 2198 double sum = 0; 2199 double weighted_sum = 0; 2200 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2201 if (sum >= 1) { // prevent divide by zero or divide overflow 2202 double rest = sum; 2203 double percent = sum / 100; 2204 for (int i = 0; i <= N; i++) { 2205 rest -= (double)histo[i]; 2206 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2207 } 2208 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2209 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2210 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2211 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2212 } else { 2213 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2214 } 2215 } 2216 2217 void print_histogram() { 2218 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2219 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2220 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2221 print_histogram_helper(_max_size, _size_histogram, "size"); 2222 tty->cr(); 2223 } 2224 2225 public: 2226 MethodArityHistogram() { 2227 // Take the Compile_lock to protect against changes in the CodeBlob structures 2228 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2229 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2230 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2231 _max_arity = _max_size = 0; 2232 _total_compiled_calls = 0; 2233 _max_compiled_calls_per_method = 0; 2234 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2235 CodeCache::nmethods_do(add_method_to_histogram); 2236 print_histogram(); 2237 } 2238 }; 2239 2240 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2241 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2242 uint64_t MethodArityHistogram::_total_compiled_calls; 2243 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2244 int MethodArityHistogram::_max_arity; 2245 int MethodArityHistogram::_max_size; 2246 2247 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2248 tty->print_cr("Calls from compiled code:"); 2249 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2250 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2251 int64_t mono_i = _nof_interface_calls; 2252 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2253 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2254 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2255 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2256 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2257 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2258 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2259 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2260 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2261 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2262 tty->cr(); 2263 tty->print_cr("Note 1: counter updates are not MT-safe."); 2264 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2265 tty->print_cr(" %% in nested categories are relative to their category"); 2266 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2267 tty->cr(); 2268 2269 MethodArityHistogram h; 2270 } 2271 #endif 2272 2273 #ifndef PRODUCT 2274 static int _lookups; // number of calls to lookup 2275 static int _equals; // number of buckets checked with matching hash 2276 static int _archived_hits; // number of successful lookups in archived table 2277 static int _runtime_hits; // number of successful lookups in runtime table 2278 #endif 2279 2280 // A simple wrapper class around the calling convention information 2281 // that allows sharing of adapters for the same calling convention. 2282 class AdapterFingerPrint : public MetaspaceObj { 2283 private: 2284 enum { 2285 _basic_type_bits = 5, 2286 _basic_type_mask = right_n_bits(_basic_type_bits), 2287 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2288 }; 2289 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2290 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2291 2292 int _length; 2293 2294 static int data_offset() { return sizeof(AdapterFingerPrint); } 2295 int* data_pointer() { 2296 return (int*)((address)this + data_offset()); 2297 } 2298 2299 // Private construtor. Use allocate() to get an instance. 2300 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2301 int* data = data_pointer(); 2302 // Pack the BasicTypes with 8 per int 2303 int total_args_passed = total_args_passed_in_sig(sig); 2304 _length = length(total_args_passed); 2305 int sig_index = 0; 2306 BasicType prev_bt = T_ILLEGAL; 2307 int vt_count = 0; 2308 for (int index = 0; index < _length; index++) { 2309 int value = 0; 2310 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2311 BasicType bt = T_ILLEGAL; 2312 if (sig_index < total_args_passed) { 2313 bt = sig->at(sig_index++)._bt; 2314 if (bt == T_METADATA) { 2315 // Found start of inline type in signature 2316 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2317 if (sig_index == 1 && has_ro_adapter) { 2318 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2319 // with other adapters that have the same inline type as first argument and no receiver. 2320 bt = T_VOID; 2321 } 2322 vt_count++; 2323 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2324 // Found end of inline type in signature 2325 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2326 vt_count--; 2327 assert(vt_count >= 0, "invalid vt_count"); 2328 } else if (vt_count == 0) { 2329 // Widen fields that are not part of a scalarized inline type argument 2330 bt = adapter_encoding(bt); 2331 } 2332 prev_bt = bt; 2333 } 2334 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2335 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2336 value = (value << _basic_type_bits) | bt_val; 2337 } 2338 data[index] = value; 2339 } 2340 assert(vt_count == 0, "invalid vt_count"); 2341 } 2342 2343 // Call deallocate instead 2344 ~AdapterFingerPrint() { 2345 ShouldNotCallThis(); 2346 } 2347 2348 static int total_args_passed_in_sig(const GrowableArray<SigEntry>* sig) { 2349 return (sig != nullptr) ? sig->length() : 0; 2350 } 2351 2352 static int length(int total_args) { 2353 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2354 } 2355 2356 static int compute_size_in_words(int len) { 2357 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2358 } 2359 2360 // Remap BasicTypes that are handled equivalently by the adapters. 2361 // These are correct for the current system but someday it might be 2362 // necessary to make this mapping platform dependent. 2363 static BasicType adapter_encoding(BasicType in) { 2364 switch (in) { 2365 case T_BOOLEAN: 2366 case T_BYTE: 2367 case T_SHORT: 2368 case T_CHAR: 2369 // They are all promoted to T_INT in the calling convention 2370 return T_INT; 2371 2372 case T_OBJECT: 2373 case T_ARRAY: 2374 // In other words, we assume that any register good enough for 2375 // an int or long is good enough for a managed pointer. 2376 #ifdef _LP64 2377 return T_LONG; 2378 #else 2379 return T_INT; 2380 #endif 2381 2382 case T_INT: 2383 case T_LONG: 2384 case T_FLOAT: 2385 case T_DOUBLE: 2386 case T_VOID: 2387 return in; 2388 2389 default: 2390 ShouldNotReachHere(); 2391 return T_CONFLICT; 2392 } 2393 } 2394 2395 void* operator new(size_t size, size_t fp_size) throw() { 2396 assert(fp_size >= size, "sanity check"); 2397 void* p = AllocateHeap(fp_size, mtCode); 2398 memset(p, 0, fp_size); 2399 return p; 2400 } 2401 2402 public: 2403 template<typename Function> 2404 void iterate_args(Function function) { 2405 for (int i = 0; i < length(); i++) { 2406 unsigned val = (unsigned)value(i); 2407 // args are packed so that first/lower arguments are in the highest 2408 // bits of each int value, so iterate from highest to the lowest 2409 int first_entry = _basic_types_per_int * _basic_type_bits; 2410 for (int j = first_entry; j >= 0; j -= _basic_type_bits) { 2411 unsigned v = (val >> j) & _basic_type_mask; 2412 if (v == 0) { 2413 continue; 2414 } 2415 function(v); 2416 } 2417 } 2418 } 2419 2420 static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2421 int total_args_passed = total_args_passed_in_sig(sig); 2422 int len = length(total_args_passed); 2423 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2424 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter); 2425 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2426 return afp; 2427 } 2428 2429 static void deallocate(AdapterFingerPrint* fp) { 2430 FreeHeap(fp); 2431 } 2432 2433 int value(int index) { 2434 int* data = data_pointer(); 2435 return data[index]; 2436 } 2437 2438 int length() { 2439 return _length; 2440 } 2441 2442 unsigned int compute_hash() { 2443 int hash = 0; 2444 for (int i = 0; i < length(); i++) { 2445 int v = value(i); 2446 //Add arithmetic operation to the hash, like +3 to improve hashing 2447 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2448 } 2449 return (unsigned int)hash; 2450 } 2451 2452 const char* as_string() { 2453 stringStream st; 2454 st.print("0x"); 2455 for (int i = 0; i < length(); i++) { 2456 st.print("%x", value(i)); 2457 } 2458 return st.as_string(); 2459 } 2460 2461 const char* as_basic_args_string() { 2462 stringStream st; 2463 bool long_prev = false; 2464 iterate_args([&] (int arg) { 2465 if (long_prev) { 2466 long_prev = false; 2467 if (arg == T_VOID) { 2468 st.print("J"); 2469 } else { 2470 st.print("L"); 2471 } 2472 } 2473 if (arg == T_LONG) { 2474 long_prev = true; 2475 } else if (arg != T_VOID) { 2476 st.print("%c", type2char((BasicType)arg)); 2477 } 2478 }); 2479 if (long_prev) { 2480 st.print("L"); 2481 } 2482 return st.as_string(); 2483 } 2484 2485 bool equals(AdapterFingerPrint* other) { 2486 if (other->_length != _length) { 2487 return false; 2488 } else { 2489 for (int i = 0; i < _length; i++) { 2490 if (value(i) != other->value(i)) { 2491 return false; 2492 } 2493 } 2494 } 2495 return true; 2496 } 2497 2498 // methods required by virtue of being a MetaspaceObj 2499 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2500 int size() const { return compute_size_in_words(_length); } 2501 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2502 2503 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2504 NOT_PRODUCT(_equals++); 2505 return fp1->equals(fp2); 2506 } 2507 2508 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2509 return fp->compute_hash(); 2510 } 2511 }; 2512 2513 #if INCLUDE_CDS 2514 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2515 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2516 } 2517 2518 class ArchivedAdapterTable : public OffsetCompactHashtable< 2519 AdapterFingerPrint*, 2520 AdapterHandlerEntry*, 2521 adapter_fp_equals_compact_hashtable_entry> {}; 2522 #endif // INCLUDE_CDS 2523 2524 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2525 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2526 AnyObj::C_HEAP, mtCode, 2527 AdapterFingerPrint::compute_hash, 2528 AdapterFingerPrint::equals>; 2529 static AdapterHandlerTable* _adapter_handler_table; 2530 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2531 2532 // Find a entry with the same fingerprint if it exists 2533 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) { 2534 NOT_PRODUCT(_lookups++); 2535 assert_lock_strong(AdapterHandlerLibrary_lock); 2536 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter); 2537 AdapterHandlerEntry* entry = nullptr; 2538 #if INCLUDE_CDS 2539 // if we are building the archive then the archived adapter table is 2540 // not valid and we need to use the ones added to the runtime table 2541 if (AOTCodeCache::is_using_adapter()) { 2542 // Search archived table first. It is read-only table so can be searched without lock 2543 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2544 #ifndef PRODUCT 2545 if (entry != nullptr) { 2546 _archived_hits++; 2547 } 2548 #endif 2549 } 2550 #endif // INCLUDE_CDS 2551 if (entry == nullptr) { 2552 assert_lock_strong(AdapterHandlerLibrary_lock); 2553 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2554 if (entry_p != nullptr) { 2555 entry = *entry_p; 2556 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2557 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2558 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2559 #ifndef PRODUCT 2560 _runtime_hits++; 2561 #endif 2562 } 2563 } 2564 AdapterFingerPrint::deallocate(fp); 2565 return entry; 2566 } 2567 2568 #ifndef PRODUCT 2569 static void print_table_statistics() { 2570 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2571 return sizeof(*key) + sizeof(*a); 2572 }; 2573 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2574 ts.print(tty, "AdapterHandlerTable"); 2575 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2576 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2577 int total_hits = _archived_hits + _runtime_hits; 2578 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2579 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2580 } 2581 #endif 2582 2583 // --------------------------------------------------------------------------- 2584 // Implementation of AdapterHandlerLibrary 2585 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2586 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2587 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2588 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2589 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2590 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2591 #if INCLUDE_CDS 2592 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2593 #endif // INCLUDE_CDS 2594 static const int AdapterHandlerLibrary_size = 48*K; 2595 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2596 2597 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2598 assert(_buffer != nullptr, "should be initialized"); 2599 return _buffer; 2600 } 2601 2602 static void post_adapter_creation(const AdapterBlob* new_adapter, 2603 const AdapterHandlerEntry* entry) { 2604 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2605 char blob_id[256]; 2606 jio_snprintf(blob_id, 2607 sizeof(blob_id), 2608 "%s(%s)", 2609 new_adapter->name(), 2610 entry->fingerprint()->as_string()); 2611 if (Forte::is_enabled()) { 2612 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2613 } 2614 2615 if (JvmtiExport::should_post_dynamic_code_generated()) { 2616 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2617 } 2618 } 2619 } 2620 2621 void AdapterHandlerLibrary::create_abstract_method_handler() { 2622 assert_lock_strong(AdapterHandlerLibrary_lock); 2623 // Create a special handler for abstract methods. Abstract methods 2624 // are never compiled so an i2c entry is somewhat meaningless, but 2625 // throw AbstractMethodError just in case. 2626 // Pass wrong_method_abstract for the c2i transitions to return 2627 // AbstractMethodError for invalid invocations. 2628 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2629 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 2630 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2631 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2632 wrong_method_abstract, wrong_method_abstract); 2633 } 2634 2635 void AdapterHandlerLibrary::initialize() { 2636 { 2637 ResourceMark rm; 2638 MutexLocker mu(AdapterHandlerLibrary_lock); 2639 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2640 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2641 create_abstract_method_handler(); 2642 } 2643 2644 #if INCLUDE_CDS 2645 // Link adapters in AOT Cache to their code in AOT Code Cache 2646 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2647 link_aot_adapters(); 2648 lookup_simple_adapters(); 2649 return; 2650 } 2651 #endif // INCLUDE_CDS 2652 2653 ResourceMark rm; 2654 AdapterBlob* no_arg_blob = nullptr; 2655 AdapterBlob* int_arg_blob = nullptr; 2656 AdapterBlob* obj_arg_blob = nullptr; 2657 AdapterBlob* obj_int_arg_blob = nullptr; 2658 AdapterBlob* obj_obj_arg_blob = nullptr; 2659 { 2660 MutexLocker mu(AdapterHandlerLibrary_lock); 2661 2662 CompiledEntrySignature no_args; 2663 no_args.compute_calling_conventions(); 2664 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2665 2666 CompiledEntrySignature obj_args; 2667 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 2668 obj_args.compute_calling_conventions(); 2669 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2670 2671 CompiledEntrySignature int_args; 2672 SigEntry::add_entry(int_args.sig(), T_INT); 2673 int_args.compute_calling_conventions(); 2674 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2675 2676 CompiledEntrySignature obj_int_args; 2677 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 2678 SigEntry::add_entry(obj_int_args.sig(), T_INT); 2679 obj_int_args.compute_calling_conventions(); 2680 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2681 2682 CompiledEntrySignature obj_obj_args; 2683 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2684 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2685 obj_obj_args.compute_calling_conventions(); 2686 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2687 2688 // we should always get an entry back but we don't have any 2689 // associated blob on Zero 2690 assert(_no_arg_handler != nullptr && 2691 _obj_arg_handler != nullptr && 2692 _int_arg_handler != nullptr && 2693 _obj_int_arg_handler != nullptr && 2694 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2695 } 2696 2697 // Outside of the lock 2698 #ifndef ZERO 2699 // no blobs to register when we are on Zero 2700 post_adapter_creation(no_arg_blob, _no_arg_handler); 2701 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2702 post_adapter_creation(int_arg_blob, _int_arg_handler); 2703 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2704 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2705 #endif // ZERO 2706 } 2707 2708 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2709 return AdapterHandlerEntry::allocate(fingerprint); 2710 } 2711 2712 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2713 if (method->is_abstract()) { 2714 return nullptr; 2715 } 2716 int total_args_passed = method->size_of_parameters(); // All args on stack 2717 if (total_args_passed == 0) { 2718 return _no_arg_handler; 2719 } else if (total_args_passed == 1) { 2720 if (!method->is_static()) { 2721 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2722 return nullptr; 2723 } 2724 return _obj_arg_handler; 2725 } 2726 switch (method->signature()->char_at(1)) { 2727 case JVM_SIGNATURE_CLASS: { 2728 if (InlineTypePassFieldsAsArgs) { 2729 SignatureStream ss(method->signature()); 2730 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2731 if (vk != nullptr) { 2732 return nullptr; 2733 } 2734 } 2735 return _obj_arg_handler; 2736 } 2737 case JVM_SIGNATURE_ARRAY: 2738 return _obj_arg_handler; 2739 case JVM_SIGNATURE_INT: 2740 case JVM_SIGNATURE_BOOLEAN: 2741 case JVM_SIGNATURE_CHAR: 2742 case JVM_SIGNATURE_BYTE: 2743 case JVM_SIGNATURE_SHORT: 2744 return _int_arg_handler; 2745 } 2746 } else if (total_args_passed == 2 && 2747 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2748 switch (method->signature()->char_at(1)) { 2749 case JVM_SIGNATURE_CLASS: { 2750 if (InlineTypePassFieldsAsArgs) { 2751 SignatureStream ss(method->signature()); 2752 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2753 if (vk != nullptr) { 2754 return nullptr; 2755 } 2756 } 2757 return _obj_obj_arg_handler; 2758 } 2759 case JVM_SIGNATURE_ARRAY: 2760 return _obj_obj_arg_handler; 2761 case JVM_SIGNATURE_INT: 2762 case JVM_SIGNATURE_BOOLEAN: 2763 case JVM_SIGNATURE_CHAR: 2764 case JVM_SIGNATURE_BYTE: 2765 case JVM_SIGNATURE_SHORT: 2766 return _obj_int_arg_handler; 2767 } 2768 } 2769 return nullptr; 2770 } 2771 2772 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2773 _method(method), _num_inline_args(0), _has_inline_recv(false), 2774 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2775 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2776 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2777 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2778 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2779 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2780 } 2781 2782 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2783 // or the same entry for VEP and VIEP(RO). 2784 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2785 if (!has_scalarized_args()) { 2786 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2787 return CodeOffsets::Verified_Entry; 2788 } 2789 if (_method->is_static()) { 2790 // Static methods don't need VIEP(RO) 2791 return CodeOffsets::Verified_Entry; 2792 } 2793 2794 if (has_inline_recv()) { 2795 if (num_inline_args() == 1) { 2796 // Share same entry for VIEP and VIEP(RO). 2797 // This is quite common: we have an instance method in an InlineKlass that has 2798 // no inline type args other than <this>. 2799 return CodeOffsets::Verified_Inline_Entry; 2800 } else { 2801 assert(num_inline_args() > 1, "must be"); 2802 // No sharing: 2803 // VIEP(RO) -- <this> is passed as object 2804 // VEP -- <this> is passed as fields 2805 return CodeOffsets::Verified_Inline_Entry_RO; 2806 } 2807 } 2808 2809 // Either a static method, or <this> is not an inline type 2810 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2811 // No sharing: 2812 // Some arguments are passed on the stack, and we have inserted reserved entries 2813 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2814 return CodeOffsets::Verified_Inline_Entry_RO; 2815 } else { 2816 // Share same entry for VEP and VIEP(RO). 2817 return CodeOffsets::Verified_Entry; 2818 } 2819 } 2820 2821 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2822 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2823 if (_supers != nullptr) { 2824 return _supers; 2825 } 2826 _supers = new GrowableArray<Method*>(); 2827 // Skip private, static, and <init> methods 2828 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2829 return _supers; 2830 } 2831 Symbol* name = _method->name(); 2832 Symbol* signature = _method->signature(); 2833 const Klass* holder = _method->method_holder()->super(); 2834 Symbol* holder_name = holder->name(); 2835 ThreadInVMfromUnknown tiv; 2836 JavaThread* current = JavaThread::current(); 2837 HandleMark hm(current); 2838 Handle loader(current, _method->method_holder()->class_loader()); 2839 2840 // Walk up the class hierarchy and search for super methods 2841 while (holder != nullptr) { 2842 Method* super_method = holder->lookup_method(name, signature); 2843 if (super_method == nullptr) { 2844 break; 2845 } 2846 if (!super_method->is_static() && !super_method->is_private() && 2847 (!super_method->is_package_private() || 2848 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2849 _supers->push(super_method); 2850 } 2851 holder = super_method->method_holder()->super(); 2852 } 2853 // Search interfaces for super methods 2854 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2855 for (int i = 0; i < interfaces->length(); ++i) { 2856 Method* m = interfaces->at(i)->lookup_method(name, signature); 2857 if (m != nullptr && !m->is_static() && m->is_public()) { 2858 _supers->push(m); 2859 } 2860 } 2861 return _supers; 2862 } 2863 2864 // Iterate over arguments and compute scalarized and non-scalarized signatures 2865 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2866 bool has_scalarized = false; 2867 if (_method != nullptr) { 2868 InstanceKlass* holder = _method->method_holder(); 2869 int arg_num = 0; 2870 if (!_method->is_static()) { 2871 // We shouldn't scalarize 'this' in a value class constructor 2872 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2873 (init || _method->is_scalarized_arg(arg_num))) { 2874 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2875 has_scalarized = true; 2876 _has_inline_recv = true; 2877 _num_inline_args++; 2878 } else { 2879 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2880 } 2881 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2882 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2883 arg_num++; 2884 } 2885 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2886 BasicType bt = ss.type(); 2887 if (bt == T_OBJECT) { 2888 InlineKlass* vk = ss.as_inline_klass(holder); 2889 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2890 // Check for a calling convention mismatch with super method(s) 2891 bool scalar_super = false; 2892 bool non_scalar_super = false; 2893 GrowableArray<Method*>* supers = get_supers(); 2894 for (int i = 0; i < supers->length(); ++i) { 2895 Method* super_method = supers->at(i); 2896 if (super_method->is_scalarized_arg(arg_num)) { 2897 scalar_super = true; 2898 } else { 2899 non_scalar_super = true; 2900 } 2901 } 2902 #ifdef ASSERT 2903 // Randomly enable below code paths for stress testing 2904 bool stress = init && StressCallingConvention; 2905 if (stress && (os::random() & 1) == 1) { 2906 non_scalar_super = true; 2907 if ((os::random() & 1) == 1) { 2908 scalar_super = true; 2909 } 2910 } 2911 #endif 2912 if (non_scalar_super) { 2913 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2914 if (scalar_super) { 2915 // Found non-scalar *and* scalar super methods. We can't handle both. 2916 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2917 for (int i = 0; i < supers->length(); ++i) { 2918 Method* super_method = supers->at(i); 2919 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) { 2920 super_method->set_mismatch(); 2921 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2922 JavaThread* thread = JavaThread::current(); 2923 HandleMark hm(thread); 2924 methodHandle mh(thread, super_method); 2925 DeoptimizationScope deopt_scope; 2926 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2927 deopt_scope.deoptimize_marked(); 2928 } 2929 } 2930 } 2931 // Fall back to non-scalarized calling convention 2932 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2933 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2934 } else { 2935 _num_inline_args++; 2936 has_scalarized = true; 2937 int last = _sig_cc->length(); 2938 int last_ro = _sig_cc_ro->length(); 2939 _sig_cc->appendAll(vk->extended_sig()); 2940 _sig_cc_ro->appendAll(vk->extended_sig()); 2941 if (bt == T_OBJECT) { 2942 // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter 2943 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2944 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2945 } 2946 } 2947 } else { 2948 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2949 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2950 } 2951 bt = T_OBJECT; 2952 } else { 2953 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2954 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2955 } 2956 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2957 if (bt != T_VOID) { 2958 arg_num++; 2959 } 2960 } 2961 } 2962 2963 // Compute the non-scalarized calling convention 2964 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2965 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2966 2967 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2968 if (has_scalarized && !_method->is_native()) { 2969 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2970 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2971 2972 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2973 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2974 2975 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2976 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2977 2978 // Upper bound on stack arguments to avoid hitting the argument limit and 2979 // bailing out of compilation ("unsupported incoming calling sequence"). 2980 // TODO we need a reasonable limit (flag?) here 2981 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2982 return; // Success 2983 } 2984 } 2985 2986 // No scalarized args 2987 _sig_cc = _sig; 2988 _regs_cc = _regs; 2989 _args_on_stack_cc = _args_on_stack; 2990 2991 _sig_cc_ro = _sig; 2992 _regs_cc_ro = _regs; 2993 _args_on_stack_cc_ro = _args_on_stack; 2994 } 2995 2996 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) { 2997 int value_object_count = 0; 2998 bool is_receiver = true; 2999 BasicType prev_bt = T_ILLEGAL; 3000 bool long_prev = false; 3001 bool has_scalarized_arguments = false; 3002 3003 fingerprint->iterate_args([&] (int arg) { 3004 BasicType bt = (BasicType)arg; 3005 if (long_prev) { 3006 long_prev = false; 3007 BasicType bt_to_add; 3008 if (bt == T_VOID) { 3009 bt_to_add = T_LONG; 3010 } else { 3011 bt_to_add = T_OBJECT; // it could be T_ARRAY; it shouldn't matter 3012 } 3013 SigEntry::add_entry(_sig_cc, bt_to_add); 3014 SigEntry::add_entry(_sig_cc_ro, bt_to_add); 3015 if (value_object_count == 0) { 3016 SigEntry::add_entry(_sig, bt_to_add); 3017 } 3018 } 3019 switch (bt) { 3020 case T_VOID: 3021 if (is_receiver) { 3022 // 'this' when ro adapter is available 3023 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3024 value_object_count++; 3025 has_scalarized_arguments = true; 3026 _has_inline_recv = true; 3027 SigEntry::add_entry(_sig, T_OBJECT); 3028 SigEntry::add_entry(_sig_cc, T_METADATA); 3029 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3030 } else if (prev_bt != T_LONG && prev_bt != T_DOUBLE) { 3031 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 3032 value_object_count--; 3033 SigEntry::add_entry(_sig_cc, T_VOID); 3034 SigEntry::add_entry(_sig_cc_ro, T_VOID); 3035 assert(value_object_count >= 0, "invalid value object count"); 3036 } else { 3037 // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE. 3038 } 3039 break; 3040 case T_INT: 3041 case T_FLOAT: 3042 case T_DOUBLE: 3043 if (value_object_count == 0) { 3044 SigEntry::add_entry(_sig, bt); 3045 } 3046 SigEntry::add_entry(_sig_cc, bt); 3047 SigEntry::add_entry(_sig_cc_ro, bt); 3048 break; 3049 case T_LONG: 3050 long_prev = true; 3051 break; 3052 case T_BOOLEAN: 3053 case T_CHAR: 3054 case T_BYTE: 3055 case T_SHORT: 3056 case T_OBJECT: 3057 case T_ARRAY: 3058 assert(value_object_count > 0 && !is_receiver, "must be value object field"); 3059 SigEntry::add_entry(_sig_cc, bt); 3060 SigEntry::add_entry(_sig_cc_ro, bt); 3061 break; 3062 case T_METADATA: 3063 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3064 value_object_count++; 3065 has_scalarized_arguments = true; 3066 SigEntry::add_entry(_sig, T_OBJECT); 3067 SigEntry::add_entry(_sig_cc, T_METADATA); 3068 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3069 break; 3070 default: { 3071 fatal("Unexpected BasicType: %s", basictype_to_str(bt)); 3072 } 3073 } 3074 prev_bt = bt; 3075 is_receiver = false; 3076 }); 3077 3078 if (long_prev) { 3079 // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT. 3080 SigEntry::add_entry(_sig, T_OBJECT); 3081 SigEntry::add_entry(_sig_cc, T_OBJECT); 3082 SigEntry::add_entry(_sig_cc_ro, T_OBJECT); 3083 } 3084 assert(value_object_count == 0, "invalid value object count"); 3085 3086 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 3087 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 3088 3089 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 3090 if (has_scalarized_arguments) { 3091 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 3092 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 3093 3094 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 3095 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 3096 3097 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 3098 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 3099 } else { 3100 // No scalarized args 3101 _sig_cc = _sig; 3102 _regs_cc = _regs; 3103 _args_on_stack_cc = _args_on_stack; 3104 3105 _sig_cc_ro = _sig; 3106 _regs_cc_ro = _regs; 3107 _args_on_stack_cc_ro = _args_on_stack; 3108 } 3109 3110 #ifdef ASSERT 3111 { 3112 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv); 3113 assert(fingerprint->equals(compare_fp), "sanity check"); 3114 AdapterFingerPrint::deallocate(compare_fp); 3115 } 3116 #endif 3117 } 3118 3119 const char* AdapterHandlerEntry::_entry_names[] = { 3120 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 3121 }; 3122 3123 #ifdef ASSERT 3124 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) { 3125 // we can only check for the same code if there is any 3126 #ifndef ZERO 3127 AdapterBlob* comparison_blob = nullptr; 3128 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false, true); 3129 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 3130 assert(comparison_entry->compare_code(cached_entry), "code must match"); 3131 // Release the one just created 3132 AdapterHandlerEntry::deallocate(comparison_entry); 3133 # endif // ZERO 3134 } 3135 #endif /* ASSERT*/ 3136 3137 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 3138 // Use customized signature handler. Need to lock around updates to 3139 // the _adapter_handler_table (it is not safe for concurrent readers 3140 // and a single writer: this could be fixed if it becomes a 3141 // problem). 3142 3143 // Fast-path for trivial adapters 3144 AdapterHandlerEntry* entry = get_simple_adapter(method); 3145 if (entry != nullptr) { 3146 return entry; 3147 } 3148 3149 ResourceMark rm; 3150 AdapterBlob* adapter_blob = nullptr; 3151 3152 CompiledEntrySignature ces(method()); 3153 ces.compute_calling_conventions(); 3154 if (ces.has_scalarized_args()) { 3155 if (!method->has_scalarized_args()) { 3156 method->set_has_scalarized_args(); 3157 } 3158 if (ces.c1_needs_stack_repair()) { 3159 method->set_c1_needs_stack_repair(); 3160 } 3161 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 3162 method->set_c2_needs_stack_repair(); 3163 } 3164 } else if (method->is_abstract()) { 3165 return _abstract_method_handler; 3166 } 3167 3168 { 3169 MutexLocker mu(AdapterHandlerLibrary_lock); 3170 3171 if (ces.has_scalarized_args() && method->is_abstract()) { 3172 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 3173 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 3174 entry = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 3175 entry->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 3176 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 3177 wrong_method_abstract, wrong_method_abstract); 3178 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 3179 heap_sig->appendAll(ces.sig_cc_ro()); 3180 entry->set_sig_cc(heap_sig); 3181 return entry; 3182 } 3183 3184 // Lookup method signature's fingerprint 3185 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 3186 3187 if (entry != nullptr) { 3188 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 3189 #ifdef ASSERT 3190 if (!entry->is_shared() && VerifyAdapterSharing) { 3191 verify_adapter_sharing(ces, entry); 3192 } 3193 #endif 3194 } else { 3195 entry = create_adapter(adapter_blob, ces, /* allocate_code_blob */ true); 3196 } 3197 } 3198 3199 // Outside of the lock 3200 if (adapter_blob != nullptr) { 3201 post_adapter_creation(adapter_blob, entry); 3202 } 3203 return entry; 3204 } 3205 3206 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 3207 ResourceMark rm; 3208 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3209 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3210 int offsets[AdapterBlob::ENTRY_COUNT]; 3211 3212 AdapterBlob* adapter_blob = nullptr; 3213 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 3214 if (blob != nullptr) { 3215 adapter_blob = blob->as_adapter_blob(); 3216 adapter_blob->get_offsets(offsets); 3217 address i2c_entry = adapter_blob->content_begin(); 3218 assert(offsets[0] == 0, "sanity check"); 3219 handler->set_entry_points( 3220 i2c_entry, 3221 (offsets[1] != -1) ? (i2c_entry + offsets[1]) : nullptr, 3222 (offsets[2] != -1) ? (i2c_entry + offsets[2]) : nullptr, 3223 (offsets[3] != -1) ? (i2c_entry + offsets[3]) : nullptr, 3224 (offsets[4] != -1) ? (i2c_entry + offsets[4]) : nullptr, 3225 (offsets[5] != -1) ? (i2c_entry + offsets[5]) : nullptr, 3226 (offsets[6] != -1) ? (i2c_entry + offsets[6]) : nullptr 3227 ); 3228 } 3229 return adapter_blob; 3230 } 3231 3232 #ifndef PRODUCT 3233 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 3234 ttyLocker ttyl; 3235 ResourceMark rm; 3236 int insts_size; 3237 // on Zero the blob may be null 3238 handler->print_adapter_on(tty); 3239 if (adapter_blob == nullptr) { 3240 return; 3241 } 3242 insts_size = adapter_blob->code_size(); 3243 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 3244 handler->fingerprint()->as_basic_args_string(), 3245 handler->fingerprint()->as_string(), insts_size); 3246 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 3247 if (Verbose || PrintStubCode) { 3248 address first_pc = handler->base_address(); 3249 if (first_pc != nullptr) { 3250 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 3251 st->cr(); 3252 } 3253 } 3254 } 3255 #endif // PRODUCT 3256 3257 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 3258 AdapterHandlerEntry* handler, 3259 CompiledEntrySignature& ces, 3260 bool allocate_code_blob, 3261 bool is_transient) { 3262 if (log_is_enabled(Info, perf, class, link)) { 3263 ClassLoader::perf_method_adapters_count()->inc(); 3264 } 3265 3266 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3267 CodeBuffer buffer(buf); 3268 short buffer_locs[20]; 3269 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3270 sizeof(buffer_locs)/sizeof(relocInfo)); 3271 MacroAssembler masm(&buffer); 3272 3273 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 3274 SharedRuntime::generate_i2c2i_adapters(&masm, 3275 ces.args_on_stack(), 3276 ces.sig(), 3277 ces.regs(), 3278 ces.sig_cc(), 3279 ces.regs_cc(), 3280 ces.sig_cc_ro(), 3281 ces.regs_cc_ro(), 3282 handler, 3283 adapter_blob, 3284 allocate_code_blob); 3285 3286 if (ces.has_scalarized_args()) { 3287 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3288 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3289 heap_sig->appendAll(ces.sig_cc()); 3290 handler->set_sig_cc(heap_sig); 3291 } 3292 #ifdef ZERO 3293 // On zero there is no code to save and no need to create a blob and 3294 // or relocate the handler. 3295 adapter_blob = nullptr; 3296 #else 3297 #ifdef ASSERT 3298 if (VerifyAdapterSharing) { 3299 handler->save_code(buf->code_begin(), buffer.insts_size()); 3300 if (is_transient) { 3301 return true; 3302 } 3303 } 3304 #endif 3305 3306 if (adapter_blob == nullptr) { 3307 // CodeCache is full, disable compilation 3308 // Ought to log this but compile log is only per compile thread 3309 // and we're some non descript Java thread. 3310 return false; 3311 } 3312 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 3313 // try to save generated code 3314 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3315 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3316 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 3317 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 3318 } 3319 handler->relocate(adapter_blob->content_begin()); 3320 #endif // ZERO 3321 3322 #ifndef PRODUCT 3323 // debugging support 3324 if (PrintAdapterHandlers || PrintStubCode) { 3325 print_adapter_handler_info(tty, handler, adapter_blob); 3326 } 3327 #endif 3328 3329 return true; 3330 } 3331 3332 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 3333 CompiledEntrySignature& ces, 3334 bool allocate_code_blob, 3335 bool is_transient) { 3336 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv()); 3337 #ifdef ASSERT 3338 // Verify that we can successfully restore the compiled entry signature object. 3339 CompiledEntrySignature ces_verify; 3340 ces_verify.initialize_from_fingerprint(fp); 3341 #endif 3342 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 3343 if (!generate_adapter_code(adapter_blob, handler, ces, allocate_code_blob, is_transient)) { 3344 AdapterHandlerEntry::deallocate(handler); 3345 return nullptr; 3346 } 3347 if (!is_transient) { 3348 assert_lock_strong(AdapterHandlerLibrary_lock); 3349 _adapter_handler_table->put(fp, handler); 3350 } 3351 return handler; 3352 } 3353 3354 #if INCLUDE_CDS 3355 void AdapterHandlerEntry::remove_unshareable_info() { 3356 #ifdef ASSERT 3357 _saved_code = nullptr; 3358 _saved_code_length = 0; 3359 #endif // ASSERT 3360 set_entry_points(nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, false); 3361 } 3362 3363 class CopyAdapterTableToArchive : StackObj { 3364 private: 3365 CompactHashtableWriter* _writer; 3366 ArchiveBuilder* _builder; 3367 public: 3368 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 3369 _builder(ArchiveBuilder::current()) 3370 {} 3371 3372 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3373 LogStreamHandle(Trace, aot) lsh; 3374 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3375 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3376 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3377 assert(buffered_fp != nullptr,"sanity check"); 3378 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3379 assert(buffered_entry != nullptr,"sanity check"); 3380 3381 uint hash = fp->compute_hash(); 3382 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3383 _writer->add(hash, delta); 3384 if (lsh.is_enabled()) { 3385 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3386 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3387 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3388 } 3389 } else { 3390 if (lsh.is_enabled()) { 3391 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3392 } 3393 } 3394 return true; 3395 } 3396 }; 3397 3398 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3399 CompactHashtableStats stats; 3400 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3401 CopyAdapterTableToArchive copy(&writer); 3402 _adapter_handler_table->iterate(©); 3403 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3404 } 3405 3406 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3407 _aot_adapter_handler_table.serialize_header(soc); 3408 } 3409 3410 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3411 #ifdef ASSERT 3412 if (TestAOTAdapterLinkFailure) { 3413 return nullptr; 3414 } 3415 #endif 3416 AdapterBlob* blob = lookup_aot_cache(handler); 3417 #ifndef PRODUCT 3418 // debugging support 3419 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 3420 print_adapter_handler_info(tty, handler, blob); 3421 } 3422 #endif 3423 return blob; 3424 } 3425 3426 // This method is used during production run to link archived adapters (stored in AOT Cache) 3427 // to their code in AOT Code Cache 3428 void AdapterHandlerEntry::link() { 3429 AdapterBlob* adapter_blob = nullptr; 3430 ResourceMark rm; 3431 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3432 bool generate_code = false; 3433 // Generate code only if AOTCodeCache is not available, or 3434 // caching adapters is disabled, or we fail to link 3435 // the AdapterHandlerEntry to its code in the AOTCodeCache 3436 if (AOTCodeCache::is_using_adapter()) { 3437 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 3438 if (adapter_blob == nullptr) { 3439 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3440 generate_code = true; 3441 } 3442 } else { 3443 generate_code = true; 3444 } 3445 if (generate_code) { 3446 CompiledEntrySignature ces; 3447 ces.initialize_from_fingerprint(_fingerprint); 3448 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, ces, true, false)) { 3449 // Don't throw exceptions during VM initialization because java.lang.* classes 3450 // might not have been initialized, causing problems when constructing the 3451 // Java exception object. 3452 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3453 } 3454 } 3455 // Outside of the lock 3456 if (adapter_blob != nullptr) { 3457 post_adapter_creation(adapter_blob, this); 3458 } 3459 assert(_linked, "AdapterHandlerEntry must now be linked"); 3460 } 3461 3462 void AdapterHandlerLibrary::link_aot_adapters() { 3463 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3464 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3465 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3466 entry->link(); 3467 }); 3468 } 3469 3470 // This method is called during production run to lookup simple adapters 3471 // in the archived adapter handler table 3472 void AdapterHandlerLibrary::lookup_simple_adapters() { 3473 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3474 3475 MutexLocker mu(AdapterHandlerLibrary_lock); 3476 ResourceMark rm; 3477 CompiledEntrySignature no_args; 3478 no_args.compute_calling_conventions(); 3479 _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv()); 3480 3481 CompiledEntrySignature obj_args; 3482 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 3483 obj_args.compute_calling_conventions(); 3484 _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv()); 3485 3486 CompiledEntrySignature int_args; 3487 SigEntry::add_entry(int_args.sig(), T_INT); 3488 int_args.compute_calling_conventions(); 3489 _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv()); 3490 3491 CompiledEntrySignature obj_int_args; 3492 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 3493 SigEntry::add_entry(obj_int_args.sig(), T_INT); 3494 obj_int_args.compute_calling_conventions(); 3495 _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv()); 3496 3497 CompiledEntrySignature obj_obj_args; 3498 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3499 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3500 obj_obj_args.compute_calling_conventions(); 3501 _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv()); 3502 3503 assert(_no_arg_handler != nullptr && 3504 _obj_arg_handler != nullptr && 3505 _int_arg_handler != nullptr && 3506 _obj_int_arg_handler != nullptr && 3507 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3508 assert(_no_arg_handler->is_linked() && 3509 _obj_arg_handler->is_linked() && 3510 _int_arg_handler->is_linked() && 3511 _obj_int_arg_handler->is_linked() && 3512 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3513 } 3514 #endif // INCLUDE_CDS 3515 3516 address AdapterHandlerEntry::base_address() { 3517 address base = _i2c_entry; 3518 if (base == nullptr) base = _c2i_entry; 3519 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3520 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3521 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3522 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3523 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3524 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3525 return base; 3526 } 3527 3528 void AdapterHandlerEntry::relocate(address new_base) { 3529 address old_base = base_address(); 3530 assert(old_base != nullptr, ""); 3531 ptrdiff_t delta = new_base - old_base; 3532 if (_i2c_entry != nullptr) 3533 _i2c_entry += delta; 3534 if (_c2i_entry != nullptr) 3535 _c2i_entry += delta; 3536 if (_c2i_inline_entry != nullptr) 3537 _c2i_inline_entry += delta; 3538 if (_c2i_inline_ro_entry != nullptr) 3539 _c2i_inline_ro_entry += delta; 3540 if (_c2i_unverified_entry != nullptr) 3541 _c2i_unverified_entry += delta; 3542 if (_c2i_unverified_inline_entry != nullptr) 3543 _c2i_unverified_inline_entry += delta; 3544 if (_c2i_no_clinit_check_entry != nullptr) 3545 _c2i_no_clinit_check_entry += delta; 3546 assert(base_address() == new_base, ""); 3547 } 3548 3549 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3550 LogStreamHandle(Trace, aot) lsh; 3551 if (lsh.is_enabled()) { 3552 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3553 lsh.cr(); 3554 } 3555 it->push(&_fingerprint); 3556 } 3557 3558 AdapterHandlerEntry::~AdapterHandlerEntry() { 3559 if (_fingerprint != nullptr) { 3560 AdapterFingerPrint::deallocate(_fingerprint); 3561 _fingerprint = nullptr; 3562 } 3563 if (_sig_cc != nullptr) { 3564 delete _sig_cc; 3565 } 3566 #ifdef ASSERT 3567 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3568 #endif 3569 FreeHeap(this); 3570 } 3571 3572 3573 #ifdef ASSERT 3574 // Capture the code before relocation so that it can be compared 3575 // against other versions. If the code is captured after relocation 3576 // then relative instructions won't be equivalent. 3577 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3578 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3579 _saved_code_length = length; 3580 memcpy(_saved_code, buffer, length); 3581 } 3582 3583 3584 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3585 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3586 3587 if (other->_saved_code_length != _saved_code_length) { 3588 return false; 3589 } 3590 3591 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3592 } 3593 #endif 3594 3595 3596 /** 3597 * Create a native wrapper for this native method. The wrapper converts the 3598 * Java-compiled calling convention to the native convention, handles 3599 * arguments, and transitions to native. On return from the native we transition 3600 * back to java blocking if a safepoint is in progress. 3601 */ 3602 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3603 ResourceMark rm; 3604 nmethod* nm = nullptr; 3605 3606 // Check if memory should be freed before allocation 3607 CodeCache::gc_on_allocation(); 3608 3609 assert(method->is_native(), "must be native"); 3610 assert(method->is_special_native_intrinsic() || 3611 method->has_native_function(), "must have something valid to call!"); 3612 3613 { 3614 // Perform the work while holding the lock, but perform any printing outside the lock 3615 MutexLocker mu(AdapterHandlerLibrary_lock); 3616 // See if somebody beat us to it 3617 if (method->code() != nullptr) { 3618 return; 3619 } 3620 3621 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3622 assert(compile_id > 0, "Must generate native wrapper"); 3623 3624 3625 ResourceMark rm; 3626 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3627 if (buf != nullptr) { 3628 CodeBuffer buffer(buf); 3629 3630 if (method->is_continuation_enter_intrinsic()) { 3631 buffer.initialize_stubs_size(192); 3632 } 3633 3634 struct { double data[20]; } locs_buf; 3635 struct { double data[20]; } stubs_locs_buf; 3636 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3637 #if defined(AARCH64) || defined(PPC64) 3638 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3639 // in the constant pool to ensure ordering between the barrier and oops 3640 // accesses. For native_wrappers we need a constant. 3641 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3642 // static java call that is resolved in the runtime. 3643 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3644 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3645 } 3646 #endif 3647 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3648 MacroAssembler _masm(&buffer); 3649 3650 // Fill in the signature array, for the calling-convention call. 3651 const int total_args_passed = method->size_of_parameters(); 3652 3653 BasicType stack_sig_bt[16]; 3654 VMRegPair stack_regs[16]; 3655 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3656 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3657 3658 int i = 0; 3659 if (!method->is_static()) { // Pass in receiver first 3660 sig_bt[i++] = T_OBJECT; 3661 } 3662 SignatureStream ss(method->signature()); 3663 for (; !ss.at_return_type(); ss.next()) { 3664 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3665 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3666 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3667 } 3668 } 3669 assert(i == total_args_passed, ""); 3670 BasicType ret_type = ss.type(); 3671 3672 // Now get the compiled-Java arguments layout. 3673 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3674 3675 // Generate the compiled-to-native wrapper code 3676 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3677 3678 if (nm != nullptr) { 3679 { 3680 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3681 if (nm->make_in_use()) { 3682 method->set_code(method, nm); 3683 } 3684 } 3685 3686 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3687 if (directive->PrintAssemblyOption) { 3688 nm->print_code(); 3689 } 3690 DirectivesStack::release(directive); 3691 } 3692 } 3693 } // Unlock AdapterHandlerLibrary_lock 3694 3695 3696 // Install the generated code. 3697 if (nm != nullptr) { 3698 const char *msg = method->is_static() ? "(static)" : ""; 3699 CompileTask::print_ul(nm, msg); 3700 if (PrintCompilation) { 3701 ttyLocker ttyl; 3702 CompileTask::print(tty, nm, msg); 3703 } 3704 nm->post_compiled_method_load_event(); 3705 } 3706 } 3707 3708 // ------------------------------------------------------------------------- 3709 // Java-Java calling convention 3710 // (what you use when Java calls Java) 3711 3712 //------------------------------name_for_receiver---------------------------------- 3713 // For a given signature, return the VMReg for parameter 0. 3714 VMReg SharedRuntime::name_for_receiver() { 3715 VMRegPair regs; 3716 BasicType sig_bt = T_OBJECT; 3717 (void) java_calling_convention(&sig_bt, ®s, 1); 3718 // Return argument 0 register. In the LP64 build pointers 3719 // take 2 registers, but the VM wants only the 'main' name. 3720 return regs.first(); 3721 } 3722 3723 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3724 // This method is returning a data structure allocating as a 3725 // ResourceObject, so do not put any ResourceMarks in here. 3726 3727 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3728 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3729 int cnt = 0; 3730 if (has_receiver) { 3731 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3732 } 3733 3734 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3735 BasicType type = ss.type(); 3736 sig_bt[cnt++] = type; 3737 if (is_double_word_type(type)) 3738 sig_bt[cnt++] = T_VOID; 3739 } 3740 3741 if (has_appendix) { 3742 sig_bt[cnt++] = T_OBJECT; 3743 } 3744 3745 assert(cnt < 256, "grow table size"); 3746 3747 int comp_args_on_stack; 3748 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3749 3750 // the calling convention doesn't count out_preserve_stack_slots so 3751 // we must add that in to get "true" stack offsets. 3752 3753 if (comp_args_on_stack) { 3754 for (int i = 0; i < cnt; i++) { 3755 VMReg reg1 = regs[i].first(); 3756 if (reg1->is_stack()) { 3757 // Yuck 3758 reg1 = reg1->bias(out_preserve_stack_slots()); 3759 } 3760 VMReg reg2 = regs[i].second(); 3761 if (reg2->is_stack()) { 3762 // Yuck 3763 reg2 = reg2->bias(out_preserve_stack_slots()); 3764 } 3765 regs[i].set_pair(reg2, reg1); 3766 } 3767 } 3768 3769 // results 3770 *arg_size = cnt; 3771 return regs; 3772 } 3773 3774 // OSR Migration Code 3775 // 3776 // This code is used convert interpreter frames into compiled frames. It is 3777 // called from very start of a compiled OSR nmethod. A temp array is 3778 // allocated to hold the interesting bits of the interpreter frame. All 3779 // active locks are inflated to allow them to move. The displaced headers and 3780 // active interpreter locals are copied into the temp buffer. Then we return 3781 // back to the compiled code. The compiled code then pops the current 3782 // interpreter frame off the stack and pushes a new compiled frame. Then it 3783 // copies the interpreter locals and displaced headers where it wants. 3784 // Finally it calls back to free the temp buffer. 3785 // 3786 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3787 3788 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3789 assert(current == JavaThread::current(), "pre-condition"); 3790 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3791 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3792 // frame. The stack watermark code below ensures that the interpreted frame is processed 3793 // before it gets unwound. This is helpful as the size of the compiled frame could be 3794 // larger than the interpreted frame, which could result in the new frame not being 3795 // processed correctly. 3796 StackWatermarkSet::before_unwind(current); 3797 3798 // 3799 // This code is dependent on the memory layout of the interpreter local 3800 // array and the monitors. On all of our platforms the layout is identical 3801 // so this code is shared. If some platform lays the their arrays out 3802 // differently then this code could move to platform specific code or 3803 // the code here could be modified to copy items one at a time using 3804 // frame accessor methods and be platform independent. 3805 3806 frame fr = current->last_frame(); 3807 assert(fr.is_interpreted_frame(), ""); 3808 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3809 3810 // Figure out how many monitors are active. 3811 int active_monitor_count = 0; 3812 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3813 kptr < fr.interpreter_frame_monitor_begin(); 3814 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3815 if (kptr->obj() != nullptr) active_monitor_count++; 3816 } 3817 3818 // QQQ we could place number of active monitors in the array so that compiled code 3819 // could double check it. 3820 3821 Method* moop = fr.interpreter_frame_method(); 3822 int max_locals = moop->max_locals(); 3823 // Allocate temp buffer, 1 word per local & 2 per active monitor 3824 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3825 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3826 3827 // Copy the locals. Order is preserved so that loading of longs works. 3828 // Since there's no GC I can copy the oops blindly. 3829 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3830 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3831 (HeapWord*)&buf[0], 3832 max_locals); 3833 3834 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3835 int i = max_locals; 3836 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3837 kptr2 < fr.interpreter_frame_monitor_begin(); 3838 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3839 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3840 BasicLock *lock = kptr2->lock(); 3841 if (LockingMode == LM_LEGACY) { 3842 // Inflate so the object's header no longer refers to the BasicLock. 3843 if (lock->displaced_header().is_unlocked()) { 3844 // The object is locked and the resulting ObjectMonitor* will also be 3845 // locked so it can't be async deflated until ownership is dropped. 3846 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3847 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3848 } 3849 // Now the displaced header is free to move because the 3850 // object's header no longer refers to it. 3851 buf[i] = (intptr_t)lock->displaced_header().value(); 3852 } else if (UseObjectMonitorTable) { 3853 buf[i] = (intptr_t)lock->object_monitor_cache(); 3854 } 3855 #ifdef ASSERT 3856 else { 3857 buf[i] = badDispHeaderOSR; 3858 } 3859 #endif 3860 i++; 3861 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3862 } 3863 } 3864 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3865 3866 RegisterMap map(current, 3867 RegisterMap::UpdateMap::skip, 3868 RegisterMap::ProcessFrames::include, 3869 RegisterMap::WalkContinuation::skip); 3870 frame sender = fr.sender(&map); 3871 if (sender.is_interpreted_frame()) { 3872 current->push_cont_fastpath(sender.sp()); 3873 } 3874 3875 return buf; 3876 JRT_END 3877 3878 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3879 FREE_C_HEAP_ARRAY(intptr_t, buf); 3880 JRT_END 3881 3882 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3883 bool found = false; 3884 #if INCLUDE_CDS 3885 if (AOTCodeCache::is_using_adapter()) { 3886 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3887 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3888 }; 3889 _aot_adapter_handler_table.iterate(findblob_archived_table); 3890 } 3891 #endif // INCLUDE_CDS 3892 if (!found) { 3893 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3894 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3895 }; 3896 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3897 _adapter_handler_table->iterate(findblob_runtime_table); 3898 } 3899 return found; 3900 } 3901 3902 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3903 return fingerprint->as_basic_args_string(); 3904 } 3905 3906 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3907 unsigned int hash = fingerprint->compute_hash(); 3908 return hash; 3909 } 3910 3911 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3912 bool found = false; 3913 #if INCLUDE_CDS 3914 if (AOTCodeCache::is_using_adapter()) { 3915 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3916 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3917 found = true; 3918 st->print("Adapter for signature: "); 3919 handler->print_adapter_on(st); 3920 return true; 3921 } else { 3922 return false; // keep looking 3923 } 3924 }; 3925 _aot_adapter_handler_table.iterate(findblob_archived_table); 3926 } 3927 #endif // INCLUDE_CDS 3928 if (!found) { 3929 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3930 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3931 found = true; 3932 st->print("Adapter for signature: "); 3933 a->print_adapter_on(st); 3934 return true; 3935 } else { 3936 return false; // keep looking 3937 } 3938 }; 3939 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3940 _adapter_handler_table->iterate(findblob_runtime_table); 3941 } 3942 assert(found, "Should have found handler"); 3943 } 3944 3945 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3946 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3947 if (get_i2c_entry() != nullptr) { 3948 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3949 } 3950 if (get_c2i_entry() != nullptr) { 3951 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3952 } 3953 if (get_c2i_entry() != nullptr) { 3954 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3955 } 3956 if (get_c2i_entry() != nullptr) { 3957 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3958 } 3959 if (get_c2i_unverified_entry() != nullptr) { 3960 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3961 } 3962 if (get_c2i_unverified_entry() != nullptr) { 3963 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3964 } 3965 if (get_c2i_no_clinit_check_entry() != nullptr) { 3966 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3967 } 3968 st->cr(); 3969 } 3970 3971 #ifndef PRODUCT 3972 3973 void AdapterHandlerLibrary::print_statistics() { 3974 print_table_statistics(); 3975 } 3976 3977 #endif /* PRODUCT */ 3978 3979 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3980 if (entry == _abstract_method_handler) { 3981 return true; 3982 } 3983 return false; 3984 } 3985 3986 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3987 assert(current == JavaThread::current(), "pre-condition"); 3988 StackOverflow* overflow_state = current->stack_overflow_state(); 3989 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3990 overflow_state->set_reserved_stack_activation(current->stack_base()); 3991 JRT_END 3992 3993 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3994 ResourceMark rm(current); 3995 frame activation; 3996 nmethod* nm = nullptr; 3997 int count = 1; 3998 3999 assert(fr.is_java_frame(), "Must start on Java frame"); 4000 4001 RegisterMap map(JavaThread::current(), 4002 RegisterMap::UpdateMap::skip, 4003 RegisterMap::ProcessFrames::skip, 4004 RegisterMap::WalkContinuation::skip); // don't walk continuations 4005 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 4006 if (!fr.is_java_frame()) { 4007 continue; 4008 } 4009 4010 Method* method = nullptr; 4011 bool found = false; 4012 if (fr.is_interpreted_frame()) { 4013 method = fr.interpreter_frame_method(); 4014 if (method != nullptr && method->has_reserved_stack_access()) { 4015 found = true; 4016 } 4017 } else { 4018 CodeBlob* cb = fr.cb(); 4019 if (cb != nullptr && cb->is_nmethod()) { 4020 nm = cb->as_nmethod(); 4021 method = nm->method(); 4022 // scope_desc_near() must be used, instead of scope_desc_at() because on 4023 // SPARC, the pcDesc can be on the delay slot after the call instruction. 4024 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 4025 method = sd->method(); 4026 if (method != nullptr && method->has_reserved_stack_access()) { 4027 found = true; 4028 } 4029 } 4030 } 4031 } 4032 if (found) { 4033 activation = fr; 4034 warning("Potentially dangerous stack overflow in " 4035 "ReservedStackAccess annotated method %s [%d]", 4036 method->name_and_sig_as_C_string(), count++); 4037 EventReservedStackActivation event; 4038 if (event.should_commit()) { 4039 event.set_method(method); 4040 event.commit(); 4041 } 4042 } 4043 } 4044 return activation; 4045 } 4046 4047 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 4048 // After any safepoint, just before going back to compiled code, 4049 // we inform the GC that we will be doing initializing writes to 4050 // this object in the future without emitting card-marks, so 4051 // GC may take any compensating steps. 4052 4053 oop new_obj = current->vm_result_oop(); 4054 if (new_obj == nullptr) return; 4055 4056 BarrierSet *bs = BarrierSet::barrier_set(); 4057 bs->on_slowpath_allocation_exit(current, new_obj); 4058 } 4059 4060 // We are at a compiled code to interpreter call. We need backing 4061 // buffers for all inline type arguments. Allocate an object array to 4062 // hold them (convenient because once we're done with it we don't have 4063 // to worry about freeing it). 4064 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 4065 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 4066 ResourceMark rm; 4067 4068 int nb_slots = 0; 4069 InstanceKlass* holder = callee->method_holder(); 4070 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 4071 if (allocate_receiver) { 4072 nb_slots++; 4073 } 4074 int arg_num = callee->is_static() ? 0 : 1; 4075 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4076 BasicType bt = ss.type(); 4077 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4078 nb_slots++; 4079 } 4080 if (bt != T_VOID) { 4081 arg_num++; 4082 } 4083 } 4084 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 4085 objArrayHandle array(THREAD, array_oop); 4086 arg_num = callee->is_static() ? 0 : 1; 4087 int i = 0; 4088 if (allocate_receiver) { 4089 InlineKlass* vk = InlineKlass::cast(holder); 4090 oop res = vk->allocate_instance(CHECK_NULL); 4091 array->obj_at_put(i++, res); 4092 } 4093 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4094 BasicType bt = ss.type(); 4095 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4096 InlineKlass* vk = ss.as_inline_klass(holder); 4097 assert(vk != nullptr, "Unexpected klass"); 4098 oop res = vk->allocate_instance(CHECK_NULL); 4099 array->obj_at_put(i++, res); 4100 } 4101 if (bt != T_VOID) { 4102 arg_num++; 4103 } 4104 } 4105 return array(); 4106 } 4107 4108 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 4109 methodHandle callee(current, callee_method); 4110 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 4111 current->set_vm_result_oop(array); 4112 current->set_vm_result_metadata(callee()); // TODO: required to keep callee live? 4113 JRT_END 4114 4115 // We're returning from an interpreted method: load each field into a 4116 // register following the calling convention 4117 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 4118 { 4119 assert(res->klass()->is_inline_klass(), "only inline types here"); 4120 ResourceMark rm; 4121 RegisterMap reg_map(current, 4122 RegisterMap::UpdateMap::include, 4123 RegisterMap::ProcessFrames::include, 4124 RegisterMap::WalkContinuation::skip); 4125 frame stubFrame = current->last_frame(); 4126 frame callerFrame = stubFrame.sender(®_map); 4127 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 4128 4129 InlineKlass* vk = InlineKlass::cast(res->klass()); 4130 4131 const Array<SigEntry>* sig_vk = vk->extended_sig(); 4132 const Array<VMRegPair>* regs = vk->return_regs(); 4133 4134 if (regs == nullptr) { 4135 // The fields of the inline klass don't fit in registers, bail out 4136 return; 4137 } 4138 4139 int j = 1; 4140 for (int i = 0; i < sig_vk->length(); i++) { 4141 BasicType bt = sig_vk->at(i)._bt; 4142 if (bt == T_METADATA) { 4143 continue; 4144 } 4145 if (bt == T_VOID) { 4146 if (sig_vk->at(i-1)._bt == T_LONG || 4147 sig_vk->at(i-1)._bt == T_DOUBLE) { 4148 j++; 4149 } 4150 continue; 4151 } 4152 int off = sig_vk->at(i)._offset; 4153 assert(off > 0, "offset in object should be positive"); 4154 VMRegPair pair = regs->at(j); 4155 address loc = reg_map.location(pair.first(), nullptr); 4156 switch(bt) { 4157 case T_BOOLEAN: 4158 *(jboolean*)loc = res->bool_field(off); 4159 break; 4160 case T_CHAR: 4161 *(jchar*)loc = res->char_field(off); 4162 break; 4163 case T_BYTE: 4164 *(jbyte*)loc = res->byte_field(off); 4165 break; 4166 case T_SHORT: 4167 *(jshort*)loc = res->short_field(off); 4168 break; 4169 case T_INT: { 4170 *(jint*)loc = res->int_field(off); 4171 break; 4172 } 4173 case T_LONG: 4174 #ifdef _LP64 4175 *(intptr_t*)loc = res->long_field(off); 4176 #else 4177 Unimplemented(); 4178 #endif 4179 break; 4180 case T_OBJECT: 4181 case T_ARRAY: { 4182 *(oop*)loc = res->obj_field(off); 4183 break; 4184 } 4185 case T_FLOAT: 4186 *(jfloat*)loc = res->float_field(off); 4187 break; 4188 case T_DOUBLE: 4189 *(jdouble*)loc = res->double_field(off); 4190 break; 4191 default: 4192 ShouldNotReachHere(); 4193 } 4194 j++; 4195 } 4196 assert(j == regs->length(), "missed a field?"); 4197 4198 #ifdef ASSERT 4199 VMRegPair pair = regs->at(0); 4200 address loc = reg_map.location(pair.first(), nullptr); 4201 assert(*(oopDesc**)loc == res, "overwritten object"); 4202 #endif 4203 4204 current->set_vm_result_oop(res); 4205 } 4206 JRT_END 4207 4208 // We've returned to an interpreted method, the interpreter needs a 4209 // reference to an inline type instance. Allocate it and initialize it 4210 // from field's values in registers. 4211 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 4212 { 4213 ResourceMark rm; 4214 RegisterMap reg_map(current, 4215 RegisterMap::UpdateMap::include, 4216 RegisterMap::ProcessFrames::include, 4217 RegisterMap::WalkContinuation::skip); 4218 frame stubFrame = current->last_frame(); 4219 frame callerFrame = stubFrame.sender(®_map); 4220 4221 #ifdef ASSERT 4222 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 4223 #endif 4224 4225 if (!is_set_nth_bit(res, 0)) { 4226 // We're not returning with inline type fields in registers (the 4227 // calling convention didn't allow it for this inline klass) 4228 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 4229 current->set_vm_result_oop((oopDesc*)res); 4230 assert(verif_vk == nullptr, "broken calling convention"); 4231 return; 4232 } 4233 4234 clear_nth_bit(res, 0); 4235 InlineKlass* vk = (InlineKlass*)res; 4236 assert(verif_vk == vk, "broken calling convention"); 4237 assert(Metaspace::contains((void*)res), "should be klass"); 4238 4239 // Allocate handles for every oop field so they are safe in case of 4240 // a safepoint when allocating 4241 GrowableArray<Handle> handles; 4242 vk->save_oop_fields(reg_map, handles); 4243 4244 // It's unsafe to safepoint until we are here 4245 JRT_BLOCK; 4246 { 4247 JavaThread* THREAD = current; 4248 oop vt = vk->realloc_result(reg_map, handles, CHECK); 4249 current->set_vm_result_oop(vt); 4250 } 4251 JRT_BLOCK_END; 4252 } 4253 JRT_END