1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/access.hpp" 51 #include "oops/fieldStreams.inline.hpp" 52 #include "metaprogramming/primitiveConversions.hpp" 53 #include "oops/klass.hpp" 54 #include "oops/method.inline.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "oops/inlineKlass.inline.hpp" 59 #include "prims/forte.hpp" 60 #include "prims/jvmtiExport.hpp" 61 #include "prims/jvmtiThreadState.hpp" 62 #include "prims/methodHandles.hpp" 63 #include "prims/nativeLookup.hpp" 64 #include "runtime/arguments.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/basicLock.inline.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/init.hpp" 70 #include "runtime/interfaceSupport.inline.hpp" 71 #include "runtime/java.hpp" 72 #include "runtime/javaCalls.hpp" 73 #include "runtime/jniHandles.inline.hpp" 74 #include "runtime/perfData.hpp" 75 #include "runtime/sharedRuntime.hpp" 76 #include "runtime/stackWatermarkSet.hpp" 77 #include "runtime/stubRoutines.hpp" 78 #include "runtime/synchronizer.inline.hpp" 79 #include "runtime/timerTrace.hpp" 80 #include "runtime/vframe.inline.hpp" 81 #include "runtime/vframeArray.hpp" 82 #include "runtime/vm_version.hpp" 83 #include "utilities/copy.hpp" 84 #include "utilities/dtrace.hpp" 85 #include "utilities/events.hpp" 86 #include "utilities/globalDefinitions.hpp" 87 #include "utilities/resourceHash.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/xmlstream.hpp" 90 #ifdef COMPILER1 91 #include "c1/c1_Runtime1.hpp" 92 #endif 93 #if INCLUDE_JFR 94 #include "jfr/jfr.hpp" 95 #endif 96 97 // Shared runtime stub routines reside in their own unique blob with a 98 // single entry point 99 100 101 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 102 type SharedRuntime::BLOB_FIELD_NAME(name); 103 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 104 #undef SHARED_STUB_FIELD_DEFINE 105 106 nmethod* SharedRuntime::_cont_doYield_stub; 107 108 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 109 const char *SharedRuntime::_stub_names[] = { 110 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 111 }; 112 113 //----------------------------generate_stubs----------------------------------- 114 void SharedRuntime::generate_initial_stubs() { 115 // Build this early so it's available for the interpreter. 116 _throw_StackOverflowError_blob = 117 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 118 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 119 } 120 121 void SharedRuntime::generate_stubs() { 122 _wrong_method_blob = 123 generate_resolve_blob(SharedStubId::wrong_method_id, 124 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 125 _wrong_method_abstract_blob = 126 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 128 _ic_miss_blob = 129 generate_resolve_blob(SharedStubId::ic_miss_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 131 _resolve_opt_virtual_call_blob = 132 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 134 _resolve_virtual_call_blob = 135 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 136 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 137 _resolve_static_call_blob = 138 generate_resolve_blob(SharedStubId::resolve_static_call_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 140 141 _throw_delayed_StackOverflowError_blob = 142 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 144 145 _throw_AbstractMethodError_blob = 146 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 148 149 _throw_IncompatibleClassChangeError_blob = 150 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 152 153 _throw_NullPointerException_at_call_blob = 154 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 155 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 156 157 AdapterHandlerLibrary::initialize(); 158 159 #if COMPILER2_OR_JVMCI 160 // Vectors are generated only by C2 and JVMCI. 161 bool support_wide = is_wide_vector(MaxVectorSize); 162 if (support_wide) { 163 _polling_page_vectors_safepoint_handler_blob = 164 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 165 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 166 } 167 #endif // COMPILER2_OR_JVMCI 168 _polling_page_safepoint_handler_blob = 169 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 171 _polling_page_return_handler_blob = 172 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 173 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 174 175 generate_deopt_blob(); 176 } 177 178 #if INCLUDE_JFR 179 //------------------------------generate jfr runtime stubs ------ 180 void SharedRuntime::generate_jfr_stubs() { 181 ResourceMark rm; 182 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 183 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 184 185 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 186 _jfr_return_lease_blob = generate_jfr_return_lease(); 187 } 188 189 #endif // INCLUDE_JFR 190 191 #include <math.h> 192 193 // Implementation of SharedRuntime 194 195 #ifndef PRODUCT 196 // For statistics 197 uint SharedRuntime::_ic_miss_ctr = 0; 198 uint SharedRuntime::_wrong_method_ctr = 0; 199 uint SharedRuntime::_resolve_static_ctr = 0; 200 uint SharedRuntime::_resolve_virtual_ctr = 0; 201 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 202 uint SharedRuntime::_implicit_null_throws = 0; 203 uint SharedRuntime::_implicit_div0_throws = 0; 204 205 int64_t SharedRuntime::_nof_normal_calls = 0; 206 int64_t SharedRuntime::_nof_inlined_calls = 0; 207 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 208 int64_t SharedRuntime::_nof_static_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 210 int64_t SharedRuntime::_nof_interface_calls = 0; 211 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 212 213 uint SharedRuntime::_new_instance_ctr=0; 214 uint SharedRuntime::_new_array_ctr=0; 215 uint SharedRuntime::_multi2_ctr=0; 216 uint SharedRuntime::_multi3_ctr=0; 217 uint SharedRuntime::_multi4_ctr=0; 218 uint SharedRuntime::_multi5_ctr=0; 219 uint SharedRuntime::_mon_enter_stub_ctr=0; 220 uint SharedRuntime::_mon_exit_stub_ctr=0; 221 uint SharedRuntime::_mon_enter_ctr=0; 222 uint SharedRuntime::_mon_exit_ctr=0; 223 uint SharedRuntime::_partial_subtype_ctr=0; 224 uint SharedRuntime::_jbyte_array_copy_ctr=0; 225 uint SharedRuntime::_jshort_array_copy_ctr=0; 226 uint SharedRuntime::_jint_array_copy_ctr=0; 227 uint SharedRuntime::_jlong_array_copy_ctr=0; 228 uint SharedRuntime::_oop_array_copy_ctr=0; 229 uint SharedRuntime::_checkcast_array_copy_ctr=0; 230 uint SharedRuntime::_unsafe_array_copy_ctr=0; 231 uint SharedRuntime::_generic_array_copy_ctr=0; 232 uint SharedRuntime::_slow_array_copy_ctr=0; 233 uint SharedRuntime::_find_handler_ctr=0; 234 uint SharedRuntime::_rethrow_ctr=0; 235 uint SharedRuntime::_unsafe_set_memory_ctr=0; 236 237 int SharedRuntime::_ICmiss_index = 0; 238 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 239 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 240 241 242 void SharedRuntime::trace_ic_miss(address at) { 243 for (int i = 0; i < _ICmiss_index; i++) { 244 if (_ICmiss_at[i] == at) { 245 _ICmiss_count[i]++; 246 return; 247 } 248 } 249 int index = _ICmiss_index++; 250 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 251 _ICmiss_at[index] = at; 252 _ICmiss_count[index] = 1; 253 } 254 255 void SharedRuntime::print_ic_miss_histogram() { 256 if (ICMissHistogram) { 257 tty->print_cr("IC Miss Histogram:"); 258 int tot_misses = 0; 259 for (int i = 0; i < _ICmiss_index; i++) { 260 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 261 tot_misses += _ICmiss_count[i]; 262 } 263 tty->print_cr("Total IC misses: %7d", tot_misses); 264 } 265 } 266 #endif // PRODUCT 267 268 269 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 270 return x * y; 271 JRT_END 272 273 274 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 275 if (x == min_jlong && y == CONST64(-1)) { 276 return x; 277 } else { 278 return x / y; 279 } 280 JRT_END 281 282 283 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 284 if (x == min_jlong && y == CONST64(-1)) { 285 return 0; 286 } else { 287 return x % y; 288 } 289 JRT_END 290 291 292 #ifdef _WIN64 293 const juint float_sign_mask = 0x7FFFFFFF; 294 const juint float_infinity = 0x7F800000; 295 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 296 const julong double_infinity = CONST64(0x7FF0000000000000); 297 #endif 298 299 #if !defined(X86) 300 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 301 #ifdef _WIN64 302 // 64-bit Windows on amd64 returns the wrong values for 303 // infinity operands. 304 juint xbits = PrimitiveConversions::cast<juint>(x); 305 juint ybits = PrimitiveConversions::cast<juint>(y); 306 // x Mod Infinity == x unless x is infinity 307 if (((xbits & float_sign_mask) != float_infinity) && 308 ((ybits & float_sign_mask) == float_infinity) ) { 309 return x; 310 } 311 return ((jfloat)fmod_winx64((double)x, (double)y)); 312 #else 313 return ((jfloat)fmod((double)x,(double)y)); 314 #endif 315 JRT_END 316 317 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 318 #ifdef _WIN64 319 julong xbits = PrimitiveConversions::cast<julong>(x); 320 julong ybits = PrimitiveConversions::cast<julong>(y); 321 // x Mod Infinity == x unless x is infinity 322 if (((xbits & double_sign_mask) != double_infinity) && 323 ((ybits & double_sign_mask) == double_infinity) ) { 324 return x; 325 } 326 return ((jdouble)fmod_winx64((double)x, (double)y)); 327 #else 328 return ((jdouble)fmod((double)x,(double)y)); 329 #endif 330 JRT_END 331 #endif // !X86 332 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 334 return (jfloat)x; 335 JRT_END 336 337 #ifdef __SOFTFP__ 338 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 339 return x + y; 340 JRT_END 341 342 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 343 return x - y; 344 JRT_END 345 346 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 347 return x * y; 348 JRT_END 349 350 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 351 return x / y; 352 JRT_END 353 354 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 355 return x + y; 356 JRT_END 357 358 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 359 return x - y; 360 JRT_END 361 362 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 363 return x * y; 364 JRT_END 365 366 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 367 return x / y; 368 JRT_END 369 370 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 371 return (jdouble)x; 372 JRT_END 373 374 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 375 return (jdouble)x; 376 JRT_END 377 378 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 379 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 380 JRT_END 381 382 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 383 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 384 JRT_END 385 386 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 387 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 388 JRT_END 389 390 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 391 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 392 JRT_END 393 394 // Functions to return the opposite of the aeabi functions for nan. 395 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 396 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 397 JRT_END 398 399 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 400 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 401 JRT_END 402 403 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 404 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 405 JRT_END 406 407 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 408 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 409 JRT_END 410 411 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 412 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 413 JRT_END 414 415 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 416 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 417 JRT_END 418 419 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 420 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 421 JRT_END 422 423 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 424 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 425 JRT_END 426 427 // Intrinsics make gcc generate code for these. 428 float SharedRuntime::fneg(float f) { 429 return -f; 430 } 431 432 double SharedRuntime::dneg(double f) { 433 return -f; 434 } 435 436 #endif // __SOFTFP__ 437 438 #if defined(__SOFTFP__) || defined(E500V2) 439 // Intrinsics make gcc generate code for these. 440 double SharedRuntime::dabs(double f) { 441 return (f <= (double)0.0) ? (double)0.0 - f : f; 442 } 443 444 #endif 445 446 #if defined(__SOFTFP__) || defined(PPC) 447 double SharedRuntime::dsqrt(double f) { 448 return sqrt(f); 449 } 450 #endif 451 452 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 453 if (g_isnan(x)) 454 return 0; 455 if (x >= (jfloat) max_jint) 456 return max_jint; 457 if (x <= (jfloat) min_jint) 458 return min_jint; 459 return (jint) x; 460 JRT_END 461 462 463 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 464 if (g_isnan(x)) 465 return 0; 466 if (x >= (jfloat) max_jlong) 467 return max_jlong; 468 if (x <= (jfloat) min_jlong) 469 return min_jlong; 470 return (jlong) x; 471 JRT_END 472 473 474 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 475 if (g_isnan(x)) 476 return 0; 477 if (x >= (jdouble) max_jint) 478 return max_jint; 479 if (x <= (jdouble) min_jint) 480 return min_jint; 481 return (jint) x; 482 JRT_END 483 484 485 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 486 if (g_isnan(x)) 487 return 0; 488 if (x >= (jdouble) max_jlong) 489 return max_jlong; 490 if (x <= (jdouble) min_jlong) 491 return min_jlong; 492 return (jlong) x; 493 JRT_END 494 495 496 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 497 return (jfloat)x; 498 JRT_END 499 500 501 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 502 return (jfloat)x; 503 JRT_END 504 505 506 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 507 return (jdouble)x; 508 JRT_END 509 510 511 // Exception handling across interpreter/compiler boundaries 512 // 513 // exception_handler_for_return_address(...) returns the continuation address. 514 // The continuation address is the entry point of the exception handler of the 515 // previous frame depending on the return address. 516 517 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 518 // Note: This is called when we have unwound the frame of the callee that did 519 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 520 // Notably, the stack is not walkable at this point, and hence the check must 521 // be deferred until later. Specifically, any of the handlers returned here in 522 // this function, will get dispatched to, and call deferred checks to 523 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 524 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 525 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 526 527 // Reset method handle flag. 528 current->set_is_method_handle_return(false); 529 530 #if INCLUDE_JVMCI 531 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 532 // and other exception handler continuations do not read it 533 current->set_exception_pc(nullptr); 534 #endif // INCLUDE_JVMCI 535 536 if (Continuation::is_return_barrier_entry(return_address)) { 537 return StubRoutines::cont_returnBarrierExc(); 538 } 539 540 // The fastest case first 541 CodeBlob* blob = CodeCache::find_blob(return_address); 542 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 543 if (nm != nullptr) { 544 // Set flag if return address is a method handle call site. 545 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 546 // native nmethods don't have exception handlers 547 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 548 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 549 if (nm->is_deopt_pc(return_address)) { 550 // If we come here because of a stack overflow, the stack may be 551 // unguarded. Reguard the stack otherwise if we return to the 552 // deopt blob and the stack bang causes a stack overflow we 553 // crash. 554 StackOverflow* overflow_state = current->stack_overflow_state(); 555 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 556 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 557 overflow_state->set_reserved_stack_activation(current->stack_base()); 558 } 559 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 560 // The deferred StackWatermarkSet::after_unwind check will be performed in 561 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 562 return SharedRuntime::deopt_blob()->unpack_with_exception(); 563 } else { 564 // The deferred StackWatermarkSet::after_unwind check will be performed in 565 // * OptoRuntime::handle_exception_C_helper for C2 code 566 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 567 return nm->exception_begin(); 568 } 569 } 570 571 // Entry code 572 if (StubRoutines::returns_to_call_stub(return_address)) { 573 // The deferred StackWatermarkSet::after_unwind check will be performed in 574 // JavaCallWrapper::~JavaCallWrapper 575 return StubRoutines::catch_exception_entry(); 576 } 577 if (blob != nullptr && blob->is_upcall_stub()) { 578 return StubRoutines::upcall_stub_exception_handler(); 579 } 580 // Interpreted code 581 if (Interpreter::contains(return_address)) { 582 // The deferred StackWatermarkSet::after_unwind check will be performed in 583 // InterpreterRuntime::exception_handler_for_exception 584 return Interpreter::rethrow_exception_entry(); 585 } 586 587 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 588 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 589 590 #ifndef PRODUCT 591 { ResourceMark rm; 592 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 593 os::print_location(tty, (intptr_t)return_address); 594 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 595 tty->print_cr("b) other problem"); 596 } 597 #endif // PRODUCT 598 ShouldNotReachHere(); 599 return nullptr; 600 } 601 602 603 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 604 return raw_exception_handler_for_return_address(current, return_address); 605 JRT_END 606 607 608 address SharedRuntime::get_poll_stub(address pc) { 609 address stub; 610 // Look up the code blob 611 CodeBlob *cb = CodeCache::find_blob(pc); 612 613 // Should be an nmethod 614 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 615 616 // Look up the relocation information 617 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 618 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 619 620 #ifdef ASSERT 621 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 622 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 623 Disassembler::decode(cb); 624 fatal("Only polling locations are used for safepoint"); 625 } 626 #endif 627 628 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 629 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 630 if (at_poll_return) { 631 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 632 "polling page return stub not created yet"); 633 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 634 } else if (has_wide_vectors) { 635 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 636 "polling page vectors safepoint stub not created yet"); 637 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 638 } else { 639 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 640 "polling page safepoint stub not created yet"); 641 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 642 } 643 log_debug(safepoint)("... found polling page %s exception at pc = " 644 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 645 at_poll_return ? "return" : "loop", 646 (intptr_t)pc, (intptr_t)stub); 647 return stub; 648 } 649 650 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 651 if (JvmtiExport::can_post_on_exceptions()) { 652 vframeStream vfst(current, true); 653 methodHandle method = methodHandle(current, vfst.method()); 654 address bcp = method()->bcp_from(vfst.bci()); 655 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 656 } 657 658 #if INCLUDE_JVMCI 659 if (EnableJVMCI) { 660 vframeStream vfst(current, true); 661 methodHandle method = methodHandle(current, vfst.method()); 662 int bci = vfst.bci(); 663 MethodData* trap_mdo = method->method_data(); 664 if (trap_mdo != nullptr) { 665 // Set exception_seen if the exceptional bytecode is an invoke 666 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 667 if (call.is_valid()) { 668 ResourceMark rm(current); 669 670 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 671 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 672 673 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 674 if (pdata != nullptr && pdata->is_BitData()) { 675 BitData* bit_data = (BitData*) pdata; 676 bit_data->set_exception_seen(); 677 } 678 } 679 } 680 } 681 #endif 682 683 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 684 } 685 686 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 687 Handle h_exception = Exceptions::new_exception(current, name, message); 688 throw_and_post_jvmti_exception(current, h_exception); 689 } 690 691 #if INCLUDE_JVMTI 692 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 693 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 694 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 695 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 696 JNIHandles::destroy_local(vthread); 697 JRT_END 698 699 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 700 assert(hide == JNI_TRUE, "must be VTMS transition start"); 701 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 702 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 703 JNIHandles::destroy_local(vthread); 704 JRT_END 705 706 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 707 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 708 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 709 JNIHandles::destroy_local(vthread); 710 JRT_END 711 712 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 713 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 714 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 715 JNIHandles::destroy_local(vthread); 716 JRT_END 717 #endif // INCLUDE_JVMTI 718 719 // The interpreter code to call this tracing function is only 720 // called/generated when UL is on for redefine, class and has the right level 721 // and tags. Since obsolete methods are never compiled, we don't have 722 // to modify the compilers to generate calls to this function. 723 // 724 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 725 JavaThread* thread, Method* method)) 726 if (method->is_obsolete()) { 727 // We are calling an obsolete method, but this is not necessarily 728 // an error. Our method could have been redefined just after we 729 // fetched the Method* from the constant pool. 730 ResourceMark rm; 731 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 732 } 733 return 0; 734 JRT_END 735 736 // ret_pc points into caller; we are returning caller's exception handler 737 // for given exception 738 // Note that the implementation of this method assumes it's only called when an exception has actually occured 739 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 740 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 741 assert(nm != nullptr, "must exist"); 742 ResourceMark rm; 743 744 #if INCLUDE_JVMCI 745 if (nm->is_compiled_by_jvmci()) { 746 // lookup exception handler for this pc 747 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 748 ExceptionHandlerTable table(nm); 749 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 750 if (t != nullptr) { 751 return nm->code_begin() + t->pco(); 752 } else { 753 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 754 } 755 } 756 #endif // INCLUDE_JVMCI 757 758 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 759 // determine handler bci, if any 760 EXCEPTION_MARK; 761 762 int handler_bci = -1; 763 int scope_depth = 0; 764 if (!force_unwind) { 765 int bci = sd->bci(); 766 bool recursive_exception = false; 767 do { 768 bool skip_scope_increment = false; 769 // exception handler lookup 770 Klass* ek = exception->klass(); 771 methodHandle mh(THREAD, sd->method()); 772 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 773 if (HAS_PENDING_EXCEPTION) { 774 recursive_exception = true; 775 // We threw an exception while trying to find the exception handler. 776 // Transfer the new exception to the exception handle which will 777 // be set into thread local storage, and do another lookup for an 778 // exception handler for this exception, this time starting at the 779 // BCI of the exception handler which caused the exception to be 780 // thrown (bugs 4307310 and 4546590). Set "exception" reference 781 // argument to ensure that the correct exception is thrown (4870175). 782 recursive_exception_occurred = true; 783 exception = Handle(THREAD, PENDING_EXCEPTION); 784 CLEAR_PENDING_EXCEPTION; 785 if (handler_bci >= 0) { 786 bci = handler_bci; 787 handler_bci = -1; 788 skip_scope_increment = true; 789 } 790 } 791 else { 792 recursive_exception = false; 793 } 794 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 795 sd = sd->sender(); 796 if (sd != nullptr) { 797 bci = sd->bci(); 798 } 799 ++scope_depth; 800 } 801 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 802 } 803 804 // found handling method => lookup exception handler 805 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 806 807 ExceptionHandlerTable table(nm); 808 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 809 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 810 // Allow abbreviated catch tables. The idea is to allow a method 811 // to materialize its exceptions without committing to the exact 812 // routing of exceptions. In particular this is needed for adding 813 // a synthetic handler to unlock monitors when inlining 814 // synchronized methods since the unlock path isn't represented in 815 // the bytecodes. 816 t = table.entry_for(catch_pco, -1, 0); 817 } 818 819 #ifdef COMPILER1 820 if (t == nullptr && nm->is_compiled_by_c1()) { 821 assert(nm->unwind_handler_begin() != nullptr, ""); 822 return nm->unwind_handler_begin(); 823 } 824 #endif 825 826 if (t == nullptr) { 827 ttyLocker ttyl; 828 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 829 tty->print_cr(" Exception:"); 830 exception->print(); 831 tty->cr(); 832 tty->print_cr(" Compiled exception table :"); 833 table.print(); 834 nm->print(); 835 nm->print_code(); 836 guarantee(false, "missing exception handler"); 837 return nullptr; 838 } 839 840 if (handler_bci != -1) { // did we find a handler in this method? 841 sd->method()->set_exception_handler_entered(handler_bci); // profile 842 } 843 return nm->code_begin() + t->pco(); 844 } 845 846 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 847 // These errors occur only at call sites 848 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 849 JRT_END 850 851 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 852 // These errors occur only at call sites 853 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 854 JRT_END 855 856 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 857 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 858 JRT_END 859 860 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 861 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 862 JRT_END 863 864 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 865 // This entry point is effectively only used for NullPointerExceptions which occur at inline 866 // cache sites (when the callee activation is not yet set up) so we are at a call site 867 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 868 JRT_END 869 870 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 871 throw_StackOverflowError_common(current, false); 872 JRT_END 873 874 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 875 throw_StackOverflowError_common(current, true); 876 JRT_END 877 878 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 879 // We avoid using the normal exception construction in this case because 880 // it performs an upcall to Java, and we're already out of stack space. 881 JavaThread* THREAD = current; // For exception macros. 882 Klass* k = vmClasses::StackOverflowError_klass(); 883 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 884 if (delayed) { 885 java_lang_Throwable::set_message(exception_oop, 886 Universe::delayed_stack_overflow_error_message()); 887 } 888 Handle exception (current, exception_oop); 889 if (StackTraceInThrowable) { 890 java_lang_Throwable::fill_in_stack_trace(exception); 891 } 892 // Remove the ScopedValue bindings in case we got a 893 // StackOverflowError while we were trying to remove ScopedValue 894 // bindings. 895 current->clear_scopedValueBindings(); 896 // Increment counter for hs_err file reporting 897 Atomic::inc(&Exceptions::_stack_overflow_errors); 898 throw_and_post_jvmti_exception(current, exception); 899 } 900 901 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 902 address pc, 903 ImplicitExceptionKind exception_kind) 904 { 905 address target_pc = nullptr; 906 907 if (Interpreter::contains(pc)) { 908 switch (exception_kind) { 909 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 910 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 911 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 912 default: ShouldNotReachHere(); 913 } 914 } else { 915 switch (exception_kind) { 916 case STACK_OVERFLOW: { 917 // Stack overflow only occurs upon frame setup; the callee is 918 // going to be unwound. Dispatch to a shared runtime stub 919 // which will cause the StackOverflowError to be fabricated 920 // and processed. 921 // Stack overflow should never occur during deoptimization: 922 // the compiled method bangs the stack by as much as the 923 // interpreter would need in case of a deoptimization. The 924 // deoptimization blob and uncommon trap blob bang the stack 925 // in a debug VM to verify the correctness of the compiled 926 // method stack banging. 927 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 928 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 929 return SharedRuntime::throw_StackOverflowError_entry(); 930 } 931 932 case IMPLICIT_NULL: { 933 if (VtableStubs::contains(pc)) { 934 // We haven't yet entered the callee frame. Fabricate an 935 // exception and begin dispatching it in the caller. Since 936 // the caller was at a call site, it's safe to destroy all 937 // caller-saved registers, as these entry points do. 938 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 939 940 // If vt_stub is null, then return null to signal handler to report the SEGV error. 941 if (vt_stub == nullptr) return nullptr; 942 943 if (vt_stub->is_abstract_method_error(pc)) { 944 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 945 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 946 // Instead of throwing the abstract method error here directly, we re-resolve 947 // and will throw the AbstractMethodError during resolve. As a result, we'll 948 // get a more detailed error message. 949 return SharedRuntime::get_handle_wrong_method_stub(); 950 } else { 951 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 952 // Assert that the signal comes from the expected location in stub code. 953 assert(vt_stub->is_null_pointer_exception(pc), 954 "obtained signal from unexpected location in stub code"); 955 return SharedRuntime::throw_NullPointerException_at_call_entry(); 956 } 957 } else { 958 CodeBlob* cb = CodeCache::find_blob(pc); 959 960 // If code blob is null, then return null to signal handler to report the SEGV error. 961 if (cb == nullptr) return nullptr; 962 963 // Exception happened in CodeCache. Must be either: 964 // 1. Inline-cache check in C2I handler blob, 965 // 2. Inline-cache check in nmethod, or 966 // 3. Implicit null exception in nmethod 967 968 if (!cb->is_nmethod()) { 969 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 970 if (!is_in_blob) { 971 // Allow normal crash reporting to handle this 972 return nullptr; 973 } 974 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 975 // There is no handler here, so we will simply unwind. 976 return SharedRuntime::throw_NullPointerException_at_call_entry(); 977 } 978 979 // Otherwise, it's a compiled method. Consult its exception handlers. 980 nmethod* nm = cb->as_nmethod(); 981 if (nm->inlinecache_check_contains(pc)) { 982 // exception happened inside inline-cache check code 983 // => the nmethod is not yet active (i.e., the frame 984 // is not set up yet) => use return address pushed by 985 // caller => don't push another return address 986 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 987 return SharedRuntime::throw_NullPointerException_at_call_entry(); 988 } 989 990 if (nm->method()->is_method_handle_intrinsic()) { 991 // exception happened inside MH dispatch code, similar to a vtable stub 992 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 993 return SharedRuntime::throw_NullPointerException_at_call_entry(); 994 } 995 996 #ifndef PRODUCT 997 _implicit_null_throws++; 998 #endif 999 target_pc = nm->continuation_for_implicit_null_exception(pc); 1000 // If there's an unexpected fault, target_pc might be null, 1001 // in which case we want to fall through into the normal 1002 // error handling code. 1003 } 1004 1005 break; // fall through 1006 } 1007 1008 1009 case IMPLICIT_DIVIDE_BY_ZERO: { 1010 nmethod* nm = CodeCache::find_nmethod(pc); 1011 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1012 #ifndef PRODUCT 1013 _implicit_div0_throws++; 1014 #endif 1015 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1016 // If there's an unexpected fault, target_pc might be null, 1017 // in which case we want to fall through into the normal 1018 // error handling code. 1019 break; // fall through 1020 } 1021 1022 default: ShouldNotReachHere(); 1023 } 1024 1025 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1026 1027 if (exception_kind == IMPLICIT_NULL) { 1028 #ifndef PRODUCT 1029 // for AbortVMOnException flag 1030 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1031 #endif //PRODUCT 1032 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1033 } else { 1034 #ifndef PRODUCT 1035 // for AbortVMOnException flag 1036 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1037 #endif //PRODUCT 1038 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1039 } 1040 return target_pc; 1041 } 1042 1043 ShouldNotReachHere(); 1044 return nullptr; 1045 } 1046 1047 1048 /** 1049 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1050 * installed in the native function entry of all native Java methods before 1051 * they get linked to their actual native methods. 1052 * 1053 * \note 1054 * This method actually never gets called! The reason is because 1055 * the interpreter's native entries call NativeLookup::lookup() which 1056 * throws the exception when the lookup fails. The exception is then 1057 * caught and forwarded on the return from NativeLookup::lookup() call 1058 * before the call to the native function. This might change in the future. 1059 */ 1060 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1061 { 1062 // We return a bad value here to make sure that the exception is 1063 // forwarded before we look at the return value. 1064 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1065 } 1066 JNI_END 1067 1068 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1069 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1070 } 1071 1072 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1073 #if INCLUDE_JVMCI 1074 if (!obj->klass()->has_finalizer()) { 1075 return; 1076 } 1077 #endif // INCLUDE_JVMCI 1078 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1079 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1080 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1081 JRT_END 1082 1083 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1084 assert(thread != nullptr, "No thread"); 1085 if (thread == nullptr) { 1086 return 0; 1087 } 1088 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1089 "current cannot touch oops after its GC barrier is detached."); 1090 oop obj = thread->threadObj(); 1091 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1092 } 1093 1094 /** 1095 * This function ought to be a void function, but cannot be because 1096 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1097 * 6254741. Once that is fixed we can remove the dummy return value. 1098 */ 1099 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1100 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1101 } 1102 1103 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1104 return dtrace_object_alloc(thread, o, o->size()); 1105 } 1106 1107 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1108 assert(DTraceAllocProbes, "wrong call"); 1109 Klass* klass = o->klass(); 1110 Symbol* name = klass->name(); 1111 HOTSPOT_OBJECT_ALLOC( 1112 get_java_tid(thread), 1113 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1114 return 0; 1115 } 1116 1117 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1118 JavaThread* current, Method* method)) 1119 assert(current == JavaThread::current(), "pre-condition"); 1120 1121 assert(DTraceMethodProbes, "wrong call"); 1122 Symbol* kname = method->klass_name(); 1123 Symbol* name = method->name(); 1124 Symbol* sig = method->signature(); 1125 HOTSPOT_METHOD_ENTRY( 1126 get_java_tid(current), 1127 (char *) kname->bytes(), kname->utf8_length(), 1128 (char *) name->bytes(), name->utf8_length(), 1129 (char *) sig->bytes(), sig->utf8_length()); 1130 return 0; 1131 JRT_END 1132 1133 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1134 JavaThread* current, Method* method)) 1135 assert(current == JavaThread::current(), "pre-condition"); 1136 assert(DTraceMethodProbes, "wrong call"); 1137 Symbol* kname = method->klass_name(); 1138 Symbol* name = method->name(); 1139 Symbol* sig = method->signature(); 1140 HOTSPOT_METHOD_RETURN( 1141 get_java_tid(current), 1142 (char *) kname->bytes(), kname->utf8_length(), 1143 (char *) name->bytes(), name->utf8_length(), 1144 (char *) sig->bytes(), sig->utf8_length()); 1145 return 0; 1146 JRT_END 1147 1148 1149 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1150 // for a call current in progress, i.e., arguments has been pushed on stack 1151 // put callee has not been invoked yet. Used by: resolve virtual/static, 1152 // vtable updates, etc. Caller frame must be compiled. 1153 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1154 JavaThread* current = THREAD; 1155 ResourceMark rm(current); 1156 1157 // last java frame on stack (which includes native call frames) 1158 vframeStream vfst(current, true); // Do not skip and javaCalls 1159 1160 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1161 } 1162 1163 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1164 nmethod* caller = vfst.nm(); 1165 1166 address pc = vfst.frame_pc(); 1167 { // Get call instruction under lock because another thread may be busy patching it. 1168 CompiledICLocker ic_locker(caller); 1169 return caller->attached_method_before_pc(pc); 1170 } 1171 return nullptr; 1172 } 1173 1174 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1175 // for a call current in progress, i.e., arguments has been pushed on stack 1176 // but callee has not been invoked yet. Caller frame must be compiled. 1177 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1178 CallInfo& callinfo, TRAPS) { 1179 Handle receiver; 1180 Handle nullHandle; // create a handy null handle for exception returns 1181 JavaThread* current = THREAD; 1182 1183 assert(!vfst.at_end(), "Java frame must exist"); 1184 1185 // Find caller and bci from vframe 1186 methodHandle caller(current, vfst.method()); 1187 int bci = vfst.bci(); 1188 1189 if (caller->is_continuation_enter_intrinsic()) { 1190 bc = Bytecodes::_invokestatic; 1191 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1192 return receiver; 1193 } 1194 1195 // Substitutability test implementation piggy backs on static call resolution 1196 Bytecodes::Code code = caller->java_code_at(bci); 1197 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1198 bc = Bytecodes::_invokestatic; 1199 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1200 assert(attached_method.not_null(), "must have attached method"); 1201 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1202 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1203 #ifdef ASSERT 1204 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1205 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1206 #endif 1207 return receiver; 1208 } 1209 1210 Bytecode_invoke bytecode(caller, bci); 1211 int bytecode_index = bytecode.index(); 1212 bc = bytecode.invoke_code(); 1213 1214 methodHandle attached_method(current, extract_attached_method(vfst)); 1215 if (attached_method.not_null()) { 1216 Method* callee = bytecode.static_target(CHECK_NH); 1217 vmIntrinsics::ID id = callee->intrinsic_id(); 1218 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1219 // it attaches statically resolved method to the call site. 1220 if (MethodHandles::is_signature_polymorphic(id) && 1221 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1222 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1223 1224 // Adjust invocation mode according to the attached method. 1225 switch (bc) { 1226 case Bytecodes::_invokevirtual: 1227 if (attached_method->method_holder()->is_interface()) { 1228 bc = Bytecodes::_invokeinterface; 1229 } 1230 break; 1231 case Bytecodes::_invokeinterface: 1232 if (!attached_method->method_holder()->is_interface()) { 1233 bc = Bytecodes::_invokevirtual; 1234 } 1235 break; 1236 case Bytecodes::_invokehandle: 1237 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1238 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1239 : Bytecodes::_invokevirtual; 1240 } 1241 break; 1242 default: 1243 break; 1244 } 1245 } else { 1246 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1247 if (!attached_method->method_holder()->is_inline_klass()) { 1248 // Ignore the attached method in this case to not confuse below code 1249 attached_method = methodHandle(current, nullptr); 1250 } 1251 } 1252 } 1253 1254 assert(bc != Bytecodes::_illegal, "not initialized"); 1255 1256 bool has_receiver = bc != Bytecodes::_invokestatic && 1257 bc != Bytecodes::_invokedynamic && 1258 bc != Bytecodes::_invokehandle; 1259 bool check_null_and_abstract = true; 1260 1261 // Find receiver for non-static call 1262 if (has_receiver) { 1263 // This register map must be update since we need to find the receiver for 1264 // compiled frames. The receiver might be in a register. 1265 RegisterMap reg_map2(current, 1266 RegisterMap::UpdateMap::include, 1267 RegisterMap::ProcessFrames::include, 1268 RegisterMap::WalkContinuation::skip); 1269 frame stubFrame = current->last_frame(); 1270 // Caller-frame is a compiled frame 1271 frame callerFrame = stubFrame.sender(®_map2); 1272 1273 Method* callee = attached_method(); 1274 if (callee == nullptr) { 1275 callee = bytecode.static_target(CHECK_NH); 1276 if (callee == nullptr) { 1277 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1278 } 1279 } 1280 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1(); 1281 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1282 // If the receiver is an inline type that is passed as fields, no oop is available 1283 // Resolve the call without receiver null checking. 1284 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1285 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1286 if (bc == Bytecodes::_invokeinterface) { 1287 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1288 } 1289 check_null_and_abstract = false; 1290 } else { 1291 // Retrieve from a compiled argument list 1292 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1293 assert(oopDesc::is_oop_or_null(receiver()), ""); 1294 if (receiver.is_null()) { 1295 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1296 } 1297 } 1298 } 1299 1300 // Resolve method 1301 if (attached_method.not_null()) { 1302 // Parameterized by attached method. 1303 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1304 } else { 1305 // Parameterized by bytecode. 1306 constantPoolHandle constants(current, caller->constants()); 1307 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1308 } 1309 1310 #ifdef ASSERT 1311 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1312 if (has_receiver && check_null_and_abstract) { 1313 assert(receiver.not_null(), "should have thrown exception"); 1314 Klass* receiver_klass = receiver->klass(); 1315 Klass* rk = nullptr; 1316 if (attached_method.not_null()) { 1317 // In case there's resolved method attached, use its holder during the check. 1318 rk = attached_method->method_holder(); 1319 } else { 1320 // Klass is already loaded. 1321 constantPoolHandle constants(current, caller->constants()); 1322 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1323 } 1324 Klass* static_receiver_klass = rk; 1325 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1326 "actual receiver must be subclass of static receiver klass"); 1327 if (receiver_klass->is_instance_klass()) { 1328 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1329 tty->print_cr("ERROR: Klass not yet initialized!!"); 1330 receiver_klass->print(); 1331 } 1332 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1333 } 1334 } 1335 #endif 1336 1337 return receiver; 1338 } 1339 1340 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1341 JavaThread* current = THREAD; 1342 ResourceMark rm(current); 1343 // We need first to check if any Java activations (compiled, interpreted) 1344 // exist on the stack since last JavaCall. If not, we need 1345 // to get the target method from the JavaCall wrapper. 1346 vframeStream vfst(current, true); // Do not skip any javaCalls 1347 methodHandle callee_method; 1348 if (vfst.at_end()) { 1349 // No Java frames were found on stack since we did the JavaCall. 1350 // Hence the stack can only contain an entry_frame. We need to 1351 // find the target method from the stub frame. 1352 RegisterMap reg_map(current, 1353 RegisterMap::UpdateMap::skip, 1354 RegisterMap::ProcessFrames::include, 1355 RegisterMap::WalkContinuation::skip); 1356 frame fr = current->last_frame(); 1357 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1358 fr = fr.sender(®_map); 1359 assert(fr.is_entry_frame(), "must be"); 1360 // fr is now pointing to the entry frame. 1361 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1362 } else { 1363 Bytecodes::Code bc; 1364 CallInfo callinfo; 1365 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1366 // Calls via mismatching methods are always non-scalarized 1367 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1368 caller_is_c1 = true; 1369 } 1370 callee_method = methodHandle(current, callinfo.selected_method()); 1371 } 1372 assert(callee_method()->is_method(), "must be"); 1373 return callee_method; 1374 } 1375 1376 // Resolves a call. 1377 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1378 JavaThread* current = THREAD; 1379 ResourceMark rm(current); 1380 RegisterMap cbl_map(current, 1381 RegisterMap::UpdateMap::skip, 1382 RegisterMap::ProcessFrames::include, 1383 RegisterMap::WalkContinuation::skip); 1384 frame caller_frame = current->last_frame().sender(&cbl_map); 1385 1386 CodeBlob* caller_cb = caller_frame.cb(); 1387 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1388 nmethod* caller_nm = caller_cb->as_nmethod(); 1389 1390 // determine call info & receiver 1391 // note: a) receiver is null for static calls 1392 // b) an exception is thrown if receiver is null for non-static calls 1393 CallInfo call_info; 1394 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1395 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1396 1397 NoSafepointVerifier nsv; 1398 1399 methodHandle callee_method(current, call_info.selected_method()); 1400 // Calls via mismatching methods are always non-scalarized 1401 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1402 caller_is_c1 = true; 1403 } 1404 1405 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1406 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1407 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1408 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1409 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1410 1411 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1412 1413 #ifndef PRODUCT 1414 // tracing/debugging/statistics 1415 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1416 (is_virtual) ? (&_resolve_virtual_ctr) : 1417 (&_resolve_static_ctr); 1418 Atomic::inc(addr); 1419 1420 if (TraceCallFixup) { 1421 ResourceMark rm(current); 1422 tty->print("resolving %s%s (%s) call%s to", 1423 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1424 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1425 callee_method->print_short_name(tty); 1426 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1427 p2i(caller_frame.pc()), p2i(callee_method->code())); 1428 } 1429 #endif 1430 1431 if (invoke_code == Bytecodes::_invokestatic) { 1432 assert(callee_method->method_holder()->is_initialized() || 1433 callee_method->method_holder()->is_reentrant_initialization(current), 1434 "invalid class initialization state for invoke_static"); 1435 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1436 // In order to keep class initialization check, do not patch call 1437 // site for static call when the class is not fully initialized. 1438 // Proper check is enforced by call site re-resolution on every invocation. 1439 // 1440 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1441 // explicit class initialization check is put in nmethod entry (VEP). 1442 assert(callee_method->method_holder()->is_linked(), "must be"); 1443 return callee_method; 1444 } 1445 } 1446 1447 1448 // JSR 292 key invariant: 1449 // If the resolved method is a MethodHandle invoke target, the call 1450 // site must be a MethodHandle call site, because the lambda form might tail-call 1451 // leaving the stack in a state unknown to either caller or callee 1452 1453 // Compute entry points. The computation of the entry points is independent of 1454 // patching the call. 1455 1456 // Make sure the callee nmethod does not get deoptimized and removed before 1457 // we are done patching the code. 1458 1459 1460 CompiledICLocker ml(caller_nm); 1461 if (is_virtual && !is_optimized) { 1462 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1463 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1464 } else { 1465 // Callsite is a direct call - set it to the destination method 1466 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1467 callsite->set(callee_method, caller_is_c1); 1468 } 1469 1470 return callee_method; 1471 } 1472 1473 // Inline caches exist only in compiled code 1474 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1475 #ifdef ASSERT 1476 RegisterMap reg_map(current, 1477 RegisterMap::UpdateMap::skip, 1478 RegisterMap::ProcessFrames::include, 1479 RegisterMap::WalkContinuation::skip); 1480 frame stub_frame = current->last_frame(); 1481 assert(stub_frame.is_runtime_frame(), "sanity check"); 1482 frame caller_frame = stub_frame.sender(®_map); 1483 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1484 #endif /* ASSERT */ 1485 1486 methodHandle callee_method; 1487 bool is_optimized = false; 1488 bool caller_is_c1 = false; 1489 JRT_BLOCK 1490 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1491 // Return Method* through TLS 1492 current->set_vm_result_2(callee_method()); 1493 JRT_BLOCK_END 1494 // return compiled code entry point after potential safepoints 1495 return get_resolved_entry(current, callee_method, false, is_optimized, caller_is_c1); 1496 JRT_END 1497 1498 1499 // Handle call site that has been made non-entrant 1500 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1501 // 6243940 We might end up in here if the callee is deoptimized 1502 // as we race to call it. We don't want to take a safepoint if 1503 // the caller was interpreted because the caller frame will look 1504 // interpreted to the stack walkers and arguments are now 1505 // "compiled" so it is much better to make this transition 1506 // invisible to the stack walking code. The i2c path will 1507 // place the callee method in the callee_target. It is stashed 1508 // there because if we try and find the callee by normal means a 1509 // safepoint is possible and have trouble gc'ing the compiled args. 1510 RegisterMap reg_map(current, 1511 RegisterMap::UpdateMap::skip, 1512 RegisterMap::ProcessFrames::include, 1513 RegisterMap::WalkContinuation::skip); 1514 frame stub_frame = current->last_frame(); 1515 assert(stub_frame.is_runtime_frame(), "sanity check"); 1516 frame caller_frame = stub_frame.sender(®_map); 1517 1518 if (caller_frame.is_interpreted_frame() || 1519 caller_frame.is_entry_frame() || 1520 caller_frame.is_upcall_stub_frame()) { 1521 Method* callee = current->callee_target(); 1522 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1523 current->set_vm_result_2(callee); 1524 current->set_callee_target(nullptr); 1525 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1526 // Bypass class initialization checks in c2i when caller is in native. 1527 // JNI calls to static methods don't have class initialization checks. 1528 // Fast class initialization checks are present in c2i adapters and call into 1529 // SharedRuntime::handle_wrong_method() on the slow path. 1530 // 1531 // JVM upcalls may land here as well, but there's a proper check present in 1532 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1533 // so bypassing it in c2i adapter is benign. 1534 return callee->get_c2i_no_clinit_check_entry(); 1535 } else { 1536 if (caller_frame.is_interpreted_frame()) { 1537 return callee->get_c2i_inline_entry(); 1538 } else { 1539 return callee->get_c2i_entry(); 1540 } 1541 } 1542 } 1543 1544 // Must be compiled to compiled path which is safe to stackwalk 1545 methodHandle callee_method; 1546 bool is_static_call = false; 1547 bool is_optimized = false; 1548 bool caller_is_c1 = false; 1549 JRT_BLOCK 1550 // Force resolving of caller (if we called from compiled frame) 1551 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1552 current->set_vm_result_2(callee_method()); 1553 JRT_BLOCK_END 1554 // return compiled code entry point after potential safepoints 1555 return get_resolved_entry(current, callee_method, is_static_call, is_optimized, caller_is_c1); 1556 JRT_END 1557 1558 // Handle abstract method call 1559 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1560 // Verbose error message for AbstractMethodError. 1561 // Get the called method from the invoke bytecode. 1562 vframeStream vfst(current, true); 1563 assert(!vfst.at_end(), "Java frame must exist"); 1564 methodHandle caller(current, vfst.method()); 1565 Bytecode_invoke invoke(caller, vfst.bci()); 1566 DEBUG_ONLY( invoke.verify(); ) 1567 1568 // Find the compiled caller frame. 1569 RegisterMap reg_map(current, 1570 RegisterMap::UpdateMap::include, 1571 RegisterMap::ProcessFrames::include, 1572 RegisterMap::WalkContinuation::skip); 1573 frame stubFrame = current->last_frame(); 1574 assert(stubFrame.is_runtime_frame(), "must be"); 1575 frame callerFrame = stubFrame.sender(®_map); 1576 assert(callerFrame.is_compiled_frame(), "must be"); 1577 1578 // Install exception and return forward entry. 1579 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1580 JRT_BLOCK 1581 methodHandle callee(current, invoke.static_target(current)); 1582 if (!callee.is_null()) { 1583 oop recv = callerFrame.retrieve_receiver(®_map); 1584 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1585 res = StubRoutines::forward_exception_entry(); 1586 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1587 } 1588 JRT_BLOCK_END 1589 return res; 1590 JRT_END 1591 1592 // return verified_code_entry if interp_only_mode is not set for the current thread; 1593 // otherwise return c2i entry. 1594 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method, 1595 bool is_static_call, bool is_optimized, bool caller_is_c1) { 1596 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1597 // In interp_only_mode we need to go to the interpreted entry 1598 // The c2i won't patch in this mode -- see fixup_callers_callsite 1599 return callee_method->get_c2i_entry(); 1600 } 1601 1602 if (caller_is_c1) { 1603 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!"); 1604 return callee_method->verified_inline_code_entry(); 1605 } else if (is_static_call || is_optimized) { 1606 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!"); 1607 return callee_method->verified_code_entry(); 1608 } else { 1609 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!"); 1610 return callee_method->verified_inline_ro_code_entry(); 1611 } 1612 } 1613 1614 // resolve a static call and patch code 1615 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1616 methodHandle callee_method; 1617 bool caller_is_c1 = false; 1618 bool enter_special = false; 1619 JRT_BLOCK 1620 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1621 current->set_vm_result_2(callee_method()); 1622 JRT_BLOCK_END 1623 // return compiled code entry point after potential safepoints 1624 return get_resolved_entry(current, callee_method, true, false, caller_is_c1); 1625 JRT_END 1626 1627 // resolve virtual call and update inline cache to monomorphic 1628 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1629 methodHandle callee_method; 1630 bool caller_is_c1 = false; 1631 JRT_BLOCK 1632 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1633 current->set_vm_result_2(callee_method()); 1634 JRT_BLOCK_END 1635 // return compiled code entry point after potential safepoints 1636 return get_resolved_entry(current, callee_method, false, false, caller_is_c1); 1637 JRT_END 1638 1639 1640 // Resolve a virtual call that can be statically bound (e.g., always 1641 // monomorphic, so it has no inline cache). Patch code to resolved target. 1642 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1643 methodHandle callee_method; 1644 bool caller_is_c1 = false; 1645 JRT_BLOCK 1646 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1647 current->set_vm_result_2(callee_method()); 1648 JRT_BLOCK_END 1649 // return compiled code entry point after potential safepoints 1650 return get_resolved_entry(current, callee_method, false, true, caller_is_c1); 1651 JRT_END 1652 1653 1654 1655 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1656 JavaThread* current = THREAD; 1657 ResourceMark rm(current); 1658 CallInfo call_info; 1659 Bytecodes::Code bc; 1660 1661 // receiver is null for static calls. An exception is thrown for null 1662 // receivers for non-static calls 1663 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1664 1665 methodHandle callee_method(current, call_info.selected_method()); 1666 1667 #ifndef PRODUCT 1668 Atomic::inc(&_ic_miss_ctr); 1669 1670 // Statistics & Tracing 1671 if (TraceCallFixup) { 1672 ResourceMark rm(current); 1673 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1674 callee_method->print_short_name(tty); 1675 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1676 } 1677 1678 if (ICMissHistogram) { 1679 MutexLocker m(VMStatistic_lock); 1680 RegisterMap reg_map(current, 1681 RegisterMap::UpdateMap::skip, 1682 RegisterMap::ProcessFrames::include, 1683 RegisterMap::WalkContinuation::skip); 1684 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1685 // produce statistics under the lock 1686 trace_ic_miss(f.pc()); 1687 } 1688 #endif 1689 1690 // install an event collector so that when a vtable stub is created the 1691 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1692 // event can't be posted when the stub is created as locks are held 1693 // - instead the event will be deferred until the event collector goes 1694 // out of scope. 1695 JvmtiDynamicCodeEventCollector event_collector; 1696 1697 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1698 RegisterMap reg_map(current, 1699 RegisterMap::UpdateMap::skip, 1700 RegisterMap::ProcessFrames::include, 1701 RegisterMap::WalkContinuation::skip); 1702 frame caller_frame = current->last_frame().sender(®_map); 1703 CodeBlob* cb = caller_frame.cb(); 1704 nmethod* caller_nm = cb->as_nmethod(); 1705 // Calls via mismatching methods are always non-scalarized 1706 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1707 caller_is_c1 = true; 1708 } 1709 1710 CompiledICLocker ml(caller_nm); 1711 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1712 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1713 1714 return callee_method; 1715 } 1716 1717 // 1718 // Resets a call-site in compiled code so it will get resolved again. 1719 // This routines handles both virtual call sites, optimized virtual call 1720 // sites, and static call sites. Typically used to change a call sites 1721 // destination from compiled to interpreted. 1722 // 1723 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1724 JavaThread* current = THREAD; 1725 ResourceMark rm(current); 1726 RegisterMap reg_map(current, 1727 RegisterMap::UpdateMap::skip, 1728 RegisterMap::ProcessFrames::include, 1729 RegisterMap::WalkContinuation::skip); 1730 frame stub_frame = current->last_frame(); 1731 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1732 frame caller = stub_frame.sender(®_map); 1733 if (caller.is_compiled_frame()) { 1734 caller_is_c1 = caller.cb()->as_nmethod()->is_compiled_by_c1(); 1735 } 1736 1737 // Do nothing if the frame isn't a live compiled frame. 1738 // nmethod could be deoptimized by the time we get here 1739 // so no update to the caller is needed. 1740 1741 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1742 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1743 1744 address pc = caller.pc(); 1745 1746 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1747 assert(caller_nm != nullptr, "did not find caller nmethod"); 1748 1749 // Default call_addr is the location of the "basic" call. 1750 // Determine the address of the call we a reresolving. With 1751 // Inline Caches we will always find a recognizable call. 1752 // With Inline Caches disabled we may or may not find a 1753 // recognizable call. We will always find a call for static 1754 // calls and for optimized virtual calls. For vanilla virtual 1755 // calls it depends on the state of the UseInlineCaches switch. 1756 // 1757 // With Inline Caches disabled we can get here for a virtual call 1758 // for two reasons: 1759 // 1 - calling an abstract method. The vtable for abstract methods 1760 // will run us thru handle_wrong_method and we will eventually 1761 // end up in the interpreter to throw the ame. 1762 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1763 // call and between the time we fetch the entry address and 1764 // we jump to it the target gets deoptimized. Similar to 1 1765 // we will wind up in the interprter (thru a c2i with c2). 1766 // 1767 CompiledICLocker ml(caller_nm); 1768 address call_addr = caller_nm->call_instruction_address(pc); 1769 1770 if (call_addr != nullptr) { 1771 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1772 // bytes back in the instruction stream so we must also check for reloc info. 1773 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1774 bool ret = iter.next(); // Get item 1775 if (ret) { 1776 is_static_call = false; 1777 is_optimized = false; 1778 switch (iter.type()) { 1779 case relocInfo::static_call_type: 1780 is_static_call = true; 1781 case relocInfo::opt_virtual_call_type: { 1782 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1783 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1784 cdc->set_to_clean(); 1785 break; 1786 } 1787 case relocInfo::virtual_call_type: { 1788 // compiled, dispatched call (which used to call an interpreted method) 1789 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1790 inline_cache->set_to_clean(); 1791 break; 1792 } 1793 default: 1794 break; 1795 } 1796 } 1797 } 1798 } 1799 1800 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1801 1802 #ifndef PRODUCT 1803 Atomic::inc(&_wrong_method_ctr); 1804 1805 if (TraceCallFixup) { 1806 ResourceMark rm(current); 1807 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1808 callee_method->print_short_name(tty); 1809 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1810 } 1811 #endif 1812 1813 return callee_method; 1814 } 1815 1816 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1817 // The faulting unsafe accesses should be changed to throw the error 1818 // synchronously instead. Meanwhile the faulting instruction will be 1819 // skipped over (effectively turning it into a no-op) and an 1820 // asynchronous exception will be raised which the thread will 1821 // handle at a later point. If the instruction is a load it will 1822 // return garbage. 1823 1824 // Request an async exception. 1825 thread->set_pending_unsafe_access_error(); 1826 1827 // Return address of next instruction to execute. 1828 return next_pc; 1829 } 1830 1831 #ifdef ASSERT 1832 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1833 const BasicType* sig_bt, 1834 const VMRegPair* regs) { 1835 ResourceMark rm; 1836 const int total_args_passed = method->size_of_parameters(); 1837 const VMRegPair* regs_with_member_name = regs; 1838 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1839 1840 const int member_arg_pos = total_args_passed - 1; 1841 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1842 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1843 1844 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1845 1846 for (int i = 0; i < member_arg_pos; i++) { 1847 VMReg a = regs_with_member_name[i].first(); 1848 VMReg b = regs_without_member_name[i].first(); 1849 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1850 } 1851 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1852 } 1853 #endif 1854 1855 // --------------------------------------------------------------------------- 1856 // We are calling the interpreter via a c2i. Normally this would mean that 1857 // we were called by a compiled method. However we could have lost a race 1858 // where we went int -> i2c -> c2i and so the caller could in fact be 1859 // interpreted. If the caller is compiled we attempt to patch the caller 1860 // so he no longer calls into the interpreter. 1861 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1862 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1863 1864 // It's possible that deoptimization can occur at a call site which hasn't 1865 // been resolved yet, in which case this function will be called from 1866 // an nmethod that has been patched for deopt and we can ignore the 1867 // request for a fixup. 1868 // Also it is possible that we lost a race in that from_compiled_entry 1869 // is now back to the i2c in that case we don't need to patch and if 1870 // we did we'd leap into space because the callsite needs to use 1871 // "to interpreter" stub in order to load up the Method*. Don't 1872 // ask me how I know this... 1873 1874 // Result from nmethod::is_unloading is not stable across safepoints. 1875 NoSafepointVerifier nsv; 1876 1877 nmethod* callee = method->code(); 1878 if (callee == nullptr) { 1879 return; 1880 } 1881 1882 // write lock needed because we might patch call site by set_to_clean() 1883 // and is_unloading() can modify nmethod's state 1884 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1885 1886 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1887 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1888 return; 1889 } 1890 1891 // The check above makes sure this is an nmethod. 1892 nmethod* caller = cb->as_nmethod(); 1893 1894 // Get the return PC for the passed caller PC. 1895 address return_pc = caller_pc + frame::pc_return_offset; 1896 1897 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1898 return; 1899 } 1900 1901 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1902 CompiledICLocker ic_locker(caller); 1903 ResourceMark rm; 1904 1905 // If we got here through a static call or opt_virtual call, then we know where the 1906 // call address would be; let's peek at it 1907 address callsite_addr = (address)nativeCall_before(return_pc); 1908 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1909 if (!iter.next()) { 1910 // No reloc entry found; not a static or optimized virtual call 1911 return; 1912 } 1913 1914 relocInfo::relocType type = iter.reloc()->type(); 1915 if (type != relocInfo::static_call_type && 1916 type != relocInfo::opt_virtual_call_type) { 1917 return; 1918 } 1919 1920 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1921 callsite->set_to_clean(); 1922 JRT_END 1923 1924 1925 // same as JVM_Arraycopy, but called directly from compiled code 1926 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1927 oopDesc* dest, jint dest_pos, 1928 jint length, 1929 JavaThread* current)) { 1930 #ifndef PRODUCT 1931 _slow_array_copy_ctr++; 1932 #endif 1933 // Check if we have null pointers 1934 if (src == nullptr || dest == nullptr) { 1935 THROW(vmSymbols::java_lang_NullPointerException()); 1936 } 1937 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1938 // even though the copy_array API also performs dynamic checks to ensure 1939 // that src and dest are truly arrays (and are conformable). 1940 // The copy_array mechanism is awkward and could be removed, but 1941 // the compilers don't call this function except as a last resort, 1942 // so it probably doesn't matter. 1943 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1944 (arrayOopDesc*)dest, dest_pos, 1945 length, current); 1946 } 1947 JRT_END 1948 1949 // The caller of generate_class_cast_message() (or one of its callers) 1950 // must use a ResourceMark in order to correctly free the result. 1951 char* SharedRuntime::generate_class_cast_message( 1952 JavaThread* thread, Klass* caster_klass) { 1953 1954 // Get target class name from the checkcast instruction 1955 vframeStream vfst(thread, true); 1956 assert(!vfst.at_end(), "Java frame must exist"); 1957 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1958 constantPoolHandle cpool(thread, vfst.method()->constants()); 1959 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1960 Symbol* target_klass_name = nullptr; 1961 if (target_klass == nullptr) { 1962 // This klass should be resolved, but just in case, get the name in the klass slot. 1963 target_klass_name = cpool->klass_name_at(cc.index()); 1964 } 1965 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1966 } 1967 1968 1969 // The caller of generate_class_cast_message() (or one of its callers) 1970 // must use a ResourceMark in order to correctly free the result. 1971 char* SharedRuntime::generate_class_cast_message( 1972 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1973 const char* caster_name = caster_klass->external_name(); 1974 1975 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1976 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1977 target_klass->external_name(); 1978 1979 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1980 1981 const char* caster_klass_description = ""; 1982 const char* target_klass_description = ""; 1983 const char* klass_separator = ""; 1984 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1985 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1986 } else { 1987 caster_klass_description = caster_klass->class_in_module_of_loader(); 1988 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1989 klass_separator = (target_klass != nullptr) ? "; " : ""; 1990 } 1991 1992 // add 3 for parenthesis and preceding space 1993 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1994 1995 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1996 if (message == nullptr) { 1997 // Shouldn't happen, but don't cause even more problems if it does 1998 message = const_cast<char*>(caster_klass->external_name()); 1999 } else { 2000 jio_snprintf(message, 2001 msglen, 2002 "class %s cannot be cast to class %s (%s%s%s)", 2003 caster_name, 2004 target_name, 2005 caster_klass_description, 2006 klass_separator, 2007 target_klass_description 2008 ); 2009 } 2010 return message; 2011 } 2012 2013 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 2014 assert(klass->is_inline_klass(), "Must be a concrete value class"); 2015 const char* desc = "Cannot synchronize on an instance of value class "; 2016 const char* className = klass->external_name(); 2017 size_t msglen = strlen(desc) + strlen(className) + 1; 2018 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2019 if (nullptr == message) { 2020 // Out of memory: can't create detailed error message 2021 message = const_cast<char*>(klass->external_name()); 2022 } else { 2023 jio_snprintf(message, msglen, "%s%s", desc, className); 2024 } 2025 return message; 2026 } 2027 2028 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2029 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2030 JRT_END 2031 2032 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2033 if (!SafepointSynchronize::is_synchronizing()) { 2034 // Only try quick_enter() if we're not trying to reach a safepoint 2035 // so that the calling thread reaches the safepoint more quickly. 2036 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2037 return; 2038 } 2039 } 2040 // NO_ASYNC required because an async exception on the state transition destructor 2041 // would leave you with the lock held and it would never be released. 2042 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2043 // and the model is that an exception implies the method failed. 2044 JRT_BLOCK_NO_ASYNC 2045 Handle h_obj(THREAD, obj); 2046 ObjectSynchronizer::enter(h_obj, lock, current); 2047 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2048 JRT_BLOCK_END 2049 } 2050 2051 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2052 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2053 SharedRuntime::monitor_enter_helper(obj, lock, current); 2054 JRT_END 2055 2056 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2057 assert(JavaThread::current() == current, "invariant"); 2058 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2059 ExceptionMark em(current); 2060 2061 // Check if C2_MacroAssembler::fast_unlock() or 2062 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2063 // monitor before going slow path. Since there is no safepoint 2064 // polling when calling into the VM, we can be sure that the monitor 2065 // hasn't been deallocated. 2066 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2067 if (m != nullptr) { 2068 assert(m->owner_raw() != current, "must be"); 2069 current->clear_unlocked_inflated_monitor(); 2070 2071 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2072 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2073 // Some other thread acquired the lock (or the monitor was 2074 // deflated). Either way we are done. 2075 current->dec_held_monitor_count(); 2076 return; 2077 } 2078 } 2079 2080 // The object could become unlocked through a JNI call, which we have no other checks for. 2081 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2082 if (obj->is_unlocked()) { 2083 if (CheckJNICalls) { 2084 fatal("Object has been unlocked by JNI"); 2085 } 2086 return; 2087 } 2088 ObjectSynchronizer::exit(obj, lock, current); 2089 } 2090 2091 // Handles the uncommon cases of monitor unlocking in compiled code 2092 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2093 assert(current == JavaThread::current(), "pre-condition"); 2094 SharedRuntime::monitor_exit_helper(obj, lock, current); 2095 JRT_END 2096 2097 // This is only called when CheckJNICalls is true, and only 2098 // for virtual thread termination. 2099 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2100 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2101 if (log_is_enabled(Debug, jni)) { 2102 JavaThread* current = JavaThread::current(); 2103 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2104 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2105 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2106 ") exiting with Objects still locked by JNI MonitorEnter.", 2107 vthread_id, carrier_id); 2108 } 2109 JRT_END 2110 2111 #ifndef PRODUCT 2112 2113 void SharedRuntime::print_statistics() { 2114 ttyLocker ttyl; 2115 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2116 2117 SharedRuntime::print_ic_miss_histogram(); 2118 2119 // Dump the JRT_ENTRY counters 2120 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2121 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2122 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2123 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2124 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2125 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2126 2127 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2128 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2129 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2130 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2131 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2132 2133 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2134 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2135 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2136 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2137 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2138 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2139 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2140 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2141 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2142 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2143 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2144 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2145 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2146 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2147 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2148 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2149 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2150 2151 AdapterHandlerLibrary::print_statistics(); 2152 2153 if (xtty != nullptr) xtty->tail("statistics"); 2154 } 2155 2156 inline double percent(int64_t x, int64_t y) { 2157 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2158 } 2159 2160 class MethodArityHistogram { 2161 public: 2162 enum { MAX_ARITY = 256 }; 2163 private: 2164 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2165 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2166 static uint64_t _total_compiled_calls; 2167 static uint64_t _max_compiled_calls_per_method; 2168 static int _max_arity; // max. arity seen 2169 static int _max_size; // max. arg size seen 2170 2171 static void add_method_to_histogram(nmethod* nm) { 2172 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2173 if (method != nullptr) { 2174 ArgumentCount args(method->signature()); 2175 int arity = args.size() + (method->is_static() ? 0 : 1); 2176 int argsize = method->size_of_parameters(); 2177 arity = MIN2(arity, MAX_ARITY-1); 2178 argsize = MIN2(argsize, MAX_ARITY-1); 2179 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2180 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2181 _total_compiled_calls += count; 2182 _arity_histogram[arity] += count; 2183 _size_histogram[argsize] += count; 2184 _max_arity = MAX2(_max_arity, arity); 2185 _max_size = MAX2(_max_size, argsize); 2186 } 2187 } 2188 2189 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2190 const int N = MIN2(9, n); 2191 double sum = 0; 2192 double weighted_sum = 0; 2193 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2194 if (sum >= 1) { // prevent divide by zero or divide overflow 2195 double rest = sum; 2196 double percent = sum / 100; 2197 for (int i = 0; i <= N; i++) { 2198 rest -= (double)histo[i]; 2199 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2200 } 2201 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2202 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2203 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2204 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2205 } else { 2206 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2207 } 2208 } 2209 2210 void print_histogram() { 2211 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2212 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2213 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2214 print_histogram_helper(_max_size, _size_histogram, "size"); 2215 tty->cr(); 2216 } 2217 2218 public: 2219 MethodArityHistogram() { 2220 // Take the Compile_lock to protect against changes in the CodeBlob structures 2221 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2222 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2223 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2224 _max_arity = _max_size = 0; 2225 _total_compiled_calls = 0; 2226 _max_compiled_calls_per_method = 0; 2227 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2228 CodeCache::nmethods_do(add_method_to_histogram); 2229 print_histogram(); 2230 } 2231 }; 2232 2233 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2234 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2235 uint64_t MethodArityHistogram::_total_compiled_calls; 2236 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2237 int MethodArityHistogram::_max_arity; 2238 int MethodArityHistogram::_max_size; 2239 2240 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2241 tty->print_cr("Calls from compiled code:"); 2242 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2243 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2244 int64_t mono_i = _nof_interface_calls; 2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2250 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2251 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2252 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2253 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2254 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2255 tty->cr(); 2256 tty->print_cr("Note 1: counter updates are not MT-safe."); 2257 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2258 tty->print_cr(" %% in nested categories are relative to their category"); 2259 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2260 tty->cr(); 2261 2262 MethodArityHistogram h; 2263 } 2264 #endif 2265 2266 #ifndef PRODUCT 2267 static int _lookups; // number of calls to lookup 2268 static int _equals; // number of buckets checked with matching hash 2269 static int _hits; // number of successful lookups 2270 static int _compact; // number of equals calls with compact signature 2271 #endif 2272 2273 // A simple wrapper class around the calling convention information 2274 // that allows sharing of adapters for the same calling convention. 2275 class AdapterFingerPrint : public CHeapObj<mtCode> { 2276 private: 2277 enum { 2278 _basic_type_bits = 5, 2279 _basic_type_mask = right_n_bits(_basic_type_bits), 2280 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2281 _compact_int_count = 3 2282 }; 2283 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2284 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2285 2286 union { 2287 int _compact[_compact_int_count]; 2288 int* _fingerprint; 2289 } _value; 2290 int _length; // A negative length indicates the fingerprint is in the compact form, 2291 // Otherwise _value._fingerprint is the array. 2292 2293 // Remap BasicTypes that are handled equivalently by the adapters. 2294 // These are correct for the current system but someday it might be 2295 // necessary to make this mapping platform dependent. 2296 static BasicType adapter_encoding(BasicType in) { 2297 switch (in) { 2298 case T_BOOLEAN: 2299 case T_BYTE: 2300 case T_SHORT: 2301 case T_CHAR: 2302 // They are all promoted to T_INT in the calling convention 2303 return T_INT; 2304 2305 case T_OBJECT: 2306 case T_ARRAY: 2307 // In other words, we assume that any register good enough for 2308 // an int or long is good enough for a managed pointer. 2309 #ifdef _LP64 2310 return T_LONG; 2311 #else 2312 return T_INT; 2313 #endif 2314 2315 case T_INT: 2316 case T_LONG: 2317 case T_FLOAT: 2318 case T_DOUBLE: 2319 case T_VOID: 2320 return in; 2321 2322 default: 2323 ShouldNotReachHere(); 2324 return T_CONFLICT; 2325 } 2326 } 2327 2328 public: 2329 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2330 // The fingerprint is based on the BasicType signature encoded 2331 // into an array of ints with eight entries per int. 2332 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2333 int* ptr; 2334 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2335 if (len <= _compact_int_count) { 2336 assert(_compact_int_count == 3, "else change next line"); 2337 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2338 // Storing the signature encoded as signed chars hits about 98% 2339 // of the time. 2340 _length = -len; 2341 ptr = _value._compact; 2342 } else { 2343 _length = len; 2344 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2345 ptr = _value._fingerprint; 2346 } 2347 2348 // Now pack the BasicTypes with 8 per int 2349 int sig_index = 0; 2350 BasicType prev_bt = T_ILLEGAL; 2351 int vt_count = 0; 2352 for (int index = 0; index < len; index++) { 2353 int value = 0; 2354 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2355 BasicType bt = T_ILLEGAL; 2356 if (sig_index < total_args_passed) { 2357 bt = sig->at(sig_index++)._bt; 2358 if (bt == T_METADATA) { 2359 // Found start of inline type in signature 2360 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2361 if (sig_index == 1 && has_ro_adapter) { 2362 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2363 // with other adapters that have the same inline type as first argument and no receiver. 2364 bt = T_VOID; 2365 } 2366 vt_count++; 2367 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2368 // Found end of inline type in signature 2369 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2370 vt_count--; 2371 assert(vt_count >= 0, "invalid vt_count"); 2372 } else if (vt_count == 0) { 2373 // Widen fields that are not part of a scalarized inline type argument 2374 bt = adapter_encoding(bt); 2375 } 2376 prev_bt = bt; 2377 } 2378 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2379 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2380 value = (value << _basic_type_bits) | bt_val; 2381 } 2382 ptr[index] = value; 2383 } 2384 assert(vt_count == 0, "invalid vt_count"); 2385 } 2386 2387 ~AdapterFingerPrint() { 2388 if (_length > 0) { 2389 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2390 } 2391 } 2392 2393 int value(int index) { 2394 if (_length < 0) { 2395 return _value._compact[index]; 2396 } 2397 return _value._fingerprint[index]; 2398 } 2399 int length() { 2400 if (_length < 0) return -_length; 2401 return _length; 2402 } 2403 2404 bool is_compact() { 2405 return _length <= 0; 2406 } 2407 2408 unsigned int compute_hash() { 2409 int hash = 0; 2410 for (int i = 0; i < length(); i++) { 2411 int v = value(i); 2412 hash = (hash << 8) ^ v ^ (hash >> 5); 2413 } 2414 return (unsigned int)hash; 2415 } 2416 2417 const char* as_string() { 2418 stringStream st; 2419 st.print("0x"); 2420 for (int i = 0; i < length(); i++) { 2421 st.print("%x", value(i)); 2422 } 2423 return st.as_string(); 2424 } 2425 2426 #ifndef PRODUCT 2427 // Reconstitutes the basic type arguments from the fingerprint, 2428 // producing strings like LIJDF 2429 const char* as_basic_args_string() { 2430 stringStream st; 2431 bool long_prev = false; 2432 for (int i = 0; i < length(); i++) { 2433 unsigned val = (unsigned)value(i); 2434 // args are packed so that first/lower arguments are in the highest 2435 // bits of each int value, so iterate from highest to the lowest 2436 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2437 unsigned v = (val >> j) & _basic_type_mask; 2438 if (v == 0) { 2439 assert(i == length() - 1, "Only expect zeroes in the last word"); 2440 continue; 2441 } 2442 if (long_prev) { 2443 long_prev = false; 2444 if (v == T_VOID) { 2445 st.print("J"); 2446 } else { 2447 st.print("L"); 2448 } 2449 } else if (v == T_LONG) { 2450 long_prev = true; 2451 } else if (v != T_VOID){ 2452 st.print("%c", type2char((BasicType)v)); 2453 } 2454 } 2455 } 2456 if (long_prev) { 2457 st.print("L"); 2458 } 2459 return st.as_string(); 2460 } 2461 #endif // !product 2462 2463 bool equals(AdapterFingerPrint* other) { 2464 if (other->_length != _length) { 2465 return false; 2466 } 2467 if (_length < 0) { 2468 assert(_compact_int_count == 3, "else change next line"); 2469 return _value._compact[0] == other->_value._compact[0] && 2470 _value._compact[1] == other->_value._compact[1] && 2471 _value._compact[2] == other->_value._compact[2]; 2472 } else { 2473 for (int i = 0; i < _length; i++) { 2474 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2475 return false; 2476 } 2477 } 2478 } 2479 return true; 2480 } 2481 2482 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2483 NOT_PRODUCT(_equals++); 2484 return fp1->equals(fp2); 2485 } 2486 2487 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2488 return fp->compute_hash(); 2489 } 2490 }; 2491 2492 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2493 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2494 AnyObj::C_HEAP, mtCode, 2495 AdapterFingerPrint::compute_hash, 2496 AdapterFingerPrint::equals>; 2497 static AdapterHandlerTable* _adapter_handler_table; 2498 2499 // Find a entry with the same fingerprint if it exists 2500 static AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2501 NOT_PRODUCT(_lookups++); 2502 assert_lock_strong(AdapterHandlerLibrary_lock); 2503 AdapterFingerPrint fp(sig, has_ro_adapter); 2504 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2505 if (entry != nullptr) { 2506 #ifndef PRODUCT 2507 if (fp.is_compact()) _compact++; 2508 _hits++; 2509 #endif 2510 return *entry; 2511 } 2512 return nullptr; 2513 } 2514 2515 #ifndef PRODUCT 2516 static void print_table_statistics() { 2517 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2518 return sizeof(*key) + sizeof(*a); 2519 }; 2520 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2521 ts.print(tty, "AdapterHandlerTable"); 2522 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2523 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2524 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2525 _lookups, _equals, _hits, _compact); 2526 } 2527 #endif 2528 2529 // --------------------------------------------------------------------------- 2530 // Implementation of AdapterHandlerLibrary 2531 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2532 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2533 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2534 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2535 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2536 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2537 const int AdapterHandlerLibrary_size = 48*K; 2538 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2539 2540 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2541 return _buffer; 2542 } 2543 2544 static void post_adapter_creation(const AdapterBlob* new_adapter, 2545 const AdapterHandlerEntry* entry) { 2546 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2547 char blob_id[256]; 2548 jio_snprintf(blob_id, 2549 sizeof(blob_id), 2550 "%s(%s)", 2551 new_adapter->name(), 2552 entry->fingerprint()->as_string()); 2553 if (Forte::is_enabled()) { 2554 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2555 } 2556 2557 if (JvmtiExport::should_post_dynamic_code_generated()) { 2558 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2559 } 2560 } 2561 } 2562 2563 void AdapterHandlerLibrary::initialize() { 2564 ResourceMark rm; 2565 AdapterBlob* no_arg_blob = nullptr; 2566 AdapterBlob* int_arg_blob = nullptr; 2567 AdapterBlob* obj_arg_blob = nullptr; 2568 AdapterBlob* obj_int_arg_blob = nullptr; 2569 AdapterBlob* obj_obj_arg_blob = nullptr; 2570 { 2571 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2572 MutexLocker mu(AdapterHandlerLibrary_lock); 2573 2574 // Create a special handler for abstract methods. Abstract methods 2575 // are never compiled so an i2c entry is somewhat meaningless, but 2576 // throw AbstractMethodError just in case. 2577 // Pass wrong_method_abstract for the c2i transitions to return 2578 // AbstractMethodError for invalid invocations. 2579 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2580 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2581 SharedRuntime::throw_AbstractMethodError_entry(), 2582 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2583 wrong_method_abstract, wrong_method_abstract); 2584 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2585 2586 CompiledEntrySignature no_args; 2587 no_args.compute_calling_conventions(); 2588 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2589 2590 CompiledEntrySignature obj_args; 2591 SigEntry::add_entry(obj_args.sig(), T_OBJECT, nullptr); 2592 obj_args.compute_calling_conventions(); 2593 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2594 2595 CompiledEntrySignature int_args; 2596 SigEntry::add_entry(int_args.sig(), T_INT, nullptr); 2597 int_args.compute_calling_conventions(); 2598 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2599 2600 CompiledEntrySignature obj_int_args; 2601 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT, nullptr); 2602 SigEntry::add_entry(obj_int_args.sig(), T_INT, nullptr); 2603 obj_int_args.compute_calling_conventions(); 2604 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2605 2606 CompiledEntrySignature obj_obj_args; 2607 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2608 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr); 2609 obj_obj_args.compute_calling_conventions(); 2610 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2611 2612 assert(no_arg_blob != nullptr && 2613 obj_arg_blob != nullptr && 2614 int_arg_blob != nullptr && 2615 obj_int_arg_blob != nullptr && 2616 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2617 } 2618 return; 2619 2620 // Outside of the lock 2621 post_adapter_creation(no_arg_blob, _no_arg_handler); 2622 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2623 post_adapter_creation(int_arg_blob, _int_arg_handler); 2624 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2625 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2626 } 2627 2628 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2629 address i2c_entry, 2630 address c2i_entry, 2631 address c2i_inline_entry, 2632 address c2i_inline_ro_entry, 2633 address c2i_unverified_entry, 2634 address c2i_unverified_inline_entry, 2635 address c2i_no_clinit_check_entry) { 2636 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 2637 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 2638 } 2639 2640 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2641 if (method->is_abstract()) { 2642 return nullptr; 2643 } 2644 int total_args_passed = method->size_of_parameters(); // All args on stack 2645 if (total_args_passed == 0) { 2646 return _no_arg_handler; 2647 } else if (total_args_passed == 1) { 2648 if (!method->is_static()) { 2649 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2650 return nullptr; 2651 } 2652 return _obj_arg_handler; 2653 } 2654 switch (method->signature()->char_at(1)) { 2655 case JVM_SIGNATURE_CLASS: { 2656 if (InlineTypePassFieldsAsArgs) { 2657 SignatureStream ss(method->signature()); 2658 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2659 if (vk != nullptr) { 2660 return nullptr; 2661 } 2662 } 2663 return _obj_arg_handler; 2664 } 2665 case JVM_SIGNATURE_ARRAY: 2666 return _obj_arg_handler; 2667 case JVM_SIGNATURE_INT: 2668 case JVM_SIGNATURE_BOOLEAN: 2669 case JVM_SIGNATURE_CHAR: 2670 case JVM_SIGNATURE_BYTE: 2671 case JVM_SIGNATURE_SHORT: 2672 return _int_arg_handler; 2673 } 2674 } else if (total_args_passed == 2 && 2675 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2676 switch (method->signature()->char_at(1)) { 2677 case JVM_SIGNATURE_CLASS: { 2678 if (InlineTypePassFieldsAsArgs) { 2679 SignatureStream ss(method->signature()); 2680 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2681 if (vk != nullptr) { 2682 return nullptr; 2683 } 2684 } 2685 return _obj_obj_arg_handler; 2686 } 2687 case JVM_SIGNATURE_ARRAY: 2688 return _obj_obj_arg_handler; 2689 case JVM_SIGNATURE_INT: 2690 case JVM_SIGNATURE_BOOLEAN: 2691 case JVM_SIGNATURE_CHAR: 2692 case JVM_SIGNATURE_BYTE: 2693 case JVM_SIGNATURE_SHORT: 2694 return _obj_int_arg_handler; 2695 } 2696 } 2697 return nullptr; 2698 } 2699 2700 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2701 _method(method), _num_inline_args(0), _has_inline_recv(false), 2702 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2703 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2704 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2705 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2706 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2707 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2708 } 2709 2710 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2711 // or the same entry for VEP and VIEP(RO). 2712 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2713 if (!has_scalarized_args()) { 2714 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2715 return CodeOffsets::Verified_Entry; 2716 } 2717 if (_method->is_static()) { 2718 // Static methods don't need VIEP(RO) 2719 return CodeOffsets::Verified_Entry; 2720 } 2721 2722 if (has_inline_recv()) { 2723 if (num_inline_args() == 1) { 2724 // Share same entry for VIEP and VIEP(RO). 2725 // This is quite common: we have an instance method in an InlineKlass that has 2726 // no inline type args other than <this>. 2727 return CodeOffsets::Verified_Inline_Entry; 2728 } else { 2729 assert(num_inline_args() > 1, "must be"); 2730 // No sharing: 2731 // VIEP(RO) -- <this> is passed as object 2732 // VEP -- <this> is passed as fields 2733 return CodeOffsets::Verified_Inline_Entry_RO; 2734 } 2735 } 2736 2737 // Either a static method, or <this> is not an inline type 2738 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2739 // No sharing: 2740 // Some arguments are passed on the stack, and we have inserted reserved entries 2741 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2742 return CodeOffsets::Verified_Inline_Entry_RO; 2743 } else { 2744 // Share same entry for VEP and VIEP(RO). 2745 return CodeOffsets::Verified_Entry; 2746 } 2747 } 2748 2749 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2750 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2751 if (_supers != nullptr) { 2752 return _supers; 2753 } 2754 _supers = new GrowableArray<Method*>(); 2755 // Skip private, static, and <init> methods 2756 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2757 return _supers; 2758 } 2759 Symbol* name = _method->name(); 2760 Symbol* signature = _method->signature(); 2761 const Klass* holder = _method->method_holder()->super(); 2762 Symbol* holder_name = holder->name(); 2763 ThreadInVMfromUnknown tiv; 2764 JavaThread* current = JavaThread::current(); 2765 HandleMark hm(current); 2766 Handle loader(current, _method->method_holder()->class_loader()); 2767 2768 // Walk up the class hierarchy and search for super methods 2769 while (holder != nullptr) { 2770 Method* super_method = holder->lookup_method(name, signature); 2771 if (super_method == nullptr) { 2772 break; 2773 } 2774 if (!super_method->is_static() && !super_method->is_private() && 2775 (!super_method->is_package_private() || 2776 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2777 _supers->push(super_method); 2778 } 2779 holder = super_method->method_holder()->super(); 2780 } 2781 // Search interfaces for super methods 2782 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2783 for (int i = 0; i < interfaces->length(); ++i) { 2784 Method* m = interfaces->at(i)->lookup_method(name, signature); 2785 if (m != nullptr && !m->is_static() && m->is_public()) { 2786 _supers->push(m); 2787 } 2788 } 2789 return _supers; 2790 } 2791 2792 // Iterate over arguments and compute scalarized and non-scalarized signatures 2793 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2794 bool has_scalarized = false; 2795 if (_method != nullptr) { 2796 InstanceKlass* holder = _method->method_holder(); 2797 int arg_num = 0; 2798 if (!_method->is_static()) { 2799 // We shouldn't scalarize 'this' in a value class constructor 2800 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2801 (init || _method->is_scalarized_arg(arg_num))) { 2802 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2803 has_scalarized = true; 2804 _has_inline_recv = true; 2805 _num_inline_args++; 2806 } else { 2807 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2808 } 2809 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2810 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2811 arg_num++; 2812 } 2813 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2814 BasicType bt = ss.type(); 2815 if (bt == T_OBJECT) { 2816 InlineKlass* vk = ss.as_inline_klass(holder); 2817 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2818 // Check for a calling convention mismatch with super method(s) 2819 bool scalar_super = false; 2820 bool non_scalar_super = false; 2821 GrowableArray<Method*>* supers = get_supers(); 2822 for (int i = 0; i < supers->length(); ++i) { 2823 Method* super_method = supers->at(i); 2824 if (super_method->is_scalarized_arg(arg_num)) { 2825 scalar_super = true; 2826 } else { 2827 non_scalar_super = true; 2828 } 2829 } 2830 #ifdef ASSERT 2831 // Randomly enable below code paths for stress testing 2832 bool stress = init && StressCallingConvention; 2833 if (stress && (os::random() & 1) == 1) { 2834 non_scalar_super = true; 2835 if ((os::random() & 1) == 1) { 2836 scalar_super = true; 2837 } 2838 } 2839 #endif 2840 if (non_scalar_super) { 2841 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2842 if (scalar_super) { 2843 // Found non-scalar *and* scalar super methods. We can't handle both. 2844 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2845 for (int i = 0; i < supers->length(); ++i) { 2846 Method* super_method = supers->at(i); 2847 if (super_method->is_scalarized_arg(arg_num) debug_only(|| (stress && (os::random() & 1) == 1))) { 2848 super_method->set_mismatch(); 2849 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2850 JavaThread* thread = JavaThread::current(); 2851 HandleMark hm(thread); 2852 methodHandle mh(thread, super_method); 2853 DeoptimizationScope deopt_scope; 2854 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2855 deopt_scope.deoptimize_marked(); 2856 } 2857 } 2858 } 2859 // Fall back to non-scalarized calling convention 2860 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2861 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2862 } else { 2863 _num_inline_args++; 2864 has_scalarized = true; 2865 int last = _sig_cc->length(); 2866 int last_ro = _sig_cc_ro->length(); 2867 _sig_cc->appendAll(vk->extended_sig()); 2868 _sig_cc_ro->appendAll(vk->extended_sig()); 2869 if (bt == T_OBJECT) { 2870 // Nullable inline type argument, insert InlineTypeNode::IsInit field right after T_METADATA delimiter 2871 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr)); 2872 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr)); 2873 } 2874 } 2875 } else { 2876 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2877 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2878 } 2879 bt = T_OBJECT; 2880 } else { 2881 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2882 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2883 } 2884 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2885 if (bt != T_VOID) { 2886 arg_num++; 2887 } 2888 } 2889 } 2890 2891 // Compute the non-scalarized calling convention 2892 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2893 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2894 2895 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2896 if (has_scalarized && !_method->is_native()) { 2897 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2898 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2899 2900 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2901 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2902 2903 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2904 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2905 2906 // Upper bound on stack arguments to avoid hitting the argument limit and 2907 // bailing out of compilation ("unsupported incoming calling sequence"). 2908 // TODO we need a reasonable limit (flag?) here 2909 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2910 return; // Success 2911 } 2912 } 2913 2914 // No scalarized args 2915 _sig_cc = _sig; 2916 _regs_cc = _regs; 2917 _args_on_stack_cc = _args_on_stack; 2918 2919 _sig_cc_ro = _sig; 2920 _regs_cc_ro = _regs; 2921 _args_on_stack_cc_ro = _args_on_stack; 2922 } 2923 2924 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2925 // Use customized signature handler. Need to lock around updates to 2926 // the _adapter_handler_table (it is not safe for concurrent readers 2927 // and a single writer: this could be fixed if it becomes a 2928 // problem). 2929 2930 // Fast-path for trivial adapters 2931 AdapterHandlerEntry* entry = get_simple_adapter(method); 2932 if (entry != nullptr) { 2933 return entry; 2934 } 2935 2936 ResourceMark rm; 2937 AdapterBlob* new_adapter = nullptr; 2938 2939 CompiledEntrySignature ces(method()); 2940 ces.compute_calling_conventions(); 2941 if (ces.has_scalarized_args()) { 2942 if (!method->has_scalarized_args()) { 2943 method->set_has_scalarized_args(); 2944 } 2945 if (ces.c1_needs_stack_repair()) { 2946 method->set_c1_needs_stack_repair(); 2947 } 2948 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 2949 method->set_c2_needs_stack_repair(); 2950 } 2951 } else if (method->is_abstract()) { 2952 return _abstract_method_handler; 2953 } 2954 2955 { 2956 MutexLocker mu(AdapterHandlerLibrary_lock); 2957 2958 if (ces.has_scalarized_args() && method->is_abstract()) { 2959 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 2960 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2961 entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr), 2962 SharedRuntime::throw_AbstractMethodError_entry(), 2963 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2964 wrong_method_abstract, wrong_method_abstract); 2965 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 2966 heap_sig->appendAll(ces.sig_cc_ro()); 2967 entry->set_sig_cc(heap_sig); 2968 return entry; 2969 } 2970 2971 // Lookup method signature's fingerprint 2972 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 2973 2974 if (entry != nullptr) { 2975 #ifdef ASSERT 2976 if (VerifyAdapterSharing) { 2977 AdapterBlob* comparison_blob = nullptr; 2978 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false); 2979 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2980 assert(comparison_entry->compare_code(entry), "code must match"); 2981 // Release the one just created and return the original 2982 delete comparison_entry; 2983 } 2984 #endif 2985 return entry; 2986 } 2987 2988 entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true); 2989 } 2990 2991 // Outside of the lock 2992 if (new_adapter != nullptr) { 2993 post_adapter_creation(new_adapter, entry); 2994 } 2995 return entry; 2996 } 2997 2998 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2999 CompiledEntrySignature& ces, 3000 bool allocate_code_blob) { 3001 if (log_is_enabled(Info, perf, class, link)) { 3002 ClassLoader::perf_method_adapters_count()->inc(); 3003 } 3004 3005 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 3006 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 3007 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 3008 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 3009 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 3010 3011 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3012 CodeBuffer buffer(buf); 3013 short buffer_locs[20]; 3014 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3015 sizeof(buffer_locs)/sizeof(relocInfo)); 3016 3017 // Make a C heap allocated version of the fingerprint to store in the adapter 3018 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(ces.sig_cc(), ces.has_inline_recv()); 3019 MacroAssembler _masm(&buffer); 3020 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 3021 ces.args_on_stack(), 3022 ces.sig(), 3023 ces.regs(), 3024 ces.sig_cc(), 3025 ces.regs_cc(), 3026 ces.sig_cc_ro(), 3027 ces.regs_cc_ro(), 3028 fingerprint, 3029 new_adapter, 3030 allocate_code_blob); 3031 3032 if (ces.has_scalarized_args()) { 3033 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3034 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3035 heap_sig->appendAll(ces.sig_cc()); 3036 entry->set_sig_cc(heap_sig); 3037 } 3038 3039 #ifdef ASSERT 3040 if (VerifyAdapterSharing) { 3041 entry->save_code(buf->code_begin(), buffer.insts_size()); 3042 if (!allocate_code_blob) { 3043 return entry; 3044 } 3045 } 3046 #endif 3047 3048 NOT_PRODUCT(int insts_size = buffer.insts_size()); 3049 if (new_adapter == nullptr) { 3050 // CodeCache is full, disable compilation 3051 // Ought to log this but compile log is only per compile thread 3052 // and we're some non descript Java thread. 3053 return nullptr; 3054 } 3055 entry->relocate(new_adapter->content_begin()); 3056 #ifndef PRODUCT 3057 // debugging support 3058 if (PrintAdapterHandlers || PrintStubCode) { 3059 ttyLocker ttyl; 3060 entry->print_adapter_on(tty); 3061 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 3062 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 3063 fingerprint->as_string(), insts_size); 3064 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 3065 if (Verbose || PrintStubCode) { 3066 address first_pc = entry->base_address(); 3067 if (first_pc != nullptr) { 3068 Disassembler::decode(first_pc, first_pc + insts_size, tty 3069 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 3070 tty->cr(); 3071 } 3072 } 3073 } 3074 #endif 3075 3076 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 3077 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 3078 if (contains_all_checks || !VerifyAdapterCalls) { 3079 assert_lock_strong(AdapterHandlerLibrary_lock); 3080 _adapter_handler_table->put(fingerprint, entry); 3081 } 3082 return entry; 3083 } 3084 3085 address AdapterHandlerEntry::base_address() { 3086 address base = _i2c_entry; 3087 if (base == nullptr) base = _c2i_entry; 3088 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3089 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3090 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3091 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3092 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3093 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3094 return base; 3095 } 3096 3097 void AdapterHandlerEntry::relocate(address new_base) { 3098 address old_base = base_address(); 3099 assert(old_base != nullptr, ""); 3100 ptrdiff_t delta = new_base - old_base; 3101 if (_i2c_entry != nullptr) 3102 _i2c_entry += delta; 3103 if (_c2i_entry != nullptr) 3104 _c2i_entry += delta; 3105 if (_c2i_inline_entry != nullptr) 3106 _c2i_inline_entry += delta; 3107 if (_c2i_inline_ro_entry != nullptr) 3108 _c2i_inline_ro_entry += delta; 3109 if (_c2i_unverified_entry != nullptr) 3110 _c2i_unverified_entry += delta; 3111 if (_c2i_unverified_inline_entry != nullptr) 3112 _c2i_unverified_inline_entry += delta; 3113 if (_c2i_no_clinit_check_entry != nullptr) 3114 _c2i_no_clinit_check_entry += delta; 3115 assert(base_address() == new_base, ""); 3116 } 3117 3118 3119 AdapterHandlerEntry::~AdapterHandlerEntry() { 3120 delete _fingerprint; 3121 if (_sig_cc != nullptr) { 3122 delete _sig_cc; 3123 } 3124 #ifdef ASSERT 3125 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3126 #endif 3127 } 3128 3129 3130 #ifdef ASSERT 3131 // Capture the code before relocation so that it can be compared 3132 // against other versions. If the code is captured after relocation 3133 // then relative instructions won't be equivalent. 3134 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3135 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3136 _saved_code_length = length; 3137 memcpy(_saved_code, buffer, length); 3138 } 3139 3140 3141 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3142 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3143 3144 if (other->_saved_code_length != _saved_code_length) { 3145 return false; 3146 } 3147 3148 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3149 } 3150 #endif 3151 3152 3153 /** 3154 * Create a native wrapper for this native method. The wrapper converts the 3155 * Java-compiled calling convention to the native convention, handles 3156 * arguments, and transitions to native. On return from the native we transition 3157 * back to java blocking if a safepoint is in progress. 3158 */ 3159 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3160 ResourceMark rm; 3161 nmethod* nm = nullptr; 3162 3163 // Check if memory should be freed before allocation 3164 CodeCache::gc_on_allocation(); 3165 3166 assert(method->is_native(), "must be native"); 3167 assert(method->is_special_native_intrinsic() || 3168 method->has_native_function(), "must have something valid to call!"); 3169 3170 { 3171 // Perform the work while holding the lock, but perform any printing outside the lock 3172 MutexLocker mu(AdapterHandlerLibrary_lock); 3173 // See if somebody beat us to it 3174 if (method->code() != nullptr) { 3175 return; 3176 } 3177 3178 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3179 assert(compile_id > 0, "Must generate native wrapper"); 3180 3181 3182 ResourceMark rm; 3183 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3184 if (buf != nullptr) { 3185 CodeBuffer buffer(buf); 3186 3187 if (method->is_continuation_enter_intrinsic()) { 3188 buffer.initialize_stubs_size(192); 3189 } 3190 3191 struct { double data[20]; } locs_buf; 3192 struct { double data[20]; } stubs_locs_buf; 3193 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3194 #if defined(AARCH64) || defined(PPC64) 3195 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3196 // in the constant pool to ensure ordering between the barrier and oops 3197 // accesses. For native_wrappers we need a constant. 3198 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3199 // static java call that is resolved in the runtime. 3200 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3201 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3202 } 3203 #endif 3204 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3205 MacroAssembler _masm(&buffer); 3206 3207 // Fill in the signature array, for the calling-convention call. 3208 const int total_args_passed = method->size_of_parameters(); 3209 3210 BasicType stack_sig_bt[16]; 3211 VMRegPair stack_regs[16]; 3212 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3213 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3214 3215 int i = 0; 3216 if (!method->is_static()) { // Pass in receiver first 3217 sig_bt[i++] = T_OBJECT; 3218 } 3219 SignatureStream ss(method->signature()); 3220 for (; !ss.at_return_type(); ss.next()) { 3221 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3222 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3223 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3224 } 3225 } 3226 assert(i == total_args_passed, ""); 3227 BasicType ret_type = ss.type(); 3228 3229 // Now get the compiled-Java arguments layout. 3230 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3231 3232 // Generate the compiled-to-native wrapper code 3233 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3234 3235 if (nm != nullptr) { 3236 { 3237 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3238 if (nm->make_in_use()) { 3239 method->set_code(method, nm); 3240 } 3241 } 3242 3243 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3244 if (directive->PrintAssemblyOption) { 3245 nm->print_code(); 3246 } 3247 DirectivesStack::release(directive); 3248 } 3249 } 3250 } // Unlock AdapterHandlerLibrary_lock 3251 3252 3253 // Install the generated code. 3254 if (nm != nullptr) { 3255 const char *msg = method->is_static() ? "(static)" : ""; 3256 CompileTask::print_ul(nm, msg); 3257 if (PrintCompilation) { 3258 ttyLocker ttyl; 3259 CompileTask::print(tty, nm, msg); 3260 } 3261 nm->post_compiled_method_load_event(); 3262 } 3263 } 3264 3265 // ------------------------------------------------------------------------- 3266 // Java-Java calling convention 3267 // (what you use when Java calls Java) 3268 3269 //------------------------------name_for_receiver---------------------------------- 3270 // For a given signature, return the VMReg for parameter 0. 3271 VMReg SharedRuntime::name_for_receiver() { 3272 VMRegPair regs; 3273 BasicType sig_bt = T_OBJECT; 3274 (void) java_calling_convention(&sig_bt, ®s, 1); 3275 // Return argument 0 register. In the LP64 build pointers 3276 // take 2 registers, but the VM wants only the 'main' name. 3277 return regs.first(); 3278 } 3279 3280 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3281 // This method is returning a data structure allocating as a 3282 // ResourceObject, so do not put any ResourceMarks in here. 3283 3284 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3285 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3286 int cnt = 0; 3287 if (has_receiver) { 3288 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3289 } 3290 3291 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3292 BasicType type = ss.type(); 3293 sig_bt[cnt++] = type; 3294 if (is_double_word_type(type)) 3295 sig_bt[cnt++] = T_VOID; 3296 } 3297 3298 if (has_appendix) { 3299 sig_bt[cnt++] = T_OBJECT; 3300 } 3301 3302 assert(cnt < 256, "grow table size"); 3303 3304 int comp_args_on_stack; 3305 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3306 3307 // the calling convention doesn't count out_preserve_stack_slots so 3308 // we must add that in to get "true" stack offsets. 3309 3310 if (comp_args_on_stack) { 3311 for (int i = 0; i < cnt; i++) { 3312 VMReg reg1 = regs[i].first(); 3313 if (reg1->is_stack()) { 3314 // Yuck 3315 reg1 = reg1->bias(out_preserve_stack_slots()); 3316 } 3317 VMReg reg2 = regs[i].second(); 3318 if (reg2->is_stack()) { 3319 // Yuck 3320 reg2 = reg2->bias(out_preserve_stack_slots()); 3321 } 3322 regs[i].set_pair(reg2, reg1); 3323 } 3324 } 3325 3326 // results 3327 *arg_size = cnt; 3328 return regs; 3329 } 3330 3331 // OSR Migration Code 3332 // 3333 // This code is used convert interpreter frames into compiled frames. It is 3334 // called from very start of a compiled OSR nmethod. A temp array is 3335 // allocated to hold the interesting bits of the interpreter frame. All 3336 // active locks are inflated to allow them to move. The displaced headers and 3337 // active interpreter locals are copied into the temp buffer. Then we return 3338 // back to the compiled code. The compiled code then pops the current 3339 // interpreter frame off the stack and pushes a new compiled frame. Then it 3340 // copies the interpreter locals and displaced headers where it wants. 3341 // Finally it calls back to free the temp buffer. 3342 // 3343 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3344 3345 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3346 assert(current == JavaThread::current(), "pre-condition"); 3347 3348 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3349 // frame. The stack watermark code below ensures that the interpreted frame is processed 3350 // before it gets unwound. This is helpful as the size of the compiled frame could be 3351 // larger than the interpreted frame, which could result in the new frame not being 3352 // processed correctly. 3353 StackWatermarkSet::before_unwind(current); 3354 3355 // 3356 // This code is dependent on the memory layout of the interpreter local 3357 // array and the monitors. On all of our platforms the layout is identical 3358 // so this code is shared. If some platform lays the their arrays out 3359 // differently then this code could move to platform specific code or 3360 // the code here could be modified to copy items one at a time using 3361 // frame accessor methods and be platform independent. 3362 3363 frame fr = current->last_frame(); 3364 assert(fr.is_interpreted_frame(), ""); 3365 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3366 3367 // Figure out how many monitors are active. 3368 int active_monitor_count = 0; 3369 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3370 kptr < fr.interpreter_frame_monitor_begin(); 3371 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3372 if (kptr->obj() != nullptr) active_monitor_count++; 3373 } 3374 3375 // QQQ we could place number of active monitors in the array so that compiled code 3376 // could double check it. 3377 3378 Method* moop = fr.interpreter_frame_method(); 3379 int max_locals = moop->max_locals(); 3380 // Allocate temp buffer, 1 word per local & 2 per active monitor 3381 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3382 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3383 3384 // Copy the locals. Order is preserved so that loading of longs works. 3385 // Since there's no GC I can copy the oops blindly. 3386 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3387 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3388 (HeapWord*)&buf[0], 3389 max_locals); 3390 3391 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3392 int i = max_locals; 3393 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3394 kptr2 < fr.interpreter_frame_monitor_begin(); 3395 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3396 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3397 BasicLock *lock = kptr2->lock(); 3398 if (LockingMode == LM_LEGACY) { 3399 // Inflate so the object's header no longer refers to the BasicLock. 3400 if (lock->displaced_header().is_unlocked()) { 3401 // The object is locked and the resulting ObjectMonitor* will also be 3402 // locked so it can't be async deflated until ownership is dropped. 3403 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3404 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3405 } 3406 // Now the displaced header is free to move because the 3407 // object's header no longer refers to it. 3408 buf[i] = (intptr_t)lock->displaced_header().value(); 3409 } else if (UseObjectMonitorTable) { 3410 buf[i] = (intptr_t)lock->object_monitor_cache(); 3411 } 3412 #ifdef ASSERT 3413 else { 3414 buf[i] = badDispHeaderOSR; 3415 } 3416 #endif 3417 i++; 3418 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3419 } 3420 } 3421 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3422 3423 RegisterMap map(current, 3424 RegisterMap::UpdateMap::skip, 3425 RegisterMap::ProcessFrames::include, 3426 RegisterMap::WalkContinuation::skip); 3427 frame sender = fr.sender(&map); 3428 if (sender.is_interpreted_frame()) { 3429 current->push_cont_fastpath(sender.sp()); 3430 } 3431 3432 return buf; 3433 JRT_END 3434 3435 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3436 FREE_C_HEAP_ARRAY(intptr_t, buf); 3437 JRT_END 3438 3439 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3440 bool found = false; 3441 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3442 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3443 }; 3444 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3445 _adapter_handler_table->iterate(findblob); 3446 return found; 3447 } 3448 3449 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3450 bool found = false; 3451 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3452 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3453 found = true; 3454 st->print("Adapter for signature: "); 3455 a->print_adapter_on(st); 3456 return true; 3457 } else { 3458 return false; // keep looking 3459 } 3460 }; 3461 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3462 _adapter_handler_table->iterate(findblob); 3463 assert(found, "Should have found handler"); 3464 } 3465 3466 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3467 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3468 if (get_i2c_entry() != nullptr) { 3469 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3470 } 3471 if (get_c2i_entry() != nullptr) { 3472 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3473 } 3474 if (get_c2i_entry() != nullptr) { 3475 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3476 } 3477 if (get_c2i_entry() != nullptr) { 3478 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3479 } 3480 if (get_c2i_unverified_entry() != nullptr) { 3481 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3482 } 3483 if (get_c2i_unverified_entry() != nullptr) { 3484 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3485 } 3486 if (get_c2i_no_clinit_check_entry() != nullptr) { 3487 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3488 } 3489 st->cr(); 3490 } 3491 3492 #ifndef PRODUCT 3493 3494 void AdapterHandlerLibrary::print_statistics() { 3495 print_table_statistics(); 3496 } 3497 3498 #endif /* PRODUCT */ 3499 3500 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3501 assert(current == JavaThread::current(), "pre-condition"); 3502 StackOverflow* overflow_state = current->stack_overflow_state(); 3503 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3504 overflow_state->set_reserved_stack_activation(current->stack_base()); 3505 JRT_END 3506 3507 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3508 ResourceMark rm(current); 3509 frame activation; 3510 nmethod* nm = nullptr; 3511 int count = 1; 3512 3513 assert(fr.is_java_frame(), "Must start on Java frame"); 3514 3515 RegisterMap map(JavaThread::current(), 3516 RegisterMap::UpdateMap::skip, 3517 RegisterMap::ProcessFrames::skip, 3518 RegisterMap::WalkContinuation::skip); // don't walk continuations 3519 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3520 if (!fr.is_java_frame()) { 3521 continue; 3522 } 3523 3524 Method* method = nullptr; 3525 bool found = false; 3526 if (fr.is_interpreted_frame()) { 3527 method = fr.interpreter_frame_method(); 3528 if (method != nullptr && method->has_reserved_stack_access()) { 3529 found = true; 3530 } 3531 } else { 3532 CodeBlob* cb = fr.cb(); 3533 if (cb != nullptr && cb->is_nmethod()) { 3534 nm = cb->as_nmethod(); 3535 method = nm->method(); 3536 // scope_desc_near() must be used, instead of scope_desc_at() because on 3537 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3538 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3539 method = sd->method(); 3540 if (method != nullptr && method->has_reserved_stack_access()) { 3541 found = true; 3542 } 3543 } 3544 } 3545 } 3546 if (found) { 3547 activation = fr; 3548 warning("Potentially dangerous stack overflow in " 3549 "ReservedStackAccess annotated method %s [%d]", 3550 method->name_and_sig_as_C_string(), count++); 3551 EventReservedStackActivation event; 3552 if (event.should_commit()) { 3553 event.set_method(method); 3554 event.commit(); 3555 } 3556 } 3557 } 3558 return activation; 3559 } 3560 3561 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3562 // After any safepoint, just before going back to compiled code, 3563 // we inform the GC that we will be doing initializing writes to 3564 // this object in the future without emitting card-marks, so 3565 // GC may take any compensating steps. 3566 3567 oop new_obj = current->vm_result(); 3568 if (new_obj == nullptr) return; 3569 3570 BarrierSet *bs = BarrierSet::barrier_set(); 3571 bs->on_slowpath_allocation_exit(current, new_obj); 3572 } 3573 3574 // We are at a compiled code to interpreter call. We need backing 3575 // buffers for all inline type arguments. Allocate an object array to 3576 // hold them (convenient because once we're done with it we don't have 3577 // to worry about freeing it). 3578 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 3579 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 3580 ResourceMark rm; 3581 3582 int nb_slots = 0; 3583 InstanceKlass* holder = callee->method_holder(); 3584 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 3585 if (allocate_receiver) { 3586 nb_slots++; 3587 } 3588 int arg_num = callee->is_static() ? 0 : 1; 3589 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3590 BasicType bt = ss.type(); 3591 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3592 nb_slots++; 3593 } 3594 if (bt != T_VOID) { 3595 arg_num++; 3596 } 3597 } 3598 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 3599 objArrayHandle array(THREAD, array_oop); 3600 arg_num = callee->is_static() ? 0 : 1; 3601 int i = 0; 3602 if (allocate_receiver) { 3603 InlineKlass* vk = InlineKlass::cast(holder); 3604 oop res = vk->allocate_instance(CHECK_NULL); 3605 array->obj_at_put(i++, res); 3606 } 3607 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3608 BasicType bt = ss.type(); 3609 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 3610 InlineKlass* vk = ss.as_inline_klass(holder); 3611 assert(vk != nullptr, "Unexpected klass"); 3612 oop res = vk->allocate_instance(CHECK_NULL); 3613 array->obj_at_put(i++, res); 3614 } 3615 if (bt != T_VOID) { 3616 arg_num++; 3617 } 3618 } 3619 return array(); 3620 } 3621 3622 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 3623 methodHandle callee(current, callee_method); 3624 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 3625 current->set_vm_result(array); 3626 current->set_vm_result_2(callee()); // TODO: required to keep callee live? 3627 JRT_END 3628 3629 // We're returning from an interpreted method: load each field into a 3630 // register following the calling convention 3631 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 3632 { 3633 assert(res->klass()->is_inline_klass(), "only inline types here"); 3634 ResourceMark rm; 3635 RegisterMap reg_map(current, 3636 RegisterMap::UpdateMap::include, 3637 RegisterMap::ProcessFrames::include, 3638 RegisterMap::WalkContinuation::skip); 3639 frame stubFrame = current->last_frame(); 3640 frame callerFrame = stubFrame.sender(®_map); 3641 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3642 3643 InlineKlass* vk = InlineKlass::cast(res->klass()); 3644 3645 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3646 const Array<VMRegPair>* regs = vk->return_regs(); 3647 3648 if (regs == nullptr) { 3649 // The fields of the inline klass don't fit in registers, bail out 3650 return; 3651 } 3652 3653 int j = 1; 3654 for (int i = 0; i < sig_vk->length(); i++) { 3655 BasicType bt = sig_vk->at(i)._bt; 3656 if (bt == T_METADATA) { 3657 continue; 3658 } 3659 if (bt == T_VOID) { 3660 if (sig_vk->at(i-1)._bt == T_LONG || 3661 sig_vk->at(i-1)._bt == T_DOUBLE) { 3662 j++; 3663 } 3664 continue; 3665 } 3666 int off = sig_vk->at(i)._offset; 3667 assert(off > 0, "offset in object should be positive"); 3668 VMRegPair pair = regs->at(j); 3669 address loc = reg_map.location(pair.first(), nullptr); 3670 switch(bt) { 3671 case T_BOOLEAN: 3672 *(jboolean*)loc = res->bool_field(off); 3673 break; 3674 case T_CHAR: 3675 *(jchar*)loc = res->char_field(off); 3676 break; 3677 case T_BYTE: 3678 *(jbyte*)loc = res->byte_field(off); 3679 break; 3680 case T_SHORT: 3681 *(jshort*)loc = res->short_field(off); 3682 break; 3683 case T_INT: { 3684 *(jint*)loc = res->int_field(off); 3685 break; 3686 } 3687 case T_LONG: 3688 #ifdef _LP64 3689 *(intptr_t*)loc = res->long_field(off); 3690 #else 3691 Unimplemented(); 3692 #endif 3693 break; 3694 case T_OBJECT: 3695 case T_ARRAY: { 3696 *(oop*)loc = res->obj_field(off); 3697 break; 3698 } 3699 case T_FLOAT: 3700 *(jfloat*)loc = res->float_field(off); 3701 break; 3702 case T_DOUBLE: 3703 *(jdouble*)loc = res->double_field(off); 3704 break; 3705 default: 3706 ShouldNotReachHere(); 3707 } 3708 j++; 3709 } 3710 assert(j == regs->length(), "missed a field?"); 3711 3712 #ifdef ASSERT 3713 VMRegPair pair = regs->at(0); 3714 address loc = reg_map.location(pair.first(), nullptr); 3715 assert(*(oopDesc**)loc == res, "overwritten object"); 3716 #endif 3717 3718 current->set_vm_result(res); 3719 } 3720 JRT_END 3721 3722 // We've returned to an interpreted method, the interpreter needs a 3723 // reference to an inline type instance. Allocate it and initialize it 3724 // from field's values in registers. 3725 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 3726 { 3727 ResourceMark rm; 3728 RegisterMap reg_map(current, 3729 RegisterMap::UpdateMap::include, 3730 RegisterMap::ProcessFrames::include, 3731 RegisterMap::WalkContinuation::skip); 3732 frame stubFrame = current->last_frame(); 3733 frame callerFrame = stubFrame.sender(®_map); 3734 3735 #ifdef ASSERT 3736 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 3737 #endif 3738 3739 if (!is_set_nth_bit(res, 0)) { 3740 // We're not returning with inline type fields in registers (the 3741 // calling convention didn't allow it for this inline klass) 3742 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3743 current->set_vm_result((oopDesc*)res); 3744 assert(verif_vk == nullptr, "broken calling convention"); 3745 return; 3746 } 3747 3748 clear_nth_bit(res, 0); 3749 InlineKlass* vk = (InlineKlass*)res; 3750 assert(verif_vk == vk, "broken calling convention"); 3751 assert(Metaspace::contains((void*)res), "should be klass"); 3752 3753 // Allocate handles for every oop field so they are safe in case of 3754 // a safepoint when allocating 3755 GrowableArray<Handle> handles; 3756 vk->save_oop_fields(reg_map, handles); 3757 3758 // It's unsafe to safepoint until we are here 3759 JRT_BLOCK; 3760 { 3761 JavaThread* THREAD = current; 3762 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3763 current->set_vm_result(vt); 3764 } 3765 JRT_BLOCK_END; 3766 } 3767 JRT_END