1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "metaprogramming/primitiveConversions.hpp"
  52 #include "oops/access.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/inlineKlass.inline.hpp"
  55 #include "oops/klass.hpp"
  56 #include "oops/method.inline.hpp"
  57 #include "oops/objArrayKlass.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/forte.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/nativeLookup.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomicAccess.hpp"
  67 #include "runtime/basicLock.inline.hpp"
  68 #include "runtime/frame.inline.hpp"
  69 #include "runtime/handles.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/interfaceSupport.inline.hpp"
  72 #include "runtime/java.hpp"
  73 #include "runtime/javaCalls.hpp"
  74 #include "runtime/jniHandles.inline.hpp"
  75 #include "runtime/osThread.hpp"
  76 #include "runtime/perfData.hpp"
  77 #include "runtime/sharedRuntime.hpp"
  78 #include "runtime/signature.hpp"
  79 #include "runtime/stackWatermarkSet.hpp"
  80 #include "runtime/stubRoutines.hpp"
  81 #include "runtime/synchronizer.inline.hpp"
  82 #include "runtime/timerTrace.hpp"
  83 #include "runtime/vframe.inline.hpp"
  84 #include "runtime/vframeArray.hpp"
  85 #include "runtime/vm_version.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/globalDefinitions.hpp"
  90 #include "utilities/hashTable.hpp"
  91 #include "utilities/macros.hpp"
  92 #include "utilities/xmlstream.hpp"
  93 #ifdef COMPILER1
  94 #include "c1/c1_Runtime1.hpp"
  95 #endif
  96 #if INCLUDE_JFR
  97 #include "jfr/jfr.inline.hpp"
  98 #endif
  99 
 100 // Shared runtime stub routines reside in their own unique blob with a
 101 // single entry point
 102 
 103 
 104 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 105   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 106   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 107 #undef SHARED_STUB_FIELD_DEFINE
 108 
 109 nmethod*            SharedRuntime::_cont_doYield_stub;
 110 
 111 #if 0
 112 // TODO tweak global stub name generation to match this
 113 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 114 const char *SharedRuntime::_stub_names[] = {
 115   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 116 };
 117 #endif
 118 
 119 //----------------------------generate_stubs-----------------------------------
 120 void SharedRuntime::generate_initial_stubs() {
 121   // Build this early so it's available for the interpreter.
 122   _throw_StackOverflowError_blob =
 123     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 124                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 125 }
 126 
 127 void SharedRuntime::generate_stubs() {
 128   _wrong_method_blob =
 129     generate_resolve_blob(StubId::shared_wrong_method_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 131   _wrong_method_abstract_blob =
 132     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 134   _ic_miss_blob =
 135     generate_resolve_blob(StubId::shared_ic_miss_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 137   _resolve_opt_virtual_call_blob =
 138     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 140   _resolve_virtual_call_blob =
 141     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 142                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 143   _resolve_static_call_blob =
 144     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 145                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 146 
 147   _throw_delayed_StackOverflowError_blob =
 148     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 149                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 150 
 151   _throw_AbstractMethodError_blob =
 152     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 153                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 154 
 155   _throw_IncompatibleClassChangeError_blob =
 156     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 157                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 158 
 159   _throw_NullPointerException_at_call_blob =
 160     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 161                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 162 
 163 #if COMPILER2_OR_JVMCI
 164   // Vectors are generated only by C2 and JVMCI.
 165   bool support_wide = is_wide_vector(MaxVectorSize);
 166   if (support_wide) {
 167     _polling_page_vectors_safepoint_handler_blob =
 168       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 169                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 170   }
 171 #endif // COMPILER2_OR_JVMCI
 172   _polling_page_safepoint_handler_blob =
 173     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 174                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 175   _polling_page_return_handler_blob =
 176     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 177                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 178 
 179   generate_deopt_blob();
 180 }
 181 
 182 void SharedRuntime::init_adapter_library() {
 183   AdapterHandlerLibrary::initialize();
 184 }
 185 
 186 #if INCLUDE_JFR
 187 //------------------------------generate jfr runtime stubs ------
 188 void SharedRuntime::generate_jfr_stubs() {
 189   ResourceMark rm;
 190   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 191   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 192 
 193   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 194   _jfr_return_lease_blob = generate_jfr_return_lease();
 195 }
 196 
 197 #endif // INCLUDE_JFR
 198 
 199 #include <math.h>
 200 
 201 // Implementation of SharedRuntime
 202 
 203 #ifndef PRODUCT
 204 // For statistics
 205 uint SharedRuntime::_ic_miss_ctr = 0;
 206 uint SharedRuntime::_wrong_method_ctr = 0;
 207 uint SharedRuntime::_resolve_static_ctr = 0;
 208 uint SharedRuntime::_resolve_virtual_ctr = 0;
 209 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 210 uint SharedRuntime::_implicit_null_throws = 0;
 211 uint SharedRuntime::_implicit_div0_throws = 0;
 212 
 213 int64_t SharedRuntime::_nof_normal_calls = 0;
 214 int64_t SharedRuntime::_nof_inlined_calls = 0;
 215 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 216 int64_t SharedRuntime::_nof_static_calls = 0;
 217 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 218 int64_t SharedRuntime::_nof_interface_calls = 0;
 219 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 220 
 221 uint SharedRuntime::_new_instance_ctr=0;
 222 uint SharedRuntime::_new_array_ctr=0;
 223 uint SharedRuntime::_multi2_ctr=0;
 224 uint SharedRuntime::_multi3_ctr=0;
 225 uint SharedRuntime::_multi4_ctr=0;
 226 uint SharedRuntime::_multi5_ctr=0;
 227 uint SharedRuntime::_mon_enter_stub_ctr=0;
 228 uint SharedRuntime::_mon_exit_stub_ctr=0;
 229 uint SharedRuntime::_mon_enter_ctr=0;
 230 uint SharedRuntime::_mon_exit_ctr=0;
 231 uint SharedRuntime::_partial_subtype_ctr=0;
 232 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 233 uint SharedRuntime::_jshort_array_copy_ctr=0;
 234 uint SharedRuntime::_jint_array_copy_ctr=0;
 235 uint SharedRuntime::_jlong_array_copy_ctr=0;
 236 uint SharedRuntime::_oop_array_copy_ctr=0;
 237 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 238 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 239 uint SharedRuntime::_generic_array_copy_ctr=0;
 240 uint SharedRuntime::_slow_array_copy_ctr=0;
 241 uint SharedRuntime::_find_handler_ctr=0;
 242 uint SharedRuntime::_rethrow_ctr=0;
 243 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 244 
 245 int     SharedRuntime::_ICmiss_index                    = 0;
 246 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 247 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 248 
 249 
 250 void SharedRuntime::trace_ic_miss(address at) {
 251   for (int i = 0; i < _ICmiss_index; i++) {
 252     if (_ICmiss_at[i] == at) {
 253       _ICmiss_count[i]++;
 254       return;
 255     }
 256   }
 257   int index = _ICmiss_index++;
 258   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 259   _ICmiss_at[index] = at;
 260   _ICmiss_count[index] = 1;
 261 }
 262 
 263 void SharedRuntime::print_ic_miss_histogram() {
 264   if (ICMissHistogram) {
 265     tty->print_cr("IC Miss Histogram:");
 266     int tot_misses = 0;
 267     for (int i = 0; i < _ICmiss_index; i++) {
 268       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 269       tot_misses += _ICmiss_count[i];
 270     }
 271     tty->print_cr("Total IC misses: %7d", tot_misses);
 272   }
 273 }
 274 
 275 #ifdef COMPILER2
 276 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 277 void SharedRuntime::debug_print_value(jboolean x) {
 278   tty->print_cr("boolean %d", x);
 279 }
 280 
 281 void SharedRuntime::debug_print_value(jbyte x) {
 282   tty->print_cr("byte %d", x);
 283 }
 284 
 285 void SharedRuntime::debug_print_value(jshort x) {
 286   tty->print_cr("short %d", x);
 287 }
 288 
 289 void SharedRuntime::debug_print_value(jchar x) {
 290   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 291 }
 292 
 293 void SharedRuntime::debug_print_value(jint x) {
 294   tty->print_cr("int %d", x);
 295 }
 296 
 297 void SharedRuntime::debug_print_value(jlong x) {
 298   tty->print_cr("long " JLONG_FORMAT, x);
 299 }
 300 
 301 void SharedRuntime::debug_print_value(jfloat x) {
 302   tty->print_cr("float %f", x);
 303 }
 304 
 305 void SharedRuntime::debug_print_value(jdouble x) {
 306   tty->print_cr("double %lf", x);
 307 }
 308 
 309 void SharedRuntime::debug_print_value(oopDesc* x) {
 310   x->print();
 311 }
 312 #endif // COMPILER2
 313 
 314 #endif // PRODUCT
 315 
 316 
 317 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 318   return x * y;
 319 JRT_END
 320 
 321 
 322 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 323   if (x == min_jlong && y == CONST64(-1)) {
 324     return x;
 325   } else {
 326     return x / y;
 327   }
 328 JRT_END
 329 
 330 
 331 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 332   if (x == min_jlong && y == CONST64(-1)) {
 333     return 0;
 334   } else {
 335     return x % y;
 336   }
 337 JRT_END
 338 
 339 
 340 #ifdef _WIN64
 341 const juint  float_sign_mask  = 0x7FFFFFFF;
 342 const juint  float_infinity   = 0x7F800000;
 343 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 344 const julong double_infinity  = CONST64(0x7FF0000000000000);
 345 #endif
 346 
 347 #if !defined(X86)
 348 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 349 #ifdef _WIN64
 350   // 64-bit Windows on amd64 returns the wrong values for
 351   // infinity operands.
 352   juint xbits = PrimitiveConversions::cast<juint>(x);
 353   juint ybits = PrimitiveConversions::cast<juint>(y);
 354   // x Mod Infinity == x unless x is infinity
 355   if (((xbits & float_sign_mask) != float_infinity) &&
 356        ((ybits & float_sign_mask) == float_infinity) ) {
 357     return x;
 358   }
 359   return ((jfloat)fmod_winx64((double)x, (double)y));
 360 #else
 361   return ((jfloat)fmod((double)x,(double)y));
 362 #endif
 363 JRT_END
 364 
 365 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 366 #ifdef _WIN64
 367   julong xbits = PrimitiveConversions::cast<julong>(x);
 368   julong ybits = PrimitiveConversions::cast<julong>(y);
 369   // x Mod Infinity == x unless x is infinity
 370   if (((xbits & double_sign_mask) != double_infinity) &&
 371        ((ybits & double_sign_mask) == double_infinity) ) {
 372     return x;
 373   }
 374   return ((jdouble)fmod_winx64((double)x, (double)y));
 375 #else
 376   return ((jdouble)fmod((double)x,(double)y));
 377 #endif
 378 JRT_END
 379 #endif // !X86
 380 
 381 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 382   return (jfloat)x;
 383 JRT_END
 384 
 385 #ifdef __SOFTFP__
 386 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 387   return x + y;
 388 JRT_END
 389 
 390 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 391   return x - y;
 392 JRT_END
 393 
 394 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 395   return x * y;
 396 JRT_END
 397 
 398 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 399   return x / y;
 400 JRT_END
 401 
 402 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 403   return x + y;
 404 JRT_END
 405 
 406 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 407   return x - y;
 408 JRT_END
 409 
 410 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 411   return x * y;
 412 JRT_END
 413 
 414 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 415   return x / y;
 416 JRT_END
 417 
 418 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 419   return (jdouble)x;
 420 JRT_END
 421 
 422 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 423   return (jdouble)x;
 424 JRT_END
 425 
 426 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 427   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 428 JRT_END
 429 
 430 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 431   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 432 JRT_END
 433 
 434 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 435   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 436 JRT_END
 437 
 438 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 439   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 440 JRT_END
 441 
 442 // Functions to return the opposite of the aeabi functions for nan.
 443 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 444   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 445 JRT_END
 446 
 447 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 448   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 449 JRT_END
 450 
 451 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 452   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 453 JRT_END
 454 
 455 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 456   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 457 JRT_END
 458 
 459 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 460   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 461 JRT_END
 462 
 463 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 464   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 465 JRT_END
 466 
 467 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 468   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 469 JRT_END
 470 
 471 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 472   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 473 JRT_END
 474 
 475 // Intrinsics make gcc generate code for these.
 476 float  SharedRuntime::fneg(float f)   {
 477   return -f;
 478 }
 479 
 480 double SharedRuntime::dneg(double f)  {
 481   return -f;
 482 }
 483 
 484 #endif // __SOFTFP__
 485 
 486 #if defined(__SOFTFP__) || defined(E500V2)
 487 // Intrinsics make gcc generate code for these.
 488 double SharedRuntime::dabs(double f)  {
 489   return (f <= (double)0.0) ? (double)0.0 - f : f;
 490 }
 491 
 492 #endif
 493 
 494 #if defined(__SOFTFP__)
 495 double SharedRuntime::dsqrt(double f) {
 496   return sqrt(f);
 497 }
 498 #endif
 499 
 500 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 501   if (g_isnan(x))
 502     return 0;
 503   if (x >= (jfloat) max_jint)
 504     return max_jint;
 505   if (x <= (jfloat) min_jint)
 506     return min_jint;
 507   return (jint) x;
 508 JRT_END
 509 
 510 
 511 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 512   if (g_isnan(x))
 513     return 0;
 514   if (x >= (jfloat) max_jlong)
 515     return max_jlong;
 516   if (x <= (jfloat) min_jlong)
 517     return min_jlong;
 518   return (jlong) x;
 519 JRT_END
 520 
 521 
 522 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 523   if (g_isnan(x))
 524     return 0;
 525   if (x >= (jdouble) max_jint)
 526     return max_jint;
 527   if (x <= (jdouble) min_jint)
 528     return min_jint;
 529   return (jint) x;
 530 JRT_END
 531 
 532 
 533 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 534   if (g_isnan(x))
 535     return 0;
 536   if (x >= (jdouble) max_jlong)
 537     return max_jlong;
 538   if (x <= (jdouble) min_jlong)
 539     return min_jlong;
 540   return (jlong) x;
 541 JRT_END
 542 
 543 
 544 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 545   return (jfloat)x;
 546 JRT_END
 547 
 548 
 549 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 550   return (jfloat)x;
 551 JRT_END
 552 
 553 
 554 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 555   return (jdouble)x;
 556 JRT_END
 557 
 558 
 559 // Exception handling across interpreter/compiler boundaries
 560 //
 561 // exception_handler_for_return_address(...) returns the continuation address.
 562 // The continuation address is the entry point of the exception handler of the
 563 // previous frame depending on the return address.
 564 
 565 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 566   // Note: This is called when we have unwound the frame of the callee that did
 567   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 568   // Notably, the stack is not walkable at this point, and hence the check must
 569   // be deferred until later. Specifically, any of the handlers returned here in
 570   // this function, will get dispatched to, and call deferred checks to
 571   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 572   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 573   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 574 
 575 #if INCLUDE_JVMCI
 576   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 577   // and other exception handler continuations do not read it
 578   current->set_exception_pc(nullptr);
 579 #endif // INCLUDE_JVMCI
 580 
 581   if (Continuation::is_return_barrier_entry(return_address)) {
 582     return StubRoutines::cont_returnBarrierExc();
 583   }
 584 
 585   // The fastest case first
 586   CodeBlob* blob = CodeCache::find_blob(return_address);
 587   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 588   if (nm != nullptr) {
 589     // native nmethods don't have exception handlers
 590     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 591     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 592     if (nm->is_deopt_pc(return_address)) {
 593       // If we come here because of a stack overflow, the stack may be
 594       // unguarded. Reguard the stack otherwise if we return to the
 595       // deopt blob and the stack bang causes a stack overflow we
 596       // crash.
 597       StackOverflow* overflow_state = current->stack_overflow_state();
 598       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 599       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 600         overflow_state->set_reserved_stack_activation(current->stack_base());
 601       }
 602       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 603       // The deferred StackWatermarkSet::after_unwind check will be performed in
 604       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 605       return SharedRuntime::deopt_blob()->unpack_with_exception();
 606     } else {
 607       // The deferred StackWatermarkSet::after_unwind check will be performed in
 608       // * OptoRuntime::handle_exception_C_helper for C2 code
 609       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 610       return nm->exception_begin();
 611     }
 612   }
 613 
 614   // Entry code
 615   if (StubRoutines::returns_to_call_stub(return_address)) {
 616     // The deferred StackWatermarkSet::after_unwind check will be performed in
 617     // JavaCallWrapper::~JavaCallWrapper
 618     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 619     return StubRoutines::catch_exception_entry();
 620   }
 621   if (blob != nullptr && blob->is_upcall_stub()) {
 622     return StubRoutines::upcall_stub_exception_handler();
 623   }
 624   // Interpreted code
 625   if (Interpreter::contains(return_address)) {
 626     // The deferred StackWatermarkSet::after_unwind check will be performed in
 627     // InterpreterRuntime::exception_handler_for_exception
 628     return Interpreter::rethrow_exception_entry();
 629   }
 630 
 631   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 632   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 633 
 634 #ifndef PRODUCT
 635   { ResourceMark rm;
 636     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 637     os::print_location(tty, (intptr_t)return_address);
 638     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 639     tty->print_cr("b) other problem");
 640   }
 641 #endif // PRODUCT
 642   ShouldNotReachHere();
 643   return nullptr;
 644 }
 645 
 646 
 647 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 648   return raw_exception_handler_for_return_address(current, return_address);
 649 JRT_END
 650 
 651 
 652 address SharedRuntime::get_poll_stub(address pc) {
 653   address stub;
 654   // Look up the code blob
 655   CodeBlob *cb = CodeCache::find_blob(pc);
 656 
 657   // Should be an nmethod
 658   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 659 
 660   // Look up the relocation information
 661   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 662       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 663 
 664 #ifdef ASSERT
 665   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 666     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 667     Disassembler::decode(cb);
 668     fatal("Only polling locations are used for safepoint");
 669   }
 670 #endif
 671 
 672   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 673   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 674   if (at_poll_return) {
 675     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 676            "polling page return stub not created yet");
 677     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 678   } else if (has_wide_vectors) {
 679     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 680            "polling page vectors safepoint stub not created yet");
 681     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 682   } else {
 683     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 684            "polling page safepoint stub not created yet");
 685     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 686   }
 687   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 688                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 689                        p2i(Thread::current()),
 690                        Thread::current()->osthread()->thread_id(),
 691                        p2i(pc),
 692                        at_poll_return ? "return" : "loop",
 693                        p2i(stub));
 694   return stub;
 695 }
 696 
 697 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 698   if (JvmtiExport::can_post_on_exceptions()) {
 699     vframeStream vfst(current, true);
 700     methodHandle method = methodHandle(current, vfst.method());
 701     address bcp = method()->bcp_from(vfst.bci());
 702     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 703   }
 704 
 705 #if INCLUDE_JVMCI
 706   if (EnableJVMCI) {
 707     vframeStream vfst(current, true);
 708     methodHandle method = methodHandle(current, vfst.method());
 709     int bci = vfst.bci();
 710     MethodData* trap_mdo = method->method_data();
 711     if (trap_mdo != nullptr) {
 712       // Set exception_seen if the exceptional bytecode is an invoke
 713       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 714       if (call.is_valid()) {
 715         ResourceMark rm(current);
 716 
 717         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 718         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 719 
 720         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 721         if (pdata != nullptr && pdata->is_BitData()) {
 722           BitData* bit_data = (BitData*) pdata;
 723           bit_data->set_exception_seen();
 724         }
 725       }
 726     }
 727   }
 728 #endif
 729 
 730   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 731 }
 732 
 733 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 734   Handle h_exception = Exceptions::new_exception(current, name, message);
 735   throw_and_post_jvmti_exception(current, h_exception);
 736 }
 737 
 738 #if INCLUDE_JVMTI
 739 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 740   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 741   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 742   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 743   JNIHandles::destroy_local(vthread);
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 747   assert(hide == JNI_TRUE, "must be VTMS transition start");
 748   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 749   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 750   JNIHandles::destroy_local(vthread);
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 754   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 755   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 756   JNIHandles::destroy_local(vthread);
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 760   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 761   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 762   JNIHandles::destroy_local(vthread);
 763 JRT_END
 764 #endif // INCLUDE_JVMTI
 765 
 766 // The interpreter code to call this tracing function is only
 767 // called/generated when UL is on for redefine, class and has the right level
 768 // and tags. Since obsolete methods are never compiled, we don't have
 769 // to modify the compilers to generate calls to this function.
 770 //
 771 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 772     JavaThread* thread, Method* method))
 773   if (method->is_obsolete()) {
 774     // We are calling an obsolete method, but this is not necessarily
 775     // an error. Our method could have been redefined just after we
 776     // fetched the Method* from the constant pool.
 777     ResourceMark rm;
 778     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 779   }
 780   return 0;
 781 JRT_END
 782 
 783 // ret_pc points into caller; we are returning caller's exception handler
 784 // for given exception
 785 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 786 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 787                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 788   assert(nm != nullptr, "must exist");
 789   ResourceMark rm;
 790 
 791 #if INCLUDE_JVMCI
 792   if (nm->is_compiled_by_jvmci()) {
 793     // lookup exception handler for this pc
 794     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 795     ExceptionHandlerTable table(nm);
 796     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 797     if (t != nullptr) {
 798       return nm->code_begin() + t->pco();
 799     } else {
 800       bool make_not_entrant = true;
 801       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 802     }
 803   }
 804 #endif // INCLUDE_JVMCI
 805 
 806   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 807   // determine handler bci, if any
 808   EXCEPTION_MARK;
 809 
 810   int handler_bci = -1;
 811   int scope_depth = 0;
 812   if (!force_unwind) {
 813     int bci = sd->bci();
 814     bool recursive_exception = false;
 815     do {
 816       bool skip_scope_increment = false;
 817       // exception handler lookup
 818       Klass* ek = exception->klass();
 819       methodHandle mh(THREAD, sd->method());
 820       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 821       if (HAS_PENDING_EXCEPTION) {
 822         recursive_exception = true;
 823         // We threw an exception while trying to find the exception handler.
 824         // Transfer the new exception to the exception handle which will
 825         // be set into thread local storage, and do another lookup for an
 826         // exception handler for this exception, this time starting at the
 827         // BCI of the exception handler which caused the exception to be
 828         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 829         // argument to ensure that the correct exception is thrown (4870175).
 830         recursive_exception_occurred = true;
 831         exception = Handle(THREAD, PENDING_EXCEPTION);
 832         CLEAR_PENDING_EXCEPTION;
 833         if (handler_bci >= 0) {
 834           bci = handler_bci;
 835           handler_bci = -1;
 836           skip_scope_increment = true;
 837         }
 838       }
 839       else {
 840         recursive_exception = false;
 841       }
 842       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 843         sd = sd->sender();
 844         if (sd != nullptr) {
 845           bci = sd->bci();
 846         }
 847         ++scope_depth;
 848       }
 849     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 850   }
 851 
 852   // found handling method => lookup exception handler
 853   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 854 
 855   ExceptionHandlerTable table(nm);
 856   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 857 
 858   // If the compiler did not anticipate a recursive exception, resulting in an exception
 859   // thrown from the catch bci, then the compiled exception handler might be missing.
 860   // This is rare.  Just deoptimize and let the interpreter handle it.
 861   if (t == nullptr && recursive_exception_occurred) {
 862     bool make_not_entrant = false;
 863     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 864   }
 865 
 866   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 867     // Allow abbreviated catch tables.  The idea is to allow a method
 868     // to materialize its exceptions without committing to the exact
 869     // routing of exceptions.  In particular this is needed for adding
 870     // a synthetic handler to unlock monitors when inlining
 871     // synchronized methods since the unlock path isn't represented in
 872     // the bytecodes.
 873     t = table.entry_for(catch_pco, -1, 0);
 874   }
 875 
 876 #ifdef COMPILER1
 877   if (t == nullptr && nm->is_compiled_by_c1()) {
 878     assert(nm->unwind_handler_begin() != nullptr, "");
 879     return nm->unwind_handler_begin();
 880   }
 881 #endif
 882 
 883   if (t == nullptr) {
 884     ttyLocker ttyl;
 885     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 886     tty->print_cr("   Exception:");
 887     exception->print();
 888     tty->cr();
 889     tty->print_cr(" Compiled exception table :");
 890     table.print();
 891     nm->print();
 892     nm->print_code();
 893     guarantee(false, "missing exception handler");
 894     return nullptr;
 895   }
 896 
 897   if (handler_bci != -1) { // did we find a handler in this method?
 898     sd->method()->set_exception_handler_entered(handler_bci); // profile
 899   }
 900   return nm->code_begin() + t->pco();
 901 }
 902 
 903 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 904   // These errors occur only at call sites
 905   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 906 JRT_END
 907 
 908 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 909   // These errors occur only at call sites
 910   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 911 JRT_END
 912 
 913 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 914   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 915 JRT_END
 916 
 917 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 918   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 919 JRT_END
 920 
 921 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 922   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 923   // cache sites (when the callee activation is not yet set up) so we are at a call site
 924   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 925 JRT_END
 926 
 927 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 928   throw_StackOverflowError_common(current, false);
 929 JRT_END
 930 
 931 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 932   throw_StackOverflowError_common(current, true);
 933 JRT_END
 934 
 935 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 936   // We avoid using the normal exception construction in this case because
 937   // it performs an upcall to Java, and we're already out of stack space.
 938   JavaThread* THREAD = current; // For exception macros.
 939   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 940   oop exception_oop = k->allocate_instance(CHECK);
 941   if (delayed) {
 942     java_lang_Throwable::set_message(exception_oop,
 943                                      Universe::delayed_stack_overflow_error_message());
 944   }
 945   Handle exception (current, exception_oop);
 946   if (StackTraceInThrowable) {
 947     java_lang_Throwable::fill_in_stack_trace(exception);
 948   }
 949   // Remove the ScopedValue bindings in case we got a
 950   // StackOverflowError while we were trying to remove ScopedValue
 951   // bindings.
 952   current->clear_scopedValueBindings();
 953   // Increment counter for hs_err file reporting
 954   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 955   throw_and_post_jvmti_exception(current, exception);
 956 }
 957 
 958 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 959                                                            address pc,
 960                                                            ImplicitExceptionKind exception_kind)
 961 {
 962   address target_pc = nullptr;
 963 
 964   if (Interpreter::contains(pc)) {
 965     switch (exception_kind) {
 966       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 967       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 968       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 969       default:                      ShouldNotReachHere();
 970     }
 971   } else {
 972     switch (exception_kind) {
 973       case STACK_OVERFLOW: {
 974         // Stack overflow only occurs upon frame setup; the callee is
 975         // going to be unwound. Dispatch to a shared runtime stub
 976         // which will cause the StackOverflowError to be fabricated
 977         // and processed.
 978         // Stack overflow should never occur during deoptimization:
 979         // the compiled method bangs the stack by as much as the
 980         // interpreter would need in case of a deoptimization. The
 981         // deoptimization blob and uncommon trap blob bang the stack
 982         // in a debug VM to verify the correctness of the compiled
 983         // method stack banging.
 984         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 985         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 986         return SharedRuntime::throw_StackOverflowError_entry();
 987       }
 988 
 989       case IMPLICIT_NULL: {
 990         if (VtableStubs::contains(pc)) {
 991           // We haven't yet entered the callee frame. Fabricate an
 992           // exception and begin dispatching it in the caller. Since
 993           // the caller was at a call site, it's safe to destroy all
 994           // caller-saved registers, as these entry points do.
 995           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 996 
 997           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 998           if (vt_stub == nullptr) return nullptr;
 999 
1000           if (vt_stub->is_abstract_method_error(pc)) {
1001             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1002             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1003             // Instead of throwing the abstract method error here directly, we re-resolve
1004             // and will throw the AbstractMethodError during resolve. As a result, we'll
1005             // get a more detailed error message.
1006             return SharedRuntime::get_handle_wrong_method_stub();
1007           } else {
1008             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1009             // Assert that the signal comes from the expected location in stub code.
1010             assert(vt_stub->is_null_pointer_exception(pc),
1011                    "obtained signal from unexpected location in stub code");
1012             return SharedRuntime::throw_NullPointerException_at_call_entry();
1013           }
1014         } else {
1015           CodeBlob* cb = CodeCache::find_blob(pc);
1016 
1017           // If code blob is null, then return null to signal handler to report the SEGV error.
1018           if (cb == nullptr) return nullptr;
1019 
1020           // Exception happened in CodeCache. Must be either:
1021           // 1. Inline-cache check in C2I handler blob,
1022           // 2. Inline-cache check in nmethod, or
1023           // 3. Implicit null exception in nmethod
1024 
1025           if (!cb->is_nmethod()) {
1026             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1027             if (!is_in_blob) {
1028               // Allow normal crash reporting to handle this
1029               return nullptr;
1030             }
1031             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1032             // There is no handler here, so we will simply unwind.
1033             return SharedRuntime::throw_NullPointerException_at_call_entry();
1034           }
1035 
1036           // Otherwise, it's a compiled method.  Consult its exception handlers.
1037           nmethod* nm = cb->as_nmethod();
1038           if (nm->inlinecache_check_contains(pc)) {
1039             // exception happened inside inline-cache check code
1040             // => the nmethod is not yet active (i.e., the frame
1041             // is not set up yet) => use return address pushed by
1042             // caller => don't push another return address
1043             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1044             return SharedRuntime::throw_NullPointerException_at_call_entry();
1045           }
1046 
1047           if (nm->method()->is_method_handle_intrinsic()) {
1048             // exception happened inside MH dispatch code, similar to a vtable stub
1049             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1050             return SharedRuntime::throw_NullPointerException_at_call_entry();
1051           }
1052 
1053 #ifndef PRODUCT
1054           _implicit_null_throws++;
1055 #endif
1056           target_pc = nm->continuation_for_implicit_null_exception(pc);
1057           // If there's an unexpected fault, target_pc might be null,
1058           // in which case we want to fall through into the normal
1059           // error handling code.
1060         }
1061 
1062         break; // fall through
1063       }
1064 
1065 
1066       case IMPLICIT_DIVIDE_BY_ZERO: {
1067         nmethod* nm = CodeCache::find_nmethod(pc);
1068         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1069 #ifndef PRODUCT
1070         _implicit_div0_throws++;
1071 #endif
1072         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1073         // If there's an unexpected fault, target_pc might be null,
1074         // in which case we want to fall through into the normal
1075         // error handling code.
1076         break; // fall through
1077       }
1078 
1079       default: ShouldNotReachHere();
1080     }
1081 
1082     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1083 
1084     if (exception_kind == IMPLICIT_NULL) {
1085 #ifndef PRODUCT
1086       // for AbortVMOnException flag
1087       Exceptions::debug_check_abort("java.lang.NullPointerException");
1088 #endif //PRODUCT
1089       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1090     } else {
1091 #ifndef PRODUCT
1092       // for AbortVMOnException flag
1093       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1094 #endif //PRODUCT
1095       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1096     }
1097     return target_pc;
1098   }
1099 
1100   ShouldNotReachHere();
1101   return nullptr;
1102 }
1103 
1104 
1105 /**
1106  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1107  * installed in the native function entry of all native Java methods before
1108  * they get linked to their actual native methods.
1109  *
1110  * \note
1111  * This method actually never gets called!  The reason is because
1112  * the interpreter's native entries call NativeLookup::lookup() which
1113  * throws the exception when the lookup fails.  The exception is then
1114  * caught and forwarded on the return from NativeLookup::lookup() call
1115  * before the call to the native function.  This might change in the future.
1116  */
1117 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1118 {
1119   // We return a bad value here to make sure that the exception is
1120   // forwarded before we look at the return value.
1121   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1122 }
1123 JNI_END
1124 
1125 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1126   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1127 }
1128 
1129 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1130 #if INCLUDE_JVMCI
1131   if (!obj->klass()->has_finalizer()) {
1132     return;
1133   }
1134 #endif // INCLUDE_JVMCI
1135   assert(oopDesc::is_oop(obj), "must be a valid oop");
1136   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1137   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1138 JRT_END
1139 
1140 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1141   assert(thread != nullptr, "No thread");
1142   if (thread == nullptr) {
1143     return 0;
1144   }
1145   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1146             "current cannot touch oops after its GC barrier is detached.");
1147   oop obj = thread->threadObj();
1148   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1149 }
1150 
1151 /**
1152  * This function ought to be a void function, but cannot be because
1153  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1154  * 6254741.  Once that is fixed we can remove the dummy return value.
1155  */
1156 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1157   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1158 }
1159 
1160 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1161   return dtrace_object_alloc(thread, o, o->size());
1162 }
1163 
1164 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1165   assert(DTraceAllocProbes, "wrong call");
1166   Klass* klass = o->klass();
1167   Symbol* name = klass->name();
1168   HOTSPOT_OBJECT_ALLOC(
1169                    get_java_tid(thread),
1170                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1171   return 0;
1172 }
1173 
1174 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1175     JavaThread* current, Method* method))
1176   assert(current == JavaThread::current(), "pre-condition");
1177 
1178   assert(DTraceMethodProbes, "wrong call");
1179   Symbol* kname = method->klass_name();
1180   Symbol* name = method->name();
1181   Symbol* sig = method->signature();
1182   HOTSPOT_METHOD_ENTRY(
1183       get_java_tid(current),
1184       (char *) kname->bytes(), kname->utf8_length(),
1185       (char *) name->bytes(), name->utf8_length(),
1186       (char *) sig->bytes(), sig->utf8_length());
1187   return 0;
1188 JRT_END
1189 
1190 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1191     JavaThread* current, Method* method))
1192   assert(current == JavaThread::current(), "pre-condition");
1193   assert(DTraceMethodProbes, "wrong call");
1194   Symbol* kname = method->klass_name();
1195   Symbol* name = method->name();
1196   Symbol* sig = method->signature();
1197   HOTSPOT_METHOD_RETURN(
1198       get_java_tid(current),
1199       (char *) kname->bytes(), kname->utf8_length(),
1200       (char *) name->bytes(), name->utf8_length(),
1201       (char *) sig->bytes(), sig->utf8_length());
1202   return 0;
1203 JRT_END
1204 
1205 
1206 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1207 // for a call current in progress, i.e., arguments has been pushed on stack
1208 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1209 // vtable updates, etc.  Caller frame must be compiled.
1210 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1211   JavaThread* current = THREAD;
1212   ResourceMark rm(current);
1213 
1214   // last java frame on stack (which includes native call frames)
1215   vframeStream vfst(current, true);  // Do not skip and javaCalls
1216 
1217   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1218 }
1219 
1220 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1221   nmethod* caller = vfst.nm();
1222 
1223   address pc = vfst.frame_pc();
1224   { // Get call instruction under lock because another thread may be busy patching it.
1225     CompiledICLocker ic_locker(caller);
1226     return caller->attached_method_before_pc(pc);
1227   }
1228   return nullptr;
1229 }
1230 
1231 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1232 // for a call current in progress, i.e., arguments has been pushed on stack
1233 // but callee has not been invoked yet.  Caller frame must be compiled.
1234 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1235                                               CallInfo& callinfo, TRAPS) {
1236   Handle receiver;
1237   Handle nullHandle;  // create a handy null handle for exception returns
1238   JavaThread* current = THREAD;
1239 
1240   assert(!vfst.at_end(), "Java frame must exist");
1241 
1242   // Find caller and bci from vframe
1243   methodHandle caller(current, vfst.method());
1244   int          bci   = vfst.bci();
1245 
1246   if (caller->is_continuation_enter_intrinsic()) {
1247     bc = Bytecodes::_invokestatic;
1248     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1249     return receiver;
1250   }
1251 
1252   // Substitutability test implementation piggy backs on static call resolution
1253   Bytecodes::Code code = caller->java_code_at(bci);
1254   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1255     bc = Bytecodes::_invokestatic;
1256     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1257     assert(attached_method.not_null(), "must have attached method");
1258     vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH);
1259     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1260 #ifdef ASSERT
1261     Symbol* subst_method_name = UseAltSubstitutabilityMethod ? vmSymbols::isSubstitutableAlt_name() : vmSymbols::isSubstitutable_name();
1262     Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(subst_method_name, vmSymbols::object_object_boolean_signature());
1263     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1264 #endif
1265     return receiver;
1266   }
1267 
1268   Bytecode_invoke bytecode(caller, bci);
1269   int bytecode_index = bytecode.index();
1270   bc = bytecode.invoke_code();
1271 
1272   methodHandle attached_method(current, extract_attached_method(vfst));
1273   if (attached_method.not_null()) {
1274     Method* callee = bytecode.static_target(CHECK_NH);
1275     vmIntrinsics::ID id = callee->intrinsic_id();
1276     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1277     // it attaches statically resolved method to the call site.
1278     if (MethodHandles::is_signature_polymorphic(id) &&
1279         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1280       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1281 
1282       // Adjust invocation mode according to the attached method.
1283       switch (bc) {
1284         case Bytecodes::_invokevirtual:
1285           if (attached_method->method_holder()->is_interface()) {
1286             bc = Bytecodes::_invokeinterface;
1287           }
1288           break;
1289         case Bytecodes::_invokeinterface:
1290           if (!attached_method->method_holder()->is_interface()) {
1291             bc = Bytecodes::_invokevirtual;
1292           }
1293           break;
1294         case Bytecodes::_invokehandle:
1295           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1296             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1297                                               : Bytecodes::_invokevirtual;
1298           }
1299           break;
1300         default:
1301           break;
1302       }
1303     } else {
1304       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1305       if (!attached_method->method_holder()->is_inline_klass()) {
1306         // Ignore the attached method in this case to not confuse below code
1307         attached_method = methodHandle(current, nullptr);
1308       }
1309     }
1310   }
1311 
1312   assert(bc != Bytecodes::_illegal, "not initialized");
1313 
1314   bool has_receiver = bc != Bytecodes::_invokestatic &&
1315                       bc != Bytecodes::_invokedynamic &&
1316                       bc != Bytecodes::_invokehandle;
1317   bool check_null_and_abstract = true;
1318 
1319   // Find receiver for non-static call
1320   if (has_receiver) {
1321     // This register map must be update since we need to find the receiver for
1322     // compiled frames. The receiver might be in a register.
1323     RegisterMap reg_map2(current,
1324                          RegisterMap::UpdateMap::include,
1325                          RegisterMap::ProcessFrames::include,
1326                          RegisterMap::WalkContinuation::skip);
1327     frame stubFrame   = current->last_frame();
1328     // Caller-frame is a compiled frame
1329     frame callerFrame = stubFrame.sender(&reg_map2);
1330 
1331     Method* callee = attached_method();
1332     if (callee == nullptr) {
1333       callee = bytecode.static_target(CHECK_NH);
1334       if (callee == nullptr) {
1335         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1336       }
1337     }
1338     bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1();
1339     if (!caller_is_c1 && callee->is_scalarized_arg(0)) {
1340       // If the receiver is an inline type that is passed as fields, no oop is available
1341       // Resolve the call without receiver null checking.
1342       assert(!callee->mismatch(), "calls with inline type receivers should never mismatch");
1343       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1344       if (bc == Bytecodes::_invokeinterface) {
1345         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1346       }
1347       check_null_and_abstract = false;
1348     } else {
1349       // Retrieve from a compiled argument list
1350       receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1351       assert(oopDesc::is_oop_or_null(receiver()), "");
1352       if (receiver.is_null()) {
1353         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1354       }
1355     }
1356   }
1357 
1358   // Resolve method
1359   if (attached_method.not_null()) {
1360     // Parameterized by attached method.
1361     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1362   } else {
1363     // Parameterized by bytecode.
1364     constantPoolHandle constants(current, caller->constants());
1365     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1366   }
1367 
1368 #ifdef ASSERT
1369   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1370   if (has_receiver && check_null_and_abstract) {
1371     assert(receiver.not_null(), "should have thrown exception");
1372     Klass* receiver_klass = receiver->klass();
1373     Klass* rk = nullptr;
1374     if (attached_method.not_null()) {
1375       // In case there's resolved method attached, use its holder during the check.
1376       rk = attached_method->method_holder();
1377     } else {
1378       // Klass is already loaded.
1379       constantPoolHandle constants(current, caller->constants());
1380       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1381     }
1382     Klass* static_receiver_klass = rk;
1383     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1384            "actual receiver must be subclass of static receiver klass");
1385     if (receiver_klass->is_instance_klass()) {
1386       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1387         tty->print_cr("ERROR: Klass not yet initialized!!");
1388         receiver_klass->print();
1389       }
1390       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1391     }
1392   }
1393 #endif
1394 
1395   return receiver;
1396 }
1397 
1398 methodHandle SharedRuntime::find_callee_method(bool& caller_does_not_scalarize, TRAPS) {
1399   JavaThread* current = THREAD;
1400   ResourceMark rm(current);
1401   // We need first to check if any Java activations (compiled, interpreted)
1402   // exist on the stack since last JavaCall.  If not, we need
1403   // to get the target method from the JavaCall wrapper.
1404   vframeStream vfst(current, true);  // Do not skip any javaCalls
1405   methodHandle callee_method;
1406   if (vfst.at_end()) {
1407     // No Java frames were found on stack since we did the JavaCall.
1408     // Hence the stack can only contain an entry_frame.  We need to
1409     // find the target method from the stub frame.
1410     RegisterMap reg_map(current,
1411                         RegisterMap::UpdateMap::skip,
1412                         RegisterMap::ProcessFrames::include,
1413                         RegisterMap::WalkContinuation::skip);
1414     frame fr = current->last_frame();
1415     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1416     fr = fr.sender(&reg_map);
1417     assert(fr.is_entry_frame(), "must be");
1418     // fr is now pointing to the entry frame.
1419     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1420   } else {
1421     Bytecodes::Code bc;
1422     CallInfo callinfo;
1423     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1424     // Calls via mismatching methods are always non-scalarized
1425     if (callinfo.resolved_method()->mismatch()) {
1426       caller_does_not_scalarize = true;
1427     }
1428     callee_method = methodHandle(current, callinfo.selected_method());
1429   }
1430   assert(callee_method()->is_method(), "must be");
1431   return callee_method;
1432 }
1433 
1434 // Resolves a call.
1435 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1436   JavaThread* current = THREAD;
1437   ResourceMark rm(current);
1438   RegisterMap cbl_map(current,
1439                       RegisterMap::UpdateMap::skip,
1440                       RegisterMap::ProcessFrames::include,
1441                       RegisterMap::WalkContinuation::skip);
1442   frame caller_frame = current->last_frame().sender(&cbl_map);
1443 
1444   CodeBlob* caller_cb = caller_frame.cb();
1445   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1446   nmethod* caller_nm = caller_cb->as_nmethod();
1447 
1448   // determine call info & receiver
1449   // note: a) receiver is null for static calls
1450   //       b) an exception is thrown if receiver is null for non-static calls
1451   CallInfo call_info;
1452   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1453   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1454 
1455   NoSafepointVerifier nsv;
1456 
1457   methodHandle callee_method(current, call_info.selected_method());
1458   // Calls via mismatching methods are always non-scalarized
1459   if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1460     caller_does_not_scalarize = true;
1461   }
1462 
1463   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1464          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1465          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1466          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1467          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1468 
1469   assert(!caller_nm->is_unloading(), "It should not be unloading");
1470 
1471 #ifndef PRODUCT
1472   // tracing/debugging/statistics
1473   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1474                  (is_virtual) ? (&_resolve_virtual_ctr) :
1475                                 (&_resolve_static_ctr);
1476   AtomicAccess::inc(addr);
1477 
1478   if (TraceCallFixup) {
1479     ResourceMark rm(current);
1480     tty->print("resolving %s%s (%s) %s call to",
1481                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1482                Bytecodes::name(invoke_code), (caller_does_not_scalarize) ? "non-scalar" : "");
1483     callee_method->print_short_name(tty);
1484     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1485                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1486   }
1487 #endif
1488 
1489   if (invoke_code == Bytecodes::_invokestatic) {
1490     assert(callee_method->method_holder()->is_initialized() ||
1491            callee_method->method_holder()->is_reentrant_initialization(current),
1492            "invalid class initialization state for invoke_static");
1493     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1494       // In order to keep class initialization check, do not patch call
1495       // site for static call when the class is not fully initialized.
1496       // Proper check is enforced by call site re-resolution on every invocation.
1497       //
1498       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1499       // explicit class initialization check is put in nmethod entry (VEP).
1500       assert(callee_method->method_holder()->is_linked(), "must be");
1501       return callee_method;
1502     }
1503   }
1504 
1505 
1506   // JSR 292 key invariant:
1507   // If the resolved method is a MethodHandle invoke target, the call
1508   // site must be a MethodHandle call site, because the lambda form might tail-call
1509   // leaving the stack in a state unknown to either caller or callee
1510 
1511   // Compute entry points. The computation of the entry points is independent of
1512   // patching the call.
1513 
1514   // Make sure the callee nmethod does not get deoptimized and removed before
1515   // we are done patching the code.
1516 
1517 
1518   CompiledICLocker ml(caller_nm);
1519   if (is_virtual && !is_optimized) {
1520     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1521     inline_cache->update(&call_info, receiver->klass(), caller_does_not_scalarize);
1522   } else {
1523     // Callsite is a direct call - set it to the destination method
1524     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1525     callsite->set(callee_method, caller_does_not_scalarize);
1526   }
1527 
1528   return callee_method;
1529 }
1530 
1531 // Inline caches exist only in compiled code
1532 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1533 #ifdef ASSERT
1534   RegisterMap reg_map(current,
1535                       RegisterMap::UpdateMap::skip,
1536                       RegisterMap::ProcessFrames::include,
1537                       RegisterMap::WalkContinuation::skip);
1538   frame stub_frame = current->last_frame();
1539   assert(stub_frame.is_runtime_frame(), "sanity check");
1540   frame caller_frame = stub_frame.sender(&reg_map);
1541   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1542 #endif /* ASSERT */
1543 
1544   methodHandle callee_method;
1545   bool caller_does_not_scalarize = false;
1546   JRT_BLOCK
1547     callee_method = SharedRuntime::handle_ic_miss_helper(caller_does_not_scalarize, CHECK_NULL);
1548     // Return Method* through TLS
1549     current->set_vm_result_metadata(callee_method());
1550   JRT_BLOCK_END
1551   // return compiled code entry point after potential safepoints
1552   return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1553 JRT_END
1554 
1555 
1556 // Handle call site that has been made non-entrant
1557 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1558   // 6243940 We might end up in here if the callee is deoptimized
1559   // as we race to call it.  We don't want to take a safepoint if
1560   // the caller was interpreted because the caller frame will look
1561   // interpreted to the stack walkers and arguments are now
1562   // "compiled" so it is much better to make this transition
1563   // invisible to the stack walking code. The i2c path will
1564   // place the callee method in the callee_target. It is stashed
1565   // there because if we try and find the callee by normal means a
1566   // safepoint is possible and have trouble gc'ing the compiled args.
1567   RegisterMap reg_map(current,
1568                       RegisterMap::UpdateMap::skip,
1569                       RegisterMap::ProcessFrames::include,
1570                       RegisterMap::WalkContinuation::skip);
1571   frame stub_frame = current->last_frame();
1572   assert(stub_frame.is_runtime_frame(), "sanity check");
1573   frame caller_frame = stub_frame.sender(&reg_map);
1574 
1575   if (caller_frame.is_interpreted_frame() ||
1576       caller_frame.is_entry_frame() ||
1577       caller_frame.is_upcall_stub_frame()) {
1578     Method* callee = current->callee_target();
1579     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1580     current->set_vm_result_metadata(callee);
1581     current->set_callee_target(nullptr);
1582     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1583       // Bypass class initialization checks in c2i when caller is in native.
1584       // JNI calls to static methods don't have class initialization checks.
1585       // Fast class initialization checks are present in c2i adapters and call into
1586       // SharedRuntime::handle_wrong_method() on the slow path.
1587       //
1588       // JVM upcalls may land here as well, but there's a proper check present in
1589       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1590       // so bypassing it in c2i adapter is benign.
1591       return callee->get_c2i_no_clinit_check_entry();
1592     } else {
1593       if (caller_frame.is_interpreted_frame()) {
1594         return callee->get_c2i_inline_entry();
1595       } else {
1596         return callee->get_c2i_entry();
1597       }
1598     }
1599   }
1600 
1601   // Must be compiled to compiled path which is safe to stackwalk
1602   methodHandle callee_method;
1603   bool is_static_call = false;
1604   bool is_optimized = false;
1605   bool caller_does_not_scalarize = false;
1606   JRT_BLOCK
1607     // Force resolving of caller (if we called from compiled frame)
1608     callee_method = SharedRuntime::reresolve_call_site(is_optimized, caller_does_not_scalarize, CHECK_NULL);
1609     current->set_vm_result_metadata(callee_method());
1610   JRT_BLOCK_END
1611   // return compiled code entry point after potential safepoints
1612   return get_resolved_entry(current, callee_method, callee_method->is_static(), is_optimized, caller_does_not_scalarize);
1613 JRT_END
1614 
1615 // Handle abstract method call
1616 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1617   // Verbose error message for AbstractMethodError.
1618   // Get the called method from the invoke bytecode.
1619   vframeStream vfst(current, true);
1620   assert(!vfst.at_end(), "Java frame must exist");
1621   methodHandle caller(current, vfst.method());
1622   Bytecode_invoke invoke(caller, vfst.bci());
1623   DEBUG_ONLY( invoke.verify(); )
1624 
1625   // Find the compiled caller frame.
1626   RegisterMap reg_map(current,
1627                       RegisterMap::UpdateMap::include,
1628                       RegisterMap::ProcessFrames::include,
1629                       RegisterMap::WalkContinuation::skip);
1630   frame stubFrame = current->last_frame();
1631   assert(stubFrame.is_runtime_frame(), "must be");
1632   frame callerFrame = stubFrame.sender(&reg_map);
1633   assert(callerFrame.is_compiled_frame(), "must be");
1634 
1635   // Install exception and return forward entry.
1636   address res = SharedRuntime::throw_AbstractMethodError_entry();
1637   JRT_BLOCK
1638     methodHandle callee(current, invoke.static_target(current));
1639     if (!callee.is_null()) {
1640       oop recv = callerFrame.retrieve_receiver(&reg_map);
1641       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1642       res = StubRoutines::forward_exception_entry();
1643       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1644     }
1645   JRT_BLOCK_END
1646   return res;
1647 JRT_END
1648 
1649 // return verified_code_entry if interp_only_mode is not set for the current thread;
1650 // otherwise return c2i entry.
1651 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method,
1652                                           bool is_static_call, bool is_optimized, bool caller_does_not_scalarize) {
1653   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1654     // In interp_only_mode we need to go to the interpreted entry
1655     // The c2i won't patch in this mode -- see fixup_callers_callsite
1656     return callee_method->get_c2i_entry();
1657   }
1658 
1659   if (caller_does_not_scalarize) {
1660     assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!");
1661     return callee_method->verified_inline_code_entry();
1662   } else if (is_static_call || is_optimized) {
1663     assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!");
1664     return callee_method->verified_code_entry();
1665   } else {
1666     assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!");
1667     return callee_method->verified_inline_ro_code_entry();
1668   }
1669 }
1670 
1671 // resolve a static call and patch code
1672 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1673   methodHandle callee_method;
1674   bool caller_does_not_scalarize = false;
1675   bool enter_special = false;
1676   JRT_BLOCK
1677     callee_method = SharedRuntime::resolve_helper(false, false, caller_does_not_scalarize, CHECK_NULL);
1678     current->set_vm_result_metadata(callee_method());
1679   JRT_BLOCK_END
1680   // return compiled code entry point after potential safepoints
1681   return get_resolved_entry(current, callee_method, true, false, caller_does_not_scalarize);
1682 JRT_END
1683 
1684 // resolve virtual call and update inline cache to monomorphic
1685 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1686   methodHandle callee_method;
1687   bool caller_does_not_scalarize = false;
1688   JRT_BLOCK
1689     callee_method = SharedRuntime::resolve_helper(true, false, caller_does_not_scalarize, CHECK_NULL);
1690     current->set_vm_result_metadata(callee_method());
1691   JRT_BLOCK_END
1692   // return compiled code entry point after potential safepoints
1693   return get_resolved_entry(current, callee_method, false, false, caller_does_not_scalarize);
1694 JRT_END
1695 
1696 
1697 // Resolve a virtual call that can be statically bound (e.g., always
1698 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1699 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1700   methodHandle callee_method;
1701   bool caller_does_not_scalarize = false;
1702   JRT_BLOCK
1703     callee_method = SharedRuntime::resolve_helper(true, true, caller_does_not_scalarize, CHECK_NULL);
1704     current->set_vm_result_metadata(callee_method());
1705   JRT_BLOCK_END
1706   // return compiled code entry point after potential safepoints
1707   return get_resolved_entry(current, callee_method, false, true, caller_does_not_scalarize);
1708 JRT_END
1709 
1710 
1711 
1712 methodHandle SharedRuntime::handle_ic_miss_helper(bool& caller_does_not_scalarize, TRAPS) {
1713   JavaThread* current = THREAD;
1714   ResourceMark rm(current);
1715   CallInfo call_info;
1716   Bytecodes::Code bc;
1717 
1718   // receiver is null for static calls. An exception is thrown for null
1719   // receivers for non-static calls
1720   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1721 
1722   methodHandle callee_method(current, call_info.selected_method());
1723 
1724 #ifndef PRODUCT
1725   AtomicAccess::inc(&_ic_miss_ctr);
1726 
1727   // Statistics & Tracing
1728   if (TraceCallFixup) {
1729     ResourceMark rm(current);
1730     tty->print("IC miss (%s) %s call to", Bytecodes::name(bc), (caller_does_not_scalarize) ? "non-scalar" : "");
1731     callee_method->print_short_name(tty);
1732     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1733   }
1734 
1735   if (ICMissHistogram) {
1736     MutexLocker m(VMStatistic_lock);
1737     RegisterMap reg_map(current,
1738                         RegisterMap::UpdateMap::skip,
1739                         RegisterMap::ProcessFrames::include,
1740                         RegisterMap::WalkContinuation::skip);
1741     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1742     // produce statistics under the lock
1743     trace_ic_miss(f.pc());
1744   }
1745 #endif
1746 
1747   // install an event collector so that when a vtable stub is created the
1748   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1749   // event can't be posted when the stub is created as locks are held
1750   // - instead the event will be deferred until the event collector goes
1751   // out of scope.
1752   JvmtiDynamicCodeEventCollector event_collector;
1753 
1754   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1755   RegisterMap reg_map(current,
1756                       RegisterMap::UpdateMap::skip,
1757                       RegisterMap::ProcessFrames::include,
1758                       RegisterMap::WalkContinuation::skip);
1759   frame caller_frame = current->last_frame().sender(&reg_map);
1760   CodeBlob* cb = caller_frame.cb();
1761   nmethod* caller_nm = cb->as_nmethod();
1762   // Calls via mismatching methods are always non-scalarized
1763   if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1764     caller_does_not_scalarize = true;
1765   }
1766 
1767   CompiledICLocker ml(caller_nm);
1768   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1769   inline_cache->update(&call_info, receiver()->klass(), caller_does_not_scalarize);
1770 
1771   return callee_method;
1772 }
1773 
1774 //
1775 // Resets a call-site in compiled code so it will get resolved again.
1776 // This routines handles both virtual call sites, optimized virtual call
1777 // sites, and static call sites. Typically used to change a call sites
1778 // destination from compiled to interpreted.
1779 //
1780 methodHandle SharedRuntime::reresolve_call_site(bool& is_optimized, bool& caller_does_not_scalarize, TRAPS) {
1781   JavaThread* current = THREAD;
1782   ResourceMark rm(current);
1783   RegisterMap reg_map(current,
1784                       RegisterMap::UpdateMap::skip,
1785                       RegisterMap::ProcessFrames::include,
1786                       RegisterMap::WalkContinuation::skip);
1787   frame stub_frame = current->last_frame();
1788   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1789   frame caller = stub_frame.sender(&reg_map);
1790   if (caller.is_compiled_frame()) {
1791     caller_does_not_scalarize = caller.cb()->as_nmethod()->is_compiled_by_c1();
1792   }
1793   assert(!caller.is_interpreted_frame(), "must be compiled");
1794 
1795   // If the frame isn't a live compiled frame (i.e. deoptimized by the time we get here), no IC clearing must be done
1796   // for the caller. However, when the caller is C2 compiled and the callee a C1 or C2 compiled method, then we still
1797   // need to figure out whether it was an optimized virtual call with an inline type receiver. Otherwise, we end up
1798   // using the wrong method entry point and accidentally skip the buffering of the receiver.
1799   methodHandle callee_method = find_callee_method(caller_does_not_scalarize, CHECK_(methodHandle()));
1800   const bool caller_is_compiled_and_not_deoptimized = caller.is_compiled_frame() && !caller.is_deoptimized_frame();
1801   const bool caller_is_continuation_enter_intrinsic =
1802     caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic();
1803   const bool do_IC_clearing = caller_is_compiled_and_not_deoptimized || caller_is_continuation_enter_intrinsic;
1804 
1805   const bool callee_compiled_with_scalarized_receiver = callee_method->has_compiled_code() &&
1806                                                         !callee_method()->is_static() &&
1807                                                         callee_method()->is_scalarized_arg(0);
1808   const bool compute_is_optimized = !caller_does_not_scalarize && callee_compiled_with_scalarized_receiver;
1809 
1810   if (do_IC_clearing || compute_is_optimized) {
1811     address pc = caller.pc();
1812 
1813     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1814     assert(caller_nm != nullptr, "did not find caller nmethod");
1815 
1816     // Default call_addr is the location of the "basic" call.
1817     // Determine the address of the call we a reresolving. With
1818     // Inline Caches we will always find a recognizable call.
1819     // With Inline Caches disabled we may or may not find a
1820     // recognizable call. We will always find a call for static
1821     // calls and for optimized virtual calls. For vanilla virtual
1822     // calls it depends on the state of the UseInlineCaches switch.
1823     //
1824     // With Inline Caches disabled we can get here for a virtual call
1825     // for two reasons:
1826     //   1 - calling an abstract method. The vtable for abstract methods
1827     //       will run us thru handle_wrong_method and we will eventually
1828     //       end up in the interpreter to throw the ame.
1829     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1830     //       call and between the time we fetch the entry address and
1831     //       we jump to it the target gets deoptimized. Similar to 1
1832     //       we will wind up in the interprter (thru a c2i with c2).
1833     //
1834     CompiledICLocker ml(caller_nm);
1835     address call_addr = caller_nm->call_instruction_address(pc);
1836 
1837     if (call_addr != nullptr) {
1838       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1839       // bytes back in the instruction stream so we must also check for reloc info.
1840       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1841       bool ret = iter.next(); // Get item
1842       if (ret) {
1843         is_optimized = false;
1844         switch (iter.type()) {
1845           case relocInfo::static_call_type:
1846             assert(callee_method->is_static(), "must be");
1847           case relocInfo::opt_virtual_call_type: {
1848             is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1849             if (do_IC_clearing) {
1850               CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1851               cdc->set_to_clean();
1852             }
1853             break;
1854           }
1855           case relocInfo::virtual_call_type: {
1856             if (do_IC_clearing) {
1857               // compiled, dispatched call (which used to call an interpreted method)
1858               CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1859               inline_cache->set_to_clean();
1860             }
1861             break;
1862           }
1863           default:
1864             break;
1865         }
1866       }
1867     }
1868   }
1869 
1870 #ifndef PRODUCT
1871   AtomicAccess::inc(&_wrong_method_ctr);
1872 
1873   if (TraceCallFixup) {
1874     ResourceMark rm(current);
1875     tty->print("handle_wrong_method reresolving %s call to", (caller_does_not_scalarize) ? "non-scalar" : "");
1876     callee_method->print_short_name(tty);
1877     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1878   }
1879 #endif
1880 
1881   return callee_method;
1882 }
1883 
1884 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1885   // The faulting unsafe accesses should be changed to throw the error
1886   // synchronously instead. Meanwhile the faulting instruction will be
1887   // skipped over (effectively turning it into a no-op) and an
1888   // asynchronous exception will be raised which the thread will
1889   // handle at a later point. If the instruction is a load it will
1890   // return garbage.
1891 
1892   // Request an async exception.
1893   thread->set_pending_unsafe_access_error();
1894 
1895   // Return address of next instruction to execute.
1896   return next_pc;
1897 }
1898 
1899 #ifdef ASSERT
1900 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1901                                                                 const BasicType* sig_bt,
1902                                                                 const VMRegPair* regs) {
1903   ResourceMark rm;
1904   const int total_args_passed = method->size_of_parameters();
1905   const VMRegPair*    regs_with_member_name = regs;
1906         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1907 
1908   const int member_arg_pos = total_args_passed - 1;
1909   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1910   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1911 
1912   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1913 
1914   for (int i = 0; i < member_arg_pos; i++) {
1915     VMReg a =    regs_with_member_name[i].first();
1916     VMReg b = regs_without_member_name[i].first();
1917     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1918   }
1919   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1920 }
1921 #endif
1922 
1923 // ---------------------------------------------------------------------------
1924 // We are calling the interpreter via a c2i. Normally this would mean that
1925 // we were called by a compiled method. However we could have lost a race
1926 // where we went int -> i2c -> c2i and so the caller could in fact be
1927 // interpreted. If the caller is compiled we attempt to patch the caller
1928 // so he no longer calls into the interpreter.
1929 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1930   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1931 
1932   // It's possible that deoptimization can occur at a call site which hasn't
1933   // been resolved yet, in which case this function will be called from
1934   // an nmethod that has been patched for deopt and we can ignore the
1935   // request for a fixup.
1936   // Also it is possible that we lost a race in that from_compiled_entry
1937   // is now back to the i2c in that case we don't need to patch and if
1938   // we did we'd leap into space because the callsite needs to use
1939   // "to interpreter" stub in order to load up the Method*. Don't
1940   // ask me how I know this...
1941 
1942   // Result from nmethod::is_unloading is not stable across safepoints.
1943   NoSafepointVerifier nsv;
1944 
1945   nmethod* callee = method->code();
1946   if (callee == nullptr) {
1947     return;
1948   }
1949 
1950   // write lock needed because we might patch call site by set_to_clean()
1951   // and is_unloading() can modify nmethod's state
1952   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1953 
1954   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1955   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1956     return;
1957   }
1958 
1959   // The check above makes sure this is an nmethod.
1960   nmethod* caller = cb->as_nmethod();
1961 
1962   // Get the return PC for the passed caller PC.
1963   address return_pc = caller_pc + frame::pc_return_offset;
1964 
1965   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1966     return;
1967   }
1968 
1969   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1970   CompiledICLocker ic_locker(caller);
1971   ResourceMark rm;
1972 
1973   // If we got here through a static call or opt_virtual call, then we know where the
1974   // call address would be; let's peek at it
1975   address callsite_addr = (address)nativeCall_before(return_pc);
1976   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1977   if (!iter.next()) {
1978     // No reloc entry found; not a static or optimized virtual call
1979     return;
1980   }
1981 
1982   relocInfo::relocType type = iter.reloc()->type();
1983   if (type != relocInfo::static_call_type &&
1984       type != relocInfo::opt_virtual_call_type) {
1985     return;
1986   }
1987 
1988   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1989   callsite->set_to_clean();
1990 JRT_END
1991 
1992 
1993 // same as JVM_Arraycopy, but called directly from compiled code
1994 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1995                                                 oopDesc* dest, jint dest_pos,
1996                                                 jint length,
1997                                                 JavaThread* current)) {
1998 #ifndef PRODUCT
1999   _slow_array_copy_ctr++;
2000 #endif
2001   // Check if we have null pointers
2002   if (src == nullptr || dest == nullptr) {
2003     THROW(vmSymbols::java_lang_NullPointerException());
2004   }
2005   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2006   // even though the copy_array API also performs dynamic checks to ensure
2007   // that src and dest are truly arrays (and are conformable).
2008   // The copy_array mechanism is awkward and could be removed, but
2009   // the compilers don't call this function except as a last resort,
2010   // so it probably doesn't matter.
2011   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2012                                         (arrayOopDesc*)dest, dest_pos,
2013                                         length, current);
2014 }
2015 JRT_END
2016 
2017 // The caller of generate_class_cast_message() (or one of its callers)
2018 // must use a ResourceMark in order to correctly free the result.
2019 char* SharedRuntime::generate_class_cast_message(
2020     JavaThread* thread, Klass* caster_klass) {
2021 
2022   // Get target class name from the checkcast instruction
2023   vframeStream vfst(thread, true);
2024   assert(!vfst.at_end(), "Java frame must exist");
2025   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2026   constantPoolHandle cpool(thread, vfst.method()->constants());
2027   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2028   Symbol* target_klass_name = nullptr;
2029   if (target_klass == nullptr) {
2030     // This klass should be resolved, but just in case, get the name in the klass slot.
2031     target_klass_name = cpool->klass_name_at(cc.index());
2032   }
2033   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2034 }
2035 
2036 
2037 // The caller of generate_class_cast_message() (or one of its callers)
2038 // must use a ResourceMark in order to correctly free the result.
2039 char* SharedRuntime::generate_class_cast_message(
2040     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2041   const char* caster_name = caster_klass->external_name();
2042 
2043   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2044   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2045                                                    target_klass->external_name();
2046 
2047   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2048 
2049   const char* caster_klass_description = "";
2050   const char* target_klass_description = "";
2051   const char* klass_separator = "";
2052   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2053     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2054   } else {
2055     caster_klass_description = caster_klass->class_in_module_of_loader();
2056     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2057     klass_separator = (target_klass != nullptr) ? "; " : "";
2058   }
2059 
2060   // add 3 for parenthesis and preceding space
2061   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2062 
2063   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2064   if (message == nullptr) {
2065     // Shouldn't happen, but don't cause even more problems if it does
2066     message = const_cast<char*>(caster_klass->external_name());
2067   } else {
2068     jio_snprintf(message,
2069                  msglen,
2070                  "class %s cannot be cast to class %s (%s%s%s)",
2071                  caster_name,
2072                  target_name,
2073                  caster_klass_description,
2074                  klass_separator,
2075                  target_klass_description
2076                  );
2077   }
2078   return message;
2079 }
2080 
2081 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) {
2082   assert(klass->is_inline_klass(), "Must be a concrete value class");
2083   const char* desc = "Cannot synchronize on an instance of value class ";
2084   const char* className = klass->external_name();
2085   size_t msglen = strlen(desc) + strlen(className) + 1;
2086   char* message = NEW_RESOURCE_ARRAY(char, msglen);
2087   if (nullptr == message) {
2088     // Out of memory: can't create detailed error message
2089     message = const_cast<char*>(klass->external_name());
2090   } else {
2091     jio_snprintf(message, msglen, "%s%s", desc, className);
2092   }
2093   return message;
2094 }
2095 
2096 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2097   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2098 JRT_END
2099 
2100 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2101   if (!SafepointSynchronize::is_synchronizing()) {
2102     // Only try quick_enter() if we're not trying to reach a safepoint
2103     // so that the calling thread reaches the safepoint more quickly.
2104     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2105       return;
2106     }
2107   }
2108   // NO_ASYNC required because an async exception on the state transition destructor
2109   // would leave you with the lock held and it would never be released.
2110   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2111   // and the model is that an exception implies the method failed.
2112   JRT_BLOCK_NO_ASYNC
2113   Handle h_obj(THREAD, obj);
2114   ObjectSynchronizer::enter(h_obj, lock, current);
2115   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2116   JRT_BLOCK_END
2117 }
2118 
2119 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2120 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2121   SharedRuntime::monitor_enter_helper(obj, lock, current);
2122 JRT_END
2123 
2124 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2125   assert(JavaThread::current() == current, "invariant");
2126   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2127   ExceptionMark em(current);
2128 
2129   // Check if C2_MacroAssembler::fast_unlock() or
2130   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2131   // monitor before going slow path.  Since there is no safepoint
2132   // polling when calling into the VM, we can be sure that the monitor
2133   // hasn't been deallocated.
2134   ObjectMonitor* m = current->unlocked_inflated_monitor();
2135   if (m != nullptr) {
2136     assert(!m->has_owner(current), "must be");
2137     current->clear_unlocked_inflated_monitor();
2138 
2139     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2140     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2141       // Some other thread acquired the lock (or the monitor was
2142       // deflated). Either way we are done.
2143       return;
2144     }
2145   }
2146 
2147   // The object could become unlocked through a JNI call, which we have no other checks for.
2148   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2149   if (obj->is_unlocked()) {
2150     if (CheckJNICalls) {
2151       fatal("Object has been unlocked by JNI");
2152     }
2153     return;
2154   }
2155   ObjectSynchronizer::exit(obj, lock, current);
2156 }
2157 
2158 // Handles the uncommon cases of monitor unlocking in compiled code
2159 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2160   assert(current == JavaThread::current(), "pre-condition");
2161   SharedRuntime::monitor_exit_helper(obj, lock, current);
2162 JRT_END
2163 
2164 #ifndef PRODUCT
2165 
2166 void SharedRuntime::print_statistics() {
2167   ttyLocker ttyl;
2168   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2169 
2170   SharedRuntime::print_ic_miss_histogram();
2171 
2172   // Dump the JRT_ENTRY counters
2173   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2174   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2175   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2176   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2177   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2178   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2179 
2180   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2181   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2182   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2183   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2184   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2185 
2186   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2187   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2188   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2189   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2190   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2191   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2192   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2193   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2194   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2195   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2196   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2197   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2198   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2199   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2200   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2201   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2202   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2203 
2204   AdapterHandlerLibrary::print_statistics();
2205 
2206   if (xtty != nullptr)  xtty->tail("statistics");
2207 }
2208 
2209 inline double percent(int64_t x, int64_t y) {
2210   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2211 }
2212 
2213 class MethodArityHistogram {
2214  public:
2215   enum { MAX_ARITY = 256 };
2216  private:
2217   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2218   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2219   static uint64_t _total_compiled_calls;
2220   static uint64_t _max_compiled_calls_per_method;
2221   static int _max_arity;                       // max. arity seen
2222   static int _max_size;                        // max. arg size seen
2223 
2224   static void add_method_to_histogram(nmethod* nm) {
2225     Method* method = (nm == nullptr) ? nullptr : nm->method();
2226     if (method != nullptr) {
2227       ArgumentCount args(method->signature());
2228       int arity   = args.size() + (method->is_static() ? 0 : 1);
2229       int argsize = method->size_of_parameters();
2230       arity   = MIN2(arity, MAX_ARITY-1);
2231       argsize = MIN2(argsize, MAX_ARITY-1);
2232       uint64_t count = (uint64_t)method->compiled_invocation_count();
2233       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2234       _total_compiled_calls    += count;
2235       _arity_histogram[arity]  += count;
2236       _size_histogram[argsize] += count;
2237       _max_arity = MAX2(_max_arity, arity);
2238       _max_size  = MAX2(_max_size, argsize);
2239     }
2240   }
2241 
2242   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2243     const int N = MIN2(9, n);
2244     double sum = 0;
2245     double weighted_sum = 0;
2246     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2247     if (sum >= 1) { // prevent divide by zero or divide overflow
2248       double rest = sum;
2249       double percent = sum / 100;
2250       for (int i = 0; i <= N; i++) {
2251         rest -= (double)histo[i];
2252         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2253       }
2254       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2255       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2256       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2257       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2258     } else {
2259       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2260     }
2261   }
2262 
2263   void print_histogram() {
2264     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2265     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2266     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2267     print_histogram_helper(_max_size, _size_histogram, "size");
2268     tty->cr();
2269   }
2270 
2271  public:
2272   MethodArityHistogram() {
2273     // Take the Compile_lock to protect against changes in the CodeBlob structures
2274     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2275     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2276     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2277     _max_arity = _max_size = 0;
2278     _total_compiled_calls = 0;
2279     _max_compiled_calls_per_method = 0;
2280     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2281     CodeCache::nmethods_do(add_method_to_histogram);
2282     print_histogram();
2283   }
2284 };
2285 
2286 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2287 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2288 uint64_t MethodArityHistogram::_total_compiled_calls;
2289 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2290 int MethodArityHistogram::_max_arity;
2291 int MethodArityHistogram::_max_size;
2292 
2293 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2294   tty->print_cr("Calls from compiled code:");
2295   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2296   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2297   int64_t mono_i = _nof_interface_calls;
2298   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2299   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2300   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2301   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2302   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2303   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2304   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2305   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2306   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2307   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2308   tty->cr();
2309   tty->print_cr("Note 1: counter updates are not MT-safe.");
2310   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2311   tty->print_cr("        %% in nested categories are relative to their category");
2312   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2313   tty->cr();
2314 
2315   MethodArityHistogram h;
2316 }
2317 #endif
2318 
2319 #ifndef PRODUCT
2320 static int _lookups; // number of calls to lookup
2321 static int _equals;  // number of buckets checked with matching hash
2322 static int _archived_hits; // number of successful lookups in archived table
2323 static int _runtime_hits;  // number of successful lookups in runtime table
2324 #endif
2325 
2326 // A simple wrapper class around the calling convention information
2327 // that allows sharing of adapters for the same calling convention.
2328 class AdapterFingerPrint : public MetaspaceObj {
2329 public:
2330   class Element {
2331   private:
2332     // The highest byte is the type of the argument. The remaining bytes contain the offset of the
2333     // field if it is flattened in the calling convention, -1 otherwise.
2334     juint _payload;
2335 
2336     static constexpr int offset_bit_width = 24;
2337     static constexpr juint offset_bit_mask = (1 << offset_bit_width) - 1;
2338   public:
2339     Element(BasicType bt, int offset) : _payload((static_cast<juint>(bt) << offset_bit_width) | (juint(offset) & offset_bit_mask)) {
2340       assert(offset >= -1 && offset < jint(offset_bit_mask), "invalid offset %d", offset);
2341     }
2342 
2343     BasicType bt() const {
2344       return static_cast<BasicType>(_payload >> offset_bit_width);
2345     }
2346 
2347     int offset() const {
2348       juint res = _payload & offset_bit_mask;
2349       return res == offset_bit_mask ? -1 : res;
2350     }
2351 
2352     juint hash() const {
2353       return _payload;
2354     }
2355 
2356     bool operator!=(const Element& other) const {
2357       return _payload != other._payload;
2358     }
2359   };
2360 
2361 private:
2362   const bool _has_ro_adapter;
2363   const int _length;
2364 
2365   static int data_offset() { return sizeof(AdapterFingerPrint); }
2366   Element* data_pointer() {
2367     return reinterpret_cast<Element*>(reinterpret_cast<address>(this) + data_offset());
2368   }
2369 
2370   const Element& element_at(int index) {
2371     assert(index < length(), "index %d out of bounds for length %d", index, length());
2372     Element* data = data_pointer();
2373     return data[index];
2374   }
2375 
2376   // Private construtor. Use allocate() to get an instance.
2377   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter)
2378     : _has_ro_adapter(has_ro_adapter), _length(total_args_passed_in_sig(sig)) {
2379     Element* data = data_pointer();
2380     BasicType prev_bt = T_ILLEGAL;
2381     int vt_count = 0;
2382     for (int index = 0; index < _length; index++) {
2383       const SigEntry& sig_entry = sig->at(index);
2384       BasicType bt = sig_entry._bt;
2385       if (bt == T_METADATA) {
2386         // Found start of inline type in signature
2387         assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2388         vt_count++;
2389       } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2390         // Found end of inline type in signature
2391         assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2392         vt_count--;
2393         assert(vt_count >= 0, "invalid vt_count");
2394       } else if (vt_count == 0) {
2395         // Widen fields that are not part of a scalarized inline type argument
2396         assert(sig_entry._offset == -1, "invalid offset for argument that is not a flattened field %d", sig_entry._offset);
2397         bt = adapter_encoding(bt);
2398       }
2399 
2400       ::new(&data[index]) Element(bt, sig_entry._offset);
2401       prev_bt = bt;
2402     }
2403     assert(vt_count == 0, "invalid vt_count");
2404   }
2405 
2406   // Call deallocate instead
2407   ~AdapterFingerPrint() {
2408     ShouldNotCallThis();
2409   }
2410 
2411   static int total_args_passed_in_sig(const GrowableArray<SigEntry>* sig) {
2412     return (sig != nullptr) ? sig->length() : 0;
2413   }
2414 
2415   static int compute_size_in_words(int len) {
2416     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(Element)));
2417   }
2418 
2419   // Remap BasicTypes that are handled equivalently by the adapters.
2420   // These are correct for the current system but someday it might be
2421   // necessary to make this mapping platform dependent.
2422   static BasicType adapter_encoding(BasicType in) {
2423     switch (in) {
2424       case T_BOOLEAN:
2425       case T_BYTE:
2426       case T_SHORT:
2427       case T_CHAR:
2428         // They are all promoted to T_INT in the calling convention
2429         return T_INT;
2430 
2431       case T_OBJECT:
2432       case T_ARRAY:
2433         // In other words, we assume that any register good enough for
2434         // an int or long is good enough for a managed pointer.
2435 #ifdef _LP64
2436         return T_LONG;
2437 #else
2438         return T_INT;
2439 #endif
2440 
2441       case T_INT:
2442       case T_LONG:
2443       case T_FLOAT:
2444       case T_DOUBLE:
2445       case T_VOID:
2446         return in;
2447 
2448       default:
2449         ShouldNotReachHere();
2450         return T_CONFLICT;
2451     }
2452   }
2453 
2454   void* operator new(size_t size, size_t fp_size) throw() {
2455     assert(fp_size >= size, "sanity check");
2456     void* p = AllocateHeap(fp_size, mtCode);
2457     memset(p, 0, fp_size);
2458     return p;
2459   }
2460 
2461 public:
2462   template<typename Function>
2463   void iterate_args(Function function) {
2464     for (int i = 0; i < length(); i++) {
2465       function(element_at(i));
2466     }
2467   }
2468 
2469   static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2470     int len = total_args_passed_in_sig(sig);
2471     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2472     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter);
2473     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2474     return afp;
2475   }
2476 
2477   static void deallocate(AdapterFingerPrint* fp) {
2478     FreeHeap(fp);
2479   }
2480 
2481   bool has_ro_adapter() const {
2482     return _has_ro_adapter;
2483   }
2484 
2485   int length() const {
2486     return _length;
2487   }
2488 
2489   unsigned int compute_hash() {
2490     int hash = 0;
2491     for (int i = 0; i < length(); i++) {
2492       const Element& v = element_at(i);
2493       //Add arithmetic operation to the hash, like +3 to improve hashing
2494       hash = ((hash << 8) ^ v.hash() ^ (hash >> 5)) + 3;
2495     }
2496     return (unsigned int)hash;
2497   }
2498 
2499   const char* as_string() {
2500     stringStream st;
2501     st.print("{");
2502     if (_has_ro_adapter) {
2503       st.print("has_ro_adapter");
2504     } else {
2505       st.print("no_ro_adapter");
2506     }
2507     for (int i = 0; i < length(); i++) {
2508       st.print(", ");
2509       const Element& elem = element_at(i);
2510       st.print("{%s, %d}", type2name(elem.bt()), elem.offset());
2511     }
2512     st.print("}");
2513     return st.as_string();
2514   }
2515 
2516   const char* as_basic_args_string() {
2517     stringStream st;
2518     bool long_prev = false;
2519     iterate_args([&] (const Element& arg) {
2520       if (long_prev) {
2521         long_prev = false;
2522         if (arg.bt() == T_VOID) {
2523           st.print("J");
2524         } else {
2525           st.print("L");
2526         }
2527       }
2528       if (arg.bt() == T_LONG) {
2529         long_prev = true;
2530       } else if (arg.bt() != T_VOID) {
2531         st.print("%c", type2char(arg.bt()));
2532       }
2533     });
2534     if (long_prev) {
2535       st.print("L");
2536     }
2537     return st.as_string();
2538   }
2539 
2540   bool equals(AdapterFingerPrint* other) {
2541     if (other->_has_ro_adapter != _has_ro_adapter) {
2542       return false;
2543     } else if (other->_length != _length) {
2544       return false;
2545     } else {
2546       for (int i = 0; i < _length; i++) {
2547         if (element_at(i) != other->element_at(i)) {
2548           return false;
2549         }
2550       }
2551     }
2552     return true;
2553   }
2554 
2555   // methods required by virtue of being a MetaspaceObj
2556   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2557   int size() const { return compute_size_in_words(_length); }
2558   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2559 
2560   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2561     NOT_PRODUCT(_equals++);
2562     return fp1->equals(fp2);
2563   }
2564 
2565   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2566     return fp->compute_hash();
2567   }
2568 };
2569 
2570 #if INCLUDE_CDS
2571 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2572   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2573 }
2574 
2575 class ArchivedAdapterTable : public OffsetCompactHashtable<
2576   AdapterFingerPrint*,
2577   AdapterHandlerEntry*,
2578   adapter_fp_equals_compact_hashtable_entry> {};
2579 #endif // INCLUDE_CDS
2580 
2581 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2582 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2583                   AnyObj::C_HEAP, mtCode,
2584                   AdapterFingerPrint::compute_hash,
2585                   AdapterFingerPrint::equals>;
2586 static AdapterHandlerTable* _adapter_handler_table;
2587 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2588 
2589 // Find a entry with the same fingerprint if it exists
2590 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) {
2591   NOT_PRODUCT(_lookups++);
2592   assert_lock_strong(AdapterHandlerLibrary_lock);
2593   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter);
2594   AdapterHandlerEntry* entry = nullptr;
2595 #if INCLUDE_CDS
2596   // if we are building the archive then the archived adapter table is
2597   // not valid and we need to use the ones added to the runtime table
2598   if (AOTCodeCache::is_using_adapter()) {
2599     // Search archived table first. It is read-only table so can be searched without lock
2600     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2601 #ifndef PRODUCT
2602     if (entry != nullptr) {
2603       _archived_hits++;
2604     }
2605 #endif
2606   }
2607 #endif // INCLUDE_CDS
2608   if (entry == nullptr) {
2609     assert_lock_strong(AdapterHandlerLibrary_lock);
2610     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2611     if (entry_p != nullptr) {
2612       entry = *entry_p;
2613       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2614              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2615              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2616   #ifndef PRODUCT
2617       _runtime_hits++;
2618   #endif
2619     }
2620   }
2621   AdapterFingerPrint::deallocate(fp);
2622   return entry;
2623 }
2624 
2625 #ifndef PRODUCT
2626 static void print_table_statistics() {
2627   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2628     return sizeof(*key) + sizeof(*a);
2629   };
2630   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2631   ts.print(tty, "AdapterHandlerTable");
2632   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2633                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2634   int total_hits = _archived_hits + _runtime_hits;
2635   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2636                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2637 }
2638 #endif
2639 
2640 // ---------------------------------------------------------------------------
2641 // Implementation of AdapterHandlerLibrary
2642 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2643 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2644 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2645 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2646 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2647 #if INCLUDE_CDS
2648 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2649 #endif // INCLUDE_CDS
2650 static const int AdapterHandlerLibrary_size = 48*K;
2651 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2652 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2653 
2654 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2655   assert(_buffer != nullptr, "should be initialized");
2656   return _buffer;
2657 }
2658 
2659 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2660   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2661     AdapterBlob* adapter_blob = entry->adapter_blob();
2662     char blob_id[256];
2663     jio_snprintf(blob_id,
2664                  sizeof(blob_id),
2665                  "%s(%s)",
2666                  adapter_blob->name(),
2667                  entry->fingerprint()->as_string());
2668     if (Forte::is_enabled()) {
2669       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2670     }
2671 
2672     if (JvmtiExport::should_post_dynamic_code_generated()) {
2673       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2674     }
2675   }
2676 }
2677 
2678 void AdapterHandlerLibrary::initialize() {
2679   {
2680     ResourceMark rm;
2681     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2682     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2683   }
2684 
2685 #if INCLUDE_CDS
2686   // Link adapters in AOT Cache to their code in AOT Code Cache
2687   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2688     link_aot_adapters();
2689     lookup_simple_adapters();
2690     return;
2691   }
2692 #endif // INCLUDE_CDS
2693 
2694   ResourceMark rm;
2695   {
2696     MutexLocker mu(AdapterHandlerLibrary_lock);
2697 
2698     CompiledEntrySignature no_args;
2699     no_args.compute_calling_conventions();
2700     _no_arg_handler = create_adapter(no_args, true);
2701 
2702     CompiledEntrySignature obj_args;
2703     SigEntry::add_entry(obj_args.sig(), T_OBJECT);
2704     obj_args.compute_calling_conventions();
2705     _obj_arg_handler = create_adapter(obj_args, true);
2706 
2707     CompiledEntrySignature int_args;
2708     SigEntry::add_entry(int_args.sig(), T_INT);
2709     int_args.compute_calling_conventions();
2710     _int_arg_handler = create_adapter(int_args, true);
2711 
2712     CompiledEntrySignature obj_int_args;
2713     SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
2714     SigEntry::add_entry(obj_int_args.sig(), T_INT);
2715     obj_int_args.compute_calling_conventions();
2716     _obj_int_arg_handler = create_adapter(obj_int_args, true);
2717 
2718     CompiledEntrySignature obj_obj_args;
2719     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2720     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
2721     obj_obj_args.compute_calling_conventions();
2722     _obj_obj_arg_handler = create_adapter(obj_obj_args, true);
2723 
2724     // we should always get an entry back but we don't have any
2725     // associated blob on Zero
2726     assert(_no_arg_handler != nullptr &&
2727            _obj_arg_handler != nullptr &&
2728            _int_arg_handler != nullptr &&
2729            _obj_int_arg_handler != nullptr &&
2730            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2731   }
2732 
2733   // Outside of the lock
2734 #ifndef ZERO
2735   // no blobs to register when we are on Zero
2736   post_adapter_creation(_no_arg_handler);
2737   post_adapter_creation(_obj_arg_handler);
2738   post_adapter_creation(_int_arg_handler);
2739   post_adapter_creation(_obj_int_arg_handler);
2740   post_adapter_creation(_obj_obj_arg_handler);
2741 #endif // ZERO
2742 }
2743 
2744 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2745   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2746   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2747   return AdapterHandlerEntry::allocate(id, fingerprint);
2748 }
2749 
2750 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2751   int total_args_passed = method->size_of_parameters(); // All args on stack
2752   if (total_args_passed == 0) {
2753     return _no_arg_handler;
2754   } else if (total_args_passed == 1) {
2755     if (!method->is_static()) {
2756       if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) {
2757         return nullptr;
2758       }
2759       return _obj_arg_handler;
2760     }
2761     switch (method->signature()->char_at(1)) {
2762       case JVM_SIGNATURE_CLASS: {
2763         if (InlineTypePassFieldsAsArgs) {
2764           SignatureStream ss(method->signature());
2765           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2766           if (vk != nullptr) {
2767             return nullptr;
2768           }
2769         }
2770         return _obj_arg_handler;
2771       }
2772       case JVM_SIGNATURE_ARRAY:
2773         return _obj_arg_handler;
2774       case JVM_SIGNATURE_INT:
2775       case JVM_SIGNATURE_BOOLEAN:
2776       case JVM_SIGNATURE_CHAR:
2777       case JVM_SIGNATURE_BYTE:
2778       case JVM_SIGNATURE_SHORT:
2779         return _int_arg_handler;
2780     }
2781   } else if (total_args_passed == 2 &&
2782              !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) {
2783     switch (method->signature()->char_at(1)) {
2784       case JVM_SIGNATURE_CLASS: {
2785         if (InlineTypePassFieldsAsArgs) {
2786           SignatureStream ss(method->signature());
2787           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2788           if (vk != nullptr) {
2789             return nullptr;
2790           }
2791         }
2792         return _obj_obj_arg_handler;
2793       }
2794       case JVM_SIGNATURE_ARRAY:
2795         return _obj_obj_arg_handler;
2796       case JVM_SIGNATURE_INT:
2797       case JVM_SIGNATURE_BOOLEAN:
2798       case JVM_SIGNATURE_CHAR:
2799       case JVM_SIGNATURE_BYTE:
2800       case JVM_SIGNATURE_SHORT:
2801         return _obj_int_arg_handler;
2802     }
2803   }
2804   return nullptr;
2805 }
2806 
2807 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2808   _method(method), _num_inline_args(0), _has_inline_recv(false),
2809   _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr),
2810   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2811   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) {
2812   _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2813   _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2814   _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2815 }
2816 
2817 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2818 // or the same entry for VEP and VIEP(RO).
2819 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2820   if (!has_scalarized_args()) {
2821     // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2822     return CodeOffsets::Verified_Entry;
2823   }
2824   if (_method->is_static()) {
2825     // Static methods don't need VIEP(RO)
2826     return CodeOffsets::Verified_Entry;
2827   }
2828 
2829   if (has_inline_recv()) {
2830     if (num_inline_args() == 1) {
2831       // Share same entry for VIEP and VIEP(RO).
2832       // This is quite common: we have an instance method in an InlineKlass that has
2833       // no inline type args other than <this>.
2834       return CodeOffsets::Verified_Inline_Entry;
2835     } else {
2836       assert(num_inline_args() > 1, "must be");
2837       // No sharing:
2838       //   VIEP(RO) -- <this> is passed as object
2839       //   VEP      -- <this> is passed as fields
2840       return CodeOffsets::Verified_Inline_Entry_RO;
2841     }
2842   }
2843 
2844   // Either a static method, or <this> is not an inline type
2845   if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2846     // No sharing:
2847     // Some arguments are passed on the stack, and we have inserted reserved entries
2848     // into the VEP, but we never insert reserved entries into the VIEP(RO).
2849     return CodeOffsets::Verified_Inline_Entry_RO;
2850   } else {
2851     // Share same entry for VEP and VIEP(RO).
2852     return CodeOffsets::Verified_Entry;
2853   }
2854 }
2855 
2856 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method.
2857 GrowableArray<Method*>* CompiledEntrySignature::get_supers() {
2858   if (_supers != nullptr) {
2859     return _supers;
2860   }
2861   _supers = new GrowableArray<Method*>();
2862   // Skip private, static, and <init> methods
2863   if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) {
2864     return _supers;
2865   }
2866   Symbol* name = _method->name();
2867   Symbol* signature = _method->signature();
2868   const Klass* holder = _method->method_holder()->super();
2869   Symbol* holder_name = holder->name();
2870   ThreadInVMfromUnknown tiv;
2871   JavaThread* current = JavaThread::current();
2872   HandleMark hm(current);
2873   Handle loader(current, _method->method_holder()->class_loader());
2874 
2875   // Walk up the class hierarchy and search for super methods
2876   while (holder != nullptr) {
2877     Method* super_method = holder->lookup_method(name, signature);
2878     if (super_method == nullptr) {
2879       break;
2880     }
2881     if (!super_method->is_static() && !super_method->is_private() &&
2882         (!super_method->is_package_private() ||
2883          super_method->method_holder()->is_same_class_package(loader(), holder_name))) {
2884       _supers->push(super_method);
2885     }
2886     holder = super_method->method_holder()->super();
2887   }
2888   // Search interfaces for super methods
2889   Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces();
2890   for (int i = 0; i < interfaces->length(); ++i) {
2891     Method* m = interfaces->at(i)->lookup_method(name, signature);
2892     if (m != nullptr && !m->is_static() && m->is_public()) {
2893       _supers->push(m);
2894     }
2895   }
2896   return _supers;
2897 }
2898 
2899 // Iterate over arguments and compute scalarized and non-scalarized signatures
2900 void CompiledEntrySignature::compute_calling_conventions(bool init) {
2901   bool has_scalarized = false;
2902   if (_method != nullptr) {
2903     InstanceKlass* holder = _method->method_holder();
2904     int arg_num = 0;
2905     if (!_method->is_static()) {
2906       // We shouldn't scalarize 'this' in a value class constructor
2907       if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() &&
2908           (init || _method->is_scalarized_arg(arg_num))) {
2909         _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2910         has_scalarized = true;
2911         _has_inline_recv = true;
2912         _num_inline_args++;
2913       } else {
2914         SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name());
2915       }
2916       SigEntry::add_entry(_sig, T_OBJECT, holder->name());
2917       SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name());
2918       arg_num++;
2919     }
2920     for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2921       BasicType bt = ss.type();
2922       if (bt == T_OBJECT) {
2923         InlineKlass* vk = ss.as_inline_klass(holder);
2924         if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) {
2925           // Check for a calling convention mismatch with super method(s)
2926           bool scalar_super = false;
2927           bool non_scalar_super = false;
2928           GrowableArray<Method*>* supers = get_supers();
2929           for (int i = 0; i < supers->length(); ++i) {
2930             Method* super_method = supers->at(i);
2931             if (super_method->is_scalarized_arg(arg_num)) {
2932               scalar_super = true;
2933             } else {
2934               non_scalar_super = true;
2935             }
2936           }
2937 #ifdef ASSERT
2938           // Randomly enable below code paths for stress testing
2939           bool stress = init && StressCallingConvention;
2940           if (stress && (os::random() & 1) == 1) {
2941             non_scalar_super = true;
2942             if ((os::random() & 1) == 1) {
2943               scalar_super = true;
2944             }
2945           }
2946 #endif
2947           if (non_scalar_super) {
2948             // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention.
2949             if (scalar_super) {
2950               // Found non-scalar *and* scalar super methods. We can't handle both.
2951               // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention.
2952               for (int i = 0; i < supers->length(); ++i) {
2953                 Method* super_method = supers->at(i);
2954                 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) {
2955                   super_method->set_mismatch();
2956                   MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag);
2957                   JavaThread* thread = JavaThread::current();
2958                   HandleMark hm(thread);
2959                   methodHandle mh(thread, super_method);
2960                   DeoptimizationScope deopt_scope;
2961                   CodeCache::mark_for_deoptimization(&deopt_scope, mh());
2962                   deopt_scope.deoptimize_marked();
2963                 }
2964               }
2965             }
2966             // Fall back to non-scalarized calling convention
2967             SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2968             SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2969           } else {
2970             _num_inline_args++;
2971             has_scalarized = true;
2972             int last = _sig_cc->length();
2973             int last_ro = _sig_cc_ro->length();
2974             _sig_cc->appendAll(vk->extended_sig());
2975             _sig_cc_ro->appendAll(vk->extended_sig());
2976             if (bt == T_OBJECT) {
2977               // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter
2978               _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2979               _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true));
2980             }
2981           }
2982         } else {
2983           SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2984           SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2985         }
2986         bt = T_OBJECT;
2987       } else {
2988         SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol());
2989         SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol());
2990       }
2991       SigEntry::add_entry(_sig, bt, ss.as_symbol());
2992       if (bt != T_VOID) {
2993         arg_num++;
2994       }
2995     }
2996   }
2997 
2998   // Compute the non-scalarized calling convention
2999   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
3000   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
3001 
3002   // Compute the scalarized calling conventions if there are scalarized inline types in the signature
3003   if (has_scalarized && !_method->is_native()) {
3004     _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
3005     _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
3006 
3007     _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
3008     _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
3009 
3010     _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3011     _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3012 
3013     // Upper bound on stack arguments to avoid hitting the argument limit and
3014     // bailing out of compilation ("unsupported incoming calling sequence").
3015     // TODO we need a reasonable limit (flag?) here
3016     if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) {
3017       return; // Success
3018     }
3019   }
3020 
3021   // No scalarized args
3022   _sig_cc = _sig;
3023   _regs_cc = _regs;
3024   _args_on_stack_cc = _args_on_stack;
3025 
3026   _sig_cc_ro = _sig;
3027   _regs_cc_ro = _regs;
3028   _args_on_stack_cc_ro = _args_on_stack;
3029 }
3030 
3031 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) {
3032   _has_inline_recv = fingerprint->has_ro_adapter();
3033 
3034   int value_object_count = 0;
3035   BasicType prev_bt = T_ILLEGAL;
3036   bool has_scalarized_arguments = false;
3037   bool long_prev = false;
3038   int long_prev_offset = -1;
3039 
3040   fingerprint->iterate_args([&] (const AdapterFingerPrint::Element& arg) {
3041     BasicType bt = arg.bt();
3042     int offset = arg.offset();
3043 
3044     if (long_prev) {
3045       long_prev = false;
3046       BasicType bt_to_add;
3047       if (bt == T_VOID) {
3048         bt_to_add = T_LONG;
3049       } else {
3050         bt_to_add = T_OBJECT;
3051       }
3052       if (value_object_count == 0) {
3053         SigEntry::add_entry(_sig, bt_to_add);
3054       }
3055       SigEntry::add_entry(_sig_cc, bt_to_add, nullptr, long_prev_offset);
3056       SigEntry::add_entry(_sig_cc_ro, bt_to_add, nullptr, long_prev_offset);
3057     }
3058 
3059     switch (bt) {
3060       case T_VOID:
3061         if (prev_bt != T_LONG && prev_bt != T_DOUBLE) {
3062           assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
3063           value_object_count--;
3064           SigEntry::add_entry(_sig_cc, T_VOID, nullptr, offset);
3065           SigEntry::add_entry(_sig_cc_ro, T_VOID, nullptr, offset);
3066           assert(value_object_count >= 0, "invalid value object count");
3067         } else {
3068           // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE.
3069         }
3070         break;
3071       case T_INT:
3072       case T_FLOAT:
3073       case T_DOUBLE:
3074         if (value_object_count == 0) {
3075           SigEntry::add_entry(_sig, bt);
3076         }
3077         SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3078         SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3079         break;
3080       case T_LONG:
3081         long_prev = true;
3082         long_prev_offset = offset;
3083         break;
3084       case T_BOOLEAN:
3085       case T_CHAR:
3086       case T_BYTE:
3087       case T_SHORT:
3088       case T_OBJECT:
3089       case T_ARRAY:
3090         assert(value_object_count > 0, "must be value object field");
3091         SigEntry::add_entry(_sig_cc, bt, nullptr, offset);
3092         SigEntry::add_entry(_sig_cc_ro, bt, nullptr, offset);
3093         break;
3094       case T_METADATA:
3095         assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
3096         if (value_object_count == 0) {
3097           SigEntry::add_entry(_sig, T_OBJECT);
3098         }
3099         SigEntry::add_entry(_sig_cc, T_METADATA, nullptr, offset);
3100         SigEntry::add_entry(_sig_cc_ro, T_METADATA, nullptr, offset);
3101         value_object_count++;
3102         has_scalarized_arguments = true;
3103         break;
3104       default: {
3105         fatal("Unexpected BasicType: %s", basictype_to_str(bt));
3106       }
3107     }
3108     prev_bt = bt;
3109   });
3110 
3111   if (long_prev) {
3112     // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT.
3113     SigEntry::add_entry(_sig, T_OBJECT);
3114     SigEntry::add_entry(_sig_cc, T_OBJECT);
3115     SigEntry::add_entry(_sig_cc_ro, T_OBJECT);
3116   }
3117   assert(value_object_count == 0, "invalid value object count");
3118 
3119   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
3120   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
3121 
3122   // Compute the scalarized calling conventions if there are scalarized inline types in the signature
3123   if (has_scalarized_arguments) {
3124     _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
3125     _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
3126 
3127     _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
3128     _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
3129 
3130     _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3131     _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3132   } else {
3133     // No scalarized args
3134     _sig_cc = _sig;
3135     _regs_cc = _regs;
3136     _args_on_stack_cc = _args_on_stack;
3137 
3138     _sig_cc_ro = _sig;
3139     _regs_cc_ro = _regs;
3140     _args_on_stack_cc_ro = _args_on_stack;
3141   }
3142 
3143 #ifdef ASSERT
3144   {
3145     AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv);
3146     assert(fingerprint->equals(compare_fp), "%s - %s", fingerprint->as_string(), compare_fp->as_string());
3147     AdapterFingerPrint::deallocate(compare_fp);
3148   }
3149 #endif
3150 }
3151 
3152 const char* AdapterHandlerEntry::_entry_names[] = {
3153   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
3154 };
3155 
3156 #ifdef ASSERT
3157 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) {
3158   // we can only check for the same code if there is any
3159 #ifndef ZERO
3160   AdapterHandlerEntry* comparison_entry = create_adapter(ces, false, true);
3161   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
3162   assert(comparison_entry->compare_code(cached_entry), "code must match");
3163   // Release the one just created
3164   AdapterHandlerEntry::deallocate(comparison_entry);
3165 # endif // ZERO
3166 }
3167 #endif /* ASSERT*/
3168 
3169 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
3170   assert(!method->is_abstract(), "abstract methods do not have adapters");
3171   // Use customized signature handler.  Need to lock around updates to
3172   // the _adapter_handler_table (it is not safe for concurrent readers
3173   // and a single writer: this could be fixed if it becomes a
3174   // problem).
3175 
3176   // Fast-path for trivial adapters
3177   AdapterHandlerEntry* entry = get_simple_adapter(method);
3178   if (entry != nullptr) {
3179     return entry;
3180   }
3181 
3182   ResourceMark rm;
3183   bool new_entry = false;
3184 
3185   CompiledEntrySignature ces(method());
3186   ces.compute_calling_conventions();
3187   if (ces.has_scalarized_args()) {
3188     if (!method->has_scalarized_args()) {
3189       method->set_has_scalarized_args();
3190     }
3191     if (ces.c1_needs_stack_repair()) {
3192       method->set_c1_needs_stack_repair();
3193     }
3194     if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) {
3195       method->set_c2_needs_stack_repair();
3196     }
3197   }
3198 
3199   {
3200     MutexLocker mu(AdapterHandlerLibrary_lock);
3201 
3202     // Lookup method signature's fingerprint
3203     entry = lookup(ces.sig_cc(), ces.has_inline_recv());
3204 
3205     if (entry != nullptr) {
3206 #ifndef ZERO
3207       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
3208 #endif
3209 #ifdef ASSERT
3210       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
3211         verify_adapter_sharing(ces, entry);
3212       }
3213 #endif
3214     } else {
3215       entry = create_adapter(ces, /* allocate_code_blob */ true);
3216       if (entry != nullptr) {
3217         new_entry = true;
3218       }
3219     }
3220   }
3221 
3222   // Outside of the lock
3223   if (new_entry) {
3224     post_adapter_creation(entry);
3225   }
3226   return entry;
3227 }
3228 
3229 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
3230   ResourceMark rm;
3231   const char* name = AdapterHandlerLibrary::name(handler);
3232   const uint32_t id = AdapterHandlerLibrary::id(handler);
3233 
3234   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
3235   if (blob != nullptr) {
3236     handler->set_adapter_blob(blob->as_adapter_blob());
3237   }
3238 }
3239 
3240 #ifndef PRODUCT
3241 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
3242   ttyLocker ttyl;
3243   ResourceMark rm;
3244   int insts_size;
3245   // on Zero the blob may be null
3246   handler->print_adapter_on(tty);
3247   AdapterBlob* adapter_blob = handler->adapter_blob();
3248   if (adapter_blob == nullptr) {
3249     return;
3250   }
3251   insts_size = adapter_blob->code_size();
3252   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
3253                 handler->fingerprint()->as_basic_args_string(),
3254                 handler->fingerprint()->as_string(), insts_size);
3255   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
3256   if (Verbose || PrintStubCode) {
3257     address first_pc = adapter_blob->content_begin();
3258     if (first_pc != nullptr) {
3259       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
3260       st->cr();
3261     }
3262   }
3263 }
3264 #endif // PRODUCT
3265 
3266 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
3267                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
3268   entry_offset[AdapterBlob::I2C] = 0;
3269   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
3270   entry_offset[AdapterBlob::C2I_Inline] = entry_address[AdapterBlob::C2I_Inline] - entry_address[AdapterBlob::I2C];
3271   entry_offset[AdapterBlob::C2I_Inline_RO] = entry_address[AdapterBlob::C2I_Inline_RO] - entry_address[AdapterBlob::I2C];
3272   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
3273   entry_offset[AdapterBlob::C2I_Unverified_Inline] = entry_address[AdapterBlob::C2I_Unverified_Inline] - entry_address[AdapterBlob::I2C];
3274   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
3275     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
3276   } else {
3277     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
3278   }
3279 }
3280 
3281 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
3282                                                   CompiledEntrySignature& ces,
3283                                                   bool allocate_code_blob,
3284                                                   bool is_transient) {
3285   if (log_is_enabled(Info, perf, class, link)) {
3286     ClassLoader::perf_method_adapters_count()->inc();
3287   }
3288 
3289 #ifndef ZERO
3290   AdapterBlob* adapter_blob = nullptr;
3291   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3292   CodeBuffer buffer(buf);
3293   short buffer_locs[20];
3294   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3295                                          sizeof(buffer_locs)/sizeof(relocInfo));
3296   MacroAssembler masm(&buffer);
3297   address entry_address[AdapterBlob::ENTRY_COUNT];
3298 
3299   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
3300   SharedRuntime::generate_i2c2i_adapters(&masm,
3301                                          ces.args_on_stack(),
3302                                          ces.sig(),
3303                                          ces.regs(),
3304                                          ces.sig_cc(),
3305                                          ces.regs_cc(),
3306                                          ces.sig_cc_ro(),
3307                                          ces.regs_cc_ro(),
3308                                          entry_address,
3309                                          adapter_blob,
3310                                          allocate_code_blob);
3311 
3312   if (ces.has_scalarized_args()) {
3313     // Save a C heap allocated version of the scalarized signature and store it in the adapter
3314     GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
3315     heap_sig->appendAll(ces.sig_cc());
3316     handler->set_sig_cc(heap_sig);
3317   }
3318   // On zero there is no code to save and no need to create a blob and
3319   // or relocate the handler.
3320   int entry_offset[AdapterBlob::ENTRY_COUNT];
3321   address_to_offset(entry_address, entry_offset);
3322 #ifdef ASSERT
3323   if (VerifyAdapterSharing) {
3324     handler->save_code(buf->code_begin(), buffer.insts_size());
3325     if (is_transient) {
3326       return true;
3327     }
3328   }
3329 #endif
3330   if (adapter_blob == nullptr) {
3331     // CodeCache is full, disable compilation
3332     // Ought to log this but compile log is only per compile thread
3333     // and we're some non descript Java thread.
3334     return false;
3335   }
3336   handler->set_adapter_blob(adapter_blob);
3337   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
3338     // try to save generated code
3339     const char* name = AdapterHandlerLibrary::name(handler);
3340     const uint32_t id = AdapterHandlerLibrary::id(handler);
3341     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
3342     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
3343   }
3344 #endif // ZERO
3345 
3346 #ifndef PRODUCT
3347   // debugging support
3348   if (PrintAdapterHandlers || PrintStubCode) {
3349     print_adapter_handler_info(tty, handler);
3350   }
3351 #endif
3352 
3353   return true;
3354 }
3355 
3356 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(CompiledEntrySignature& ces,
3357                                                            bool allocate_code_blob,
3358                                                            bool is_transient) {
3359   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv());
3360 #ifdef ASSERT
3361   // Verify that we can successfully restore the compiled entry signature object.
3362   CompiledEntrySignature ces_verify;
3363   ces_verify.initialize_from_fingerprint(fp);
3364 #endif
3365   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
3366   if (!generate_adapter_code(handler, ces, allocate_code_blob, is_transient)) {
3367     AdapterHandlerEntry::deallocate(handler);
3368     return nullptr;
3369   }
3370   if (!is_transient) {
3371     assert_lock_strong(AdapterHandlerLibrary_lock);
3372     _adapter_handler_table->put(fp, handler);
3373   }
3374   return handler;
3375 }
3376 
3377 #if INCLUDE_CDS
3378 void AdapterHandlerEntry::remove_unshareable_info() {
3379 #ifdef ASSERT
3380    _saved_code = nullptr;
3381    _saved_code_length = 0;
3382 #endif // ASSERT
3383    _adapter_blob = nullptr;
3384    _linked = false;
3385 }
3386 
3387 class CopyAdapterTableToArchive : StackObj {
3388 private:
3389   CompactHashtableWriter* _writer;
3390   ArchiveBuilder* _builder;
3391 public:
3392   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3393                                                              _builder(ArchiveBuilder::current())
3394   {}
3395 
3396   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3397     LogStreamHandle(Trace, aot) lsh;
3398     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3399       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3400       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3401       assert(buffered_fp != nullptr,"sanity check");
3402       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3403       assert(buffered_entry != nullptr,"sanity check");
3404 
3405       uint hash = fp->compute_hash();
3406       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3407       _writer->add(hash, delta);
3408       if (lsh.is_enabled()) {
3409         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3410         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3411         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3412       }
3413     } else {
3414       if (lsh.is_enabled()) {
3415         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3416       }
3417     }
3418     return true;
3419   }
3420 };
3421 
3422 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3423   CompactHashtableStats stats;
3424   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3425   CopyAdapterTableToArchive copy(&writer);
3426   _adapter_handler_table->iterate(&copy);
3427   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3428 }
3429 
3430 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3431   _aot_adapter_handler_table.serialize_header(soc);
3432 }
3433 
3434 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3435 #ifdef ASSERT
3436   if (TestAOTAdapterLinkFailure) {
3437     return;
3438   }
3439 #endif
3440   lookup_aot_cache(handler);
3441 #ifndef PRODUCT
3442   // debugging support
3443   if (PrintAdapterHandlers || PrintStubCode) {
3444     print_adapter_handler_info(tty, handler);
3445   }
3446 #endif
3447 }
3448 
3449 // This method is used during production run to link archived adapters (stored in AOT Cache)
3450 // to their code in AOT Code Cache
3451 void AdapterHandlerEntry::link() {
3452   ResourceMark rm;
3453   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3454   bool generate_code = false;
3455   // Generate code only if AOTCodeCache is not available, or
3456   // caching adapters is disabled, or we fail to link
3457   // the AdapterHandlerEntry to its code in the AOTCodeCache
3458   if (AOTCodeCache::is_using_adapter()) {
3459     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3460     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3461     if (_adapter_blob == nullptr) {
3462       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3463       generate_code = true;
3464     }
3465   } else {
3466     generate_code = true;
3467   }
3468   if (generate_code) {
3469     CompiledEntrySignature ces;
3470     ces.initialize_from_fingerprint(_fingerprint);
3471     if (!AdapterHandlerLibrary::generate_adapter_code(this, ces, true, false)) {
3472       // Don't throw exceptions during VM initialization because java.lang.* classes
3473       // might not have been initialized, causing problems when constructing the
3474       // Java exception object.
3475       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3476     }
3477   }
3478   if (_adapter_blob != nullptr) {
3479     post_adapter_creation(this);
3480   }
3481   assert(_linked, "AdapterHandlerEntry must now be linked");
3482 }
3483 
3484 void AdapterHandlerLibrary::link_aot_adapters() {
3485   uint max_id = 0;
3486   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3487   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3488    * That implies adapter ids of the adapters in the cache may not be contiguous.
3489    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3490    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3491    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3492    */
3493   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3494     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3495     entry->link();
3496     max_id = MAX2(max_id, entry->id());
3497   });
3498   // Set adapter id to the maximum id found in the AOTCache
3499   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3500   _id_counter = max_id;
3501 }
3502 
3503 // This method is called during production run to lookup simple adapters
3504 // in the archived adapter handler table
3505 void AdapterHandlerLibrary::lookup_simple_adapters() {
3506   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3507 
3508   MutexLocker mu(AdapterHandlerLibrary_lock);
3509   ResourceMark rm;
3510   CompiledEntrySignature no_args;
3511   no_args.compute_calling_conventions();
3512   _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv());
3513 
3514   CompiledEntrySignature obj_args;
3515   SigEntry::add_entry(obj_args.sig(), T_OBJECT);
3516   obj_args.compute_calling_conventions();
3517   _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv());
3518 
3519   CompiledEntrySignature int_args;
3520   SigEntry::add_entry(int_args.sig(), T_INT);
3521   int_args.compute_calling_conventions();
3522   _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv());
3523 
3524   CompiledEntrySignature obj_int_args;
3525   SigEntry::add_entry(obj_int_args.sig(), T_OBJECT);
3526   SigEntry::add_entry(obj_int_args.sig(), T_INT);
3527   obj_int_args.compute_calling_conventions();
3528   _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv());
3529 
3530   CompiledEntrySignature obj_obj_args;
3531   SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3532   SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT);
3533   obj_obj_args.compute_calling_conventions();
3534   _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv());
3535 
3536   assert(_no_arg_handler != nullptr &&
3537          _obj_arg_handler != nullptr &&
3538          _int_arg_handler != nullptr &&
3539          _obj_int_arg_handler != nullptr &&
3540          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3541   assert(_no_arg_handler->is_linked() &&
3542          _obj_arg_handler->is_linked() &&
3543          _int_arg_handler->is_linked() &&
3544          _obj_int_arg_handler->is_linked() &&
3545          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3546 }
3547 #endif // INCLUDE_CDS
3548 
3549 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3550   LogStreamHandle(Trace, aot) lsh;
3551   if (lsh.is_enabled()) {
3552     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3553     lsh.cr();
3554   }
3555   it->push(&_fingerprint);
3556 }
3557 
3558 AdapterHandlerEntry::~AdapterHandlerEntry() {
3559   if (_fingerprint != nullptr) {
3560     AdapterFingerPrint::deallocate(_fingerprint);
3561     _fingerprint = nullptr;
3562   }
3563   if (_sig_cc != nullptr) {
3564     delete _sig_cc;
3565   }
3566 #ifdef ASSERT
3567   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3568 #endif
3569   FreeHeap(this);
3570 }
3571 
3572 
3573 #ifdef ASSERT
3574 // Capture the code before relocation so that it can be compared
3575 // against other versions.  If the code is captured after relocation
3576 // then relative instructions won't be equivalent.
3577 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3578   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3579   _saved_code_length = length;
3580   memcpy(_saved_code, buffer, length);
3581 }
3582 
3583 
3584 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3585   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3586 
3587   if (other->_saved_code_length != _saved_code_length) {
3588     return false;
3589   }
3590 
3591   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3592 }
3593 #endif
3594 
3595 
3596 /**
3597  * Create a native wrapper for this native method.  The wrapper converts the
3598  * Java-compiled calling convention to the native convention, handles
3599  * arguments, and transitions to native.  On return from the native we transition
3600  * back to java blocking if a safepoint is in progress.
3601  */
3602 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3603   ResourceMark rm;
3604   nmethod* nm = nullptr;
3605 
3606   // Check if memory should be freed before allocation
3607   CodeCache::gc_on_allocation();
3608 
3609   assert(method->is_native(), "must be native");
3610   assert(method->is_special_native_intrinsic() ||
3611          method->has_native_function(), "must have something valid to call!");
3612 
3613   {
3614     // Perform the work while holding the lock, but perform any printing outside the lock
3615     MutexLocker mu(AdapterHandlerLibrary_lock);
3616     // See if somebody beat us to it
3617     if (method->code() != nullptr) {
3618       return;
3619     }
3620 
3621     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3622     assert(compile_id > 0, "Must generate native wrapper");
3623 
3624 
3625     ResourceMark rm;
3626     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3627     if (buf != nullptr) {
3628       CodeBuffer buffer(buf);
3629 
3630       if (method->is_continuation_enter_intrinsic()) {
3631         buffer.initialize_stubs_size(192);
3632       }
3633 
3634       struct { double data[20]; } locs_buf;
3635       struct { double data[20]; } stubs_locs_buf;
3636       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3637 #if defined(AARCH64) || defined(PPC64)
3638       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3639       // in the constant pool to ensure ordering between the barrier and oops
3640       // accesses. For native_wrappers we need a constant.
3641       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3642       // static java call that is resolved in the runtime.
3643       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3644         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3645       }
3646 #endif
3647       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3648       MacroAssembler _masm(&buffer);
3649 
3650       // Fill in the signature array, for the calling-convention call.
3651       const int total_args_passed = method->size_of_parameters();
3652 
3653       BasicType stack_sig_bt[16];
3654       VMRegPair stack_regs[16];
3655       BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3656       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3657 
3658       int i = 0;
3659       if (!method->is_static()) {  // Pass in receiver first
3660         sig_bt[i++] = T_OBJECT;
3661       }
3662       SignatureStream ss(method->signature());
3663       for (; !ss.at_return_type(); ss.next()) {
3664         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3665         if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3666           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3667         }
3668       }
3669       assert(i == total_args_passed, "");
3670       BasicType ret_type = ss.type();
3671 
3672       // Now get the compiled-Java arguments layout.
3673       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3674 
3675       // Generate the compiled-to-native wrapper code
3676       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3677 
3678       if (nm != nullptr) {
3679         {
3680           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3681           if (nm->make_in_use()) {
3682             method->set_code(method, nm);
3683           }
3684         }
3685 
3686         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3687         if (directive->PrintAssemblyOption) {
3688           nm->print_code();
3689         }
3690         DirectivesStack::release(directive);
3691       }
3692     }
3693   } // Unlock AdapterHandlerLibrary_lock
3694 
3695 
3696   // Install the generated code.
3697   if (nm != nullptr) {
3698     const char *msg = method->is_static() ? "(static)" : "";
3699     CompileTask::print_ul(nm, msg);
3700     if (PrintCompilation) {
3701       ttyLocker ttyl;
3702       CompileTask::print(tty, nm, msg);
3703     }
3704     nm->post_compiled_method_load_event();
3705   }
3706 }
3707 
3708 // -------------------------------------------------------------------------
3709 // Java-Java calling convention
3710 // (what you use when Java calls Java)
3711 
3712 //------------------------------name_for_receiver----------------------------------
3713 // For a given signature, return the VMReg for parameter 0.
3714 VMReg SharedRuntime::name_for_receiver() {
3715   VMRegPair regs;
3716   BasicType sig_bt = T_OBJECT;
3717   (void) java_calling_convention(&sig_bt, &regs, 1);
3718   // Return argument 0 register.  In the LP64 build pointers
3719   // take 2 registers, but the VM wants only the 'main' name.
3720   return regs.first();
3721 }
3722 
3723 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3724   // This method is returning a data structure allocating as a
3725   // ResourceObject, so do not put any ResourceMarks in here.
3726 
3727   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3728   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3729   int cnt = 0;
3730   if (has_receiver) {
3731     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3732   }
3733 
3734   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3735     BasicType type = ss.type();
3736     sig_bt[cnt++] = type;
3737     if (is_double_word_type(type))
3738       sig_bt[cnt++] = T_VOID;
3739   }
3740 
3741   if (has_appendix) {
3742     sig_bt[cnt++] = T_OBJECT;
3743   }
3744 
3745   assert(cnt < 256, "grow table size");
3746 
3747   int comp_args_on_stack;
3748   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3749 
3750   // the calling convention doesn't count out_preserve_stack_slots so
3751   // we must add that in to get "true" stack offsets.
3752 
3753   if (comp_args_on_stack) {
3754     for (int i = 0; i < cnt; i++) {
3755       VMReg reg1 = regs[i].first();
3756       if (reg1->is_stack()) {
3757         // Yuck
3758         reg1 = reg1->bias(out_preserve_stack_slots());
3759       }
3760       VMReg reg2 = regs[i].second();
3761       if (reg2->is_stack()) {
3762         // Yuck
3763         reg2 = reg2->bias(out_preserve_stack_slots());
3764       }
3765       regs[i].set_pair(reg2, reg1);
3766     }
3767   }
3768 
3769   // results
3770   *arg_size = cnt;
3771   return regs;
3772 }
3773 
3774 // OSR Migration Code
3775 //
3776 // This code is used convert interpreter frames into compiled frames.  It is
3777 // called from very start of a compiled OSR nmethod.  A temp array is
3778 // allocated to hold the interesting bits of the interpreter frame.  All
3779 // active locks are inflated to allow them to move.  The displaced headers and
3780 // active interpreter locals are copied into the temp buffer.  Then we return
3781 // back to the compiled code.  The compiled code then pops the current
3782 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3783 // copies the interpreter locals and displaced headers where it wants.
3784 // Finally it calls back to free the temp buffer.
3785 //
3786 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3787 
3788 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3789   assert(current == JavaThread::current(), "pre-condition");
3790   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3791   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3792   // frame. The stack watermark code below ensures that the interpreted frame is processed
3793   // before it gets unwound. This is helpful as the size of the compiled frame could be
3794   // larger than the interpreted frame, which could result in the new frame not being
3795   // processed correctly.
3796   StackWatermarkSet::before_unwind(current);
3797 
3798   //
3799   // This code is dependent on the memory layout of the interpreter local
3800   // array and the monitors. On all of our platforms the layout is identical
3801   // so this code is shared. If some platform lays the their arrays out
3802   // differently then this code could move to platform specific code or
3803   // the code here could be modified to copy items one at a time using
3804   // frame accessor methods and be platform independent.
3805 
3806   frame fr = current->last_frame();
3807   assert(fr.is_interpreted_frame(), "");
3808   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3809 
3810   // Figure out how many monitors are active.
3811   int active_monitor_count = 0;
3812   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3813        kptr < fr.interpreter_frame_monitor_begin();
3814        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3815     if (kptr->obj() != nullptr) active_monitor_count++;
3816   }
3817 
3818   // QQQ we could place number of active monitors in the array so that compiled code
3819   // could double check it.
3820 
3821   Method* moop = fr.interpreter_frame_method();
3822   int max_locals = moop->max_locals();
3823   // Allocate temp buffer, 1 word per local & 2 per active monitor
3824   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3825   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3826 
3827   // Copy the locals.  Order is preserved so that loading of longs works.
3828   // Since there's no GC I can copy the oops blindly.
3829   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3830   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3831                        (HeapWord*)&buf[0],
3832                        max_locals);
3833 
3834   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3835   int i = max_locals;
3836   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3837        kptr2 < fr.interpreter_frame_monitor_begin();
3838        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3839     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3840       BasicLock *lock = kptr2->lock();
3841       if (UseObjectMonitorTable) {
3842         buf[i] = (intptr_t)lock->object_monitor_cache();
3843       }
3844 #ifdef ASSERT
3845       else {
3846         buf[i] = badDispHeaderOSR;
3847       }
3848 #endif
3849       i++;
3850       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3851     }
3852   }
3853   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3854 
3855   RegisterMap map(current,
3856                   RegisterMap::UpdateMap::skip,
3857                   RegisterMap::ProcessFrames::include,
3858                   RegisterMap::WalkContinuation::skip);
3859   frame sender = fr.sender(&map);
3860   if (sender.is_interpreted_frame()) {
3861     current->push_cont_fastpath(sender.sp());
3862   }
3863 
3864   return buf;
3865 JRT_END
3866 
3867 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3868   FREE_C_HEAP_ARRAY(intptr_t, buf);
3869 JRT_END
3870 
3871 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3872   bool found = false;
3873 #if INCLUDE_CDS
3874   if (AOTCodeCache::is_using_adapter()) {
3875     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3876       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3877     };
3878     _aot_adapter_handler_table.iterate(findblob_archived_table);
3879   }
3880 #endif // INCLUDE_CDS
3881   if (!found) {
3882     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3883       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3884     };
3885     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3886     _adapter_handler_table->iterate(findblob_runtime_table);
3887   }
3888   return found;
3889 }
3890 
3891 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3892   return handler->fingerprint()->as_basic_args_string();
3893 }
3894 
3895 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3896   return handler->id();
3897 }
3898 
3899 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3900   bool found = false;
3901 #if INCLUDE_CDS
3902   if (AOTCodeCache::is_using_adapter()) {
3903     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3904       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3905         found = true;
3906         st->print("Adapter for signature: ");
3907         handler->print_adapter_on(st);
3908         return true;
3909       } else {
3910         return false; // keep looking
3911       }
3912     };
3913     _aot_adapter_handler_table.iterate(findblob_archived_table);
3914   }
3915 #endif // INCLUDE_CDS
3916   if (!found) {
3917     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3918       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3919         found = true;
3920         st->print("Adapter for signature: ");
3921         a->print_adapter_on(st);
3922         return true;
3923       } else {
3924         return false; // keep looking
3925       }
3926     };
3927     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3928     _adapter_handler_table->iterate(findblob_runtime_table);
3929   }
3930   assert(found, "Should have found handler");
3931 }
3932 
3933 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3934   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3935   if (adapter_blob() != nullptr) {
3936     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3937     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3938     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3939     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3940     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3941     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3942     if (get_c2i_no_clinit_check_entry() != nullptr) {
3943       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3944     }
3945   }
3946   st->cr();
3947 }
3948 
3949 #ifndef PRODUCT
3950 
3951 void AdapterHandlerLibrary::print_statistics() {
3952   print_table_statistics();
3953 }
3954 
3955 #endif /* PRODUCT */
3956 
3957 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3958   assert(current == JavaThread::current(), "pre-condition");
3959   StackOverflow* overflow_state = current->stack_overflow_state();
3960   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3961   overflow_state->set_reserved_stack_activation(current->stack_base());
3962 JRT_END
3963 
3964 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3965   ResourceMark rm(current);
3966   frame activation;
3967   nmethod* nm = nullptr;
3968   int count = 1;
3969 
3970   assert(fr.is_java_frame(), "Must start on Java frame");
3971 
3972   RegisterMap map(JavaThread::current(),
3973                   RegisterMap::UpdateMap::skip,
3974                   RegisterMap::ProcessFrames::skip,
3975                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3976   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3977     if (!fr.is_java_frame()) {
3978       continue;
3979     }
3980 
3981     Method* method = nullptr;
3982     bool found = false;
3983     if (fr.is_interpreted_frame()) {
3984       method = fr.interpreter_frame_method();
3985       if (method != nullptr && method->has_reserved_stack_access()) {
3986         found = true;
3987       }
3988     } else {
3989       CodeBlob* cb = fr.cb();
3990       if (cb != nullptr && cb->is_nmethod()) {
3991         nm = cb->as_nmethod();
3992         method = nm->method();
3993         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3994           method = sd->method();
3995           if (method != nullptr && method->has_reserved_stack_access()) {
3996             found = true;
3997           }
3998         }
3999       }
4000     }
4001     if (found) {
4002       activation = fr;
4003       warning("Potentially dangerous stack overflow in "
4004               "ReservedStackAccess annotated method %s [%d]",
4005               method->name_and_sig_as_C_string(), count++);
4006       EventReservedStackActivation event;
4007       if (event.should_commit()) {
4008         event.set_method(method);
4009         event.commit();
4010       }
4011     }
4012   }
4013   return activation;
4014 }
4015 
4016 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
4017   // After any safepoint, just before going back to compiled code,
4018   // we inform the GC that we will be doing initializing writes to
4019   // this object in the future without emitting card-marks, so
4020   // GC may take any compensating steps.
4021 
4022   oop new_obj = current->vm_result_oop();
4023   if (new_obj == nullptr) return;
4024 
4025   BarrierSet *bs = BarrierSet::barrier_set();
4026   bs->on_slowpath_allocation_exit(current, new_obj);
4027 }
4028 
4029 // We are at a compiled code to interpreter call. We need backing
4030 // buffers for all inline type arguments. Allocate an object array to
4031 // hold them (convenient because once we're done with it we don't have
4032 // to worry about freeing it).
4033 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
4034   assert(InlineTypePassFieldsAsArgs, "no reason to call this");
4035   ResourceMark rm;
4036 
4037   int nb_slots = 0;
4038   InstanceKlass* holder = callee->method_holder();
4039   allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0);
4040   if (allocate_receiver) {
4041     nb_slots++;
4042   }
4043   int arg_num = callee->is_static() ? 0 : 1;
4044   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4045     BasicType bt = ss.type();
4046     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4047       nb_slots++;
4048     }
4049     if (bt != T_VOID) {
4050       arg_num++;
4051     }
4052   }
4053   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
4054   objArrayHandle array(THREAD, array_oop);
4055   arg_num = callee->is_static() ? 0 : 1;
4056   int i = 0;
4057   if (allocate_receiver) {
4058     InlineKlass* vk = InlineKlass::cast(holder);
4059     oop res = vk->allocate_instance(CHECK_NULL);
4060     array->obj_at_put(i++, res);
4061   }
4062   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
4063     BasicType bt = ss.type();
4064     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
4065       InlineKlass* vk = ss.as_inline_klass(holder);
4066       assert(vk != nullptr, "Unexpected klass");
4067       oop res = vk->allocate_instance(CHECK_NULL);
4068       array->obj_at_put(i++, res);
4069     }
4070     if (bt != T_VOID) {
4071       arg_num++;
4072     }
4073   }
4074   return array();
4075 }
4076 
4077 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
4078   methodHandle callee(current, callee_method);
4079   oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
4080   current->set_vm_result_oop(array);
4081   current->set_vm_result_metadata(callee()); // TODO: required to keep callee live?
4082 JRT_END
4083 
4084 // We're returning from an interpreted method: load each field into a
4085 // register following the calling convention
4086 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
4087 {
4088   assert(res->klass()->is_inline_klass(), "only inline types here");
4089   ResourceMark rm;
4090   RegisterMap reg_map(current,
4091                       RegisterMap::UpdateMap::include,
4092                       RegisterMap::ProcessFrames::include,
4093                       RegisterMap::WalkContinuation::skip);
4094   frame stubFrame = current->last_frame();
4095   frame callerFrame = stubFrame.sender(&reg_map);
4096   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
4097 
4098   InlineKlass* vk = InlineKlass::cast(res->klass());
4099 
4100   const Array<SigEntry>* sig_vk = vk->extended_sig();
4101   const Array<VMRegPair>* regs = vk->return_regs();
4102 
4103   if (regs == nullptr) {
4104     // The fields of the inline klass don't fit in registers, bail out
4105     return;
4106   }
4107 
4108   int j = 1;
4109   for (int i = 0; i < sig_vk->length(); i++) {
4110     BasicType bt = sig_vk->at(i)._bt;
4111     if (bt == T_METADATA) {
4112       continue;
4113     }
4114     if (bt == T_VOID) {
4115       if (sig_vk->at(i-1)._bt == T_LONG ||
4116           sig_vk->at(i-1)._bt == T_DOUBLE) {
4117         j++;
4118       }
4119       continue;
4120     }
4121     int off = sig_vk->at(i)._offset;
4122     assert(off > 0, "offset in object should be positive");
4123     VMRegPair pair = regs->at(j);
4124     address loc = reg_map.location(pair.first(), nullptr);
4125     switch(bt) {
4126     case T_BOOLEAN:
4127       *(jboolean*)loc = res->bool_field(off);
4128       break;
4129     case T_CHAR:
4130       *(jchar*)loc = res->char_field(off);
4131       break;
4132     case T_BYTE:
4133       *(jbyte*)loc = res->byte_field(off);
4134       break;
4135     case T_SHORT:
4136       *(jshort*)loc = res->short_field(off);
4137       break;
4138     case T_INT: {
4139       *(jint*)loc = res->int_field(off);
4140       break;
4141     }
4142     case T_LONG:
4143 #ifdef _LP64
4144       *(intptr_t*)loc = res->long_field(off);
4145 #else
4146       Unimplemented();
4147 #endif
4148       break;
4149     case T_OBJECT:
4150     case T_ARRAY: {
4151       *(oop*)loc = res->obj_field(off);
4152       break;
4153     }
4154     case T_FLOAT:
4155       *(jfloat*)loc = res->float_field(off);
4156       break;
4157     case T_DOUBLE:
4158       *(jdouble*)loc = res->double_field(off);
4159       break;
4160     default:
4161       ShouldNotReachHere();
4162     }
4163     j++;
4164   }
4165   assert(j == regs->length(), "missed a field?");
4166 
4167 #ifdef ASSERT
4168   VMRegPair pair = regs->at(0);
4169   address loc = reg_map.location(pair.first(), nullptr);
4170   assert(*(oopDesc**)loc == res, "overwritten object");
4171 #endif
4172 
4173   current->set_vm_result_oop(res);
4174 }
4175 JRT_END
4176 
4177 // We've returned to an interpreted method, the interpreter needs a
4178 // reference to an inline type instance. Allocate it and initialize it
4179 // from field's values in registers.
4180 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
4181 {
4182   ResourceMark rm;
4183   RegisterMap reg_map(current,
4184                       RegisterMap::UpdateMap::include,
4185                       RegisterMap::ProcessFrames::include,
4186                       RegisterMap::WalkContinuation::skip);
4187   frame stubFrame = current->last_frame();
4188   frame callerFrame = stubFrame.sender(&reg_map);
4189 
4190 #ifdef ASSERT
4191   InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
4192 #endif
4193 
4194   if (!is_set_nth_bit(res, 0)) {
4195     // We're not returning with inline type fields in registers (the
4196     // calling convention didn't allow it for this inline klass)
4197     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
4198     current->set_vm_result_oop((oopDesc*)res);
4199     assert(verif_vk == nullptr, "broken calling convention");
4200     return;
4201   }
4202 
4203   clear_nth_bit(res, 0);
4204   InlineKlass* vk = (InlineKlass*)res;
4205   assert(verif_vk == vk, "broken calling convention");
4206   assert(Metaspace::contains((void*)res), "should be klass");
4207 
4208   // Allocate handles for every oop field so they are safe in case of
4209   // a safepoint when allocating
4210   GrowableArray<Handle> handles;
4211   vk->save_oop_fields(reg_map, handles);
4212 
4213   // It's unsafe to safepoint until we are here
4214   JRT_BLOCK;
4215   {
4216     JavaThread* THREAD = current;
4217     oop vt = vk->realloc_result(reg_map, handles, CHECK);
4218     current->set_vm_result_oop(vt);
4219   }
4220   JRT_BLOCK_END;
4221 }
4222 JRT_END