1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/oopFactory.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "oops/access.hpp" 52 #include "oops/fieldStreams.inline.hpp" 53 #include "metaprogramming/primitiveConversions.hpp" 54 #include "oops/klass.hpp" 55 #include "oops/method.inline.hpp" 56 #include "oops/objArrayKlass.hpp" 57 #include "oops/objArrayOop.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "oops/inlineKlass.inline.hpp" 60 #include "prims/forte.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/nativeLookup.hpp" 65 #include "runtime/arguments.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/basicLock.inline.hpp" 68 #include "runtime/frame.inline.hpp" 69 #include "runtime/handles.inline.hpp" 70 #include "runtime/init.hpp" 71 #include "runtime/interfaceSupport.inline.hpp" 72 #include "runtime/java.hpp" 73 #include "runtime/javaCalls.hpp" 74 #include "runtime/jniHandles.inline.hpp" 75 #include "runtime/perfData.hpp" 76 #include "runtime/sharedRuntime.hpp" 77 #include "runtime/stackWatermarkSet.hpp" 78 #include "runtime/stubRoutines.hpp" 79 #include "runtime/synchronizer.inline.hpp" 80 #include "runtime/timerTrace.hpp" 81 #include "runtime/vframe.inline.hpp" 82 #include "runtime/vframeArray.hpp" 83 #include "runtime/vm_version.hpp" 84 #include "utilities/copy.hpp" 85 #include "utilities/dtrace.hpp" 86 #include "utilities/events.hpp" 87 #include "utilities/globalDefinitions.hpp" 88 #include "utilities/resourceHash.hpp" 89 #include "utilities/macros.hpp" 90 #include "utilities/xmlstream.hpp" 91 #ifdef COMPILER1 92 #include "c1/c1_Runtime1.hpp" 93 #endif 94 #if INCLUDE_JFR 95 #include "jfr/jfr.inline.hpp" 96 #endif 97 98 // Shared runtime stub routines reside in their own unique blob with a 99 // single entry point 100 101 102 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 103 type SharedRuntime::BLOB_FIELD_NAME(name); 104 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 105 #undef SHARED_STUB_FIELD_DEFINE 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 110 const char *SharedRuntime::_stub_names[] = { 111 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 112 }; 113 114 //----------------------------generate_stubs----------------------------------- 115 void SharedRuntime::generate_initial_stubs() { 116 // Build this early so it's available for the interpreter. 117 _throw_StackOverflowError_blob = 118 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 119 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 120 } 121 122 void SharedRuntime::generate_stubs() { 123 _wrong_method_blob = 124 generate_resolve_blob(SharedStubId::wrong_method_id, 125 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 126 _wrong_method_abstract_blob = 127 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 129 _ic_miss_blob = 130 generate_resolve_blob(SharedStubId::ic_miss_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 132 _resolve_opt_virtual_call_blob = 133 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 135 _resolve_virtual_call_blob = 136 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 138 _resolve_static_call_blob = 139 generate_resolve_blob(SharedStubId::resolve_static_call_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 141 142 _throw_delayed_StackOverflowError_blob = 143 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 144 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 145 146 _throw_AbstractMethodError_blob = 147 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 148 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 149 150 _throw_IncompatibleClassChangeError_blob = 151 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 152 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 153 154 _throw_NullPointerException_at_call_blob = 155 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 156 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 157 158 #if COMPILER2_OR_JVMCI 159 // Vectors are generated only by C2 and JVMCI. 160 bool support_wide = is_wide_vector(MaxVectorSize); 161 if (support_wide) { 162 _polling_page_vectors_safepoint_handler_blob = 163 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 164 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 165 } 166 #endif // COMPILER2_OR_JVMCI 167 _polling_page_safepoint_handler_blob = 168 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 169 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 170 _polling_page_return_handler_blob = 171 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 173 174 generate_deopt_blob(); 175 } 176 177 void SharedRuntime::init_adapter_library() { 178 AdapterHandlerLibrary::initialize(); 179 } 180 181 #if INCLUDE_JFR 182 //------------------------------generate jfr runtime stubs ------ 183 void SharedRuntime::generate_jfr_stubs() { 184 ResourceMark rm; 185 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 186 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 187 188 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 189 _jfr_return_lease_blob = generate_jfr_return_lease(); 190 } 191 192 #endif // INCLUDE_JFR 193 194 #include <math.h> 195 196 // Implementation of SharedRuntime 197 198 #ifndef PRODUCT 199 // For statistics 200 uint SharedRuntime::_ic_miss_ctr = 0; 201 uint SharedRuntime::_wrong_method_ctr = 0; 202 uint SharedRuntime::_resolve_static_ctr = 0; 203 uint SharedRuntime::_resolve_virtual_ctr = 0; 204 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 205 uint SharedRuntime::_implicit_null_throws = 0; 206 uint SharedRuntime::_implicit_div0_throws = 0; 207 208 int64_t SharedRuntime::_nof_normal_calls = 0; 209 int64_t SharedRuntime::_nof_inlined_calls = 0; 210 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 211 int64_t SharedRuntime::_nof_static_calls = 0; 212 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 213 int64_t SharedRuntime::_nof_interface_calls = 0; 214 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 215 216 uint SharedRuntime::_new_instance_ctr=0; 217 uint SharedRuntime::_new_array_ctr=0; 218 uint SharedRuntime::_multi2_ctr=0; 219 uint SharedRuntime::_multi3_ctr=0; 220 uint SharedRuntime::_multi4_ctr=0; 221 uint SharedRuntime::_multi5_ctr=0; 222 uint SharedRuntime::_mon_enter_stub_ctr=0; 223 uint SharedRuntime::_mon_exit_stub_ctr=0; 224 uint SharedRuntime::_mon_enter_ctr=0; 225 uint SharedRuntime::_mon_exit_ctr=0; 226 uint SharedRuntime::_partial_subtype_ctr=0; 227 uint SharedRuntime::_jbyte_array_copy_ctr=0; 228 uint SharedRuntime::_jshort_array_copy_ctr=0; 229 uint SharedRuntime::_jint_array_copy_ctr=0; 230 uint SharedRuntime::_jlong_array_copy_ctr=0; 231 uint SharedRuntime::_oop_array_copy_ctr=0; 232 uint SharedRuntime::_checkcast_array_copy_ctr=0; 233 uint SharedRuntime::_unsafe_array_copy_ctr=0; 234 uint SharedRuntime::_generic_array_copy_ctr=0; 235 uint SharedRuntime::_slow_array_copy_ctr=0; 236 uint SharedRuntime::_find_handler_ctr=0; 237 uint SharedRuntime::_rethrow_ctr=0; 238 uint SharedRuntime::_unsafe_set_memory_ctr=0; 239 240 int SharedRuntime::_ICmiss_index = 0; 241 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 242 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 243 244 245 void SharedRuntime::trace_ic_miss(address at) { 246 for (int i = 0; i < _ICmiss_index; i++) { 247 if (_ICmiss_at[i] == at) { 248 _ICmiss_count[i]++; 249 return; 250 } 251 } 252 int index = _ICmiss_index++; 253 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 254 _ICmiss_at[index] = at; 255 _ICmiss_count[index] = 1; 256 } 257 258 void SharedRuntime::print_ic_miss_histogram() { 259 if (ICMissHistogram) { 260 tty->print_cr("IC Miss Histogram:"); 261 int tot_misses = 0; 262 for (int i = 0; i < _ICmiss_index; i++) { 263 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 264 tot_misses += _ICmiss_count[i]; 265 } 266 tty->print_cr("Total IC misses: %7d", tot_misses); 267 } 268 } 269 #endif // PRODUCT 270 271 272 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 273 return x * y; 274 JRT_END 275 276 277 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 278 if (x == min_jlong && y == CONST64(-1)) { 279 return x; 280 } else { 281 return x / y; 282 } 283 JRT_END 284 285 286 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 287 if (x == min_jlong && y == CONST64(-1)) { 288 return 0; 289 } else { 290 return x % y; 291 } 292 JRT_END 293 294 295 #ifdef _WIN64 296 const juint float_sign_mask = 0x7FFFFFFF; 297 const juint float_infinity = 0x7F800000; 298 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 299 const julong double_infinity = CONST64(0x7FF0000000000000); 300 #endif 301 302 #if !defined(X86) 303 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 304 #ifdef _WIN64 305 // 64-bit Windows on amd64 returns the wrong values for 306 // infinity operands. 307 juint xbits = PrimitiveConversions::cast<juint>(x); 308 juint ybits = PrimitiveConversions::cast<juint>(y); 309 // x Mod Infinity == x unless x is infinity 310 if (((xbits & float_sign_mask) != float_infinity) && 311 ((ybits & float_sign_mask) == float_infinity) ) { 312 return x; 313 } 314 return ((jfloat)fmod_winx64((double)x, (double)y)); 315 #else 316 return ((jfloat)fmod((double)x,(double)y)); 317 #endif 318 JRT_END 319 320 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 321 #ifdef _WIN64 322 julong xbits = PrimitiveConversions::cast<julong>(x); 323 julong ybits = PrimitiveConversions::cast<julong>(y); 324 // x Mod Infinity == x unless x is infinity 325 if (((xbits & double_sign_mask) != double_infinity) && 326 ((ybits & double_sign_mask) == double_infinity) ) { 327 return x; 328 } 329 return ((jdouble)fmod_winx64((double)x, (double)y)); 330 #else 331 return ((jdouble)fmod((double)x,(double)y)); 332 #endif 333 JRT_END 334 #endif // !X86 335 336 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 337 return (jfloat)x; 338 JRT_END 339 340 #ifdef __SOFTFP__ 341 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 342 return x + y; 343 JRT_END 344 345 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 346 return x - y; 347 JRT_END 348 349 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 350 return x * y; 351 JRT_END 352 353 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 354 return x / y; 355 JRT_END 356 357 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 358 return x + y; 359 JRT_END 360 361 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 362 return x - y; 363 JRT_END 364 365 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 366 return x * y; 367 JRT_END 368 369 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 370 return x / y; 371 JRT_END 372 373 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 374 return (jdouble)x; 375 JRT_END 376 377 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 378 return (jdouble)x; 379 JRT_END 380 381 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 382 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 383 JRT_END 384 385 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 386 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 387 JRT_END 388 389 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 390 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 391 JRT_END 392 393 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 394 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 395 JRT_END 396 397 // Functions to return the opposite of the aeabi functions for nan. 398 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 399 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 400 JRT_END 401 402 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 403 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 404 JRT_END 405 406 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 407 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 408 JRT_END 409 410 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 411 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 412 JRT_END 413 414 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 415 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 416 JRT_END 417 418 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 419 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 420 JRT_END 421 422 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 423 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 424 JRT_END 425 426 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 427 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 428 JRT_END 429 430 // Intrinsics make gcc generate code for these. 431 float SharedRuntime::fneg(float f) { 432 return -f; 433 } 434 435 double SharedRuntime::dneg(double f) { 436 return -f; 437 } 438 439 #endif // __SOFTFP__ 440 441 #if defined(__SOFTFP__) || defined(E500V2) 442 // Intrinsics make gcc generate code for these. 443 double SharedRuntime::dabs(double f) { 444 return (f <= (double)0.0) ? (double)0.0 - f : f; 445 } 446 447 #endif 448 449 #if defined(__SOFTFP__) 450 double SharedRuntime::dsqrt(double f) { 451 return sqrt(f); 452 } 453 #endif 454 455 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 456 if (g_isnan(x)) 457 return 0; 458 if (x >= (jfloat) max_jint) 459 return max_jint; 460 if (x <= (jfloat) min_jint) 461 return min_jint; 462 return (jint) x; 463 JRT_END 464 465 466 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 467 if (g_isnan(x)) 468 return 0; 469 if (x >= (jfloat) max_jlong) 470 return max_jlong; 471 if (x <= (jfloat) min_jlong) 472 return min_jlong; 473 return (jlong) x; 474 JRT_END 475 476 477 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 478 if (g_isnan(x)) 479 return 0; 480 if (x >= (jdouble) max_jint) 481 return max_jint; 482 if (x <= (jdouble) min_jint) 483 return min_jint; 484 return (jint) x; 485 JRT_END 486 487 488 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 489 if (g_isnan(x)) 490 return 0; 491 if (x >= (jdouble) max_jlong) 492 return max_jlong; 493 if (x <= (jdouble) min_jlong) 494 return min_jlong; 495 return (jlong) x; 496 JRT_END 497 498 499 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 500 return (jfloat)x; 501 JRT_END 502 503 504 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 505 return (jfloat)x; 506 JRT_END 507 508 509 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 510 return (jdouble)x; 511 JRT_END 512 513 514 // Exception handling across interpreter/compiler boundaries 515 // 516 // exception_handler_for_return_address(...) returns the continuation address. 517 // The continuation address is the entry point of the exception handler of the 518 // previous frame depending on the return address. 519 520 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 521 // Note: This is called when we have unwound the frame of the callee that did 522 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 523 // Notably, the stack is not walkable at this point, and hence the check must 524 // be deferred until later. Specifically, any of the handlers returned here in 525 // this function, will get dispatched to, and call deferred checks to 526 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 527 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 528 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 529 530 // Reset method handle flag. 531 current->set_is_method_handle_return(false); 532 533 #if INCLUDE_JVMCI 534 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 535 // and other exception handler continuations do not read it 536 current->set_exception_pc(nullptr); 537 #endif // INCLUDE_JVMCI 538 539 if (Continuation::is_return_barrier_entry(return_address)) { 540 return StubRoutines::cont_returnBarrierExc(); 541 } 542 543 // The fastest case first 544 CodeBlob* blob = CodeCache::find_blob(return_address); 545 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 546 if (nm != nullptr) { 547 // Set flag if return address is a method handle call site. 548 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 549 // native nmethods don't have exception handlers 550 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 551 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 552 if (nm->is_deopt_pc(return_address)) { 553 // If we come here because of a stack overflow, the stack may be 554 // unguarded. Reguard the stack otherwise if we return to the 555 // deopt blob and the stack bang causes a stack overflow we 556 // crash. 557 StackOverflow* overflow_state = current->stack_overflow_state(); 558 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 559 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 560 overflow_state->set_reserved_stack_activation(current->stack_base()); 561 } 562 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 563 // The deferred StackWatermarkSet::after_unwind check will be performed in 564 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 565 return SharedRuntime::deopt_blob()->unpack_with_exception(); 566 } else { 567 // The deferred StackWatermarkSet::after_unwind check will be performed in 568 // * OptoRuntime::handle_exception_C_helper for C2 code 569 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 570 return nm->exception_begin(); 571 } 572 } 573 574 // Entry code 575 if (StubRoutines::returns_to_call_stub(return_address)) { 576 // The deferred StackWatermarkSet::after_unwind check will be performed in 577 // JavaCallWrapper::~JavaCallWrapper 578 return StubRoutines::catch_exception_entry(); 579 } 580 if (blob != nullptr && blob->is_upcall_stub()) { 581 return StubRoutines::upcall_stub_exception_handler(); 582 } 583 // Interpreted code 584 if (Interpreter::contains(return_address)) { 585 // The deferred StackWatermarkSet::after_unwind check will be performed in 586 // InterpreterRuntime::exception_handler_for_exception 587 return Interpreter::rethrow_exception_entry(); 588 } 589 590 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 591 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 592 593 #ifndef PRODUCT 594 { ResourceMark rm; 595 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 596 os::print_location(tty, (intptr_t)return_address); 597 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 598 tty->print_cr("b) other problem"); 599 } 600 #endif // PRODUCT 601 ShouldNotReachHere(); 602 return nullptr; 603 } 604 605 606 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 607 return raw_exception_handler_for_return_address(current, return_address); 608 JRT_END 609 610 611 address SharedRuntime::get_poll_stub(address pc) { 612 address stub; 613 // Look up the code blob 614 CodeBlob *cb = CodeCache::find_blob(pc); 615 616 // Should be an nmethod 617 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 618 619 // Look up the relocation information 620 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 621 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 622 623 #ifdef ASSERT 624 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 625 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 626 Disassembler::decode(cb); 627 fatal("Only polling locations are used for safepoint"); 628 } 629 #endif 630 631 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 632 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 633 if (at_poll_return) { 634 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 635 "polling page return stub not created yet"); 636 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 637 } else if (has_wide_vectors) { 638 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 639 "polling page vectors safepoint stub not created yet"); 640 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 641 } else { 642 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 643 "polling page safepoint stub not created yet"); 644 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 645 } 646 log_debug(safepoint)("... found polling page %s exception at pc = " 647 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 648 at_poll_return ? "return" : "loop", 649 (intptr_t)pc, (intptr_t)stub); 650 return stub; 651 } 652 653 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 654 if (JvmtiExport::can_post_on_exceptions()) { 655 vframeStream vfst(current, true); 656 methodHandle method = methodHandle(current, vfst.method()); 657 address bcp = method()->bcp_from(vfst.bci()); 658 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 659 } 660 661 #if INCLUDE_JVMCI 662 if (EnableJVMCI) { 663 vframeStream vfst(current, true); 664 methodHandle method = methodHandle(current, vfst.method()); 665 int bci = vfst.bci(); 666 MethodData* trap_mdo = method->method_data(); 667 if (trap_mdo != nullptr) { 668 // Set exception_seen if the exceptional bytecode is an invoke 669 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 670 if (call.is_valid()) { 671 ResourceMark rm(current); 672 673 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 674 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 675 676 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 677 if (pdata != nullptr && pdata->is_BitData()) { 678 BitData* bit_data = (BitData*) pdata; 679 bit_data->set_exception_seen(); 680 } 681 } 682 } 683 } 684 #endif 685 686 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 687 } 688 689 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 690 Handle h_exception = Exceptions::new_exception(current, name, message); 691 throw_and_post_jvmti_exception(current, h_exception); 692 } 693 694 #if INCLUDE_JVMTI 695 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 696 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 697 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 698 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 699 JNIHandles::destroy_local(vthread); 700 JRT_END 701 702 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 703 assert(hide == JNI_TRUE, "must be VTMS transition start"); 704 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 705 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 706 JNIHandles::destroy_local(vthread); 707 JRT_END 708 709 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 710 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 711 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 712 JNIHandles::destroy_local(vthread); 713 JRT_END 714 715 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 716 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 717 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 718 JNIHandles::destroy_local(vthread); 719 JRT_END 720 #endif // INCLUDE_JVMTI 721 722 // The interpreter code to call this tracing function is only 723 // called/generated when UL is on for redefine, class and has the right level 724 // and tags. Since obsolete methods are never compiled, we don't have 725 // to modify the compilers to generate calls to this function. 726 // 727 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 728 JavaThread* thread, Method* method)) 729 if (method->is_obsolete()) { 730 // We are calling an obsolete method, but this is not necessarily 731 // an error. Our method could have been redefined just after we 732 // fetched the Method* from the constant pool. 733 ResourceMark rm; 734 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 735 } 736 return 0; 737 JRT_END 738 739 // ret_pc points into caller; we are returning caller's exception handler 740 // for given exception 741 // Note that the implementation of this method assumes it's only called when an exception has actually occured 742 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 743 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 744 assert(nm != nullptr, "must exist"); 745 ResourceMark rm; 746 747 #if INCLUDE_JVMCI 748 if (nm->is_compiled_by_jvmci()) { 749 // lookup exception handler for this pc 750 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 751 ExceptionHandlerTable table(nm); 752 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 753 if (t != nullptr) { 754 return nm->code_begin() + t->pco(); 755 } else { 756 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 757 } 758 } 759 #endif // INCLUDE_JVMCI 760 761 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 762 // determine handler bci, if any 763 EXCEPTION_MARK; 764 765 int handler_bci = -1; 766 int scope_depth = 0; 767 if (!force_unwind) { 768 int bci = sd->bci(); 769 bool recursive_exception = false; 770 do { 771 bool skip_scope_increment = false; 772 // exception handler lookup 773 Klass* ek = exception->klass(); 774 methodHandle mh(THREAD, sd->method()); 775 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 776 if (HAS_PENDING_EXCEPTION) { 777 recursive_exception = true; 778 // We threw an exception while trying to find the exception handler. 779 // Transfer the new exception to the exception handle which will 780 // be set into thread local storage, and do another lookup for an 781 // exception handler for this exception, this time starting at the 782 // BCI of the exception handler which caused the exception to be 783 // thrown (bugs 4307310 and 4546590). Set "exception" reference 784 // argument to ensure that the correct exception is thrown (4870175). 785 recursive_exception_occurred = true; 786 exception = Handle(THREAD, PENDING_EXCEPTION); 787 CLEAR_PENDING_EXCEPTION; 788 if (handler_bci >= 0) { 789 bci = handler_bci; 790 handler_bci = -1; 791 skip_scope_increment = true; 792 } 793 } 794 else { 795 recursive_exception = false; 796 } 797 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 798 sd = sd->sender(); 799 if (sd != nullptr) { 800 bci = sd->bci(); 801 } 802 ++scope_depth; 803 } 804 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 805 } 806 807 // found handling method => lookup exception handler 808 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 809 810 ExceptionHandlerTable table(nm); 811 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 812 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 813 // Allow abbreviated catch tables. The idea is to allow a method 814 // to materialize its exceptions without committing to the exact 815 // routing of exceptions. In particular this is needed for adding 816 // a synthetic handler to unlock monitors when inlining 817 // synchronized methods since the unlock path isn't represented in 818 // the bytecodes. 819 t = table.entry_for(catch_pco, -1, 0); 820 } 821 822 #ifdef COMPILER1 823 if (t == nullptr && nm->is_compiled_by_c1()) { 824 assert(nm->unwind_handler_begin() != nullptr, ""); 825 return nm->unwind_handler_begin(); 826 } 827 #endif 828 829 if (t == nullptr) { 830 ttyLocker ttyl; 831 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 832 tty->print_cr(" Exception:"); 833 exception->print(); 834 tty->cr(); 835 tty->print_cr(" Compiled exception table :"); 836 table.print(); 837 nm->print(); 838 nm->print_code(); 839 guarantee(false, "missing exception handler"); 840 return nullptr; 841 } 842 843 if (handler_bci != -1) { // did we find a handler in this method? 844 sd->method()->set_exception_handler_entered(handler_bci); // profile 845 } 846 return nm->code_begin() + t->pco(); 847 } 848 849 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 850 // These errors occur only at call sites 851 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 852 JRT_END 853 854 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 855 // These errors occur only at call sites 856 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 857 JRT_END 858 859 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 860 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 861 JRT_END 862 863 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 864 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 865 JRT_END 866 867 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 868 // This entry point is effectively only used for NullPointerExceptions which occur at inline 869 // cache sites (when the callee activation is not yet set up) so we are at a call site 870 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 871 JRT_END 872 873 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 874 throw_StackOverflowError_common(current, false); 875 JRT_END 876 877 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 878 throw_StackOverflowError_common(current, true); 879 JRT_END 880 881 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 882 // We avoid using the normal exception construction in this case because 883 // it performs an upcall to Java, and we're already out of stack space. 884 JavaThread* THREAD = current; // For exception macros. 885 Klass* k = vmClasses::StackOverflowError_klass(); 886 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 887 if (delayed) { 888 java_lang_Throwable::set_message(exception_oop, 889 Universe::delayed_stack_overflow_error_message()); 890 } 891 Handle exception (current, exception_oop); 892 if (StackTraceInThrowable) { 893 java_lang_Throwable::fill_in_stack_trace(exception); 894 } 895 // Remove the ScopedValue bindings in case we got a 896 // StackOverflowError while we were trying to remove ScopedValue 897 // bindings. 898 current->clear_scopedValueBindings(); 899 // Increment counter for hs_err file reporting 900 Atomic::inc(&Exceptions::_stack_overflow_errors); 901 throw_and_post_jvmti_exception(current, exception); 902 } 903 904 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 905 address pc, 906 ImplicitExceptionKind exception_kind) 907 { 908 address target_pc = nullptr; 909 910 if (Interpreter::contains(pc)) { 911 switch (exception_kind) { 912 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 913 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 914 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 915 default: ShouldNotReachHere(); 916 } 917 } else { 918 switch (exception_kind) { 919 case STACK_OVERFLOW: { 920 // Stack overflow only occurs upon frame setup; the callee is 921 // going to be unwound. Dispatch to a shared runtime stub 922 // which will cause the StackOverflowError to be fabricated 923 // and processed. 924 // Stack overflow should never occur during deoptimization: 925 // the compiled method bangs the stack by as much as the 926 // interpreter would need in case of a deoptimization. The 927 // deoptimization blob and uncommon trap blob bang the stack 928 // in a debug VM to verify the correctness of the compiled 929 // method stack banging. 930 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 931 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 932 return SharedRuntime::throw_StackOverflowError_entry(); 933 } 934 935 case IMPLICIT_NULL: { 936 if (VtableStubs::contains(pc)) { 937 // We haven't yet entered the callee frame. Fabricate an 938 // exception and begin dispatching it in the caller. Since 939 // the caller was at a call site, it's safe to destroy all 940 // caller-saved registers, as these entry points do. 941 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 942 943 // If vt_stub is null, then return null to signal handler to report the SEGV error. 944 if (vt_stub == nullptr) return nullptr; 945 946 if (vt_stub->is_abstract_method_error(pc)) { 947 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 948 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 949 // Instead of throwing the abstract method error here directly, we re-resolve 950 // and will throw the AbstractMethodError during resolve. As a result, we'll 951 // get a more detailed error message. 952 return SharedRuntime::get_handle_wrong_method_stub(); 953 } else { 954 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 955 // Assert that the signal comes from the expected location in stub code. 956 assert(vt_stub->is_null_pointer_exception(pc), 957 "obtained signal from unexpected location in stub code"); 958 return SharedRuntime::throw_NullPointerException_at_call_entry(); 959 } 960 } else { 961 CodeBlob* cb = CodeCache::find_blob(pc); 962 963 // If code blob is null, then return null to signal handler to report the SEGV error. 964 if (cb == nullptr) return nullptr; 965 966 // Exception happened in CodeCache. Must be either: 967 // 1. Inline-cache check in C2I handler blob, 968 // 2. Inline-cache check in nmethod, or 969 // 3. Implicit null exception in nmethod 970 971 if (!cb->is_nmethod()) { 972 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 973 if (!is_in_blob) { 974 // Allow normal crash reporting to handle this 975 return nullptr; 976 } 977 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 978 // There is no handler here, so we will simply unwind. 979 return SharedRuntime::throw_NullPointerException_at_call_entry(); 980 } 981 982 // Otherwise, it's a compiled method. Consult its exception handlers. 983 nmethod* nm = cb->as_nmethod(); 984 if (nm->inlinecache_check_contains(pc)) { 985 // exception happened inside inline-cache check code 986 // => the nmethod is not yet active (i.e., the frame 987 // is not set up yet) => use return address pushed by 988 // caller => don't push another return address 989 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 990 return SharedRuntime::throw_NullPointerException_at_call_entry(); 991 } 992 993 if (nm->method()->is_method_handle_intrinsic()) { 994 // exception happened inside MH dispatch code, similar to a vtable stub 995 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 996 return SharedRuntime::throw_NullPointerException_at_call_entry(); 997 } 998 999 #ifndef PRODUCT 1000 _implicit_null_throws++; 1001 #endif 1002 target_pc = nm->continuation_for_implicit_null_exception(pc); 1003 // If there's an unexpected fault, target_pc might be null, 1004 // in which case we want to fall through into the normal 1005 // error handling code. 1006 } 1007 1008 break; // fall through 1009 } 1010 1011 1012 case IMPLICIT_DIVIDE_BY_ZERO: { 1013 nmethod* nm = CodeCache::find_nmethod(pc); 1014 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1015 #ifndef PRODUCT 1016 _implicit_div0_throws++; 1017 #endif 1018 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1019 // If there's an unexpected fault, target_pc might be null, 1020 // in which case we want to fall through into the normal 1021 // error handling code. 1022 break; // fall through 1023 } 1024 1025 default: ShouldNotReachHere(); 1026 } 1027 1028 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1029 1030 if (exception_kind == IMPLICIT_NULL) { 1031 #ifndef PRODUCT 1032 // for AbortVMOnException flag 1033 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1034 #endif //PRODUCT 1035 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1036 } else { 1037 #ifndef PRODUCT 1038 // for AbortVMOnException flag 1039 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1040 #endif //PRODUCT 1041 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1042 } 1043 return target_pc; 1044 } 1045 1046 ShouldNotReachHere(); 1047 return nullptr; 1048 } 1049 1050 1051 /** 1052 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1053 * installed in the native function entry of all native Java methods before 1054 * they get linked to their actual native methods. 1055 * 1056 * \note 1057 * This method actually never gets called! The reason is because 1058 * the interpreter's native entries call NativeLookup::lookup() which 1059 * throws the exception when the lookup fails. The exception is then 1060 * caught and forwarded on the return from NativeLookup::lookup() call 1061 * before the call to the native function. This might change in the future. 1062 */ 1063 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1064 { 1065 // We return a bad value here to make sure that the exception is 1066 // forwarded before we look at the return value. 1067 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1068 } 1069 JNI_END 1070 1071 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1072 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1073 } 1074 1075 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1076 #if INCLUDE_JVMCI 1077 if (!obj->klass()->has_finalizer()) { 1078 return; 1079 } 1080 #endif // INCLUDE_JVMCI 1081 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1082 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1083 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1084 JRT_END 1085 1086 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1087 assert(thread != nullptr, "No thread"); 1088 if (thread == nullptr) { 1089 return 0; 1090 } 1091 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1092 "current cannot touch oops after its GC barrier is detached."); 1093 oop obj = thread->threadObj(); 1094 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1095 } 1096 1097 /** 1098 * This function ought to be a void function, but cannot be because 1099 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1100 * 6254741. Once that is fixed we can remove the dummy return value. 1101 */ 1102 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1103 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1104 } 1105 1106 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1107 return dtrace_object_alloc(thread, o, o->size()); 1108 } 1109 1110 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1111 assert(DTraceAllocProbes, "wrong call"); 1112 Klass* klass = o->klass(); 1113 Symbol* name = klass->name(); 1114 HOTSPOT_OBJECT_ALLOC( 1115 get_java_tid(thread), 1116 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1117 return 0; 1118 } 1119 1120 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1121 JavaThread* current, Method* method)) 1122 assert(current == JavaThread::current(), "pre-condition"); 1123 1124 assert(DTraceMethodProbes, "wrong call"); 1125 Symbol* kname = method->klass_name(); 1126 Symbol* name = method->name(); 1127 Symbol* sig = method->signature(); 1128 HOTSPOT_METHOD_ENTRY( 1129 get_java_tid(current), 1130 (char *) kname->bytes(), kname->utf8_length(), 1131 (char *) name->bytes(), name->utf8_length(), 1132 (char *) sig->bytes(), sig->utf8_length()); 1133 return 0; 1134 JRT_END 1135 1136 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1137 JavaThread* current, Method* method)) 1138 assert(current == JavaThread::current(), "pre-condition"); 1139 assert(DTraceMethodProbes, "wrong call"); 1140 Symbol* kname = method->klass_name(); 1141 Symbol* name = method->name(); 1142 Symbol* sig = method->signature(); 1143 HOTSPOT_METHOD_RETURN( 1144 get_java_tid(current), 1145 (char *) kname->bytes(), kname->utf8_length(), 1146 (char *) name->bytes(), name->utf8_length(), 1147 (char *) sig->bytes(), sig->utf8_length()); 1148 return 0; 1149 JRT_END 1150 1151 1152 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1153 // for a call current in progress, i.e., arguments has been pushed on stack 1154 // put callee has not been invoked yet. Used by: resolve virtual/static, 1155 // vtable updates, etc. Caller frame must be compiled. 1156 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1157 JavaThread* current = THREAD; 1158 ResourceMark rm(current); 1159 1160 // last java frame on stack (which includes native call frames) 1161 vframeStream vfst(current, true); // Do not skip and javaCalls 1162 1163 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1164 } 1165 1166 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1167 nmethod* caller = vfst.nm(); 1168 1169 address pc = vfst.frame_pc(); 1170 { // Get call instruction under lock because another thread may be busy patching it. 1171 CompiledICLocker ic_locker(caller); 1172 return caller->attached_method_before_pc(pc); 1173 } 1174 return nullptr; 1175 } 1176 1177 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1178 // for a call current in progress, i.e., arguments has been pushed on stack 1179 // but callee has not been invoked yet. Caller frame must be compiled. 1180 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1181 CallInfo& callinfo, TRAPS) { 1182 Handle receiver; 1183 Handle nullHandle; // create a handy null handle for exception returns 1184 JavaThread* current = THREAD; 1185 1186 assert(!vfst.at_end(), "Java frame must exist"); 1187 1188 // Find caller and bci from vframe 1189 methodHandle caller(current, vfst.method()); 1190 int bci = vfst.bci(); 1191 1192 if (caller->is_continuation_enter_intrinsic()) { 1193 bc = Bytecodes::_invokestatic; 1194 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1195 return receiver; 1196 } 1197 1198 // Substitutability test implementation piggy backs on static call resolution 1199 Bytecodes::Code code = caller->java_code_at(bci); 1200 if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) { 1201 bc = Bytecodes::_invokestatic; 1202 methodHandle attached_method(THREAD, extract_attached_method(vfst)); 1203 assert(attached_method.not_null(), "must have attached method"); 1204 vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH); 1205 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH); 1206 #ifdef ASSERT 1207 Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1208 assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method"); 1209 #endif 1210 return receiver; 1211 } 1212 1213 Bytecode_invoke bytecode(caller, bci); 1214 int bytecode_index = bytecode.index(); 1215 bc = bytecode.invoke_code(); 1216 1217 methodHandle attached_method(current, extract_attached_method(vfst)); 1218 if (attached_method.not_null()) { 1219 Method* callee = bytecode.static_target(CHECK_NH); 1220 vmIntrinsics::ID id = callee->intrinsic_id(); 1221 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1222 // it attaches statically resolved method to the call site. 1223 if (MethodHandles::is_signature_polymorphic(id) && 1224 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1225 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1226 1227 // Adjust invocation mode according to the attached method. 1228 switch (bc) { 1229 case Bytecodes::_invokevirtual: 1230 if (attached_method->method_holder()->is_interface()) { 1231 bc = Bytecodes::_invokeinterface; 1232 } 1233 break; 1234 case Bytecodes::_invokeinterface: 1235 if (!attached_method->method_holder()->is_interface()) { 1236 bc = Bytecodes::_invokevirtual; 1237 } 1238 break; 1239 case Bytecodes::_invokehandle: 1240 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1241 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1242 : Bytecodes::_invokevirtual; 1243 } 1244 break; 1245 default: 1246 break; 1247 } 1248 } else { 1249 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1250 if (!attached_method->method_holder()->is_inline_klass()) { 1251 // Ignore the attached method in this case to not confuse below code 1252 attached_method = methodHandle(current, nullptr); 1253 } 1254 } 1255 } 1256 1257 assert(bc != Bytecodes::_illegal, "not initialized"); 1258 1259 bool has_receiver = bc != Bytecodes::_invokestatic && 1260 bc != Bytecodes::_invokedynamic && 1261 bc != Bytecodes::_invokehandle; 1262 bool check_null_and_abstract = true; 1263 1264 // Find receiver for non-static call 1265 if (has_receiver) { 1266 // This register map must be update since we need to find the receiver for 1267 // compiled frames. The receiver might be in a register. 1268 RegisterMap reg_map2(current, 1269 RegisterMap::UpdateMap::include, 1270 RegisterMap::ProcessFrames::include, 1271 RegisterMap::WalkContinuation::skip); 1272 frame stubFrame = current->last_frame(); 1273 // Caller-frame is a compiled frame 1274 frame callerFrame = stubFrame.sender(®_map2); 1275 1276 Method* callee = attached_method(); 1277 if (callee == nullptr) { 1278 callee = bytecode.static_target(CHECK_NH); 1279 if (callee == nullptr) { 1280 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1281 } 1282 } 1283 bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->as_nmethod()->is_compiled_by_c1(); 1284 if (!caller_is_c1 && callee->is_scalarized_arg(0)) { 1285 // If the receiver is an inline type that is passed as fields, no oop is available 1286 // Resolve the call without receiver null checking. 1287 assert(!callee->mismatch(), "calls with inline type receivers should never mismatch"); 1288 assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method"); 1289 if (bc == Bytecodes::_invokeinterface) { 1290 bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls 1291 } 1292 check_null_and_abstract = false; 1293 } else { 1294 // Retrieve from a compiled argument list 1295 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1296 assert(oopDesc::is_oop_or_null(receiver()), ""); 1297 if (receiver.is_null()) { 1298 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1299 } 1300 } 1301 } 1302 1303 // Resolve method 1304 if (attached_method.not_null()) { 1305 // Parameterized by attached method. 1306 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH); 1307 } else { 1308 // Parameterized by bytecode. 1309 constantPoolHandle constants(current, caller->constants()); 1310 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1311 } 1312 1313 #ifdef ASSERT 1314 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1315 if (has_receiver && check_null_and_abstract) { 1316 assert(receiver.not_null(), "should have thrown exception"); 1317 Klass* receiver_klass = receiver->klass(); 1318 Klass* rk = nullptr; 1319 if (attached_method.not_null()) { 1320 // In case there's resolved method attached, use its holder during the check. 1321 rk = attached_method->method_holder(); 1322 } else { 1323 // Klass is already loaded. 1324 constantPoolHandle constants(current, caller->constants()); 1325 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1326 } 1327 Klass* static_receiver_klass = rk; 1328 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1329 "actual receiver must be subclass of static receiver klass"); 1330 if (receiver_klass->is_instance_klass()) { 1331 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1332 tty->print_cr("ERROR: Klass not yet initialized!!"); 1333 receiver_klass->print(); 1334 } 1335 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1336 } 1337 } 1338 #endif 1339 1340 return receiver; 1341 } 1342 1343 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) { 1344 JavaThread* current = THREAD; 1345 ResourceMark rm(current); 1346 // We need first to check if any Java activations (compiled, interpreted) 1347 // exist on the stack since last JavaCall. If not, we need 1348 // to get the target method from the JavaCall wrapper. 1349 vframeStream vfst(current, true); // Do not skip any javaCalls 1350 methodHandle callee_method; 1351 if (vfst.at_end()) { 1352 // No Java frames were found on stack since we did the JavaCall. 1353 // Hence the stack can only contain an entry_frame. We need to 1354 // find the target method from the stub frame. 1355 RegisterMap reg_map(current, 1356 RegisterMap::UpdateMap::skip, 1357 RegisterMap::ProcessFrames::include, 1358 RegisterMap::WalkContinuation::skip); 1359 frame fr = current->last_frame(); 1360 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1361 fr = fr.sender(®_map); 1362 assert(fr.is_entry_frame(), "must be"); 1363 // fr is now pointing to the entry frame. 1364 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1365 } else { 1366 Bytecodes::Code bc; 1367 CallInfo callinfo; 1368 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1369 // Calls via mismatching methods are always non-scalarized 1370 if (callinfo.resolved_method()->mismatch() && !is_optimized) { 1371 caller_is_c1 = true; 1372 } 1373 callee_method = methodHandle(current, callinfo.selected_method()); 1374 } 1375 assert(callee_method()->is_method(), "must be"); 1376 return callee_method; 1377 } 1378 1379 // Resolves a call. 1380 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) { 1381 JavaThread* current = THREAD; 1382 ResourceMark rm(current); 1383 RegisterMap cbl_map(current, 1384 RegisterMap::UpdateMap::skip, 1385 RegisterMap::ProcessFrames::include, 1386 RegisterMap::WalkContinuation::skip); 1387 frame caller_frame = current->last_frame().sender(&cbl_map); 1388 1389 CodeBlob* caller_cb = caller_frame.cb(); 1390 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1391 nmethod* caller_nm = caller_cb->as_nmethod(); 1392 1393 // determine call info & receiver 1394 // note: a) receiver is null for static calls 1395 // b) an exception is thrown if receiver is null for non-static calls 1396 CallInfo call_info; 1397 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1398 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1399 1400 NoSafepointVerifier nsv; 1401 1402 methodHandle callee_method(current, call_info.selected_method()); 1403 // Calls via mismatching methods are always non-scalarized 1404 if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) { 1405 caller_is_c1 = true; 1406 } 1407 1408 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1409 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1410 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1411 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1412 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1413 1414 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1415 1416 #ifndef PRODUCT 1417 // tracing/debugging/statistics 1418 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1419 (is_virtual) ? (&_resolve_virtual_ctr) : 1420 (&_resolve_static_ctr); 1421 Atomic::inc(addr); 1422 1423 if (TraceCallFixup) { 1424 ResourceMark rm(current); 1425 tty->print("resolving %s%s (%s) call%s to", 1426 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1427 Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : ""); 1428 callee_method->print_short_name(tty); 1429 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1430 p2i(caller_frame.pc()), p2i(callee_method->code())); 1431 } 1432 #endif 1433 1434 if (invoke_code == Bytecodes::_invokestatic) { 1435 assert(callee_method->method_holder()->is_initialized() || 1436 callee_method->method_holder()->is_reentrant_initialization(current), 1437 "invalid class initialization state for invoke_static"); 1438 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1439 // In order to keep class initialization check, do not patch call 1440 // site for static call when the class is not fully initialized. 1441 // Proper check is enforced by call site re-resolution on every invocation. 1442 // 1443 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1444 // explicit class initialization check is put in nmethod entry (VEP). 1445 assert(callee_method->method_holder()->is_linked(), "must be"); 1446 return callee_method; 1447 } 1448 } 1449 1450 1451 // JSR 292 key invariant: 1452 // If the resolved method is a MethodHandle invoke target, the call 1453 // site must be a MethodHandle call site, because the lambda form might tail-call 1454 // leaving the stack in a state unknown to either caller or callee 1455 1456 // Compute entry points. The computation of the entry points is independent of 1457 // patching the call. 1458 1459 // Make sure the callee nmethod does not get deoptimized and removed before 1460 // we are done patching the code. 1461 1462 1463 CompiledICLocker ml(caller_nm); 1464 if (is_virtual && !is_optimized) { 1465 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1466 inline_cache->update(&call_info, receiver->klass(), caller_is_c1); 1467 } else { 1468 // Callsite is a direct call - set it to the destination method 1469 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1470 callsite->set(callee_method, caller_is_c1); 1471 } 1472 1473 return callee_method; 1474 } 1475 1476 // Inline caches exist only in compiled code 1477 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1478 #ifdef ASSERT 1479 RegisterMap reg_map(current, 1480 RegisterMap::UpdateMap::skip, 1481 RegisterMap::ProcessFrames::include, 1482 RegisterMap::WalkContinuation::skip); 1483 frame stub_frame = current->last_frame(); 1484 assert(stub_frame.is_runtime_frame(), "sanity check"); 1485 frame caller_frame = stub_frame.sender(®_map); 1486 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1487 #endif /* ASSERT */ 1488 1489 methodHandle callee_method; 1490 bool is_optimized = false; 1491 bool caller_is_c1 = false; 1492 JRT_BLOCK 1493 callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL); 1494 // Return Method* through TLS 1495 current->set_vm_result_metadata(callee_method()); 1496 JRT_BLOCK_END 1497 // return compiled code entry point after potential safepoints 1498 return get_resolved_entry(current, callee_method, false, is_optimized, caller_is_c1); 1499 JRT_END 1500 1501 1502 // Handle call site that has been made non-entrant 1503 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1504 // 6243940 We might end up in here if the callee is deoptimized 1505 // as we race to call it. We don't want to take a safepoint if 1506 // the caller was interpreted because the caller frame will look 1507 // interpreted to the stack walkers and arguments are now 1508 // "compiled" so it is much better to make this transition 1509 // invisible to the stack walking code. The i2c path will 1510 // place the callee method in the callee_target. It is stashed 1511 // there because if we try and find the callee by normal means a 1512 // safepoint is possible and have trouble gc'ing the compiled args. 1513 RegisterMap reg_map(current, 1514 RegisterMap::UpdateMap::skip, 1515 RegisterMap::ProcessFrames::include, 1516 RegisterMap::WalkContinuation::skip); 1517 frame stub_frame = current->last_frame(); 1518 assert(stub_frame.is_runtime_frame(), "sanity check"); 1519 frame caller_frame = stub_frame.sender(®_map); 1520 1521 if (caller_frame.is_interpreted_frame() || 1522 caller_frame.is_entry_frame() || 1523 caller_frame.is_upcall_stub_frame()) { 1524 Method* callee = current->callee_target(); 1525 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1526 current->set_vm_result_metadata(callee); 1527 current->set_callee_target(nullptr); 1528 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1529 // Bypass class initialization checks in c2i when caller is in native. 1530 // JNI calls to static methods don't have class initialization checks. 1531 // Fast class initialization checks are present in c2i adapters and call into 1532 // SharedRuntime::handle_wrong_method() on the slow path. 1533 // 1534 // JVM upcalls may land here as well, but there's a proper check present in 1535 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1536 // so bypassing it in c2i adapter is benign. 1537 return callee->get_c2i_no_clinit_check_entry(); 1538 } else { 1539 if (caller_frame.is_interpreted_frame()) { 1540 return callee->get_c2i_inline_entry(); 1541 } else { 1542 return callee->get_c2i_entry(); 1543 } 1544 } 1545 } 1546 1547 // Must be compiled to compiled path which is safe to stackwalk 1548 methodHandle callee_method; 1549 bool is_static_call = false; 1550 bool is_optimized = false; 1551 bool caller_is_c1 = false; 1552 JRT_BLOCK 1553 // Force resolving of caller (if we called from compiled frame) 1554 callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1555 current->set_vm_result_metadata(callee_method()); 1556 JRT_BLOCK_END 1557 // return compiled code entry point after potential safepoints 1558 return get_resolved_entry(current, callee_method, is_static_call, is_optimized, caller_is_c1); 1559 JRT_END 1560 1561 // Handle abstract method call 1562 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1563 // Verbose error message for AbstractMethodError. 1564 // Get the called method from the invoke bytecode. 1565 vframeStream vfst(current, true); 1566 assert(!vfst.at_end(), "Java frame must exist"); 1567 methodHandle caller(current, vfst.method()); 1568 Bytecode_invoke invoke(caller, vfst.bci()); 1569 DEBUG_ONLY( invoke.verify(); ) 1570 1571 // Find the compiled caller frame. 1572 RegisterMap reg_map(current, 1573 RegisterMap::UpdateMap::include, 1574 RegisterMap::ProcessFrames::include, 1575 RegisterMap::WalkContinuation::skip); 1576 frame stubFrame = current->last_frame(); 1577 assert(stubFrame.is_runtime_frame(), "must be"); 1578 frame callerFrame = stubFrame.sender(®_map); 1579 assert(callerFrame.is_compiled_frame(), "must be"); 1580 1581 // Install exception and return forward entry. 1582 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1583 JRT_BLOCK 1584 methodHandle callee(current, invoke.static_target(current)); 1585 if (!callee.is_null()) { 1586 oop recv = callerFrame.retrieve_receiver(®_map); 1587 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1588 res = StubRoutines::forward_exception_entry(); 1589 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1590 } 1591 JRT_BLOCK_END 1592 return res; 1593 JRT_END 1594 1595 // return verified_code_entry if interp_only_mode is not set for the current thread; 1596 // otherwise return c2i entry. 1597 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method, 1598 bool is_static_call, bool is_optimized, bool caller_is_c1) { 1599 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1600 // In interp_only_mode we need to go to the interpreted entry 1601 // The c2i won't patch in this mode -- see fixup_callers_callsite 1602 return callee_method->get_c2i_entry(); 1603 } 1604 1605 if (caller_is_c1) { 1606 assert(callee_method->verified_inline_code_entry() != nullptr, "Jump to zero!"); 1607 return callee_method->verified_inline_code_entry(); 1608 } else if (is_static_call || is_optimized) { 1609 assert(callee_method->verified_code_entry() != nullptr, "Jump to zero!"); 1610 return callee_method->verified_code_entry(); 1611 } else { 1612 assert(callee_method->verified_inline_ro_code_entry() != nullptr, "Jump to zero!"); 1613 return callee_method->verified_inline_ro_code_entry(); 1614 } 1615 } 1616 1617 // resolve a static call and patch code 1618 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1619 methodHandle callee_method; 1620 bool caller_is_c1 = false; 1621 bool enter_special = false; 1622 JRT_BLOCK 1623 callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL); 1624 current->set_vm_result_metadata(callee_method()); 1625 JRT_BLOCK_END 1626 // return compiled code entry point after potential safepoints 1627 return get_resolved_entry(current, callee_method, true, false, caller_is_c1); 1628 JRT_END 1629 1630 // resolve virtual call and update inline cache to monomorphic 1631 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1632 methodHandle callee_method; 1633 bool caller_is_c1 = false; 1634 JRT_BLOCK 1635 callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL); 1636 current->set_vm_result_metadata(callee_method()); 1637 JRT_BLOCK_END 1638 // return compiled code entry point after potential safepoints 1639 return get_resolved_entry(current, callee_method, false, false, caller_is_c1); 1640 JRT_END 1641 1642 1643 // Resolve a virtual call that can be statically bound (e.g., always 1644 // monomorphic, so it has no inline cache). Patch code to resolved target. 1645 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1646 methodHandle callee_method; 1647 bool caller_is_c1 = false; 1648 JRT_BLOCK 1649 callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL); 1650 current->set_vm_result_metadata(callee_method()); 1651 JRT_BLOCK_END 1652 // return compiled code entry point after potential safepoints 1653 return get_resolved_entry(current, callee_method, false, true, caller_is_c1); 1654 JRT_END 1655 1656 1657 1658 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) { 1659 JavaThread* current = THREAD; 1660 ResourceMark rm(current); 1661 CallInfo call_info; 1662 Bytecodes::Code bc; 1663 1664 // receiver is null for static calls. An exception is thrown for null 1665 // receivers for non-static calls 1666 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1667 1668 methodHandle callee_method(current, call_info.selected_method()); 1669 1670 #ifndef PRODUCT 1671 Atomic::inc(&_ic_miss_ctr); 1672 1673 // Statistics & Tracing 1674 if (TraceCallFixup) { 1675 ResourceMark rm(current); 1676 tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : ""); 1677 callee_method->print_short_name(tty); 1678 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1679 } 1680 1681 if (ICMissHistogram) { 1682 MutexLocker m(VMStatistic_lock); 1683 RegisterMap reg_map(current, 1684 RegisterMap::UpdateMap::skip, 1685 RegisterMap::ProcessFrames::include, 1686 RegisterMap::WalkContinuation::skip); 1687 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1688 // produce statistics under the lock 1689 trace_ic_miss(f.pc()); 1690 } 1691 #endif 1692 1693 // install an event collector so that when a vtable stub is created the 1694 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1695 // event can't be posted when the stub is created as locks are held 1696 // - instead the event will be deferred until the event collector goes 1697 // out of scope. 1698 JvmtiDynamicCodeEventCollector event_collector; 1699 1700 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1701 RegisterMap reg_map(current, 1702 RegisterMap::UpdateMap::skip, 1703 RegisterMap::ProcessFrames::include, 1704 RegisterMap::WalkContinuation::skip); 1705 frame caller_frame = current->last_frame().sender(®_map); 1706 CodeBlob* cb = caller_frame.cb(); 1707 nmethod* caller_nm = cb->as_nmethod(); 1708 // Calls via mismatching methods are always non-scalarized 1709 if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) { 1710 caller_is_c1 = true; 1711 } 1712 1713 CompiledICLocker ml(caller_nm); 1714 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1715 inline_cache->update(&call_info, receiver()->klass(), caller_is_c1); 1716 1717 return callee_method; 1718 } 1719 1720 // 1721 // Resets a call-site in compiled code so it will get resolved again. 1722 // This routines handles both virtual call sites, optimized virtual call 1723 // sites, and static call sites. Typically used to change a call sites 1724 // destination from compiled to interpreted. 1725 // 1726 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1727 JavaThread* current = THREAD; 1728 ResourceMark rm(current); 1729 RegisterMap reg_map(current, 1730 RegisterMap::UpdateMap::skip, 1731 RegisterMap::ProcessFrames::include, 1732 RegisterMap::WalkContinuation::skip); 1733 frame stub_frame = current->last_frame(); 1734 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1735 frame caller = stub_frame.sender(®_map); 1736 if (caller.is_compiled_frame()) { 1737 caller_is_c1 = caller.cb()->as_nmethod()->is_compiled_by_c1(); 1738 } 1739 1740 // Do nothing if the frame isn't a live compiled frame. 1741 // nmethod could be deoptimized by the time we get here 1742 // so no update to the caller is needed. 1743 1744 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1745 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1746 1747 address pc = caller.pc(); 1748 1749 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1750 assert(caller_nm != nullptr, "did not find caller nmethod"); 1751 1752 // Default call_addr is the location of the "basic" call. 1753 // Determine the address of the call we a reresolving. With 1754 // Inline Caches we will always find a recognizable call. 1755 // With Inline Caches disabled we may or may not find a 1756 // recognizable call. We will always find a call for static 1757 // calls and for optimized virtual calls. For vanilla virtual 1758 // calls it depends on the state of the UseInlineCaches switch. 1759 // 1760 // With Inline Caches disabled we can get here for a virtual call 1761 // for two reasons: 1762 // 1 - calling an abstract method. The vtable for abstract methods 1763 // will run us thru handle_wrong_method and we will eventually 1764 // end up in the interpreter to throw the ame. 1765 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1766 // call and between the time we fetch the entry address and 1767 // we jump to it the target gets deoptimized. Similar to 1 1768 // we will wind up in the interprter (thru a c2i with c2). 1769 // 1770 CompiledICLocker ml(caller_nm); 1771 address call_addr = caller_nm->call_instruction_address(pc); 1772 1773 if (call_addr != nullptr) { 1774 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1775 // bytes back in the instruction stream so we must also check for reloc info. 1776 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1777 bool ret = iter.next(); // Get item 1778 if (ret) { 1779 is_static_call = false; 1780 is_optimized = false; 1781 switch (iter.type()) { 1782 case relocInfo::static_call_type: 1783 is_static_call = true; 1784 case relocInfo::opt_virtual_call_type: { 1785 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1786 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1787 cdc->set_to_clean(); 1788 break; 1789 } 1790 case relocInfo::virtual_call_type: { 1791 // compiled, dispatched call (which used to call an interpreted method) 1792 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1793 inline_cache->set_to_clean(); 1794 break; 1795 } 1796 default: 1797 break; 1798 } 1799 } 1800 } 1801 } 1802 1803 methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle())); 1804 1805 #ifndef PRODUCT 1806 Atomic::inc(&_wrong_method_ctr); 1807 1808 if (TraceCallFixup) { 1809 ResourceMark rm(current); 1810 tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : ""); 1811 callee_method->print_short_name(tty); 1812 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1813 } 1814 #endif 1815 1816 return callee_method; 1817 } 1818 1819 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1820 // The faulting unsafe accesses should be changed to throw the error 1821 // synchronously instead. Meanwhile the faulting instruction will be 1822 // skipped over (effectively turning it into a no-op) and an 1823 // asynchronous exception will be raised which the thread will 1824 // handle at a later point. If the instruction is a load it will 1825 // return garbage. 1826 1827 // Request an async exception. 1828 thread->set_pending_unsafe_access_error(); 1829 1830 // Return address of next instruction to execute. 1831 return next_pc; 1832 } 1833 1834 #ifdef ASSERT 1835 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1836 const BasicType* sig_bt, 1837 const VMRegPair* regs) { 1838 ResourceMark rm; 1839 const int total_args_passed = method->size_of_parameters(); 1840 const VMRegPair* regs_with_member_name = regs; 1841 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1842 1843 const int member_arg_pos = total_args_passed - 1; 1844 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1845 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1846 1847 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1848 1849 for (int i = 0; i < member_arg_pos; i++) { 1850 VMReg a = regs_with_member_name[i].first(); 1851 VMReg b = regs_without_member_name[i].first(); 1852 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1853 } 1854 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1855 } 1856 #endif 1857 1858 // --------------------------------------------------------------------------- 1859 // We are calling the interpreter via a c2i. Normally this would mean that 1860 // we were called by a compiled method. However we could have lost a race 1861 // where we went int -> i2c -> c2i and so the caller could in fact be 1862 // interpreted. If the caller is compiled we attempt to patch the caller 1863 // so he no longer calls into the interpreter. 1864 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1865 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1866 1867 // It's possible that deoptimization can occur at a call site which hasn't 1868 // been resolved yet, in which case this function will be called from 1869 // an nmethod that has been patched for deopt and we can ignore the 1870 // request for a fixup. 1871 // Also it is possible that we lost a race in that from_compiled_entry 1872 // is now back to the i2c in that case we don't need to patch and if 1873 // we did we'd leap into space because the callsite needs to use 1874 // "to interpreter" stub in order to load up the Method*. Don't 1875 // ask me how I know this... 1876 1877 // Result from nmethod::is_unloading is not stable across safepoints. 1878 NoSafepointVerifier nsv; 1879 1880 nmethod* callee = method->code(); 1881 if (callee == nullptr) { 1882 return; 1883 } 1884 1885 // write lock needed because we might patch call site by set_to_clean() 1886 // and is_unloading() can modify nmethod's state 1887 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1888 1889 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1890 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1891 return; 1892 } 1893 1894 // The check above makes sure this is an nmethod. 1895 nmethod* caller = cb->as_nmethod(); 1896 1897 // Get the return PC for the passed caller PC. 1898 address return_pc = caller_pc + frame::pc_return_offset; 1899 1900 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1901 return; 1902 } 1903 1904 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1905 CompiledICLocker ic_locker(caller); 1906 ResourceMark rm; 1907 1908 // If we got here through a static call or opt_virtual call, then we know where the 1909 // call address would be; let's peek at it 1910 address callsite_addr = (address)nativeCall_before(return_pc); 1911 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1912 if (!iter.next()) { 1913 // No reloc entry found; not a static or optimized virtual call 1914 return; 1915 } 1916 1917 relocInfo::relocType type = iter.reloc()->type(); 1918 if (type != relocInfo::static_call_type && 1919 type != relocInfo::opt_virtual_call_type) { 1920 return; 1921 } 1922 1923 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1924 callsite->set_to_clean(); 1925 JRT_END 1926 1927 1928 // same as JVM_Arraycopy, but called directly from compiled code 1929 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1930 oopDesc* dest, jint dest_pos, 1931 jint length, 1932 JavaThread* current)) { 1933 #ifndef PRODUCT 1934 _slow_array_copy_ctr++; 1935 #endif 1936 // Check if we have null pointers 1937 if (src == nullptr || dest == nullptr) { 1938 THROW(vmSymbols::java_lang_NullPointerException()); 1939 } 1940 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1941 // even though the copy_array API also performs dynamic checks to ensure 1942 // that src and dest are truly arrays (and are conformable). 1943 // The copy_array mechanism is awkward and could be removed, but 1944 // the compilers don't call this function except as a last resort, 1945 // so it probably doesn't matter. 1946 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1947 (arrayOopDesc*)dest, dest_pos, 1948 length, current); 1949 } 1950 JRT_END 1951 1952 // The caller of generate_class_cast_message() (or one of its callers) 1953 // must use a ResourceMark in order to correctly free the result. 1954 char* SharedRuntime::generate_class_cast_message( 1955 JavaThread* thread, Klass* caster_klass) { 1956 1957 // Get target class name from the checkcast instruction 1958 vframeStream vfst(thread, true); 1959 assert(!vfst.at_end(), "Java frame must exist"); 1960 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1961 constantPoolHandle cpool(thread, vfst.method()->constants()); 1962 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1963 Symbol* target_klass_name = nullptr; 1964 if (target_klass == nullptr) { 1965 // This klass should be resolved, but just in case, get the name in the klass slot. 1966 target_klass_name = cpool->klass_name_at(cc.index()); 1967 } 1968 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1969 } 1970 1971 1972 // The caller of generate_class_cast_message() (or one of its callers) 1973 // must use a ResourceMark in order to correctly free the result. 1974 char* SharedRuntime::generate_class_cast_message( 1975 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1976 const char* caster_name = caster_klass->external_name(); 1977 1978 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1979 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1980 target_klass->external_name(); 1981 1982 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1983 1984 const char* caster_klass_description = ""; 1985 const char* target_klass_description = ""; 1986 const char* klass_separator = ""; 1987 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1988 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1989 } else { 1990 caster_klass_description = caster_klass->class_in_module_of_loader(); 1991 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1992 klass_separator = (target_klass != nullptr) ? "; " : ""; 1993 } 1994 1995 // add 3 for parenthesis and preceding space 1996 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1997 1998 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1999 if (message == nullptr) { 2000 // Shouldn't happen, but don't cause even more problems if it does 2001 message = const_cast<char*>(caster_klass->external_name()); 2002 } else { 2003 jio_snprintf(message, 2004 msglen, 2005 "class %s cannot be cast to class %s (%s%s%s)", 2006 caster_name, 2007 target_name, 2008 caster_klass_description, 2009 klass_separator, 2010 target_klass_description 2011 ); 2012 } 2013 return message; 2014 } 2015 2016 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) { 2017 assert(klass->is_inline_klass(), "Must be a concrete value class"); 2018 const char* desc = "Cannot synchronize on an instance of value class "; 2019 const char* className = klass->external_name(); 2020 size_t msglen = strlen(desc) + strlen(className) + 1; 2021 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2022 if (nullptr == message) { 2023 // Out of memory: can't create detailed error message 2024 message = const_cast<char*>(klass->external_name()); 2025 } else { 2026 jio_snprintf(message, msglen, "%s%s", desc, className); 2027 } 2028 return message; 2029 } 2030 2031 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2032 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2033 JRT_END 2034 2035 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2036 if (!SafepointSynchronize::is_synchronizing()) { 2037 // Only try quick_enter() if we're not trying to reach a safepoint 2038 // so that the calling thread reaches the safepoint more quickly. 2039 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2040 return; 2041 } 2042 } 2043 // NO_ASYNC required because an async exception on the state transition destructor 2044 // would leave you with the lock held and it would never be released. 2045 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2046 // and the model is that an exception implies the method failed. 2047 JRT_BLOCK_NO_ASYNC 2048 Handle h_obj(THREAD, obj); 2049 ObjectSynchronizer::enter(h_obj, lock, current); 2050 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2051 JRT_BLOCK_END 2052 } 2053 2054 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2055 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2056 SharedRuntime::monitor_enter_helper(obj, lock, current); 2057 JRT_END 2058 2059 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2060 assert(JavaThread::current() == current, "invariant"); 2061 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2062 ExceptionMark em(current); 2063 2064 // Check if C2_MacroAssembler::fast_unlock() or 2065 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2066 // monitor before going slow path. Since there is no safepoint 2067 // polling when calling into the VM, we can be sure that the monitor 2068 // hasn't been deallocated. 2069 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2070 if (m != nullptr) { 2071 assert(!m->has_owner(current), "must be"); 2072 current->clear_unlocked_inflated_monitor(); 2073 2074 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2075 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2076 // Some other thread acquired the lock (or the monitor was 2077 // deflated). Either way we are done. 2078 current->dec_held_monitor_count(); 2079 return; 2080 } 2081 } 2082 2083 // The object could become unlocked through a JNI call, which we have no other checks for. 2084 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2085 if (obj->is_unlocked()) { 2086 if (CheckJNICalls) { 2087 fatal("Object has been unlocked by JNI"); 2088 } 2089 return; 2090 } 2091 ObjectSynchronizer::exit(obj, lock, current); 2092 } 2093 2094 // Handles the uncommon cases of monitor unlocking in compiled code 2095 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2096 assert(current == JavaThread::current(), "pre-condition"); 2097 SharedRuntime::monitor_exit_helper(obj, lock, current); 2098 JRT_END 2099 2100 // This is only called when CheckJNICalls is true, and only 2101 // for virtual thread termination. 2102 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2103 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2104 if (log_is_enabled(Debug, jni)) { 2105 JavaThread* current = JavaThread::current(); 2106 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2107 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2108 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2109 ") exiting with Objects still locked by JNI MonitorEnter.", 2110 vthread_id, carrier_id); 2111 } 2112 JRT_END 2113 2114 #ifndef PRODUCT 2115 2116 void SharedRuntime::print_statistics() { 2117 ttyLocker ttyl; 2118 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2119 2120 SharedRuntime::print_ic_miss_histogram(); 2121 2122 // Dump the JRT_ENTRY counters 2123 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2124 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2125 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2126 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2127 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2128 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2129 2130 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2131 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2132 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2133 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2134 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2135 2136 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2137 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2138 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2139 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2140 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2141 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2142 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2143 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2144 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2145 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2146 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2147 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2148 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2149 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2150 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2151 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2152 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2153 2154 AdapterHandlerLibrary::print_statistics(); 2155 2156 if (xtty != nullptr) xtty->tail("statistics"); 2157 } 2158 2159 inline double percent(int64_t x, int64_t y) { 2160 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2161 } 2162 2163 class MethodArityHistogram { 2164 public: 2165 enum { MAX_ARITY = 256 }; 2166 private: 2167 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2168 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2169 static uint64_t _total_compiled_calls; 2170 static uint64_t _max_compiled_calls_per_method; 2171 static int _max_arity; // max. arity seen 2172 static int _max_size; // max. arg size seen 2173 2174 static void add_method_to_histogram(nmethod* nm) { 2175 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2176 if (method != nullptr) { 2177 ArgumentCount args(method->signature()); 2178 int arity = args.size() + (method->is_static() ? 0 : 1); 2179 int argsize = method->size_of_parameters(); 2180 arity = MIN2(arity, MAX_ARITY-1); 2181 argsize = MIN2(argsize, MAX_ARITY-1); 2182 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2183 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2184 _total_compiled_calls += count; 2185 _arity_histogram[arity] += count; 2186 _size_histogram[argsize] += count; 2187 _max_arity = MAX2(_max_arity, arity); 2188 _max_size = MAX2(_max_size, argsize); 2189 } 2190 } 2191 2192 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2193 const int N = MIN2(9, n); 2194 double sum = 0; 2195 double weighted_sum = 0; 2196 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2197 if (sum >= 1) { // prevent divide by zero or divide overflow 2198 double rest = sum; 2199 double percent = sum / 100; 2200 for (int i = 0; i <= N; i++) { 2201 rest -= (double)histo[i]; 2202 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2203 } 2204 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2205 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2206 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2207 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2208 } else { 2209 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2210 } 2211 } 2212 2213 void print_histogram() { 2214 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2215 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2216 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2217 print_histogram_helper(_max_size, _size_histogram, "size"); 2218 tty->cr(); 2219 } 2220 2221 public: 2222 MethodArityHistogram() { 2223 // Take the Compile_lock to protect against changes in the CodeBlob structures 2224 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2225 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2226 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2227 _max_arity = _max_size = 0; 2228 _total_compiled_calls = 0; 2229 _max_compiled_calls_per_method = 0; 2230 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2231 CodeCache::nmethods_do(add_method_to_histogram); 2232 print_histogram(); 2233 } 2234 }; 2235 2236 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2237 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2238 uint64_t MethodArityHistogram::_total_compiled_calls; 2239 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2240 int MethodArityHistogram::_max_arity; 2241 int MethodArityHistogram::_max_size; 2242 2243 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2244 tty->print_cr("Calls from compiled code:"); 2245 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2246 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2247 int64_t mono_i = _nof_interface_calls; 2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2250 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2251 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2252 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2253 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2254 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2255 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2256 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2257 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2258 tty->cr(); 2259 tty->print_cr("Note 1: counter updates are not MT-safe."); 2260 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2261 tty->print_cr(" %% in nested categories are relative to their category"); 2262 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2263 tty->cr(); 2264 2265 MethodArityHistogram h; 2266 } 2267 #endif 2268 2269 #ifndef PRODUCT 2270 static int _lookups; // number of calls to lookup 2271 static int _equals; // number of buckets checked with matching hash 2272 static int _archived_hits; // number of successful lookups in archived table 2273 static int _runtime_hits; // number of successful lookups in runtime table 2274 static int _compact; // number of equals calls with compact signature 2275 #endif 2276 2277 // A simple wrapper class around the calling convention information 2278 // that allows sharing of adapters for the same calling convention. 2279 class AdapterFingerPrint : public MetaspaceObj { 2280 private: 2281 enum { 2282 _basic_type_bits = 5, 2283 _basic_type_mask = right_n_bits(_basic_type_bits), 2284 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2285 _compact_int_count = 3 2286 }; 2287 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2288 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2289 2290 int _length; 2291 int _value[_compact_int_count]; 2292 2293 // Private construtor. Use allocate() to get an instance. 2294 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2295 // Pack the BasicTypes with 8 per int 2296 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2297 _length = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2298 int sig_index = 0; 2299 BasicType prev_bt = T_ILLEGAL; 2300 int vt_count = 0; 2301 for (int index = 0; index < _length; index++) { 2302 int value = 0; 2303 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2304 BasicType bt = T_ILLEGAL; 2305 if (sig_index < total_args_passed) { 2306 bt = sig->at(sig_index++)._bt; 2307 if (bt == T_METADATA) { 2308 // Found start of inline type in signature 2309 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 2310 if (sig_index == 1 && has_ro_adapter) { 2311 // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching 2312 // with other adapters that have the same inline type as first argument and no receiver. 2313 bt = T_VOID; 2314 } 2315 vt_count++; 2316 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 2317 // Found end of inline type in signature 2318 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 2319 vt_count--; 2320 assert(vt_count >= 0, "invalid vt_count"); 2321 } else if (vt_count == 0) { 2322 // Widen fields that are not part of a scalarized inline type argument 2323 bt = adapter_encoding(bt); 2324 } 2325 prev_bt = bt; 2326 } 2327 int bt_val = (bt == T_ILLEGAL) ? 0 : bt; 2328 assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits"); 2329 value = (value << _basic_type_bits) | bt_val; 2330 } 2331 _value[index] = value; 2332 } 2333 assert(vt_count == 0, "invalid vt_count"); 2334 } 2335 2336 // Call deallocate instead 2337 ~AdapterFingerPrint() { 2338 FreeHeap(this); 2339 } 2340 2341 // Remap BasicTypes that are handled equivalently by the adapters. 2342 // These are correct for the current system but someday it might be 2343 // necessary to make this mapping platform dependent. 2344 static BasicType adapter_encoding(BasicType in) { 2345 switch (in) { 2346 case T_BOOLEAN: 2347 case T_BYTE: 2348 case T_SHORT: 2349 case T_CHAR: 2350 // They are all promoted to T_INT in the calling convention 2351 return T_INT; 2352 2353 case T_OBJECT: 2354 case T_ARRAY: 2355 // In other words, we assume that any register good enough for 2356 // an int or long is good enough for a managed pointer. 2357 #ifdef _LP64 2358 return T_LONG; 2359 #else 2360 return T_INT; 2361 #endif 2362 2363 case T_INT: 2364 case T_LONG: 2365 case T_FLOAT: 2366 case T_DOUBLE: 2367 case T_VOID: 2368 return in; 2369 2370 default: 2371 ShouldNotReachHere(); 2372 return T_CONFLICT; 2373 } 2374 } 2375 2376 void* operator new(size_t size, size_t fp_size) throw() { 2377 assert(fp_size >= size, "sanity check"); 2378 void* p = AllocateHeap(fp_size, mtCode); 2379 memset(p, 0, fp_size); 2380 return p; 2381 } 2382 2383 public: 2384 template<typename Function> 2385 void iterate_args(Function function) { 2386 for (int i = 0; i < length(); i++) { 2387 unsigned val = (unsigned)value(i); 2388 // args are packed so that first/lower arguments are in the highest 2389 // bits of each int value, so iterate from highest to the lowest 2390 int first_entry = _basic_types_per_int * _basic_type_bits; 2391 for (int j = first_entry; j >= 0; j -= _basic_type_bits) { 2392 unsigned v = (val >> j) & _basic_type_mask; 2393 if (v == 0) { 2394 continue; 2395 } 2396 function(v); 2397 } 2398 } 2399 } 2400 2401 static int allocation_size(const GrowableArray<SigEntry>* sig) { 2402 int total_args_passed = (sig != nullptr) ? sig->length() : 0; 2403 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2404 return sizeof(AdapterFingerPrint) + (len > _compact_int_count ? (len - _compact_int_count) * sizeof(int) : 0); 2405 } 2406 2407 static AdapterFingerPrint* allocate(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2408 int size_in_bytes = allocation_size(sig); 2409 return new (size_in_bytes) AdapterFingerPrint(sig, has_ro_adapter); 2410 } 2411 2412 static void deallocate(AdapterFingerPrint* fp) { 2413 fp->~AdapterFingerPrint(); 2414 } 2415 2416 int value(int index) { 2417 return _value[index]; 2418 } 2419 2420 int length() { 2421 if (_length < 0) return -_length; 2422 return _length; 2423 } 2424 2425 bool is_compact() { 2426 return _length <= _compact_int_count; 2427 } 2428 2429 unsigned int compute_hash() { 2430 int hash = 0; 2431 for (int i = 0; i < length(); i++) { 2432 int v = value(i); 2433 //Add arithmetic operation to the hash, like +3 to improve hashing 2434 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2435 } 2436 return (unsigned int)hash; 2437 } 2438 2439 const char* as_string() { 2440 stringStream st; 2441 st.print("0x"); 2442 for (int i = 0; i < length(); i++) { 2443 st.print("%x", value(i)); 2444 } 2445 return st.as_string(); 2446 } 2447 2448 const char* as_basic_args_string() { 2449 stringStream st; 2450 bool long_prev = false; 2451 iterate_args([&] (int arg) { 2452 if (long_prev) { 2453 long_prev = false; 2454 if (arg == T_VOID) { 2455 st.print("J"); 2456 } else { 2457 st.print("L"); 2458 } 2459 } 2460 if (arg == T_LONG) { 2461 long_prev = true; 2462 } else if (arg != T_VOID) { 2463 st.print("%c", type2char((BasicType)arg)); 2464 } 2465 }); 2466 if (long_prev) { 2467 st.print("L"); 2468 } 2469 return st.as_string(); 2470 } 2471 2472 bool equals(AdapterFingerPrint* other) { 2473 if (other->_length != _length) { 2474 return false; 2475 } else { 2476 for (int i = 0; i < _length; i++) { 2477 if (_value[i] != other->_value[i]) { 2478 return false; 2479 } 2480 } 2481 } 2482 return true; 2483 } 2484 2485 // methods required by virtue of being a MetaspaceObj 2486 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2487 int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length > _compact_int_count ? (_length - _compact_int_count) * sizeof(int) : 0)); } 2488 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2489 2490 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2491 NOT_PRODUCT(_equals++); 2492 return fp1->equals(fp2); 2493 } 2494 2495 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2496 return fp->compute_hash(); 2497 } 2498 }; 2499 2500 #if INCLUDE_CDS 2501 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2502 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2503 } 2504 2505 class ArchivedAdapterTable : public OffsetCompactHashtable< 2506 AdapterFingerPrint*, 2507 AdapterHandlerEntry*, 2508 adapter_fp_equals_compact_hashtable_entry> {}; 2509 #endif // INCLUDE_CDS 2510 2511 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2512 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2513 AnyObj::C_HEAP, mtCode, 2514 AdapterFingerPrint::compute_hash, 2515 AdapterFingerPrint::equals>; 2516 static AdapterHandlerTable* _adapter_handler_table; 2517 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2518 2519 // Find a entry with the same fingerprint if it exists 2520 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter) { 2521 NOT_PRODUCT(_lookups++); 2522 assert_lock_strong(AdapterHandlerLibrary_lock); 2523 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(sig, has_ro_adapter); 2524 AdapterHandlerEntry* entry = nullptr; 2525 #if INCLUDE_CDS 2526 // if we are building the archive then the archived adapter table is 2527 // not valid and we need to use the ones added to the runtime table 2528 if (AOTCodeCache::is_using_adapter()) { 2529 // Search archived table first. It is read-only table so can be searched without lock 2530 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2531 if (entry != nullptr) { 2532 #ifndef PRODUCT 2533 if (fp->is_compact()) { 2534 _compact++; 2535 } 2536 _archived_hits++; 2537 #endif 2538 } 2539 } 2540 #endif // INCLUDE_CDS 2541 if (entry == nullptr) { 2542 assert_lock_strong(AdapterHandlerLibrary_lock); 2543 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2544 if (entry_p != nullptr) { 2545 entry = *entry_p; 2546 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2547 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2548 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2549 #ifndef PRODUCT 2550 if (fp->is_compact()) _compact++; 2551 _runtime_hits++; 2552 #endif 2553 } 2554 } 2555 AdapterFingerPrint::deallocate(fp); 2556 return entry; 2557 } 2558 2559 #ifndef PRODUCT 2560 static void print_table_statistics() { 2561 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2562 return sizeof(*key) + sizeof(*a); 2563 }; 2564 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2565 ts.print(tty, "AdapterHandlerTable"); 2566 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2567 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2568 int total_hits = _archived_hits + _runtime_hits; 2569 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d) compact %d", 2570 _lookups, _equals, total_hits, _archived_hits, _runtime_hits, _compact); 2571 } 2572 #endif 2573 2574 // --------------------------------------------------------------------------- 2575 // Implementation of AdapterHandlerLibrary 2576 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2577 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2578 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2579 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2580 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2581 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2582 #if INCLUDE_CDS 2583 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2584 #endif // INCLUDE_CDS 2585 static const int AdapterHandlerLibrary_size = 48*K; 2586 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2587 2588 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2589 assert(_buffer != nullptr, "should be initialized"); 2590 return _buffer; 2591 } 2592 2593 static void post_adapter_creation(const AdapterBlob* new_adapter, 2594 const AdapterHandlerEntry* entry) { 2595 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2596 char blob_id[256]; 2597 jio_snprintf(blob_id, 2598 sizeof(blob_id), 2599 "%s(%s)", 2600 new_adapter->name(), 2601 entry->fingerprint()->as_string()); 2602 if (Forte::is_enabled()) { 2603 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2604 } 2605 2606 if (JvmtiExport::should_post_dynamic_code_generated()) { 2607 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2608 } 2609 } 2610 } 2611 2612 void AdapterHandlerLibrary::create_abstract_method_handler() { 2613 assert_lock_strong(AdapterHandlerLibrary_lock); 2614 // Create a special handler for abstract methods. Abstract methods 2615 // are never compiled so an i2c entry is somewhat meaningless, but 2616 // throw AbstractMethodError just in case. 2617 // Pass wrong_method_abstract for the c2i transitions to return 2618 // AbstractMethodError for invalid invocations. 2619 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2620 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 2621 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2622 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2623 wrong_method_abstract, wrong_method_abstract); 2624 } 2625 2626 void AdapterHandlerLibrary::initialize() { 2627 { 2628 ResourceMark rm; 2629 MutexLocker mu(AdapterHandlerLibrary_lock); 2630 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2631 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2632 create_abstract_method_handler(); 2633 } 2634 2635 #if INCLUDE_CDS 2636 // Link adapters in AOT Cache to their code in AOT Code Cache 2637 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2638 link_aot_adapters(); 2639 lookup_simple_adapters(); 2640 return; 2641 } 2642 #endif // INCLUDE_CDS 2643 2644 ResourceMark rm; 2645 AdapterBlob* no_arg_blob = nullptr; 2646 AdapterBlob* int_arg_blob = nullptr; 2647 AdapterBlob* obj_arg_blob = nullptr; 2648 AdapterBlob* obj_int_arg_blob = nullptr; 2649 AdapterBlob* obj_obj_arg_blob = nullptr; 2650 { 2651 MutexLocker mu(AdapterHandlerLibrary_lock); 2652 2653 CompiledEntrySignature no_args; 2654 no_args.compute_calling_conventions(); 2655 _no_arg_handler = create_adapter(no_arg_blob, no_args, true); 2656 2657 CompiledEntrySignature obj_args; 2658 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 2659 obj_args.compute_calling_conventions(); 2660 _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true); 2661 2662 CompiledEntrySignature int_args; 2663 SigEntry::add_entry(int_args.sig(), T_INT); 2664 int_args.compute_calling_conventions(); 2665 _int_arg_handler = create_adapter(int_arg_blob, int_args, true); 2666 2667 CompiledEntrySignature obj_int_args; 2668 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 2669 SigEntry::add_entry(obj_int_args.sig(), T_INT); 2670 obj_int_args.compute_calling_conventions(); 2671 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true); 2672 2673 CompiledEntrySignature obj_obj_args; 2674 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2675 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 2676 obj_obj_args.compute_calling_conventions(); 2677 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true); 2678 2679 assert(no_arg_blob != nullptr && 2680 obj_arg_blob != nullptr && 2681 int_arg_blob != nullptr && 2682 obj_int_arg_blob != nullptr && 2683 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2684 } 2685 2686 // Outside of the lock 2687 post_adapter_creation(no_arg_blob, _no_arg_handler); 2688 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2689 post_adapter_creation(int_arg_blob, _int_arg_handler); 2690 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2691 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2692 } 2693 2694 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2695 return AdapterHandlerEntry::allocate(fingerprint); 2696 } 2697 2698 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2699 if (method->is_abstract()) { 2700 return nullptr; 2701 } 2702 int total_args_passed = method->size_of_parameters(); // All args on stack 2703 if (total_args_passed == 0) { 2704 return _no_arg_handler; 2705 } else if (total_args_passed == 1) { 2706 if (!method->is_static()) { 2707 if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) { 2708 return nullptr; 2709 } 2710 return _obj_arg_handler; 2711 } 2712 switch (method->signature()->char_at(1)) { 2713 case JVM_SIGNATURE_CLASS: { 2714 if (InlineTypePassFieldsAsArgs) { 2715 SignatureStream ss(method->signature()); 2716 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2717 if (vk != nullptr) { 2718 return nullptr; 2719 } 2720 } 2721 return _obj_arg_handler; 2722 } 2723 case JVM_SIGNATURE_ARRAY: 2724 return _obj_arg_handler; 2725 case JVM_SIGNATURE_INT: 2726 case JVM_SIGNATURE_BOOLEAN: 2727 case JVM_SIGNATURE_CHAR: 2728 case JVM_SIGNATURE_BYTE: 2729 case JVM_SIGNATURE_SHORT: 2730 return _int_arg_handler; 2731 } 2732 } else if (total_args_passed == 2 && 2733 !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) { 2734 switch (method->signature()->char_at(1)) { 2735 case JVM_SIGNATURE_CLASS: { 2736 if (InlineTypePassFieldsAsArgs) { 2737 SignatureStream ss(method->signature()); 2738 InlineKlass* vk = ss.as_inline_klass(method->method_holder()); 2739 if (vk != nullptr) { 2740 return nullptr; 2741 } 2742 } 2743 return _obj_obj_arg_handler; 2744 } 2745 case JVM_SIGNATURE_ARRAY: 2746 return _obj_obj_arg_handler; 2747 case JVM_SIGNATURE_INT: 2748 case JVM_SIGNATURE_BOOLEAN: 2749 case JVM_SIGNATURE_CHAR: 2750 case JVM_SIGNATURE_BYTE: 2751 case JVM_SIGNATURE_SHORT: 2752 return _obj_int_arg_handler; 2753 } 2754 } 2755 return nullptr; 2756 } 2757 2758 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2759 _method(method), _num_inline_args(0), _has_inline_recv(false), 2760 _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr), 2761 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2762 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) { 2763 _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2764 _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2765 _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1); 2766 } 2767 2768 // See if we can save space by sharing the same entry for VIEP and VIEP(RO), 2769 // or the same entry for VEP and VIEP(RO). 2770 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const { 2771 if (!has_scalarized_args()) { 2772 // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing. 2773 return CodeOffsets::Verified_Entry; 2774 } 2775 if (_method->is_static()) { 2776 // Static methods don't need VIEP(RO) 2777 return CodeOffsets::Verified_Entry; 2778 } 2779 2780 if (has_inline_recv()) { 2781 if (num_inline_args() == 1) { 2782 // Share same entry for VIEP and VIEP(RO). 2783 // This is quite common: we have an instance method in an InlineKlass that has 2784 // no inline type args other than <this>. 2785 return CodeOffsets::Verified_Inline_Entry; 2786 } else { 2787 assert(num_inline_args() > 1, "must be"); 2788 // No sharing: 2789 // VIEP(RO) -- <this> is passed as object 2790 // VEP -- <this> is passed as fields 2791 return CodeOffsets::Verified_Inline_Entry_RO; 2792 } 2793 } 2794 2795 // Either a static method, or <this> is not an inline type 2796 if (args_on_stack_cc() != args_on_stack_cc_ro()) { 2797 // No sharing: 2798 // Some arguments are passed on the stack, and we have inserted reserved entries 2799 // into the VEP, but we never insert reserved entries into the VIEP(RO). 2800 return CodeOffsets::Verified_Inline_Entry_RO; 2801 } else { 2802 // Share same entry for VEP and VIEP(RO). 2803 return CodeOffsets::Verified_Entry; 2804 } 2805 } 2806 2807 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method. 2808 GrowableArray<Method*>* CompiledEntrySignature::get_supers() { 2809 if (_supers != nullptr) { 2810 return _supers; 2811 } 2812 _supers = new GrowableArray<Method*>(); 2813 // Skip private, static, and <init> methods 2814 if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) { 2815 return _supers; 2816 } 2817 Symbol* name = _method->name(); 2818 Symbol* signature = _method->signature(); 2819 const Klass* holder = _method->method_holder()->super(); 2820 Symbol* holder_name = holder->name(); 2821 ThreadInVMfromUnknown tiv; 2822 JavaThread* current = JavaThread::current(); 2823 HandleMark hm(current); 2824 Handle loader(current, _method->method_holder()->class_loader()); 2825 2826 // Walk up the class hierarchy and search for super methods 2827 while (holder != nullptr) { 2828 Method* super_method = holder->lookup_method(name, signature); 2829 if (super_method == nullptr) { 2830 break; 2831 } 2832 if (!super_method->is_static() && !super_method->is_private() && 2833 (!super_method->is_package_private() || 2834 super_method->method_holder()->is_same_class_package(loader(), holder_name))) { 2835 _supers->push(super_method); 2836 } 2837 holder = super_method->method_holder()->super(); 2838 } 2839 // Search interfaces for super methods 2840 Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces(); 2841 for (int i = 0; i < interfaces->length(); ++i) { 2842 Method* m = interfaces->at(i)->lookup_method(name, signature); 2843 if (m != nullptr && !m->is_static() && m->is_public()) { 2844 _supers->push(m); 2845 } 2846 } 2847 return _supers; 2848 } 2849 2850 // Iterate over arguments and compute scalarized and non-scalarized signatures 2851 void CompiledEntrySignature::compute_calling_conventions(bool init) { 2852 bool has_scalarized = false; 2853 if (_method != nullptr) { 2854 InstanceKlass* holder = _method->method_holder(); 2855 int arg_num = 0; 2856 if (!_method->is_static()) { 2857 // We shouldn't scalarize 'this' in a value class constructor 2858 if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() && 2859 (init || _method->is_scalarized_arg(arg_num))) { 2860 _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig()); 2861 has_scalarized = true; 2862 _has_inline_recv = true; 2863 _num_inline_args++; 2864 } else { 2865 SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name()); 2866 } 2867 SigEntry::add_entry(_sig, T_OBJECT, holder->name()); 2868 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name()); 2869 arg_num++; 2870 } 2871 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2872 BasicType bt = ss.type(); 2873 if (bt == T_OBJECT) { 2874 InlineKlass* vk = ss.as_inline_klass(holder); 2875 if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) { 2876 // Check for a calling convention mismatch with super method(s) 2877 bool scalar_super = false; 2878 bool non_scalar_super = false; 2879 GrowableArray<Method*>* supers = get_supers(); 2880 for (int i = 0; i < supers->length(); ++i) { 2881 Method* super_method = supers->at(i); 2882 if (super_method->is_scalarized_arg(arg_num)) { 2883 scalar_super = true; 2884 } else { 2885 non_scalar_super = true; 2886 } 2887 } 2888 #ifdef ASSERT 2889 // Randomly enable below code paths for stress testing 2890 bool stress = init && StressCallingConvention; 2891 if (stress && (os::random() & 1) == 1) { 2892 non_scalar_super = true; 2893 if ((os::random() & 1) == 1) { 2894 scalar_super = true; 2895 } 2896 } 2897 #endif 2898 if (non_scalar_super) { 2899 // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention. 2900 if (scalar_super) { 2901 // Found non-scalar *and* scalar super methods. We can't handle both. 2902 // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention. 2903 for (int i = 0; i < supers->length(); ++i) { 2904 Method* super_method = supers->at(i); 2905 if (super_method->is_scalarized_arg(arg_num) DEBUG_ONLY(|| (stress && (os::random() & 1) == 1))) { 2906 super_method->set_mismatch(); 2907 MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag); 2908 JavaThread* thread = JavaThread::current(); 2909 HandleMark hm(thread); 2910 methodHandle mh(thread, super_method); 2911 DeoptimizationScope deopt_scope; 2912 CodeCache::mark_for_deoptimization(&deopt_scope, mh()); 2913 deopt_scope.deoptimize_marked(); 2914 } 2915 } 2916 } 2917 // Fall back to non-scalarized calling convention 2918 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2919 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2920 } else { 2921 _num_inline_args++; 2922 has_scalarized = true; 2923 int last = _sig_cc->length(); 2924 int last_ro = _sig_cc_ro->length(); 2925 _sig_cc->appendAll(vk->extended_sig()); 2926 _sig_cc_ro->appendAll(vk->extended_sig()); 2927 if (bt == T_OBJECT) { 2928 // Nullable inline type argument, insert InlineTypeNode::NullMarker field right after T_METADATA delimiter 2929 _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2930 _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr, true)); 2931 } 2932 } 2933 } else { 2934 SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol()); 2935 SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol()); 2936 } 2937 bt = T_OBJECT; 2938 } else { 2939 SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol()); 2940 SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol()); 2941 } 2942 SigEntry::add_entry(_sig, bt, ss.as_symbol()); 2943 if (bt != T_VOID) { 2944 arg_num++; 2945 } 2946 } 2947 } 2948 2949 // Compute the non-scalarized calling convention 2950 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2951 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2952 2953 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 2954 if (has_scalarized && !_method->is_native()) { 2955 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 2956 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2957 2958 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 2959 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 2960 2961 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2962 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2963 2964 // Upper bound on stack arguments to avoid hitting the argument limit and 2965 // bailing out of compilation ("unsupported incoming calling sequence"). 2966 // TODO we need a reasonable limit (flag?) here 2967 if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) { 2968 return; // Success 2969 } 2970 } 2971 2972 // No scalarized args 2973 _sig_cc = _sig; 2974 _regs_cc = _regs; 2975 _args_on_stack_cc = _args_on_stack; 2976 2977 _sig_cc_ro = _sig; 2978 _regs_cc_ro = _regs; 2979 _args_on_stack_cc_ro = _args_on_stack; 2980 } 2981 2982 void CompiledEntrySignature::initialize_from_fingerprint(AdapterFingerPrint* fingerprint) { 2983 int value_object_count = 0; 2984 bool is_receiver = true; 2985 BasicType prev_bt = T_ILLEGAL; 2986 bool long_prev = false; 2987 bool has_scalarized_arguments = false; 2988 2989 fingerprint->iterate_args([&] (int arg) { 2990 BasicType bt = (BasicType)arg; 2991 if (long_prev) { 2992 long_prev = false; 2993 BasicType bt_to_add; 2994 if (bt == T_VOID) { 2995 bt_to_add = T_LONG; 2996 } else { 2997 bt_to_add = T_OBJECT; // it could be T_ARRAY; it shouldn't matter 2998 } 2999 SigEntry::add_entry(_sig_cc, bt_to_add); 3000 SigEntry::add_entry(_sig_cc_ro, bt_to_add); 3001 if (value_object_count == 0) { 3002 SigEntry::add_entry(_sig, bt_to_add); 3003 } 3004 } 3005 switch (bt) { 3006 case T_VOID: 3007 if (is_receiver) { 3008 // 'this' when ro adapter is available 3009 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3010 value_object_count++; 3011 has_scalarized_arguments = true; 3012 _has_inline_recv = true; 3013 SigEntry::add_entry(_sig, T_OBJECT); 3014 SigEntry::add_entry(_sig_cc, T_METADATA); 3015 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3016 } else if (prev_bt != T_LONG && prev_bt != T_DOUBLE) { 3017 assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type"); 3018 value_object_count--; 3019 SigEntry::add_entry(_sig_cc, T_VOID); 3020 SigEntry::add_entry(_sig_cc_ro, T_VOID); 3021 assert(value_object_count >= 0, "invalid value object count"); 3022 } else { 3023 // Nothing to add for _sig: We already added an addition T_VOID in add_entry() when adding T_LONG or T_DOUBLE. 3024 } 3025 break; 3026 case T_INT: 3027 case T_FLOAT: 3028 case T_DOUBLE: 3029 if (value_object_count == 0) { 3030 SigEntry::add_entry(_sig, bt); 3031 } 3032 SigEntry::add_entry(_sig_cc, bt); 3033 SigEntry::add_entry(_sig_cc_ro, bt); 3034 break; 3035 case T_LONG: 3036 long_prev = true; 3037 break; 3038 case T_BOOLEAN: 3039 case T_CHAR: 3040 case T_BYTE: 3041 case T_SHORT: 3042 case T_OBJECT: 3043 case T_ARRAY: 3044 assert(value_object_count > 0 && !is_receiver, "must be value object field"); 3045 SigEntry::add_entry(_sig_cc, bt); 3046 SigEntry::add_entry(_sig_cc_ro, bt); 3047 break; 3048 case T_METADATA: 3049 assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type"); 3050 value_object_count++; 3051 has_scalarized_arguments = true; 3052 SigEntry::add_entry(_sig, T_OBJECT); 3053 SigEntry::add_entry(_sig_cc, T_METADATA); 3054 SigEntry::add_entry(_sig_cc_ro, T_METADATA); 3055 break; 3056 default: { 3057 fatal("Unexpected BasicType: %s", basictype_to_str(bt)); 3058 } 3059 } 3060 prev_bt = bt; 3061 is_receiver = false; 3062 }); 3063 3064 if (long_prev) { 3065 // If previous bt was T_LONG and we reached the end of the signature, we know that it must be a T_OBJECT. 3066 SigEntry::add_entry(_sig, T_OBJECT); 3067 SigEntry::add_entry(_sig_cc, T_OBJECT); 3068 SigEntry::add_entry(_sig_cc_ro, T_OBJECT); 3069 } 3070 assert(value_object_count == 0, "invalid value object count"); 3071 3072 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 3073 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 3074 3075 // Compute the scalarized calling conventions if there are scalarized inline types in the signature 3076 if (has_scalarized_arguments) { 3077 _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length()); 3078 _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 3079 3080 _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length()); 3081 _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro); 3082 3083 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 3084 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 3085 } else { 3086 // No scalarized args 3087 _sig_cc = _sig; 3088 _regs_cc = _regs; 3089 _args_on_stack_cc = _args_on_stack; 3090 3091 _sig_cc_ro = _sig; 3092 _regs_cc_ro = _regs; 3093 _args_on_stack_cc_ro = _args_on_stack; 3094 } 3095 3096 #ifdef ASSERT 3097 { 3098 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(_sig_cc, _has_inline_recv); 3099 assert(fingerprint->equals(compare_fp), "sanity check"); 3100 AdapterFingerPrint::deallocate(compare_fp); 3101 } 3102 #endif 3103 } 3104 3105 const char* AdapterHandlerEntry::_entry_names[] = { 3106 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 3107 }; 3108 3109 #ifdef ASSERT 3110 void AdapterHandlerLibrary::verify_adapter_sharing(CompiledEntrySignature& ces, AdapterHandlerEntry* cached_entry) { 3111 AdapterBlob* comparison_blob = nullptr; 3112 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false, true); 3113 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 3114 assert(comparison_entry->compare_code(cached_entry), "code must match"); 3115 // Release the one just created 3116 AdapterHandlerEntry::deallocate(comparison_entry); 3117 } 3118 #endif /* ASSERT*/ 3119 3120 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 3121 // Use customized signature handler. Need to lock around updates to 3122 // the _adapter_handler_table (it is not safe for concurrent readers 3123 // and a single writer: this could be fixed if it becomes a 3124 // problem). 3125 3126 // Fast-path for trivial adapters 3127 AdapterHandlerEntry* entry = get_simple_adapter(method); 3128 if (entry != nullptr) { 3129 return entry; 3130 } 3131 3132 ResourceMark rm; 3133 AdapterBlob* adapter_blob = nullptr; 3134 3135 CompiledEntrySignature ces(method()); 3136 ces.compute_calling_conventions(); 3137 if (ces.has_scalarized_args()) { 3138 if (!method->has_scalarized_args()) { 3139 method->set_has_scalarized_args(); 3140 } 3141 if (ces.c1_needs_stack_repair()) { 3142 method->set_c1_needs_stack_repair(); 3143 } 3144 if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) { 3145 method->set_c2_needs_stack_repair(); 3146 } 3147 } else if (method->is_abstract()) { 3148 return _abstract_method_handler; 3149 } 3150 3151 { 3152 MutexLocker mu(AdapterHandlerLibrary_lock); 3153 3154 if (ces.has_scalarized_args() && method->is_abstract()) { 3155 // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments 3156 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 3157 entry = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(nullptr)); 3158 entry->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 3159 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 3160 wrong_method_abstract, wrong_method_abstract); 3161 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal); 3162 heap_sig->appendAll(ces.sig_cc_ro()); 3163 entry->set_sig_cc(heap_sig); 3164 return entry; 3165 } 3166 3167 // Lookup method signature's fingerprint 3168 entry = lookup(ces.sig_cc(), ces.has_inline_recv()); 3169 3170 if (entry != nullptr) { 3171 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 3172 #ifdef ASSERT 3173 if (!entry->is_shared() && VerifyAdapterSharing) { 3174 verify_adapter_sharing(ces, entry); 3175 } 3176 #endif 3177 } else { 3178 entry = create_adapter(adapter_blob, ces, /* allocate_code_blob */ true); 3179 } 3180 } 3181 3182 // Outside of the lock 3183 if (adapter_blob != nullptr) { 3184 post_adapter_creation(adapter_blob, entry); 3185 } 3186 return entry; 3187 } 3188 3189 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 3190 ResourceMark rm; 3191 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3192 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3193 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 3194 3195 AdapterBlob* adapter_blob = nullptr; 3196 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 3197 if (blob != nullptr) { 3198 adapter_blob = blob->as_adapter_blob(); 3199 address i2c_entry = adapter_blob->content_begin(); 3200 assert(offsets[0] == 0, "sanity check"); 3201 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3], 3202 i2c_entry + offsets[4], i2c_entry + offsets[5], i2c_entry + offsets[6]); 3203 } 3204 return adapter_blob; 3205 } 3206 3207 #ifndef PRODUCT 3208 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 3209 ttyLocker ttyl; 3210 ResourceMark rm; 3211 int insts_size = adapter_blob->code_size(); 3212 handler->print_adapter_on(tty); 3213 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 3214 handler->fingerprint()->as_basic_args_string(), 3215 handler->fingerprint()->as_string(), insts_size); 3216 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 3217 if (Verbose || PrintStubCode) { 3218 address first_pc = handler->base_address(); 3219 if (first_pc != nullptr) { 3220 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 3221 st->cr(); 3222 } 3223 } 3224 } 3225 #endif // PRODUCT 3226 3227 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 3228 AdapterHandlerEntry* handler, 3229 CompiledEntrySignature& ces, 3230 bool allocate_code_blob, 3231 bool is_transient) { 3232 if (log_is_enabled(Info, perf, class, link)) { 3233 ClassLoader::perf_method_adapters_count()->inc(); 3234 } 3235 3236 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3237 CodeBuffer buffer(buf); 3238 short buffer_locs[20]; 3239 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3240 sizeof(buffer_locs)/sizeof(relocInfo)); 3241 MacroAssembler masm(&buffer); 3242 3243 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 3244 SharedRuntime::generate_i2c2i_adapters(&masm, 3245 ces.args_on_stack(), 3246 ces.sig(), 3247 ces.regs(), 3248 ces.sig_cc(), 3249 ces.regs_cc(), 3250 ces.sig_cc_ro(), 3251 ces.regs_cc_ro(), 3252 handler, 3253 adapter_blob, 3254 allocate_code_blob); 3255 3256 if (ces.has_scalarized_args()) { 3257 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3258 GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal); 3259 heap_sig->appendAll(ces.sig_cc()); 3260 handler->set_sig_cc(heap_sig); 3261 } 3262 #ifdef ASSERT 3263 if (VerifyAdapterSharing) { 3264 handler->save_code(buf->code_begin(), buffer.insts_size()); 3265 if (is_transient) { 3266 return true; 3267 } 3268 } 3269 #endif 3270 3271 if (adapter_blob == nullptr) { 3272 // CodeCache is full, disable compilation 3273 // Ought to log this but compile log is only per compile thread 3274 // and we're some non descript Java thread. 3275 return false; 3276 } 3277 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 3278 // try to save generated code 3279 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 3280 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 3281 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 3282 assert(AdapterHandlerEntry::ENTRIES_COUNT == 7, "sanity"); 3283 address i2c_entry = handler->get_i2c_entry(); 3284 entry_offset[0] = 0; // i2c_entry offset 3285 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 3286 entry_offset[2] = handler->get_c2i_inline_entry() - i2c_entry; 3287 entry_offset[3] = handler->get_c2i_inline_ro_entry() - i2c_entry; 3288 entry_offset[4] = handler->get_c2i_unverified_entry() - i2c_entry; 3289 entry_offset[5] = handler->get_c2i_unverified_inline_entry() - i2c_entry; 3290 entry_offset[6] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 3291 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 3292 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 3293 } 3294 handler->relocate(adapter_blob->content_begin()); 3295 #ifndef PRODUCT 3296 // debugging support 3297 if (PrintAdapterHandlers || PrintStubCode) { 3298 print_adapter_handler_info(tty, handler, adapter_blob); 3299 } 3300 #endif 3301 return true; 3302 } 3303 3304 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 3305 CompiledEntrySignature& ces, 3306 bool allocate_code_blob, 3307 bool is_transient) { 3308 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(ces.sig_cc(), ces.has_inline_recv()); 3309 #ifdef ASSERT 3310 // Verify that we can successfully restore the compiled entry signature object. 3311 CompiledEntrySignature ces_verify; 3312 ces_verify.initialize_from_fingerprint(fp); 3313 #endif 3314 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 3315 if (!generate_adapter_code(adapter_blob, handler, ces, allocate_code_blob, is_transient)) { 3316 AdapterHandlerEntry::deallocate(handler); 3317 return nullptr; 3318 } 3319 if (!is_transient) { 3320 assert_lock_strong(AdapterHandlerLibrary_lock); 3321 _adapter_handler_table->put(fp, handler); 3322 } 3323 return handler; 3324 } 3325 3326 #if INCLUDE_CDS 3327 void AdapterHandlerEntry::remove_unshareable_info() { 3328 #ifdef ASSERT 3329 _saved_code = nullptr; 3330 _saved_code_length = 0; 3331 #endif // ASSERT 3332 set_entry_points(nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, false); 3333 } 3334 3335 class CopyAdapterTableToArchive : StackObj { 3336 private: 3337 CompactHashtableWriter* _writer; 3338 ArchiveBuilder* _builder; 3339 public: 3340 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 3341 _builder(ArchiveBuilder::current()) 3342 {} 3343 3344 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3345 LogStreamHandle(Trace, aot) lsh; 3346 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3347 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3348 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3349 assert(buffered_fp != nullptr,"sanity check"); 3350 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3351 assert(buffered_entry != nullptr,"sanity check"); 3352 3353 uint hash = fp->compute_hash(); 3354 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3355 _writer->add(hash, delta); 3356 if (lsh.is_enabled()) { 3357 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3358 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3359 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3360 } 3361 } else { 3362 if (lsh.is_enabled()) { 3363 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3364 } 3365 } 3366 return true; 3367 } 3368 }; 3369 3370 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3371 CompactHashtableStats stats; 3372 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3373 CopyAdapterTableToArchive copy(&writer); 3374 _adapter_handler_table->iterate(©); 3375 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3376 } 3377 3378 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3379 _aot_adapter_handler_table.serialize_header(soc); 3380 } 3381 3382 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3383 #ifdef ASSERT 3384 if (TestAOTAdapterLinkFailure) { 3385 return nullptr; 3386 } 3387 #endif 3388 AdapterBlob* blob = lookup_aot_cache(handler); 3389 #ifndef PRODUCT 3390 // debugging support 3391 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 3392 print_adapter_handler_info(tty, handler, blob); 3393 } 3394 #endif 3395 return blob; 3396 } 3397 3398 // This method is used during production run to link archived adapters (stored in AOT Cache) 3399 // to their code in AOT Code Cache 3400 void AdapterHandlerEntry::link() { 3401 AdapterBlob* adapter_blob = nullptr; 3402 ResourceMark rm; 3403 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3404 bool generate_code = false; 3405 // Generate code only if AOTCodeCache is not available, or 3406 // caching adapters is disabled, or we fail to link 3407 // the AdapterHandlerEntry to its code in the AOTCodeCache 3408 if (AOTCodeCache::is_using_adapter()) { 3409 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 3410 if (adapter_blob == nullptr) { 3411 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3412 generate_code = true; 3413 } 3414 } else { 3415 generate_code = true; 3416 } 3417 if (generate_code) { 3418 CompiledEntrySignature ces; 3419 ces.initialize_from_fingerprint(_fingerprint); 3420 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, ces, true, false)) { 3421 // Don't throw exceptions during VM initialization because java.lang.* classes 3422 // might not have been initialized, causing problems when constructing the 3423 // Java exception object. 3424 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3425 } 3426 } 3427 // Outside of the lock 3428 if (adapter_blob != nullptr) { 3429 post_adapter_creation(adapter_blob, this); 3430 } 3431 assert(_linked, "AdapterHandlerEntry must now be linked"); 3432 } 3433 3434 void AdapterHandlerLibrary::link_aot_adapters() { 3435 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3436 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3437 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3438 entry->link(); 3439 }); 3440 } 3441 3442 // This method is called during production run to lookup simple adapters 3443 // in the archived adapter handler table 3444 void AdapterHandlerLibrary::lookup_simple_adapters() { 3445 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3446 3447 MutexLocker mu(AdapterHandlerLibrary_lock); 3448 ResourceMark rm; 3449 CompiledEntrySignature no_args; 3450 no_args.compute_calling_conventions(); 3451 _no_arg_handler = lookup(no_args.sig_cc(), no_args.has_inline_recv()); 3452 3453 CompiledEntrySignature obj_args; 3454 SigEntry::add_entry(obj_args.sig(), T_OBJECT); 3455 obj_args.compute_calling_conventions(); 3456 _obj_arg_handler = lookup(obj_args.sig_cc(), obj_args.has_inline_recv()); 3457 3458 CompiledEntrySignature int_args; 3459 SigEntry::add_entry(int_args.sig(), T_INT); 3460 int_args.compute_calling_conventions(); 3461 _int_arg_handler = lookup(int_args.sig_cc(), int_args.has_inline_recv()); 3462 3463 CompiledEntrySignature obj_int_args; 3464 SigEntry::add_entry(obj_int_args.sig(), T_OBJECT); 3465 SigEntry::add_entry(obj_int_args.sig(), T_INT); 3466 obj_int_args.compute_calling_conventions(); 3467 _obj_int_arg_handler = lookup(obj_int_args.sig_cc(), obj_int_args.has_inline_recv()); 3468 3469 CompiledEntrySignature obj_obj_args; 3470 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3471 SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT); 3472 obj_obj_args.compute_calling_conventions(); 3473 _obj_obj_arg_handler = lookup(obj_obj_args.sig_cc(), obj_obj_args.has_inline_recv()); 3474 3475 assert(_no_arg_handler != nullptr && 3476 _obj_arg_handler != nullptr && 3477 _int_arg_handler != nullptr && 3478 _obj_int_arg_handler != nullptr && 3479 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3480 assert(_no_arg_handler->is_linked() && 3481 _obj_arg_handler->is_linked() && 3482 _int_arg_handler->is_linked() && 3483 _obj_int_arg_handler->is_linked() && 3484 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3485 } 3486 #endif // INCLUDE_CDS 3487 3488 address AdapterHandlerEntry::base_address() { 3489 address base = _i2c_entry; 3490 if (base == nullptr) base = _c2i_entry; 3491 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3492 assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, ""); 3493 assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, ""); 3494 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3495 assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, ""); 3496 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3497 return base; 3498 } 3499 3500 void AdapterHandlerEntry::relocate(address new_base) { 3501 address old_base = base_address(); 3502 assert(old_base != nullptr, ""); 3503 ptrdiff_t delta = new_base - old_base; 3504 if (_i2c_entry != nullptr) 3505 _i2c_entry += delta; 3506 if (_c2i_entry != nullptr) 3507 _c2i_entry += delta; 3508 if (_c2i_inline_entry != nullptr) 3509 _c2i_inline_entry += delta; 3510 if (_c2i_inline_ro_entry != nullptr) 3511 _c2i_inline_ro_entry += delta; 3512 if (_c2i_unverified_entry != nullptr) 3513 _c2i_unverified_entry += delta; 3514 if (_c2i_unverified_inline_entry != nullptr) 3515 _c2i_unverified_inline_entry += delta; 3516 if (_c2i_no_clinit_check_entry != nullptr) 3517 _c2i_no_clinit_check_entry += delta; 3518 assert(base_address() == new_base, ""); 3519 } 3520 3521 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3522 LogStreamHandle(Trace, aot) lsh; 3523 if (lsh.is_enabled()) { 3524 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3525 lsh.cr(); 3526 } 3527 it->push(&_fingerprint); 3528 } 3529 3530 AdapterHandlerEntry::~AdapterHandlerEntry() { 3531 if (_fingerprint != nullptr) { 3532 AdapterFingerPrint::deallocate(_fingerprint); 3533 _fingerprint = nullptr; 3534 } 3535 if (_sig_cc != nullptr) { 3536 delete _sig_cc; 3537 } 3538 #ifdef ASSERT 3539 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3540 #endif 3541 FreeHeap(this); 3542 } 3543 3544 3545 #ifdef ASSERT 3546 // Capture the code before relocation so that it can be compared 3547 // against other versions. If the code is captured after relocation 3548 // then relative instructions won't be equivalent. 3549 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3550 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3551 _saved_code_length = length; 3552 memcpy(_saved_code, buffer, length); 3553 } 3554 3555 3556 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3557 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3558 3559 if (other->_saved_code_length != _saved_code_length) { 3560 return false; 3561 } 3562 3563 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3564 } 3565 #endif 3566 3567 3568 /** 3569 * Create a native wrapper for this native method. The wrapper converts the 3570 * Java-compiled calling convention to the native convention, handles 3571 * arguments, and transitions to native. On return from the native we transition 3572 * back to java blocking if a safepoint is in progress. 3573 */ 3574 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3575 ResourceMark rm; 3576 nmethod* nm = nullptr; 3577 3578 // Check if memory should be freed before allocation 3579 CodeCache::gc_on_allocation(); 3580 3581 assert(method->is_native(), "must be native"); 3582 assert(method->is_special_native_intrinsic() || 3583 method->has_native_function(), "must have something valid to call!"); 3584 3585 { 3586 // Perform the work while holding the lock, but perform any printing outside the lock 3587 MutexLocker mu(AdapterHandlerLibrary_lock); 3588 // See if somebody beat us to it 3589 if (method->code() != nullptr) { 3590 return; 3591 } 3592 3593 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3594 assert(compile_id > 0, "Must generate native wrapper"); 3595 3596 3597 ResourceMark rm; 3598 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3599 if (buf != nullptr) { 3600 CodeBuffer buffer(buf); 3601 3602 if (method->is_continuation_enter_intrinsic()) { 3603 buffer.initialize_stubs_size(192); 3604 } 3605 3606 struct { double data[20]; } locs_buf; 3607 struct { double data[20]; } stubs_locs_buf; 3608 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3609 #if defined(AARCH64) || defined(PPC64) 3610 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3611 // in the constant pool to ensure ordering between the barrier and oops 3612 // accesses. For native_wrappers we need a constant. 3613 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3614 // static java call that is resolved in the runtime. 3615 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3616 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3617 } 3618 #endif 3619 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3620 MacroAssembler _masm(&buffer); 3621 3622 // Fill in the signature array, for the calling-convention call. 3623 const int total_args_passed = method->size_of_parameters(); 3624 3625 BasicType stack_sig_bt[16]; 3626 VMRegPair stack_regs[16]; 3627 BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3628 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3629 3630 int i = 0; 3631 if (!method->is_static()) { // Pass in receiver first 3632 sig_bt[i++] = T_OBJECT; 3633 } 3634 SignatureStream ss(method->signature()); 3635 for (; !ss.at_return_type(); ss.next()) { 3636 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 3637 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) { 3638 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3639 } 3640 } 3641 assert(i == total_args_passed, ""); 3642 BasicType ret_type = ss.type(); 3643 3644 // Now get the compiled-Java arguments layout. 3645 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3646 3647 // Generate the compiled-to-native wrapper code 3648 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3649 3650 if (nm != nullptr) { 3651 { 3652 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3653 if (nm->make_in_use()) { 3654 method->set_code(method, nm); 3655 } 3656 } 3657 3658 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3659 if (directive->PrintAssemblyOption) { 3660 nm->print_code(); 3661 } 3662 DirectivesStack::release(directive); 3663 } 3664 } 3665 } // Unlock AdapterHandlerLibrary_lock 3666 3667 3668 // Install the generated code. 3669 if (nm != nullptr) { 3670 const char *msg = method->is_static() ? "(static)" : ""; 3671 CompileTask::print_ul(nm, msg); 3672 if (PrintCompilation) { 3673 ttyLocker ttyl; 3674 CompileTask::print(tty, nm, msg); 3675 } 3676 nm->post_compiled_method_load_event(); 3677 } 3678 } 3679 3680 // ------------------------------------------------------------------------- 3681 // Java-Java calling convention 3682 // (what you use when Java calls Java) 3683 3684 //------------------------------name_for_receiver---------------------------------- 3685 // For a given signature, return the VMReg for parameter 0. 3686 VMReg SharedRuntime::name_for_receiver() { 3687 VMRegPair regs; 3688 BasicType sig_bt = T_OBJECT; 3689 (void) java_calling_convention(&sig_bt, ®s, 1); 3690 // Return argument 0 register. In the LP64 build pointers 3691 // take 2 registers, but the VM wants only the 'main' name. 3692 return regs.first(); 3693 } 3694 3695 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3696 // This method is returning a data structure allocating as a 3697 // ResourceObject, so do not put any ResourceMarks in here. 3698 3699 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3700 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3701 int cnt = 0; 3702 if (has_receiver) { 3703 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3704 } 3705 3706 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3707 BasicType type = ss.type(); 3708 sig_bt[cnt++] = type; 3709 if (is_double_word_type(type)) 3710 sig_bt[cnt++] = T_VOID; 3711 } 3712 3713 if (has_appendix) { 3714 sig_bt[cnt++] = T_OBJECT; 3715 } 3716 3717 assert(cnt < 256, "grow table size"); 3718 3719 int comp_args_on_stack; 3720 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3721 3722 // the calling convention doesn't count out_preserve_stack_slots so 3723 // we must add that in to get "true" stack offsets. 3724 3725 if (comp_args_on_stack) { 3726 for (int i = 0; i < cnt; i++) { 3727 VMReg reg1 = regs[i].first(); 3728 if (reg1->is_stack()) { 3729 // Yuck 3730 reg1 = reg1->bias(out_preserve_stack_slots()); 3731 } 3732 VMReg reg2 = regs[i].second(); 3733 if (reg2->is_stack()) { 3734 // Yuck 3735 reg2 = reg2->bias(out_preserve_stack_slots()); 3736 } 3737 regs[i].set_pair(reg2, reg1); 3738 } 3739 } 3740 3741 // results 3742 *arg_size = cnt; 3743 return regs; 3744 } 3745 3746 // OSR Migration Code 3747 // 3748 // This code is used convert interpreter frames into compiled frames. It is 3749 // called from very start of a compiled OSR nmethod. A temp array is 3750 // allocated to hold the interesting bits of the interpreter frame. All 3751 // active locks are inflated to allow them to move. The displaced headers and 3752 // active interpreter locals are copied into the temp buffer. Then we return 3753 // back to the compiled code. The compiled code then pops the current 3754 // interpreter frame off the stack and pushes a new compiled frame. Then it 3755 // copies the interpreter locals and displaced headers where it wants. 3756 // Finally it calls back to free the temp buffer. 3757 // 3758 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3759 3760 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3761 assert(current == JavaThread::current(), "pre-condition"); 3762 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3763 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3764 // frame. The stack watermark code below ensures that the interpreted frame is processed 3765 // before it gets unwound. This is helpful as the size of the compiled frame could be 3766 // larger than the interpreted frame, which could result in the new frame not being 3767 // processed correctly. 3768 StackWatermarkSet::before_unwind(current); 3769 3770 // 3771 // This code is dependent on the memory layout of the interpreter local 3772 // array and the monitors. On all of our platforms the layout is identical 3773 // so this code is shared. If some platform lays the their arrays out 3774 // differently then this code could move to platform specific code or 3775 // the code here could be modified to copy items one at a time using 3776 // frame accessor methods and be platform independent. 3777 3778 frame fr = current->last_frame(); 3779 assert(fr.is_interpreted_frame(), ""); 3780 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3781 3782 // Figure out how many monitors are active. 3783 int active_monitor_count = 0; 3784 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3785 kptr < fr.interpreter_frame_monitor_begin(); 3786 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3787 if (kptr->obj() != nullptr) active_monitor_count++; 3788 } 3789 3790 // QQQ we could place number of active monitors in the array so that compiled code 3791 // could double check it. 3792 3793 Method* moop = fr.interpreter_frame_method(); 3794 int max_locals = moop->max_locals(); 3795 // Allocate temp buffer, 1 word per local & 2 per active monitor 3796 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3797 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3798 3799 // Copy the locals. Order is preserved so that loading of longs works. 3800 // Since there's no GC I can copy the oops blindly. 3801 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3802 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3803 (HeapWord*)&buf[0], 3804 max_locals); 3805 3806 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3807 int i = max_locals; 3808 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3809 kptr2 < fr.interpreter_frame_monitor_begin(); 3810 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3811 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3812 BasicLock *lock = kptr2->lock(); 3813 if (LockingMode == LM_LEGACY) { 3814 // Inflate so the object's header no longer refers to the BasicLock. 3815 if (lock->displaced_header().is_unlocked()) { 3816 // The object is locked and the resulting ObjectMonitor* will also be 3817 // locked so it can't be async deflated until ownership is dropped. 3818 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3819 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3820 } 3821 // Now the displaced header is free to move because the 3822 // object's header no longer refers to it. 3823 buf[i] = (intptr_t)lock->displaced_header().value(); 3824 } else if (UseObjectMonitorTable) { 3825 buf[i] = (intptr_t)lock->object_monitor_cache(); 3826 } 3827 #ifdef ASSERT 3828 else { 3829 buf[i] = badDispHeaderOSR; 3830 } 3831 #endif 3832 i++; 3833 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3834 } 3835 } 3836 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3837 3838 RegisterMap map(current, 3839 RegisterMap::UpdateMap::skip, 3840 RegisterMap::ProcessFrames::include, 3841 RegisterMap::WalkContinuation::skip); 3842 frame sender = fr.sender(&map); 3843 if (sender.is_interpreted_frame()) { 3844 current->push_cont_fastpath(sender.sp()); 3845 } 3846 3847 return buf; 3848 JRT_END 3849 3850 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3851 FREE_C_HEAP_ARRAY(intptr_t, buf); 3852 JRT_END 3853 3854 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3855 bool found = false; 3856 #if INCLUDE_CDS 3857 if (AOTCodeCache::is_using_adapter()) { 3858 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3859 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3860 }; 3861 _aot_adapter_handler_table.iterate(findblob_archived_table); 3862 } 3863 #endif // INCLUDE_CDS 3864 if (!found) { 3865 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3866 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3867 }; 3868 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3869 _adapter_handler_table->iterate(findblob_runtime_table); 3870 } 3871 return found; 3872 } 3873 3874 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3875 return fingerprint->as_basic_args_string(); 3876 } 3877 3878 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3879 unsigned int hash = fingerprint->compute_hash(); 3880 return hash; 3881 } 3882 3883 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3884 bool found = false; 3885 #if INCLUDE_CDS 3886 if (AOTCodeCache::is_using_adapter()) { 3887 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3888 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3889 found = true; 3890 st->print("Adapter for signature: "); 3891 handler->print_adapter_on(st); 3892 return true; 3893 } else { 3894 return false; // keep looking 3895 } 3896 }; 3897 _aot_adapter_handler_table.iterate(findblob_archived_table); 3898 } 3899 #endif // INCLUDE_CDS 3900 if (!found) { 3901 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3902 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3903 found = true; 3904 st->print("Adapter for signature: "); 3905 a->print_adapter_on(st); 3906 return true; 3907 } else { 3908 return false; // keep looking 3909 } 3910 }; 3911 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3912 _adapter_handler_table->iterate(findblob_runtime_table); 3913 } 3914 assert(found, "Should have found handler"); 3915 } 3916 3917 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3918 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3919 if (get_i2c_entry() != nullptr) { 3920 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3921 } 3922 if (get_c2i_entry() != nullptr) { 3923 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3924 } 3925 if (get_c2i_entry() != nullptr) { 3926 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry())); 3927 } 3928 if (get_c2i_entry() != nullptr) { 3929 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry())); 3930 } 3931 if (get_c2i_unverified_entry() != nullptr) { 3932 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3933 } 3934 if (get_c2i_unverified_entry() != nullptr) { 3935 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry())); 3936 } 3937 if (get_c2i_no_clinit_check_entry() != nullptr) { 3938 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3939 } 3940 st->cr(); 3941 } 3942 3943 #ifndef PRODUCT 3944 3945 void AdapterHandlerLibrary::print_statistics() { 3946 print_table_statistics(); 3947 } 3948 3949 #endif /* PRODUCT */ 3950 3951 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3952 if (entry == _abstract_method_handler) { 3953 return true; 3954 } 3955 return false; 3956 } 3957 3958 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3959 assert(current == JavaThread::current(), "pre-condition"); 3960 StackOverflow* overflow_state = current->stack_overflow_state(); 3961 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3962 overflow_state->set_reserved_stack_activation(current->stack_base()); 3963 JRT_END 3964 3965 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3966 ResourceMark rm(current); 3967 frame activation; 3968 nmethod* nm = nullptr; 3969 int count = 1; 3970 3971 assert(fr.is_java_frame(), "Must start on Java frame"); 3972 3973 RegisterMap map(JavaThread::current(), 3974 RegisterMap::UpdateMap::skip, 3975 RegisterMap::ProcessFrames::skip, 3976 RegisterMap::WalkContinuation::skip); // don't walk continuations 3977 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3978 if (!fr.is_java_frame()) { 3979 continue; 3980 } 3981 3982 Method* method = nullptr; 3983 bool found = false; 3984 if (fr.is_interpreted_frame()) { 3985 method = fr.interpreter_frame_method(); 3986 if (method != nullptr && method->has_reserved_stack_access()) { 3987 found = true; 3988 } 3989 } else { 3990 CodeBlob* cb = fr.cb(); 3991 if (cb != nullptr && cb->is_nmethod()) { 3992 nm = cb->as_nmethod(); 3993 method = nm->method(); 3994 // scope_desc_near() must be used, instead of scope_desc_at() because on 3995 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3996 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3997 method = sd->method(); 3998 if (method != nullptr && method->has_reserved_stack_access()) { 3999 found = true; 4000 } 4001 } 4002 } 4003 } 4004 if (found) { 4005 activation = fr; 4006 warning("Potentially dangerous stack overflow in " 4007 "ReservedStackAccess annotated method %s [%d]", 4008 method->name_and_sig_as_C_string(), count++); 4009 EventReservedStackActivation event; 4010 if (event.should_commit()) { 4011 event.set_method(method); 4012 event.commit(); 4013 } 4014 } 4015 } 4016 return activation; 4017 } 4018 4019 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 4020 // After any safepoint, just before going back to compiled code, 4021 // we inform the GC that we will be doing initializing writes to 4022 // this object in the future without emitting card-marks, so 4023 // GC may take any compensating steps. 4024 4025 oop new_obj = current->vm_result_oop(); 4026 if (new_obj == nullptr) return; 4027 4028 BarrierSet *bs = BarrierSet::barrier_set(); 4029 bs->on_slowpath_allocation_exit(current, new_obj); 4030 } 4031 4032 // We are at a compiled code to interpreter call. We need backing 4033 // buffers for all inline type arguments. Allocate an object array to 4034 // hold them (convenient because once we're done with it we don't have 4035 // to worry about freeing it). 4036 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) { 4037 assert(InlineTypePassFieldsAsArgs, "no reason to call this"); 4038 ResourceMark rm; 4039 4040 int nb_slots = 0; 4041 InstanceKlass* holder = callee->method_holder(); 4042 allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0); 4043 if (allocate_receiver) { 4044 nb_slots++; 4045 } 4046 int arg_num = callee->is_static() ? 0 : 1; 4047 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4048 BasicType bt = ss.type(); 4049 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4050 nb_slots++; 4051 } 4052 if (bt != T_VOID) { 4053 arg_num++; 4054 } 4055 } 4056 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 4057 objArrayHandle array(THREAD, array_oop); 4058 arg_num = callee->is_static() ? 0 : 1; 4059 int i = 0; 4060 if (allocate_receiver) { 4061 InlineKlass* vk = InlineKlass::cast(holder); 4062 oop res = vk->allocate_instance(CHECK_NULL); 4063 array->obj_at_put(i++, res); 4064 } 4065 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 4066 BasicType bt = ss.type(); 4067 if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) { 4068 InlineKlass* vk = ss.as_inline_klass(holder); 4069 assert(vk != nullptr, "Unexpected klass"); 4070 oop res = vk->allocate_instance(CHECK_NULL); 4071 array->obj_at_put(i++, res); 4072 } 4073 if (bt != T_VOID) { 4074 arg_num++; 4075 } 4076 } 4077 return array(); 4078 } 4079 4080 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver)) 4081 methodHandle callee(current, callee_method); 4082 oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK); 4083 current->set_vm_result_oop(array); 4084 current->set_vm_result_metadata(callee()); // TODO: required to keep callee live? 4085 JRT_END 4086 4087 // We're returning from an interpreted method: load each field into a 4088 // register following the calling convention 4089 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res)) 4090 { 4091 assert(res->klass()->is_inline_klass(), "only inline types here"); 4092 ResourceMark rm; 4093 RegisterMap reg_map(current, 4094 RegisterMap::UpdateMap::include, 4095 RegisterMap::ProcessFrames::include, 4096 RegisterMap::WalkContinuation::skip); 4097 frame stubFrame = current->last_frame(); 4098 frame callerFrame = stubFrame.sender(®_map); 4099 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 4100 4101 InlineKlass* vk = InlineKlass::cast(res->klass()); 4102 4103 const Array<SigEntry>* sig_vk = vk->extended_sig(); 4104 const Array<VMRegPair>* regs = vk->return_regs(); 4105 4106 if (regs == nullptr) { 4107 // The fields of the inline klass don't fit in registers, bail out 4108 return; 4109 } 4110 4111 int j = 1; 4112 for (int i = 0; i < sig_vk->length(); i++) { 4113 BasicType bt = sig_vk->at(i)._bt; 4114 if (bt == T_METADATA) { 4115 continue; 4116 } 4117 if (bt == T_VOID) { 4118 if (sig_vk->at(i-1)._bt == T_LONG || 4119 sig_vk->at(i-1)._bt == T_DOUBLE) { 4120 j++; 4121 } 4122 continue; 4123 } 4124 int off = sig_vk->at(i)._offset; 4125 assert(off > 0, "offset in object should be positive"); 4126 VMRegPair pair = regs->at(j); 4127 address loc = reg_map.location(pair.first(), nullptr); 4128 switch(bt) { 4129 case T_BOOLEAN: 4130 *(jboolean*)loc = res->bool_field(off); 4131 break; 4132 case T_CHAR: 4133 *(jchar*)loc = res->char_field(off); 4134 break; 4135 case T_BYTE: 4136 *(jbyte*)loc = res->byte_field(off); 4137 break; 4138 case T_SHORT: 4139 *(jshort*)loc = res->short_field(off); 4140 break; 4141 case T_INT: { 4142 *(jint*)loc = res->int_field(off); 4143 break; 4144 } 4145 case T_LONG: 4146 #ifdef _LP64 4147 *(intptr_t*)loc = res->long_field(off); 4148 #else 4149 Unimplemented(); 4150 #endif 4151 break; 4152 case T_OBJECT: 4153 case T_ARRAY: { 4154 *(oop*)loc = res->obj_field(off); 4155 break; 4156 } 4157 case T_FLOAT: 4158 *(jfloat*)loc = res->float_field(off); 4159 break; 4160 case T_DOUBLE: 4161 *(jdouble*)loc = res->double_field(off); 4162 break; 4163 default: 4164 ShouldNotReachHere(); 4165 } 4166 j++; 4167 } 4168 assert(j == regs->length(), "missed a field?"); 4169 4170 #ifdef ASSERT 4171 VMRegPair pair = regs->at(0); 4172 address loc = reg_map.location(pair.first(), nullptr); 4173 assert(*(oopDesc**)loc == res, "overwritten object"); 4174 #endif 4175 4176 current->set_vm_result_oop(res); 4177 } 4178 JRT_END 4179 4180 // We've returned to an interpreted method, the interpreter needs a 4181 // reference to an inline type instance. Allocate it and initialize it 4182 // from field's values in registers. 4183 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res)) 4184 { 4185 ResourceMark rm; 4186 RegisterMap reg_map(current, 4187 RegisterMap::UpdateMap::include, 4188 RegisterMap::ProcessFrames::include, 4189 RegisterMap::WalkContinuation::skip); 4190 frame stubFrame = current->last_frame(); 4191 frame callerFrame = stubFrame.sender(®_map); 4192 4193 #ifdef ASSERT 4194 InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map); 4195 #endif 4196 4197 if (!is_set_nth_bit(res, 0)) { 4198 // We're not returning with inline type fields in registers (the 4199 // calling convention didn't allow it for this inline klass) 4200 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 4201 current->set_vm_result_oop((oopDesc*)res); 4202 assert(verif_vk == nullptr, "broken calling convention"); 4203 return; 4204 } 4205 4206 clear_nth_bit(res, 0); 4207 InlineKlass* vk = (InlineKlass*)res; 4208 assert(verif_vk == vk, "broken calling convention"); 4209 assert(Metaspace::contains((void*)res), "should be klass"); 4210 4211 // Allocate handles for every oop field so they are safe in case of 4212 // a safepoint when allocating 4213 GrowableArray<Handle> handles; 4214 vk->save_oop_fields(reg_map, handles); 4215 4216 // It's unsafe to safepoint until we are here 4217 JRT_BLOCK; 4218 { 4219 JavaThread* THREAD = current; 4220 oop vt = vk->realloc_result(reg_map, handles, CHECK); 4221 current->set_vm_result_oop(vt); 4222 } 4223 JRT_BLOCK_END; 4224 } 4225 JRT_END