1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 
  94 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  98 
  99 #ifdef COMPILER2
 100 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 101 #endif // COMPILER2
 102 
 103 
 104 //----------------------------generate_stubs-----------------------------------
 105 void SharedRuntime::generate_stubs() {
 106   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 107   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 108   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 109   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 110   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 111   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 112 
 113 #if COMPILER2_OR_JVMCI
 114   // Vectors are generated only by C2 and JVMCI.
 115   bool support_wide = is_wide_vector(MaxVectorSize);
 116   if (support_wide) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2_OR_JVMCI
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif // INCLUDE_JVMCI
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != thread->stack_base()) {
 489         thread->set_reserved_stack_activation(thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563   log_debug(safepoint)("... found polling page %s exception at pc = "
 564                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                        at_poll_return ? "return" : "loop",
 566                        (intptr_t)pc, (intptr_t)stub);
 567   return stub;
 568 }
 569 
 570 
 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 572   assert(caller.is_interpreted_frame(), "");
 573   int args_size = ArgumentSizeComputer(sig).size() + 1;
 574   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 575   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 576   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 577   return result;
 578 }
 579 
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 582   if (JvmtiExport::can_post_on_exceptions()) {
 583     vframeStream vfst(thread, true);
 584     methodHandle method = methodHandle(thread, vfst.method());
 585     address bcp = method()->bcp_from(vfst.bci());
 586     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 587   }
 588   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 589 }
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 592   Handle h_exception = Exceptions::new_exception(thread, name, message);
 593   throw_and_post_jvmti_exception(thread, h_exception);
 594 }
 595 
 596 // The interpreter code to call this tracing function is only
 597 // called/generated when UL is on for redefine, class and has the right level
 598 // and tags. Since obsolete methods are never compiled, we don't have
 599 // to modify the compilers to generate calls to this function.
 600 //
 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 602     JavaThread* thread, Method* method))
 603   if (method->is_obsolete()) {
 604     // We are calling an obsolete method, but this is not necessarily
 605     // an error. Our method could have been redefined just after we
 606     // fetched the Method* from the constant pool.
 607     ResourceMark rm;
 608     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 617   assert(cm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620 #if INCLUDE_JVMCI
 621   if (cm->is_compiled_by_jvmci()) {
 622     // lookup exception handler for this pc
 623     int catch_pco = ret_pc - cm->code_begin();
 624     ExceptionHandlerTable table(cm);
 625     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 626     if (t != NULL) {
 627       return cm->code_begin() + t->pco();
 628     } else {
 629       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 630     }
 631   }
 632 #endif // INCLUDE_JVMCI
 633 
 634   nmethod* nm = cm->as_nmethod();
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       Klass* ek = exception->klass();
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         recursive_exception_occurred = true;
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     ttyLocker ttyl;
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, false);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 748   throw_StackOverflowError_common(thread, true);
 749 JRT_END
 750 
 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 752   // We avoid using the normal exception construction in this case because
 753   // it performs an upcall to Java, and we're already out of stack space.
 754   Thread* THREAD = thread;
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   if (delayed) {
 758     java_lang_Throwable::set_message(exception_oop,
 759                                      Universe::delayed_stack_overflow_error_message());
 760   }
 761   Handle exception (thread, exception_oop);
 762   if (StackTraceInThrowable) {
 763     java_lang_Throwable::fill_in_stack_trace(exception);
 764   }
 765   // Increment counter for hs_err file reporting
 766   Atomic::inc(&Exceptions::_stack_overflow_errors);
 767   throw_and_post_jvmti_exception(thread, exception);
 768 }
 769 
 770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 771                                                            address pc,
 772                                                            ImplicitExceptionKind exception_kind)
 773 {
 774   address target_pc = NULL;
 775 
 776   if (Interpreter::contains(pc)) {
 777 #ifdef CC_INTERP
 778     // C++ interpreter doesn't throw implicit exceptions
 779     ShouldNotReachHere();
 780 #else
 781     switch (exception_kind) {
 782       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 783       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 784       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 785       default:                      ShouldNotReachHere();
 786     }
 787 #endif // !CC_INTERP
 788   } else {
 789     switch (exception_kind) {
 790       case STACK_OVERFLOW: {
 791         // Stack overflow only occurs upon frame setup; the callee is
 792         // going to be unwound. Dispatch to a shared runtime stub
 793         // which will cause the StackOverflowError to be fabricated
 794         // and processed.
 795         // Stack overflow should never occur during deoptimization:
 796         // the compiled method bangs the stack by as much as the
 797         // interpreter would need in case of a deoptimization. The
 798         // deoptimization blob and uncommon trap blob bang the stack
 799         // in a debug VM to verify the correctness of the compiled
 800         // method stack banging.
 801         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 802         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 803         return StubRoutines::throw_StackOverflowError_entry();
 804       }
 805 
 806       case IMPLICIT_NULL: {
 807         if (VtableStubs::contains(pc)) {
 808           // We haven't yet entered the callee frame. Fabricate an
 809           // exception and begin dispatching it in the caller. Since
 810           // the caller was at a call site, it's safe to destroy all
 811           // caller-saved registers, as these entry points do.
 812           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 813 
 814           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 815           if (vt_stub == NULL) return NULL;
 816 
 817           if (vt_stub->is_abstract_method_error(pc)) {
 818             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 819             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 820             // Instead of throwing the abstract method error here directly, we re-resolve
 821             // and will throw the AbstractMethodError during resolve. As a result, we'll
 822             // get a more detailed error message.
 823             return SharedRuntime::get_handle_wrong_method_stub();
 824           } else {
 825             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 826             // Assert that the signal comes from the expected location in stub code.
 827             assert(vt_stub->is_null_pointer_exception(pc),
 828                    "obtained signal from unexpected location in stub code");
 829             return StubRoutines::throw_NullPointerException_at_call_entry();
 830           }
 831         } else {
 832           CodeBlob* cb = CodeCache::find_blob(pc);
 833 
 834           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 835           if (cb == NULL) return NULL;
 836 
 837           // Exception happened in CodeCache. Must be either:
 838           // 1. Inline-cache check in C2I handler blob,
 839           // 2. Inline-cache check in nmethod, or
 840           // 3. Implicit null exception in nmethod
 841 
 842           if (!cb->is_compiled()) {
 843             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 844             if (!is_in_blob) {
 845               // Allow normal crash reporting to handle this
 846               return NULL;
 847             }
 848             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 849             // There is no handler here, so we will simply unwind.
 850             return StubRoutines::throw_NullPointerException_at_call_entry();
 851           }
 852 
 853           // Otherwise, it's a compiled method.  Consult its exception handlers.
 854           CompiledMethod* cm = (CompiledMethod*)cb;
 855           if (cm->inlinecache_check_contains(pc)) {
 856             // exception happened inside inline-cache check code
 857             // => the nmethod is not yet active (i.e., the frame
 858             // is not set up yet) => use return address pushed by
 859             // caller => don't push another return address
 860             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           if (cm->method()->is_method_handle_intrinsic()) {
 865             // exception happened inside MH dispatch code, similar to a vtable stub
 866             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870 #ifndef PRODUCT
 871           _implicit_null_throws++;
 872 #endif
 873           target_pc = cm->continuation_for_implicit_null_exception(pc);
 874           // If there's an unexpected fault, target_pc might be NULL,
 875           // in which case we want to fall through into the normal
 876           // error handling code.
 877         }
 878 
 879         break; // fall through
 880       }
 881 
 882 
 883       case IMPLICIT_DIVIDE_BY_ZERO: {
 884         CompiledMethod* cm = CodeCache::find_compiled(pc);
 885         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 886 #ifndef PRODUCT
 887         _implicit_div0_throws++;
 888 #endif
 889         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 890         // If there's an unexpected fault, target_pc might be NULL,
 891         // in which case we want to fall through into the normal
 892         // error handling code.
 893         break; // fall through
 894       }
 895 
 896       default: ShouldNotReachHere();
 897     }
 898 
 899     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 900 
 901     if (exception_kind == IMPLICIT_NULL) {
 902 #ifndef PRODUCT
 903       // for AbortVMOnException flag
 904       Exceptions::debug_check_abort("java.lang.NullPointerException");
 905 #endif //PRODUCT
 906       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 907     } else {
 908 #ifndef PRODUCT
 909       // for AbortVMOnException flag
 910       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 911 #endif //PRODUCT
 912       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 913     }
 914     return target_pc;
 915   }
 916 
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 
 922 /**
 923  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 924  * installed in the native function entry of all native Java methods before
 925  * they get linked to their actual native methods.
 926  *
 927  * \note
 928  * This method actually never gets called!  The reason is because
 929  * the interpreter's native entries call NativeLookup::lookup() which
 930  * throws the exception when the lookup fails.  The exception is then
 931  * caught and forwarded on the return from NativeLookup::lookup() call
 932  * before the call to the native function.  This might change in the future.
 933  */
 934 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 935 {
 936   // We return a bad value here to make sure that the exception is
 937   // forwarded before we look at the return value.
 938   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 939 }
 940 JNI_END
 941 
 942 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 943   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 944 }
 945 
 946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 947 #if INCLUDE_JVMCI
 948   if (!obj->klass()->has_finalizer()) {
 949     return;
 950   }
 951 #endif // INCLUDE_JVMCI
 952   assert(oopDesc::is_oop(obj), "must be a valid oop");
 953   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 954   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 955 JRT_END
 956 
 957 
 958 jlong SharedRuntime::get_java_tid(Thread* thread) {
 959   if (thread != NULL) {
 960     if (thread->is_Java_thread()) {
 961       oop obj = ((JavaThread*)thread)->threadObj();
 962       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 963     }
 964   }
 965   return 0;
 966 }
 967 
 968 /**
 969  * This function ought to be a void function, but cannot be because
 970  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 971  * 6254741.  Once that is fixed we can remove the dummy return value.
 972  */
 973 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 974   return dtrace_object_alloc_base(Thread::current(), o, size);
 975 }
 976 
 977 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 978   assert(DTraceAllocProbes, "wrong call");
 979   Klass* klass = o->klass();
 980   Symbol* name = klass->name();
 981   HOTSPOT_OBJECT_ALLOC(
 982                    get_java_tid(thread),
 983                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 984   return 0;
 985 }
 986 
 987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 988     JavaThread* thread, Method* method))
 989   assert(DTraceMethodProbes, "wrong call");
 990   Symbol* kname = method->klass_name();
 991   Symbol* name = method->name();
 992   Symbol* sig = method->signature();
 993   HOTSPOT_METHOD_ENTRY(
 994       get_java_tid(thread),
 995       (char *) kname->bytes(), kname->utf8_length(),
 996       (char *) name->bytes(), name->utf8_length(),
 997       (char *) sig->bytes(), sig->utf8_length());
 998   return 0;
 999 JRT_END
1000 
1001 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1002     JavaThread* thread, Method* method))
1003   assert(DTraceMethodProbes, "wrong call");
1004   Symbol* kname = method->klass_name();
1005   Symbol* name = method->name();
1006   Symbol* sig = method->signature();
1007   HOTSPOT_METHOD_RETURN(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012   return 0;
1013 JRT_END
1014 
1015 
1016 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1017 // for a call current in progress, i.e., arguments has been pushed on stack
1018 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1019 // vtable updates, etc.  Caller frame must be compiled.
1020 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1021   ResourceMark rm(THREAD);
1022 
1023   // last java frame on stack (which includes native call frames)
1024   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1025 
1026   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1027 }
1028 
1029 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1030   CompiledMethod* caller = vfst.nm();
1031 
1032   nmethodLocker caller_lock(caller);
1033 
1034   address pc = vfst.frame_pc();
1035   { // Get call instruction under lock because another thread may be busy patching it.
1036     CompiledICLocker ic_locker(caller);
1037     return caller->attached_method_before_pc(pc);
1038   }
1039   return NULL;
1040 }
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // but callee has not been invoked yet.  Caller frame must be compiled.
1045 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1046                                               vframeStream& vfst,
1047                                               Bytecodes::Code& bc,
1048                                               CallInfo& callinfo, TRAPS) {
1049   Handle receiver;
1050   Handle nullHandle;  //create a handy null handle for exception returns
1051 
1052   assert(!vfst.at_end(), "Java frame must exist");
1053 
1054   // Find caller and bci from vframe
1055   methodHandle caller(THREAD, vfst.method());
1056   int          bci   = vfst.bci();
1057 
1058   Bytecode_invoke bytecode(caller, bci);
1059   int bytecode_index = bytecode.index();
1060   bc = bytecode.invoke_code();
1061 
1062   methodHandle attached_method = extract_attached_method(vfst);
1063   if (attached_method.not_null()) {
1064     methodHandle callee = bytecode.static_target(CHECK_NH);
1065     vmIntrinsics::ID id = callee->intrinsic_id();
1066     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1067     // it attaches statically resolved method to the call site.
1068     if (MethodHandles::is_signature_polymorphic(id) &&
1069         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1070       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1071 
1072       // Adjust invocation mode according to the attached method.
1073       switch (bc) {
1074         case Bytecodes::_invokevirtual:
1075           if (attached_method->method_holder()->is_interface()) {
1076             bc = Bytecodes::_invokeinterface;
1077           }
1078           break;
1079         case Bytecodes::_invokeinterface:
1080           if (!attached_method->method_holder()->is_interface()) {
1081             bc = Bytecodes::_invokevirtual;
1082           }
1083           break;
1084         case Bytecodes::_invokehandle:
1085           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1086             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1087                                               : Bytecodes::_invokevirtual;
1088           }
1089           break;
1090         default:
1091           break;
1092       }
1093     } else {
1094       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1095       if (!attached_method->method_holder()->is_value()) {
1096         // Ignore the attached method in this case to not confuse below code
1097         attached_method = NULL;
1098       }
1099     }
1100   }
1101 
1102   assert(bc != Bytecodes::_illegal, "not initialized");
1103 
1104   bool has_receiver = bc != Bytecodes::_invokestatic &&
1105                       bc != Bytecodes::_invokedynamic &&
1106                       bc != Bytecodes::_invokehandle;
1107 
1108   // Find receiver for non-static call
1109   if (has_receiver) {
1110     // This register map must be update since we need to find the receiver for
1111     // compiled frames. The receiver might be in a register.
1112     RegisterMap reg_map2(thread);
1113     frame stubFrame   = thread->last_frame();
1114     // Caller-frame is a compiled frame
1115     frame callerFrame = stubFrame.sender(&reg_map2);
1116     bool caller_is_c1 = false;
1117 
1118     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1119       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1120     }
1121 
1122     methodHandle callee = attached_method;
1123     if (callee.is_null()) {
1124       callee = bytecode.static_target(CHECK_NH);
1125       if (callee.is_null()) {
1126         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1127       }
1128     }
1129     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_value()) {
1130       // If the receiver is a value type that is passed as fields, no oop is available.
1131       // Resolve the call without receiver null checking.
1132       assert(!attached_method.is_null(), "must have attached method");
1133       if (bc == Bytecodes::_invokevirtual) {
1134         LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1135         LinkResolver::resolve_virtual_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1136       } else {
1137         assert(bc == Bytecodes::_invokeinterface, "anything else?");
1138         LinkInfo link_info(constantPoolHandle(THREAD, caller->constants()), bytecode_index, CHECK_NH);
1139         LinkResolver::resolve_interface_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1140       }
1141       return receiver; // is null
1142     } else {
1143       // Retrieve from a compiled argument list
1144       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1145 
1146       if (receiver.is_null()) {
1147         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1148       }
1149     }
1150   }
1151 
1152   // Resolve method
1153   if (attached_method.not_null()) {
1154     // Parameterized by attached method.
1155     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1156   } else {
1157     // Parameterized by bytecode.
1158     constantPoolHandle constants(THREAD, caller->constants());
1159     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1160   }
1161 
1162 #ifdef ASSERT
1163   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1164   if (has_receiver) {
1165     assert(receiver.not_null(), "should have thrown exception");
1166     Klass* receiver_klass = receiver->klass();
1167     Klass* rk = NULL;
1168     if (attached_method.not_null()) {
1169       // In case there's resolved method attached, use its holder during the check.
1170       rk = attached_method->method_holder();
1171     } else {
1172       // Klass is already loaded.
1173       constantPoolHandle constants(THREAD, caller->constants());
1174       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1175     }
1176     Klass* static_receiver_klass = rk;
1177     methodHandle callee = callinfo.selected_method();
1178     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1179            "actual receiver must be subclass of static receiver klass");
1180     if (receiver_klass->is_instance_klass()) {
1181       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1182         tty->print_cr("ERROR: Klass not yet initialized!!");
1183         receiver_klass->print();
1184       }
1185       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1186     }
1187   }
1188 #endif
1189 
1190   return receiver;
1191 }
1192 
1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1194   ResourceMark rm(THREAD);
1195   // We need first to check if any Java activations (compiled, interpreted)
1196   // exist on the stack since last JavaCall.  If not, we need
1197   // to get the target method from the JavaCall wrapper.
1198   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1199   methodHandle callee_method;
1200   if (vfst.at_end()) {
1201     // No Java frames were found on stack since we did the JavaCall.
1202     // Hence the stack can only contain an entry_frame.  We need to
1203     // find the target method from the stub frame.
1204     RegisterMap reg_map(thread, false);
1205     frame fr = thread->last_frame();
1206     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1207     fr = fr.sender(&reg_map);
1208     assert(fr.is_entry_frame(), "must be");
1209     // fr is now pointing to the entry frame.
1210     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1211   } else {
1212     Bytecodes::Code bc;
1213     CallInfo callinfo;
1214     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1215     callee_method = callinfo.selected_method();
1216   }
1217   assert(callee_method()->is_method(), "must be");
1218   return callee_method;
1219 }
1220 
1221 // Resolves a call.
1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1223                                            bool is_virtual,
1224                                            bool is_optimized,
1225                                            bool* caller_is_c1, TRAPS) {
1226   methodHandle callee_method;
1227   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1228   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1229     int retry_count = 0;
1230     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1231            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1232       // If has a pending exception then there is no need to re-try to
1233       // resolve this method.
1234       // If the method has been redefined, we need to try again.
1235       // Hack: we have no way to update the vtables of arrays, so don't
1236       // require that java.lang.Object has been updated.
1237 
1238       // It is very unlikely that method is redefined more than 100 times
1239       // in the middle of resolve. If it is looping here more than 100 times
1240       // means then there could be a bug here.
1241       guarantee((retry_count++ < 100),
1242                 "Could not resolve to latest version of redefined method");
1243       // method is redefined in the middle of resolve so re-try.
1244       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1245     }
1246   }
1247   return callee_method;
1248 }
1249 
1250 // This fails if resolution required refilling of IC stubs
1251 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1252                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1253                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1254   StaticCallInfo static_call_info;
1255   CompiledICInfo virtual_call_info;
1256 
1257   // Make sure the callee nmethod does not get deoptimized and removed before
1258   // we are done patching the code.
1259   CompiledMethod* callee = callee_method->code();
1260 
1261   if (callee != NULL) {
1262     assert(callee->is_compiled(), "must be nmethod for patching");
1263   }
1264 
1265   if (callee != NULL && !callee->is_in_use()) {
1266     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1267     callee = NULL;
1268   }
1269   nmethodLocker nl_callee(callee);
1270 #ifdef ASSERT
1271   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1272 #endif
1273 
1274   bool is_nmethod = caller_nm->is_nmethod();
1275   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1276 
1277   if (is_virtual) {
1278     Klass* receiver_klass = NULL;
1279     if (ValueTypePassFieldsAsArgs && !caller_is_c1 && callee_method->method_holder()->is_value()) {
1280       // If the receiver is a value type that is passed as fields, no oop is available
1281       receiver_klass = callee_method->method_holder();
1282     } else {
1283       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1284       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1285     }
1286     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1287     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1288                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,
1289                      CHECK_false);
1290   } else {
1291     // static call
1292     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1293   }
1294 
1295   // grab lock, check for deoptimization and potentially patch caller
1296   {
1297     CompiledICLocker ml(caller_nm);
1298 
1299     // Lock blocks for safepoint during which both nmethods can change state.
1300 
1301     // Now that we are ready to patch if the Method* was redefined then
1302     // don't update call site and let the caller retry.
1303     // Don't update call site if callee nmethod was unloaded or deoptimized.
1304     // Don't update call site if callee nmethod was replaced by an other nmethod
1305     // which may happen when multiply alive nmethod (tiered compilation)
1306     // will be supported.
1307     if (!callee_method->is_old() &&
1308         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1309 #ifdef ASSERT
1310       // We must not try to patch to jump to an already unloaded method.
1311       if (dest_entry_point != 0) {
1312         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1313         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1314                "should not call unloaded nmethod");
1315       }
1316 #endif
1317       if (is_virtual) {
1318         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1319         if (inline_cache->is_clean()) {
1320           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1321             return false;
1322           }
1323         }
1324       } else {
1325         if (VM_Version::supports_fast_class_init_checks() &&
1326             invoke_code == Bytecodes::_invokestatic &&
1327             callee_method->needs_clinit_barrier() &&
1328             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1329           return true; // skip patching for JVMCI or AOT code
1330         }
1331         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1332         if (ssc->is_clean()) ssc->set(static_call_info);
1333       }
1334     }
1335   } // unlock CompiledICLocker
1336   return true;
1337 }
1338 
1339 // Resolves a call.  The compilers generate code for calls that go here
1340 // and are patched with the real destination of the call.
1341 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1342                                                bool is_virtual,
1343                                                bool is_optimized,
1344                                                bool* caller_is_c1, TRAPS) {
1345 
1346   ResourceMark rm(thread);
1347   RegisterMap cbl_map(thread, false);
1348   frame caller_frame = thread->last_frame().sender(&cbl_map);
1349 
1350   CodeBlob* caller_cb = caller_frame.cb();
1351   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1352   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1353   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1354 
1355   // make sure caller is not getting deoptimized
1356   // and removed before we are done with it.
1357   // CLEANUP - with lazy deopt shouldn't need this lock
1358   nmethodLocker caller_lock(caller_nm);
1359 
1360   if (!is_virtual && !is_optimized) {
1361     SimpleScopeDesc ssd(caller_nm, caller_frame.pc());
1362     Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci()));
1363     // Substitutability test implementation piggy backs on static call resolution
1364     if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) {
1365       SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL);
1366       return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1367     }
1368   }
1369 
1370   // determine call info & receiver
1371   // note: a) receiver is NULL for static calls
1372   //       b) an exception is thrown if receiver is NULL for non-static calls
1373   CallInfo call_info;
1374   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1375   Handle receiver = find_callee_info(thread, invoke_code,
1376                                      call_info, CHECK_(methodHandle()));
1377   methodHandle callee_method = call_info.selected_method();
1378 
1379   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1380          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1381          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1382          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1383          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1384 
1385   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1386 
1387 #ifndef PRODUCT
1388   // tracing/debugging/statistics
1389   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1390                 (is_virtual) ? (&_resolve_virtual_ctr) :
1391                                (&_resolve_static_ctr);
1392   Atomic::inc(addr);
1393 
1394   if (TraceCallFixup) {
1395     ResourceMark rm(thread);
1396     tty->print("resolving %s%s (%s) call to",
1397       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1398       Bytecodes::name(invoke_code));
1399     callee_method->print_short_name(tty);
1400     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1401                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1402   }
1403 #endif
1404 
1405   if (invoke_code == Bytecodes::_invokestatic) {
1406     assert(callee_method->method_holder()->is_initialized() ||
1407            callee_method->method_holder()->is_reentrant_initialization(thread),
1408            "invalid class initialization state for invoke_static");
1409     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1410       // In order to keep class initialization check, do not patch call
1411       // site for static call when the class is not fully initialized.
1412       // Proper check is enforced by call site re-resolution on every invocation.
1413       //
1414       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1415       // explicit class initialization check is put in nmethod entry (VEP).
1416       assert(callee_method->method_holder()->is_linked(), "must be");
1417       return callee_method;
1418     }
1419   }
1420 
1421   // JSR 292 key invariant:
1422   // If the resolved method is a MethodHandle invoke target, the call
1423   // site must be a MethodHandle call site, because the lambda form might tail-call
1424   // leaving the stack in a state unknown to either caller or callee
1425   // TODO detune for now but we might need it again
1426 //  assert(!callee_method->is_compiled_lambda_form() ||
1427 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1428 
1429   // Compute entry points. This might require generation of C2I converter
1430   // frames, so we cannot be holding any locks here. Furthermore, the
1431   // computation of the entry points is independent of patching the call.  We
1432   // always return the entry-point, but we only patch the stub if the call has
1433   // not been deoptimized.  Return values: For a virtual call this is an
1434   // (cached_oop, destination address) pair. For a static call/optimized
1435   // virtual this is just a destination address.
1436 
1437   // Patching IC caches may fail if we run out if transition stubs.
1438   // We refill the ic stubs then and try again.
1439   for (;;) {
1440     ICRefillVerifier ic_refill_verifier;
1441     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1442                                                   is_virtual, is_optimized, receiver,
1443                                                   call_info, invoke_code, CHECK_(methodHandle()));
1444     if (successful) {
1445       return callee_method;
1446     } else {
1447       InlineCacheBuffer::refill_ic_stubs();
1448     }
1449   }
1450 
1451 }
1452 
1453 
1454 // Inline caches exist only in compiled code
1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1456 #ifdef ASSERT
1457   RegisterMap reg_map(thread, false);
1458   frame stub_frame = thread->last_frame();
1459   assert(stub_frame.is_runtime_frame(), "sanity check");
1460   frame caller_frame = stub_frame.sender(&reg_map);
1461   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1462 #endif /* ASSERT */
1463 
1464   methodHandle callee_method;
1465   bool is_optimized = false;
1466   bool caller_is_c1 = false;
1467   JRT_BLOCK
1468     callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, caller_is_c1, CHECK_NULL);
1469     // Return Method* through TLS
1470     thread->set_vm_result_2(callee_method());
1471   JRT_BLOCK_END
1472   // return compiled code entry point after potential safepoints
1473   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);
1474 JRT_END
1475 
1476 
1477 // Handle call site that has been made non-entrant
1478 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1479   // 6243940 We might end up in here if the callee is deoptimized
1480   // as we race to call it.  We don't want to take a safepoint if
1481   // the caller was interpreted because the caller frame will look
1482   // interpreted to the stack walkers and arguments are now
1483   // "compiled" so it is much better to make this transition
1484   // invisible to the stack walking code. The i2c path will
1485   // place the callee method in the callee_target. It is stashed
1486   // there because if we try and find the callee by normal means a
1487   // safepoint is possible and have trouble gc'ing the compiled args.
1488   RegisterMap reg_map(thread, false);
1489   frame stub_frame = thread->last_frame();
1490   assert(stub_frame.is_runtime_frame(), "sanity check");
1491   frame caller_frame = stub_frame.sender(&reg_map);
1492 
1493   if (caller_frame.is_interpreted_frame() ||
1494       caller_frame.is_entry_frame()) {
1495     Method* callee = thread->callee_target();
1496     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1497     thread->set_vm_result_2(callee);
1498     thread->set_callee_target(NULL);
1499     return callee->get_c2i_entry();
1500   }
1501 
1502   // Must be compiled to compiled path which is safe to stackwalk
1503   methodHandle callee_method;
1504   bool is_static_call = false;
1505   bool is_optimized = false;
1506   bool caller_is_c1 = false;
1507   JRT_BLOCK
1508     // Force resolving of caller (if we called from compiled frame)
1509     callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1510     thread->set_vm_result_2(callee_method());
1511   JRT_BLOCK_END
1512   // return compiled code entry point after potential safepoints
1513   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);
1514 JRT_END
1515 
1516 // Handle abstract method call
1517 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1518   // Verbose error message for AbstractMethodError.
1519   // Get the called method from the invoke bytecode.
1520   vframeStream vfst(thread, true);
1521   assert(!vfst.at_end(), "Java frame must exist");
1522   methodHandle caller(vfst.method());
1523   Bytecode_invoke invoke(caller, vfst.bci());
1524   DEBUG_ONLY( invoke.verify(); )
1525 
1526   // Find the compiled caller frame.
1527   RegisterMap reg_map(thread);
1528   frame stubFrame = thread->last_frame();
1529   assert(stubFrame.is_runtime_frame(), "must be");
1530   frame callerFrame = stubFrame.sender(&reg_map);
1531   assert(callerFrame.is_compiled_frame(), "must be");
1532 
1533   // Install exception and return forward entry.
1534   address res = StubRoutines::throw_AbstractMethodError_entry();
1535   JRT_BLOCK
1536     methodHandle callee = invoke.static_target(thread);
1537     if (!callee.is_null()) {
1538       oop recv = callerFrame.retrieve_receiver(&reg_map);
1539       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1540       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1541       res = StubRoutines::forward_exception_entry();
1542     }
1543   JRT_BLOCK_END
1544   return res;
1545 JRT_END
1546 
1547 
1548 // resolve a static call and patch code
1549 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1550   methodHandle callee_method;
1551   bool caller_is_c1;
1552   JRT_BLOCK
1553     callee_method = SharedRuntime::resolve_helper(thread, false, false, &caller_is_c1, CHECK_NULL);
1554     thread->set_vm_result_2(callee_method());
1555   JRT_BLOCK_END
1556   // return compiled code entry point after potential safepoints
1557   address entry = caller_is_c1 ?
1558     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1559   assert(entry != NULL, "Jump to zero!");
1560   return entry;
1561 JRT_END
1562 
1563 
1564 // resolve virtual call and update inline cache to monomorphic
1565 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1566   methodHandle callee_method;
1567   bool caller_is_c1;
1568   JRT_BLOCK
1569     callee_method = SharedRuntime::resolve_helper(thread, true, false, &caller_is_c1, CHECK_NULL);
1570     thread->set_vm_result_2(callee_method());
1571   JRT_BLOCK_END
1572   // return compiled code entry point after potential safepoints
1573   address entry = caller_is_c1 ?
1574     callee_method->verified_value_code_entry() : callee_method->verified_value_ro_code_entry();
1575   assert(entry != NULL, "Jump to zero!");
1576   return entry;
1577 JRT_END
1578 
1579 
1580 // Resolve a virtual call that can be statically bound (e.g., always
1581 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1582 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1583   methodHandle callee_method;
1584   bool caller_is_c1;
1585   JRT_BLOCK
1586     callee_method = SharedRuntime::resolve_helper(thread, true, true, &caller_is_c1, CHECK_NULL);
1587     thread->set_vm_result_2(callee_method());
1588   JRT_BLOCK_END
1589   // return compiled code entry point after potential safepoints
1590   address entry = caller_is_c1 ?
1591     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1592   assert(entry != NULL, "Jump to zero!");
1593   return entry;
1594 JRT_END
1595 
1596 // The handle_ic_miss_helper_internal function returns false if it failed due
1597 // to either running out of vtable stubs or ic stubs due to IC transitions
1598 // to transitional states. The needs_ic_stub_refill value will be set if
1599 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1600 // refills the IC stubs and tries again.
1601 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1602                                                    const frame& caller_frame, methodHandle callee_method,
1603                                                    Bytecodes::Code bc, CallInfo& call_info,
1604                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1605   CompiledICLocker ml(caller_nm);
1606   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1607   bool should_be_mono = false;
1608   if (inline_cache->is_optimized()) {
1609     if (TraceCallFixup) {
1610       ResourceMark rm(THREAD);
1611       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1612       callee_method->print_short_name(tty);
1613       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1614     }
1615     is_optimized = true;
1616     should_be_mono = true;
1617   } else if (inline_cache->is_icholder_call()) {
1618     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1619     if (ic_oop != NULL) {
1620       if (!ic_oop->is_loader_alive()) {
1621         // Deferred IC cleaning due to concurrent class unloading
1622         if (!inline_cache->set_to_clean()) {
1623           needs_ic_stub_refill = true;
1624           return false;
1625         }
1626       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1627         // This isn't a real miss. We must have seen that compiled code
1628         // is now available and we want the call site converted to a
1629         // monomorphic compiled call site.
1630         // We can't assert for callee_method->code() != NULL because it
1631         // could have been deoptimized in the meantime
1632         if (TraceCallFixup) {
1633           ResourceMark rm(THREAD);
1634           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1635           callee_method->print_short_name(tty);
1636           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1637         }
1638         should_be_mono = true;
1639       }
1640     }
1641   }
1642 
1643   if (should_be_mono) {
1644     // We have a path that was monomorphic but was going interpreted
1645     // and now we have (or had) a compiled entry. We correct the IC
1646     // by using a new icBuffer.
1647     CompiledICInfo info;
1648     Klass* receiver_klass = receiver()->klass();
1649     inline_cache->compute_monomorphic_entry(callee_method,
1650                                             receiver_klass,
1651                                             inline_cache->is_optimized(),
1652                                             false, caller_nm->is_nmethod(),
1653                                             caller_nm->is_compiled_by_c1(),
1654                                             info, CHECK_false);
1655     if (!inline_cache->set_to_monomorphic(info)) {
1656       needs_ic_stub_refill = true;
1657       return false;
1658     }
1659   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1660     // Potential change to megamorphic
1661 
1662     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1663     if (needs_ic_stub_refill) {
1664       return false;
1665     }
1666     if (!successful) {
1667       if (!inline_cache->set_to_clean()) {
1668         needs_ic_stub_refill = true;
1669         return false;
1670       }
1671     }
1672   } else {
1673     // Either clean or megamorphic
1674   }
1675   return true;
1676 }
1677 
1678 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1679   ResourceMark rm(thread);
1680   CallInfo call_info;
1681   Bytecodes::Code bc;
1682 
1683   // receiver is NULL for static calls. An exception is thrown for NULL
1684   // receivers for non-static calls
1685   Handle receiver = find_callee_info(thread, bc, call_info,
1686                                      CHECK_(methodHandle()));
1687   // Compiler1 can produce virtual call sites that can actually be statically bound
1688   // If we fell thru to below we would think that the site was going megamorphic
1689   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1690   // we'd try and do a vtable dispatch however methods that can be statically bound
1691   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1692   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1693   // plain ic_miss) and the site will be converted to an optimized virtual call site
1694   // never to miss again. I don't believe C2 will produce code like this but if it
1695   // did this would still be the correct thing to do for it too, hence no ifdef.
1696   //
1697   if (call_info.resolved_method()->can_be_statically_bound()) {
1698     bool is_static_call = false;
1699     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1700     assert(!is_static_call, "IC miss at static call?");
1701     if (TraceCallFixup) {
1702       RegisterMap reg_map(thread, false);
1703       frame caller_frame = thread->last_frame().sender(&reg_map);
1704       ResourceMark rm(thread);
1705       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1706       callee_method->print_short_name(tty);
1707       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1708       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1709     }
1710     return callee_method;
1711   }
1712 
1713   methodHandle callee_method = call_info.selected_method();
1714 
1715 #ifndef PRODUCT
1716   Atomic::inc(&_ic_miss_ctr);
1717 
1718   // Statistics & Tracing
1719   if (TraceCallFixup) {
1720     ResourceMark rm(thread);
1721     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1722     callee_method->print_short_name(tty);
1723     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1724   }
1725 
1726   if (ICMissHistogram) {
1727     MutexLocker m(VMStatistic_lock);
1728     RegisterMap reg_map(thread, false);
1729     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1730     // produce statistics under the lock
1731     trace_ic_miss(f.pc());
1732   }
1733 #endif
1734 
1735   // install an event collector so that when a vtable stub is created the
1736   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1737   // event can't be posted when the stub is created as locks are held
1738   // - instead the event will be deferred until the event collector goes
1739   // out of scope.
1740   JvmtiDynamicCodeEventCollector event_collector;
1741 
1742   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1743   // Transitioning IC caches may require transition stubs. If we run out
1744   // of transition stubs, we have to drop locks and perform a safepoint
1745   // that refills them.
1746   RegisterMap reg_map(thread, false);
1747   frame caller_frame = thread->last_frame().sender(&reg_map);
1748   CodeBlob* cb = caller_frame.cb();
1749   CompiledMethod* caller_nm = cb->as_compiled_method();
1750   caller_is_c1 = caller_nm->is_compiled_by_c1();
1751 
1752   for (;;) {
1753     ICRefillVerifier ic_refill_verifier;
1754     bool needs_ic_stub_refill = false;
1755     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1756                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1757     if (successful || !needs_ic_stub_refill) {
1758       return callee_method;
1759     } else {
1760       InlineCacheBuffer::refill_ic_stubs();
1761     }
1762   }
1763 }
1764 
1765 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1766   CompiledICLocker ml(caller_nm);
1767   if (is_static_call) {
1768     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1769     if (!ssc->is_clean()) {
1770       return ssc->set_to_clean();
1771     }
1772   } else {
1773     // compiled, dispatched call (which used to call an interpreted method)
1774     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1775     if (!inline_cache->is_clean()) {
1776       return inline_cache->set_to_clean();
1777     }
1778   }
1779   return true;
1780 }
1781 
1782 //
1783 // Resets a call-site in compiled code so it will get resolved again.
1784 // This routines handles both virtual call sites, optimized virtual call
1785 // sites, and static call sites. Typically used to change a call sites
1786 // destination from compiled to interpreted.
1787 //
1788 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1789   ResourceMark rm(thread);
1790   RegisterMap reg_map(thread, false);
1791   frame stub_frame = thread->last_frame();
1792   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1793   frame caller = stub_frame.sender(&reg_map);
1794 
1795   // Do nothing if the frame isn't a live compiled frame.
1796   // nmethod could be deoptimized by the time we get here
1797   // so no update to the caller is needed.
1798 
1799   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1800 
1801     address pc = caller.pc();
1802 
1803     // Check for static or virtual call
1804     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1805     caller_is_c1 = caller_nm->is_compiled_by_c1();
1806 
1807     // Default call_addr is the location of the "basic" call.
1808     // Determine the address of the call we a reresolving. With
1809     // Inline Caches we will always find a recognizable call.
1810     // With Inline Caches disabled we may or may not find a
1811     // recognizable call. We will always find a call for static
1812     // calls and for optimized virtual calls. For vanilla virtual
1813     // calls it depends on the state of the UseInlineCaches switch.
1814     //
1815     // With Inline Caches disabled we can get here for a virtual call
1816     // for two reasons:
1817     //   1 - calling an abstract method. The vtable for abstract methods
1818     //       will run us thru handle_wrong_method and we will eventually
1819     //       end up in the interpreter to throw the ame.
1820     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1821     //       call and between the time we fetch the entry address and
1822     //       we jump to it the target gets deoptimized. Similar to 1
1823     //       we will wind up in the interprter (thru a c2i with c2).
1824     //
1825     address call_addr = NULL;
1826     {
1827       // Get call instruction under lock because another thread may be
1828       // busy patching it.
1829       CompiledICLocker ml(caller_nm);
1830       // Location of call instruction
1831       call_addr = caller_nm->call_instruction_address(pc);
1832     }
1833     // Make sure nmethod doesn't get deoptimized and removed until
1834     // this is done with it.
1835     // CLEANUP - with lazy deopt shouldn't need this lock
1836     nmethodLocker nmlock(caller_nm);
1837 
1838     if (call_addr != NULL) {
1839       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1840       int ret = iter.next(); // Get item
1841       if (ret) {
1842         assert(iter.addr() == call_addr, "must find call");
1843         if (iter.type() == relocInfo::static_call_type) {
1844           is_static_call = true;
1845         } else {
1846           assert(iter.type() == relocInfo::virtual_call_type ||
1847                  iter.type() == relocInfo::opt_virtual_call_type
1848                 , "unexpected relocInfo. type");
1849           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1850         }
1851       } else {
1852         assert(!UseInlineCaches, "relocation info. must exist for this address");
1853       }
1854 
1855       // Cleaning the inline cache will force a new resolve. This is more robust
1856       // than directly setting it to the new destination, since resolving of calls
1857       // is always done through the same code path. (experience shows that it
1858       // leads to very hard to track down bugs, if an inline cache gets updated
1859       // to a wrong method). It should not be performance critical, since the
1860       // resolve is only done once.
1861 
1862       for (;;) {
1863         ICRefillVerifier ic_refill_verifier;
1864         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1865           InlineCacheBuffer::refill_ic_stubs();
1866         } else {
1867           break;
1868         }
1869       }
1870     }
1871   }
1872 
1873   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1874 
1875 #ifndef PRODUCT
1876   Atomic::inc(&_wrong_method_ctr);
1877 
1878   if (TraceCallFixup) {
1879     ResourceMark rm(thread);
1880     tty->print("handle_wrong_method reresolving call to");
1881     callee_method->print_short_name(tty);
1882     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1883   }
1884 #endif
1885 
1886   return callee_method;
1887 }
1888 
1889 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1890   // The faulting unsafe accesses should be changed to throw the error
1891   // synchronously instead. Meanwhile the faulting instruction will be
1892   // skipped over (effectively turning it into a no-op) and an
1893   // asynchronous exception will be raised which the thread will
1894   // handle at a later point. If the instruction is a load it will
1895   // return garbage.
1896 
1897   // Request an async exception.
1898   thread->set_pending_unsafe_access_error();
1899 
1900   // Return address of next instruction to execute.
1901   return next_pc;
1902 }
1903 
1904 #ifdef ASSERT
1905 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1906                                                                 const BasicType* sig_bt,
1907                                                                 const VMRegPair* regs) {
1908   ResourceMark rm;
1909   const int total_args_passed = method->size_of_parameters();
1910   const VMRegPair*    regs_with_member_name = regs;
1911         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1912 
1913   const int member_arg_pos = total_args_passed - 1;
1914   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1915   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1916 
1917   const bool is_outgoing = method->is_method_handle_intrinsic();
1918   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1919 
1920   for (int i = 0; i < member_arg_pos; i++) {
1921     VMReg a =    regs_with_member_name[i].first();
1922     VMReg b = regs_without_member_name[i].first();
1923     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1924   }
1925   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1926 }
1927 #endif
1928 
1929 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1930   if (destination != entry_point) {
1931     CodeBlob* callee = CodeCache::find_blob(destination);
1932     // callee == cb seems weird. It means calling interpreter thru stub.
1933     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1934       // static call or optimized virtual
1935       if (TraceCallFixup) {
1936         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1937         moop->print_short_name(tty);
1938         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1939       }
1940       return true;
1941     } else {
1942       if (TraceCallFixup) {
1943         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1944         moop->print_short_name(tty);
1945         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1946       }
1947       // assert is too strong could also be resolve destinations.
1948       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1949     }
1950   } else {
1951     if (TraceCallFixup) {
1952       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1953       moop->print_short_name(tty);
1954       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1955     }
1956   }
1957   return false;
1958 }
1959 
1960 // ---------------------------------------------------------------------------
1961 // We are calling the interpreter via a c2i. Normally this would mean that
1962 // we were called by a compiled method. However we could have lost a race
1963 // where we went int -> i2c -> c2i and so the caller could in fact be
1964 // interpreted. If the caller is compiled we attempt to patch the caller
1965 // so he no longer calls into the interpreter.
1966 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1967   Method* moop(method);
1968 
1969   // It's possible that deoptimization can occur at a call site which hasn't
1970   // been resolved yet, in which case this function will be called from
1971   // an nmethod that has been patched for deopt and we can ignore the
1972   // request for a fixup.
1973   // Also it is possible that we lost a race in that from_compiled_entry
1974   // is now back to the i2c in that case we don't need to patch and if
1975   // we did we'd leap into space because the callsite needs to use
1976   // "to interpreter" stub in order to load up the Method*. Don't
1977   // ask me how I know this...
1978 
1979   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1980   if (cb == NULL || !cb->is_compiled()) {
1981     return;
1982   }
1983   address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1());
1984   if (entry_point == moop->get_c2i_entry()) {
1985     return;
1986   }
1987 
1988   // The check above makes sure this is a nmethod.
1989   CompiledMethod* nm = cb->as_compiled_method_or_null();
1990   assert(nm, "must be");
1991 
1992   // Get the return PC for the passed caller PC.
1993   address return_pc = caller_pc + frame::pc_return_offset;
1994 
1995   // There is a benign race here. We could be attempting to patch to a compiled
1996   // entry point at the same time the callee is being deoptimized. If that is
1997   // the case then entry_point may in fact point to a c2i and we'd patch the
1998   // call site with the same old data. clear_code will set code() to NULL
1999   // at the end of it. If we happen to see that NULL then we can skip trying
2000   // to patch. If we hit the window where the callee has a c2i in the
2001   // from_compiled_entry and the NULL isn't present yet then we lose the race
2002   // and patch the code with the same old data. Asi es la vida.
2003 
2004   if (moop->code() == NULL) return;
2005 
2006   if (nm->is_in_use()) {
2007     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2008     CompiledICLocker ic_locker(nm);
2009     if (NativeCall::is_call_before(return_pc)) {
2010       ResourceMark mark;
2011       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2012       //
2013       // bug 6281185. We might get here after resolving a call site to a vanilla
2014       // virtual call. Because the resolvee uses the verified entry it may then
2015       // see compiled code and attempt to patch the site by calling us. This would
2016       // then incorrectly convert the call site to optimized and its downhill from
2017       // there. If you're lucky you'll get the assert in the bugid, if not you've
2018       // just made a call site that could be megamorphic into a monomorphic site
2019       // for the rest of its life! Just another racing bug in the life of
2020       // fixup_callers_callsite ...
2021       //
2022       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2023       iter.next();
2024       assert(iter.has_current(), "must have a reloc at java call site");
2025       relocInfo::relocType typ = iter.reloc()->type();
2026       if (typ != relocInfo::static_call_type &&
2027            typ != relocInfo::opt_virtual_call_type &&
2028            typ != relocInfo::static_stub_type) {
2029         return;
2030       }
2031       address destination = call->destination();
2032       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2033         call->set_destination_mt_safe(entry_point);
2034       }
2035     }
2036   }
2037 JRT_END
2038 
2039 
2040 // same as JVM_Arraycopy, but called directly from compiled code
2041 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2042                                                 oopDesc* dest, jint dest_pos,
2043                                                 jint length,
2044                                                 JavaThread* thread)) {
2045 #ifndef PRODUCT
2046   _slow_array_copy_ctr++;
2047 #endif
2048   // Check if we have null pointers
2049   if (src == NULL || dest == NULL) {
2050     THROW(vmSymbols::java_lang_NullPointerException());
2051   }
2052   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2053   // even though the copy_array API also performs dynamic checks to ensure
2054   // that src and dest are truly arrays (and are conformable).
2055   // The copy_array mechanism is awkward and could be removed, but
2056   // the compilers don't call this function except as a last resort,
2057   // so it probably doesn't matter.
2058   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2059                                         (arrayOopDesc*)dest, dest_pos,
2060                                         length, thread);
2061 }
2062 JRT_END
2063 
2064 // The caller of generate_class_cast_message() (or one of its callers)
2065 // must use a ResourceMark in order to correctly free the result.
2066 char* SharedRuntime::generate_class_cast_message(
2067     JavaThread* thread, Klass* caster_klass) {
2068 
2069   // Get target class name from the checkcast instruction
2070   vframeStream vfst(thread, true);
2071   assert(!vfst.at_end(), "Java frame must exist");
2072   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2073   constantPoolHandle cpool(thread, vfst.method()->constants());
2074   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2075   Symbol* target_klass_name = NULL;
2076   if (target_klass == NULL) {
2077     // This klass should be resolved, but just in case, get the name in the klass slot.
2078     target_klass_name = cpool->klass_name_at(cc.index());
2079   }
2080   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2081 }
2082 
2083 
2084 // The caller of generate_class_cast_message() (or one of its callers)
2085 // must use a ResourceMark in order to correctly free the result.
2086 char* SharedRuntime::generate_class_cast_message(
2087     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2088   const char* caster_name = caster_klass->external_name();
2089 
2090   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2091   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2092                                                    target_klass->external_name();
2093 
2094   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2095 
2096   const char* caster_klass_description = "";
2097   const char* target_klass_description = "";
2098   const char* klass_separator = "";
2099   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2100     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2101   } else {
2102     caster_klass_description = caster_klass->class_in_module_of_loader();
2103     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2104     klass_separator = (target_klass != NULL) ? "; " : "";
2105   }
2106 
2107   // add 3 for parenthesis and preceeding space
2108   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2109 
2110   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2111   if (message == NULL) {
2112     // Shouldn't happen, but don't cause even more problems if it does
2113     message = const_cast<char*>(caster_klass->external_name());
2114   } else {
2115     jio_snprintf(message,
2116                  msglen,
2117                  "class %s cannot be cast to class %s (%s%s%s)",
2118                  caster_name,
2119                  target_name,
2120                  caster_klass_description,
2121                  klass_separator,
2122                  target_klass_description
2123                  );
2124   }
2125   return message;
2126 }
2127 
2128 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2129   (void) JavaThread::current()->reguard_stack();
2130 JRT_END
2131 
2132 
2133 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2134 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2135   if (!SafepointSynchronize::is_synchronizing()) {
2136     // Only try quick_enter() if we're not trying to reach a safepoint
2137     // so that the calling thread reaches the safepoint more quickly.
2138     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2139   }
2140   // NO_ASYNC required because an async exception on the state transition destructor
2141   // would leave you with the lock held and it would never be released.
2142   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2143   // and the model is that an exception implies the method failed.
2144   JRT_BLOCK_NO_ASYNC
2145   oop obj(_obj);
2146   if (PrintBiasedLockingStatistics) {
2147     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2148   }
2149   Handle h_obj(THREAD, obj);
2150   if (UseBiasedLocking) {
2151     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2152     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2153   } else {
2154     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2155   }
2156   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2157   JRT_BLOCK_END
2158 JRT_END
2159 
2160 // Handles the uncommon cases of monitor unlocking in compiled code
2161 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2162    oop obj(_obj);
2163   assert(JavaThread::current() == THREAD, "invariant");
2164   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2165   // testing was unable to ever fire the assert that guarded it so I have removed it.
2166   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2167 #undef MIGHT_HAVE_PENDING
2168 #ifdef MIGHT_HAVE_PENDING
2169   // Save and restore any pending_exception around the exception mark.
2170   // While the slow_exit must not throw an exception, we could come into
2171   // this routine with one set.
2172   oop pending_excep = NULL;
2173   const char* pending_file;
2174   int pending_line;
2175   if (HAS_PENDING_EXCEPTION) {
2176     pending_excep = PENDING_EXCEPTION;
2177     pending_file  = THREAD->exception_file();
2178     pending_line  = THREAD->exception_line();
2179     CLEAR_PENDING_EXCEPTION;
2180   }
2181 #endif /* MIGHT_HAVE_PENDING */
2182 
2183   {
2184     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2185     EXCEPTION_MARK;
2186     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2187   }
2188 
2189 #ifdef MIGHT_HAVE_PENDING
2190   if (pending_excep != NULL) {
2191     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2192   }
2193 #endif /* MIGHT_HAVE_PENDING */
2194 JRT_END
2195 
2196 #ifndef PRODUCT
2197 
2198 void SharedRuntime::print_statistics() {
2199   ttyLocker ttyl;
2200   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2201 
2202   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2203 
2204   SharedRuntime::print_ic_miss_histogram();
2205 
2206   if (CountRemovableExceptions) {
2207     if (_nof_removable_exceptions > 0) {
2208       Unimplemented(); // this counter is not yet incremented
2209       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2210     }
2211   }
2212 
2213   // Dump the JRT_ENTRY counters
2214   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2215   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2216   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2217   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2218   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2219   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2220   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2221 
2222   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2223   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2224   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2225   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2226   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2227 
2228   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2229   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2230   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2231   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2232   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2233   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2234   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2235   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2236   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2237   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2238   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2239   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2240   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2241   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2242   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2243   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2244 
2245   AdapterHandlerLibrary::print_statistics();
2246 
2247   if (xtty != NULL)  xtty->tail("statistics");
2248 }
2249 
2250 inline double percent(int x, int y) {
2251   return 100.0 * x / MAX2(y, 1);
2252 }
2253 
2254 class MethodArityHistogram {
2255  public:
2256   enum { MAX_ARITY = 256 };
2257  private:
2258   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2259   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2260   static int _max_arity;                      // max. arity seen
2261   static int _max_size;                       // max. arg size seen
2262 
2263   static void add_method_to_histogram(nmethod* nm) {
2264     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2265       Method* method = nm->method();
2266       ArgumentCount args(method->signature());
2267       int arity   = args.size() + (method->is_static() ? 0 : 1);
2268       int argsize = method->size_of_parameters();
2269       arity   = MIN2(arity, MAX_ARITY-1);
2270       argsize = MIN2(argsize, MAX_ARITY-1);
2271       int count = method->compiled_invocation_count();
2272       _arity_histogram[arity]  += count;
2273       _size_histogram[argsize] += count;
2274       _max_arity = MAX2(_max_arity, arity);
2275       _max_size  = MAX2(_max_size, argsize);
2276     }
2277   }
2278 
2279   void print_histogram_helper(int n, int* histo, const char* name) {
2280     const int N = MIN2(5, n);
2281     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2282     double sum = 0;
2283     double weighted_sum = 0;
2284     int i;
2285     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2286     double rest = sum;
2287     double percent = sum / 100;
2288     for (i = 0; i <= N; i++) {
2289       rest -= histo[i];
2290       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2291     }
2292     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2293     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2294   }
2295 
2296   void print_histogram() {
2297     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2298     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2299     tty->print_cr("\nSame for parameter size (in words):");
2300     print_histogram_helper(_max_size, _size_histogram, "size");
2301     tty->cr();
2302   }
2303 
2304  public:
2305   MethodArityHistogram() {
2306     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2307     _max_arity = _max_size = 0;
2308     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2309     CodeCache::nmethods_do(add_method_to_histogram);
2310     print_histogram();
2311   }
2312 };
2313 
2314 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2315 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2316 int MethodArityHistogram::_max_arity;
2317 int MethodArityHistogram::_max_size;
2318 
2319 void SharedRuntime::print_call_statistics(int comp_total) {
2320   tty->print_cr("Calls from compiled code:");
2321   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2322   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2323   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2324   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2325   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2326   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2327   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2328   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2329   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2330   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2331   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2332   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2333   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2334   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2335   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2336   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2337   tty->cr();
2338   tty->print_cr("Note 1: counter updates are not MT-safe.");
2339   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2340   tty->print_cr("        %% in nested categories are relative to their category");
2341   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2342   tty->cr();
2343 
2344   MethodArityHistogram h;
2345 }
2346 #endif
2347 
2348 
2349 // A simple wrapper class around the calling convention information
2350 // that allows sharing of adapters for the same calling convention.
2351 class AdapterFingerPrint : public CHeapObj<mtCode> {
2352  private:
2353   enum {
2354     _basic_type_bits = 4,
2355     _basic_type_mask = right_n_bits(_basic_type_bits),
2356     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2357     _compact_int_count = 3
2358   };
2359   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2360   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2361 
2362   union {
2363     int  _compact[_compact_int_count];
2364     int* _fingerprint;
2365   } _value;
2366   int _length; // A negative length indicates the fingerprint is in the compact form,
2367                // Otherwise _value._fingerprint is the array.
2368 
2369   // Remap BasicTypes that are handled equivalently by the adapters.
2370   // These are correct for the current system but someday it might be
2371   // necessary to make this mapping platform dependent.
2372   static int adapter_encoding(BasicType in, bool is_valuetype) {
2373     switch (in) {
2374       case T_BOOLEAN:
2375       case T_BYTE:
2376       case T_SHORT:
2377       case T_CHAR: {
2378         if (is_valuetype) {
2379           // Do not widen value type field types
2380           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2381           return in;
2382         } else {
2383           // They are all promoted to T_INT in the calling convention
2384           return T_INT;
2385         }
2386       }
2387 
2388       case T_VALUETYPE: {
2389         // If value types are passed as fields, return 'in' to differentiate
2390         // between a T_VALUETYPE and a T_OBJECT in the signature.
2391         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2392       }
2393 
2394       case T_OBJECT:
2395       case T_ARRAY:
2396         // In other words, we assume that any register good enough for
2397         // an int or long is good enough for a managed pointer.
2398 #ifdef _LP64
2399         return T_LONG;
2400 #else
2401         return T_INT;
2402 #endif
2403 
2404       case T_INT:
2405       case T_LONG:
2406       case T_FLOAT:
2407       case T_DOUBLE:
2408       case T_VOID:
2409         return in;
2410 
2411       default:
2412         ShouldNotReachHere();
2413         return T_CONFLICT;
2414     }
2415   }
2416 
2417  public:
2418   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2419     // The fingerprint is based on the BasicType signature encoded
2420     // into an array of ints with eight entries per int.
2421     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2422     int* ptr;
2423     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2424     if (len <= _compact_int_count) {
2425       assert(_compact_int_count == 3, "else change next line");
2426       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2427       // Storing the signature encoded as signed chars hits about 98%
2428       // of the time.
2429       _length = -len;
2430       ptr = _value._compact;
2431     } else {
2432       _length = len;
2433       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2434       ptr = _value._fingerprint;
2435     }
2436 
2437     // Now pack the BasicTypes with 8 per int
2438     int sig_index = 0;
2439     BasicType prev_sbt = T_ILLEGAL;
2440     int vt_count = 0;
2441     for (int index = 0; index < len; index++) {
2442       int value = 0;
2443       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2444         int bt = 0;
2445         if (sig_index < total_args_passed) {
2446           BasicType sbt = sig->at(sig_index++)._bt;
2447           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2448             // Found start of value type in signature
2449             vt_count++;
2450             if (sig_index == 1 && has_ro_adapter) {
2451               // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching
2452               // with other adapters that have the same value type as first argument and no receiver.
2453               sbt = T_VOID;
2454             }
2455           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2456                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2457             // Found end of value type in signature
2458             vt_count--;
2459             assert(vt_count >= 0, "invalid vt_count");
2460           }
2461           bt = adapter_encoding(sbt, vt_count > 0);
2462           prev_sbt = sbt;
2463         }
2464         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2465         value = (value << _basic_type_bits) | bt;
2466       }
2467       ptr[index] = value;
2468     }
2469     assert(vt_count == 0, "invalid vt_count");
2470   }
2471 
2472   ~AdapterFingerPrint() {
2473     if (_length > 0) {
2474       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2475     }
2476   }
2477 
2478   int value(int index) {
2479     if (_length < 0) {
2480       return _value._compact[index];
2481     }
2482     return _value._fingerprint[index];
2483   }
2484   int length() {
2485     if (_length < 0) return -_length;
2486     return _length;
2487   }
2488 
2489   bool is_compact() {
2490     return _length <= 0;
2491   }
2492 
2493   unsigned int compute_hash() {
2494     int hash = 0;
2495     for (int i = 0; i < length(); i++) {
2496       int v = value(i);
2497       hash = (hash << 8) ^ v ^ (hash >> 5);
2498     }
2499     return (unsigned int)hash;
2500   }
2501 
2502   const char* as_string() {
2503     stringStream st;
2504     st.print("0x");
2505     for (int i = 0; i < length(); i++) {
2506       st.print("%08x", value(i));
2507     }
2508     return st.as_string();
2509   }
2510 
2511   bool equals(AdapterFingerPrint* other) {
2512     if (other->_length != _length) {
2513       return false;
2514     }
2515     if (_length < 0) {
2516       assert(_compact_int_count == 3, "else change next line");
2517       return _value._compact[0] == other->_value._compact[0] &&
2518              _value._compact[1] == other->_value._compact[1] &&
2519              _value._compact[2] == other->_value._compact[2];
2520     } else {
2521       for (int i = 0; i < _length; i++) {
2522         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2523           return false;
2524         }
2525       }
2526     }
2527     return true;
2528   }
2529 };
2530 
2531 
2532 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2533 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2534   friend class AdapterHandlerTableIterator;
2535 
2536  private:
2537 
2538 #ifndef PRODUCT
2539   static int _lookups; // number of calls to lookup
2540   static int _buckets; // number of buckets checked
2541   static int _equals;  // number of buckets checked with matching hash
2542   static int _hits;    // number of successful lookups
2543   static int _compact; // number of equals calls with compact signature
2544 #endif
2545 
2546   AdapterHandlerEntry* bucket(int i) {
2547     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2548   }
2549 
2550  public:
2551   AdapterHandlerTable()
2552     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2553 
2554   // Create a new entry suitable for insertion in the table
2555   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2556                                  address c2i_value_entry, address c2i_value_ro_entry,
2557                                  address c2i_unverified_entry, address c2i_unverified_value_entry) {
2558     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2559     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry,
2560                 c2i_unverified_entry, c2i_unverified_value_entry);
2561     if (DumpSharedSpaces) {
2562       ((CDSAdapterHandlerEntry*)entry)->init();
2563     }
2564     return entry;
2565   }
2566 
2567   // Insert an entry into the table
2568   void add(AdapterHandlerEntry* entry) {
2569     int index = hash_to_index(entry->hash());
2570     add_entry(index, entry);
2571   }
2572 
2573   void free_entry(AdapterHandlerEntry* entry) {
2574     entry->deallocate();
2575     BasicHashtable<mtCode>::free_entry(entry);
2576   }
2577 
2578   // Find a entry with the same fingerprint if it exists
2579   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2580     NOT_PRODUCT(_lookups++);
2581     AdapterFingerPrint fp(sig, has_ro_adapter);
2582     unsigned int hash = fp.compute_hash();
2583     int index = hash_to_index(hash);
2584     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2585       NOT_PRODUCT(_buckets++);
2586       if (e->hash() == hash) {
2587         NOT_PRODUCT(_equals++);
2588         if (fp.equals(e->fingerprint())) {
2589 #ifndef PRODUCT
2590           if (fp.is_compact()) _compact++;
2591           _hits++;
2592 #endif
2593           return e;
2594         }
2595       }
2596     }
2597     return NULL;
2598   }
2599 
2600 #ifndef PRODUCT
2601   void print_statistics() {
2602     ResourceMark rm;
2603     int longest = 0;
2604     int empty = 0;
2605     int total = 0;
2606     int nonempty = 0;
2607     for (int index = 0; index < table_size(); index++) {
2608       int count = 0;
2609       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2610         count++;
2611       }
2612       if (count != 0) nonempty++;
2613       if (count == 0) empty++;
2614       if (count > longest) longest = count;
2615       total += count;
2616     }
2617     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2618                   empty, longest, total, total / (double)nonempty);
2619     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2620                   _lookups, _buckets, _equals, _hits, _compact);
2621   }
2622 #endif
2623 };
2624 
2625 
2626 #ifndef PRODUCT
2627 
2628 int AdapterHandlerTable::_lookups;
2629 int AdapterHandlerTable::_buckets;
2630 int AdapterHandlerTable::_equals;
2631 int AdapterHandlerTable::_hits;
2632 int AdapterHandlerTable::_compact;
2633 
2634 #endif
2635 
2636 class AdapterHandlerTableIterator : public StackObj {
2637  private:
2638   AdapterHandlerTable* _table;
2639   int _index;
2640   AdapterHandlerEntry* _current;
2641 
2642   void scan() {
2643     while (_index < _table->table_size()) {
2644       AdapterHandlerEntry* a = _table->bucket(_index);
2645       _index++;
2646       if (a != NULL) {
2647         _current = a;
2648         return;
2649       }
2650     }
2651   }
2652 
2653  public:
2654   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2655     scan();
2656   }
2657   bool has_next() {
2658     return _current != NULL;
2659   }
2660   AdapterHandlerEntry* next() {
2661     if (_current != NULL) {
2662       AdapterHandlerEntry* result = _current;
2663       _current = _current->next();
2664       if (_current == NULL) scan();
2665       return result;
2666     } else {
2667       return NULL;
2668     }
2669   }
2670 };
2671 
2672 
2673 // ---------------------------------------------------------------------------
2674 // Implementation of AdapterHandlerLibrary
2675 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2676 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2677 const int AdapterHandlerLibrary_size = 16*K;
2678 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2679 
2680 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2681   // Should be called only when AdapterHandlerLibrary_lock is active.
2682   if (_buffer == NULL) // Initialize lazily
2683       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2684   return _buffer;
2685 }
2686 
2687 extern "C" void unexpected_adapter_call() {
2688   ShouldNotCallThis();
2689 }
2690 
2691 void AdapterHandlerLibrary::initialize() {
2692   if (_adapters != NULL) return;
2693   _adapters = new AdapterHandlerTable();
2694 
2695   // Create a special handler for abstract methods.  Abstract methods
2696   // are never compiled so an i2c entry is somewhat meaningless, but
2697   // throw AbstractMethodError just in case.
2698   // Pass wrong_method_abstract for the c2i transitions to return
2699   // AbstractMethodError for invalid invocations.
2700   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2701   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2702                                                               StubRoutines::throw_AbstractMethodError_entry(),
2703                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2704                                                               wrong_method_abstract, wrong_method_abstract);
2705 }
2706 
2707 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2708                                                       address i2c_entry,
2709                                                       address c2i_entry,
2710                                                       address c2i_value_entry,
2711                                                       address c2i_value_ro_entry,
2712                                                       address c2i_unverified_entry,
2713                                                       address c2i_unverified_value_entry) {
2714   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry,
2715                               c2i_unverified_value_entry);
2716 }
2717 
2718 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2719   AdapterHandlerEntry* entry = get_adapter0(method);
2720   if (method->is_shared()) {
2721     // See comments around Method::link_method()
2722     MutexLocker mu(AdapterHandlerLibrary_lock);
2723     if (method->adapter() == NULL) {
2724       method->update_adapter_trampoline(entry);
2725     }
2726     address trampoline = method->from_compiled_entry();
2727     if (*(int*)trampoline == 0) {
2728       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2729       MacroAssembler _masm(&buffer);
2730       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2731       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2732 
2733       if (PrintInterpreter) {
2734         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2735       }
2736     }
2737   }
2738 
2739   return entry;
2740 }
2741 
2742 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2743   _method(method), _num_value_args(0), _has_value_recv(false),
2744   _sig_cc(NULL), _sig_cc_ro(NULL), _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL),
2745   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2746   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _has_scalarized_args(false) {
2747   _has_reserved_entries = false;
2748   _sig = new GrowableArray<SigEntry>(method->size_of_parameters());
2749 
2750 }
2751 
2752 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2753   InstanceKlass* holder = _method->method_holder();
2754   sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters());
2755   if (!_method->is_static()) {
2756     if (holder->is_value() && scalar_receiver && ValueKlass::cast(holder)->is_scalarizable()) {
2757       sig_cc->appendAll(ValueKlass::cast(holder)->extended_sig());
2758     } else {
2759       SigEntry::add_entry(sig_cc, T_OBJECT);
2760     }
2761   }
2762   Thread* THREAD = Thread::current();
2763   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2764     if (ss.type() == T_VALUETYPE) {
2765       ValueKlass* vk = ss.as_value_klass(holder);
2766       if (vk->is_scalarizable()) {
2767         sig_cc->appendAll(vk->extended_sig());
2768       } else {
2769         SigEntry::add_entry(sig_cc, T_OBJECT);
2770       }
2771     } else {
2772       SigEntry::add_entry(sig_cc, ss.type());
2773     }
2774   }
2775   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2776   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2777 }
2778 
2779 int CompiledEntrySignature::insert_reserved_entry(int ret_off) {
2780   // Find index in signature that belongs to return address slot
2781   BasicType bt = T_ILLEGAL;
2782   int i = 0;
2783   for (uint off = 0; i < _sig_cc->length(); ++i) {
2784     if (SigEntry::skip_value_delimiters(_sig_cc, i)) {
2785       VMReg first = _regs_cc[off++].first();
2786       if (first->is_valid() && first->is_stack()) {
2787         // Select a type for the reserved entry that will end up on the stack
2788         bt = _sig_cc->at(i)._bt;
2789         if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) {
2790           break; // Index of the return address found
2791         }
2792       }
2793     }
2794   }
2795   // Insert reserved entry and re-compute calling convention
2796   SigEntry::insert_reserved_entry(_sig_cc, i, bt);
2797   return SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2798 }
2799 
2800 // See if we can save space by sharing the same entry for VVEP and VVEP(RO),
2801 // or the same entry for VEP and VVEP(RO).
2802 CodeOffsets::Entries CompiledEntrySignature::c1_value_ro_entry_type() const {
2803   if (!has_scalarized_args()) {
2804     // VEP/VVEP/VVEP(RO) all share the same entry. There's no packing.
2805     return CodeOffsets::Verified_Entry;
2806   }
2807   if (_method->is_static()) {
2808     // Static methods don't need VVEP(RO)
2809     return CodeOffsets::Verified_Entry;
2810   }
2811 
2812   if (has_value_recv()) {
2813     if (num_value_args() == 1) {
2814       // Share same entry for VVEP and VVEP(RO).
2815       // This is quite common: we have an instance method in a ValueKlass that has
2816       // no value args other than <this>.
2817       return CodeOffsets::Verified_Value_Entry;
2818     } else {
2819       assert(num_value_args() > 1, "must be");
2820       // No sharing:
2821       //   VVEP(RO) -- <this> is passed as object
2822       //   VEP      -- <this> is passed as fields
2823       return CodeOffsets::Verified_Value_Entry_RO;
2824     }
2825   }
2826 
2827   // Either a static method, or <this> is not a value type
2828   if (args_on_stack_cc() != args_on_stack_cc_ro() || _has_reserved_entries) {
2829     // No sharing:
2830     // Some arguments are passed on the stack, and we have inserted reserved entries
2831     // into the VEP, but we never insert reserved entries into the VVEP(RO).
2832     return CodeOffsets::Verified_Value_Entry_RO;
2833   } else {
2834     // Share same entry for VEP and VVEP(RO).
2835     return CodeOffsets::Verified_Entry;
2836   }
2837 }
2838 
2839 
2840 void CompiledEntrySignature::compute_calling_conventions() {
2841   // Get the (non-scalarized) signature and check for value type arguments
2842   if (!_method->is_static()) {
2843     if (_method->method_holder()->is_value() && ValueKlass::cast(_method->method_holder())->is_scalarizable()) {
2844       _has_value_recv = true;
2845       _num_value_args++;
2846     }
2847     SigEntry::add_entry(_sig, T_OBJECT);
2848   }
2849   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2850     BasicType bt = ss.type();
2851     if (bt == T_VALUETYPE) {
2852       if (ss.as_value_klass(_method->method_holder())->is_scalarizable()) {
2853         _num_value_args++;
2854       }
2855       bt = T_OBJECT;
2856     }
2857     SigEntry::add_entry(_sig, bt);
2858   }
2859   if (_method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg())) {
2860     return;
2861   }
2862 
2863   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2864   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2865   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2866 
2867   // Now compute the scalarized calling convention if there are value types in the signature
2868   _sig_cc = _sig;
2869   _sig_cc_ro = _sig;
2870   _regs_cc = _regs;
2871   _regs_cc_ro = _regs;
2872   _args_on_stack_cc = _args_on_stack;
2873   _args_on_stack_cc_ro = _args_on_stack;
2874 
2875   if (ValueTypePassFieldsAsArgs && has_value_arg() && !_method->is_native()) {
2876     _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true);
2877 
2878     _sig_cc_ro = _sig_cc;
2879     _regs_cc_ro = _regs_cc;
2880     _args_on_stack_cc_ro = _args_on_stack_cc;
2881     if (_has_value_recv || _args_on_stack_cc > _args_on_stack) {
2882       // For interface calls, we need another entry point / adapter to unpack the receiver
2883       _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
2884     }
2885 
2886     // Compute the stack extension that is required to convert between the calling conventions.
2887     // The stack slots at these offsets are occupied by the return address with the unscalarized
2888     // calling convention. Don't use them for arguments with the scalarized calling convention.
2889     int ret_off    = _args_on_stack_cc - _args_on_stack;
2890     int ret_off_ro = _args_on_stack_cc - _args_on_stack_cc_ro;
2891     assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected");
2892 
2893     if (ret_off > 0) {
2894       // Make sure the stack of the scalarized calling convention with the reserved
2895       // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension.
2896       int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
2897       if (ret_off_ro != ret_off && ret_off_ro >= 0) {
2898         ret_off    += 4; // Account for two reserved entries (4 slots)
2899         ret_off_ro += 4;
2900         ret_off     = align_up(ret_off, alignment);
2901         ret_off_ro  = align_up(ret_off_ro, alignment);
2902         // TODO can we avoid wasting a stack slot here?
2903         //assert(ret_off != ret_off_ro, "fail");
2904         if (ret_off > ret_off_ro) {
2905           swap(ret_off, ret_off_ro); // Sort by offset
2906         }
2907         _args_on_stack_cc = insert_reserved_entry(ret_off);
2908         _args_on_stack_cc = insert_reserved_entry(ret_off_ro);
2909       } else {
2910         ret_off += 2; // Account for one reserved entry (2 slots)
2911         ret_off = align_up(ret_off, alignment);
2912         _args_on_stack_cc = insert_reserved_entry(ret_off);
2913       }
2914 
2915       _has_reserved_entries = true;
2916     }
2917 
2918     // Upper bound on stack arguments to avoid hitting the argument limit and
2919     // bailing out of compilation ("unsupported incoming calling sequence").
2920     // TODO we need a reasonable limit (flag?) here
2921     if (_args_on_stack_cc > 50) {
2922       // Don't scalarize value type arguments
2923       _sig_cc = _sig;
2924       _sig_cc_ro = _sig;
2925       _regs_cc = _regs;
2926       _regs_cc_ro = _regs;
2927       _args_on_stack_cc = _args_on_stack;
2928       _args_on_stack_cc_ro = _args_on_stack;
2929     } else {
2930       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2931       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2932       _has_scalarized_args = true;
2933     }
2934   }
2935 }
2936 
2937 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2938   // Use customized signature handler.  Need to lock around updates to
2939   // the AdapterHandlerTable (it is not safe for concurrent readers
2940   // and a single writer: this could be fixed if it becomes a
2941   // problem).
2942 
2943   ResourceMark rm;
2944 
2945   NOT_PRODUCT(int insts_size = 0);
2946   AdapterBlob* new_adapter = NULL;
2947   AdapterHandlerEntry* entry = NULL;
2948   AdapterFingerPrint* fingerprint = NULL;
2949 
2950   {
2951     MutexLocker mu(AdapterHandlerLibrary_lock);
2952     // make sure data structure is initialized
2953     initialize();
2954 
2955     CompiledEntrySignature ces(method());
2956     {
2957        MutexUnlocker mul(AdapterHandlerLibrary_lock);
2958        ces.compute_calling_conventions();
2959     }
2960     GrowableArray<SigEntry>& sig       = ces.sig();
2961     GrowableArray<SigEntry>& sig_cc    = ces.sig_cc();
2962     GrowableArray<SigEntry>& sig_cc_ro = ces.sig_cc_ro();
2963     VMRegPair* regs         = ces.regs();
2964     VMRegPair* regs_cc      = ces.regs_cc();
2965     VMRegPair* regs_cc_ro   = ces.regs_cc_ro();
2966 
2967     if (ces.has_scalarized_args()) {
2968       method->set_has_scalarized_args(true);
2969       method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
2970       method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
2971     }
2972 
2973     if (method->is_abstract()) {
2974       if (ces.has_scalarized_args()) {
2975         // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments
2976         address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2977         entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2978                                                  StubRoutines::throw_AbstractMethodError_entry(),
2979                                                  wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2980                                                  wrong_method_abstract, wrong_method_abstract);
2981         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true);
2982         heap_sig->appendAll(&sig_cc_ro);
2983         entry->set_sig_cc(heap_sig);
2984         return entry;
2985       } else {
2986         return _abstract_method_handler;
2987       }
2988     }
2989 
2990     // Lookup method signature's fingerprint
2991     entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro);
2992 
2993 #ifdef ASSERT
2994     AdapterHandlerEntry* shared_entry = NULL;
2995     // Start adapter sharing verification only after the VM is booted.
2996     if (VerifyAdapterSharing && (entry != NULL)) {
2997       shared_entry = entry;
2998       entry = NULL;
2999     }
3000 #endif
3001 
3002     if (entry != NULL) {
3003       return entry;
3004     }
3005 
3006     // Make a C heap allocated version of the fingerprint to store in the adapter
3007     fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro);
3008 
3009     // StubRoutines::code2() is initialized after this function can be called. As a result,
3010     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
3011     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
3012     // stub that ensure that an I2C stub is called from an interpreter frame.
3013     bool contains_all_checks = StubRoutines::code2() != NULL;
3014 
3015     // Create I2C & C2I handlers
3016     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3017     if (buf != NULL) {
3018       CodeBuffer buffer(buf);
3019       short buffer_locs[20];
3020       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3021                                              sizeof(buffer_locs)/sizeof(relocInfo));
3022 
3023       MacroAssembler _masm(&buffer);
3024       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
3025                                                      ces.args_on_stack(),
3026                                                      &sig,
3027                                                      regs,
3028                                                      &sig_cc,
3029                                                      regs_cc,
3030                                                      &sig_cc_ro,
3031                                                      regs_cc_ro,
3032                                                      fingerprint,
3033                                                      new_adapter);
3034 
3035       if (ces.has_scalarized_args()) {
3036         // Save a C heap allocated version of the scalarized signature and store it in the adapter
3037         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true);
3038         heap_sig->appendAll(&sig_cc);
3039         entry->set_sig_cc(heap_sig);
3040       }
3041 
3042 #ifdef ASSERT
3043       if (VerifyAdapterSharing) {
3044         if (shared_entry != NULL) {
3045           if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) {
3046             method->print();
3047           }
3048           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
3049           // Release the one just created and return the original
3050           _adapters->free_entry(entry);
3051           return shared_entry;
3052         } else  {
3053           entry->save_code(buf->code_begin(), buffer.insts_size());
3054         }
3055       }
3056 #endif
3057 
3058       NOT_PRODUCT(insts_size = buffer.insts_size());
3059     }
3060     if (new_adapter == NULL) {
3061       // CodeCache is full, disable compilation
3062       // Ought to log this but compile log is only per compile thread
3063       // and we're some non descript Java thread.
3064       return NULL; // Out of CodeCache space
3065     }
3066     entry->relocate(new_adapter->content_begin());
3067 #ifndef PRODUCT
3068     // debugging suppport
3069     if (PrintAdapterHandlers || PrintStubCode) {
3070       ttyLocker ttyl;
3071       entry->print_adapter_on(tty);
3072       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
3073                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
3074                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
3075       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3076       if (Verbose || PrintStubCode) {
3077         address first_pc = entry->base_address();
3078         if (first_pc != NULL) {
3079           Disassembler::decode(first_pc, first_pc + insts_size);
3080           tty->cr();
3081         }
3082       }
3083     }
3084 #endif
3085     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3086     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3087     if (contains_all_checks || !VerifyAdapterCalls) {
3088       _adapters->add(entry);
3089     }
3090   }
3091   // Outside of the lock
3092   if (new_adapter != NULL) {
3093     char blob_id[256];
3094     jio_snprintf(blob_id,
3095                  sizeof(blob_id),
3096                  "%s(%s)@" PTR_FORMAT,
3097                  new_adapter->name(),
3098                  fingerprint->as_string(),
3099                  new_adapter->content_begin());
3100     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3101 
3102     if (JvmtiExport::should_post_dynamic_code_generated()) {
3103       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3104     }
3105   }
3106   return entry;
3107 }
3108 
3109 address AdapterHandlerEntry::base_address() {
3110   address base = _i2c_entry;
3111   if (base == NULL)  base = _c2i_entry;
3112   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3113   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
3114   assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, "");
3115   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3116   assert(base <= _c2i_unverified_value_entry || _c2i_unverified_value_entry == NULL, "");
3117   return base;
3118 }
3119 
3120 void AdapterHandlerEntry::relocate(address new_base) {
3121   address old_base = base_address();
3122   assert(old_base != NULL, "");
3123   ptrdiff_t delta = new_base - old_base;
3124   if (_i2c_entry != NULL)
3125     _i2c_entry += delta;
3126   if (_c2i_entry != NULL)
3127     _c2i_entry += delta;
3128   if (_c2i_value_entry != NULL)
3129     _c2i_value_entry += delta;
3130   if (_c2i_value_ro_entry != NULL)
3131     _c2i_value_ro_entry += delta;
3132   if (_c2i_unverified_entry != NULL)
3133     _c2i_unverified_entry += delta;
3134   if (_c2i_unverified_value_entry != NULL)
3135     _c2i_unverified_value_entry += delta;
3136   assert(base_address() == new_base, "");
3137 }
3138 
3139 
3140 void AdapterHandlerEntry::deallocate() {
3141   delete _fingerprint;
3142   if (_sig_cc != NULL) {
3143     delete _sig_cc;
3144   }
3145 #ifdef ASSERT
3146   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3147 #endif
3148 }
3149 
3150 
3151 #ifdef ASSERT
3152 // Capture the code before relocation so that it can be compared
3153 // against other versions.  If the code is captured after relocation
3154 // then relative instructions won't be equivalent.
3155 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3156   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3157   _saved_code_length = length;
3158   memcpy(_saved_code, buffer, length);
3159 }
3160 
3161 
3162 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3163   if (length != _saved_code_length) {
3164     return false;
3165   }
3166 
3167   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3168 }
3169 #endif
3170 
3171 
3172 /**
3173  * Create a native wrapper for this native method.  The wrapper converts the
3174  * Java-compiled calling convention to the native convention, handles
3175  * arguments, and transitions to native.  On return from the native we transition
3176  * back to java blocking if a safepoint is in progress.
3177  */
3178 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3179   ResourceMark rm;
3180   nmethod* nm = NULL;
3181 
3182   assert(method->is_native(), "must be native");
3183   assert(method->is_method_handle_intrinsic() ||
3184          method->has_native_function(), "must have something valid to call!");
3185 
3186   {
3187     // Perform the work while holding the lock, but perform any printing outside the lock
3188     MutexLocker mu(AdapterHandlerLibrary_lock);
3189     // See if somebody beat us to it
3190     if (method->code() != NULL) {
3191       return;
3192     }
3193 
3194     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3195     assert(compile_id > 0, "Must generate native wrapper");
3196 
3197 
3198     ResourceMark rm;
3199     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3200     if (buf != NULL) {
3201       CodeBuffer buffer(buf);
3202       double locs_buf[20];
3203       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3204       MacroAssembler _masm(&buffer);
3205 
3206       // Fill in the signature array, for the calling-convention call.
3207       const int total_args_passed = method->size_of_parameters();
3208 
3209       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3210       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3211       int i=0;
3212       if (!method->is_static())  // Pass in receiver first
3213         sig_bt[i++] = T_OBJECT;
3214       SignatureStream ss(method->signature());
3215       for (; !ss.at_return_type(); ss.next()) {
3216         BasicType bt = ss.type();
3217         sig_bt[i++] = bt;  // Collect remaining bits of signature
3218         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3219           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3220       }
3221       assert(i == total_args_passed, "");
3222       BasicType ret_type = ss.type();
3223 
3224       // Now get the compiled-Java layout as input (or output) arguments.
3225       // NOTE: Stubs for compiled entry points of method handle intrinsics
3226       // are just trampolines so the argument registers must be outgoing ones.
3227       const bool is_outgoing = method->is_method_handle_intrinsic();
3228       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3229 
3230       // Generate the compiled-to-native wrapper code
3231       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3232 
3233       if (nm != NULL) {
3234         method->set_code(method, nm);
3235 
3236         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3237         if (directive->PrintAssemblyOption) {
3238           nm->print_code();
3239         }
3240         DirectivesStack::release(directive);
3241       }
3242     }
3243   } // Unlock AdapterHandlerLibrary_lock
3244 
3245 
3246   // Install the generated code.
3247   if (nm != NULL) {
3248     const char *msg = method->is_static() ? "(static)" : "";
3249     CompileTask::print_ul(nm, msg);
3250     if (PrintCompilation) {
3251       ttyLocker ttyl;
3252       CompileTask::print(tty, nm, msg);
3253     }
3254     nm->post_compiled_method_load_event();
3255   }
3256 }
3257 
3258 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3259   assert(thread == JavaThread::current(), "must be");
3260   // The code is about to enter a JNI lazy critical native method and
3261   // _needs_gc is true, so if this thread is already in a critical
3262   // section then just return, otherwise this thread should block
3263   // until needs_gc has been cleared.
3264   if (thread->in_critical()) {
3265     return;
3266   }
3267   // Lock and unlock a critical section to give the system a chance to block
3268   GCLocker::lock_critical(thread);
3269   GCLocker::unlock_critical(thread);
3270 JRT_END
3271 
3272 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3273   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3274   assert(obj != NULL, "Should not be null");
3275   oop o(obj);
3276   o = Universe::heap()->pin_object(thread, o);
3277   assert(o != NULL, "Should not be null");
3278   return o;
3279 JRT_END
3280 
3281 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3282   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3283   assert(obj != NULL, "Should not be null");
3284   oop o(obj);
3285   Universe::heap()->unpin_object(thread, o);
3286 JRT_END
3287 
3288 // -------------------------------------------------------------------------
3289 // Java-Java calling convention
3290 // (what you use when Java calls Java)
3291 
3292 //------------------------------name_for_receiver----------------------------------
3293 // For a given signature, return the VMReg for parameter 0.
3294 VMReg SharedRuntime::name_for_receiver() {
3295   VMRegPair regs;
3296   BasicType sig_bt = T_OBJECT;
3297   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3298   // Return argument 0 register.  In the LP64 build pointers
3299   // take 2 registers, but the VM wants only the 'main' name.
3300   return regs.first();
3301 }
3302 
3303 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3304   // This method is returning a data structure allocating as a
3305   // ResourceObject, so do not put any ResourceMarks in here.
3306   char *s = sig->as_C_string();
3307   int len = (int)strlen(s);
3308   s++; len--;                   // Skip opening paren
3309 
3310   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3311   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3312   int cnt = 0;
3313   if (has_receiver) {
3314     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3315   }
3316 
3317   while (*s != ')') {          // Find closing right paren
3318     switch (*s++) {            // Switch on signature character
3319     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3320     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3321     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3322     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3323     case 'I': sig_bt[cnt++] = T_INT;     break;
3324     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3325     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3326     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3327     case 'V': sig_bt[cnt++] = T_VOID;    break;
3328     case 'L':                   // Oop
3329       while (*s++ != ';');   // Skip signature
3330       sig_bt[cnt++] = T_OBJECT;
3331       break;
3332     case 'Q':                // Value type
3333       while (*s++ != ';');   // Skip signature
3334       sig_bt[cnt++] = T_VALUETYPE;
3335       break;
3336     case '[': {                 // Array
3337       do {                      // Skip optional size
3338         while (*s >= '0' && *s <= '9') s++;
3339       } while (*s++ == '[');   // Nested arrays?
3340       // Skip element type
3341       if (s[-1] == 'L' || s[-1] == 'Q')
3342         while (*s++ != ';'); // Skip signature
3343       sig_bt[cnt++] = T_ARRAY;
3344       break;
3345     }
3346     default : ShouldNotReachHere();
3347     }
3348   }
3349 
3350   if (has_appendix) {
3351     sig_bt[cnt++] = T_OBJECT;
3352   }
3353 
3354   assert(cnt < 256, "grow table size");
3355 
3356   int comp_args_on_stack;
3357   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3358 
3359   // the calling convention doesn't count out_preserve_stack_slots so
3360   // we must add that in to get "true" stack offsets.
3361 
3362   if (comp_args_on_stack) {
3363     for (int i = 0; i < cnt; i++) {
3364       VMReg reg1 = regs[i].first();
3365       if (reg1->is_stack()) {
3366         // Yuck
3367         reg1 = reg1->bias(out_preserve_stack_slots());
3368       }
3369       VMReg reg2 = regs[i].second();
3370       if (reg2->is_stack()) {
3371         // Yuck
3372         reg2 = reg2->bias(out_preserve_stack_slots());
3373       }
3374       regs[i].set_pair(reg2, reg1);
3375     }
3376   }
3377 
3378   // results
3379   *arg_size = cnt;
3380   return regs;
3381 }
3382 
3383 // OSR Migration Code
3384 //
3385 // This code is used convert interpreter frames into compiled frames.  It is
3386 // called from very start of a compiled OSR nmethod.  A temp array is
3387 // allocated to hold the interesting bits of the interpreter frame.  All
3388 // active locks are inflated to allow them to move.  The displaced headers and
3389 // active interpreter locals are copied into the temp buffer.  Then we return
3390 // back to the compiled code.  The compiled code then pops the current
3391 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3392 // copies the interpreter locals and displaced headers where it wants.
3393 // Finally it calls back to free the temp buffer.
3394 //
3395 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3396 
3397 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3398 
3399   //
3400   // This code is dependent on the memory layout of the interpreter local
3401   // array and the monitors. On all of our platforms the layout is identical
3402   // so this code is shared. If some platform lays the their arrays out
3403   // differently then this code could move to platform specific code or
3404   // the code here could be modified to copy items one at a time using
3405   // frame accessor methods and be platform independent.
3406 
3407   frame fr = thread->last_frame();
3408   assert(fr.is_interpreted_frame(), "");
3409   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3410 
3411   // Figure out how many monitors are active.
3412   int active_monitor_count = 0;
3413   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3414        kptr < fr.interpreter_frame_monitor_begin();
3415        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3416     if (kptr->obj() != NULL) active_monitor_count++;
3417   }
3418 
3419   // QQQ we could place number of active monitors in the array so that compiled code
3420   // could double check it.
3421 
3422   Method* moop = fr.interpreter_frame_method();
3423   int max_locals = moop->max_locals();
3424   // Allocate temp buffer, 1 word per local & 2 per active monitor
3425   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3426   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3427 
3428   // Copy the locals.  Order is preserved so that loading of longs works.
3429   // Since there's no GC I can copy the oops blindly.
3430   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3431   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3432                        (HeapWord*)&buf[0],
3433                        max_locals);
3434 
3435   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3436   int i = max_locals;
3437   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3438        kptr2 < fr.interpreter_frame_monitor_begin();
3439        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3440     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3441       BasicLock *lock = kptr2->lock();
3442       // Inflate so the displaced header becomes position-independent
3443       if (lock->displaced_header()->is_unlocked())
3444         ObjectSynchronizer::inflate_helper(kptr2->obj());
3445       // Now the displaced header is free to move
3446       buf[i++] = (intptr_t)lock->displaced_header();
3447       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3448     }
3449   }
3450   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3451 
3452   return buf;
3453 JRT_END
3454 
3455 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3456   FREE_C_HEAP_ARRAY(intptr_t, buf);
3457 JRT_END
3458 
3459 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3460   AdapterHandlerTableIterator iter(_adapters);
3461   while (iter.has_next()) {
3462     AdapterHandlerEntry* a = iter.next();
3463     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3464   }
3465   return false;
3466 }
3467 
3468 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3469   AdapterHandlerTableIterator iter(_adapters);
3470   while (iter.has_next()) {
3471     AdapterHandlerEntry* a = iter.next();
3472     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3473       st->print("Adapter for signature: ");
3474       a->print_adapter_on(tty);
3475       return;
3476     }
3477   }
3478   assert(false, "Should have found handler");
3479 }
3480 
3481 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3482   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iVE: " INTPTR_FORMAT
3483                " c2iVROE: " INTPTR_FORMAT " c2iUE: " INTPTR_FORMAT " c2iUVE: " INTPTR_FORMAT,
3484                p2i(this), fingerprint()->as_string(),
3485                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()),
3486                p2i(get_c2i_value_ro_entry()), p2i(get_c2i_unverified_entry()), p2i(get_c2i_unverified_value_entry()));
3487 
3488 }
3489 
3490 #if INCLUDE_CDS
3491 
3492 void CDSAdapterHandlerEntry::init() {
3493   assert(DumpSharedSpaces, "used during dump time only");
3494   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3495   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3496 };
3497 
3498 #endif // INCLUDE_CDS
3499 
3500 
3501 #ifndef PRODUCT
3502 
3503 void AdapterHandlerLibrary::print_statistics() {
3504   _adapters->print_statistics();
3505 }
3506 
3507 #endif /* PRODUCT */
3508 
3509 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3510   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3511   if (thread->stack_reserved_zone_disabled()) {
3512   thread->enable_stack_reserved_zone();
3513   }
3514   thread->set_reserved_stack_activation(thread->stack_base());
3515 JRT_END
3516 
3517 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3518   ResourceMark rm(thread);
3519   frame activation;
3520   CompiledMethod* nm = NULL;
3521   int count = 1;
3522 
3523   assert(fr.is_java_frame(), "Must start on Java frame");
3524 
3525   while (true) {
3526     Method* method = NULL;
3527     bool found = false;
3528     if (fr.is_interpreted_frame()) {
3529       method = fr.interpreter_frame_method();
3530       if (method != NULL && method->has_reserved_stack_access()) {
3531         found = true;
3532       }
3533     } else {
3534       CodeBlob* cb = fr.cb();
3535       if (cb != NULL && cb->is_compiled()) {
3536         nm = cb->as_compiled_method();
3537         method = nm->method();
3538         // scope_desc_near() must be used, instead of scope_desc_at() because on
3539         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3540         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3541           method = sd->method();
3542           if (method != NULL && method->has_reserved_stack_access()) {
3543             found = true;
3544       }
3545     }
3546       }
3547     }
3548     if (found) {
3549       activation = fr;
3550       warning("Potentially dangerous stack overflow in "
3551               "ReservedStackAccess annotated method %s [%d]",
3552               method->name_and_sig_as_C_string(), count++);
3553       EventReservedStackActivation event;
3554       if (event.should_commit()) {
3555         event.set_method(method);
3556         event.commit();
3557       }
3558     }
3559     if (fr.is_first_java_frame()) {
3560       break;
3561     } else {
3562       fr = fr.java_sender();
3563     }
3564   }
3565   return activation;
3566 }
3567 
3568 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3569   // After any safepoint, just before going back to compiled code,
3570   // we inform the GC that we will be doing initializing writes to
3571   // this object in the future without emitting card-marks, so
3572   // GC may take any compensating steps.
3573 
3574   oop new_obj = thread->vm_result();
3575   if (new_obj == NULL) return;
3576 
3577   BarrierSet *bs = BarrierSet::barrier_set();
3578   bs->on_slowpath_allocation_exit(thread, new_obj);
3579 }
3580 
3581 // We are at a compiled code to interpreter call. We need backing
3582 // buffers for all value type arguments. Allocate an object array to
3583 // hold them (convenient because once we're done with it we don't have
3584 // to worry about freeing it).
3585 oop SharedRuntime::allocate_value_types_impl(JavaThread* thread, methodHandle callee, bool allocate_receiver, TRAPS) {
3586   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3587   ResourceMark rm;
3588 
3589   int nb_slots = 0;
3590   InstanceKlass* holder = callee->method_holder();
3591   allocate_receiver &= !callee->is_static() && holder->is_value();
3592   if (allocate_receiver) {
3593     nb_slots++;
3594   }
3595   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3596     if (ss.type() == T_VALUETYPE) {
3597       nb_slots++;
3598     }
3599   }
3600   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3601   objArrayHandle array(THREAD, array_oop);
3602   int i = 0;
3603   if (allocate_receiver) {
3604     ValueKlass* vk = ValueKlass::cast(holder);
3605     oop res = vk->allocate_instance(CHECK_NULL);
3606     array->obj_at_put(i, res);
3607     i++;
3608   }
3609   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3610     if (ss.type() == T_VALUETYPE) {
3611       ValueKlass* vk = ss.as_value_klass(holder);
3612       oop res = vk->allocate_instance(CHECK_NULL);
3613       array->obj_at_put(i, res);
3614       i++;
3615     }
3616   }
3617   return array();
3618 }
3619 
3620 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver))
3621   methodHandle callee(callee_method);
3622   oop array = SharedRuntime::allocate_value_types_impl(thread, callee, allocate_receiver, CHECK);
3623   thread->set_vm_result(array);
3624   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3625 JRT_END
3626 
3627 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3628 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3629 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3630 {
3631   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3632   assert(oopDesc::is_oop(array), "should be oop");
3633   for (int i = 0; i < array->length(); ++i) {
3634     instanceOop valueOop = (instanceOop)array->obj_at(i);
3635     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3636     if (vk->contains_oops()) {
3637       const address dst_oop_addr = ((address) (void*) valueOop);
3638       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3639       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3640       while (map != end) {
3641         address doop_address = dst_oop_addr + map->offset();
3642         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3643           write_ref_array((HeapWord*) doop_address, map->count());
3644         map++;
3645       }
3646     }
3647   }
3648 }
3649 JRT_END
3650 
3651 // We're returning from an interpreted method: load each field into a
3652 // register following the calling convention
3653 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3654 {
3655   assert(res->klass()->is_value(), "only value types here");
3656   ResourceMark rm;
3657   RegisterMap reg_map(thread);
3658   frame stubFrame = thread->last_frame();
3659   frame callerFrame = stubFrame.sender(&reg_map);
3660   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3661 
3662   ValueKlass* vk = ValueKlass::cast(res->klass());
3663 
3664   const Array<SigEntry>* sig_vk = vk->extended_sig();
3665   const Array<VMRegPair>* regs = vk->return_regs();
3666 
3667   if (regs == NULL) {
3668     // The fields of the value klass don't fit in registers, bail out
3669     return;
3670   }
3671 
3672   int j = 1;
3673   for (int i = 0; i < sig_vk->length(); i++) {
3674     BasicType bt = sig_vk->at(i)._bt;
3675     if (bt == T_VALUETYPE) {
3676       continue;
3677     }
3678     if (bt == T_VOID) {
3679       if (sig_vk->at(i-1)._bt == T_LONG ||
3680           sig_vk->at(i-1)._bt == T_DOUBLE) {
3681         j++;
3682       }
3683       continue;
3684     }
3685     int off = sig_vk->at(i)._offset;
3686     assert(off > 0, "offset in object should be positive");
3687     VMRegPair pair = regs->at(j);
3688     address loc = reg_map.location(pair.first());
3689     switch(bt) {
3690     case T_BOOLEAN:
3691       *(jboolean*)loc = res->bool_field(off);
3692       break;
3693     case T_CHAR:
3694       *(jchar*)loc = res->char_field(off);
3695       break;
3696     case T_BYTE:
3697       *(jbyte*)loc = res->byte_field(off);
3698       break;
3699     case T_SHORT:
3700       *(jshort*)loc = res->short_field(off);
3701       break;
3702     case T_INT: {
3703       *(jint*)loc = res->int_field(off);
3704       break;
3705     }
3706     case T_LONG:
3707 #ifdef _LP64
3708       *(intptr_t*)loc = res->long_field(off);
3709 #else
3710       Unimplemented();
3711 #endif
3712       break;
3713     case T_OBJECT:
3714     case T_ARRAY: {
3715       *(oop*)loc = res->obj_field(off);
3716       break;
3717     }
3718     case T_FLOAT:
3719       *(jfloat*)loc = res->float_field(off);
3720       break;
3721     case T_DOUBLE:
3722       *(jdouble*)loc = res->double_field(off);
3723       break;
3724     default:
3725       ShouldNotReachHere();
3726     }
3727     j++;
3728   }
3729   assert(j == regs->length(), "missed a field?");
3730 
3731 #ifdef ASSERT
3732   VMRegPair pair = regs->at(0);
3733   address loc = reg_map.location(pair.first());
3734   assert(*(oopDesc**)loc == res, "overwritten object");
3735 #endif
3736 
3737   thread->set_vm_result(res);
3738 }
3739 JRT_END
3740 
3741 // We've returned to an interpreted method, the interpreter needs a
3742 // reference to a value type instance. Allocate it and initialize it
3743 // from field's values in registers.
3744 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3745 {
3746   ResourceMark rm;
3747   RegisterMap reg_map(thread);
3748   frame stubFrame = thread->last_frame();
3749   frame callerFrame = stubFrame.sender(&reg_map);
3750 
3751 #ifdef ASSERT
3752   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3753 #endif
3754 
3755   if (!is_set_nth_bit(res, 0)) {
3756     // We're not returning with value type fields in registers (the
3757     // calling convention didn't allow it for this value klass)
3758     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3759     thread->set_vm_result((oopDesc*)res);
3760     assert(verif_vk == NULL, "broken calling convention");
3761     return;
3762   }
3763 
3764   clear_nth_bit(res, 0);
3765   ValueKlass* vk = (ValueKlass*)res;
3766   assert(verif_vk == vk, "broken calling convention");
3767   assert(Metaspace::contains((void*)res), "should be klass");
3768 
3769   // Allocate handles for every oop field so they are safe in case of
3770   // a safepoint when allocating
3771   GrowableArray<Handle> handles;
3772   vk->save_oop_fields(reg_map, handles);
3773 
3774   // It's unsafe to safepoint until we are here
3775   JRT_BLOCK;
3776   {
3777     Thread* THREAD = thread;
3778     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3779     thread->set_vm_result(vt);
3780   }
3781   JRT_BLOCK_END;
3782 }
3783 JRT_END
3784