1 /*
   2  * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "jvm.h"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.inline.hpp"
  52 #include "oops/compiledICHolder.inline.hpp"
  53 #include "oops/klass.hpp"
  54 #include "oops/method.inline.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/inlineKlass.inline.hpp"
  59 #include "prims/forte.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/nativeLookup.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/init.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/synchronizer.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vm_version.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/dtrace.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/hashtable.inline.hpp"
  81 #include "utilities/macros.hpp"
  82 #include "utilities/xmlstream.hpp"
  83 #ifdef COMPILER1
  84 #include "c1/c1_Runtime1.hpp"
  85 #endif
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;

  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");

 113 
 114   AdapterHandlerLibrary::initialize();
 115 
 116 #if COMPILER2_OR_JVMCI
 117   // Vectors are generated only by C2 and JVMCI.
 118   bool support_wide = is_wide_vector(MaxVectorSize);
 119   if (support_wide) {
 120     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 121   }
 122 #endif // COMPILER2_OR_JVMCI
 123   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 124   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 125 
 126   generate_deopt_blob();
 127 
 128 #ifdef COMPILER2
 129   generate_uncommon_trap_blob();
 130 #endif // COMPILER2
 131 }
 132 
 133 #include <math.h>
 134 
 135 // Implementation of SharedRuntime
 136 
 137 #ifndef PRODUCT
 138 // For statistics
 139 int SharedRuntime::_ic_miss_ctr = 0;
 140 int SharedRuntime::_wrong_method_ctr = 0;
 141 int SharedRuntime::_resolve_static_ctr = 0;
 142 int SharedRuntime::_resolve_virtual_ctr = 0;
 143 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 144 int SharedRuntime::_implicit_null_throws = 0;
 145 int SharedRuntime::_implicit_div0_throws = 0;
 146 
 147 int64_t SharedRuntime::_nof_normal_calls = 0;
 148 int64_t SharedRuntime::_nof_optimized_calls = 0;
 149 int64_t SharedRuntime::_nof_inlined_calls = 0;
 150 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 151 int64_t SharedRuntime::_nof_static_calls = 0;
 152 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 153 int64_t SharedRuntime::_nof_interface_calls = 0;
 154 int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 
 158 int SharedRuntime::_new_instance_ctr=0;
 159 int SharedRuntime::_new_array_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 460   // Note: This is called when we have unwound the frame of the callee that did
 461   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 462   // Notably, the stack is not walkable at this point, and hence the check must
 463   // be deferred until later. Specifically, any of the handlers returned here in
 464   // this function, will get dispatched to, and call deferred checks to
 465   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 466   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 467   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 468 
 469   // Reset method handle flag.
 470   current->set_is_method_handle_return(false);
 471 
 472 #if INCLUDE_JVMCI
 473   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 474   // and other exception handler continuations do not read it
 475   current->set_exception_pc(NULL);
 476 #endif // INCLUDE_JVMCI
 477 
 478   // The fastest case first
 479   CodeBlob* blob = CodeCache::find_blob(return_address);
 480   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 481   if (nm != NULL) {
 482     // Set flag if return address is a method handle call site.
 483     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 484     // native nmethods don't have exception handlers
 485     assert(!nm->is_native_method(), "no exception handler");
 486     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 487     if (nm->is_deopt_pc(return_address)) {
 488       // If we come here because of a stack overflow, the stack may be
 489       // unguarded. Reguard the stack otherwise if we return to the
 490       // deopt blob and the stack bang causes a stack overflow we
 491       // crash.
 492       StackOverflow* overflow_state = current->stack_overflow_state();
 493       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 494       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 495         overflow_state->set_reserved_stack_activation(current->stack_base());
 496       }
 497       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 498       // The deferred StackWatermarkSet::after_unwind check will be performed in
 499       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 500       return SharedRuntime::deopt_blob()->unpack_with_exception();
 501     } else {
 502       // The deferred StackWatermarkSet::after_unwind check will be performed in
 503       // * OptoRuntime::rethrow_C for C2 code
 504       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 505       return nm->exception_begin();
 506     }
 507   }
 508 
 509   // Entry code
 510   if (StubRoutines::returns_to_call_stub(return_address)) {
 511     // The deferred StackWatermarkSet::after_unwind check will be performed in
 512     // JavaCallWrapper::~JavaCallWrapper
 513     return StubRoutines::catch_exception_entry();
 514   }
 515   if (blob != NULL && blob->is_optimized_entry_blob()) {
 516     return ((OptimizedEntryBlob*)blob)->exception_handler();
 517   }
 518   // Interpreted code
 519   if (Interpreter::contains(return_address)) {
 520     // The deferred StackWatermarkSet::after_unwind check will be performed in
 521     // InterpreterRuntime::exception_handler_for_exception
 522     return Interpreter::rethrow_exception_entry();
 523   }
 524 
 525   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 526   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 527 
 528 #ifndef PRODUCT
 529   { ResourceMark rm;
 530     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 531     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 532     tty->print_cr("b) other problem");
 533   }
 534 #endif // PRODUCT
 535 
 536   ShouldNotReachHere();
 537   return NULL;
 538 }
 539 
 540 
 541 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 542   return raw_exception_handler_for_return_address(current, return_address);
 543 JRT_END
 544 
 545 
 546 address SharedRuntime::get_poll_stub(address pc) {
 547   address stub;
 548   // Look up the code blob
 549   CodeBlob *cb = CodeCache::find_blob(pc);
 550 
 551   // Should be an nmethod
 552   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 553 
 554   // Look up the relocation information
 555   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 556     "safepoint polling: type must be poll");
 557 
 558 #ifdef ASSERT
 559   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 560     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 561     Disassembler::decode(cb);
 562     fatal("Only polling locations are used for safepoint");
 563   }
 564 #endif
 565 
 566   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 567   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 568   if (at_poll_return) {
 569     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 570            "polling page return stub not created yet");
 571     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 572   } else if (has_wide_vectors) {
 573     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 574            "polling page vectors safepoint stub not created yet");
 575     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581   log_debug(safepoint)("... found polling page %s exception at pc = "
 582                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 583                        at_poll_return ? "return" : "loop",
 584                        (intptr_t)pc, (intptr_t)stub);
 585   return stub;
 586 }
 587 
 588 
 589 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 590   assert(caller.is_interpreted_frame(), "");
 591   int args_size = ArgumentSizeComputer(sig).size() + 1;
 592   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 593   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 594   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 595   return result;
 596 }
 597 
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 600   if (JvmtiExport::can_post_on_exceptions()) {
 601     vframeStream vfst(current, true);
 602     methodHandle method = methodHandle(current, vfst.method());
 603     address bcp = method()->bcp_from(vfst.bci());
 604     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 605   }
 606 
 607 #if INCLUDE_JVMCI
 608   if (EnableJVMCI && UseJVMCICompiler) {
 609     vframeStream vfst(current, true);
 610     methodHandle method = methodHandle(current, vfst.method());
 611     int bci = vfst.bci();
 612     MethodData* trap_mdo = method->method_data();
 613     if (trap_mdo != NULL) {
 614       // Set exception_seen if the exceptional bytecode is an invoke
 615       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 616       if (call.is_valid()) {
 617         ResourceMark rm(current);
 618         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
 619         if (pdata != NULL && pdata->is_BitData()) {
 620           BitData* bit_data = (BitData*) pdata;
 621           bit_data->set_exception_seen();
 622         }
 623       }
 624     }
 625   }
 626 #endif
 627 
 628   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 629 }
 630 
 631 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 632   Handle h_exception = Exceptions::new_exception(current, name, message);
 633   throw_and_post_jvmti_exception(current, h_exception);
 634 }
 635 
 636 // The interpreter code to call this tracing function is only
 637 // called/generated when UL is on for redefine, class and has the right level
 638 // and tags. Since obsolete methods are never compiled, we don't have
 639 // to modify the compilers to generate calls to this function.
 640 //
 641 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 642     JavaThread* thread, Method* method))
 643   if (method->is_obsolete()) {
 644     // We are calling an obsolete method, but this is not necessarily
 645     // an error. Our method could have been redefined just after we
 646     // fetched the Method* from the constant pool.
 647     ResourceMark rm;
 648     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 649   }
 650   return 0;
 651 JRT_END
 652 
 653 // ret_pc points into caller; we are returning caller's exception handler
 654 // for given exception
 655 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 656                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 657   assert(cm != NULL, "must exist");
 658   ResourceMark rm;
 659 
 660 #if INCLUDE_JVMCI
 661   if (cm->is_compiled_by_jvmci()) {
 662     // lookup exception handler for this pc
 663     int catch_pco = ret_pc - cm->code_begin();
 664     ExceptionHandlerTable table(cm);
 665     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 666     if (t != NULL) {
 667       return cm->code_begin() + t->pco();
 668     } else {
 669       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 670     }
 671   }
 672 #endif // INCLUDE_JVMCI
 673 
 674   nmethod* nm = cm->as_nmethod();
 675   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 676   // determine handler bci, if any
 677   EXCEPTION_MARK;
 678 
 679   int handler_bci = -1;
 680   int scope_depth = 0;
 681   if (!force_unwind) {
 682     int bci = sd->bci();
 683     bool recursive_exception = false;
 684     do {
 685       bool skip_scope_increment = false;
 686       // exception handler lookup
 687       Klass* ek = exception->klass();
 688       methodHandle mh(THREAD, sd->method());
 689       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 690       if (HAS_PENDING_EXCEPTION) {
 691         recursive_exception = true;
 692         // We threw an exception while trying to find the exception handler.
 693         // Transfer the new exception to the exception handle which will
 694         // be set into thread local storage, and do another lookup for an
 695         // exception handler for this exception, this time starting at the
 696         // BCI of the exception handler which caused the exception to be
 697         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 698         // argument to ensure that the correct exception is thrown (4870175).
 699         recursive_exception_occurred = true;
 700         exception = Handle(THREAD, PENDING_EXCEPTION);
 701         CLEAR_PENDING_EXCEPTION;
 702         if (handler_bci >= 0) {
 703           bci = handler_bci;
 704           handler_bci = -1;
 705           skip_scope_increment = true;
 706         }
 707       }
 708       else {
 709         recursive_exception = false;
 710       }
 711       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 712         sd = sd->sender();
 713         if (sd != NULL) {
 714           bci = sd->bci();
 715         }
 716         ++scope_depth;
 717       }
 718     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 719   }
 720 
 721   // found handling method => lookup exception handler
 722   int catch_pco = ret_pc - nm->code_begin();
 723 
 724   ExceptionHandlerTable table(nm);
 725   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 726   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 727     // Allow abbreviated catch tables.  The idea is to allow a method
 728     // to materialize its exceptions without committing to the exact
 729     // routing of exceptions.  In particular this is needed for adding
 730     // a synthetic handler to unlock monitors when inlining
 731     // synchronized methods since the unlock path isn't represented in
 732     // the bytecodes.
 733     t = table.entry_for(catch_pco, -1, 0);
 734   }
 735 
 736 #ifdef COMPILER1
 737   if (t == NULL && nm->is_compiled_by_c1()) {
 738     assert(nm->unwind_handler_begin() != NULL, "");
 739     return nm->unwind_handler_begin();
 740   }
 741 #endif
 742 
 743   if (t == NULL) {
 744     ttyLocker ttyl;
 745     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 746     tty->print_cr("   Exception:");
 747     exception->print();
 748     tty->cr();
 749     tty->print_cr(" Compiled exception table :");
 750     table.print();
 751     nm->print_code();
 752     guarantee(false, "missing exception handler");
 753     return NULL;
 754   }
 755 
 756   return nm->code_begin() + t->pco();
 757 }
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 760   // These errors occur only at call sites
 761   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 765   // These errors occur only at call sites
 766   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 770   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 774   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
 775 JRT_END
 776 
 777 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 778   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 779   // cache sites (when the callee activation is not yet set up) so we are at a call site
 780   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
 781 JRT_END
 782 
 783 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 784   throw_StackOverflowError_common(current, false);
 785 JRT_END
 786 
 787 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 788   throw_StackOverflowError_common(current, true);
 789 JRT_END
 790 
 791 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 792   // We avoid using the normal exception construction in this case because
 793   // it performs an upcall to Java, and we're already out of stack space.
 794   JavaThread* THREAD = current; // For exception macros.
 795   Klass* k = vmClasses::StackOverflowError_klass();
 796   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 797   if (delayed) {
 798     java_lang_Throwable::set_message(exception_oop,
 799                                      Universe::delayed_stack_overflow_error_message());
 800   }
 801   Handle exception (current, exception_oop);
 802   if (StackTraceInThrowable) {
 803     java_lang_Throwable::fill_in_stack_trace(exception);
 804   }
 805   // Increment counter for hs_err file reporting
 806   Atomic::inc(&Exceptions::_stack_overflow_errors);
 807   throw_and_post_jvmti_exception(current, exception);
 808 }
 809 
 810 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 811                                                            address pc,
 812                                                            ImplicitExceptionKind exception_kind)
 813 {
 814   address target_pc = NULL;
 815 
 816   if (Interpreter::contains(pc)) {
 817     switch (exception_kind) {
 818       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 819       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 820       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 821       default:                      ShouldNotReachHere();
 822     }
 823   } else {
 824     switch (exception_kind) {
 825       case STACK_OVERFLOW: {
 826         // Stack overflow only occurs upon frame setup; the callee is
 827         // going to be unwound. Dispatch to a shared runtime stub
 828         // which will cause the StackOverflowError to be fabricated
 829         // and processed.
 830         // Stack overflow should never occur during deoptimization:
 831         // the compiled method bangs the stack by as much as the
 832         // interpreter would need in case of a deoptimization. The
 833         // deoptimization blob and uncommon trap blob bang the stack
 834         // in a debug VM to verify the correctness of the compiled
 835         // method stack banging.
 836         assert(current->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 837         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 838         return StubRoutines::throw_StackOverflowError_entry();
 839       }
 840 
 841       case IMPLICIT_NULL: {
 842         if (VtableStubs::contains(pc)) {
 843           // We haven't yet entered the callee frame. Fabricate an
 844           // exception and begin dispatching it in the caller. Since
 845           // the caller was at a call site, it's safe to destroy all
 846           // caller-saved registers, as these entry points do.
 847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 848 
 849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (vt_stub == NULL) return NULL;
 851 
 852           if (vt_stub->is_abstract_method_error(pc)) {
 853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 854             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 855             // Instead of throwing the abstract method error here directly, we re-resolve
 856             // and will throw the AbstractMethodError during resolve. As a result, we'll
 857             // get a more detailed error message.
 858             return SharedRuntime::get_handle_wrong_method_stub();
 859           } else {
 860             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 861             // Assert that the signal comes from the expected location in stub code.
 862             assert(vt_stub->is_null_pointer_exception(pc),
 863                    "obtained signal from unexpected location in stub code");
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866         } else {
 867           CodeBlob* cb = CodeCache::find_blob(pc);
 868 
 869           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 870           if (cb == NULL) return NULL;
 871 
 872           // Exception happened in CodeCache. Must be either:
 873           // 1. Inline-cache check in C2I handler blob,
 874           // 2. Inline-cache check in nmethod, or
 875           // 3. Implicit null exception in nmethod
 876 
 877           if (!cb->is_compiled()) {
 878             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 879             if (!is_in_blob) {
 880               // Allow normal crash reporting to handle this
 881               return NULL;
 882             }
 883             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 884             // There is no handler here, so we will simply unwind.
 885             return StubRoutines::throw_NullPointerException_at_call_entry();
 886           }
 887 
 888           // Otherwise, it's a compiled method.  Consult its exception handlers.
 889           CompiledMethod* cm = (CompiledMethod*)cb;
 890           if (cm->inlinecache_check_contains(pc)) {
 891             // exception happened inside inline-cache check code
 892             // => the nmethod is not yet active (i.e., the frame
 893             // is not set up yet) => use return address pushed by
 894             // caller => don't push another return address
 895             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899           if (cm->method()->is_method_handle_intrinsic()) {
 900             // exception happened inside MH dispatch code, similar to a vtable stub
 901             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 902             return StubRoutines::throw_NullPointerException_at_call_entry();
 903           }
 904 
 905 #ifndef PRODUCT
 906           _implicit_null_throws++;
 907 #endif
 908           target_pc = cm->continuation_for_implicit_null_exception(pc);
 909           // If there's an unexpected fault, target_pc might be NULL,
 910           // in which case we want to fall through into the normal
 911           // error handling code.
 912         }
 913 
 914         break; // fall through
 915       }
 916 
 917 
 918       case IMPLICIT_DIVIDE_BY_ZERO: {
 919         CompiledMethod* cm = CodeCache::find_compiled(pc);
 920         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 921 #ifndef PRODUCT
 922         _implicit_div0_throws++;
 923 #endif
 924         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 925         // If there's an unexpected fault, target_pc might be NULL,
 926         // in which case we want to fall through into the normal
 927         // error handling code.
 928         break; // fall through
 929       }
 930 
 931       default: ShouldNotReachHere();
 932     }
 933 
 934     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 935 
 936     if (exception_kind == IMPLICIT_NULL) {
 937 #ifndef PRODUCT
 938       // for AbortVMOnException flag
 939       Exceptions::debug_check_abort("java.lang.NullPointerException");
 940 #endif //PRODUCT
 941       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 942     } else {
 943 #ifndef PRODUCT
 944       // for AbortVMOnException flag
 945       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 946 #endif //PRODUCT
 947       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 948     }
 949     return target_pc;
 950   }
 951 
 952   ShouldNotReachHere();
 953   return NULL;
 954 }
 955 
 956 
 957 /**
 958  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 959  * installed in the native function entry of all native Java methods before
 960  * they get linked to their actual native methods.
 961  *
 962  * \note
 963  * This method actually never gets called!  The reason is because
 964  * the interpreter's native entries call NativeLookup::lookup() which
 965  * throws the exception when the lookup fails.  The exception is then
 966  * caught and forwarded on the return from NativeLookup::lookup() call
 967  * before the call to the native function.  This might change in the future.
 968  */
 969 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 970 {
 971   // We return a bad value here to make sure that the exception is
 972   // forwarded before we look at the return value.
 973   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 974 }
 975 JNI_END
 976 
 977 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 978   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 979 }
 980 
 981 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
 982 #if INCLUDE_JVMCI
 983   if (!obj->klass()->has_finalizer()) {
 984     return;
 985   }
 986 #endif // INCLUDE_JVMCI
 987   assert(oopDesc::is_oop(obj), "must be a valid oop");
 988   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 989   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 990 JRT_END
 991 
 992 
 993 jlong SharedRuntime::get_java_tid(Thread* thread) {
 994   if (thread != NULL) {
 995     if (thread->is_Java_thread()) {
 996       oop obj = JavaThread::cast(thread)->threadObj();
 997       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 998     }
 999   }
1000   return 0;
1001 }
1002 
1003 /**
1004  * This function ought to be a void function, but cannot be because
1005  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1006  * 6254741.  Once that is fixed we can remove the dummy return value.
1007  */
1008 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1009   return dtrace_object_alloc_base(Thread::current(), o, size);
1010 }
1011 
1012 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1013   assert(DTraceAllocProbes, "wrong call");
1014   Klass* klass = o->klass();
1015   Symbol* name = klass->name();
1016   HOTSPOT_OBJECT_ALLOC(
1017                    get_java_tid(thread),
1018                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1019   return 0;
1020 }
1021 
1022 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1023     JavaThread* current, Method* method))
1024   assert(DTraceMethodProbes, "wrong call");
1025   Symbol* kname = method->klass_name();
1026   Symbol* name = method->name();
1027   Symbol* sig = method->signature();
1028   HOTSPOT_METHOD_ENTRY(
1029       get_java_tid(current),
1030       (char *) kname->bytes(), kname->utf8_length(),
1031       (char *) name->bytes(), name->utf8_length(),
1032       (char *) sig->bytes(), sig->utf8_length());
1033   return 0;
1034 JRT_END
1035 
1036 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1037     JavaThread* current, Method* method))
1038   assert(DTraceMethodProbes, "wrong call");
1039   Symbol* kname = method->klass_name();
1040   Symbol* name = method->name();
1041   Symbol* sig = method->signature();
1042   HOTSPOT_METHOD_RETURN(
1043       get_java_tid(current),
1044       (char *) kname->bytes(), kname->utf8_length(),
1045       (char *) name->bytes(), name->utf8_length(),
1046       (char *) sig->bytes(), sig->utf8_length());
1047   return 0;
1048 JRT_END
1049 
1050 
1051 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1052 // for a call current in progress, i.e., arguments has been pushed on stack
1053 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1054 // vtable updates, etc.  Caller frame must be compiled.
1055 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1056   JavaThread* current = THREAD;
1057   ResourceMark rm(current);
1058 
1059   // last java frame on stack (which includes native call frames)
1060   vframeStream vfst(current, true);  // Do not skip and javaCalls
1061 
1062   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1063 }
1064 
1065 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1066   CompiledMethod* caller = vfst.nm();
1067 
1068   nmethodLocker caller_lock(caller);
1069 
1070   address pc = vfst.frame_pc();
1071   { // Get call instruction under lock because another thread may be busy patching it.
1072     CompiledICLocker ic_locker(caller);
1073     return caller->attached_method_before_pc(pc);
1074   }
1075   return NULL;
1076 }
1077 
1078 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1079 // for a call current in progress, i.e., arguments has been pushed on stack
1080 // but callee has not been invoked yet.  Caller frame must be compiled.
1081 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1082                                               CallInfo& callinfo, TRAPS) {
1083   Handle receiver;
1084   Handle nullHandle;  // create a handy null handle for exception returns
1085   JavaThread* current = THREAD;
1086 
1087   assert(!vfst.at_end(), "Java frame must exist");
1088 
1089   // Find caller and bci from vframe
1090   methodHandle caller(current, vfst.method());
1091   int          bci   = vfst.bci();
1092 
1093   // Substitutability test implementation piggy backs on static call resolution
1094   Bytecodes::Code code = caller->java_code_at(bci);
1095   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1096     bc = Bytecodes::_invokestatic;
1097     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1098     assert(attached_method.not_null(), "must have attached method");
1099     vmClasses::PrimitiveObjectMethods_klass()->initialize(CHECK_NH);
1100     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1101 #ifdef ASSERT
1102     Method* is_subst = vmClasses::PrimitiveObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1103     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1104 #endif
1105     return receiver;
1106   }
1107 
1108   Bytecode_invoke bytecode(caller, bci);
1109   int bytecode_index = bytecode.index();
1110   bc = bytecode.invoke_code();
1111 
1112   methodHandle attached_method(current, extract_attached_method(vfst));
1113   if (attached_method.not_null()) {
1114     Method* callee = bytecode.static_target(CHECK_NH);
1115     vmIntrinsics::ID id = callee->intrinsic_id();
1116     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1117     // it attaches statically resolved method to the call site.
1118     if (MethodHandles::is_signature_polymorphic(id) &&
1119         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1120       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1121 
1122       // Adjust invocation mode according to the attached method.
1123       switch (bc) {
1124         case Bytecodes::_invokevirtual:
1125           if (attached_method->method_holder()->is_interface()) {
1126             bc = Bytecodes::_invokeinterface;
1127           }
1128           break;
1129         case Bytecodes::_invokeinterface:
1130           if (!attached_method->method_holder()->is_interface()) {
1131             bc = Bytecodes::_invokevirtual;
1132           }
1133           break;
1134         case Bytecodes::_invokehandle:
1135           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1136             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1137                                               : Bytecodes::_invokevirtual;
1138           }
1139           break;
1140         default:
1141           break;
1142       }
1143     } else {
1144       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1145       if (!attached_method->method_holder()->is_inline_klass()) {
1146         // Ignore the attached method in this case to not confuse below code
1147         attached_method = methodHandle(current, NULL);
1148       }
1149     }
1150   }
1151 
1152   assert(bc != Bytecodes::_illegal, "not initialized");
1153 
1154   bool has_receiver = bc != Bytecodes::_invokestatic &&
1155                       bc != Bytecodes::_invokedynamic &&
1156                       bc != Bytecodes::_invokehandle;
1157   bool check_null_and_abstract = true;
1158 
1159   // Find receiver for non-static call
1160   if (has_receiver) {
1161     // This register map must be update since we need to find the receiver for
1162     // compiled frames. The receiver might be in a register.
1163     RegisterMap reg_map2(current);
1164     frame stubFrame   = current->last_frame();
1165     // Caller-frame is a compiled frame
1166     frame callerFrame = stubFrame.sender(&reg_map2);
1167     bool caller_is_c1 = false;
1168 
1169     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1170       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1171     }
1172 
1173     Method* callee = attached_method();
1174     if (callee == NULL) {
1175       callee = bytecode.static_target(CHECK_NH);
1176       if (callee == NULL) {
1177         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1178       }
1179     }
1180     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_inline_klass() &&
1181         InlineKlass::cast(callee->method_holder())->can_be_passed_as_fields()) {
1182       // If the receiver is an inline type that is passed as fields, no oop is available
1183       // Resolve the call without receiver null checking.
1184       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1185       if (bc == Bytecodes::_invokeinterface) {
1186         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1187       }
1188       check_null_and_abstract = false;
1189     } else {
1190       // Retrieve from a compiled argument list
1191       receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1192       if (receiver.is_null()) {
1193         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1194       }
1195     }
1196   }
1197 
1198   // Resolve method
1199   if (attached_method.not_null()) {
1200     // Parameterized by attached method.
1201     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1202   } else {
1203     // Parameterized by bytecode.
1204     constantPoolHandle constants(current, caller->constants());
1205     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1206   }
1207 
1208 #ifdef ASSERT
1209   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1210   if (has_receiver && check_null_and_abstract) {
1211     assert(receiver.not_null(), "should have thrown exception");
1212     Klass* receiver_klass = receiver->klass();
1213     Klass* rk = NULL;
1214     if (attached_method.not_null()) {
1215       // In case there's resolved method attached, use its holder during the check.
1216       rk = attached_method->method_holder();
1217     } else {
1218       // Klass is already loaded.
1219       constantPoolHandle constants(current, caller->constants());
1220       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1221     }
1222     Klass* static_receiver_klass = rk;
1223     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1224            "actual receiver must be subclass of static receiver klass");
1225     if (receiver_klass->is_instance_klass()) {
1226       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1227         tty->print_cr("ERROR: Klass not yet initialized!!");
1228         receiver_klass->print();
1229       }
1230       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1231     }
1232   }
1233 #endif
1234 
1235   return receiver;
1236 }
1237 
1238 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1239   JavaThread* current = THREAD;
1240   ResourceMark rm(current);
1241   // We need first to check if any Java activations (compiled, interpreted)
1242   // exist on the stack since last JavaCall.  If not, we need
1243   // to get the target method from the JavaCall wrapper.
1244   vframeStream vfst(current, true);  // Do not skip any javaCalls
1245   methodHandle callee_method;
1246   if (vfst.at_end()) {
1247     // No Java frames were found on stack since we did the JavaCall.
1248     // Hence the stack can only contain an entry_frame.  We need to
1249     // find the target method from the stub frame.
1250     RegisterMap reg_map(current, false);
1251     frame fr = current->last_frame();
1252     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1253     fr = fr.sender(&reg_map);
1254     assert(fr.is_entry_frame(), "must be");
1255     // fr is now pointing to the entry frame.
1256     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1257   } else {
1258     Bytecodes::Code bc;
1259     CallInfo callinfo;
1260     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1261     callee_method = methodHandle(current, callinfo.selected_method());
1262   }
1263   assert(callee_method()->is_method(), "must be");
1264   return callee_method;
1265 }
1266 
1267 // Resolves a call.
1268 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool* caller_is_c1, TRAPS) {
1269   methodHandle callee_method;
1270   callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD);
1271   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1272     int retry_count = 0;
1273     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1274            callee_method->method_holder() != vmClasses::Object_klass()) {
1275       // If has a pending exception then there is no need to re-try to
1276       // resolve this method.
1277       // If the method has been redefined, we need to try again.
1278       // Hack: we have no way to update the vtables of arrays, so don't
1279       // require that java.lang.Object has been updated.
1280 
1281       // It is very unlikely that method is redefined more than 100 times
1282       // in the middle of resolve. If it is looping here more than 100 times
1283       // means then there could be a bug here.
1284       guarantee((retry_count++ < 100),
1285                 "Could not resolve to latest version of redefined method");
1286       // method is redefined in the middle of resolve so re-try.
1287       callee_method = resolve_sub_helper(is_virtual, is_optimized, caller_is_c1, THREAD);
1288     }
1289   }
1290   return callee_method;
1291 }
1292 
1293 // This fails if resolution required refilling of IC stubs
1294 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1295                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1296                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1297   StaticCallInfo static_call_info;
1298   CompiledICInfo virtual_call_info;
1299 
1300   // Make sure the callee nmethod does not get deoptimized and removed before
1301   // we are done patching the code.
1302   CompiledMethod* callee = callee_method->code();
1303 
1304   if (callee != NULL) {
1305     assert(callee->is_compiled(), "must be nmethod for patching");
1306   }
1307 
1308   if (callee != NULL && !callee->is_in_use()) {
1309     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1310     callee = NULL;
1311   }
1312   nmethodLocker nl_callee(callee);
1313 #ifdef ASSERT
1314   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1315 #endif
1316 
1317   bool is_nmethod = caller_nm->is_nmethod();
1318   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1319 
1320   if (is_virtual) {
1321     Klass* receiver_klass = NULL;
1322     if (!caller_is_c1 && callee_method->has_scalarized_args() && callee_method->method_holder()->is_inline_klass() &&
1323         InlineKlass::cast(callee_method->method_holder())->can_be_passed_as_fields()) {
1324       // If the receiver is an inline type that is passed as fields, no oop is available
1325       receiver_klass = callee_method->method_holder();
1326     } else {
1327       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1328       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1329     }
1330     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1331     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1332                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,

1333                      CHECK_false);
1334   } else {
1335     // static call
1336     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1337   }
1338 
1339   // grab lock, check for deoptimization and potentially patch caller
1340   {
1341     CompiledICLocker ml(caller_nm);
1342 
1343     // Lock blocks for safepoint during which both nmethods can change state.
1344 
1345     // Now that we are ready to patch if the Method* was redefined then
1346     // don't update call site and let the caller retry.
1347     // Don't update call site if callee nmethod was unloaded or deoptimized.
1348     // Don't update call site if callee nmethod was replaced by an other nmethod
1349     // which may happen when multiply alive nmethod (tiered compilation)
1350     // will be supported.
1351     if (!callee_method->is_old() &&
1352         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1353       NoSafepointVerifier nsv;
1354 #ifdef ASSERT
1355       // We must not try to patch to jump to an already unloaded method.
1356       if (dest_entry_point != 0) {
1357         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1358         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1359                "should not call unloaded nmethod");
1360       }
1361 #endif
1362       if (is_virtual) {
1363         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1364         if (inline_cache->is_clean()) {
1365           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1366             return false;
1367           }
1368         }
1369       } else {
1370         if (VM_Version::supports_fast_class_init_checks() &&
1371             invoke_code == Bytecodes::_invokestatic &&
1372             callee_method->needs_clinit_barrier() &&
1373             callee != NULL && callee->is_compiled_by_jvmci()) {
1374           return true; // skip patching for JVMCI
1375         }
1376         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1377         if (ssc->is_clean()) ssc->set(static_call_info);
1378       }
1379     }
1380   } // unlock CompiledICLocker
1381   return true;
1382 }
1383 
1384 // Resolves a call.  The compilers generate code for calls that go here
1385 // and are patched with the real destination of the call.
1386 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, bool* caller_is_c1, TRAPS) {
1387   JavaThread* current = THREAD;
1388   ResourceMark rm(current);
1389   RegisterMap cbl_map(current, false);
1390   frame caller_frame = current->last_frame().sender(&cbl_map);
1391 
1392   CodeBlob* caller_cb = caller_frame.cb();
1393   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1394   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1395   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1396 
1397   // make sure caller is not getting deoptimized
1398   // and removed before we are done with it.
1399   // CLEANUP - with lazy deopt shouldn't need this lock
1400   nmethodLocker caller_lock(caller_nm);
1401 
1402   // determine call info & receiver
1403   // note: a) receiver is NULL for static calls
1404   //       b) an exception is thrown if receiver is NULL for non-static calls
1405   CallInfo call_info;
1406   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1407   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1408   methodHandle callee_method(current, call_info.selected_method());
1409 
1410   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1411          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1412          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1413          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1414          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1415 
1416   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1417 
1418 #ifndef PRODUCT
1419   // tracing/debugging/statistics
1420   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1421                 (is_virtual) ? (&_resolve_virtual_ctr) :
1422                                (&_resolve_static_ctr);
1423   Atomic::inc(addr);
1424 
1425   if (TraceCallFixup) {
1426     ResourceMark rm(current);
1427     tty->print("resolving %s%s (%s) call to",
1428                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1429                Bytecodes::name(invoke_code));
1430     callee_method->print_short_name(tty);
1431     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1432                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1433   }
1434 #endif
1435 
1436   if (invoke_code == Bytecodes::_invokestatic) {
1437     assert(callee_method->method_holder()->is_initialized() ||
1438            callee_method->method_holder()->is_reentrant_initialization(current),
1439            "invalid class initialization state for invoke_static");
1440     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1441       // In order to keep class initialization check, do not patch call
1442       // site for static call when the class is not fully initialized.
1443       // Proper check is enforced by call site re-resolution on every invocation.
1444       //
1445       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1446       // explicit class initialization check is put in nmethod entry (VEP).
1447       assert(callee_method->method_holder()->is_linked(), "must be");
1448       return callee_method;
1449     }
1450   }
1451 
1452   // JSR 292 key invariant:
1453   // If the resolved method is a MethodHandle invoke target, the call
1454   // site must be a MethodHandle call site, because the lambda form might tail-call
1455   // leaving the stack in a state unknown to either caller or callee
1456   // TODO detune for now but we might need it again
1457 //  assert(!callee_method->is_compiled_lambda_form() ||
1458 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1459 
1460   // Compute entry points. This might require generation of C2I converter
1461   // frames, so we cannot be holding any locks here. Furthermore, the
1462   // computation of the entry points is independent of patching the call.  We
1463   // always return the entry-point, but we only patch the stub if the call has
1464   // not been deoptimized.  Return values: For a virtual call this is an
1465   // (cached_oop, destination address) pair. For a static call/optimized
1466   // virtual this is just a destination address.
1467 
1468   // Patching IC caches may fail if we run out if transition stubs.
1469   // We refill the ic stubs then and try again.
1470   for (;;) {
1471     ICRefillVerifier ic_refill_verifier;
1472     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1473                                                   is_virtual, is_optimized, receiver,
1474                                                   call_info, invoke_code, CHECK_(methodHandle()));
1475     if (successful) {
1476       return callee_method;
1477     } else {
1478       InlineCacheBuffer::refill_ic_stubs();
1479     }
1480   }
1481 
1482 }
1483 
1484 
1485 // Inline caches exist only in compiled code
1486 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1487 #ifdef ASSERT
1488   RegisterMap reg_map(current, false);
1489   frame stub_frame = current->last_frame();
1490   assert(stub_frame.is_runtime_frame(), "sanity check");
1491   frame caller_frame = stub_frame.sender(&reg_map);
1492   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame()  && !caller_frame.is_optimized_entry_frame(), "unexpected frame");
1493 #endif /* ASSERT */
1494 
1495   methodHandle callee_method;
1496   bool is_optimized = false;
1497   bool caller_is_c1 = false;
1498   JRT_BLOCK
1499     callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL);
1500     // Return Method* through TLS
1501     current->set_vm_result_2(callee_method());
1502   JRT_BLOCK_END
1503   // return compiled code entry point after potential safepoints
1504   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);

1505 JRT_END
1506 
1507 
1508 // Handle call site that has been made non-entrant
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1510   // 6243940 We might end up in here if the callee is deoptimized
1511   // as we race to call it.  We don't want to take a safepoint if
1512   // the caller was interpreted because the caller frame will look
1513   // interpreted to the stack walkers and arguments are now
1514   // "compiled" so it is much better to make this transition
1515   // invisible to the stack walking code. The i2c path will
1516   // place the callee method in the callee_target. It is stashed
1517   // there because if we try and find the callee by normal means a
1518   // safepoint is possible and have trouble gc'ing the compiled args.
1519   RegisterMap reg_map(current, false);
1520   frame stub_frame = current->last_frame();
1521   assert(stub_frame.is_runtime_frame(), "sanity check");
1522   frame caller_frame = stub_frame.sender(&reg_map);
1523 
1524   if (caller_frame.is_interpreted_frame() ||
1525       caller_frame.is_entry_frame() ||
1526       caller_frame.is_optimized_entry_frame()) {
1527     Method* callee = current->callee_target();
1528     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1529     current->set_vm_result_2(callee);
1530     current->set_callee_target(NULL);
1531     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1532       // Bypass class initialization checks in c2i when caller is in native.
1533       // JNI calls to static methods don't have class initialization checks.
1534       // Fast class initialization checks are present in c2i adapters and call into
1535       // SharedRuntime::handle_wrong_method() on the slow path.
1536       //
1537       // JVM upcalls may land here as well, but there's a proper check present in
1538       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1539       // so bypassing it in c2i adapter is benign.
1540       return callee->get_c2i_no_clinit_check_entry();
1541     } else {
1542       return callee->get_c2i_entry();
1543     }
1544   }
1545 
1546   // Must be compiled to compiled path which is safe to stackwalk
1547   methodHandle callee_method;
1548   bool is_static_call = false;
1549   bool is_optimized = false;
1550   bool caller_is_c1 = false;
1551   JRT_BLOCK
1552     // Force resolving of caller (if we called from compiled frame)
1553     callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1554     current->set_vm_result_2(callee_method());
1555   JRT_BLOCK_END
1556   // return compiled code entry point after potential safepoints
1557   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);

1558 JRT_END
1559 
1560 // Handle abstract method call
1561 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1562   // Verbose error message for AbstractMethodError.
1563   // Get the called method from the invoke bytecode.
1564   vframeStream vfst(current, true);
1565   assert(!vfst.at_end(), "Java frame must exist");
1566   methodHandle caller(current, vfst.method());
1567   Bytecode_invoke invoke(caller, vfst.bci());
1568   DEBUG_ONLY( invoke.verify(); )
1569 
1570   // Find the compiled caller frame.
1571   RegisterMap reg_map(current);
1572   frame stubFrame = current->last_frame();
1573   assert(stubFrame.is_runtime_frame(), "must be");
1574   frame callerFrame = stubFrame.sender(&reg_map);
1575   assert(callerFrame.is_compiled_frame(), "must be");
1576 
1577   // Install exception and return forward entry.
1578   address res = StubRoutines::throw_AbstractMethodError_entry();
1579   JRT_BLOCK
1580     methodHandle callee(current, invoke.static_target(current));
1581     if (!callee.is_null()) {
1582       oop recv = callerFrame.retrieve_receiver(&reg_map);
1583       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1584       res = StubRoutines::forward_exception_entry();
1585       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1586     }
1587   JRT_BLOCK_END
1588   return res;
1589 JRT_END
1590 
1591 
1592 // resolve a static call and patch code
1593 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1594   methodHandle callee_method;
1595   bool caller_is_c1;
1596   JRT_BLOCK
1597     callee_method = SharedRuntime::resolve_helper(false, false, &caller_is_c1, CHECK_NULL);
1598     current->set_vm_result_2(callee_method());
1599   JRT_BLOCK_END
1600   // return compiled code entry point after potential safepoints
1601   address entry = caller_is_c1 ?
1602     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1603   assert(entry != NULL, "Jump to zero!");
1604   return entry;
1605 JRT_END
1606 
1607 
1608 // resolve virtual call and update inline cache to monomorphic
1609 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1610   methodHandle callee_method;
1611   bool caller_is_c1;
1612   JRT_BLOCK
1613     callee_method = SharedRuntime::resolve_helper(true, false, &caller_is_c1, CHECK_NULL);
1614     current->set_vm_result_2(callee_method());
1615   JRT_BLOCK_END
1616   // return compiled code entry point after potential safepoints
1617   address entry = caller_is_c1 ?
1618     callee_method->verified_inline_code_entry() : callee_method->verified_inline_ro_code_entry();
1619   assert(entry != NULL, "Jump to zero!");
1620   return entry;
1621 JRT_END
1622 
1623 
1624 // Resolve a virtual call that can be statically bound (e.g., always
1625 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1626 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1627   methodHandle callee_method;
1628   bool caller_is_c1;
1629   JRT_BLOCK
1630     callee_method = SharedRuntime::resolve_helper(true, true, &caller_is_c1, CHECK_NULL);
1631     current->set_vm_result_2(callee_method());
1632   JRT_BLOCK_END
1633   // return compiled code entry point after potential safepoints
1634   address entry = caller_is_c1 ?
1635     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1636   assert(entry != NULL, "Jump to zero!");
1637   return entry;
1638 JRT_END
1639 
1640 // The handle_ic_miss_helper_internal function returns false if it failed due
1641 // to either running out of vtable stubs or ic stubs due to IC transitions
1642 // to transitional states. The needs_ic_stub_refill value will be set if
1643 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1644 // refills the IC stubs and tries again.
1645 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1646                                                    const frame& caller_frame, methodHandle callee_method,
1647                                                    Bytecodes::Code bc, CallInfo& call_info,
1648                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1649   CompiledICLocker ml(caller_nm);
1650   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1651   bool should_be_mono = false;
1652   if (inline_cache->is_optimized()) {
1653     if (TraceCallFixup) {
1654       ResourceMark rm(THREAD);
1655       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1656       callee_method->print_short_name(tty);
1657       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1658     }
1659     is_optimized = true;
1660     should_be_mono = true;
1661   } else if (inline_cache->is_icholder_call()) {
1662     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1663     if (ic_oop != NULL) {
1664       if (!ic_oop->is_loader_alive()) {
1665         // Deferred IC cleaning due to concurrent class unloading
1666         if (!inline_cache->set_to_clean()) {
1667           needs_ic_stub_refill = true;
1668           return false;
1669         }
1670       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1671         // This isn't a real miss. We must have seen that compiled code
1672         // is now available and we want the call site converted to a
1673         // monomorphic compiled call site.
1674         // We can't assert for callee_method->code() != NULL because it
1675         // could have been deoptimized in the meantime
1676         if (TraceCallFixup) {
1677           ResourceMark rm(THREAD);
1678           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1679           callee_method->print_short_name(tty);
1680           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1681         }
1682         should_be_mono = true;
1683       }
1684     }
1685   }
1686 
1687   if (should_be_mono) {
1688     // We have a path that was monomorphic but was going interpreted
1689     // and now we have (or had) a compiled entry. We correct the IC
1690     // by using a new icBuffer.
1691     CompiledICInfo info;
1692     Klass* receiver_klass = receiver()->klass();
1693     inline_cache->compute_monomorphic_entry(callee_method,
1694                                             receiver_klass,
1695                                             inline_cache->is_optimized(),
1696                                             false, caller_nm->is_nmethod(),
1697                                             caller_nm->is_compiled_by_c1(),
1698                                             info, CHECK_false);
1699     if (!inline_cache->set_to_monomorphic(info)) {
1700       needs_ic_stub_refill = true;
1701       return false;
1702     }
1703   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1704     // Potential change to megamorphic
1705 
1706     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1707     if (needs_ic_stub_refill) {
1708       return false;
1709     }
1710     if (!successful) {
1711       if (!inline_cache->set_to_clean()) {
1712         needs_ic_stub_refill = true;
1713         return false;
1714       }
1715     }
1716   } else {
1717     // Either clean or megamorphic
1718   }
1719   return true;
1720 }
1721 
1722 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) {
1723   JavaThread* current = THREAD;
1724   ResourceMark rm(current);
1725   CallInfo call_info;
1726   Bytecodes::Code bc;
1727 
1728   // receiver is NULL for static calls. An exception is thrown for NULL
1729   // receivers for non-static calls
1730   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1731   // Compiler1 can produce virtual call sites that can actually be statically bound
1732   // If we fell thru to below we would think that the site was going megamorphic
1733   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1734   // we'd try and do a vtable dispatch however methods that can be statically bound
1735   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1736   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1737   // plain ic_miss) and the site will be converted to an optimized virtual call site
1738   // never to miss again. I don't believe C2 will produce code like this but if it
1739   // did this would still be the correct thing to do for it too, hence no ifdef.
1740   //
1741   if (call_info.resolved_method()->can_be_statically_bound()) {
1742     bool is_static_call = false;
1743     methodHandle callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1744     assert(!is_static_call, "IC miss at static call?");
1745     if (TraceCallFixup) {
1746       RegisterMap reg_map(current, false);
1747       frame caller_frame = current->last_frame().sender(&reg_map);
1748       ResourceMark rm(current);
1749       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1750       callee_method->print_short_name(tty);
1751       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1752       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1753     }
1754     return callee_method;
1755   }
1756 
1757   methodHandle callee_method(current, call_info.selected_method());
1758 
1759 #ifndef PRODUCT
1760   Atomic::inc(&_ic_miss_ctr);
1761 
1762   // Statistics & Tracing
1763   if (TraceCallFixup) {
1764     ResourceMark rm(current);
1765     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1766     callee_method->print_short_name(tty);
1767     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1768   }
1769 
1770   if (ICMissHistogram) {
1771     MutexLocker m(VMStatistic_lock);
1772     RegisterMap reg_map(current, false);
1773     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1774     // produce statistics under the lock
1775     trace_ic_miss(f.pc());
1776   }
1777 #endif
1778 
1779   // install an event collector so that when a vtable stub is created the
1780   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1781   // event can't be posted when the stub is created as locks are held
1782   // - instead the event will be deferred until the event collector goes
1783   // out of scope.
1784   JvmtiDynamicCodeEventCollector event_collector;
1785 
1786   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1787   // Transitioning IC caches may require transition stubs. If we run out
1788   // of transition stubs, we have to drop locks and perform a safepoint
1789   // that refills them.
1790   RegisterMap reg_map(current, false);
1791   frame caller_frame = current->last_frame().sender(&reg_map);
1792   CodeBlob* cb = caller_frame.cb();
1793   CompiledMethod* caller_nm = cb->as_compiled_method();
1794   caller_is_c1 = caller_nm->is_compiled_by_c1();
1795 
1796   for (;;) {
1797     ICRefillVerifier ic_refill_verifier;
1798     bool needs_ic_stub_refill = false;
1799     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1800                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1801     if (successful || !needs_ic_stub_refill) {
1802       return callee_method;
1803     } else {
1804       InlineCacheBuffer::refill_ic_stubs();
1805     }
1806   }
1807 }
1808 
1809 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1810   CompiledICLocker ml(caller_nm);
1811   if (is_static_call) {
1812     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1813     if (!ssc->is_clean()) {
1814       return ssc->set_to_clean();
1815     }
1816   } else {
1817     // compiled, dispatched call (which used to call an interpreted method)
1818     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1819     if (!inline_cache->is_clean()) {
1820       return inline_cache->set_to_clean();
1821     }
1822   }
1823   return true;
1824 }
1825 
1826 //
1827 // Resets a call-site in compiled code so it will get resolved again.
1828 // This routines handles both virtual call sites, optimized virtual call
1829 // sites, and static call sites. Typically used to change a call sites
1830 // destination from compiled to interpreted.
1831 //
1832 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1833   JavaThread* current = THREAD;
1834   ResourceMark rm(current);
1835   RegisterMap reg_map(current, false);
1836   frame stub_frame = current->last_frame();
1837   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1838   frame caller = stub_frame.sender(&reg_map);
1839 
1840   // Do nothing if the frame isn't a live compiled frame.
1841   // nmethod could be deoptimized by the time we get here
1842   // so no update to the caller is needed.
1843 
1844   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1845 
1846     address pc = caller.pc();
1847 
1848     // Check for static or virtual call

1849     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1850     caller_is_c1 = caller_nm->is_compiled_by_c1();
1851 
1852     // Default call_addr is the location of the "basic" call.
1853     // Determine the address of the call we a reresolving. With
1854     // Inline Caches we will always find a recognizable call.
1855     // With Inline Caches disabled we may or may not find a
1856     // recognizable call. We will always find a call for static
1857     // calls and for optimized virtual calls. For vanilla virtual
1858     // calls it depends on the state of the UseInlineCaches switch.
1859     //
1860     // With Inline Caches disabled we can get here for a virtual call
1861     // for two reasons:
1862     //   1 - calling an abstract method. The vtable for abstract methods
1863     //       will run us thru handle_wrong_method and we will eventually
1864     //       end up in the interpreter to throw the ame.
1865     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1866     //       call and between the time we fetch the entry address and
1867     //       we jump to it the target gets deoptimized. Similar to 1
1868     //       we will wind up in the interprter (thru a c2i with c2).
1869     //
1870     address call_addr = NULL;
1871     {
1872       // Get call instruction under lock because another thread may be
1873       // busy patching it.
1874       CompiledICLocker ml(caller_nm);
1875       // Location of call instruction
1876       call_addr = caller_nm->call_instruction_address(pc);
1877     }
1878     // Make sure nmethod doesn't get deoptimized and removed until
1879     // this is done with it.
1880     // CLEANUP - with lazy deopt shouldn't need this lock
1881     nmethodLocker nmlock(caller_nm);
1882 
1883     if (call_addr != NULL) {
1884       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1885       int ret = iter.next(); // Get item
1886       if (ret) {
1887         assert(iter.addr() == call_addr, "must find call");
1888         if (iter.type() == relocInfo::static_call_type) {
1889           is_static_call = true;
1890         } else {
1891           assert(iter.type() == relocInfo::virtual_call_type ||
1892                  iter.type() == relocInfo::opt_virtual_call_type
1893                 , "unexpected relocInfo. type");
1894           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1895         }
1896       } else {
1897         assert(!UseInlineCaches, "relocation info. must exist for this address");
1898       }
1899 
1900       // Cleaning the inline cache will force a new resolve. This is more robust
1901       // than directly setting it to the new destination, since resolving of calls
1902       // is always done through the same code path. (experience shows that it
1903       // leads to very hard to track down bugs, if an inline cache gets updated
1904       // to a wrong method). It should not be performance critical, since the
1905       // resolve is only done once.
1906 
1907       for (;;) {
1908         ICRefillVerifier ic_refill_verifier;
1909         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1910           InlineCacheBuffer::refill_ic_stubs();
1911         } else {
1912           break;
1913         }
1914       }
1915     }
1916   }
1917 
1918   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1919 

1920 #ifndef PRODUCT
1921   Atomic::inc(&_wrong_method_ctr);
1922 
1923   if (TraceCallFixup) {
1924     ResourceMark rm(current);
1925     tty->print("handle_wrong_method reresolving call to");
1926     callee_method->print_short_name(tty);
1927     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1928   }
1929 #endif
1930 
1931   return callee_method;
1932 }
1933 
1934 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1935   // The faulting unsafe accesses should be changed to throw the error
1936   // synchronously instead. Meanwhile the faulting instruction will be
1937   // skipped over (effectively turning it into a no-op) and an
1938   // asynchronous exception will be raised which the thread will
1939   // handle at a later point. If the instruction is a load it will
1940   // return garbage.
1941 
1942   // Request an async exception.
1943   thread->set_pending_unsafe_access_error();
1944 
1945   // Return address of next instruction to execute.
1946   return next_pc;
1947 }
1948 
1949 #ifdef ASSERT
1950 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1951                                                                 const BasicType* sig_bt,
1952                                                                 const VMRegPair* regs) {
1953   ResourceMark rm;
1954   const int total_args_passed = method->size_of_parameters();
1955   const VMRegPair*    regs_with_member_name = regs;
1956         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1957 
1958   const int member_arg_pos = total_args_passed - 1;
1959   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1960   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1961 
1962   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1963 
1964   for (int i = 0; i < member_arg_pos; i++) {
1965     VMReg a =    regs_with_member_name[i].first();
1966     VMReg b = regs_without_member_name[i].first();
1967     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1968   }
1969   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1970 }
1971 #endif
1972 
1973 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1974   if (destination != entry_point) {
1975     CodeBlob* callee = CodeCache::find_blob(destination);
1976     // callee == cb seems weird. It means calling interpreter thru stub.
1977     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1978       // static call or optimized virtual
1979       if (TraceCallFixup) {
1980         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1981         moop->print_short_name(tty);
1982         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1983       }
1984       return true;
1985     } else {
1986       if (TraceCallFixup) {
1987         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1988         moop->print_short_name(tty);
1989         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1990       }
1991       // assert is too strong could also be resolve destinations.
1992       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1993     }
1994   } else {
1995     if (TraceCallFixup) {
1996       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1997       moop->print_short_name(tty);
1998       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1999     }
2000   }
2001   return false;
2002 }
2003 
2004 // ---------------------------------------------------------------------------
2005 // We are calling the interpreter via a c2i. Normally this would mean that
2006 // we were called by a compiled method. However we could have lost a race
2007 // where we went int -> i2c -> c2i and so the caller could in fact be
2008 // interpreted. If the caller is compiled we attempt to patch the caller
2009 // so he no longer calls into the interpreter.
2010 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
2011   Method* moop(method);
2012 


2013   // It's possible that deoptimization can occur at a call site which hasn't
2014   // been resolved yet, in which case this function will be called from
2015   // an nmethod that has been patched for deopt and we can ignore the
2016   // request for a fixup.
2017   // Also it is possible that we lost a race in that from_compiled_entry
2018   // is now back to the i2c in that case we don't need to patch and if
2019   // we did we'd leap into space because the callsite needs to use
2020   // "to interpreter" stub in order to load up the Method*. Don't
2021   // ask me how I know this...
2022 
2023   CodeBlob* cb = CodeCache::find_blob(caller_pc);
2024   if (cb == NULL || !cb->is_compiled()) {
2025     return;
2026   }
2027   address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1());
2028   if (entry_point == moop->get_c2i_entry()) {
2029     return;
2030   }
2031 
2032   // The check above makes sure this is a nmethod.
2033   CompiledMethod* nm = cb->as_compiled_method_or_null();
2034   assert(nm, "must be");
2035 
2036   // Get the return PC for the passed caller PC.
2037   address return_pc = caller_pc + frame::pc_return_offset;
2038 
2039   // There is a benign race here. We could be attempting to patch to a compiled
2040   // entry point at the same time the callee is being deoptimized. If that is
2041   // the case then entry_point may in fact point to a c2i and we'd patch the
2042   // call site with the same old data. clear_code will set code() to NULL
2043   // at the end of it. If we happen to see that NULL then we can skip trying
2044   // to patch. If we hit the window where the callee has a c2i in the
2045   // from_compiled_entry and the NULL isn't present yet then we lose the race
2046   // and patch the code with the same old data. Asi es la vida.
2047 
2048   if (moop->code() == NULL) return;
2049 
2050   if (nm->is_in_use()) {
2051     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2052     CompiledICLocker ic_locker(nm);
2053     if (NativeCall::is_call_before(return_pc)) {
2054       ResourceMark mark;
2055       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2056       //
2057       // bug 6281185. We might get here after resolving a call site to a vanilla
2058       // virtual call. Because the resolvee uses the verified entry it may then
2059       // see compiled code and attempt to patch the site by calling us. This would
2060       // then incorrectly convert the call site to optimized and its downhill from
2061       // there. If you're lucky you'll get the assert in the bugid, if not you've
2062       // just made a call site that could be megamorphic into a monomorphic site
2063       // for the rest of its life! Just another racing bug in the life of
2064       // fixup_callers_callsite ...
2065       //
2066       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2067       iter.next();
2068       assert(iter.has_current(), "must have a reloc at java call site");
2069       relocInfo::relocType typ = iter.reloc()->type();
2070       if (typ != relocInfo::static_call_type &&
2071            typ != relocInfo::opt_virtual_call_type &&
2072            typ != relocInfo::static_stub_type) {
2073         return;
2074       }
2075       address destination = call->destination();
2076       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2077         call->set_destination_mt_safe(entry_point);
2078       }
2079     }
2080   }
2081 JRT_END
2082 
2083 
2084 // same as JVM_Arraycopy, but called directly from compiled code
2085 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2086                                                 oopDesc* dest, jint dest_pos,
2087                                                 jint length,
2088                                                 JavaThread* current)) {
2089 #ifndef PRODUCT
2090   _slow_array_copy_ctr++;
2091 #endif
2092   // Check if we have null pointers
2093   if (src == NULL || dest == NULL) {
2094     THROW(vmSymbols::java_lang_NullPointerException());
2095   }
2096   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2097   // even though the copy_array API also performs dynamic checks to ensure
2098   // that src and dest are truly arrays (and are conformable).
2099   // The copy_array mechanism is awkward and could be removed, but
2100   // the compilers don't call this function except as a last resort,
2101   // so it probably doesn't matter.
2102   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2103                                         (arrayOopDesc*)dest, dest_pos,
2104                                         length, current);
2105 }
2106 JRT_END
2107 
2108 // The caller of generate_class_cast_message() (or one of its callers)
2109 // must use a ResourceMark in order to correctly free the result.
2110 char* SharedRuntime::generate_class_cast_message(
2111     JavaThread* thread, Klass* caster_klass) {
2112 
2113   // Get target class name from the checkcast instruction
2114   vframeStream vfst(thread, true);
2115   assert(!vfst.at_end(), "Java frame must exist");
2116   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2117   constantPoolHandle cpool(thread, vfst.method()->constants());
2118   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2119   Symbol* target_klass_name = NULL;
2120   if (target_klass == NULL) {
2121     // This klass should be resolved, but just in case, get the name in the klass slot.
2122     target_klass_name = cpool->klass_name_at(cc.index());
2123   }
2124   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2125 }
2126 
2127 
2128 // The caller of generate_class_cast_message() (or one of its callers)
2129 // must use a ResourceMark in order to correctly free the result.
2130 char* SharedRuntime::generate_class_cast_message(
2131     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2132   const char* caster_name = caster_klass->external_name();
2133 
2134   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2135   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2136                                                    target_klass->external_name();
2137 
2138   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2139 
2140   const char* caster_klass_description = "";
2141   const char* target_klass_description = "";
2142   const char* klass_separator = "";
2143   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2144     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2145   } else {
2146     caster_klass_description = caster_klass->class_in_module_of_loader();
2147     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2148     klass_separator = (target_klass != NULL) ? "; " : "";
2149   }
2150 
2151   // add 3 for parenthesis and preceeding space
2152   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2153 
2154   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2155   if (message == NULL) {
2156     // Shouldn't happen, but don't cause even more problems if it does
2157     message = const_cast<char*>(caster_klass->external_name());
2158   } else {
2159     jio_snprintf(message,
2160                  msglen,
2161                  "class %s cannot be cast to class %s (%s%s%s)",
2162                  caster_name,
2163                  target_name,
2164                  caster_klass_description,
2165                  klass_separator,
2166                  target_klass_description
2167                  );
2168   }
2169   return message;
2170 }
2171 
2172 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2173   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2174 JRT_END
2175 
2176 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2177   if (!SafepointSynchronize::is_synchronizing()) {
2178     // Only try quick_enter() if we're not trying to reach a safepoint
2179     // so that the calling thread reaches the safepoint more quickly.
2180     if (ObjectSynchronizer::quick_enter(obj, current, lock)) return;
2181   }
2182   // NO_ASYNC required because an async exception on the state transition destructor
2183   // would leave you with the lock held and it would never be released.
2184   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2185   // and the model is that an exception implies the method failed.
2186   JRT_BLOCK_NO_ASYNC
2187   Handle h_obj(THREAD, obj);
2188   ObjectSynchronizer::enter(h_obj, lock, current);
2189   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2190   JRT_BLOCK_END
2191 }
2192 
2193 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2194 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2195   SharedRuntime::monitor_enter_helper(obj, lock, current);
2196 JRT_END
2197 
2198 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2199   assert(JavaThread::current() == current, "invariant");
2200   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2201   ExceptionMark em(current);
2202   // The object could become unlocked through a JNI call, which we have no other checks for.
2203   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2204   if (obj->is_unlocked()) {
2205     if (CheckJNICalls) {
2206       fatal("Object has been unlocked by JNI");
2207     }
2208     return;
2209   }
2210   ObjectSynchronizer::exit(obj, lock, current);
2211 }
2212 
2213 // Handles the uncommon cases of monitor unlocking in compiled code
2214 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2215   SharedRuntime::monitor_exit_helper(obj, lock, current);
2216 JRT_END
2217 
2218 #ifndef PRODUCT
2219 
2220 void SharedRuntime::print_statistics() {
2221   ttyLocker ttyl;
2222   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2223 
2224   SharedRuntime::print_ic_miss_histogram();
2225 
2226   // Dump the JRT_ENTRY counters
2227   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2228   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2229   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2230   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2231   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2232   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2233 
2234   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2235   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2236   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2237   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2238   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2239 
2240   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2241   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2242   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2243   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2244   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2245   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2246   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2247   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2248   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2249   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2250   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2251   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2252   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2253   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2254   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2255   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2256 
2257   AdapterHandlerLibrary::print_statistics();
2258 
2259   if (xtty != NULL)  xtty->tail("statistics");
2260 }
2261 
2262 inline double percent(int x, int y) {
2263   return 100.0 * x / MAX2(y, 1);
2264 }
2265 
2266 inline double percent(int64_t x, int64_t y) {
2267   return 100.0 * x / MAX2(y, (int64_t)1);
2268 }
2269 
2270 class MethodArityHistogram {
2271  public:
2272   enum { MAX_ARITY = 256 };
2273  private:
2274   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2275   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2276   static uint64_t _total_compiled_calls;
2277   static uint64_t _max_compiled_calls_per_method;
2278   static int _max_arity;                       // max. arity seen
2279   static int _max_size;                        // max. arg size seen
2280 
2281   static void add_method_to_histogram(nmethod* nm) {
2282     Method* method = (nm == NULL) ? NULL : nm->method();
2283     if ((method != NULL) && nm->is_alive()) {
2284       ArgumentCount args(method->signature());
2285       int arity   = args.size() + (method->is_static() ? 0 : 1);
2286       int argsize = method->size_of_parameters();
2287       arity   = MIN2(arity, MAX_ARITY-1);
2288       argsize = MIN2(argsize, MAX_ARITY-1);
2289       uint64_t count = (uint64_t)method->compiled_invocation_count();
2290       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2291       _total_compiled_calls    += count;
2292       _arity_histogram[arity]  += count;
2293       _size_histogram[argsize] += count;
2294       _max_arity = MAX2(_max_arity, arity);
2295       _max_size  = MAX2(_max_size, argsize);
2296     }
2297   }
2298 
2299   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2300     const int N = MIN2(9, n);
2301     double sum = 0;
2302     double weighted_sum = 0;
2303     for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2304     if (sum >= 1.0) { // prevent divide by zero or divide overflow
2305       double rest = sum;
2306       double percent = sum / 100;
2307       for (int i = 0; i <= N; i++) {
2308         rest -= histo[i];
2309         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
2310       }
2311       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2312       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2313       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2314       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2315     } else {
2316       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2317     }
2318   }
2319 
2320   void print_histogram() {
2321     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2322     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2323     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2324     print_histogram_helper(_max_size, _size_histogram, "size");
2325     tty->cr();
2326   }
2327 
2328  public:
2329   MethodArityHistogram() {
2330     // Take the Compile_lock to protect against changes in the CodeBlob structures
2331     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2332     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2333     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2334     _max_arity = _max_size = 0;
2335     _total_compiled_calls = 0;
2336     _max_compiled_calls_per_method = 0;
2337     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2338     CodeCache::nmethods_do(add_method_to_histogram);
2339     print_histogram();
2340   }
2341 };
2342 
2343 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2344 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2345 uint64_t MethodArityHistogram::_total_compiled_calls;
2346 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2347 int MethodArityHistogram::_max_arity;
2348 int MethodArityHistogram::_max_size;
2349 
2350 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2351   tty->print_cr("Calls from compiled code:");
2352   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2353   int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2354   int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2355   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2356   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2357   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2358   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2359   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2360   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2361   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2362   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2363   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2364   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2365   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2366   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2367   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2368   tty->cr();
2369   tty->print_cr("Note 1: counter updates are not MT-safe.");
2370   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2371   tty->print_cr("        %% in nested categories are relative to their category");
2372   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2373   tty->cr();
2374 
2375   MethodArityHistogram h;
2376 }
2377 #endif
2378 
2379 
2380 // A simple wrapper class around the calling convention information
2381 // that allows sharing of adapters for the same calling convention.
2382 class AdapterFingerPrint : public CHeapObj<mtCode> {
2383  private:
2384   enum {
2385     _basic_type_bits = 4,
2386     _basic_type_mask = right_n_bits(_basic_type_bits),
2387     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2388     _compact_int_count = 3
2389   };
2390   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2391   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2392 
2393   union {
2394     int  _compact[_compact_int_count];
2395     int* _fingerprint;
2396   } _value;
2397   int _length; // A negative length indicates the fingerprint is in the compact form,
2398                // Otherwise _value._fingerprint is the array.
2399 
2400   // Remap BasicTypes that are handled equivalently by the adapters.
2401   // These are correct for the current system but someday it might be
2402   // necessary to make this mapping platform dependent.
2403   static BasicType adapter_encoding(BasicType in) {
2404     switch (in) {
2405       case T_BOOLEAN:
2406       case T_BYTE:
2407       case T_SHORT:
2408       case T_CHAR:
2409         // They are all promoted to T_INT in the calling convention
2410         return T_INT;
2411 
2412       case T_OBJECT:
2413       case T_ARRAY:
2414         // In other words, we assume that any register good enough for
2415         // an int or long is good enough for a managed pointer.
2416 #ifdef _LP64
2417         return T_LONG;
2418 #else
2419         return T_INT;
2420 #endif
2421 
2422       case T_INT:
2423       case T_LONG:
2424       case T_FLOAT:
2425       case T_DOUBLE:
2426       case T_VOID:
2427         return in;
2428 
2429       default:
2430         ShouldNotReachHere();
2431         return T_CONFLICT;
2432     }
2433   }
2434 
2435  public:
2436   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2437     // The fingerprint is based on the BasicType signature encoded
2438     // into an array of ints with eight entries per int.
2439     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2440     int* ptr;
2441     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2442     if (len <= _compact_int_count) {
2443       assert(_compact_int_count == 3, "else change next line");
2444       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2445       // Storing the signature encoded as signed chars hits about 98%
2446       // of the time.
2447       _length = -len;
2448       ptr = _value._compact;
2449     } else {
2450       _length = len;
2451       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2452       ptr = _value._fingerprint;
2453     }
2454 
2455     // Now pack the BasicTypes with 8 per int
2456     int sig_index = 0;
2457     BasicType prev_bt = T_ILLEGAL;
2458     int vt_count = 0;
2459     for (int index = 0; index < len; index++) {
2460       int value = 0;
2461       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2462         BasicType bt = T_ILLEGAL;
2463         if (sig_index < total_args_passed) {
2464           bt = sig->at(sig_index++)._bt;
2465           if (bt == T_INLINE_TYPE) {
2466             // Found start of inline type in signature
2467             assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2468             if (sig_index == 1 && has_ro_adapter) {
2469               // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching
2470               // with other adapters that have the same inline type as first argument and no receiver.
2471               bt = T_VOID;
2472             }
2473             vt_count++;
2474           } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2475             // Found end of inline type in signature
2476             assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2477             vt_count--;
2478             assert(vt_count >= 0, "invalid vt_count");
2479           } else if (vt_count == 0) {
2480             // Widen fields that are not part of a scalarized inline type argument
2481             bt = adapter_encoding(bt);
2482           }
2483           prev_bt = bt;
2484         }
2485         int bt_val = (bt == T_ILLEGAL) ? 0 : bt;
2486         assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits");
2487         value = (value << _basic_type_bits) | bt_val;
2488       }
2489       ptr[index] = value;
2490     }
2491     assert(vt_count == 0, "invalid vt_count");
2492   }
2493 
2494   ~AdapterFingerPrint() {
2495     if (_length > 0) {
2496       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2497     }
2498   }
2499 
2500   int value(int index) {
2501     if (_length < 0) {
2502       return _value._compact[index];
2503     }
2504     return _value._fingerprint[index];
2505   }
2506   int length() {
2507     if (_length < 0) return -_length;
2508     return _length;
2509   }
2510 
2511   bool is_compact() {
2512     return _length <= 0;
2513   }
2514 
2515   unsigned int compute_hash() {
2516     int hash = 0;
2517     for (int i = 0; i < length(); i++) {
2518       int v = value(i);
2519       hash = (hash << 8) ^ v ^ (hash >> 5);
2520     }
2521     return (unsigned int)hash;
2522   }
2523 
2524   const char* as_string() {
2525     stringStream st;
2526     st.print("0x");
2527     for (int i = 0; i < length(); i++) {
2528       st.print("%x", value(i));
2529     }
2530     return st.as_string();
2531   }
2532 
2533 #ifndef PRODUCT
2534   // Reconstitutes the basic type arguments from the fingerprint,
2535   // producing strings like LIJDF
2536   const char* as_basic_args_string() {
2537     stringStream st;
2538     bool long_prev = false;
2539     for (int i = 0; i < length(); i++) {
2540       unsigned val = (unsigned)value(i);
2541       // args are packed so that first/lower arguments are in the highest
2542       // bits of each int value, so iterate from highest to the lowest
2543       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2544         unsigned v = (val >> j) & _basic_type_mask;
2545         if (v == 0) {
2546           assert(i == length() - 1, "Only expect zeroes in the last word");
2547           continue;
2548         }
2549         if (long_prev) {
2550           long_prev = false;
2551           if (v == T_VOID) {
2552             st.print("J");
2553           } else {
2554             st.print("L");
2555           }
2556         } else if (v == T_LONG) {
2557           long_prev = true;
2558         } else if (v != T_VOID){
2559           st.print("%c", type2char((BasicType)v));




2560         }
2561       }
2562     }
2563     if (long_prev) {
2564       st.print("L");
2565     }
2566     return st.as_string();
2567   }
2568 #endif // !product
2569 
2570   bool equals(AdapterFingerPrint* other) {
2571     if (other->_length != _length) {
2572       return false;
2573     }
2574     if (_length < 0) {
2575       assert(_compact_int_count == 3, "else change next line");
2576       return _value._compact[0] == other->_value._compact[0] &&
2577              _value._compact[1] == other->_value._compact[1] &&
2578              _value._compact[2] == other->_value._compact[2];
2579     } else {
2580       for (int i = 0; i < _length; i++) {
2581         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2582           return false;
2583         }
2584       }
2585     }
2586     return true;
2587   }
2588 };
2589 
2590 
2591 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2592 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2593   friend class AdapterHandlerTableIterator;
2594 
2595  private:
2596 
2597 #ifndef PRODUCT
2598   static int _lookups; // number of calls to lookup
2599   static int _buckets; // number of buckets checked
2600   static int _equals;  // number of buckets checked with matching hash
2601   static int _hits;    // number of successful lookups
2602   static int _compact; // number of equals calls with compact signature
2603 #endif
2604 
2605   AdapterHandlerEntry* bucket(int i) {
2606     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2607   }
2608 
2609  public:
2610   AdapterHandlerTable()
2611     : BasicHashtable<mtCode>(293, (sizeof(AdapterHandlerEntry))) { }
2612 
2613   // Create a new entry suitable for insertion in the table
2614   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2615                                  address c2i_inline_entry, address c2i_inline_ro_entry,
2616                                  address c2i_unverified_entry, address c2i_unverified_inline_entry, address c2i_no_clinit_check_entry) {
2617     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2618     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry,
2619                 c2i_unverified_entry, c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
2620     return entry;
2621   }
2622 
2623   // Insert an entry into the table
2624   void add(AdapterHandlerEntry* entry) {
2625     int index = hash_to_index(entry->hash());
2626     add_entry(index, entry);
2627   }
2628 
2629   void free_entry(AdapterHandlerEntry* entry) {
2630     entry->deallocate();
2631     BasicHashtable<mtCode>::free_entry(entry);
2632   }
2633 
2634   // Find a entry with the same fingerprint if it exists
2635   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2636     NOT_PRODUCT(_lookups++);
2637     AdapterFingerPrint fp(sig, has_ro_adapter);
2638     unsigned int hash = fp.compute_hash();
2639     int index = hash_to_index(hash);
2640     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2641       NOT_PRODUCT(_buckets++);
2642       if (e->hash() == hash) {
2643         NOT_PRODUCT(_equals++);
2644         if (fp.equals(e->fingerprint())) {
2645 #ifndef PRODUCT
2646           if (fp.is_compact()) _compact++;
2647           _hits++;
2648 #endif
2649           return e;
2650         }
2651       }
2652     }
2653     return NULL;
2654   }
2655 
2656 #ifndef PRODUCT
2657   void print_statistics() {
2658     ResourceMark rm;
2659     int longest = 0;
2660     int empty = 0;
2661     int total = 0;
2662     int nonempty = 0;
2663     for (int index = 0; index < table_size(); index++) {
2664       int count = 0;
2665       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2666         count++;
2667       }
2668       if (count != 0) nonempty++;
2669       if (count == 0) empty++;
2670       if (count > longest) longest = count;
2671       total += count;
2672     }
2673     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2674                   empty, longest, total, total / (double)nonempty);
2675     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2676                   _lookups, _buckets, _equals, _hits, _compact);
2677   }
2678 #endif
2679 };
2680 
2681 
2682 #ifndef PRODUCT
2683 
2684 int AdapterHandlerTable::_lookups;
2685 int AdapterHandlerTable::_buckets;
2686 int AdapterHandlerTable::_equals;
2687 int AdapterHandlerTable::_hits;
2688 int AdapterHandlerTable::_compact;
2689 
2690 #endif
2691 
2692 class AdapterHandlerTableIterator : public StackObj {
2693  private:
2694   AdapterHandlerTable* _table;
2695   int _index;
2696   AdapterHandlerEntry* _current;
2697 
2698   void scan() {
2699     while (_index < _table->table_size()) {
2700       AdapterHandlerEntry* a = _table->bucket(_index);
2701       _index++;
2702       if (a != NULL) {
2703         _current = a;
2704         return;
2705       }
2706     }
2707   }
2708 
2709  public:
2710   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2711     scan();
2712   }
2713   bool has_next() {
2714     return _current != NULL;
2715   }
2716   AdapterHandlerEntry* next() {
2717     if (_current != NULL) {
2718       AdapterHandlerEntry* result = _current;
2719       _current = _current->next();
2720       if (_current == NULL) scan();
2721       return result;
2722     } else {
2723       return NULL;
2724     }
2725   }
2726 };
2727 
2728 
2729 // ---------------------------------------------------------------------------
2730 // Implementation of AdapterHandlerLibrary
2731 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2732 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2733 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = NULL;
2734 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = NULL;
2735 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = NULL;
2736 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = NULL;
2737 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = NULL;
2738 const int AdapterHandlerLibrary_size = 32*K;
2739 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2740 
2741 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2742   return _buffer;
2743 }
2744 
2745 extern "C" void unexpected_adapter_call() {
2746   ShouldNotCallThis();
2747 }
2748 
2749 static void post_adapter_creation(const AdapterBlob* new_adapter, const AdapterHandlerEntry* entry) {
2750   char blob_id[256];
2751   jio_snprintf(blob_id,
2752                 sizeof(blob_id),
2753                 "%s(%s)",
2754                 new_adapter->name(),
2755                 entry->fingerprint()->as_string());
2756   Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2757 
2758   if (JvmtiExport::should_post_dynamic_code_generated()) {
2759     JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2760   }
2761 }
2762 
2763 void AdapterHandlerLibrary::initialize() {
2764   ResourceMark rm;
2765   AdapterBlob* no_arg_blob = NULL;
2766   AdapterBlob* int_arg_blob = NULL;
2767   AdapterBlob* obj_arg_blob = NULL;
2768   AdapterBlob* obj_int_arg_blob = NULL;
2769   AdapterBlob* obj_obj_arg_blob = NULL;
2770   {
2771     MutexLocker mu(AdapterHandlerLibrary_lock);
2772     assert(_adapters == NULL, "Initializing more than once");
2773 
2774     _adapters = new AdapterHandlerTable();
2775 
2776     // Create a special handler for abstract methods.  Abstract methods
2777     // are never compiled so an i2c entry is somewhat meaningless, but
2778     // throw AbstractMethodError just in case.
2779     // Pass wrong_method_abstract for the c2i transitions to return
2780     // AbstractMethodError for invalid invocations.
2781     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2782     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2783                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2784                                                                 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2785                                                                 wrong_method_abstract, wrong_method_abstract);

2786     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2787 
2788     CompiledEntrySignature no_args;
2789     no_args.compute_calling_conventions();
2790     _no_arg_handler = create_adapter(no_arg_blob, no_args, true);
2791 
2792     CompiledEntrySignature obj_args;
2793     SigEntry::add_entry(&obj_args.sig(), T_OBJECT, NULL);
2794     obj_args.compute_calling_conventions();
2795     _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true);
2796 
2797     CompiledEntrySignature int_args;
2798     SigEntry::add_entry(&int_args.sig(), T_INT, NULL);
2799     int_args.compute_calling_conventions();
2800     _int_arg_handler = create_adapter(int_arg_blob, int_args, true);
2801 
2802     CompiledEntrySignature obj_int_args;
2803     SigEntry::add_entry(&obj_int_args.sig(), T_OBJECT, NULL);
2804     SigEntry::add_entry(&obj_int_args.sig(), T_INT, NULL);
2805     obj_int_args.compute_calling_conventions();
2806     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true);
2807 
2808     CompiledEntrySignature obj_obj_args;
2809     SigEntry::add_entry(&obj_obj_args.sig(), T_OBJECT, NULL);
2810     SigEntry::add_entry(&obj_obj_args.sig(), T_OBJECT, NULL);
2811     obj_obj_args.compute_calling_conventions();
2812     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true);
2813 
2814     assert(no_arg_blob != NULL &&
2815           obj_arg_blob != NULL &&
2816           int_arg_blob != NULL &&
2817           obj_int_arg_blob != NULL &&
2818           obj_obj_arg_blob != NULL, "Initial adapters must be properly created");
2819   }
2820   return;
2821 
2822   // Outside of the lock
2823   post_adapter_creation(no_arg_blob, _no_arg_handler);
2824   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2825   post_adapter_creation(int_arg_blob, _int_arg_handler);
2826   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2827   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2828 }
2829 
2830 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2831                                                       address i2c_entry,
2832                                                       address c2i_entry,
2833                                                       address c2i_inline_entry,
2834                                                       address c2i_inline_ro_entry,
2835                                                       address c2i_unverified_entry,
2836                                                       address c2i_unverified_inline_entry,
2837                                                       address c2i_no_clinit_check_entry) {
2838   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry,
2839                               c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
2840 }
2841 
2842 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2843   if (method->is_abstract()) {
2844     return NULL;
2845   }
2846   int total_args_passed = method->size_of_parameters(); // All args on stack
2847   if (total_args_passed == 0) {
2848     return _no_arg_handler;
2849   } else if (total_args_passed == 1) {
2850     if (!method->is_static() && !method->method_holder()->is_inline_klass()) {
2851       return _obj_arg_handler;
2852     }
2853     switch (method->signature()->char_at(1)) {
2854       case JVM_SIGNATURE_CLASS:
2855       case JVM_SIGNATURE_ARRAY:
2856         return _obj_arg_handler;
2857       case JVM_SIGNATURE_INT:
2858       case JVM_SIGNATURE_BOOLEAN:
2859       case JVM_SIGNATURE_CHAR:
2860       case JVM_SIGNATURE_BYTE:
2861       case JVM_SIGNATURE_SHORT:
2862         return _int_arg_handler;
2863     }
2864   } else if (total_args_passed == 2 &&
2865              !method->is_static() && !method->method_holder()->is_inline_klass()) {
2866     switch (method->signature()->char_at(1)) {
2867       case JVM_SIGNATURE_CLASS:
2868       case JVM_SIGNATURE_ARRAY:
2869         return _obj_obj_arg_handler;
2870       case JVM_SIGNATURE_INT:
2871       case JVM_SIGNATURE_BOOLEAN:
2872       case JVM_SIGNATURE_CHAR:
2873       case JVM_SIGNATURE_BYTE:
2874       case JVM_SIGNATURE_SHORT:
2875         return _obj_int_arg_handler;
2876     }
2877   }
2878   return NULL;
2879 }
2880 
2881 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2882   _method(method), _num_inline_args(0), _has_inline_recv(false),
2883   _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL),
2884   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2885   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false) {
2886   _sig = new GrowableArray<SigEntry>((method != NULL) ? method->size_of_parameters() : 1);
2887   _sig_cc = _sig;
2888   _sig_cc_ro = _sig;
2889 }
2890 
2891 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2892   InstanceKlass* holder = _method->method_holder();
2893   sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters());
2894   if (!_method->is_static()) {
2895     if (holder->is_inline_klass() && scalar_receiver && InlineKlass::cast(holder)->can_be_passed_as_fields()) {
2896       sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2897     } else {
2898       SigEntry::add_entry(sig_cc, T_OBJECT, holder->name());



2899     }

2900   }
2901   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2902     if (ss.type() == T_INLINE_TYPE) {
2903       InlineKlass* vk = ss.as_inline_klass(holder);
2904       if (vk->can_be_passed_as_fields()) {
2905         sig_cc->appendAll(vk->extended_sig());
2906       } else {
2907         SigEntry::add_entry(sig_cc, T_OBJECT, ss.as_symbol());
2908       }
2909     } else {
2910       SigEntry::add_entry(sig_cc, ss.type(), ss.as_symbol());
2911     }
2912   }
2913   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2914   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2915 }
2916 
2917 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2918 // or the same entry for VEP and VIEP(RO).
2919 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2920   if (!has_scalarized_args()) {
2921     // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2922     return CodeOffsets::Verified_Entry;
2923   }
2924   if (_method->is_static()) {
2925     // Static methods don't need VIEP(RO)
2926     return CodeOffsets::Verified_Entry;
2927   }
2928 
2929   if (has_inline_recv()) {
2930     if (num_inline_args() == 1) {
2931       // Share same entry for VIEP and VIEP(RO).
2932       // This is quite common: we have an instance method in an InlineKlass that has
2933       // no inline type args other than <this>.
2934       return CodeOffsets::Verified_Inline_Entry;
2935     } else {
2936       assert(num_inline_args() > 1, "must be");
2937       // No sharing:
2938       //   VIEP(RO) -- <this> is passed as object
2939       //   VEP      -- <this> is passed as fields
2940       return CodeOffsets::Verified_Inline_Entry_RO;
2941     }
2942   }

2943 
2944   // Either a static method, or <this> is not an inline type
2945   if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2946     // No sharing:
2947     // Some arguments are passed on the stack, and we have inserted reserved entries
2948     // into the VEP, but we never insert reserved entries into the VIEP(RO).
2949     return CodeOffsets::Verified_Inline_Entry_RO;
2950   } else {
2951     // Share same entry for VEP and VIEP(RO).
2952     return CodeOffsets::Verified_Entry;
2953   }
2954 }
2955 
2956 void CompiledEntrySignature::compute_calling_conventions() {
2957   // Get the (non-scalarized) signature and check for inline type arguments
2958   if (_method != NULL) {
2959     if (!_method->is_static()) {
2960       if (_method->method_holder()->is_inline_klass() && InlineKlass::cast(_method->method_holder())->can_be_passed_as_fields()) {
2961         _has_inline_recv = true;
2962         _num_inline_args++;
2963       }
2964       SigEntry::add_entry(_sig, T_OBJECT, _method->name());
2965     }
2966     for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2967       BasicType bt = ss.type();
2968       if (bt == T_INLINE_TYPE) {
2969         if (ss.as_inline_klass(_method->method_holder())->can_be_passed_as_fields()) {
2970           _num_inline_args++;
2971         }
2972         bt = T_OBJECT;
2973       }
2974       SigEntry::add_entry(_sig, bt, ss.as_symbol());
2975     }
2976     if (_method->is_abstract() && !has_inline_arg()) {
2977       return;
2978     }
2979   }
2980 
2981   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2982   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2983   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2984 
2985   // Now compute the scalarized calling convention if there are inline types in the signature
2986   _regs_cc = _regs;
2987   _regs_cc_ro = _regs;
2988   _args_on_stack_cc = _args_on_stack;
2989   _args_on_stack_cc_ro = _args_on_stack;
2990 
2991   if (has_inline_arg() && !_method->is_native()) {
2992     _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true);
2993 
2994     _sig_cc_ro = _sig_cc;
2995     _regs_cc_ro = _regs_cc;
2996     _args_on_stack_cc_ro = _args_on_stack_cc;
2997     if (_has_inline_recv) {
2998       // For interface calls, we need another entry point / adapter to unpack the receiver
2999       _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
3000     }
3001 
3002     // Upper bound on stack arguments to avoid hitting the argument limit and
3003     // bailing out of compilation ("unsupported incoming calling sequence").
3004     // TODO we need a reasonable limit (flag?) here
3005     if (_args_on_stack_cc > 50) {
3006       // Don't scalarize inline type arguments
3007       _sig_cc = _sig;
3008       _sig_cc_ro = _sig;
3009       _regs_cc = _regs;
3010       _regs_cc_ro = _regs;
3011       _args_on_stack_cc = _args_on_stack;
3012       _args_on_stack_cc_ro = _args_on_stack;
3013     } else {
3014       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
3015       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
3016     }
3017   }
3018 }
3019 
3020 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
3021   // Use customized signature handler.  Need to lock around updates to
3022   // the AdapterHandlerTable (it is not safe for concurrent readers
3023   // and a single writer: this could be fixed if it becomes a
3024   // problem).
3025   assert(_adapters != NULL, "Uninitialized");
3026 
3027   // Fast-path for trivial adapters
3028   AdapterHandlerEntry* entry = get_simple_adapter(method);
3029   if (entry != NULL) {
3030     return entry;
3031   }
3032 
3033   ResourceMark rm;
3034   AdapterBlob* new_adapter = NULL;
3035 
3036   CompiledEntrySignature ces(method());
3037   ces.compute_calling_conventions();
3038   if (ces.has_scalarized_args()) {
3039     method->set_has_scalarized_args(true);
3040     method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
3041     method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
3042   } else if (method->is_abstract()) {
3043     return _abstract_method_handler;
3044   }
3045 




3046   {
3047     MutexLocker mu(AdapterHandlerLibrary_lock);
3048 
3049     if (ces.has_scalarized_args() && method->is_abstract()) {
3050       // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments
3051       address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
3052       entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
3053                                                StubRoutines::throw_AbstractMethodError_entry(),
3054                                                wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
3055                                                wrong_method_abstract, wrong_method_abstract);
3056       GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro().length(), mtInternal);
3057       heap_sig->appendAll(&ces.sig_cc_ro());
3058       entry->set_sig_cc(heap_sig);
3059       return entry;
3060     }
3061 
3062     // Lookup method signature's fingerprint
3063     entry = _adapters->lookup(&ces.sig_cc(), ces.regs_cc() != ces.regs_cc_ro());
3064 
3065     if (entry != NULL) {
3066 #ifdef ASSERT
3067       if (VerifyAdapterSharing) {
3068         AdapterBlob* comparison_blob = NULL;
3069         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false);
3070         assert(comparison_blob == NULL, "no blob should be created when creating an adapter for comparison");
3071         assert(comparison_entry->compare_code(entry), "code must match");
3072         // Release the one just created and return the original
3073         _adapters->free_entry(comparison_entry);
3074       }
3075 #endif
3076       return entry;
3077     }
3078 
3079     entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true);
3080   }
3081 
3082   // Outside of the lock
3083   if (new_adapter != NULL) {
3084     post_adapter_creation(new_adapter, entry);
3085   }
3086   return entry;
3087 }
3088 
3089 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
3090                                                            CompiledEntrySignature& ces,

3091                                                            bool allocate_code_blob) {
3092 
3093   // StubRoutines::code2() is initialized after this function can be called. As a result,
3094   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
3095   // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
3096   // stub that ensure that an I2C stub is called from an interpreter frame.
3097   bool contains_all_checks = StubRoutines::code2() != NULL;
3098 





3099   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3100   CodeBuffer buffer(buf);
3101   short buffer_locs[20];
3102   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3103                                           sizeof(buffer_locs)/sizeof(relocInfo));
3104 
3105   // Make a C heap allocated version of the fingerprint to store in the adapter
3106   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(&ces.sig_cc(), ces.regs_cc() != ces.regs_cc_ro());
3107   MacroAssembler _masm(&buffer);
3108   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
3109                                                 ces.args_on_stack(),
3110                                                 &ces.sig(),
3111                                                 ces.regs(),
3112                                                 &ces.sig_cc(),
3113                                                 ces.regs_cc(),
3114                                                 &ces.sig_cc_ro(),
3115                                                 ces.regs_cc_ro(),
3116                                                 fingerprint,
3117                                                 new_adapter,
3118                                                 allocate_code_blob);
3119 
3120   if (ces.has_scalarized_args()) {
3121     // Save a C heap allocated version of the scalarized signature and store it in the adapter
3122     GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(ces.sig_cc().length(), mtInternal);
3123     heap_sig->appendAll(&ces.sig_cc());
3124     entry->set_sig_cc(heap_sig);
3125   }
3126 
3127 #ifdef ASSERT
3128   if (VerifyAdapterSharing) {
3129     entry->save_code(buf->code_begin(), buffer.insts_size());
3130     if (!allocate_code_blob) {
3131       return entry;
3132     }
3133   }
3134 #endif
3135 

3136   NOT_PRODUCT(int insts_size = buffer.insts_size());
3137   if (new_adapter == NULL) {
3138     // CodeCache is full, disable compilation
3139     // Ought to log this but compile log is only per compile thread
3140     // and we're some non descript Java thread.
3141     return NULL;
3142   }
3143   entry->relocate(new_adapter->content_begin());
3144 #ifndef PRODUCT
3145   // debugging suppport
3146   if (PrintAdapterHandlers || PrintStubCode) {
3147     ttyLocker ttyl;
3148     entry->print_adapter_on(tty);
3149     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
3150                   _adapters->number_of_entries(), fingerprint->as_basic_args_string(),
3151                   fingerprint->as_string(), insts_size);
3152     tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3153     if (Verbose || PrintStubCode) {
3154       address first_pc = entry->base_address();
3155       if (first_pc != NULL) {
3156         Disassembler::decode(first_pc, first_pc + insts_size, tty
3157                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
3158         tty->cr();
3159       }
3160     }
3161   }
3162 #endif
3163 
3164   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3165   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3166   if (contains_all_checks || !VerifyAdapterCalls) {
3167     _adapters->add(entry);
3168   }
3169   return entry;
3170 }
3171 
3172 address AdapterHandlerEntry::base_address() {
3173   address base = _i2c_entry;
3174   if (base == NULL)  base = _c2i_entry;
3175   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3176   assert(base <= _c2i_inline_entry || _c2i_inline_entry == NULL, "");
3177   assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == NULL, "");
3178   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3179   assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == NULL, "");
3180   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
3181   return base;
3182 }
3183 
3184 void AdapterHandlerEntry::relocate(address new_base) {
3185   address old_base = base_address();
3186   assert(old_base != NULL, "");
3187   ptrdiff_t delta = new_base - old_base;
3188   if (_i2c_entry != NULL)
3189     _i2c_entry += delta;
3190   if (_c2i_entry != NULL)
3191     _c2i_entry += delta;
3192   if (_c2i_inline_entry != NULL)
3193     _c2i_inline_entry += delta;
3194   if (_c2i_inline_ro_entry != NULL)
3195     _c2i_inline_ro_entry += delta;
3196   if (_c2i_unverified_entry != NULL)
3197     _c2i_unverified_entry += delta;
3198   if (_c2i_unverified_inline_entry != NULL)
3199     _c2i_unverified_inline_entry += delta;
3200   if (_c2i_no_clinit_check_entry != NULL)
3201     _c2i_no_clinit_check_entry += delta;
3202   assert(base_address() == new_base, "");
3203 }
3204 
3205 
3206 void AdapterHandlerEntry::deallocate() {
3207   delete _fingerprint;
3208   if (_sig_cc != NULL) {
3209     delete _sig_cc;
3210   }
3211 #ifdef ASSERT
3212   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3213 #endif
3214 }
3215 
3216 
3217 #ifdef ASSERT
3218 // Capture the code before relocation so that it can be compared
3219 // against other versions.  If the code is captured after relocation
3220 // then relative instructions won't be equivalent.
3221 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3222   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3223   _saved_code_length = length;
3224   memcpy(_saved_code, buffer, length);
3225 }
3226 
3227 
3228 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3229   assert(_saved_code != NULL && other->_saved_code != NULL, "code not saved");
3230 
3231   if (other->_saved_code_length != _saved_code_length) {
3232     return false;
3233   }
3234 
3235   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3236 }
3237 #endif
3238 
3239 
3240 /**
3241  * Create a native wrapper for this native method.  The wrapper converts the
3242  * Java-compiled calling convention to the native convention, handles
3243  * arguments, and transitions to native.  On return from the native we transition
3244  * back to java blocking if a safepoint is in progress.
3245  */
3246 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3247   ResourceMark rm;
3248   nmethod* nm = NULL;
3249   address critical_entry = NULL;
3250 
3251   assert(method->is_native(), "must be native");
3252   assert(method->is_method_handle_intrinsic() ||
3253          method->has_native_function(), "must have something valid to call!");
3254 
3255   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3256     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3257     critical_entry = NativeLookup::lookup_critical_entry(method);
3258   }
3259 
3260   {
3261     // Perform the work while holding the lock, but perform any printing outside the lock
3262     MutexLocker mu(AdapterHandlerLibrary_lock);
3263     // See if somebody beat us to it
3264     if (method->code() != NULL) {
3265       return;
3266     }
3267 
3268     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3269     assert(compile_id > 0, "Must generate native wrapper");
3270 
3271 
3272     ResourceMark rm;
3273     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3274     if (buf != NULL) {
3275       CodeBuffer buffer(buf);
3276       struct { double data[20]; } locs_buf;
3277       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3278 #if defined(AARCH64)
3279       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3280       // in the constant pool to ensure ordering between the barrier and oops
3281       // accesses. For native_wrappers we need a constant.
3282       buffer.initialize_consts_size(8);
3283 #endif
3284       MacroAssembler _masm(&buffer);
3285 
3286       // Fill in the signature array, for the calling-convention call.
3287       const int total_args_passed = method->size_of_parameters();
3288 
3289       BasicType stack_sig_bt[16];
3290       VMRegPair stack_regs[16];
3291       BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3292       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3293 
3294       int i = 0;
3295       if (!method->is_static()) {  // Pass in receiver first
3296         sig_bt[i++] = T_OBJECT;
3297       }
3298       SignatureStream ss(method->signature());
3299       for (; !ss.at_return_type(); ss.next()) {
3300         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3301         if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3302           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3303         }
3304       }
3305       assert(i == total_args_passed, "");
3306       BasicType ret_type = ss.type();
3307 
3308       // Now get the compiled-Java arguments layout.
3309       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3310 
3311       // Generate the compiled-to-native wrapper code
3312       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3313 
3314       if (nm != NULL) {
3315         {
3316           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3317           if (nm->make_in_use()) {
3318             method->set_code(method, nm);
3319           }
3320         }
3321 
3322         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3323         if (directive->PrintAssemblyOption) {
3324           nm->print_code();
3325         }
3326         DirectivesStack::release(directive);
3327       }
3328     }
3329   } // Unlock AdapterHandlerLibrary_lock
3330 
3331 
3332   // Install the generated code.
3333   if (nm != NULL) {
3334     const char *msg = method->is_static() ? "(static)" : "";
3335     CompileTask::print_ul(nm, msg);
3336     if (PrintCompilation) {
3337       ttyLocker ttyl;
3338       CompileTask::print(tty, nm, msg);
3339     }
3340     nm->post_compiled_method_load_event();
3341   }
3342 }
3343 
3344 // -------------------------------------------------------------------------
3345 // Java-Java calling convention
3346 // (what you use when Java calls Java)
3347 
3348 //------------------------------name_for_receiver----------------------------------
3349 // For a given signature, return the VMReg for parameter 0.
3350 VMReg SharedRuntime::name_for_receiver() {
3351   VMRegPair regs;
3352   BasicType sig_bt = T_OBJECT;
3353   (void) java_calling_convention(&sig_bt, &regs, 1);
3354   // Return argument 0 register.  In the LP64 build pointers
3355   // take 2 registers, but the VM wants only the 'main' name.
3356   return regs.first();
3357 }
3358 
3359 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3360   // This method is returning a data structure allocating as a
3361   // ResourceObject, so do not put any ResourceMarks in here.
3362 
3363   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3364   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3365   int cnt = 0;
3366   if (has_receiver) {
3367     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3368   }
3369 
3370   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3371     BasicType type = ss.type();
3372     sig_bt[cnt++] = type;
3373     if (is_double_word_type(type))
3374       sig_bt[cnt++] = T_VOID;
3375   }
3376 
3377   if (has_appendix) {
3378     sig_bt[cnt++] = T_OBJECT;
3379   }
3380 
3381   assert(cnt < 256, "grow table size");
3382 
3383   int comp_args_on_stack;
3384   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3385 
3386   // the calling convention doesn't count out_preserve_stack_slots so
3387   // we must add that in to get "true" stack offsets.
3388 
3389   if (comp_args_on_stack) {
3390     for (int i = 0; i < cnt; i++) {
3391       VMReg reg1 = regs[i].first();
3392       if (reg1->is_stack()) {
3393         // Yuck
3394         reg1 = reg1->bias(out_preserve_stack_slots());
3395       }
3396       VMReg reg2 = regs[i].second();
3397       if (reg2->is_stack()) {
3398         // Yuck
3399         reg2 = reg2->bias(out_preserve_stack_slots());
3400       }
3401       regs[i].set_pair(reg2, reg1);
3402     }
3403   }
3404 
3405   // results
3406   *arg_size = cnt;
3407   return regs;
3408 }
3409 
3410 // OSR Migration Code
3411 //
3412 // This code is used convert interpreter frames into compiled frames.  It is
3413 // called from very start of a compiled OSR nmethod.  A temp array is
3414 // allocated to hold the interesting bits of the interpreter frame.  All
3415 // active locks are inflated to allow them to move.  The displaced headers and
3416 // active interpreter locals are copied into the temp buffer.  Then we return
3417 // back to the compiled code.  The compiled code then pops the current
3418 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3419 // copies the interpreter locals and displaced headers where it wants.
3420 // Finally it calls back to free the temp buffer.
3421 //
3422 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3423 
3424 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3425   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3426   // frame. The stack watermark code below ensures that the interpreted frame is processed
3427   // before it gets unwound. This is helpful as the size of the compiled frame could be
3428   // larger than the interpreted frame, which could result in the new frame not being
3429   // processed correctly.
3430   StackWatermarkSet::before_unwind(current);
3431 
3432   //
3433   // This code is dependent on the memory layout of the interpreter local
3434   // array and the monitors. On all of our platforms the layout is identical
3435   // so this code is shared. If some platform lays the their arrays out
3436   // differently then this code could move to platform specific code or
3437   // the code here could be modified to copy items one at a time using
3438   // frame accessor methods and be platform independent.
3439 
3440   frame fr = current->last_frame();
3441   assert(fr.is_interpreted_frame(), "");
3442   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3443 
3444   // Figure out how many monitors are active.
3445   int active_monitor_count = 0;
3446   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3447        kptr < fr.interpreter_frame_monitor_begin();
3448        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3449     if (kptr->obj() != NULL) active_monitor_count++;
3450   }
3451 
3452   // QQQ we could place number of active monitors in the array so that compiled code
3453   // could double check it.
3454 
3455   Method* moop = fr.interpreter_frame_method();
3456   int max_locals = moop->max_locals();
3457   // Allocate temp buffer, 1 word per local & 2 per active monitor
3458   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3459   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3460 
3461   // Copy the locals.  Order is preserved so that loading of longs works.
3462   // Since there's no GC I can copy the oops blindly.
3463   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3464   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3465                        (HeapWord*)&buf[0],
3466                        max_locals);
3467 
3468   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3469   int i = max_locals;
3470   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3471        kptr2 < fr.interpreter_frame_monitor_begin();
3472        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3473     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3474       BasicLock *lock = kptr2->lock();
3475       // Inflate so the object's header no longer refers to the BasicLock.
3476       if (lock->displaced_header().is_unlocked()) {
3477         // The object is locked and the resulting ObjectMonitor* will also be
3478         // locked so it can't be async deflated until ownership is dropped.
3479         // See the big comment in basicLock.cpp: BasicLock::move_to().
3480         ObjectSynchronizer::inflate_helper(kptr2->obj());
3481       }
3482       // Now the displaced header is free to move because the
3483       // object's header no longer refers to it.
3484       buf[i++] = (intptr_t)lock->displaced_header().value();
3485       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3486     }
3487   }
3488   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3489 
3490   return buf;
3491 JRT_END
3492 
3493 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3494   FREE_C_HEAP_ARRAY(intptr_t, buf);
3495 JRT_END
3496 
3497 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3498   AdapterHandlerTableIterator iter(_adapters);
3499   while (iter.has_next()) {
3500     AdapterHandlerEntry* a = iter.next();
3501     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3502   }
3503   return false;
3504 }
3505 
3506 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3507   AdapterHandlerTableIterator iter(_adapters);
3508   while (iter.has_next()) {
3509     AdapterHandlerEntry* a = iter.next();
3510     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3511       st->print("Adapter for signature: ");
3512       a->print_adapter_on(tty);
3513       return;
3514     }
3515   }
3516   assert(false, "Should have found handler");
3517 }
3518 
3519 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3520   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3521   if (get_i2c_entry() != NULL) {
3522     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3523   }
3524   if (get_c2i_entry() != NULL) {
3525     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3526   }
3527   if (get_c2i_entry() != NULL) {
3528     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3529   }
3530   if (get_c2i_entry() != NULL) {
3531     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3532   }
3533   if (get_c2i_unverified_entry() != NULL) {
3534     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3535   }
3536   if (get_c2i_unverified_entry() != NULL) {
3537     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3538   }
3539   if (get_c2i_no_clinit_check_entry() != NULL) {
3540     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3541   }
3542   st->cr();
3543 }
3544 
3545 #ifndef PRODUCT
3546 
3547 void AdapterHandlerLibrary::print_statistics() {
3548   _adapters->print_statistics();
3549 }
3550 
3551 #endif /* PRODUCT */
3552 
3553 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3554   StackOverflow* overflow_state = current->stack_overflow_state();
3555   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3556   overflow_state->set_reserved_stack_activation(current->stack_base());
3557 JRT_END
3558 
3559 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3560   ResourceMark rm(current);
3561   frame activation;
3562   CompiledMethod* nm = NULL;
3563   int count = 1;
3564 
3565   assert(fr.is_java_frame(), "Must start on Java frame");
3566 
3567   while (true) {
3568     Method* method = NULL;
3569     bool found = false;
3570     if (fr.is_interpreted_frame()) {
3571       method = fr.interpreter_frame_method();
3572       if (method != NULL && method->has_reserved_stack_access()) {
3573         found = true;
3574       }
3575     } else {
3576       CodeBlob* cb = fr.cb();
3577       if (cb != NULL && cb->is_compiled()) {
3578         nm = cb->as_compiled_method();
3579         method = nm->method();
3580         // scope_desc_near() must be used, instead of scope_desc_at() because on
3581         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3582         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3583           method = sd->method();
3584           if (method != NULL && method->has_reserved_stack_access()) {
3585             found = true;
3586       }
3587     }
3588       }
3589     }
3590     if (found) {
3591       activation = fr;
3592       warning("Potentially dangerous stack overflow in "
3593               "ReservedStackAccess annotated method %s [%d]",
3594               method->name_and_sig_as_C_string(), count++);
3595       EventReservedStackActivation event;
3596       if (event.should_commit()) {
3597         event.set_method(method);
3598         event.commit();
3599       }
3600     }
3601     if (fr.is_first_java_frame()) {
3602       break;
3603     } else {
3604       fr = fr.java_sender();
3605     }
3606   }
3607   return activation;
3608 }
3609 
3610 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3611   // After any safepoint, just before going back to compiled code,
3612   // we inform the GC that we will be doing initializing writes to
3613   // this object in the future without emitting card-marks, so
3614   // GC may take any compensating steps.
3615 
3616   oop new_obj = current->vm_result();
3617   if (new_obj == NULL) return;
3618 
3619   BarrierSet *bs = BarrierSet::barrier_set();
3620   bs->on_slowpath_allocation_exit(current, new_obj);
3621 }
3622 
3623 // We are at a compiled code to interpreter call. We need backing
3624 // buffers for all inline type arguments. Allocate an object array to
3625 // hold them (convenient because once we're done with it we don't have
3626 // to worry about freeing it).
3627 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
3628   assert(InlineTypePassFieldsAsArgs, "no reason to call this");
3629   ResourceMark rm;
3630 
3631   int nb_slots = 0;
3632   InstanceKlass* holder = callee->method_holder();
3633   allocate_receiver &= !callee->is_static() && holder->is_inline_klass();
3634   if (allocate_receiver) {
3635     nb_slots++;
3636   }
3637   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3638     if (ss.type() == T_INLINE_TYPE) {
3639       nb_slots++;
3640     }
3641   }
3642   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3643   objArrayHandle array(THREAD, array_oop);
3644   int i = 0;
3645   if (allocate_receiver) {
3646     InlineKlass* vk = InlineKlass::cast(holder);
3647     oop res = vk->allocate_instance(CHECK_NULL);
3648     array->obj_at_put(i, res);
3649     i++;
3650   }
3651   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3652     if (ss.type() == T_INLINE_TYPE) {
3653       InlineKlass* vk = ss.as_inline_klass(holder);
3654       oop res = vk->allocate_instance(CHECK_NULL);
3655       array->obj_at_put(i, res);
3656       i++;
3657     }
3658   }
3659   return array();
3660 }
3661 
3662 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
3663   methodHandle callee(current, callee_method);
3664   oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
3665   current->set_vm_result(array);
3666   current->set_vm_result_2(callee()); // TODO: required to keep callee live?
3667 JRT_END
3668 
3669 // We're returning from an interpreted method: load each field into a
3670 // register following the calling convention
3671 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
3672 {
3673   assert(res->klass()->is_inline_klass(), "only inline types here");
3674   ResourceMark rm;
3675   RegisterMap reg_map(current);
3676   frame stubFrame = current->last_frame();
3677   frame callerFrame = stubFrame.sender(&reg_map);
3678   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3679 
3680   InlineKlass* vk = InlineKlass::cast(res->klass());
3681 
3682   const Array<SigEntry>* sig_vk = vk->extended_sig();
3683   const Array<VMRegPair>* regs = vk->return_regs();
3684 
3685   if (regs == NULL) {
3686     // The fields of the inline klass don't fit in registers, bail out
3687     return;
3688   }
3689 
3690   int j = 1;
3691   for (int i = 0; i < sig_vk->length(); i++) {
3692     BasicType bt = sig_vk->at(i)._bt;
3693     if (bt == T_INLINE_TYPE) {
3694       continue;
3695     }
3696     if (bt == T_VOID) {
3697       if (sig_vk->at(i-1)._bt == T_LONG ||
3698           sig_vk->at(i-1)._bt == T_DOUBLE) {
3699         j++;
3700       }
3701       continue;
3702     }
3703     int off = sig_vk->at(i)._offset;
3704     assert(off > 0, "offset in object should be positive");
3705     VMRegPair pair = regs->at(j);
3706     address loc = reg_map.location(pair.first());
3707     switch(bt) {
3708     case T_BOOLEAN:
3709       *(jboolean*)loc = res->bool_field(off);
3710       break;
3711     case T_CHAR:
3712       *(jchar*)loc = res->char_field(off);
3713       break;
3714     case T_BYTE:
3715       *(jbyte*)loc = res->byte_field(off);
3716       break;
3717     case T_SHORT:
3718       *(jshort*)loc = res->short_field(off);
3719       break;
3720     case T_INT: {
3721       *(jint*)loc = res->int_field(off);
3722       break;
3723     }
3724     case T_LONG:
3725 #ifdef _LP64
3726       *(intptr_t*)loc = res->long_field(off);
3727 #else
3728       Unimplemented();
3729 #endif
3730       break;
3731     case T_OBJECT:
3732     case T_ARRAY: {
3733       *(oop*)loc = res->obj_field(off);
3734       break;
3735     }
3736     case T_FLOAT:
3737       *(jfloat*)loc = res->float_field(off);
3738       break;
3739     case T_DOUBLE:
3740       *(jdouble*)loc = res->double_field(off);
3741       break;
3742     default:
3743       ShouldNotReachHere();
3744     }
3745     j++;
3746   }
3747   assert(j == regs->length(), "missed a field?");
3748 
3749 #ifdef ASSERT
3750   VMRegPair pair = regs->at(0);
3751   address loc = reg_map.location(pair.first());
3752   assert(*(oopDesc**)loc == res, "overwritten object");
3753 #endif
3754 
3755   current->set_vm_result(res);
3756 }
3757 JRT_END
3758 
3759 // We've returned to an interpreted method, the interpreter needs a
3760 // reference to an inline type instance. Allocate it and initialize it
3761 // from field's values in registers.
3762 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
3763 {
3764   ResourceMark rm;
3765   RegisterMap reg_map(current);
3766   frame stubFrame = current->last_frame();
3767   frame callerFrame = stubFrame.sender(&reg_map);
3768 
3769 #ifdef ASSERT
3770   InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
3771 #endif
3772 
3773   if (!is_set_nth_bit(res, 0)) {
3774     // We're not returning with inline type fields in registers (the
3775     // calling convention didn't allow it for this inline klass)
3776     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3777     current->set_vm_result((oopDesc*)res);
3778     assert(verif_vk == NULL, "broken calling convention");
3779     return;
3780   }
3781 
3782   clear_nth_bit(res, 0);
3783   InlineKlass* vk = (InlineKlass*)res;
3784   assert(verif_vk == vk, "broken calling convention");
3785   assert(Metaspace::contains((void*)res), "should be klass");
3786 
3787   // Allocate handles for every oop field so they are safe in case of
3788   // a safepoint when allocating
3789   GrowableArray<Handle> handles;
3790   vk->save_oop_fields(reg_map, handles);
3791 
3792   // It's unsafe to safepoint until we are here
3793   JRT_BLOCK;
3794   {
3795     JavaThread* THREAD = current;
3796     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3797     current->set_vm_result(vt);
3798   }
3799   JRT_BLOCK_END;
3800 }
3801 JRT_END
3802 
--- EOF ---