< prev index next >

src/hotspot/share/runtime/sharedRuntime.cpp

Print this page

  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/compiledMethod.inline.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jvm.h"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"

  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"


  48 #include "metaprogramming/primitiveConversions.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"

  52 #include "oops/oop.inline.hpp"

  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/methodHandles.hpp"
  57 #include "prims/nativeLookup.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/jniHandles.inline.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stackWatermarkSet.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/synchronizer.hpp"
  70 #include "runtime/vframe.inline.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/dtrace.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/resourceHash.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/xmlstream.hpp"
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 #if INCLUDE_JFR
  83 #include "jfr/jfr.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 address             SharedRuntime::_resolve_static_call_entry;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 nmethod*            SharedRuntime::_cont_doYield_stub;
 105 
 106 //----------------------------generate_stubs-----------------------------------
 107 void SharedRuntime::generate_stubs() {
 108   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 109   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 110   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 111   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 112   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 113   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 114   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 115 
 116   AdapterHandlerLibrary::initialize();
 117 
 118 #if COMPILER2_OR_JVMCI
 119   // Vectors are generated only by C2 and JVMCI.
 120   bool support_wide = is_wide_vector(MaxVectorSize);
 121   if (support_wide) {
 122     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 123   }
 124 #endif // COMPILER2_OR_JVMCI
 125   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 126   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 127 
 128   generate_deopt_blob();
 129 
 130 #ifdef COMPILER2
 131   generate_uncommon_trap_blob();
 132 #endif // COMPILER2
 133 }
 134 

1123 // for a call current in progress, i.e., arguments has been pushed on stack
1124 // but callee has not been invoked yet.  Caller frame must be compiled.
1125 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1126                                               CallInfo& callinfo, TRAPS) {
1127   Handle receiver;
1128   Handle nullHandle;  // create a handy null handle for exception returns
1129   JavaThread* current = THREAD;
1130 
1131   assert(!vfst.at_end(), "Java frame must exist");
1132 
1133   // Find caller and bci from vframe
1134   methodHandle caller(current, vfst.method());
1135   int          bci   = vfst.bci();
1136 
1137   if (caller->is_continuation_enter_intrinsic()) {
1138     bc = Bytecodes::_invokestatic;
1139     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1140     return receiver;
1141   }
1142 















1143   Bytecode_invoke bytecode(caller, bci);
1144   int bytecode_index = bytecode.index();
1145   bc = bytecode.invoke_code();
1146 
1147   methodHandle attached_method(current, extract_attached_method(vfst));
1148   if (attached_method.not_null()) {
1149     Method* callee = bytecode.static_target(CHECK_NH);
1150     vmIntrinsics::ID id = callee->intrinsic_id();
1151     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1152     // it attaches statically resolved method to the call site.
1153     if (MethodHandles::is_signature_polymorphic(id) &&
1154         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1155       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1156 
1157       // Adjust invocation mode according to the attached method.
1158       switch (bc) {
1159         case Bytecodes::_invokevirtual:
1160           if (attached_method->method_holder()->is_interface()) {
1161             bc = Bytecodes::_invokeinterface;
1162           }
1163           break;
1164         case Bytecodes::_invokeinterface:
1165           if (!attached_method->method_holder()->is_interface()) {
1166             bc = Bytecodes::_invokevirtual;
1167           }
1168           break;
1169         case Bytecodes::_invokehandle:
1170           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1171             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1172                                               : Bytecodes::_invokevirtual;
1173           }
1174           break;
1175         default:
1176           break;
1177       }






1178     }
1179   }
1180 
1181   assert(bc != Bytecodes::_illegal, "not initialized");
1182 
1183   bool has_receiver = bc != Bytecodes::_invokestatic &&
1184                       bc != Bytecodes::_invokedynamic &&
1185                       bc != Bytecodes::_invokehandle;

1186 
1187   // Find receiver for non-static call
1188   if (has_receiver) {
1189     // This register map must be update since we need to find the receiver for
1190     // compiled frames. The receiver might be in a register.
1191     RegisterMap reg_map2(current,
1192                          RegisterMap::UpdateMap::include,
1193                          RegisterMap::ProcessFrames::include,
1194                          RegisterMap::WalkContinuation::skip);
1195     frame stubFrame   = current->last_frame();
1196     // Caller-frame is a compiled frame
1197     frame callerFrame = stubFrame.sender(&reg_map2);
1198 
1199     if (attached_method.is_null()) {
1200       Method* callee = bytecode.static_target(CHECK_NH);

1201       if (callee == nullptr) {
1202         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1203       }
1204     }
1205 
1206     // Retrieve from a compiled argument list
1207     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1208     assert(oopDesc::is_oop_or_null(receiver()), "");
1209 
1210     if (receiver.is_null()) {
1211       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);










1212     }
1213   }
1214 
1215   // Resolve method
1216   if (attached_method.not_null()) {
1217     // Parameterized by attached method.
1218     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1219   } else {
1220     // Parameterized by bytecode.
1221     constantPoolHandle constants(current, caller->constants());
1222     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1223   }
1224 
1225 #ifdef ASSERT
1226   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1227   if (has_receiver) {
1228     assert(receiver.not_null(), "should have thrown exception");
1229     Klass* receiver_klass = receiver->klass();
1230     Klass* rk = nullptr;
1231     if (attached_method.not_null()) {
1232       // In case there's resolved method attached, use its holder during the check.
1233       rk = attached_method->method_holder();
1234     } else {
1235       // Klass is already loaded.
1236       constantPoolHandle constants(current, caller->constants());
1237       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1238     }
1239     Klass* static_receiver_klass = rk;
1240     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1241            "actual receiver must be subclass of static receiver klass");
1242     if (receiver_klass->is_instance_klass()) {
1243       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1244         tty->print_cr("ERROR: Klass not yet initialized!!");
1245         receiver_klass->print();
1246       }
1247       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1248     }
1249   }
1250 #endif
1251 
1252   return receiver;
1253 }
1254 
1255 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1256   JavaThread* current = THREAD;
1257   ResourceMark rm(current);
1258   // We need first to check if any Java activations (compiled, interpreted)
1259   // exist on the stack since last JavaCall.  If not, we need
1260   // to get the target method from the JavaCall wrapper.
1261   vframeStream vfst(current, true);  // Do not skip any javaCalls
1262   methodHandle callee_method;
1263   if (vfst.at_end()) {
1264     // No Java frames were found on stack since we did the JavaCall.
1265     // Hence the stack can only contain an entry_frame.  We need to
1266     // find the target method from the stub frame.
1267     RegisterMap reg_map(current,
1268                         RegisterMap::UpdateMap::skip,
1269                         RegisterMap::ProcessFrames::include,
1270                         RegisterMap::WalkContinuation::skip);
1271     frame fr = current->last_frame();
1272     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1273     fr = fr.sender(&reg_map);
1274     assert(fr.is_entry_frame(), "must be");
1275     // fr is now pointing to the entry frame.
1276     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1277   } else {
1278     Bytecodes::Code bc;
1279     CallInfo callinfo;
1280     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));




1281     callee_method = methodHandle(current, callinfo.selected_method());
1282   }
1283   assert(callee_method()->is_method(), "must be");
1284   return callee_method;
1285 }
1286 
1287 // Resolves a call.
1288 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1289   JavaThread* current = THREAD;
1290   ResourceMark rm(current);
1291   RegisterMap cbl_map(current,
1292                       RegisterMap::UpdateMap::skip,
1293                       RegisterMap::ProcessFrames::include,
1294                       RegisterMap::WalkContinuation::skip);
1295   frame caller_frame = current->last_frame().sender(&cbl_map);
1296 
1297   CodeBlob* caller_cb = caller_frame.cb();
1298   guarantee(caller_cb != nullptr && caller_cb->is_compiled(), "must be called from compiled method");
1299   CompiledMethod* caller_nm = caller_cb->as_compiled_method();
1300 
1301   // determine call info & receiver
1302   // note: a) receiver is null for static calls
1303   //       b) an exception is thrown if receiver is null for non-static calls
1304   CallInfo call_info;
1305   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1306   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1307 
1308   NoSafepointVerifier nsv;
1309 
1310   methodHandle callee_method(current, call_info.selected_method());




1311 
1312   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1313          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1314          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1315          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1316          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1317 
1318   assert(!caller_nm->is_unloading(), "It should not be unloading");
1319 
1320 #ifndef PRODUCT
1321   // tracing/debugging/statistics
1322   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1323                  (is_virtual) ? (&_resolve_virtual_ctr) :
1324                                 (&_resolve_static_ctr);
1325   Atomic::inc(addr);
1326 
1327   if (TraceCallFixup) {
1328     ResourceMark rm(current);
1329     tty->print("resolving %s%s (%s) call to",
1330                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1331                Bytecodes::name(invoke_code));
1332     callee_method->print_short_name(tty);
1333     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1334                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1335   }
1336 #endif
1337 
1338   if (invoke_code == Bytecodes::_invokestatic) {
1339     assert(callee_method->method_holder()->is_initialized() ||
1340            callee_method->method_holder()->is_init_thread(current),
1341            "invalid class initialization state for invoke_static");
1342     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1343       // In order to keep class initialization check, do not patch call
1344       // site for static call when the class is not fully initialized.
1345       // Proper check is enforced by call site re-resolution on every invocation.
1346       //
1347       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1348       // explicit class initialization check is put in nmethod entry (VEP).
1349       assert(callee_method->method_holder()->is_linked(), "must be");
1350       return callee_method;
1351     }
1352   }
1353 
1354 
1355   // JSR 292 key invariant:
1356   // If the resolved method is a MethodHandle invoke target, the call
1357   // site must be a MethodHandle call site, because the lambda form might tail-call
1358   // leaving the stack in a state unknown to either caller or callee
1359 
1360   // Compute entry points. The computation of the entry points is independent of
1361   // patching the call.
1362 
1363   // Make sure the callee nmethod does not get deoptimized and removed before
1364   // we are done patching the code.
1365 
1366 
1367   CompiledICLocker ml(caller_nm);
1368   if (is_virtual && !is_optimized) {
1369     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1370     inline_cache->update(&call_info, receiver->klass());
1371   } else {
1372     // Callsite is a direct call - set it to the destination method
1373     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1374     callsite->set(callee_method);
1375   }
1376 
1377   return callee_method;
1378 }
1379 
1380 // Inline caches exist only in compiled code
1381 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1382 #ifdef ASSERT
1383   RegisterMap reg_map(current,
1384                       RegisterMap::UpdateMap::skip,
1385                       RegisterMap::ProcessFrames::include,
1386                       RegisterMap::WalkContinuation::skip);
1387   frame stub_frame = current->last_frame();
1388   assert(stub_frame.is_runtime_frame(), "sanity check");
1389   frame caller_frame = stub_frame.sender(&reg_map);
1390   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1391 #endif /* ASSERT */
1392 
1393   methodHandle callee_method;


1394   JRT_BLOCK
1395     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1396     // Return Method* through TLS
1397     current->set_vm_result_2(callee_method());
1398   JRT_BLOCK_END
1399   // return compiled code entry point after potential safepoints
1400   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1401   return callee_method->verified_code_entry();
1402 JRT_END
1403 
1404 
1405 // Handle call site that has been made non-entrant
1406 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1407   // 6243940 We might end up in here if the callee is deoptimized
1408   // as we race to call it.  We don't want to take a safepoint if
1409   // the caller was interpreted because the caller frame will look
1410   // interpreted to the stack walkers and arguments are now
1411   // "compiled" so it is much better to make this transition
1412   // invisible to the stack walking code. The i2c path will
1413   // place the callee method in the callee_target. It is stashed
1414   // there because if we try and find the callee by normal means a
1415   // safepoint is possible and have trouble gc'ing the compiled args.
1416   RegisterMap reg_map(current,
1417                       RegisterMap::UpdateMap::skip,
1418                       RegisterMap::ProcessFrames::include,
1419                       RegisterMap::WalkContinuation::skip);
1420   frame stub_frame = current->last_frame();
1421   assert(stub_frame.is_runtime_frame(), "sanity check");
1422   frame caller_frame = stub_frame.sender(&reg_map);
1423 
1424   if (caller_frame.is_interpreted_frame() ||
1425       caller_frame.is_entry_frame() ||
1426       caller_frame.is_upcall_stub_frame()) {
1427     Method* callee = current->callee_target();
1428     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1429     current->set_vm_result_2(callee);
1430     current->set_callee_target(nullptr);
1431     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1432       // Bypass class initialization checks in c2i when caller is in native.
1433       // JNI calls to static methods don't have class initialization checks.
1434       // Fast class initialization checks are present in c2i adapters and call into
1435       // SharedRuntime::handle_wrong_method() on the slow path.
1436       //
1437       // JVM upcalls may land here as well, but there's a proper check present in
1438       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1439       // so bypassing it in c2i adapter is benign.
1440       return callee->get_c2i_no_clinit_check_entry();
1441     } else {
1442       return callee->get_c2i_entry();




1443     }
1444   }
1445 
1446   // Must be compiled to compiled path which is safe to stackwalk
1447   methodHandle callee_method;



1448   JRT_BLOCK
1449     // Force resolving of caller (if we called from compiled frame)
1450     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1451     current->set_vm_result_2(callee_method());
1452   JRT_BLOCK_END
1453   // return compiled code entry point after potential safepoints
1454   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1455   return callee_method->verified_code_entry();
1456 JRT_END
1457 
1458 // Handle abstract method call
1459 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1460   // Verbose error message for AbstractMethodError.
1461   // Get the called method from the invoke bytecode.
1462   vframeStream vfst(current, true);
1463   assert(!vfst.at_end(), "Java frame must exist");
1464   methodHandle caller(current, vfst.method());
1465   Bytecode_invoke invoke(caller, vfst.bci());
1466   DEBUG_ONLY( invoke.verify(); )
1467 
1468   // Find the compiled caller frame.
1469   RegisterMap reg_map(current,
1470                       RegisterMap::UpdateMap::include,
1471                       RegisterMap::ProcessFrames::include,
1472                       RegisterMap::WalkContinuation::skip);
1473   frame stubFrame = current->last_frame();
1474   assert(stubFrame.is_runtime_frame(), "must be");
1475   frame callerFrame = stubFrame.sender(&reg_map);
1476   assert(callerFrame.is_compiled_frame(), "must be");
1477 
1478   // Install exception and return forward entry.
1479   address res = StubRoutines::throw_AbstractMethodError_entry();
1480   JRT_BLOCK
1481     methodHandle callee(current, invoke.static_target(current));
1482     if (!callee.is_null()) {
1483       oop recv = callerFrame.retrieve_receiver(&reg_map);
1484       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1485       res = StubRoutines::forward_exception_entry();
1486       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1487     }
1488   JRT_BLOCK_END
1489   return res;
1490 JRT_END
1491 
1492 
1493 // resolve a static call and patch code
1494 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1495   methodHandle callee_method;

1496   bool enter_special = false;
1497   JRT_BLOCK
1498     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1499     current->set_vm_result_2(callee_method());
1500 
1501     if (current->is_interp_only_mode()) {
1502       RegisterMap reg_map(current,
1503                           RegisterMap::UpdateMap::skip,
1504                           RegisterMap::ProcessFrames::include,
1505                           RegisterMap::WalkContinuation::skip);
1506       frame stub_frame = current->last_frame();
1507       assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1508       frame caller = stub_frame.sender(&reg_map);
1509       enter_special = caller.cb() != nullptr && caller.cb()->is_compiled()
1510         && caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic();
1511     }
1512   JRT_BLOCK_END
1513 
1514   if (current->is_interp_only_mode() && enter_special) {
1515     // enterSpecial is compiled and calls this method to resolve the call to Continuation::enter
1516     // but in interp_only_mode we need to go to the interpreted entry
1517     // The c2i won't patch in this mode -- see fixup_callers_callsite
1518     //
1519     // This should probably be done in all cases, not just enterSpecial (see JDK-8218403),
1520     // but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no
1521     // interpreted version.
1522     return callee_method->get_c2i_entry();
1523   }
1524 
1525   // return compiled code entry point after potential safepoints
1526   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1527   return callee_method->verified_code_entry();


1528 JRT_END
1529 
1530 
1531 // resolve virtual call and update inline cache to monomorphic
1532 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1533   methodHandle callee_method;

1534   JRT_BLOCK
1535     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1536     current->set_vm_result_2(callee_method());
1537   JRT_BLOCK_END
1538   // return compiled code entry point after potential safepoints
1539   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1540   return callee_method->verified_code_entry();


1541 JRT_END
1542 
1543 
1544 // Resolve a virtual call that can be statically bound (e.g., always
1545 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1546 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1547   methodHandle callee_method;

1548   JRT_BLOCK
1549     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1550     current->set_vm_result_2(callee_method());
1551   JRT_BLOCK_END
1552   // return compiled code entry point after potential safepoints
1553   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1554   return callee_method->verified_code_entry();


1555 JRT_END
1556 
1557 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {


1558   JavaThread* current = THREAD;
1559   ResourceMark rm(current);
1560   CallInfo call_info;
1561   Bytecodes::Code bc;
1562 
1563   // receiver is null for static calls. An exception is thrown for null
1564   // receivers for non-static calls
1565   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1566 
1567   methodHandle callee_method(current, call_info.selected_method());
1568 
1569 #ifndef PRODUCT
1570   Atomic::inc(&_ic_miss_ctr);
1571 
1572   // Statistics & Tracing
1573   if (TraceCallFixup) {
1574     ResourceMark rm(current);
1575     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1576     callee_method->print_short_name(tty);
1577     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1578   }
1579 
1580   if (ICMissHistogram) {
1581     MutexLocker m(VMStatistic_lock);
1582     RegisterMap reg_map(current,
1583                         RegisterMap::UpdateMap::skip,
1584                         RegisterMap::ProcessFrames::include,
1585                         RegisterMap::WalkContinuation::skip);
1586     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1587     // produce statistics under the lock
1588     trace_ic_miss(f.pc());
1589   }
1590 #endif
1591 
1592   // install an event collector so that when a vtable stub is created the
1593   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1594   // event can't be posted when the stub is created as locks are held
1595   // - instead the event will be deferred until the event collector goes
1596   // out of scope.
1597   JvmtiDynamicCodeEventCollector event_collector;
1598 
1599   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1600   RegisterMap reg_map(current,
1601                       RegisterMap::UpdateMap::skip,
1602                       RegisterMap::ProcessFrames::include,
1603                       RegisterMap::WalkContinuation::skip);
1604   frame caller_frame = current->last_frame().sender(&reg_map);
1605   CodeBlob* cb = caller_frame.cb();
1606   CompiledMethod* caller_nm = cb->as_compiled_method();




1607 
1608   CompiledICLocker ml(caller_nm);
1609   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1610   inline_cache->update(&call_info, receiver()->klass());
1611 
1612   return callee_method;
1613 }
1614 
1615 //
1616 // Resets a call-site in compiled code so it will get resolved again.
1617 // This routines handles both virtual call sites, optimized virtual call
1618 // sites, and static call sites. Typically used to change a call sites
1619 // destination from compiled to interpreted.
1620 //
1621 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1622   JavaThread* current = THREAD;
1623   ResourceMark rm(current);
1624   RegisterMap reg_map(current,
1625                       RegisterMap::UpdateMap::skip,
1626                       RegisterMap::ProcessFrames::include,
1627                       RegisterMap::WalkContinuation::skip);
1628   frame stub_frame = current->last_frame();
1629   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1630   frame caller = stub_frame.sender(&reg_map);



1631 
1632   // Do nothing if the frame isn't a live compiled frame.
1633   // nmethod could be deoptimized by the time we get here
1634   // so no update to the caller is needed.
1635 
1636   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1637       (caller.is_native_frame() && ((CompiledMethod*)caller.cb())->method()->is_continuation_enter_intrinsic())) {
1638 
1639     address pc = caller.pc();
1640 
1641     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1642 
1643     // Default call_addr is the location of the "basic" call.
1644     // Determine the address of the call we a reresolving. With
1645     // Inline Caches we will always find a recognizable call.
1646     // With Inline Caches disabled we may or may not find a
1647     // recognizable call. We will always find a call for static
1648     // calls and for optimized virtual calls. For vanilla virtual
1649     // calls it depends on the state of the UseInlineCaches switch.
1650     //
1651     // With Inline Caches disabled we can get here for a virtual call
1652     // for two reasons:
1653     //   1 - calling an abstract method. The vtable for abstract methods
1654     //       will run us thru handle_wrong_method and we will eventually
1655     //       end up in the interpreter to throw the ame.
1656     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1657     //       call and between the time we fetch the entry address and
1658     //       we jump to it the target gets deoptimized. Similar to 1
1659     //       we will wind up in the interprter (thru a c2i with c2).
1660     //
1661     CompiledICLocker ml(caller_nm);
1662     address call_addr = caller_nm->call_instruction_address(pc);
1663 
1664     if (call_addr != nullptr) {
1665       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1666       // bytes back in the instruction stream so we must also check for reloc info.
1667       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1668       bool ret = iter.next(); // Get item
1669       if (ret) {


1670         switch (iter.type()) {
1671           case relocInfo::static_call_type:

1672           case relocInfo::opt_virtual_call_type: {

1673             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1674             cdc->set_to_clean();
1675             break;
1676           }
1677 
1678           case relocInfo::virtual_call_type: {
1679             // compiled, dispatched call (which used to call an interpreted method)
1680             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1681             inline_cache->set_to_clean();
1682             break;
1683           }
1684           default:
1685             break;
1686         }
1687       }
1688     }
1689   }
1690 
1691   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1692 
1693 
1694 #ifndef PRODUCT
1695   Atomic::inc(&_wrong_method_ctr);
1696 
1697   if (TraceCallFixup) {
1698     ResourceMark rm(current);
1699     tty->print("handle_wrong_method reresolving call to");
1700     callee_method->print_short_name(tty);
1701     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1702   }
1703 #endif
1704 
1705   return callee_method;
1706 }
1707 
1708 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1709   // The faulting unsafe accesses should be changed to throw the error
1710   // synchronously instead. Meanwhile the faulting instruction will be
1711   // skipped over (effectively turning it into a no-op) and an
1712   // asynchronous exception will be raised which the thread will
1713   // handle at a later point. If the instruction is a load it will
1714   // return garbage.
1715 
1716   // Request an async exception.
1717   thread->set_pending_unsafe_access_error();
1718 
1719   // Return address of next instruction to execute.

1884   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1885 
1886   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1887   if (message == nullptr) {
1888     // Shouldn't happen, but don't cause even more problems if it does
1889     message = const_cast<char*>(caster_klass->external_name());
1890   } else {
1891     jio_snprintf(message,
1892                  msglen,
1893                  "class %s cannot be cast to class %s (%s%s%s)",
1894                  caster_name,
1895                  target_name,
1896                  caster_klass_description,
1897                  klass_separator,
1898                  target_klass_description
1899                  );
1900   }
1901   return message;
1902 }
1903 















1904 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1905   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1906 JRT_END
1907 
1908 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1909   if (!SafepointSynchronize::is_synchronizing()) {
1910     // Only try quick_enter() if we're not trying to reach a safepoint
1911     // so that the calling thread reaches the safepoint more quickly.
1912     if (ObjectSynchronizer::quick_enter(obj, current, lock)) {
1913       return;
1914     }
1915   }
1916   // NO_ASYNC required because an async exception on the state transition destructor
1917   // would leave you with the lock held and it would never be released.
1918   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1919   // and the model is that an exception implies the method failed.
1920   JRT_BLOCK_NO_ASYNC
1921   Handle h_obj(THREAD, obj);
1922   ObjectSynchronizer::enter(h_obj, lock, current);
1923   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");

2099   tty->print_cr("        %% in nested categories are relative to their category");
2100   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2101   tty->cr();
2102 
2103   MethodArityHistogram h;
2104 }
2105 #endif
2106 
2107 #ifndef PRODUCT
2108 static int _lookups; // number of calls to lookup
2109 static int _equals;  // number of buckets checked with matching hash
2110 static int _hits;    // number of successful lookups
2111 static int _compact; // number of equals calls with compact signature
2112 #endif
2113 
2114 // A simple wrapper class around the calling convention information
2115 // that allows sharing of adapters for the same calling convention.
2116 class AdapterFingerPrint : public CHeapObj<mtCode> {
2117  private:
2118   enum {
2119     _basic_type_bits = 4,
2120     _basic_type_mask = right_n_bits(_basic_type_bits),
2121     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2122     _compact_int_count = 3
2123   };
2124   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2125   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2126 
2127   union {
2128     int  _compact[_compact_int_count];
2129     int* _fingerprint;
2130   } _value;
2131   int _length; // A negative length indicates the fingerprint is in the compact form,
2132                // Otherwise _value._fingerprint is the array.
2133 
2134   // Remap BasicTypes that are handled equivalently by the adapters.
2135   // These are correct for the current system but someday it might be
2136   // necessary to make this mapping platform dependent.
2137   static int adapter_encoding(BasicType in) {
2138     switch (in) {
2139       case T_BOOLEAN:
2140       case T_BYTE:
2141       case T_SHORT:
2142       case T_CHAR:
2143         // There are all promoted to T_INT in the calling convention
2144         return T_INT;
2145 
2146       case T_OBJECT:
2147       case T_ARRAY:
2148         // In other words, we assume that any register good enough for
2149         // an int or long is good enough for a managed pointer.
2150 #ifdef _LP64
2151         return T_LONG;
2152 #else
2153         return T_INT;
2154 #endif
2155 
2156       case T_INT:
2157       case T_LONG:
2158       case T_FLOAT:
2159       case T_DOUBLE:
2160       case T_VOID:
2161         return in;
2162 
2163       default:
2164         ShouldNotReachHere();
2165         return T_CONFLICT;
2166     }
2167   }
2168 
2169  public:
2170   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2171     // The fingerprint is based on the BasicType signature encoded
2172     // into an array of ints with eight entries per int.

2173     int* ptr;
2174     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2175     if (len <= _compact_int_count) {
2176       assert(_compact_int_count == 3, "else change next line");
2177       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2178       // Storing the signature encoded as signed chars hits about 98%
2179       // of the time.
2180       _length = -len;
2181       ptr = _value._compact;
2182     } else {
2183       _length = len;
2184       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2185       ptr = _value._fingerprint;
2186     }
2187 
2188     // Now pack the BasicTypes with 8 per int
2189     int sig_index = 0;


2190     for (int index = 0; index < len; index++) {
2191       int value = 0;
2192       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2193         int bt = adapter_encoding(sig_bt[sig_index++]);
2194         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2195         value = (value << _basic_type_bits) | bt;























2196       }
2197       ptr[index] = value;
2198     }

2199   }
2200 
2201   ~AdapterFingerPrint() {
2202     if (_length > 0) {
2203       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2204     }
2205   }
2206 
2207   int value(int index) {
2208     if (_length < 0) {
2209       return _value._compact[index];
2210     }
2211     return _value._fingerprint[index];
2212   }
2213   int length() {
2214     if (_length < 0) return -_length;
2215     return _length;
2216   }
2217 
2218   bool is_compact() {

2243   const char* as_basic_args_string() {
2244     stringStream st;
2245     bool long_prev = false;
2246     for (int i = 0; i < length(); i++) {
2247       unsigned val = (unsigned)value(i);
2248       // args are packed so that first/lower arguments are in the highest
2249       // bits of each int value, so iterate from highest to the lowest
2250       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2251         unsigned v = (val >> j) & _basic_type_mask;
2252         if (v == 0) {
2253           assert(i == length() - 1, "Only expect zeroes in the last word");
2254           continue;
2255         }
2256         if (long_prev) {
2257           long_prev = false;
2258           if (v == T_VOID) {
2259             st.print("J");
2260           } else {
2261             st.print("L");
2262           }
2263         }
2264         switch (v) {
2265           case T_INT:    st.print("I");    break;
2266           case T_LONG:   long_prev = true; break;
2267           case T_FLOAT:  st.print("F");    break;
2268           case T_DOUBLE: st.print("D");    break;
2269           case T_VOID:   break;
2270           default: ShouldNotReachHere();
2271         }
2272       }
2273     }
2274     if (long_prev) {
2275       st.print("L");
2276     }
2277     return st.as_string();
2278   }
2279 #endif // !product
2280 
2281   bool equals(AdapterFingerPrint* other) {
2282     if (other->_length != _length) {
2283       return false;
2284     }
2285     if (_length < 0) {
2286       assert(_compact_int_count == 3, "else change next line");
2287       return _value._compact[0] == other->_value._compact[0] &&
2288              _value._compact[1] == other->_value._compact[1] &&
2289              _value._compact[2] == other->_value._compact[2];
2290     } else {

2298   }
2299 
2300   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2301     NOT_PRODUCT(_equals++);
2302     return fp1->equals(fp2);
2303   }
2304 
2305   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2306     return fp->compute_hash();
2307   }
2308 };
2309 
2310 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2311 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2312                   AnyObj::C_HEAP, mtCode,
2313                   AdapterFingerPrint::compute_hash,
2314                   AdapterFingerPrint::equals>;
2315 static AdapterHandlerTable* _adapter_handler_table;
2316 
2317 // Find a entry with the same fingerprint if it exists
2318 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2319   NOT_PRODUCT(_lookups++);
2320   assert_lock_strong(AdapterHandlerLibrary_lock);
2321   AdapterFingerPrint fp(total_args_passed, sig_bt);
2322   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2323   if (entry != nullptr) {
2324 #ifndef PRODUCT
2325     if (fp.is_compact()) _compact++;
2326     _hits++;
2327 #endif
2328     return *entry;
2329   }
2330   return nullptr;
2331 }
2332 
2333 #ifndef PRODUCT
2334 static void print_table_statistics() {
2335   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2336     return sizeof(*key) + sizeof(*a);
2337   };
2338   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2339   ts.print(tty, "AdapterHandlerTable");
2340   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2341                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2342   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2343                 _lookups, _equals, _hits, _compact);
2344 }
2345 #endif
2346 
2347 // ---------------------------------------------------------------------------
2348 // Implementation of AdapterHandlerLibrary
2349 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2350 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2351 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2352 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2353 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2354 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2355 const int AdapterHandlerLibrary_size = 16*K;
2356 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2357 
2358 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2359   return _buffer;
2360 }
2361 
2362 static void post_adapter_creation(const AdapterBlob* new_adapter,
2363                                   const AdapterHandlerEntry* entry) {
2364   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2365     char blob_id[256];
2366     jio_snprintf(blob_id,
2367                  sizeof(blob_id),
2368                  "%s(%s)",
2369                  new_adapter->name(),
2370                  entry->fingerprint()->as_string());
2371     if (Forte::is_enabled()) {
2372       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2373     }
2374 
2375     if (JvmtiExport::should_post_dynamic_code_generated()) {

2378   }
2379 }
2380 
2381 void AdapterHandlerLibrary::initialize() {
2382   ResourceMark rm;
2383   AdapterBlob* no_arg_blob = nullptr;
2384   AdapterBlob* int_arg_blob = nullptr;
2385   AdapterBlob* obj_arg_blob = nullptr;
2386   AdapterBlob* obj_int_arg_blob = nullptr;
2387   AdapterBlob* obj_obj_arg_blob = nullptr;
2388   {
2389     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2390     MutexLocker mu(AdapterHandlerLibrary_lock);
2391 
2392     // Create a special handler for abstract methods.  Abstract methods
2393     // are never compiled so an i2c entry is somewhat meaningless, but
2394     // throw AbstractMethodError just in case.
2395     // Pass wrong_method_abstract for the c2i transitions to return
2396     // AbstractMethodError for invalid invocations.
2397     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2398     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr),
2399                                                                 StubRoutines::throw_AbstractMethodError_entry(),

2400                                                                 wrong_method_abstract, wrong_method_abstract);
2401 
2402     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2403     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true);
2404 
2405     BasicType obj_args[] = { T_OBJECT };
2406     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);






2407 
2408     BasicType int_args[] = { T_INT };
2409     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);


2410 
2411     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2412     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);



2413 
2414     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2415     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);



2416 
2417     assert(no_arg_blob != nullptr &&
2418           obj_arg_blob != nullptr &&
2419           int_arg_blob != nullptr &&
2420           obj_int_arg_blob != nullptr &&
2421           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2422   }

2423 
2424   // Outside of the lock
2425   post_adapter_creation(no_arg_blob, _no_arg_handler);
2426   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2427   post_adapter_creation(int_arg_blob, _int_arg_handler);
2428   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2429   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2430 }
2431 
2432 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2433                                                       address i2c_entry,
2434                                                       address c2i_entry,


2435                                                       address c2i_unverified_entry,

2436                                                       address c2i_no_clinit_check_entry) {
2437   // Insert an entry into the table
2438   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2439                                  c2i_no_clinit_check_entry);
2440 }
2441 
2442 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2443   if (method->is_abstract()) {
2444     return _abstract_method_handler;
2445   }
2446   int total_args_passed = method->size_of_parameters(); // All args on stack
2447   if (total_args_passed == 0) {
2448     return _no_arg_handler;
2449   } else if (total_args_passed == 1) {
2450     if (!method->is_static()) {



2451       return _obj_arg_handler;
2452     }
2453     switch (method->signature()->char_at(1)) {
2454       case JVM_SIGNATURE_CLASS:









2455       case JVM_SIGNATURE_ARRAY:
2456         return _obj_arg_handler;
2457       case JVM_SIGNATURE_INT:
2458       case JVM_SIGNATURE_BOOLEAN:
2459       case JVM_SIGNATURE_CHAR:
2460       case JVM_SIGNATURE_BYTE:
2461       case JVM_SIGNATURE_SHORT:
2462         return _int_arg_handler;
2463     }
2464   } else if (total_args_passed == 2 &&
2465              !method->is_static()) {
2466     switch (method->signature()->char_at(1)) {
2467       case JVM_SIGNATURE_CLASS:









2468       case JVM_SIGNATURE_ARRAY:
2469         return _obj_obj_arg_handler;
2470       case JVM_SIGNATURE_INT:
2471       case JVM_SIGNATURE_BOOLEAN:
2472       case JVM_SIGNATURE_CHAR:
2473       case JVM_SIGNATURE_BYTE:
2474       case JVM_SIGNATURE_SHORT:
2475         return _obj_int_arg_handler;
2476     }
2477   }
2478   return nullptr;
2479 }
2480 
2481 class AdapterSignatureIterator : public SignatureIterator {
2482  private:
2483   BasicType stack_sig_bt[16];
2484   BasicType* sig_bt;
2485   int index;




2486 
2487  public:
2488   AdapterSignatureIterator(Symbol* signature,
2489                            fingerprint_t fingerprint,
2490                            bool is_static,
2491                            int total_args_passed) :
2492     SignatureIterator(signature, fingerprint),
2493     index(0)
2494   {
2495     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2496     if (!is_static) { // Pass in receiver first
2497       sig_bt[index++] = T_OBJECT;













2498     }
2499     do_parameters_on(this);
2500   }
2501 
2502   BasicType* basic_types() {
2503     return sig_bt;







2504   }

2505 
2506 #ifdef ASSERT
2507   int slots() {
2508     return index;




































2509   }


















































2510 #endif


















































2511 
2512  private:










2513 
2514   friend class SignatureIterator;  // so do_parameters_on can call do_type
2515   void do_type(BasicType type) {
2516     sig_bt[index++] = type;
2517     if (type == T_LONG || type == T_DOUBLE) {
2518       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots



2519     }
2520   }
2521 };









2522 
2523 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2524   // Use customized signature handler.  Need to lock around updates to
2525   // the _adapter_handler_table (it is not safe for concurrent readers
2526   // and a single writer: this could be fixed if it becomes a
2527   // problem).
2528 
2529   // Fast-path for trivial adapters
2530   AdapterHandlerEntry* entry = get_simple_adapter(method);
2531   if (entry != nullptr) {
2532     return entry;
2533   }
2534 
2535   ResourceMark rm;
2536   AdapterBlob* new_adapter = nullptr;
2537 
2538   // Fill in the signature array, for the calling-convention call.
2539   int total_args_passed = method->size_of_parameters(); // All args on stack













2540 
2541   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2542                               method->is_static(), total_args_passed);
2543   assert(si.slots() == total_args_passed, "");
2544   BasicType* sig_bt = si.basic_types();
2545   {
2546     MutexLocker mu(AdapterHandlerLibrary_lock);
2547 













2548     // Lookup method signature's fingerprint
2549     entry = lookup(total_args_passed, sig_bt);
2550 
2551     if (entry != nullptr) {
2552 #ifdef ASSERT
2553       if (VerifyAdapterSharing) {
2554         AdapterBlob* comparison_blob = nullptr;
2555         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
2556         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2557         assert(comparison_entry->compare_code(entry), "code must match");
2558         // Release the one just created and return the original
2559         delete comparison_entry;
2560       }
2561 #endif
2562       return entry;
2563     }
2564 
2565     entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2566   }
2567 
2568   // Outside of the lock
2569   if (new_adapter != nullptr) {
2570     post_adapter_creation(new_adapter, entry);
2571   }
2572   return entry;
2573 }
2574 
2575 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2576                                                            int total_args_passed,
2577                                                            BasicType* sig_bt,
2578                                                            bool allocate_code_blob) {
2579 
2580   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2581   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2582   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2583   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2584   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;
2585 
2586   VMRegPair stack_regs[16];
2587   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2588 
2589   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2590   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2591   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2592   CodeBuffer buffer(buf);
2593   short buffer_locs[20];
2594   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2595                                           sizeof(buffer_locs)/sizeof(relocInfo));
2596 
2597   // Make a C heap allocated version of the fingerprint to store in the adapter
2598   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2599   MacroAssembler _masm(&buffer);
2600   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2601                                                 total_args_passed,
2602                                                 comp_args_on_stack,
2603                                                 sig_bt,
2604                                                 regs,
2605                                                 fingerprint);












2606 
2607 #ifdef ASSERT
2608   if (VerifyAdapterSharing) {
2609     entry->save_code(buf->code_begin(), buffer.insts_size());
2610     if (!allocate_code_blob) {
2611       return entry;
2612     }
2613   }
2614 #endif
2615 
2616   new_adapter = AdapterBlob::create(&buffer);
2617   NOT_PRODUCT(int insts_size = buffer.insts_size());
2618   if (new_adapter == nullptr) {
2619     // CodeCache is full, disable compilation
2620     // Ought to log this but compile log is only per compile thread
2621     // and we're some non descript Java thread.
2622     return nullptr;
2623   }
2624   entry->relocate(new_adapter->content_begin());
2625 #ifndef PRODUCT
2626   // debugging support
2627   if (PrintAdapterHandlers || PrintStubCode) {
2628     ttyLocker ttyl;
2629     entry->print_adapter_on(tty);
2630     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2631                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2632                   fingerprint->as_string(), insts_size);
2633     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2634     if (Verbose || PrintStubCode) {
2635       address first_pc = entry->base_address();
2636       if (first_pc != nullptr) {

2638                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2639         tty->cr();
2640       }
2641     }
2642   }
2643 #endif
2644 
2645   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2646   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2647   if (contains_all_checks || !VerifyAdapterCalls) {
2648     assert_lock_strong(AdapterHandlerLibrary_lock);
2649     _adapter_handler_table->put(fingerprint, entry);
2650   }
2651   return entry;
2652 }
2653 
2654 address AdapterHandlerEntry::base_address() {
2655   address base = _i2c_entry;
2656   if (base == nullptr)  base = _c2i_entry;
2657   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");


2658   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");

2659   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
2660   return base;
2661 }
2662 
2663 void AdapterHandlerEntry::relocate(address new_base) {
2664   address old_base = base_address();
2665   assert(old_base != nullptr, "");
2666   ptrdiff_t delta = new_base - old_base;
2667   if (_i2c_entry != nullptr)
2668     _i2c_entry += delta;
2669   if (_c2i_entry != nullptr)
2670     _c2i_entry += delta;




2671   if (_c2i_unverified_entry != nullptr)
2672     _c2i_unverified_entry += delta;


2673   if (_c2i_no_clinit_check_entry != nullptr)
2674     _c2i_no_clinit_check_entry += delta;
2675   assert(base_address() == new_base, "");
2676 }
2677 
2678 
2679 AdapterHandlerEntry::~AdapterHandlerEntry() {
2680   delete _fingerprint;



2681 #ifdef ASSERT
2682   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2683 #endif
2684 }
2685 
2686 
2687 #ifdef ASSERT
2688 // Capture the code before relocation so that it can be compared
2689 // against other versions.  If the code is captured after relocation
2690 // then relative instructions won't be equivalent.
2691 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2692   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2693   _saved_code_length = length;
2694   memcpy(_saved_code, buffer, length);
2695 }
2696 
2697 
2698 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
2699   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
2700 

2747 
2748       struct { double data[20]; } locs_buf;
2749       struct { double data[20]; } stubs_locs_buf;
2750       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2751 #if defined(AARCH64) || defined(PPC64)
2752       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2753       // in the constant pool to ensure ordering between the barrier and oops
2754       // accesses. For native_wrappers we need a constant.
2755       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
2756       // static java call that is resolved in the runtime.
2757       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
2758         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
2759       }
2760 #endif
2761       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
2762       MacroAssembler _masm(&buffer);
2763 
2764       // Fill in the signature array, for the calling-convention call.
2765       const int total_args_passed = method->size_of_parameters();
2766 

2767       VMRegPair stack_regs[16];

2768       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2769 
2770       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2771                               method->is_static(), total_args_passed);
2772       BasicType* sig_bt = si.basic_types();
2773       assert(si.slots() == total_args_passed, "");
2774       BasicType ret_type = si.return_type();








2775 
2776       // Now get the compiled-Java arguments layout.
2777       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2778 
2779       // Generate the compiled-to-native wrapper code
2780       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2781 
2782       if (nm != nullptr) {
2783         {
2784           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
2785           if (nm->make_in_use()) {
2786             method->set_code(method, nm);
2787           }
2788         }
2789 
2790         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2791         if (directive->PrintAssemblyOption) {
2792           nm->print_code();
2793         }
2794         DirectivesStack::release(directive);

2999       st->print("Adapter for signature: ");
3000       a->print_adapter_on(st);
3001       return true;
3002     } else {
3003       return false; // keep looking
3004     }
3005   };
3006   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3007   _adapter_handler_table->iterate(findblob);
3008   assert(found, "Should have found handler");
3009 }
3010 
3011 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3012   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3013   if (get_i2c_entry() != nullptr) {
3014     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3015   }
3016   if (get_c2i_entry() != nullptr) {
3017     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3018   }






3019   if (get_c2i_unverified_entry() != nullptr) {
3020     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));



3021   }
3022   if (get_c2i_no_clinit_check_entry() != nullptr) {
3023     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3024   }
3025   st->cr();
3026 }
3027 
3028 #ifndef PRODUCT
3029 
3030 void AdapterHandlerLibrary::print_statistics() {
3031   print_table_statistics();
3032 }
3033 
3034 #endif /* PRODUCT */
3035 
3036 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3037   assert(current == JavaThread::current(), "pre-condition");
3038   StackOverflow* overflow_state = current->stack_overflow_state();
3039   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3040   overflow_state->set_reserved_stack_activation(current->stack_base());

3089         event.set_method(method);
3090         event.commit();
3091       }
3092     }
3093   }
3094   return activation;
3095 }
3096 
3097 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3098   // After any safepoint, just before going back to compiled code,
3099   // we inform the GC that we will be doing initializing writes to
3100   // this object in the future without emitting card-marks, so
3101   // GC may take any compensating steps.
3102 
3103   oop new_obj = current->vm_result();
3104   if (new_obj == nullptr) return;
3105 
3106   BarrierSet *bs = BarrierSet::barrier_set();
3107   bs->on_slowpath_allocation_exit(current, new_obj);
3108 }




































































































































































































  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/compiledMethod.inline.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jvm.h"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/access.hpp"
  50 #include "oops/fieldStreams.inline.hpp"
  51 #include "metaprogramming/primitiveConversions.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/inlineKlass.inline.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/jvmtiThreadState.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/nativeLookup.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/init.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/jniHandles.inline.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stackWatermarkSet.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/vframe.inline.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vm_version.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/dtrace.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/resourceHash.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/xmlstream.hpp"
  84 #ifdef COMPILER1
  85 #include "c1/c1_Runtime1.hpp"
  86 #endif
  87 #if INCLUDE_JFR
  88 #include "jfr/jfr.hpp"
  89 #endif
  90 
  91 // Shared stub locations
  92 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  93 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  94 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  95 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  96 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  97 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;

  98 
  99 DeoptimizationBlob* SharedRuntime::_deopt_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
 101 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 102 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 103 
 104 #ifdef COMPILER2
 105 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 106 #endif // COMPILER2
 107 
 108 nmethod*            SharedRuntime::_cont_doYield_stub;
 109 
 110 //----------------------------generate_stubs-----------------------------------
 111 void SharedRuntime::generate_stubs() {
 112   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 113   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 114   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 115   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 116   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 117   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");

 118 
 119   AdapterHandlerLibrary::initialize();
 120 
 121 #if COMPILER2_OR_JVMCI
 122   // Vectors are generated only by C2 and JVMCI.
 123   bool support_wide = is_wide_vector(MaxVectorSize);
 124   if (support_wide) {
 125     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 126   }
 127 #endif // COMPILER2_OR_JVMCI
 128   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 129   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 130 
 131   generate_deopt_blob();
 132 
 133 #ifdef COMPILER2
 134   generate_uncommon_trap_blob();
 135 #endif // COMPILER2
 136 }
 137 

1126 // for a call current in progress, i.e., arguments has been pushed on stack
1127 // but callee has not been invoked yet.  Caller frame must be compiled.
1128 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1129                                               CallInfo& callinfo, TRAPS) {
1130   Handle receiver;
1131   Handle nullHandle;  // create a handy null handle for exception returns
1132   JavaThread* current = THREAD;
1133 
1134   assert(!vfst.at_end(), "Java frame must exist");
1135 
1136   // Find caller and bci from vframe
1137   methodHandle caller(current, vfst.method());
1138   int          bci   = vfst.bci();
1139 
1140   if (caller->is_continuation_enter_intrinsic()) {
1141     bc = Bytecodes::_invokestatic;
1142     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1143     return receiver;
1144   }
1145 
1146   // Substitutability test implementation piggy backs on static call resolution
1147   Bytecodes::Code code = caller->java_code_at(bci);
1148   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1149     bc = Bytecodes::_invokestatic;
1150     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1151     assert(attached_method.not_null(), "must have attached method");
1152     vmClasses::ValueObjectMethods_klass()->initialize(CHECK_NH);
1153     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1154 #ifdef ASSERT
1155     Method* is_subst = vmClasses::ValueObjectMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1156     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1157 #endif
1158     return receiver;
1159   }
1160 
1161   Bytecode_invoke bytecode(caller, bci);
1162   int bytecode_index = bytecode.index();
1163   bc = bytecode.invoke_code();
1164 
1165   methodHandle attached_method(current, extract_attached_method(vfst));
1166   if (attached_method.not_null()) {
1167     Method* callee = bytecode.static_target(CHECK_NH);
1168     vmIntrinsics::ID id = callee->intrinsic_id();
1169     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1170     // it attaches statically resolved method to the call site.
1171     if (MethodHandles::is_signature_polymorphic(id) &&
1172         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1173       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1174 
1175       // Adjust invocation mode according to the attached method.
1176       switch (bc) {
1177         case Bytecodes::_invokevirtual:
1178           if (attached_method->method_holder()->is_interface()) {
1179             bc = Bytecodes::_invokeinterface;
1180           }
1181           break;
1182         case Bytecodes::_invokeinterface:
1183           if (!attached_method->method_holder()->is_interface()) {
1184             bc = Bytecodes::_invokevirtual;
1185           }
1186           break;
1187         case Bytecodes::_invokehandle:
1188           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1189             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1190                                               : Bytecodes::_invokevirtual;
1191           }
1192           break;
1193         default:
1194           break;
1195       }
1196     } else {
1197       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1198       if (!attached_method->method_holder()->is_inline_klass()) {
1199         // Ignore the attached method in this case to not confuse below code
1200         attached_method = methodHandle(current, nullptr);
1201       }
1202     }
1203   }
1204 
1205   assert(bc != Bytecodes::_illegal, "not initialized");
1206 
1207   bool has_receiver = bc != Bytecodes::_invokestatic &&
1208                       bc != Bytecodes::_invokedynamic &&
1209                       bc != Bytecodes::_invokehandle;
1210   bool check_null_and_abstract = true;
1211 
1212   // Find receiver for non-static call
1213   if (has_receiver) {
1214     // This register map must be update since we need to find the receiver for
1215     // compiled frames. The receiver might be in a register.
1216     RegisterMap reg_map2(current,
1217                          RegisterMap::UpdateMap::include,
1218                          RegisterMap::ProcessFrames::include,
1219                          RegisterMap::WalkContinuation::skip);
1220     frame stubFrame   = current->last_frame();
1221     // Caller-frame is a compiled frame
1222     frame callerFrame = stubFrame.sender(&reg_map2);
1223 
1224     Method* callee = attached_method();
1225     if (callee == nullptr) {
1226       callee = bytecode.static_target(CHECK_NH);
1227       if (callee == nullptr) {
1228         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1229       }
1230     }
1231     bool caller_is_c1 = callerFrame.is_compiled_frame() && callerFrame.cb()->is_compiled_by_c1();
1232     if (!caller_is_c1 && callee->is_scalarized_arg(0)) {
1233       // If the receiver is an inline type that is passed as fields, no oop is available
1234       // Resolve the call without receiver null checking.
1235       assert(!callee->mismatch(), "calls with inline type receivers should never mismatch");
1236       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1237       if (bc == Bytecodes::_invokeinterface) {
1238         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1239       }
1240       check_null_and_abstract = false;
1241     } else {
1242       // Retrieve from a compiled argument list
1243       receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1244       assert(oopDesc::is_oop_or_null(receiver()), "");
1245       if (receiver.is_null()) {
1246         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1247       }
1248     }
1249   }
1250 
1251   // Resolve method
1252   if (attached_method.not_null()) {
1253     // Parameterized by attached method.
1254     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1255   } else {
1256     // Parameterized by bytecode.
1257     constantPoolHandle constants(current, caller->constants());
1258     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1259   }
1260 
1261 #ifdef ASSERT
1262   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1263   if (has_receiver && check_null_and_abstract) {
1264     assert(receiver.not_null(), "should have thrown exception");
1265     Klass* receiver_klass = receiver->klass();
1266     Klass* rk = nullptr;
1267     if (attached_method.not_null()) {
1268       // In case there's resolved method attached, use its holder during the check.
1269       rk = attached_method->method_holder();
1270     } else {
1271       // Klass is already loaded.
1272       constantPoolHandle constants(current, caller->constants());
1273       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1274     }
1275     Klass* static_receiver_klass = rk;
1276     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1277            "actual receiver must be subclass of static receiver klass");
1278     if (receiver_klass->is_instance_klass()) {
1279       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1280         tty->print_cr("ERROR: Klass not yet initialized!!");
1281         receiver_klass->print();
1282       }
1283       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1284     }
1285   }
1286 #endif
1287 
1288   return receiver;
1289 }
1290 
1291 methodHandle SharedRuntime::find_callee_method(bool is_optimized, bool& caller_is_c1, TRAPS) {
1292   JavaThread* current = THREAD;
1293   ResourceMark rm(current);
1294   // We need first to check if any Java activations (compiled, interpreted)
1295   // exist on the stack since last JavaCall.  If not, we need
1296   // to get the target method from the JavaCall wrapper.
1297   vframeStream vfst(current, true);  // Do not skip any javaCalls
1298   methodHandle callee_method;
1299   if (vfst.at_end()) {
1300     // No Java frames were found on stack since we did the JavaCall.
1301     // Hence the stack can only contain an entry_frame.  We need to
1302     // find the target method from the stub frame.
1303     RegisterMap reg_map(current,
1304                         RegisterMap::UpdateMap::skip,
1305                         RegisterMap::ProcessFrames::include,
1306                         RegisterMap::WalkContinuation::skip);
1307     frame fr = current->last_frame();
1308     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1309     fr = fr.sender(&reg_map);
1310     assert(fr.is_entry_frame(), "must be");
1311     // fr is now pointing to the entry frame.
1312     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1313   } else {
1314     Bytecodes::Code bc;
1315     CallInfo callinfo;
1316     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1317     // Calls via mismatching methods are always non-scalarized
1318     if (callinfo.resolved_method()->mismatch() && !is_optimized) {
1319       caller_is_c1 = true;
1320     }
1321     callee_method = methodHandle(current, callinfo.selected_method());
1322   }
1323   assert(callee_method()->is_method(), "must be");
1324   return callee_method;
1325 }
1326 
1327 // Resolves a call.
1328 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, bool& caller_is_c1, TRAPS) {
1329   JavaThread* current = THREAD;
1330   ResourceMark rm(current);
1331   RegisterMap cbl_map(current,
1332                       RegisterMap::UpdateMap::skip,
1333                       RegisterMap::ProcessFrames::include,
1334                       RegisterMap::WalkContinuation::skip);
1335   frame caller_frame = current->last_frame().sender(&cbl_map);
1336 
1337   CodeBlob* caller_cb = caller_frame.cb();
1338   guarantee(caller_cb != nullptr && caller_cb->is_compiled(), "must be called from compiled method");
1339   CompiledMethod* caller_nm = caller_cb->as_compiled_method();
1340 
1341   // determine call info & receiver
1342   // note: a) receiver is null for static calls
1343   //       b) an exception is thrown if receiver is null for non-static calls
1344   CallInfo call_info;
1345   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1346   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1347 
1348   NoSafepointVerifier nsv;
1349 
1350   methodHandle callee_method(current, call_info.selected_method());
1351   // Calls via mismatching methods are always non-scalarized
1352   if (caller_nm->is_compiled_by_c1() || (call_info.resolved_method()->mismatch() && !is_optimized)) {
1353     caller_is_c1 = true;
1354   }
1355 
1356   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1357          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1358          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1359          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1360          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1361 
1362   assert(!caller_nm->is_unloading(), "It should not be unloading");
1363 
1364 #ifndef PRODUCT
1365   // tracing/debugging/statistics
1366   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1367                  (is_virtual) ? (&_resolve_virtual_ctr) :
1368                                 (&_resolve_static_ctr);
1369   Atomic::inc(addr);
1370 
1371   if (TraceCallFixup) {
1372     ResourceMark rm(current);
1373     tty->print("resolving %s%s (%s) call%s to",
1374                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1375                Bytecodes::name(invoke_code), (caller_is_c1) ? " from C1" : "");
1376     callee_method->print_short_name(tty);
1377     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1378                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1379   }
1380 #endif
1381 
1382   if (invoke_code == Bytecodes::_invokestatic) {
1383     assert(callee_method->method_holder()->is_initialized() ||
1384            callee_method->method_holder()->is_init_thread(current),
1385            "invalid class initialization state for invoke_static");
1386     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1387       // In order to keep class initialization check, do not patch call
1388       // site for static call when the class is not fully initialized.
1389       // Proper check is enforced by call site re-resolution on every invocation.
1390       //
1391       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1392       // explicit class initialization check is put in nmethod entry (VEP).
1393       assert(callee_method->method_holder()->is_linked(), "must be");
1394       return callee_method;
1395     }
1396   }
1397 
1398 
1399   // JSR 292 key invariant:
1400   // If the resolved method is a MethodHandle invoke target, the call
1401   // site must be a MethodHandle call site, because the lambda form might tail-call
1402   // leaving the stack in a state unknown to either caller or callee
1403 
1404   // Compute entry points. The computation of the entry points is independent of
1405   // patching the call.
1406 
1407   // Make sure the callee nmethod does not get deoptimized and removed before
1408   // we are done patching the code.
1409 
1410 
1411   CompiledICLocker ml(caller_nm);
1412   if (is_virtual && !is_optimized) {
1413     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1414     inline_cache->update(&call_info, receiver->klass(), caller_is_c1);
1415   } else {
1416     // Callsite is a direct call - set it to the destination method
1417     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1418     callsite->set(callee_method, caller_is_c1);
1419   }
1420 
1421   return callee_method;
1422 }
1423 
1424 // Inline caches exist only in compiled code
1425 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1426 #ifdef ASSERT
1427   RegisterMap reg_map(current,
1428                       RegisterMap::UpdateMap::skip,
1429                       RegisterMap::ProcessFrames::include,
1430                       RegisterMap::WalkContinuation::skip);
1431   frame stub_frame = current->last_frame();
1432   assert(stub_frame.is_runtime_frame(), "sanity check");
1433   frame caller_frame = stub_frame.sender(&reg_map);
1434   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1435 #endif /* ASSERT */
1436 
1437   methodHandle callee_method;
1438   bool is_optimized = false;
1439   bool caller_is_c1 = false;
1440   JRT_BLOCK
1441     callee_method = SharedRuntime::handle_ic_miss_helper(is_optimized, caller_is_c1, CHECK_NULL);
1442     // Return Method* through TLS
1443     current->set_vm_result_2(callee_method());
1444   JRT_BLOCK_END
1445   // return compiled code entry point after potential safepoints
1446   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);

1447 JRT_END
1448 
1449 
1450 // Handle call site that has been made non-entrant
1451 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1452   // 6243940 We might end up in here if the callee is deoptimized
1453   // as we race to call it.  We don't want to take a safepoint if
1454   // the caller was interpreted because the caller frame will look
1455   // interpreted to the stack walkers and arguments are now
1456   // "compiled" so it is much better to make this transition
1457   // invisible to the stack walking code. The i2c path will
1458   // place the callee method in the callee_target. It is stashed
1459   // there because if we try and find the callee by normal means a
1460   // safepoint is possible and have trouble gc'ing the compiled args.
1461   RegisterMap reg_map(current,
1462                       RegisterMap::UpdateMap::skip,
1463                       RegisterMap::ProcessFrames::include,
1464                       RegisterMap::WalkContinuation::skip);
1465   frame stub_frame = current->last_frame();
1466   assert(stub_frame.is_runtime_frame(), "sanity check");
1467   frame caller_frame = stub_frame.sender(&reg_map);
1468 
1469   if (caller_frame.is_interpreted_frame() ||
1470       caller_frame.is_entry_frame() ||
1471       caller_frame.is_upcall_stub_frame()) {
1472     Method* callee = current->callee_target();
1473     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1474     current->set_vm_result_2(callee);
1475     current->set_callee_target(nullptr);
1476     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1477       // Bypass class initialization checks in c2i when caller is in native.
1478       // JNI calls to static methods don't have class initialization checks.
1479       // Fast class initialization checks are present in c2i adapters and call into
1480       // SharedRuntime::handle_wrong_method() on the slow path.
1481       //
1482       // JVM upcalls may land here as well, but there's a proper check present in
1483       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1484       // so bypassing it in c2i adapter is benign.
1485       return callee->get_c2i_no_clinit_check_entry();
1486     } else {
1487       if (caller_frame.is_interpreted_frame()) {
1488         return callee->get_c2i_inline_entry();
1489       } else {
1490         return callee->get_c2i_entry();
1491       }
1492     }
1493   }
1494 
1495   // Must be compiled to compiled path which is safe to stackwalk
1496   methodHandle callee_method;
1497   bool is_static_call = false;
1498   bool is_optimized = false;
1499   bool caller_is_c1 = false;
1500   JRT_BLOCK
1501     // Force resolving of caller (if we called from compiled frame)
1502     callee_method = SharedRuntime::reresolve_call_site(is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1503     current->set_vm_result_2(callee_method());
1504   JRT_BLOCK_END
1505   // return compiled code entry point after potential safepoints
1506   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);

1507 JRT_END
1508 
1509 // Handle abstract method call
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1511   // Verbose error message for AbstractMethodError.
1512   // Get the called method from the invoke bytecode.
1513   vframeStream vfst(current, true);
1514   assert(!vfst.at_end(), "Java frame must exist");
1515   methodHandle caller(current, vfst.method());
1516   Bytecode_invoke invoke(caller, vfst.bci());
1517   DEBUG_ONLY( invoke.verify(); )
1518 
1519   // Find the compiled caller frame.
1520   RegisterMap reg_map(current,
1521                       RegisterMap::UpdateMap::include,
1522                       RegisterMap::ProcessFrames::include,
1523                       RegisterMap::WalkContinuation::skip);
1524   frame stubFrame = current->last_frame();
1525   assert(stubFrame.is_runtime_frame(), "must be");
1526   frame callerFrame = stubFrame.sender(&reg_map);
1527   assert(callerFrame.is_compiled_frame(), "must be");
1528 
1529   // Install exception and return forward entry.
1530   address res = StubRoutines::throw_AbstractMethodError_entry();
1531   JRT_BLOCK
1532     methodHandle callee(current, invoke.static_target(current));
1533     if (!callee.is_null()) {
1534       oop recv = callerFrame.retrieve_receiver(&reg_map);
1535       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1536       res = StubRoutines::forward_exception_entry();
1537       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1538     }
1539   JRT_BLOCK_END
1540   return res;
1541 JRT_END
1542 
1543 
1544 // resolve a static call and patch code
1545 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1546   methodHandle callee_method;
1547   bool caller_is_c1 = false;
1548   bool enter_special = false;
1549   JRT_BLOCK
1550     callee_method = SharedRuntime::resolve_helper(false, false, caller_is_c1, CHECK_NULL);
1551     current->set_vm_result_2(callee_method());
1552 
1553     if (current->is_interp_only_mode()) {
1554       RegisterMap reg_map(current,
1555                           RegisterMap::UpdateMap::skip,
1556                           RegisterMap::ProcessFrames::include,
1557                           RegisterMap::WalkContinuation::skip);
1558       frame stub_frame = current->last_frame();
1559       assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1560       frame caller = stub_frame.sender(&reg_map);
1561       enter_special = caller.cb() != nullptr && caller.cb()->is_compiled()
1562         && caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic();
1563     }
1564   JRT_BLOCK_END
1565 
1566   if (current->is_interp_only_mode() && enter_special) {
1567     // enterSpecial is compiled and calls this method to resolve the call to Continuation::enter
1568     // but in interp_only_mode we need to go to the interpreted entry
1569     // The c2i won't patch in this mode -- see fixup_callers_callsite
1570     //
1571     // This should probably be done in all cases, not just enterSpecial (see JDK-8218403),
1572     // but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no
1573     // interpreted version.
1574     return callee_method->get_c2i_entry();
1575   }
1576 
1577   // return compiled code entry point after potential safepoints
1578   address entry = caller_is_c1 ?
1579     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1580   assert(entry != nullptr, "Jump to zero!");
1581   return entry;
1582 JRT_END
1583 
1584 
1585 // resolve virtual call and update inline cache to monomorphic
1586 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1587   methodHandle callee_method;
1588   bool caller_is_c1 = false;
1589   JRT_BLOCK
1590     callee_method = SharedRuntime::resolve_helper(true, false, caller_is_c1, CHECK_NULL);
1591     current->set_vm_result_2(callee_method());
1592   JRT_BLOCK_END
1593   // return compiled code entry point after potential safepoints
1594   address entry = caller_is_c1 ?
1595     callee_method->verified_inline_code_entry() : callee_method->verified_inline_ro_code_entry();
1596   assert(entry != nullptr, "Jump to zero!");
1597   return entry;
1598 JRT_END
1599 
1600 
1601 // Resolve a virtual call that can be statically bound (e.g., always
1602 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1603 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1604   methodHandle callee_method;
1605   bool caller_is_c1 = false;
1606   JRT_BLOCK
1607     callee_method = SharedRuntime::resolve_helper(true, true, caller_is_c1, CHECK_NULL);
1608     current->set_vm_result_2(callee_method());
1609   JRT_BLOCK_END
1610   // return compiled code entry point after potential safepoints
1611   address entry = caller_is_c1 ?
1612     callee_method->verified_inline_code_entry() : callee_method->verified_code_entry();
1613   assert(entry != nullptr, "Jump to zero!");
1614   return entry;
1615 JRT_END
1616 
1617 
1618 
1619 methodHandle SharedRuntime::handle_ic_miss_helper(bool& is_optimized, bool& caller_is_c1, TRAPS) {
1620   JavaThread* current = THREAD;
1621   ResourceMark rm(current);
1622   CallInfo call_info;
1623   Bytecodes::Code bc;
1624 
1625   // receiver is null for static calls. An exception is thrown for null
1626   // receivers for non-static calls
1627   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1628 
1629   methodHandle callee_method(current, call_info.selected_method());
1630 
1631 #ifndef PRODUCT
1632   Atomic::inc(&_ic_miss_ctr);
1633 
1634   // Statistics & Tracing
1635   if (TraceCallFixup) {
1636     ResourceMark rm(current);
1637     tty->print("IC miss (%s) call%s to", Bytecodes::name(bc), (caller_is_c1) ? " from C1" : "");
1638     callee_method->print_short_name(tty);
1639     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1640   }
1641 
1642   if (ICMissHistogram) {
1643     MutexLocker m(VMStatistic_lock);
1644     RegisterMap reg_map(current,
1645                         RegisterMap::UpdateMap::skip,
1646                         RegisterMap::ProcessFrames::include,
1647                         RegisterMap::WalkContinuation::skip);
1648     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1649     // produce statistics under the lock
1650     trace_ic_miss(f.pc());
1651   }
1652 #endif
1653 
1654   // install an event collector so that when a vtable stub is created the
1655   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1656   // event can't be posted when the stub is created as locks are held
1657   // - instead the event will be deferred until the event collector goes
1658   // out of scope.
1659   JvmtiDynamicCodeEventCollector event_collector;
1660 
1661   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1662   RegisterMap reg_map(current,
1663                       RegisterMap::UpdateMap::skip,
1664                       RegisterMap::ProcessFrames::include,
1665                       RegisterMap::WalkContinuation::skip);
1666   frame caller_frame = current->last_frame().sender(&reg_map);
1667   CodeBlob* cb = caller_frame.cb();
1668   CompiledMethod* caller_nm = cb->as_compiled_method();
1669   // Calls via mismatching methods are always non-scalarized
1670   if (caller_nm->is_compiled_by_c1() || call_info.resolved_method()->mismatch()) {
1671     caller_is_c1 = true;
1672   }
1673 
1674   CompiledICLocker ml(caller_nm);
1675   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1676   inline_cache->update(&call_info, receiver()->klass(), caller_is_c1);
1677 
1678   return callee_method;
1679 }
1680 
1681 //
1682 // Resets a call-site in compiled code so it will get resolved again.
1683 // This routines handles both virtual call sites, optimized virtual call
1684 // sites, and static call sites. Typically used to change a call sites
1685 // destination from compiled to interpreted.
1686 //
1687 methodHandle SharedRuntime::reresolve_call_site(bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1688   JavaThread* current = THREAD;
1689   ResourceMark rm(current);
1690   RegisterMap reg_map(current,
1691                       RegisterMap::UpdateMap::skip,
1692                       RegisterMap::ProcessFrames::include,
1693                       RegisterMap::WalkContinuation::skip);
1694   frame stub_frame = current->last_frame();
1695   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1696   frame caller = stub_frame.sender(&reg_map);
1697   if (caller.is_compiled_frame()) {
1698     caller_is_c1 = caller.cb()->is_compiled_by_c1();
1699   }
1700 
1701   // Do nothing if the frame isn't a live compiled frame.
1702   // nmethod could be deoptimized by the time we get here
1703   // so no update to the caller is needed.
1704 
1705   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1706       (caller.is_native_frame() && ((CompiledMethod*)caller.cb())->method()->is_continuation_enter_intrinsic())) {
1707 
1708     address pc = caller.pc();
1709 
1710     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1711 
1712     // Default call_addr is the location of the "basic" call.
1713     // Determine the address of the call we a reresolving. With
1714     // Inline Caches we will always find a recognizable call.
1715     // With Inline Caches disabled we may or may not find a
1716     // recognizable call. We will always find a call for static
1717     // calls and for optimized virtual calls. For vanilla virtual
1718     // calls it depends on the state of the UseInlineCaches switch.
1719     //
1720     // With Inline Caches disabled we can get here for a virtual call
1721     // for two reasons:
1722     //   1 - calling an abstract method. The vtable for abstract methods
1723     //       will run us thru handle_wrong_method and we will eventually
1724     //       end up in the interpreter to throw the ame.
1725     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1726     //       call and between the time we fetch the entry address and
1727     //       we jump to it the target gets deoptimized. Similar to 1
1728     //       we will wind up in the interprter (thru a c2i with c2).
1729     //
1730     CompiledICLocker ml(caller_nm);
1731     address call_addr = caller_nm->call_instruction_address(pc);
1732 
1733     if (call_addr != nullptr) {
1734       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1735       // bytes back in the instruction stream so we must also check for reloc info.
1736       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1737       bool ret = iter.next(); // Get item
1738       if (ret) {
1739         is_static_call = false;
1740         is_optimized = false;
1741         switch (iter.type()) {
1742           case relocInfo::static_call_type:
1743             is_static_call = true;
1744           case relocInfo::opt_virtual_call_type: {
1745             is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1746             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1747             cdc->set_to_clean();
1748             break;
1749           }

1750           case relocInfo::virtual_call_type: {
1751             // compiled, dispatched call (which used to call an interpreted method)
1752             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1753             inline_cache->set_to_clean();
1754             break;
1755           }
1756           default:
1757             break;
1758         }
1759       }
1760     }
1761   }
1762 
1763   methodHandle callee_method = find_callee_method(is_optimized, caller_is_c1, CHECK_(methodHandle()));

1764 
1765 #ifndef PRODUCT
1766   Atomic::inc(&_wrong_method_ctr);
1767 
1768   if (TraceCallFixup) {
1769     ResourceMark rm(current);
1770     tty->print("handle_wrong_method reresolving call%s to", (caller_is_c1) ? " from C1" : "");
1771     callee_method->print_short_name(tty);
1772     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1773   }
1774 #endif
1775 
1776   return callee_method;
1777 }
1778 
1779 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1780   // The faulting unsafe accesses should be changed to throw the error
1781   // synchronously instead. Meanwhile the faulting instruction will be
1782   // skipped over (effectively turning it into a no-op) and an
1783   // asynchronous exception will be raised which the thread will
1784   // handle at a later point. If the instruction is a load it will
1785   // return garbage.
1786 
1787   // Request an async exception.
1788   thread->set_pending_unsafe_access_error();
1789 
1790   // Return address of next instruction to execute.

1955   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1956 
1957   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1958   if (message == nullptr) {
1959     // Shouldn't happen, but don't cause even more problems if it does
1960     message = const_cast<char*>(caster_klass->external_name());
1961   } else {
1962     jio_snprintf(message,
1963                  msglen,
1964                  "class %s cannot be cast to class %s (%s%s%s)",
1965                  caster_name,
1966                  target_name,
1967                  caster_klass_description,
1968                  klass_separator,
1969                  target_klass_description
1970                  );
1971   }
1972   return message;
1973 }
1974 
1975 char* SharedRuntime::generate_identity_exception_message(JavaThread* current, Klass* klass) {
1976   assert(klass->is_inline_klass(), "Must be a concrete value class");
1977   const char* desc = "Cannot synchronize on an instance of value class ";
1978   const char* className = klass->external_name();
1979   size_t msglen = strlen(desc) + strlen(className) + 1;
1980   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1981   if (nullptr == message) {
1982     // Out of memory: can't create detailed error message
1983     message = const_cast<char*>(klass->external_name());
1984   } else {
1985     jio_snprintf(message, msglen, "%s%s", desc, className);
1986   }
1987   return message;
1988 }
1989 
1990 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1991   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1992 JRT_END
1993 
1994 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1995   if (!SafepointSynchronize::is_synchronizing()) {
1996     // Only try quick_enter() if we're not trying to reach a safepoint
1997     // so that the calling thread reaches the safepoint more quickly.
1998     if (ObjectSynchronizer::quick_enter(obj, current, lock)) {
1999       return;
2000     }
2001   }
2002   // NO_ASYNC required because an async exception on the state transition destructor
2003   // would leave you with the lock held and it would never be released.
2004   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2005   // and the model is that an exception implies the method failed.
2006   JRT_BLOCK_NO_ASYNC
2007   Handle h_obj(THREAD, obj);
2008   ObjectSynchronizer::enter(h_obj, lock, current);
2009   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");

2185   tty->print_cr("        %% in nested categories are relative to their category");
2186   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2187   tty->cr();
2188 
2189   MethodArityHistogram h;
2190 }
2191 #endif
2192 
2193 #ifndef PRODUCT
2194 static int _lookups; // number of calls to lookup
2195 static int _equals;  // number of buckets checked with matching hash
2196 static int _hits;    // number of successful lookups
2197 static int _compact; // number of equals calls with compact signature
2198 #endif
2199 
2200 // A simple wrapper class around the calling convention information
2201 // that allows sharing of adapters for the same calling convention.
2202 class AdapterFingerPrint : public CHeapObj<mtCode> {
2203  private:
2204   enum {
2205     _basic_type_bits = 5,
2206     _basic_type_mask = right_n_bits(_basic_type_bits),
2207     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2208     _compact_int_count = 3
2209   };
2210   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2211   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2212 
2213   union {
2214     int  _compact[_compact_int_count];
2215     int* _fingerprint;
2216   } _value;
2217   int _length; // A negative length indicates the fingerprint is in the compact form,
2218                // Otherwise _value._fingerprint is the array.
2219 
2220   // Remap BasicTypes that are handled equivalently by the adapters.
2221   // These are correct for the current system but someday it might be
2222   // necessary to make this mapping platform dependent.
2223   static BasicType adapter_encoding(BasicType in) {
2224     switch (in) {
2225       case T_BOOLEAN:
2226       case T_BYTE:
2227       case T_SHORT:
2228       case T_CHAR:
2229         // They are all promoted to T_INT in the calling convention
2230         return T_INT;
2231 
2232       case T_OBJECT:
2233       case T_ARRAY:
2234         // In other words, we assume that any register good enough for
2235         // an int or long is good enough for a managed pointer.
2236 #ifdef _LP64
2237         return T_LONG;
2238 #else
2239         return T_INT;
2240 #endif
2241 
2242       case T_INT:
2243       case T_LONG:
2244       case T_FLOAT:
2245       case T_DOUBLE:
2246       case T_VOID:
2247         return in;
2248 
2249       default:
2250         ShouldNotReachHere();
2251         return T_CONFLICT;
2252     }
2253   }
2254 
2255  public:
2256   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2257     // The fingerprint is based on the BasicType signature encoded
2258     // into an array of ints with eight entries per int.
2259     int total_args_passed = (sig != nullptr) ? sig->length() : 0;
2260     int* ptr;
2261     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2262     if (len <= _compact_int_count) {
2263       assert(_compact_int_count == 3, "else change next line");
2264       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2265       // Storing the signature encoded as signed chars hits about 98%
2266       // of the time.
2267       _length = -len;
2268       ptr = _value._compact;
2269     } else {
2270       _length = len;
2271       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2272       ptr = _value._fingerprint;
2273     }
2274 
2275     // Now pack the BasicTypes with 8 per int
2276     int sig_index = 0;
2277     BasicType prev_bt = T_ILLEGAL;
2278     int vt_count = 0;
2279     for (int index = 0; index < len; index++) {
2280       int value = 0;
2281       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2282         BasicType bt = T_ILLEGAL;
2283         if (sig_index < total_args_passed) {
2284           bt = sig->at(sig_index++)._bt;
2285           if (bt == T_METADATA) {
2286             // Found start of inline type in signature
2287             assert(InlineTypePassFieldsAsArgs, "unexpected start of inline type");
2288             if (sig_index == 1 && has_ro_adapter) {
2289               // With a ro_adapter, replace receiver inline type delimiter by T_VOID to prevent matching
2290               // with other adapters that have the same inline type as first argument and no receiver.
2291               bt = T_VOID;
2292             }
2293             vt_count++;
2294           } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
2295             // Found end of inline type in signature
2296             assert(InlineTypePassFieldsAsArgs, "unexpected end of inline type");
2297             vt_count--;
2298             assert(vt_count >= 0, "invalid vt_count");
2299           } else if (vt_count == 0) {
2300             // Widen fields that are not part of a scalarized inline type argument
2301             bt = adapter_encoding(bt);
2302           }
2303           prev_bt = bt;
2304         }
2305         int bt_val = (bt == T_ILLEGAL) ? 0 : bt;
2306         assert((bt_val & _basic_type_mask) == bt_val, "must fit in 4 bits");
2307         value = (value << _basic_type_bits) | bt_val;
2308       }
2309       ptr[index] = value;
2310     }
2311     assert(vt_count == 0, "invalid vt_count");
2312   }
2313 
2314   ~AdapterFingerPrint() {
2315     if (_length > 0) {
2316       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2317     }
2318   }
2319 
2320   int value(int index) {
2321     if (_length < 0) {
2322       return _value._compact[index];
2323     }
2324     return _value._fingerprint[index];
2325   }
2326   int length() {
2327     if (_length < 0) return -_length;
2328     return _length;
2329   }
2330 
2331   bool is_compact() {

2356   const char* as_basic_args_string() {
2357     stringStream st;
2358     bool long_prev = false;
2359     for (int i = 0; i < length(); i++) {
2360       unsigned val = (unsigned)value(i);
2361       // args are packed so that first/lower arguments are in the highest
2362       // bits of each int value, so iterate from highest to the lowest
2363       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2364         unsigned v = (val >> j) & _basic_type_mask;
2365         if (v == 0) {
2366           assert(i == length() - 1, "Only expect zeroes in the last word");
2367           continue;
2368         }
2369         if (long_prev) {
2370           long_prev = false;
2371           if (v == T_VOID) {
2372             st.print("J");
2373           } else {
2374             st.print("L");
2375           }
2376         } else if (v == T_LONG) {
2377           long_prev = true;
2378         } else if (v != T_VOID){
2379           st.print("%c", type2char((BasicType)v));




2380         }
2381       }
2382     }
2383     if (long_prev) {
2384       st.print("L");
2385     }
2386     return st.as_string();
2387   }
2388 #endif // !product
2389 
2390   bool equals(AdapterFingerPrint* other) {
2391     if (other->_length != _length) {
2392       return false;
2393     }
2394     if (_length < 0) {
2395       assert(_compact_int_count == 3, "else change next line");
2396       return _value._compact[0] == other->_value._compact[0] &&
2397              _value._compact[1] == other->_value._compact[1] &&
2398              _value._compact[2] == other->_value._compact[2];
2399     } else {

2407   }
2408 
2409   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2410     NOT_PRODUCT(_equals++);
2411     return fp1->equals(fp2);
2412   }
2413 
2414   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2415     return fp->compute_hash();
2416   }
2417 };
2418 
2419 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2420 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2421                   AnyObj::C_HEAP, mtCode,
2422                   AdapterFingerPrint::compute_hash,
2423                   AdapterFingerPrint::equals>;
2424 static AdapterHandlerTable* _adapter_handler_table;
2425 
2426 // Find a entry with the same fingerprint if it exists
2427 static AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2428   NOT_PRODUCT(_lookups++);
2429   assert_lock_strong(AdapterHandlerLibrary_lock);
2430   AdapterFingerPrint fp(sig, has_ro_adapter);
2431   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2432   if (entry != nullptr) {
2433 #ifndef PRODUCT
2434     if (fp.is_compact()) _compact++;
2435     _hits++;
2436 #endif
2437     return *entry;
2438   }
2439   return nullptr;
2440 }
2441 
2442 #ifndef PRODUCT
2443 static void print_table_statistics() {
2444   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2445     return sizeof(*key) + sizeof(*a);
2446   };
2447   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2448   ts.print(tty, "AdapterHandlerTable");
2449   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2450                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2451   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2452                 _lookups, _equals, _hits, _compact);
2453 }
2454 #endif
2455 
2456 // ---------------------------------------------------------------------------
2457 // Implementation of AdapterHandlerLibrary
2458 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2459 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2460 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2461 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2462 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2463 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2464 const int AdapterHandlerLibrary_size = 48*K;
2465 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2466 
2467 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2468   return _buffer;
2469 }
2470 
2471 static void post_adapter_creation(const AdapterBlob* new_adapter,
2472                                   const AdapterHandlerEntry* entry) {
2473   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2474     char blob_id[256];
2475     jio_snprintf(blob_id,
2476                  sizeof(blob_id),
2477                  "%s(%s)",
2478                  new_adapter->name(),
2479                  entry->fingerprint()->as_string());
2480     if (Forte::is_enabled()) {
2481       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2482     }
2483 
2484     if (JvmtiExport::should_post_dynamic_code_generated()) {

2487   }
2488 }
2489 
2490 void AdapterHandlerLibrary::initialize() {
2491   ResourceMark rm;
2492   AdapterBlob* no_arg_blob = nullptr;
2493   AdapterBlob* int_arg_blob = nullptr;
2494   AdapterBlob* obj_arg_blob = nullptr;
2495   AdapterBlob* obj_int_arg_blob = nullptr;
2496   AdapterBlob* obj_obj_arg_blob = nullptr;
2497   {
2498     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2499     MutexLocker mu(AdapterHandlerLibrary_lock);
2500 
2501     // Create a special handler for abstract methods.  Abstract methods
2502     // are never compiled so an i2c entry is somewhat meaningless, but
2503     // throw AbstractMethodError just in case.
2504     // Pass wrong_method_abstract for the c2i transitions to return
2505     // AbstractMethodError for invalid invocations.
2506     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2507     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr),
2508                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2509                                                                 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2510                                                                 wrong_method_abstract, wrong_method_abstract);

2511     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);

2512 
2513     CompiledEntrySignature no_args;
2514     no_args.compute_calling_conventions();
2515     _no_arg_handler = create_adapter(no_arg_blob, no_args, true);
2516 
2517     CompiledEntrySignature obj_args;
2518     SigEntry::add_entry(obj_args.sig(), T_OBJECT, nullptr);
2519     obj_args.compute_calling_conventions();
2520     _obj_arg_handler = create_adapter(obj_arg_blob, obj_args, true);
2521 
2522     CompiledEntrySignature int_args;
2523     SigEntry::add_entry(int_args.sig(), T_INT, nullptr);
2524     int_args.compute_calling_conventions();
2525     _int_arg_handler = create_adapter(int_arg_blob, int_args, true);
2526 
2527     CompiledEntrySignature obj_int_args;
2528     SigEntry::add_entry(obj_int_args.sig(), T_OBJECT, nullptr);
2529     SigEntry::add_entry(obj_int_args.sig(), T_INT, nullptr);
2530     obj_int_args.compute_calling_conventions();
2531     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, obj_int_args, true);
2532 
2533     CompiledEntrySignature obj_obj_args;
2534     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr);
2535     SigEntry::add_entry(obj_obj_args.sig(), T_OBJECT, nullptr);
2536     obj_obj_args.compute_calling_conventions();
2537     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, obj_obj_args, true);
2538 
2539     assert(no_arg_blob != nullptr &&
2540           obj_arg_blob != nullptr &&
2541           int_arg_blob != nullptr &&
2542           obj_int_arg_blob != nullptr &&
2543           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2544   }
2545   return;
2546 
2547   // Outside of the lock
2548   post_adapter_creation(no_arg_blob, _no_arg_handler);
2549   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2550   post_adapter_creation(int_arg_blob, _int_arg_handler);
2551   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2552   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2553 }
2554 
2555 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2556                                                       address i2c_entry,
2557                                                       address c2i_entry,
2558                                                       address c2i_inline_entry,
2559                                                       address c2i_inline_ro_entry,
2560                                                       address c2i_unverified_entry,
2561                                                       address c2i_unverified_inline_entry,
2562                                                       address c2i_no_clinit_check_entry) {
2563   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry,
2564                               c2i_unverified_inline_entry, c2i_no_clinit_check_entry);

2565 }
2566 
2567 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2568   if (method->is_abstract()) {
2569     return nullptr;
2570   }
2571   int total_args_passed = method->size_of_parameters(); // All args on stack
2572   if (total_args_passed == 0) {
2573     return _no_arg_handler;
2574   } else if (total_args_passed == 1) {
2575     if (!method->is_static()) {
2576       if (InlineTypePassFieldsAsArgs && method->method_holder()->is_inline_klass()) {
2577         return nullptr;
2578       }
2579       return _obj_arg_handler;
2580     }
2581     switch (method->signature()->char_at(1)) {
2582       case JVM_SIGNATURE_CLASS: {
2583         if (InlineTypePassFieldsAsArgs) {
2584           SignatureStream ss(method->signature());
2585           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2586           if (vk != nullptr) {
2587             return nullptr;
2588           }
2589         }
2590         return _obj_arg_handler;
2591       }
2592       case JVM_SIGNATURE_ARRAY:
2593         return _obj_arg_handler;
2594       case JVM_SIGNATURE_INT:
2595       case JVM_SIGNATURE_BOOLEAN:
2596       case JVM_SIGNATURE_CHAR:
2597       case JVM_SIGNATURE_BYTE:
2598       case JVM_SIGNATURE_SHORT:
2599         return _int_arg_handler;
2600     }
2601   } else if (total_args_passed == 2 &&
2602              !method->is_static() && (!InlineTypePassFieldsAsArgs || !method->method_holder()->is_inline_klass())) {
2603     switch (method->signature()->char_at(1)) {
2604       case JVM_SIGNATURE_CLASS: {
2605         if (InlineTypePassFieldsAsArgs) {
2606           SignatureStream ss(method->signature());
2607           InlineKlass* vk = ss.as_inline_klass(method->method_holder());
2608           if (vk != nullptr) {
2609             return nullptr;
2610           }
2611         }
2612         return _obj_obj_arg_handler;
2613       }
2614       case JVM_SIGNATURE_ARRAY:
2615         return _obj_obj_arg_handler;
2616       case JVM_SIGNATURE_INT:
2617       case JVM_SIGNATURE_BOOLEAN:
2618       case JVM_SIGNATURE_CHAR:
2619       case JVM_SIGNATURE_BYTE:
2620       case JVM_SIGNATURE_SHORT:
2621         return _obj_int_arg_handler;
2622     }
2623   }
2624   return nullptr;
2625 }
2626 
2627 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2628   _method(method), _num_inline_args(0), _has_inline_recv(false),
2629   _regs(nullptr), _regs_cc(nullptr), _regs_cc_ro(nullptr),
2630   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2631   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _supers(nullptr) {
2632   _sig = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2633   _sig_cc = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2634   _sig_cc_ro = new GrowableArray<SigEntry>((method != nullptr) ? method->size_of_parameters() : 1);
2635 }
2636 
2637 // See if we can save space by sharing the same entry for VIEP and VIEP(RO),
2638 // or the same entry for VEP and VIEP(RO).
2639 CodeOffsets::Entries CompiledEntrySignature::c1_inline_ro_entry_type() const {
2640   if (!has_scalarized_args()) {
2641     // VEP/VIEP/VIEP(RO) all share the same entry. There's no packing.
2642     return CodeOffsets::Verified_Entry;
2643   }
2644   if (_method->is_static()) {
2645     // Static methods don't need VIEP(RO)
2646     return CodeOffsets::Verified_Entry;
2647   }
2648 
2649   if (has_inline_recv()) {
2650     if (num_inline_args() == 1) {
2651       // Share same entry for VIEP and VIEP(RO).
2652       // This is quite common: we have an instance method in an InlineKlass that has
2653       // no inline type args other than <this>.
2654       return CodeOffsets::Verified_Inline_Entry;
2655     } else {
2656       assert(num_inline_args() > 1, "must be");
2657       // No sharing:
2658       //   VIEP(RO) -- <this> is passed as object
2659       //   VEP      -- <this> is passed as fields
2660       return CodeOffsets::Verified_Inline_Entry_RO;
2661     }

2662   }
2663 
2664   // Either a static method, or <this> is not an inline type
2665   if (args_on_stack_cc() != args_on_stack_cc_ro()) {
2666     // No sharing:
2667     // Some arguments are passed on the stack, and we have inserted reserved entries
2668     // into the VEP, but we never insert reserved entries into the VIEP(RO).
2669     return CodeOffsets::Verified_Inline_Entry_RO;
2670   } else {
2671     // Share same entry for VEP and VIEP(RO).
2672     return CodeOffsets::Verified_Entry;
2673   }
2674 }
2675 
2676 // Returns all super methods (transitive) in classes and interfaces that are overridden by the current method.
2677 GrowableArray<Method*>* CompiledEntrySignature::get_supers() {
2678   if (_supers != nullptr) {
2679     return _supers;
2680   }
2681   _supers = new GrowableArray<Method*>();
2682   // Skip private, static, and <init> methods
2683   if (_method->is_private() || _method->is_static() || _method->is_object_constructor()) {
2684     return _supers;
2685   }
2686   Symbol* name = _method->name();
2687   Symbol* signature = _method->signature();
2688   const Klass* holder = _method->method_holder()->super();
2689   Symbol* holder_name = holder->name();
2690   ThreadInVMfromUnknown tiv;
2691   JavaThread* current = JavaThread::current();
2692   HandleMark hm(current);
2693   Handle loader(current, _method->method_holder()->class_loader());
2694 
2695   // Walk up the class hierarchy and search for super methods
2696   while (holder != nullptr) {
2697     Method* super_method = holder->lookup_method(name, signature);
2698     if (super_method == nullptr) {
2699       break;
2700     }
2701     if (!super_method->is_static() && !super_method->is_private() &&
2702         (!super_method->is_package_private() ||
2703          super_method->method_holder()->is_same_class_package(loader(), holder_name))) {
2704       _supers->push(super_method);
2705     }
2706     holder = super_method->method_holder()->super();
2707   }
2708   // Search interfaces for super methods
2709   Array<InstanceKlass*>* interfaces = _method->method_holder()->transitive_interfaces();
2710   for (int i = 0; i < interfaces->length(); ++i) {
2711     Method* m = interfaces->at(i)->lookup_method(name, signature);
2712     if (m != nullptr && !m->is_static() && m->is_public()) {
2713       _supers->push(m);
2714     }
2715   }
2716   return _supers;
2717 }
2718 
2719 // Iterate over arguments and compute scalarized and non-scalarized signatures
2720 void CompiledEntrySignature::compute_calling_conventions(bool init) {
2721   bool has_scalarized = false;
2722   if (_method != nullptr) {
2723     InstanceKlass* holder = _method->method_holder();
2724     int arg_num = 0;
2725     if (!_method->is_static()) {
2726       // We shouldn't scalarize 'this' in a value class constructor
2727       if (holder->is_inline_klass() && InlineKlass::cast(holder)->can_be_passed_as_fields() && !_method->is_object_constructor() &&
2728           (init || _method->is_scalarized_arg(arg_num))) {
2729         _sig_cc->appendAll(InlineKlass::cast(holder)->extended_sig());
2730         has_scalarized = true;
2731         _has_inline_recv = true;
2732         _num_inline_args++;
2733       } else {
2734         SigEntry::add_entry(_sig_cc, T_OBJECT, holder->name());
2735       }
2736       SigEntry::add_entry(_sig, T_OBJECT, holder->name());
2737       SigEntry::add_entry(_sig_cc_ro, T_OBJECT, holder->name());
2738       arg_num++;
2739     }
2740     for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2741       BasicType bt = ss.type();
2742       if (bt == T_OBJECT) {
2743         InlineKlass* vk = ss.as_inline_klass(holder);
2744         if (vk != nullptr && vk->can_be_passed_as_fields() && (init || _method->is_scalarized_arg(arg_num))) {
2745           // Check for a calling convention mismatch with super method(s)
2746           bool scalar_super = false;
2747           bool non_scalar_super = false;
2748           GrowableArray<Method*>* supers = get_supers();
2749           for (int i = 0; i < supers->length(); ++i) {
2750             Method* super_method = supers->at(i);
2751             if (super_method->is_scalarized_arg(arg_num)) {
2752               scalar_super = true;
2753             } else {
2754               non_scalar_super = true;
2755             }
2756           }
2757 #ifdef ASSERT
2758           // Randomly enable below code paths for stress testing
2759           bool stress = init && StressCallingConvention;
2760           if (stress && (os::random() & 1) == 1) {
2761             non_scalar_super = true;
2762             if ((os::random() & 1) == 1) {
2763               scalar_super = true;
2764             }
2765           }
2766 #endif
2767           if (non_scalar_super) {
2768             // Found a super method with a non-scalarized argument. Fall back to the non-scalarized calling convention.
2769             if (scalar_super) {
2770               // Found non-scalar *and* scalar super methods. We can't handle both.
2771               // Mark the scalar method as mismatch and re-compile call sites to use non-scalarized calling convention.
2772               for (int i = 0; i < supers->length(); ++i) {
2773                 Method* super_method = supers->at(i);
2774                 if (super_method->is_scalarized_arg(arg_num) debug_only(|| (stress && (os::random() & 1) == 1))) {
2775                   super_method->set_mismatch();
2776                   MutexLocker ml(Compile_lock, Mutex::_safepoint_check_flag);
2777                   JavaThread* thread = JavaThread::current();
2778                   HandleMark hm(thread);
2779                   methodHandle mh(thread, super_method);
2780                   DeoptimizationScope deopt_scope;
2781                   CodeCache::mark_for_deoptimization(&deopt_scope, mh());
2782                   deopt_scope.deoptimize_marked();
2783                 }
2784               }
2785             }
2786             // Fall back to non-scalarized calling convention
2787             SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2788             SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2789           } else {
2790             _num_inline_args++;
2791             has_scalarized = true;
2792             int last = _sig_cc->length();
2793             int last_ro = _sig_cc_ro->length();
2794             _sig_cc->appendAll(vk->extended_sig());
2795             _sig_cc_ro->appendAll(vk->extended_sig());
2796             if (bt == T_OBJECT) {
2797               // Nullable inline type argument, insert InlineTypeNode::IsInit field right after T_METADATA delimiter
2798               _sig_cc->insert_before(last+1, SigEntry(T_BOOLEAN, -1, nullptr));
2799               _sig_cc_ro->insert_before(last_ro+1, SigEntry(T_BOOLEAN, -1, nullptr));
2800             }
2801           }
2802         } else {
2803           SigEntry::add_entry(_sig_cc, T_OBJECT, ss.as_symbol());
2804           SigEntry::add_entry(_sig_cc_ro, T_OBJECT, ss.as_symbol());
2805         }
2806         bt = T_OBJECT;
2807       } else {
2808         SigEntry::add_entry(_sig_cc, ss.type(), ss.as_symbol());
2809         SigEntry::add_entry(_sig_cc_ro, ss.type(), ss.as_symbol());
2810       }
2811       SigEntry::add_entry(_sig, bt, ss.as_symbol());
2812       if (bt != T_VOID) {
2813         arg_num++;
2814       }
2815     }
2816   }
2817 
2818   // Compute the non-scalarized calling convention
2819   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2820   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2821 
2822   // Compute the scalarized calling conventions if there are scalarized inline types in the signature
2823   if (has_scalarized && !_method->is_native()) {
2824     _regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc->length());
2825     _args_on_stack_cc = SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2826 
2827     _regs_cc_ro = NEW_RESOURCE_ARRAY(VMRegPair, _sig_cc_ro->length());
2828     _args_on_stack_cc_ro = SharedRuntime::java_calling_convention(_sig_cc_ro, _regs_cc_ro);
2829 
2830     _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2831     _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2832 
2833     // Upper bound on stack arguments to avoid hitting the argument limit and
2834     // bailing out of compilation ("unsupported incoming calling sequence").
2835     // TODO we need a reasonable limit (flag?) here
2836     if (MAX2(_args_on_stack_cc, _args_on_stack_cc_ro) <= 60) {
2837       return; // Success
2838     }
2839   }
2840 
2841   // No scalarized args
2842   _sig_cc = _sig;
2843   _regs_cc = _regs;
2844   _args_on_stack_cc = _args_on_stack;
2845 
2846   _sig_cc_ro = _sig;
2847   _regs_cc_ro = _regs;
2848   _args_on_stack_cc_ro = _args_on_stack;
2849 }
2850 
2851 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2852   // Use customized signature handler.  Need to lock around updates to
2853   // the _adapter_handler_table (it is not safe for concurrent readers
2854   // and a single writer: this could be fixed if it becomes a
2855   // problem).
2856 
2857   // Fast-path for trivial adapters
2858   AdapterHandlerEntry* entry = get_simple_adapter(method);
2859   if (entry != nullptr) {
2860     return entry;
2861   }
2862 
2863   ResourceMark rm;
2864   AdapterBlob* new_adapter = nullptr;
2865 
2866   CompiledEntrySignature ces(method());
2867   ces.compute_calling_conventions();
2868   if (ces.has_scalarized_args()) {
2869     if (!method->has_scalarized_args()) {
2870       method->set_has_scalarized_args();
2871     }
2872     if (ces.c1_needs_stack_repair()) {
2873       method->set_c1_needs_stack_repair();
2874     }
2875     if (ces.c2_needs_stack_repair() && !method->c2_needs_stack_repair()) {
2876       method->set_c2_needs_stack_repair();
2877     }
2878   } else if (method->is_abstract()) {
2879     return _abstract_method_handler;
2880   }
2881 




2882   {
2883     MutexLocker mu(AdapterHandlerLibrary_lock);
2884 
2885     if (ces.has_scalarized_args() && method->is_abstract()) {
2886       // Save a C heap allocated version of the signature for abstract methods with scalarized inline type arguments
2887       address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2888       entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(nullptr),
2889                                                StubRoutines::throw_AbstractMethodError_entry(),
2890                                                wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2891                                                wrong_method_abstract, wrong_method_abstract);
2892       GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc_ro()->length(), mtInternal);
2893       heap_sig->appendAll(ces.sig_cc_ro());
2894       entry->set_sig_cc(heap_sig);
2895       return entry;
2896     }
2897 
2898     // Lookup method signature's fingerprint
2899     entry = lookup(ces.sig_cc(), ces.has_inline_recv());
2900 
2901     if (entry != nullptr) {
2902 #ifdef ASSERT
2903       if (VerifyAdapterSharing) {
2904         AdapterBlob* comparison_blob = nullptr;
2905         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, ces, false);
2906         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2907         assert(comparison_entry->compare_code(entry), "code must match");
2908         // Release the one just created and return the original
2909         delete comparison_entry;
2910       }
2911 #endif
2912       return entry;
2913     }
2914 
2915     entry = create_adapter(new_adapter, ces, /* allocate_code_blob */ true);
2916   }
2917 
2918   // Outside of the lock
2919   if (new_adapter != nullptr) {
2920     post_adapter_creation(new_adapter, entry);
2921   }
2922   return entry;
2923 }
2924 
2925 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2926                                                            CompiledEntrySignature& ces,

2927                                                            bool allocate_code_blob) {
2928 
2929   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2930   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2931   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2932   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2933   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;
2934 





2935   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2936   CodeBuffer buffer(buf);
2937   short buffer_locs[20];
2938   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2939                                           sizeof(buffer_locs)/sizeof(relocInfo));
2940 
2941   // Make a C heap allocated version of the fingerprint to store in the adapter
2942   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(ces.sig_cc(), ces.has_inline_recv());
2943   MacroAssembler _masm(&buffer);
2944   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2945                                                 ces.args_on_stack(),
2946                                                 ces.sig(),
2947                                                 ces.regs(),
2948                                                 ces.sig_cc(),
2949                                                 ces.regs_cc(),
2950                                                 ces.sig_cc_ro(),
2951                                                 ces.regs_cc_ro(),
2952                                                 fingerprint,
2953                                                 new_adapter,
2954                                                 allocate_code_blob);
2955 
2956   if (ces.has_scalarized_args()) {
2957     // Save a C heap allocated version of the scalarized signature and store it in the adapter
2958     GrowableArray<SigEntry>* heap_sig = new (mtInternal) GrowableArray<SigEntry>(ces.sig_cc()->length(), mtInternal);
2959     heap_sig->appendAll(ces.sig_cc());
2960     entry->set_sig_cc(heap_sig);
2961   }
2962 
2963 #ifdef ASSERT
2964   if (VerifyAdapterSharing) {
2965     entry->save_code(buf->code_begin(), buffer.insts_size());
2966     if (!allocate_code_blob) {
2967       return entry;
2968     }
2969   }
2970 #endif
2971 

2972   NOT_PRODUCT(int insts_size = buffer.insts_size());
2973   if (new_adapter == nullptr) {
2974     // CodeCache is full, disable compilation
2975     // Ought to log this but compile log is only per compile thread
2976     // and we're some non descript Java thread.
2977     return nullptr;
2978   }
2979   entry->relocate(new_adapter->content_begin());
2980 #ifndef PRODUCT
2981   // debugging support
2982   if (PrintAdapterHandlers || PrintStubCode) {
2983     ttyLocker ttyl;
2984     entry->print_adapter_on(tty);
2985     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2986                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2987                   fingerprint->as_string(), insts_size);
2988     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2989     if (Verbose || PrintStubCode) {
2990       address first_pc = entry->base_address();
2991       if (first_pc != nullptr) {

2993                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2994         tty->cr();
2995       }
2996     }
2997   }
2998 #endif
2999 
3000   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3001   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3002   if (contains_all_checks || !VerifyAdapterCalls) {
3003     assert_lock_strong(AdapterHandlerLibrary_lock);
3004     _adapter_handler_table->put(fingerprint, entry);
3005   }
3006   return entry;
3007 }
3008 
3009 address AdapterHandlerEntry::base_address() {
3010   address base = _i2c_entry;
3011   if (base == nullptr)  base = _c2i_entry;
3012   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
3013   assert(base <= _c2i_inline_entry || _c2i_inline_entry == nullptr, "");
3014   assert(base <= _c2i_inline_ro_entry || _c2i_inline_ro_entry == nullptr, "");
3015   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
3016   assert(base <= _c2i_unverified_inline_entry || _c2i_unverified_inline_entry == nullptr, "");
3017   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
3018   return base;
3019 }
3020 
3021 void AdapterHandlerEntry::relocate(address new_base) {
3022   address old_base = base_address();
3023   assert(old_base != nullptr, "");
3024   ptrdiff_t delta = new_base - old_base;
3025   if (_i2c_entry != nullptr)
3026     _i2c_entry += delta;
3027   if (_c2i_entry != nullptr)
3028     _c2i_entry += delta;
3029   if (_c2i_inline_entry != nullptr)
3030     _c2i_inline_entry += delta;
3031   if (_c2i_inline_ro_entry != nullptr)
3032     _c2i_inline_ro_entry += delta;
3033   if (_c2i_unverified_entry != nullptr)
3034     _c2i_unverified_entry += delta;
3035   if (_c2i_unverified_inline_entry != nullptr)
3036     _c2i_unverified_inline_entry += delta;
3037   if (_c2i_no_clinit_check_entry != nullptr)
3038     _c2i_no_clinit_check_entry += delta;
3039   assert(base_address() == new_base, "");
3040 }
3041 
3042 
3043 AdapterHandlerEntry::~AdapterHandlerEntry() {
3044   delete _fingerprint;
3045   if (_sig_cc != nullptr) {
3046     delete _sig_cc;
3047   }
3048 #ifdef ASSERT
3049   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3050 #endif
3051 }
3052 
3053 
3054 #ifdef ASSERT
3055 // Capture the code before relocation so that it can be compared
3056 // against other versions.  If the code is captured after relocation
3057 // then relative instructions won't be equivalent.
3058 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3059   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3060   _saved_code_length = length;
3061   memcpy(_saved_code, buffer, length);
3062 }
3063 
3064 
3065 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3066   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3067 

3114 
3115       struct { double data[20]; } locs_buf;
3116       struct { double data[20]; } stubs_locs_buf;
3117       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3118 #if defined(AARCH64) || defined(PPC64)
3119       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3120       // in the constant pool to ensure ordering between the barrier and oops
3121       // accesses. For native_wrappers we need a constant.
3122       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3123       // static java call that is resolved in the runtime.
3124       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3125         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3126       }
3127 #endif
3128       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3129       MacroAssembler _masm(&buffer);
3130 
3131       // Fill in the signature array, for the calling-convention call.
3132       const int total_args_passed = method->size_of_parameters();
3133 
3134       BasicType stack_sig_bt[16];
3135       VMRegPair stack_regs[16];
3136       BasicType* sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3137       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3138 
3139       int i = 0;
3140       if (!method->is_static()) {  // Pass in receiver first
3141         sig_bt[i++] = T_OBJECT;
3142       }
3143       SignatureStream ss(method->signature());
3144       for (; !ss.at_return_type(); ss.next()) {
3145         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
3146         if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
3147           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3148         }
3149       }
3150       assert(i == total_args_passed, "");
3151       BasicType ret_type = ss.type();
3152 
3153       // Now get the compiled-Java arguments layout.
3154       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3155 
3156       // Generate the compiled-to-native wrapper code
3157       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3158 
3159       if (nm != nullptr) {
3160         {
3161           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3162           if (nm->make_in_use()) {
3163             method->set_code(method, nm);
3164           }
3165         }
3166 
3167         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3168         if (directive->PrintAssemblyOption) {
3169           nm->print_code();
3170         }
3171         DirectivesStack::release(directive);

3376       st->print("Adapter for signature: ");
3377       a->print_adapter_on(st);
3378       return true;
3379     } else {
3380       return false; // keep looking
3381     }
3382   };
3383   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3384   _adapter_handler_table->iterate(findblob);
3385   assert(found, "Should have found handler");
3386 }
3387 
3388 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3389   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3390   if (get_i2c_entry() != nullptr) {
3391     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3392   }
3393   if (get_c2i_entry() != nullptr) {
3394     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3395   }
3396   if (get_c2i_entry() != nullptr) {
3397     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_inline_entry()));
3398   }
3399   if (get_c2i_entry() != nullptr) {
3400     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_inline_ro_entry()));
3401   }
3402   if (get_c2i_unverified_entry() != nullptr) {
3403     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3404   }
3405   if (get_c2i_unverified_entry() != nullptr) {
3406     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_inline_entry()));
3407   }
3408   if (get_c2i_no_clinit_check_entry() != nullptr) {
3409     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3410   }
3411   st->cr();
3412 }
3413 
3414 #ifndef PRODUCT
3415 
3416 void AdapterHandlerLibrary::print_statistics() {
3417   print_table_statistics();
3418 }
3419 
3420 #endif /* PRODUCT */
3421 
3422 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3423   assert(current == JavaThread::current(), "pre-condition");
3424   StackOverflow* overflow_state = current->stack_overflow_state();
3425   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3426   overflow_state->set_reserved_stack_activation(current->stack_base());

3475         event.set_method(method);
3476         event.commit();
3477       }
3478     }
3479   }
3480   return activation;
3481 }
3482 
3483 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3484   // After any safepoint, just before going back to compiled code,
3485   // we inform the GC that we will be doing initializing writes to
3486   // this object in the future without emitting card-marks, so
3487   // GC may take any compensating steps.
3488 
3489   oop new_obj = current->vm_result();
3490   if (new_obj == nullptr) return;
3491 
3492   BarrierSet *bs = BarrierSet::barrier_set();
3493   bs->on_slowpath_allocation_exit(current, new_obj);
3494 }
3495 
3496 // We are at a compiled code to interpreter call. We need backing
3497 // buffers for all inline type arguments. Allocate an object array to
3498 // hold them (convenient because once we're done with it we don't have
3499 // to worry about freeing it).
3500 oop SharedRuntime::allocate_inline_types_impl(JavaThread* current, methodHandle callee, bool allocate_receiver, TRAPS) {
3501   assert(InlineTypePassFieldsAsArgs, "no reason to call this");
3502   ResourceMark rm;
3503 
3504   int nb_slots = 0;
3505   InstanceKlass* holder = callee->method_holder();
3506   allocate_receiver &= !callee->is_static() && holder->is_inline_klass() && callee->is_scalarized_arg(0);
3507   if (allocate_receiver) {
3508     nb_slots++;
3509   }
3510   int arg_num = callee->is_static() ? 0 : 1;
3511   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3512     BasicType bt = ss.type();
3513     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
3514       nb_slots++;
3515     }
3516     if (bt != T_VOID) {
3517       arg_num++;
3518     }
3519   }
3520   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3521   objArrayHandle array(THREAD, array_oop);
3522   arg_num = callee->is_static() ? 0 : 1;
3523   int i = 0;
3524   if (allocate_receiver) {
3525     InlineKlass* vk = InlineKlass::cast(holder);
3526     oop res = vk->allocate_instance(CHECK_NULL);
3527     array->obj_at_put(i++, res);
3528   }
3529   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3530     BasicType bt = ss.type();
3531     if (bt == T_OBJECT && callee->is_scalarized_arg(arg_num)) {
3532       InlineKlass* vk = ss.as_inline_klass(holder);
3533       assert(vk != nullptr, "Unexpected klass");
3534       oop res = vk->allocate_instance(CHECK_NULL);
3535       array->obj_at_put(i++, res);
3536     }
3537     if (bt != T_VOID) {
3538       arg_num++;
3539     }
3540   }
3541   return array();
3542 }
3543 
3544 JRT_ENTRY(void, SharedRuntime::allocate_inline_types(JavaThread* current, Method* callee_method, bool allocate_receiver))
3545   methodHandle callee(current, callee_method);
3546   oop array = SharedRuntime::allocate_inline_types_impl(current, callee, allocate_receiver, CHECK);
3547   current->set_vm_result(array);
3548   current->set_vm_result_2(callee()); // TODO: required to keep callee live?
3549 JRT_END
3550 
3551 // We're returning from an interpreted method: load each field into a
3552 // register following the calling convention
3553 JRT_LEAF(void, SharedRuntime::load_inline_type_fields_in_regs(JavaThread* current, oopDesc* res))
3554 {
3555   assert(res->klass()->is_inline_klass(), "only inline types here");
3556   ResourceMark rm;
3557   RegisterMap reg_map(current,
3558                       RegisterMap::UpdateMap::include,
3559                       RegisterMap::ProcessFrames::include,
3560                       RegisterMap::WalkContinuation::skip);
3561   frame stubFrame = current->last_frame();
3562   frame callerFrame = stubFrame.sender(&reg_map);
3563   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3564 
3565   InlineKlass* vk = InlineKlass::cast(res->klass());
3566 
3567   const Array<SigEntry>* sig_vk = vk->extended_sig();
3568   const Array<VMRegPair>* regs = vk->return_regs();
3569 
3570   if (regs == nullptr) {
3571     // The fields of the inline klass don't fit in registers, bail out
3572     return;
3573   }
3574 
3575   int j = 1;
3576   for (int i = 0; i < sig_vk->length(); i++) {
3577     BasicType bt = sig_vk->at(i)._bt;
3578     if (bt == T_METADATA) {
3579       continue;
3580     }
3581     if (bt == T_VOID) {
3582       if (sig_vk->at(i-1)._bt == T_LONG ||
3583           sig_vk->at(i-1)._bt == T_DOUBLE) {
3584         j++;
3585       }
3586       continue;
3587     }
3588     int off = sig_vk->at(i)._offset;
3589     assert(off > 0, "offset in object should be positive");
3590     VMRegPair pair = regs->at(j);
3591     address loc = reg_map.location(pair.first(), nullptr);
3592     switch(bt) {
3593     case T_BOOLEAN:
3594       *(jboolean*)loc = res->bool_field(off);
3595       break;
3596     case T_CHAR:
3597       *(jchar*)loc = res->char_field(off);
3598       break;
3599     case T_BYTE:
3600       *(jbyte*)loc = res->byte_field(off);
3601       break;
3602     case T_SHORT:
3603       *(jshort*)loc = res->short_field(off);
3604       break;
3605     case T_INT: {
3606       *(jint*)loc = res->int_field(off);
3607       break;
3608     }
3609     case T_LONG:
3610 #ifdef _LP64
3611       *(intptr_t*)loc = res->long_field(off);
3612 #else
3613       Unimplemented();
3614 #endif
3615       break;
3616     case T_OBJECT:
3617     case T_ARRAY: {
3618       *(oop*)loc = res->obj_field(off);
3619       break;
3620     }
3621     case T_FLOAT:
3622       *(jfloat*)loc = res->float_field(off);
3623       break;
3624     case T_DOUBLE:
3625       *(jdouble*)loc = res->double_field(off);
3626       break;
3627     default:
3628       ShouldNotReachHere();
3629     }
3630     j++;
3631   }
3632   assert(j == regs->length(), "missed a field?");
3633 
3634 #ifdef ASSERT
3635   VMRegPair pair = regs->at(0);
3636   address loc = reg_map.location(pair.first(), nullptr);
3637   assert(*(oopDesc**)loc == res, "overwritten object");
3638 #endif
3639 
3640   current->set_vm_result(res);
3641 }
3642 JRT_END
3643 
3644 // We've returned to an interpreted method, the interpreter needs a
3645 // reference to an inline type instance. Allocate it and initialize it
3646 // from field's values in registers.
3647 JRT_BLOCK_ENTRY(void, SharedRuntime::store_inline_type_fields_to_buf(JavaThread* current, intptr_t res))
3648 {
3649   ResourceMark rm;
3650   RegisterMap reg_map(current,
3651                       RegisterMap::UpdateMap::include,
3652                       RegisterMap::ProcessFrames::include,
3653                       RegisterMap::WalkContinuation::skip);
3654   frame stubFrame = current->last_frame();
3655   frame callerFrame = stubFrame.sender(&reg_map);
3656 
3657 #ifdef ASSERT
3658   InlineKlass* verif_vk = InlineKlass::returned_inline_klass(reg_map);
3659 #endif
3660 
3661   if (!is_set_nth_bit(res, 0)) {
3662     // We're not returning with inline type fields in registers (the
3663     // calling convention didn't allow it for this inline klass)
3664     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3665     current->set_vm_result((oopDesc*)res);
3666     assert(verif_vk == nullptr, "broken calling convention");
3667     return;
3668   }
3669 
3670   clear_nth_bit(res, 0);
3671   InlineKlass* vk = (InlineKlass*)res;
3672   assert(verif_vk == vk, "broken calling convention");
3673   assert(Metaspace::contains((void*)res), "should be klass");
3674 
3675   // Allocate handles for every oop field so they are safe in case of
3676   // a safepoint when allocating
3677   GrowableArray<Handle> handles;
3678   vk->save_oop_fields(reg_map, handles);
3679 
3680   // It's unsafe to safepoint until we are here
3681   JRT_BLOCK;
3682   {
3683     JavaThread* THREAD = current;
3684     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3685     current->set_vm_result(vt);
3686   }
3687   JRT_BLOCK_END;
3688 }
3689 JRT_END
< prev index next >