1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "code/debugInfo.hpp"
 26 #include "oops/access.hpp"
 27 #include "oops/compressedOops.inline.hpp"
 28 #include "oops/oop.hpp"
 29 #include "runtime/frame.inline.hpp"
 30 #include "runtime/globals.hpp"
 31 #include "runtime/handles.inline.hpp"
 32 #include "runtime/stackValue.hpp"
 33 #if INCLUDE_SHENANDOAHGC
 34 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
 35 #endif
 36 
 37 class RegisterMap;
 38 class SmallRegisterMap;
 39 
 40 
 41 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
 42   if (addr == nullptr) {
 43     return nullptr;
 44   }
 45 
 46   if (UseCompressedOops) {
 47     // When compressed oops is enabled, an oop location may
 48     // contain narrow oop values - we deal with that here
 49 
 50     if (chunk != nullptr && chunk->has_bitmap()) {
 51       // Transformed stack chunk with narrow oops
 52       return chunk->load_oop((narrowOop*)addr);
 53     }
 54 
 55 #ifdef _LP64
 56     if (CompressedOops::is_base(*(void**)addr)) {
 57       // Compiled code may produce decoded oop = narrow_oop_base
 58       // when a narrow oop implicit null check is used.
 59       // The narrow_oop_base could be null or be the address
 60       // of the page below heap. Use null value for both cases.
 61       return nullptr;
 62     }
 63 #endif
 64   }
 65 
 66   if (chunk != nullptr) {
 67     // Load oop from chunk
 68     return chunk->load_oop((oop*)addr);
 69   }
 70 
 71   // Load oop from stack
 72   oop val = *(oop*)addr;
 73 
 74 #if INCLUDE_SHENANDOAHGC
 75   if (UseShenandoahGC) {
 76     // Pass the value through the barrier to avoid capturing bad oops as
 77     // stack values. Note: do not heal the location, to avoid accidentally
 78     // corrupting the stack. Stack watermark barriers are supposed to handle
 79     // the healing.
 80     val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val);
 81   }
 82 #endif
 83 
 84   return val;
 85 }
 86 
 87 static oop oop_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
 88   assert(UseCompressedOops, "Narrow oops should not exist");
 89   assert(addr != nullptr, "Not expecting null address");
 90   narrowOop* narrow_addr;
 91   if (is_register) {
 92     // The callee has no clue whether the register holds an int,
 93     // long or is unused.  He always saves a long.  Here we know
 94     // a long was saved, but we only want an int back.  Narrow the
 95     // saved long to the int that the JVM wants.  We can't just
 96     // use narrow_oop_cast directly, because we don't know what
 97     // the high bits of the value might be.
 98     narrow_addr = ((narrowOop*)addr) BIG_ENDIAN_ONLY(+ 1);
 99   } else {
100     narrow_addr = (narrowOop*)addr;
101   }
102 
103   if (chunk != nullptr) {
104     // Load oop from chunk
105     return chunk->load_oop(narrow_addr);
106   }
107 
108   // Load oop from stack
109   oop val = CompressedOops::decode(*narrow_addr);
110 
111 #if INCLUDE_SHENANDOAHGC
112   if (UseShenandoahGC) {
113     // Pass the value through the barrier to avoid capturing bad oops as
114     // stack values. Note: do not heal the location, to avoid accidentally
115     // corrupting the stack. Stack watermark barriers are supposed to handle
116     // the healing.
117     val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val);
118   }
119 #endif
120 
121   return val;
122 }
123 
124 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
125   oop val = oop_from_oop_location(chunk, addr);
126   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
127          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
128   Handle h(Thread::current(), val); // Wrap a handle around the oop
129   return new StackValue(h);
130 }
131 
132 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
133   oop val = oop_from_narrowOop_location(chunk, addr, is_register);
134   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
135          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
136   Handle h(Thread::current(), val); // Wrap a handle around the oop
137   return new StackValue(h);
138 }
139 
140 
141 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
142 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
143 
144 template<typename RegisterMapT>
145 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
146   address value_addr = stack_value_address(fr, reg_map, sv);
147   stackChunkOop chunk = reg_map->stack_chunk()();
148   if (sv->is_location()) {
149     // Stack or register value
150     Location loc = ((LocationValue *)sv)->location();
151 
152     // Then package it right depending on type
153     // Note: the transfer of the data is thru a union that contains
154     // an intptr_t. This is because an interpreter stack slot is
155     // really an intptr_t. The use of a union containing an intptr_t
156     // ensures that on a 64 bit platform we have proper alignment
157     // and that we store the value where the interpreter will expect
158     // to find it (i.e. proper endian). Similarly on a 32bit platform
159     // using the intptr_t ensures that when a value is larger than
160     // a stack slot (jlong/jdouble) that we capture the proper part
161     // of the value for the stack slot in question.
162     //
163     switch( loc.type() ) {
164     case Location::float_in_dbl: { // Holds a float in a double register?
165       // The callee has no clue whether the register holds a float,
166       // double or is unused.  He always saves a double.  Here we know
167       // a double was saved, but we only want a float back.  Narrow the
168       // saved double to the float that the JVM wants.
169       assert( loc.is_register(), "floats always saved to stack in 1 word" );
170       union { intptr_t p; jfloat jf; } value;
171       value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
172       value.jf = (jfloat) *(jdouble*) value_addr;
173       return new StackValue(value.p); // 64-bit high half is stack junk
174     }
175     case Location::int_in_long: { // Holds an int in a long register?
176       // The callee has no clue whether the register holds an int,
177       // long or is unused.  He always saves a long.  Here we know
178       // a long was saved, but we only want an int back.  Narrow the
179       // saved long to the int that the JVM wants.
180       assert( loc.is_register(), "ints always saved to stack in 1 word" );
181       union { intptr_t p; jint ji;} value;
182       value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
183       value.ji = (jint) *(jlong*) value_addr;
184       return new StackValue(value.p); // 64-bit high half is stack junk
185     }
186 #ifdef _LP64
187     case Location::dbl:
188       // Double value in an aligned adjacent pair
189       return new StackValue(*(intptr_t*)value_addr);
190     case Location::lng:
191       // Long   value in an aligned adjacent pair
192       return new StackValue(*(intptr_t*)value_addr);
193     case Location::narrowoop:
194       return create_stack_value_from_narrowOop_location(reg_map->stack_chunk()(), (void*)value_addr, loc.is_register());
195 #endif
196     case Location::oop:
197       return create_stack_value_from_oop_location(reg_map->stack_chunk()(), (void*)value_addr);
198     case Location::addr: {
199       loc.print_on(tty);
200       ShouldNotReachHere(); // both C1 and C2 now inline jsrs
201     }
202     case Location::normal: {
203       // Just copy all other bits straight through
204       union { intptr_t p; jint ji;} value;
205       value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
206       value.ji = *(jint*)value_addr;
207       return new StackValue(value.p);
208     }
209     case Location::invalid: {
210       return new StackValue();
211     }
212     case Location::vector: {
213       loc.print_on(tty);
214       ShouldNotReachHere(); // should be handled by VectorSupport::allocate_vector()
215     }
216     default:
217       loc.print_on(tty);
218       ShouldNotReachHere();
219     }
220 
221   } else if (sv->is_constant_int()) {
222     // Constant int: treat same as register int.
223     union { intptr_t p; jint ji;} value;
224     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
225     value.ji = (jint)((ConstantIntValue*)sv)->value();
226     return new StackValue(value.p);
227   } else if (sv->is_constant_oop()) {
228     // constant oop
229     return new StackValue(sv->as_ConstantOopReadValue()->value());
230 #ifdef _LP64
231   } else if (sv->is_constant_double()) {
232     // Constant double in a single stack slot
233     union { intptr_t p; double d; } value;
234     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
235     value.d = ((ConstantDoubleValue *)sv)->value();
236     return new StackValue(value.p);
237   } else if (sv->is_constant_long()) {
238     // Constant long in a single stack slot
239     union { intptr_t p; jlong jl; } value;
240     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
241     value.jl = ((ConstantLongValue *)sv)->value();
242     return new StackValue(value.p);
243 #endif
244   } else if (sv->is_object()) { // Scalar replaced object in compiled frame
245     ObjectValue* ov = (ObjectValue *)sv;
246     Handle hdl = ov->value();
247     bool scalar_replaced = hdl.is_null() && ov->is_scalar_replaced();
248     if (ov->has_properties()) {
249       Klass* k = java_lang_Class::as_Klass(ov->klass()->as_ConstantOopReadValue()->value()());
250       if (!k->is_array_klass()) {
251         // Don't treat inline type as scalar replaced if it is null
252         jint null_marker = StackValue::create_stack_value(fr, reg_map, ov->properties())->get_jint();
253         scalar_replaced &= (null_marker != 0);
254       }
255     }
256     return new StackValue(hdl, scalar_replaced ? 1 : 0);
257   } else if (sv->is_marker()) {
258     // Should never need to directly construct a marker.
259     ShouldNotReachHere();
260   }
261   // Unknown ScopeValue type
262   ShouldNotReachHere();
263   return new StackValue((intptr_t) 0);   // dummy
264 }
265 
266 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
267 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
268 
269 template<typename RegisterMapT>
270 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
271   if (!sv->is_location()) {
272     return nullptr;
273   }
274   Location loc = ((LocationValue *)sv)->location();
275   if (loc.type() == Location::invalid) {
276     return nullptr;
277   }
278 
279   if (!reg_map->in_cont()) {
280     address value_addr = loc.is_register()
281       // Value was in a callee-save register
282       ? reg_map->location(VMRegImpl::as_VMReg(loc.register_number()), fr->sp())
283       // Else value was directly saved on the stack. The frame's original stack pointer,
284       // before any extension by its callee (due to Compiler1 linkage on SPARC), must be used.
285       : ((address)fr->unextended_sp()) + loc.stack_offset();
286 
287     assert(value_addr == nullptr || reg_map->thread() == nullptr || reg_map->thread()->is_in_usable_stack(value_addr), INTPTR_FORMAT, p2i(value_addr));
288     return value_addr;
289   }
290 
291   address value_addr = loc.is_register()
292     ? reg_map->as_RegisterMap()->stack_chunk()->reg_to_location(*fr, reg_map->as_RegisterMap(), VMRegImpl::as_VMReg(loc.register_number()))
293     : reg_map->as_RegisterMap()->stack_chunk()->usp_offset_to_location(*fr, loc.stack_offset());
294 
295   assert(value_addr == nullptr || Continuation::is_in_usable_stack(value_addr, reg_map->as_RegisterMap()) || (reg_map->thread() != nullptr && reg_map->thread()->is_in_usable_stack(value_addr)), INTPTR_FORMAT, p2i(value_addr));
296   return value_addr;
297 }
298 
299 BasicLock* StackValue::resolve_monitor_lock(const frame& fr, Location location) {
300   assert(location.is_stack(), "for now we only look at the stack");
301   int word_offset = location.stack_offset() / wordSize;
302   // (stack picture)
303   // high: [     ]  word_offset + 1
304   // low   [     ]  word_offset
305   //
306   // sp->  [     ]  0
307   // the word_offset is the distance from the stack pointer to the lowest address
308   // The frame's original stack pointer, before any extension by its callee
309   // (due to Compiler1 linkage on SPARC), must be used.
310   return (BasicLock*) (fr.unextended_sp() + word_offset);
311 }
312 
313 
314 #ifndef PRODUCT
315 
316 void StackValue::print_on(outputStream* st) const {
317   switch(_type) {
318     case T_INT:
319       st->print("%d (int) %f (float) %x (hex)",  *(int *)&_integer_value, *(float *)&_integer_value,  *(int *)&_integer_value);
320       break;
321 
322     case T_OBJECT:
323       if (_handle_value() != nullptr) {
324         _handle_value()->print_value_on(st);
325       } else {
326         st->print("null");
327       }
328       st->print(" <" INTPTR_FORMAT ">", p2i(_handle_value()));
329       break;
330 
331     case T_CONFLICT:
332      st->print("conflict");
333      break;
334 
335     default:
336      ShouldNotReachHere();
337   }
338 }
339 
340 #endif