1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/debugInfo.hpp" 27 #include "oops/access.hpp" 28 #include "oops/compressedOops.inline.hpp" 29 #include "oops/oop.hpp" 30 #include "runtime/frame.inline.hpp" 31 #include "runtime/globals.hpp" 32 #include "runtime/handles.inline.hpp" 33 #include "runtime/stackValue.hpp" 34 #if INCLUDE_ZGC 35 #include "gc/z/zBarrier.inline.hpp" 36 #endif 37 #if INCLUDE_SHENANDOAHGC 38 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" 39 #endif 40 41 class RegisterMap; 42 class SmallRegisterMap; 43 44 45 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) { 46 if (addr == nullptr) { 47 return nullptr; 48 } 49 50 if (UseCompressedOops) { 51 // When compressed oops is enabled, an oop location may 52 // contain narrow oop values - we deal with that here 53 54 if (chunk != nullptr && chunk->has_bitmap()) { 55 // Transformed stack chunk with narrow oops 56 return chunk->load_oop((narrowOop*)addr); 57 } 58 59 #ifdef _LP64 60 if (CompressedOops::is_base(*(void**)addr)) { 61 // Compiled code may produce decoded oop = narrow_oop_base 62 // when a narrow oop implicit null check is used. 63 // The narrow_oop_base could be null or be the address 64 // of the page below heap. Use null value for both cases. 65 return nullptr; 66 } 67 #endif 68 } 69 70 if (chunk != nullptr) { 71 // Load oop from chunk 72 return chunk->load_oop((oop*)addr); 73 } 74 75 // Load oop from stack 76 oop val = *(oop*)addr; 77 78 #if INCLUDE_SHENANDOAHGC 79 if (UseShenandoahGC) { 80 // Pass the value through the barrier to avoid capturing bad oops as 81 // stack values. Note: do not heal the location, to avoid accidentally 82 // corrupting the stack. Stack watermark barriers are supposed to handle 83 // the healing. 84 val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val); 85 } 86 #endif 87 88 return val; 89 } 90 91 static oop oop_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) { 92 assert(UseCompressedOops, "Narrow oops should not exist"); 93 assert(addr != nullptr, "Not expecting null address"); 94 narrowOop* narrow_addr; 95 if (is_register) { 96 // The callee has no clue whether the register holds an int, 97 // long or is unused. He always saves a long. Here we know 98 // a long was saved, but we only want an int back. Narrow the 99 // saved long to the int that the JVM wants. We can't just 100 // use narrow_oop_cast directly, because we don't know what 101 // the high bits of the value might be. 102 narrow_addr = ((narrowOop*)addr) BIG_ENDIAN_ONLY(+ 1); 103 } else { 104 narrow_addr = (narrowOop*)addr; 105 } 106 107 if (chunk != nullptr) { 108 // Load oop from chunk 109 return chunk->load_oop(narrow_addr); 110 } 111 112 // Load oop from stack 113 oop val = CompressedOops::decode(*narrow_addr); 114 115 #if INCLUDE_SHENANDOAHGC 116 if (UseShenandoahGC) { 117 // Pass the value through the barrier to avoid capturing bad oops as 118 // stack values. Note: do not heal the location, to avoid accidentally 119 // corrupting the stack. Stack watermark barriers are supposed to handle 120 // the healing. 121 val = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(val); 122 } 123 #endif 124 125 return val; 126 } 127 128 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) { 129 oop val = oop_from_oop_location(chunk, addr); 130 assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d", 131 p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops); 132 Handle h(Thread::current(), val); // Wrap a handle around the oop 133 return new StackValue(h); 134 } 135 136 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) { 137 oop val = oop_from_narrowOop_location(chunk, addr, is_register); 138 assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d", 139 p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops); 140 Handle h(Thread::current(), val); // Wrap a handle around the oop 141 return new StackValue(h); 142 } 143 144 145 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv); 146 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv); 147 148 template<typename RegisterMapT> 149 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) { 150 address value_addr = stack_value_address(fr, reg_map, sv); 151 stackChunkOop chunk = reg_map->stack_chunk()(); 152 if (sv->is_location()) { 153 // Stack or register value 154 Location loc = ((LocationValue *)sv)->location(); 155 156 // Then package it right depending on type 157 // Note: the transfer of the data is thru a union that contains 158 // an intptr_t. This is because an interpreter stack slot is 159 // really an intptr_t. The use of a union containing an intptr_t 160 // ensures that on a 64 bit platform we have proper alignment 161 // and that we store the value where the interpreter will expect 162 // to find it (i.e. proper endian). Similarly on a 32bit platform 163 // using the intptr_t ensures that when a value is larger than 164 // a stack slot (jlong/jdouble) that we capture the proper part 165 // of the value for the stack slot in question. 166 // 167 switch( loc.type() ) { 168 case Location::float_in_dbl: { // Holds a float in a double register? 169 // The callee has no clue whether the register holds a float, 170 // double or is unused. He always saves a double. Here we know 171 // a double was saved, but we only want a float back. Narrow the 172 // saved double to the float that the JVM wants. 173 assert( loc.is_register(), "floats always saved to stack in 1 word" ); 174 union { intptr_t p; jfloat jf; } value; 175 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 176 value.jf = (jfloat) *(jdouble*) value_addr; 177 return new StackValue(value.p); // 64-bit high half is stack junk 178 } 179 case Location::int_in_long: { // Holds an int in a long register? 180 // The callee has no clue whether the register holds an int, 181 // long or is unused. He always saves a long. Here we know 182 // a long was saved, but we only want an int back. Narrow the 183 // saved long to the int that the JVM wants. 184 assert( loc.is_register(), "ints always saved to stack in 1 word" ); 185 union { intptr_t p; jint ji;} value; 186 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 187 value.ji = (jint) *(jlong*) value_addr; 188 return new StackValue(value.p); // 64-bit high half is stack junk 189 } 190 #ifdef _LP64 191 case Location::dbl: 192 // Double value in an aligned adjacent pair 193 return new StackValue(*(intptr_t*)value_addr); 194 case Location::lng: 195 // Long value in an aligned adjacent pair 196 return new StackValue(*(intptr_t*)value_addr); 197 case Location::narrowoop: 198 return create_stack_value_from_narrowOop_location(reg_map->stack_chunk()(), (void*)value_addr, loc.is_register()); 199 #endif 200 case Location::oop: 201 return create_stack_value_from_oop_location(reg_map->stack_chunk()(), (void*)value_addr); 202 case Location::addr: { 203 loc.print_on(tty); 204 ShouldNotReachHere(); // both C1 and C2 now inline jsrs 205 } 206 case Location::normal: { 207 // Just copy all other bits straight through 208 union { intptr_t p; jint ji;} value; 209 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 210 value.ji = *(jint*)value_addr; 211 return new StackValue(value.p); 212 } 213 case Location::invalid: { 214 return new StackValue(); 215 } 216 case Location::vector: { 217 loc.print_on(tty); 218 ShouldNotReachHere(); // should be handled by VectorSupport::allocate_vector() 219 } 220 default: 221 loc.print_on(tty); 222 ShouldNotReachHere(); 223 } 224 225 } else if (sv->is_constant_int()) { 226 // Constant int: treat same as register int. 227 union { intptr_t p; jint ji;} value; 228 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 229 value.ji = (jint)((ConstantIntValue*)sv)->value(); 230 return new StackValue(value.p); 231 } else if (sv->is_constant_oop()) { 232 // constant oop 233 return new StackValue(sv->as_ConstantOopReadValue()->value()); 234 #ifdef _LP64 235 } else if (sv->is_constant_double()) { 236 // Constant double in a single stack slot 237 union { intptr_t p; double d; } value; 238 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 239 value.d = ((ConstantDoubleValue *)sv)->value(); 240 return new StackValue(value.p); 241 } else if (sv->is_constant_long()) { 242 // Constant long in a single stack slot 243 union { intptr_t p; jlong jl; } value; 244 value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF); 245 value.jl = ((ConstantLongValue *)sv)->value(); 246 return new StackValue(value.p); 247 #endif 248 } else if (sv->is_object()) { // Scalar replaced object in compiled frame 249 ObjectValue* ov = (ObjectValue *)sv; 250 Handle hdl = ov->value(); 251 bool scalar_replaced = hdl.is_null() && ov->is_scalar_replaced(); 252 if (ov->maybe_null()) { 253 // Don't treat inline type as scalar replaced if it is null 254 jint is_init = StackValue::create_stack_value(fr, reg_map, ov->is_init())->get_jint(); 255 scalar_replaced &= (is_init != 0); 256 } 257 return new StackValue(hdl, scalar_replaced ? 1 : 0); 258 } else if (sv->is_marker()) { 259 // Should never need to directly construct a marker. 260 ShouldNotReachHere(); 261 } 262 // Unknown ScopeValue type 263 ShouldNotReachHere(); 264 return new StackValue((intptr_t) 0); // dummy 265 } 266 267 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv); 268 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv); 269 270 template<typename RegisterMapT> 271 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) { 272 if (!sv->is_location()) { 273 return nullptr; 274 } 275 Location loc = ((LocationValue *)sv)->location(); 276 if (loc.type() == Location::invalid) { 277 return nullptr; 278 } 279 280 if (!reg_map->in_cont()) { 281 address value_addr = loc.is_register() 282 // Value was in a callee-save register 283 ? reg_map->location(VMRegImpl::as_VMReg(loc.register_number()), fr->sp()) 284 // Else value was directly saved on the stack. The frame's original stack pointer, 285 // before any extension by its callee (due to Compiler1 linkage on SPARC), must be used. 286 : ((address)fr->unextended_sp()) + loc.stack_offset(); 287 288 assert(value_addr == nullptr || reg_map->thread() == nullptr || reg_map->thread()->is_in_usable_stack(value_addr), INTPTR_FORMAT, p2i(value_addr)); 289 return value_addr; 290 } 291 292 address value_addr = loc.is_register() 293 ? reg_map->as_RegisterMap()->stack_chunk()->reg_to_location(*fr, reg_map->as_RegisterMap(), VMRegImpl::as_VMReg(loc.register_number())) 294 : reg_map->as_RegisterMap()->stack_chunk()->usp_offset_to_location(*fr, loc.stack_offset()); 295 296 assert(value_addr == nullptr || Continuation::is_in_usable_stack(value_addr, reg_map->as_RegisterMap()) || (reg_map->thread() != nullptr && reg_map->thread()->is_in_usable_stack(value_addr)), INTPTR_FORMAT, p2i(value_addr)); 297 return value_addr; 298 } 299 300 BasicLock* StackValue::resolve_monitor_lock(const frame* fr, Location location) { 301 assert(location.is_stack(), "for now we only look at the stack"); 302 int word_offset = location.stack_offset() / wordSize; 303 // (stack picture) 304 // high: [ ] word_offset + 1 305 // low [ ] word_offset 306 // 307 // sp-> [ ] 0 308 // the word_offset is the distance from the stack pointer to the lowest address 309 // The frame's original stack pointer, before any extension by its callee 310 // (due to Compiler1 linkage on SPARC), must be used. 311 return (BasicLock*) (fr->unextended_sp() + word_offset); 312 } 313 314 315 #ifndef PRODUCT 316 317 void StackValue::print_on(outputStream* st) const { 318 switch(_type) { 319 case T_INT: 320 st->print("%d (int) %f (float) %x (hex)", *(int *)&_integer_value, *(float *)&_integer_value, *(int *)&_integer_value); 321 break; 322 323 case T_OBJECT: 324 if (_handle_value() != nullptr) { 325 _handle_value()->print_value_on(st); 326 } else { 327 st->print("null"); 328 } 329 st->print(" <" INTPTR_FORMAT ">", p2i(_handle_value())); 330 break; 331 332 case T_CONFLICT: 333 st->print("conflict"); 334 break; 335 336 default: 337 ShouldNotReachHere(); 338 } 339 } 340 341 #endif