< prev index next >

src/hotspot/share/runtime/stackValue.cpp

Print this page

 24 
 25 #include "precompiled.hpp"
 26 #include "code/debugInfo.hpp"
 27 #include "oops/access.hpp"
 28 #include "oops/compressedOops.inline.hpp"
 29 #include "oops/oop.hpp"
 30 #include "runtime/frame.inline.hpp"
 31 #include "runtime/globals.hpp"
 32 #include "runtime/handles.inline.hpp"
 33 #include "runtime/stackValue.hpp"
 34 #if INCLUDE_ZGC
 35 #include "gc/z/zBarrier.inline.hpp"
 36 #endif
 37 #if INCLUDE_SHENANDOAHGC
 38 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
 39 #endif
 40 
 41 class RegisterMap;
 42 class SmallRegisterMap;
 43 
 44 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
 45 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
 46 
 47 template<typename RegisterMapT>
 48 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
 49   return create_stack_value(sv, stack_value_address(fr, reg_map, sv), reg_map);
 50 }
 51 
 52 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
 53   if (addr == nullptr) {
 54     return nullptr;
 55   }
 56 
 57   if (UseCompressedOops) {
 58     // When compressed oops is enabled, an oop location may
 59     // contain narrow oop values - we deal with that here
 60 
 61     if (chunk != nullptr && chunk->has_bitmap()) {
 62       // Transformed stack chunk with narrow oops
 63       return chunk->load_oop((narrowOop*)addr);
 64     }
 65 
 66 #ifdef _LP64
 67     if (CompressedOops::is_base(*(void**)addr)) {
 68       // Compiled code may produce decoded oop = narrow_oop_base
 69       // when a narrow oop implicit null check is used.
 70       // The narrow_oop_base could be null or be the address

131 
132   return val;
133 }
134 
135 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
136   oop val = oop_from_oop_location(chunk, addr);
137   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
138          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
139   Handle h(Thread::current(), val); // Wrap a handle around the oop
140   return new StackValue(h);
141 }
142 
143 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
144   oop val = oop_from_narrowOop_location(chunk, addr, is_register);
145   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
146          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
147   Handle h(Thread::current(), val); // Wrap a handle around the oop
148   return new StackValue(h);
149 }
150 




151 template<typename RegisterMapT>
152 StackValue* StackValue::create_stack_value(ScopeValue* sv, address value_addr, const RegisterMapT* reg_map) {

153   stackChunkOop chunk = reg_map->stack_chunk()();
154   if (sv->is_location()) {
155     // Stack or register value
156     Location loc = ((LocationValue *)sv)->location();
157 
158     // Then package it right depending on type
159     // Note: the transfer of the data is thru a union that contains
160     // an intptr_t. This is because an interpreter stack slot is
161     // really an intptr_t. The use of a union containing an intptr_t
162     // ensures that on a 64 bit platform we have proper alignment
163     // and that we store the value where the interpreter will expect
164     // to find it (i.e. proper endian). Similarly on a 32bit platform
165     // using the intptr_t ensures that when a value is larger than
166     // a stack slot (jlong/jdouble) that we capture the proper part
167     // of the value for the stack slot in question.
168     //
169     switch( loc.type() ) {
170     case Location::float_in_dbl: { // Holds a float in a double register?
171       // The callee has no clue whether the register holds a float,
172       // double or is unused.  He always saves a double.  Here we know

233   } else if (sv->is_constant_oop()) {
234     // constant oop
235     return new StackValue(sv->as_ConstantOopReadValue()->value());
236 #ifdef _LP64
237   } else if (sv->is_constant_double()) {
238     // Constant double in a single stack slot
239     union { intptr_t p; double d; } value;
240     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
241     value.d = ((ConstantDoubleValue *)sv)->value();
242     return new StackValue(value.p);
243   } else if (sv->is_constant_long()) {
244     // Constant long in a single stack slot
245     union { intptr_t p; jlong jl; } value;
246     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
247     value.jl = ((ConstantLongValue *)sv)->value();
248     return new StackValue(value.p);
249 #endif
250   } else if (sv->is_object()) { // Scalar replaced object in compiled frame
251     ObjectValue* ov = (ObjectValue *)sv;
252     Handle hdl = ov->value();
253     return new StackValue(hdl, hdl.is_null() && ov->is_scalar_replaced() ? 1 : 0);






254   } else if (sv->is_marker()) {
255     // Should never need to directly construct a marker.
256     ShouldNotReachHere();
257   }
258   // Unknown ScopeValue type
259   ShouldNotReachHere();
260   return new StackValue((intptr_t) 0);   // dummy
261 }
262 
263 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
264 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
265 
266 template<typename RegisterMapT>
267 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
268   if (!sv->is_location()) {
269     return nullptr;
270   }
271   Location loc = ((LocationValue *)sv)->location();
272   if (loc.type() == Location::invalid) {
273     return nullptr;

 24 
 25 #include "precompiled.hpp"
 26 #include "code/debugInfo.hpp"
 27 #include "oops/access.hpp"
 28 #include "oops/compressedOops.inline.hpp"
 29 #include "oops/oop.hpp"
 30 #include "runtime/frame.inline.hpp"
 31 #include "runtime/globals.hpp"
 32 #include "runtime/handles.inline.hpp"
 33 #include "runtime/stackValue.hpp"
 34 #if INCLUDE_ZGC
 35 #include "gc/z/zBarrier.inline.hpp"
 36 #endif
 37 #if INCLUDE_SHENANDOAHGC
 38 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
 39 #endif
 40 
 41 class RegisterMap;
 42 class SmallRegisterMap;
 43 







 44 
 45 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
 46   if (addr == nullptr) {
 47     return nullptr;
 48   }
 49 
 50   if (UseCompressedOops) {
 51     // When compressed oops is enabled, an oop location may
 52     // contain narrow oop values - we deal with that here
 53 
 54     if (chunk != nullptr && chunk->has_bitmap()) {
 55       // Transformed stack chunk with narrow oops
 56       return chunk->load_oop((narrowOop*)addr);
 57     }
 58 
 59 #ifdef _LP64
 60     if (CompressedOops::is_base(*(void**)addr)) {
 61       // Compiled code may produce decoded oop = narrow_oop_base
 62       // when a narrow oop implicit null check is used.
 63       // The narrow_oop_base could be null or be the address

124 
125   return val;
126 }
127 
128 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
129   oop val = oop_from_oop_location(chunk, addr);
130   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
131          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
132   Handle h(Thread::current(), val); // Wrap a handle around the oop
133   return new StackValue(h);
134 }
135 
136 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
137   oop val = oop_from_narrowOop_location(chunk, addr, is_register);
138   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
139          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
140   Handle h(Thread::current(), val); // Wrap a handle around the oop
141   return new StackValue(h);
142 }
143 
144 
145 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
146 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
147 
148 template<typename RegisterMapT>
149 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
150   address value_addr = stack_value_address(fr, reg_map, sv);
151   stackChunkOop chunk = reg_map->stack_chunk()();
152   if (sv->is_location()) {
153     // Stack or register value
154     Location loc = ((LocationValue *)sv)->location();
155 
156     // Then package it right depending on type
157     // Note: the transfer of the data is thru a union that contains
158     // an intptr_t. This is because an interpreter stack slot is
159     // really an intptr_t. The use of a union containing an intptr_t
160     // ensures that on a 64 bit platform we have proper alignment
161     // and that we store the value where the interpreter will expect
162     // to find it (i.e. proper endian). Similarly on a 32bit platform
163     // using the intptr_t ensures that when a value is larger than
164     // a stack slot (jlong/jdouble) that we capture the proper part
165     // of the value for the stack slot in question.
166     //
167     switch( loc.type() ) {
168     case Location::float_in_dbl: { // Holds a float in a double register?
169       // The callee has no clue whether the register holds a float,
170       // double or is unused.  He always saves a double.  Here we know

231   } else if (sv->is_constant_oop()) {
232     // constant oop
233     return new StackValue(sv->as_ConstantOopReadValue()->value());
234 #ifdef _LP64
235   } else if (sv->is_constant_double()) {
236     // Constant double in a single stack slot
237     union { intptr_t p; double d; } value;
238     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
239     value.d = ((ConstantDoubleValue *)sv)->value();
240     return new StackValue(value.p);
241   } else if (sv->is_constant_long()) {
242     // Constant long in a single stack slot
243     union { intptr_t p; jlong jl; } value;
244     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
245     value.jl = ((ConstantLongValue *)sv)->value();
246     return new StackValue(value.p);
247 #endif
248   } else if (sv->is_object()) { // Scalar replaced object in compiled frame
249     ObjectValue* ov = (ObjectValue *)sv;
250     Handle hdl = ov->value();
251     bool scalar_replaced = hdl.is_null() && ov->is_scalar_replaced();
252     if (ov->maybe_null()) {
253       // Don't treat inline type as scalar replaced if it is null
254       jint is_init = StackValue::create_stack_value(fr, reg_map, ov->is_init())->get_jint();
255       scalar_replaced &= (is_init != 0);
256     }
257     return new StackValue(hdl, scalar_replaced ? 1 : 0);
258   } else if (sv->is_marker()) {
259     // Should never need to directly construct a marker.
260     ShouldNotReachHere();
261   }
262   // Unknown ScopeValue type
263   ShouldNotReachHere();
264   return new StackValue((intptr_t) 0);   // dummy
265 }
266 
267 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
268 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
269 
270 template<typename RegisterMapT>
271 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
272   if (!sv->is_location()) {
273     return nullptr;
274   }
275   Location loc = ((LocationValue *)sv)->location();
276   if (loc.type() == Location::invalid) {
277     return nullptr;
< prev index next >