1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/basicLock.inline.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/globals.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/handshake.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/lightweightSynchronizer.hpp"
  46 #include "runtime/lockStack.inline.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfData.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/synchronizer.inline.hpp"
  58 #include "runtime/threads.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "runtime/trimNativeHeap.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalDefinitions.hpp"
  67 #include "utilities/linkedlist.hpp"
  68 #include "utilities/preserveException.hpp"
  69 
  70 class ObjectMonitorDeflationLogging;
  71 
  72 void MonitorList::add(ObjectMonitor* m) {
  73   ObjectMonitor* head;
  74   do {
  75     head = Atomic::load(&_head);
  76     m->set_next_om(head);
  77   } while (Atomic::cmpxchg(&_head, head, m) != head);
  78 
  79   size_t count = Atomic::add(&_count, 1u);
  80   if (count > max()) {
  81     Atomic::inc(&_max);
  82   }
  83 }
  84 
  85 size_t MonitorList::count() const {
  86   return Atomic::load(&_count);
  87 }
  88 
  89 size_t MonitorList::max() const {
  90   return Atomic::load(&_max);
  91 }
  92 
  93 class ObjectMonitorDeflationSafepointer : public StackObj {
  94   JavaThread* const                    _current;
  95   ObjectMonitorDeflationLogging* const _log;
  96 
  97 public:
  98   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
  99     : _current(current), _log(log) {}
 100 
 101   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 102 };
 103 
 104 // Walk the in-use list and unlink deflated ObjectMonitors.
 105 // Returns the number of unlinked ObjectMonitors.
 106 size_t MonitorList::unlink_deflated(size_t deflated_count,
 107                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 108                                     ObjectMonitorDeflationSafepointer* safepointer) {
 109   size_t unlinked_count = 0;
 110   ObjectMonitor* prev = nullptr;
 111   ObjectMonitor* m = Atomic::load_acquire(&_head);
 112 
 113   while (m != nullptr) {
 114     if (m->is_being_async_deflated()) {
 115       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 116       // modify the list once per batch. The batch starts at "m".
 117       size_t unlinked_batch = 0;
 118       ObjectMonitor* next = m;
 119       // Look for at most MonitorUnlinkBatch monitors, or the number of
 120       // deflated and not unlinked monitors, whatever comes first.
 121       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 122       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 123       do {
 124         ObjectMonitor* next_next = next->next_om();
 125         unlinked_batch++;
 126         unlinked_list->append(next);
 127         next = next_next;
 128         if (unlinked_batch >= unlinked_batch_limit) {
 129           // Reached the max batch, so bail out of the gathering loop.
 130           break;
 131         }
 132         if (prev == nullptr && Atomic::load(&_head) != m) {
 133           // Current batch used to be at head, but it is not at head anymore.
 134           // Bail out and figure out where we currently are. This avoids long
 135           // walks searching for new prev during unlink under heavy list inserts.
 136           break;
 137         }
 138       } while (next != nullptr && next->is_being_async_deflated());
 139 
 140       // Unlink the found batch.
 141       if (prev == nullptr) {
 142         // The current batch is the first batch, so there is a chance that it starts at head.
 143         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 144         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next);
 145         if (prev_head != m) {
 146           // Something must have updated the head. Figure out the actual prev for this batch.
 147           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 148             prev = n;
 149           }
 150           assert(prev != nullptr, "Should have found the prev for the current batch");
 151           prev->set_next_om(next);
 152         }
 153       } else {
 154         // The current batch is preceded by another batch. This guarantees the current batch
 155         // does not start at head. Unlink the entire current batch without updating the head.
 156         assert(Atomic::load(&_head) != m, "Sanity");
 157         prev->set_next_om(next);
 158       }
 159 
 160       unlinked_count += unlinked_batch;
 161       if (unlinked_count >= deflated_count) {
 162         // Reached the max so bail out of the searching loop.
 163         // There should be no more deflated monitors left.
 164         break;
 165       }
 166       m = next;
 167     } else {
 168       prev = m;
 169       m = m->next_om();
 170     }
 171 
 172     // Must check for a safepoint/handshake and honor it.
 173     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 174   }
 175 
 176 #ifdef ASSERT
 177   // Invariant: the code above should unlink all deflated monitors.
 178   // The code that runs after this unlinking does not expect deflated monitors.
 179   // Notably, attempting to deflate the already deflated monitor would break.
 180   {
 181     ObjectMonitor* m = Atomic::load_acquire(&_head);
 182     while (m != nullptr) {
 183       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 184       m = m->next_om();
 185     }
 186   }
 187 #endif
 188 
 189   Atomic::sub(&_count, unlinked_count);
 190   return unlinked_count;
 191 }
 192 
 193 MonitorList::Iterator MonitorList::iterator() const {
 194   return Iterator(Atomic::load_acquire(&_head));
 195 }
 196 
 197 ObjectMonitor* MonitorList::Iterator::next() {
 198   ObjectMonitor* current = _current;
 199   _current = current->next_om();
 200   return current;
 201 }
 202 
 203 // The "core" versions of monitor enter and exit reside in this file.
 204 // The interpreter and compilers contain specialized transliterated
 205 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 206 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 207 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 208 //
 209 // -----------------------------------------------------------------------------
 210 
 211 #ifdef DTRACE_ENABLED
 212 
 213 // Only bother with this argument setup if dtrace is available
 214 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 215 
 216 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 217   char* bytes = nullptr;                                                      \
 218   int len = 0;                                                             \
 219   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 220   Symbol* klassname = obj->klass()->name();                                \
 221   if (klassname != nullptr) {                                                 \
 222     bytes = (char*)klassname->bytes();                                     \
 223     len = klassname->utf8_length();                                        \
 224   }
 225 
 226 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 227   {                                                                        \
 228     if (DTraceMonitorProbes) {                                             \
 229       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 230       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 231                            (uintptr_t)(monitor), bytes, len, (millis));    \
 232     }                                                                      \
 233   }
 234 
 235 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 236 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 237 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 238 
 239 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 240   {                                                                        \
 241     if (DTraceMonitorProbes) {                                             \
 242       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 243       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 244                                     (uintptr_t)(monitor), bytes, len);     \
 245     }                                                                      \
 246   }
 247 
 248 #else //  ndef DTRACE_ENABLED
 249 
 250 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 251 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 252 
 253 #endif // ndef DTRACE_ENABLED
 254 
 255 // This exists only as a workaround of dtrace bug 6254741
 256 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 257   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 258   return 0;
 259 }
 260 
 261 static constexpr size_t inflation_lock_count() {
 262   return 256;
 263 }
 264 
 265 // Static storage for an array of PlatformMutex.
 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 267 
 268 static inline PlatformMutex* inflation_lock(size_t index) {
 269   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 270 }
 271 
 272 void ObjectSynchronizer::initialize() {
 273   for (size_t i = 0; i < inflation_lock_count(); i++) {
 274     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 275   }
 276   // Start the ceiling with the estimate for one thread.
 277   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 278 
 279   // Start the timer for deflations, so it does not trigger immediately.
 280   _last_async_deflation_time_ns = os::javaTimeNanos();
 281 
 282   if (LockingMode == LM_LIGHTWEIGHT) {
 283     LightweightSynchronizer::initialize();
 284   }
 285 }
 286 
 287 MonitorList ObjectSynchronizer::_in_use_list;
 288 // monitors_used_above_threshold() policy is as follows:
 289 //
 290 // The ratio of the current _in_use_list count to the ceiling is used
 291 // to determine if we are above MonitorUsedDeflationThreshold and need
 292 // to do an async monitor deflation cycle. The ceiling is increased by
 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 295 // removed from the system.
 296 //
 297 // Note: If the _in_use_list max exceeds the ceiling, then
 298 // monitors_used_above_threshold() will use the in_use_list max instead
 299 // of the thread count derived ceiling because we have used more
 300 // ObjectMonitors than the estimated average.
 301 //
 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 303 // no-progress async monitor deflation cycles in a row, then the ceiling
 304 // is adjusted upwards by monitors_used_above_threshold().
 305 //
 306 // Start the ceiling with the estimate for one thread in initialize()
 307 // which is called after cmd line options are processed.
 308 static size_t _in_use_list_ceiling = 0;
 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 310 bool volatile ObjectSynchronizer::_is_final_audit = false;
 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 312 static uintx _no_progress_cnt = 0;
 313 static bool _no_progress_skip_increment = false;
 314 
 315 // =====================> Quick functions
 316 
 317 // The quick_* forms are special fast-path variants used to improve
 318 // performance.  In the simplest case, a "quick_*" implementation could
 319 // simply return false, in which case the caller will perform the necessary
 320 // state transitions and call the slow-path form.
 321 // The fast-path is designed to handle frequently arising cases in an efficient
 322 // manner and is just a degenerate "optimistic" variant of the slow-path.
 323 // returns true  -- to indicate the call was satisfied.
 324 // returns false -- to indicate the call needs the services of the slow-path.
 325 // A no-loitering ordinance is in effect for code in the quick_* family
 326 // operators: safepoints or indefinite blocking (blocking that might span a
 327 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 328 // entry.
 329 //
 330 // Consider: An interesting optimization is to have the JIT recognize the
 331 // following common idiom:
 332 //   synchronized (someobj) { .... ; notify(); }
 333 // That is, we find a notify() or notifyAll() call that immediately precedes
 334 // the monitorexit operation.  In that case the JIT could fuse the operations
 335 // into a single notifyAndExit() runtime primitive.
 336 
 337 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 338   assert(current->thread_state() == _thread_in_Java, "invariant");
 339   NoSafepointVerifier nsv;
 340   if (obj == nullptr) return false;  // slow-path for invalid obj
 341   const markWord mark = obj->mark();
 342 
 343   if (LockingMode == LM_LIGHTWEIGHT) {
 344     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 345       // Degenerate notify
 346       // fast-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   } else if (LockingMode == LM_LEGACY) {
 350     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 351       // Degenerate notify
 352       // stack-locked by caller so by definition the implied waitset is empty.
 353       return true;
 354     }
 355   }
 356 
 357   if (mark.has_monitor()) {
 358     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 359     if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) {
 360       // Racing with inflation/deflation go slow path
 361       return false;
 362     }
 363     assert(mon->object() == oop(obj), "invariant");
 364     if (mon->owner() != current) return false;  // slow-path for IMS exception
 365 
 366     if (mon->first_waiter() != nullptr) {
 367       // We have one or more waiters. Since this is an inflated monitor
 368       // that we own, we can transfer one or more threads from the waitset
 369       // to the entrylist here and now, avoiding the slow-path.
 370       if (all) {
 371         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 372       } else {
 373         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 374       }
 375       int free_count = 0;
 376       do {
 377         mon->INotify(current);
 378         ++free_count;
 379       } while (mon->first_waiter() != nullptr && all);
 380       OM_PERFDATA_OP(Notifications, inc(free_count));
 381     }
 382     return true;
 383   }
 384 
 385   // other IMS exception states take the slow-path
 386   return false;
 387 }
 388 
 389 static bool useHeavyMonitors() {
 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 391   return LockingMode == LM_MONITOR;
 392 #else
 393   return false;
 394 #endif
 395 }
 396 
 397 // The LockNode emitted directly at the synchronization site would have
 398 // been too big if it were to have included support for the cases of inflated
 399 // recursive enter and exit, so they go here instead.
 400 // Note that we can't safely call AsyncPrintJavaStack() from within
 401 // quick_enter() as our thread state remains _in_Java.
 402 
 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) {
 404   assert(current->thread_state() == _thread_in_Java, "invariant");
 405 
 406   if (useHeavyMonitors()) {
 407     return false;  // Slow path
 408   }
 409 
 410   if (LockingMode == LM_LIGHTWEIGHT) {
 411     return LightweightSynchronizer::quick_enter(obj, lock, current);
 412   }
 413 
 414   assert(LockingMode == LM_LEGACY, "legacy mode below");
 415 
 416   const markWord mark = obj->mark();
 417 
 418   if (mark.has_monitor()) {
 419 
 420     ObjectMonitor* const m = read_monitor(mark);
 421     // An async deflation or GC can race us before we manage to make
 422     // the ObjectMonitor busy by setting the owner below. If we detect
 423     // that race we just bail out to the slow-path here.
 424     if (m->object_peek() == nullptr) {
 425       return false;
 426     }
 427     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 428 
 429     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 430     // and observability
 431     // Case: light contention possibly amenable to TLE
 432     // Case: TLE inimical operations such as nested/recursive synchronization
 433 
 434     if (owner == current) {
 435       m->_recursions++;
 436       current->inc_held_monitor_count();
 437       return true;
 438     }
 439 
 440     // This Java Monitor is inflated so obj's header will never be
 441     // displaced to this thread's BasicLock. Make the displaced header
 442     // non-null so this BasicLock is not seen as recursive nor as
 443     // being locked. We do this unconditionally so that this thread's
 444     // BasicLock cannot be mis-interpreted by any stack walkers. For
 445     // performance reasons, stack walkers generally first check for
 446     // stack-locking in the object's header, the second check is for
 447     // recursive stack-locking in the displaced header in the BasicLock,
 448     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 449     lock->set_displaced_header(markWord::unused_mark());
 450 
 451     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 452       assert(m->_recursions == 0, "invariant");
 453       current->inc_held_monitor_count();
 454       return true;
 455     }
 456   }
 457 
 458   // Note that we could inflate in quick_enter.
 459   // This is likely a useful optimization
 460   // Critically, in quick_enter() we must not:
 461   // -- block indefinitely, or
 462   // -- reach a safepoint
 463 
 464   return false;        // revert to slow-path
 465 }
 466 
 467 // Handle notifications when synchronizing on value based classes
 468 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 469   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 470   frame last_frame = locking_thread->last_frame();
 471   bool bcp_was_adjusted = false;
 472   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 473   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 474   // is no actual monitorenter instruction in the byte code in this case.
 475   if (last_frame.is_interpreted_frame() &&
 476       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 477     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 478     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 479     bcp_was_adjusted = true;
 480   }
 481 
 482   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 483     ResourceMark rm;
 484     stringStream ss;
 485     locking_thread->print_active_stack_on(&ss);
 486     char* base = (char*)strstr(ss.base(), "at");
 487     char* newline = (char*)strchr(ss.base(), '\n');
 488     if (newline != nullptr) {
 489       *newline = '\0';
 490     }
 491     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 492   } else {
 493     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 494     ResourceMark rm;
 495     Log(valuebasedclasses) vblog;
 496 
 497     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 498     if (locking_thread->has_last_Java_frame()) {
 499       LogStream info_stream(vblog.info());
 500       locking_thread->print_active_stack_on(&info_stream);
 501     } else {
 502       vblog.info("Cannot find the last Java frame");
 503     }
 504 
 505     EventSyncOnValueBasedClass event;
 506     if (event.should_commit()) {
 507       event.set_valueBasedClass(obj->klass());
 508       event.commit();
 509     }
 510   }
 511 
 512   if (bcp_was_adjusted) {
 513     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 514   }
 515 }
 516 
 517 // -----------------------------------------------------------------------------
 518 // Monitor Enter/Exit
 519 
 520 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 521   // When called with locking_thread != Thread::current() some mechanism must synchronize
 522   // the locking_thread with respect to the current thread. Currently only used when
 523   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 524   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 525 
 526   if (LockingMode == LM_LIGHTWEIGHT) {
 527     return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 528   }
 529 
 530   if (!enter_fast_impl(obj, lock, locking_thread)) {
 531     // Inflated ObjectMonitor::enter_for is required
 532 
 533     // An async deflation can race after the inflate_for() call and before
 534     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 535     // if we have lost the race to async deflation and we simply try again.
 536     while (true) {
 537       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 538       if (monitor->enter_for(locking_thread)) {
 539         return;
 540       }
 541       assert(monitor->is_being_async_deflated(), "must be");
 542     }
 543   }
 544 }
 545 
 546 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) {
 547   if (!enter_fast_impl(obj, lock, current)) {
 548     // Inflated ObjectMonitor::enter is required
 549 
 550     // An async deflation can race after the inflate() call and before
 551     // enter() can make the ObjectMonitor busy. enter() returns false if
 552     // we have lost the race to async deflation and we simply try again.
 553     while (true) {
 554       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 555       if (monitor->enter(current)) {
 556         return;
 557       }
 558     }
 559   }
 560 }
 561 
 562 // The interpreter and compiler assembly code tries to lock using the fast path
 563 // of this algorithm. Make sure to update that code if the following function is
 564 // changed. The implementation is extremely sensitive to race condition. Be careful.
 565 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 566   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 567 
 568   if (obj->klass()->is_value_based()) {
 569     handle_sync_on_value_based_class(obj, locking_thread);
 570   }
 571 
 572   locking_thread->inc_held_monitor_count();
 573 
 574   if (!useHeavyMonitors()) {
 575     if (LockingMode == LM_LEGACY) {
 576       markWord mark = obj->mark();
 577       if (mark.is_unlocked()) {
 578         // Anticipate successful CAS -- the ST of the displaced mark must
 579         // be visible <= the ST performed by the CAS.
 580         lock->set_displaced_header(mark);
 581         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 582           return true;
 583         }
 584       } else if (mark.has_locker() &&
 585                  locking_thread->is_lock_owned((address) mark.locker())) {
 586         assert(lock != mark.locker(), "must not re-lock the same lock");
 587         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 588         lock->set_displaced_header(markWord::from_pointer(nullptr));
 589         return true;
 590       }
 591 
 592       // The object header will never be displaced to this lock,
 593       // so it does not matter what the value is, except that it
 594       // must be non-zero to avoid looking like a re-entrant lock,
 595       // and must not look locked either.
 596       lock->set_displaced_header(markWord::unused_mark());
 597 
 598       // Failed to fast lock.
 599       return false;
 600     }
 601   } else if (VerifyHeavyMonitors) {
 602     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 603   }
 604 
 605   return false;
 606 }
 607 
 608 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) {
 609   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 610 
 611   if (!useHeavyMonitors()) {
 612     markWord mark = object->mark();
 613     if (LockingMode == LM_LEGACY) {
 614       markWord dhw = lock->displaced_header();
 615       if (dhw.value() == 0) {
 616         // If the displaced header is null, then this exit matches up with
 617         // a recursive enter. No real work to do here except for diagnostics.
 618 #ifndef PRODUCT
 619         if (mark != markWord::INFLATING()) {
 620           // Only do diagnostics if we are not racing an inflation. Simply
 621           // exiting a recursive enter of a Java Monitor that is being
 622           // inflated is safe; see the has_monitor() comment below.
 623           assert(!mark.is_unlocked(), "invariant");
 624           assert(!mark.has_locker() ||
 625                  current->is_lock_owned((address)mark.locker()), "invariant");
 626           if (mark.has_monitor()) {
 627             // The BasicLock's displaced_header is marked as a recursive
 628             // enter and we have an inflated Java Monitor (ObjectMonitor).
 629             // This is a special case where the Java Monitor was inflated
 630             // after this thread entered the stack-lock recursively. When a
 631             // Java Monitor is inflated, we cannot safely walk the Java
 632             // Monitor owner's stack and update the BasicLocks because a
 633             // Java Monitor can be asynchronously inflated by a thread that
 634             // does not own the Java Monitor.
 635             ObjectMonitor* m = read_monitor(mark);
 636             assert(m->object()->mark() == mark, "invariant");
 637             assert(m->is_entered(current), "invariant");
 638           }
 639         }
 640 #endif
 641         return;
 642       }
 643 
 644       if (mark == markWord::from_pointer(lock)) {
 645         // If the object is stack-locked by the current thread, try to
 646         // swing the displaced header from the BasicLock back to the mark.
 647         assert(dhw.is_neutral(), "invariant");
 648         if (object->cas_set_mark(dhw, mark) == mark) {
 649           return;
 650         }
 651       }
 652     }
 653   } else if (VerifyHeavyMonitors) {
 654     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 655   }
 656 
 657   // We have to take the slow-path of possible inflation and then exit.
 658   // The ObjectMonitor* can't be async deflated until ownership is
 659   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 660   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 661   assert(!monitor->is_owner_anonymous(), "must not be");
 662   monitor->exit(current);
 663 }
 664 
 665 // -----------------------------------------------------------------------------
 666 // JNI locks on java objects
 667 // NOTE: must use heavy weight monitor to handle jni monitor enter
 668 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 669   if (obj->klass()->is_value_based()) {
 670     handle_sync_on_value_based_class(obj, current);
 671   }
 672 
 673   // the current locking is from JNI instead of Java code
 674   current->set_current_pending_monitor_is_from_java(false);
 675   // An async deflation can race after the inflate() call and before
 676   // enter() can make the ObjectMonitor busy. enter() returns false if
 677   // we have lost the race to async deflation and we simply try again.
 678   while (true) {
 679     ObjectMonitor* monitor;
 680     bool entered;
 681     if (LockingMode == LM_LIGHTWEIGHT) {
 682       entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr;
 683     } else {
 684       monitor = inflate(current, obj(), inflate_cause_jni_enter);
 685       entered = monitor->enter(current);
 686     }
 687 
 688     if (entered) {
 689       current->inc_held_monitor_count(1, true);
 690       break;
 691     }
 692   }
 693   current->set_current_pending_monitor_is_from_java(true);
 694 }
 695 
 696 // NOTE: must use heavy weight monitor to handle jni monitor exit
 697 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 698   JavaThread* current = THREAD;
 699 
 700   ObjectMonitor* monitor;
 701   if (LockingMode == LM_LIGHTWEIGHT) {
 702     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 703   } else {
 704     // The ObjectMonitor* can't be async deflated until ownership is
 705     // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 706     monitor = inflate(current, obj, inflate_cause_jni_exit);
 707   }
 708   // If this thread has locked the object, exit the monitor. We
 709   // intentionally do not use CHECK on check_owner because we must exit the
 710   // monitor even if an exception was already pending.
 711   if (monitor->check_owner(THREAD)) {
 712     monitor->exit(current);
 713     current->dec_held_monitor_count(1, true);
 714   }
 715 }
 716 
 717 // -----------------------------------------------------------------------------
 718 // Internal VM locks on java objects
 719 // standard constructor, allows locking failures
 720 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 721   _thread = thread;
 722   _thread->check_for_valid_safepoint_state();
 723   _obj = obj;
 724 
 725   if (_obj() != nullptr) {
 726     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 727   }
 728 }
 729 
 730 ObjectLocker::~ObjectLocker() {
 731   if (_obj() != nullptr) {
 732     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 733   }
 734 }
 735 
 736 
 737 // -----------------------------------------------------------------------------
 738 //  Wait/Notify/NotifyAll
 739 // NOTE: must use heavy weight monitor to handle wait()
 740 
 741 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 742   JavaThread* current = THREAD;
 743   if (millis < 0) {
 744     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 745   }
 746 
 747   ObjectMonitor* monitor;
 748   if (LockingMode == LM_LIGHTWEIGHT) {
 749     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 750   } else {
 751     // The ObjectMonitor* can't be async deflated because the _waiters
 752     // field is incremented before ownership is dropped and decremented
 753     // after ownership is regained.
 754     monitor = inflate(current, obj(), inflate_cause_wait);
 755   }
 756 
 757   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 758   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 759 
 760   // This dummy call is in place to get around dtrace bug 6254741.  Once
 761   // that's fixed we can uncomment the following line, remove the call
 762   // and change this function back into a "void" func.
 763   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 764   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 765   return ret_code;
 766 }
 767 
 768 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 769   if (millis < 0) {
 770     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 771   }
 772 
 773   ObjectMonitor* monitor;
 774   if (LockingMode == LM_LIGHTWEIGHT) {
 775     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK);
 776   } else {
 777     monitor = inflate(THREAD, obj(), inflate_cause_wait);
 778   }
 779   monitor->wait(millis, false, THREAD);
 780 }
 781 
 782 
 783 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 784   JavaThread* current = THREAD;
 785 
 786   markWord mark = obj->mark();
 787   if (LockingMode == LM_LIGHTWEIGHT) {
 788     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 789       // Not inflated so there can't be any waiters to notify.
 790       return;
 791     }
 792   } else if (LockingMode == LM_LEGACY) {
 793     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 794       // Not inflated so there can't be any waiters to notify.
 795       return;
 796     }
 797   }
 798 
 799   ObjectMonitor* monitor;
 800   if (LockingMode == LM_LIGHTWEIGHT) {
 801     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 802   } else {
 803     // The ObjectMonitor* can't be async deflated until ownership is
 804     // dropped by the calling thread.
 805     monitor = inflate(current, obj(), inflate_cause_notify);
 806   }
 807   monitor->notify(CHECK);
 808 }
 809 
 810 // NOTE: see comment of notify()
 811 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 812   JavaThread* current = THREAD;
 813 
 814   markWord mark = obj->mark();
 815   if (LockingMode == LM_LIGHTWEIGHT) {
 816     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 817       // Not inflated so there can't be any waiters to notify.
 818       return;
 819     }
 820   } else if (LockingMode == LM_LEGACY) {
 821     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 822       // Not inflated so there can't be any waiters to notify.
 823       return;
 824     }
 825   }
 826 
 827   ObjectMonitor* monitor;
 828   if (LockingMode == LM_LIGHTWEIGHT) {
 829     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 830   } else {
 831     // The ObjectMonitor* can't be async deflated until ownership is
 832     // dropped by the calling thread.
 833     monitor = inflate(current, obj(), inflate_cause_notify);
 834   }
 835   monitor->notifyAll(CHECK);
 836 }
 837 
 838 // -----------------------------------------------------------------------------
 839 // Hash Code handling
 840 
 841 struct SharedGlobals {
 842   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 843   // This is a highly shared mostly-read variable.
 844   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 845   volatile int stw_random;
 846   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 847   // Hot RW variable -- Sequester to avoid false-sharing
 848   volatile int hc_sequence;
 849   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 850 };
 851 
 852 static SharedGlobals GVars;
 853 
 854 static markWord read_stable_mark(oop obj) {
 855   markWord mark = obj->mark_acquire();
 856   if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) {
 857     // New lightweight locking does not use the markWord::INFLATING() protocol.
 858     return mark;       // normal fast-path return
 859   }
 860 
 861   int its = 0;
 862   for (;;) {
 863     markWord mark = obj->mark_acquire();
 864     if (!mark.is_being_inflated()) {
 865       return mark;    // normal fast-path return
 866     }
 867 
 868     // The object is being inflated by some other thread.
 869     // The caller of read_stable_mark() must wait for inflation to complete.
 870     // Avoid live-lock.
 871 
 872     ++its;
 873     if (its > 10000 || !os::is_MP()) {
 874       if (its & 1) {
 875         os::naked_yield();
 876       } else {
 877         // Note that the following code attenuates the livelock problem but is not
 878         // a complete remedy.  A more complete solution would require that the inflating
 879         // thread hold the associated inflation lock.  The following code simply restricts
 880         // the number of spinners to at most one.  We'll have N-2 threads blocked
 881         // on the inflationlock, 1 thread holding the inflation lock and using
 882         // a yield/park strategy, and 1 thread in the midst of inflation.
 883         // A more refined approach would be to change the encoding of INFLATING
 884         // to allow encapsulation of a native thread pointer.  Threads waiting for
 885         // inflation to complete would use CAS to push themselves onto a singly linked
 886         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 887         // and calling park().  When inflation was complete the thread that accomplished inflation
 888         // would detach the list and set the markword to inflated with a single CAS and
 889         // then for each thread on the list, set the flag and unpark() the thread.
 890 
 891         // Index into the lock array based on the current object address.
 892         static_assert(is_power_of_2(inflation_lock_count()), "must be");
 893         size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1);
 894         int YieldThenBlock = 0;
 895         assert(ix < inflation_lock_count(), "invariant");
 896         inflation_lock(ix)->lock();
 897         while (obj->mark_acquire() == markWord::INFLATING()) {
 898           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 899           // so we periodically call current->_ParkEvent->park(1).
 900           // We use a mixed spin/yield/block mechanism.
 901           if ((YieldThenBlock++) >= 16) {
 902             Thread::current()->_ParkEvent->park(1);
 903           } else {
 904             os::naked_yield();
 905           }
 906         }
 907         inflation_lock(ix)->unlock();
 908       }
 909     } else {
 910       SpinPause();       // SMP-polite spinning
 911     }
 912   }
 913 }
 914 
 915 // hashCode() generation :
 916 //
 917 // Possibilities:
 918 // * MD5Digest of {obj,stw_random}
 919 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 920 // * A DES- or AES-style SBox[] mechanism
 921 // * One of the Phi-based schemes, such as:
 922 //   2654435761 = 2^32 * Phi (golden ratio)
 923 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 924 // * A variation of Marsaglia's shift-xor RNG scheme.
 925 // * (obj ^ stw_random) is appealing, but can result
 926 //   in undesirable regularity in the hashCode values of adjacent objects
 927 //   (objects allocated back-to-back, in particular).  This could potentially
 928 //   result in hashtable collisions and reduced hashtable efficiency.
 929 //   There are simple ways to "diffuse" the middle address bits over the
 930 //   generated hashCode values:
 931 
 932 static intptr_t get_next_hash(Thread* current, oop obj) {
 933   intptr_t value = 0;
 934   if (hashCode == 0) {
 935     // This form uses global Park-Miller RNG.
 936     // On MP system we'll have lots of RW access to a global, so the
 937     // mechanism induces lots of coherency traffic.
 938     value = os::random();
 939   } else if (hashCode == 1) {
 940     // This variation has the property of being stable (idempotent)
 941     // between STW operations.  This can be useful in some of the 1-0
 942     // synchronization schemes.
 943     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 944     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 945   } else if (hashCode == 2) {
 946     value = 1;            // for sensitivity testing
 947   } else if (hashCode == 3) {
 948     value = ++GVars.hc_sequence;
 949   } else if (hashCode == 4) {
 950     value = cast_from_oop<intptr_t>(obj);
 951   } else {
 952     // Marsaglia's xor-shift scheme with thread-specific state
 953     // This is probably the best overall implementation -- we'll
 954     // likely make this the default in future releases.
 955     unsigned t = current->_hashStateX;
 956     t ^= (t << 11);
 957     current->_hashStateX = current->_hashStateY;
 958     current->_hashStateY = current->_hashStateZ;
 959     current->_hashStateZ = current->_hashStateW;
 960     unsigned v = current->_hashStateW;
 961     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 962     current->_hashStateW = v;
 963     value = v;
 964   }
 965 
 966   value &= markWord::hash_mask;
 967   if (value == 0) value = 0xBAD;
 968   assert(value != markWord::no_hash, "invariant");
 969   return value;
 970 }
 971 
 972 static intptr_t install_hash_code(Thread* current, oop obj) {
 973   assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be");
 974 
 975   markWord mark = obj->mark_acquire();
 976   for (;;) {
 977     intptr_t hash = mark.hash();
 978     if (hash != 0) {
 979       return hash;
 980     }
 981 
 982     hash = get_next_hash(current, obj);
 983     const markWord old_mark = mark;
 984     const markWord new_mark = old_mark.copy_set_hash(hash);
 985 
 986     mark = obj->cas_set_mark(new_mark, old_mark);
 987     if (old_mark == mark) {
 988       return hash;
 989     }
 990   }
 991 }
 992 
 993 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 994   if (UseObjectMonitorTable) {
 995     // Since the monitor isn't in the object header, the hash can simply be
 996     // installed in the object header.
 997     return install_hash_code(current, obj);
 998   }
 999 
1000   while (true) {
1001     ObjectMonitor* monitor = nullptr;
1002     markWord temp, test;
1003     intptr_t hash;
1004     markWord mark = read_stable_mark(obj);
1005     if (VerifyHeavyMonitors) {
1006       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
1007       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1008     }
1009     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1010       hash = mark.hash();
1011       if (hash != 0) {                     // if it has a hash, just return it
1012         return hash;
1013       }
1014       hash = get_next_hash(current, obj);  // get a new hash
1015       temp = mark.copy_set_hash(hash);     // merge the hash into header
1016                                            // try to install the hash
1017       test = obj->cas_set_mark(temp, mark);
1018       if (test == mark) {                  // if the hash was installed, return it
1019         return hash;
1020       }
1021       if (LockingMode == LM_LIGHTWEIGHT) {
1022         // CAS failed, retry
1023         continue;
1024       }
1025       // Failed to install the hash. It could be that another thread
1026       // installed the hash just before our attempt or inflation has
1027       // occurred or... so we fall thru to inflate the monitor for
1028       // stability and then install the hash.
1029     } else if (mark.has_monitor()) {
1030       monitor = mark.monitor();
1031       temp = monitor->header();
1032       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1033       hash = temp.hash();
1034       if (hash != 0) {
1035         // It has a hash.
1036 
1037         // Separate load of dmw/header above from the loads in
1038         // is_being_async_deflated().
1039 
1040         // dmw/header and _contentions may get written by different threads.
1041         // Make sure to observe them in the same order when having several observers.
1042         OrderAccess::loadload_for_IRIW();
1043 
1044         if (monitor->is_being_async_deflated()) {
1045           // But we can't safely use the hash if we detect that async
1046           // deflation has occurred. So we attempt to restore the
1047           // header/dmw to the object's header so that we only retry
1048           // once if the deflater thread happens to be slow.
1049           monitor->install_displaced_markword_in_object(obj);
1050           continue;
1051         }
1052         return hash;
1053       }
1054       // Fall thru so we only have one place that installs the hash in
1055       // the ObjectMonitor.
1056     } else if (LockingMode == LM_LEGACY && mark.has_locker()
1057                && current->is_Java_thread()
1058                && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) {
1059       // This is a stack-lock owned by the calling thread so fetch the
1060       // displaced markWord from the BasicLock on the stack.
1061       temp = mark.displaced_mark_helper();
1062       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1063       hash = temp.hash();
1064       if (hash != 0) {                  // if it has a hash, just return it
1065         return hash;
1066       }
1067       // WARNING:
1068       // The displaced header in the BasicLock on a thread's stack
1069       // is strictly immutable. It CANNOT be changed in ANY cases.
1070       // So we have to inflate the stack-lock into an ObjectMonitor
1071       // even if the current thread owns the lock. The BasicLock on
1072       // a thread's stack can be asynchronously read by other threads
1073       // during an inflate() call so any change to that stack memory
1074       // may not propagate to other threads correctly.
1075     }
1076 
1077     // Inflate the monitor to set the hash.
1078 
1079     // There's no need to inflate if the mark has already got a monitor.
1080     // NOTE: an async deflation can race after we get the monitor and
1081     // before we can update the ObjectMonitor's header with the hash
1082     // value below.
1083     monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code);
1084     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1085     mark = monitor->header();
1086     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1087     hash = mark.hash();
1088     if (hash == 0) {                       // if it does not have a hash
1089       hash = get_next_hash(current, obj);  // get a new hash
1090       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1091       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1092       uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
1093       test = markWord(v);
1094       if (test != mark) {
1095         // The attempt to update the ObjectMonitor's header/dmw field
1096         // did not work. This can happen if another thread managed to
1097         // merge in the hash just before our cmpxchg().
1098         // If we add any new usages of the header/dmw field, this code
1099         // will need to be updated.
1100         hash = test.hash();
1101         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1102         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1103       }
1104       if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) {
1105         // If we detect that async deflation has occurred, then we
1106         // attempt to restore the header/dmw to the object's header
1107         // so that we only retry once if the deflater thread happens
1108         // to be slow.
1109         monitor->install_displaced_markword_in_object(obj);
1110         continue;
1111       }
1112     }
1113     // We finally get the hash.
1114     return hash;
1115   }
1116 }
1117 
1118 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1119                                                    Handle h_obj) {
1120   assert(current == JavaThread::current(), "Can only be called on current thread");
1121   oop obj = h_obj();
1122 
1123   markWord mark = read_stable_mark(obj);
1124 
1125   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1126     // stack-locked case, header points into owner's stack
1127     return current->is_lock_owned((address)mark.locker());
1128   }
1129 
1130   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1131     // fast-locking case, see if lock is in current's lock stack
1132     return current->lock_stack().contains(h_obj());
1133   }
1134 
1135   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1136     ObjectMonitor* monitor = read_monitor(current, obj, mark);
1137     if (monitor != nullptr) {
1138       return monitor->is_entered(current) != 0;
1139     }
1140     // Racing with inflation/deflation, retry
1141     mark = obj->mark_acquire();
1142 
1143     if (mark.is_fast_locked()) {
1144       // Some other thread fast_locked, current could not have held the lock
1145       return false;
1146     }
1147   }
1148 
1149   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1150     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1151     // The first stage of async deflation does not affect any field
1152     // used by this comparison so the ObjectMonitor* is usable here.
1153     ObjectMonitor* monitor = read_monitor(mark);
1154     return monitor->is_entered(current) != 0;
1155   }
1156   // Unlocked case, header in place
1157   assert(mark.is_unlocked(), "sanity check");
1158   return false;
1159 }
1160 
1161 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1162   oop obj = h_obj();
1163   markWord mark = read_stable_mark(obj);
1164 
1165   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1166     // stack-locked so header points into owner's stack.
1167     // owning_thread_from_monitor_owner() may also return null here:
1168     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1169   }
1170 
1171   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1172     // fast-locked so get owner from the object.
1173     // owning_thread_from_object() may also return null here:
1174     return Threads::owning_thread_from_object(t_list, h_obj());
1175   }
1176 
1177   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1178     ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark);
1179     if (monitor != nullptr) {
1180       return Threads::owning_thread_from_monitor(t_list, monitor);
1181     }
1182     // Racing with inflation/deflation, retry
1183     mark = obj->mark_acquire();
1184 
1185     if (mark.is_fast_locked()) {
1186       // Some other thread fast_locked
1187       return Threads::owning_thread_from_object(t_list, h_obj());
1188     }
1189   }
1190 
1191   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1192     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1193     // The first stage of async deflation does not affect any field
1194     // used by this comparison so the ObjectMonitor* is usable here.
1195     ObjectMonitor* monitor = read_monitor(mark);
1196     assert(monitor != nullptr, "monitor should be non-null");
1197     // owning_thread_from_monitor() may also return null here:
1198     return Threads::owning_thread_from_monitor(t_list, monitor);
1199   }
1200 
1201   // Unlocked case, header in place
1202   // Cannot have assertion since this object may have been
1203   // locked by another thread when reaching here.
1204   // assert(mark.is_unlocked(), "sanity check");
1205 
1206   return nullptr;
1207 }
1208 
1209 // Visitors ...
1210 
1211 // Iterate over all ObjectMonitors.
1212 template <typename Function>
1213 void ObjectSynchronizer::monitors_iterate(Function function) {
1214   MonitorList::Iterator iter = _in_use_list.iterator();
1215   while (iter.has_next()) {
1216     ObjectMonitor* monitor = iter.next();
1217     function(monitor);
1218   }
1219 }
1220 
1221 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
1222 // returns true.
1223 template <typename OwnerFilter>
1224 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
1225   monitors_iterate([&](ObjectMonitor* monitor) {
1226     // This function is only called at a safepoint or when the
1227     // target thread is suspended or when the target thread is
1228     // operating on itself. The current closures in use today are
1229     // only interested in an owned ObjectMonitor and ownership
1230     // cannot be dropped under the calling contexts so the
1231     // ObjectMonitor cannot be async deflated.
1232     if (monitor->has_owner() && filter(monitor->owner_raw())) {
1233       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
1234 
1235       closure->do_monitor(monitor);
1236     }
1237   });
1238 }
1239 
1240 // Iterate ObjectMonitors where the owner == thread; this does NOT include
1241 // ObjectMonitors where owner is set to a stack-lock address in thread.
1242 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1243   auto thread_filter = [&](void* owner) { return owner == thread; };
1244   return owned_monitors_iterate_filtered(closure, thread_filter);
1245 }
1246 
1247 // Iterate ObjectMonitors owned by any thread.
1248 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
1249   auto all_filter = [&](void* owner) { return true; };
1250   return owned_monitors_iterate_filtered(closure, all_filter);
1251 }
1252 
1253 static bool monitors_used_above_threshold(MonitorList* list) {
1254   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1255     return false;
1256   }
1257   // Start with ceiling based on a per-thread estimate:
1258   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1259   size_t old_ceiling = ceiling;
1260   if (ceiling < list->max()) {
1261     // The max used by the system has exceeded the ceiling so use that:
1262     ceiling = list->max();
1263   }
1264   size_t monitors_used = list->count();
1265   if (monitors_used == 0) {  // empty list is easy
1266     return false;
1267   }
1268   if (NoAsyncDeflationProgressMax != 0 &&
1269       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1270     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1271     size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1;
1272     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1273     log_info(monitorinflation)("Too many deflations without progress; "
1274                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1275                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1276     _no_progress_cnt = 0;
1277     ceiling = new_ceiling;
1278   }
1279 
1280   // Check if our monitor usage is above the threshold:
1281   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1282   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1283     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1284                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1285                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1286     return true;
1287   }
1288 
1289   return false;
1290 }
1291 
1292 size_t ObjectSynchronizer::in_use_list_ceiling() {
1293   return _in_use_list_ceiling;
1294 }
1295 
1296 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1297   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1298 }
1299 
1300 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1301   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1302 }
1303 
1304 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1305   _in_use_list_ceiling = new_value;
1306 }
1307 
1308 bool ObjectSynchronizer::is_async_deflation_needed() {
1309   if (is_async_deflation_requested()) {
1310     // Async deflation request.
1311     log_info(monitorinflation)("Async deflation needed: explicit request");
1312     return true;
1313   }
1314 
1315   jlong time_since_last = time_since_last_async_deflation_ms();
1316 
1317   if (AsyncDeflationInterval > 0 &&
1318       time_since_last > AsyncDeflationInterval &&
1319       monitors_used_above_threshold(&_in_use_list)) {
1320     // It's been longer than our specified deflate interval and there
1321     // are too many monitors in use. We don't deflate more frequently
1322     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1323     // in order to not swamp the MonitorDeflationThread.
1324     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1325     return true;
1326   }
1327 
1328   if (GuaranteedAsyncDeflationInterval > 0 &&
1329       time_since_last > GuaranteedAsyncDeflationInterval) {
1330     // It's been longer than our specified guaranteed deflate interval.
1331     // We need to clean up the used monitors even if the threshold is
1332     // not reached, to keep the memory utilization at bay when many threads
1333     // touched many monitors.
1334     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1335                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1336                                GuaranteedAsyncDeflationInterval, time_since_last);
1337 
1338     // If this deflation has no progress, then it should not affect the no-progress
1339     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1340     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1341     // the generic code would bump the no-progress counter, and we compensate for that
1342     // by telling it to skip the update.
1343     //
1344     // If this deflation has progress, then it should let non-progress tracking
1345     // know about this, otherwise the threshold heuristics would kick in, potentially
1346     // experience no-progress due to aggressive cleanup by this deflation, and think
1347     // it is still in no-progress stride. In this "progress" case, the generic code would
1348     // zero the counter, and we allow it to happen.
1349     _no_progress_skip_increment = true;
1350 
1351     return true;
1352   }
1353 
1354   return false;
1355 }
1356 
1357 void ObjectSynchronizer::request_deflate_idle_monitors() {
1358   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1359   set_is_async_deflation_requested(true);
1360   ml.notify_all();
1361 }
1362 
1363 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1364   JavaThread* current = JavaThread::current();
1365   bool ret_code = false;
1366 
1367   jlong last_time = last_async_deflation_time_ns();
1368 
1369   request_deflate_idle_monitors();
1370 
1371   const int N_CHECKS = 5;
1372   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1373     if (last_async_deflation_time_ns() > last_time) {
1374       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1375       ret_code = true;
1376       break;
1377     }
1378     {
1379       // JavaThread has to honor the blocking protocol.
1380       ThreadBlockInVM tbivm(current);
1381       os::naked_short_sleep(999);  // sleep for almost 1 second
1382     }
1383   }
1384   if (!ret_code) {
1385     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1386   }
1387 
1388   return ret_code;
1389 }
1390 
1391 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1392   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1393 }
1394 
1395 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1396                                        const oop obj,
1397                                        ObjectSynchronizer::InflateCause cause) {
1398   assert(event != nullptr, "invariant");
1399   event->set_monitorClass(obj->klass());
1400   event->set_address((uintptr_t)(void*)obj);
1401   event->set_cause((u1)cause);
1402   event->commit();
1403 }
1404 
1405 // Fast path code shared by multiple functions
1406 void ObjectSynchronizer::inflate_helper(oop obj) {
1407   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1408   markWord mark = obj->mark_acquire();
1409   if (mark.has_monitor()) {
1410     ObjectMonitor* monitor = read_monitor(mark);
1411     markWord dmw = monitor->header();
1412     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1413     return;
1414   }
1415   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1416 }
1417 
1418 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1419   assert(current == Thread::current(), "must be");
1420   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1421   return inflate_impl(obj, cause);
1422 }
1423 
1424 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1425   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1426   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for");
1427   return inflate_impl(obj, cause);
1428 }
1429 
1430 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) {
1431   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl");
1432   EventJavaMonitorInflate event;
1433 
1434   for (;;) {
1435     const markWord mark = object->mark_acquire();
1436 
1437     // The mark can be in one of the following states:
1438     // *  inflated     - Just return it.
1439     // *  stack-locked - Coerce it to inflated from stack-locked.
1440     // *  INFLATING    - Busy wait for conversion from stack-locked to
1441     //                   inflated.
1442     // *  unlocked     - Aggressively inflate the object.
1443 
1444     // CASE: inflated
1445     if (mark.has_monitor()) {
1446       ObjectMonitor* inf = mark.monitor();
1447       markWord dmw = inf->header();
1448       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1449       return inf;
1450     }
1451 
1452     // CASE: inflation in progress - inflating over a stack-lock.
1453     // Some other thread is converting from stack-locked to inflated.
1454     // Only that thread can complete inflation -- other threads must wait.
1455     // The INFLATING value is transient.
1456     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1457     // We could always eliminate polling by parking the thread on some auxiliary list.
1458     if (mark == markWord::INFLATING()) {
1459       read_stable_mark(object);
1460       continue;
1461     }
1462 
1463     // CASE: stack-locked
1464     // Could be stack-locked either by current or by some other thread.
1465     //
1466     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1467     // to install INFLATING into the mark word.  We originally installed INFLATING,
1468     // allocated the ObjectMonitor, and then finally STed the address of the
1469     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1470     // the interval in which INFLATING appeared in the mark, thus increasing
1471     // the odds of inflation contention. If we lose the race to set INFLATING,
1472     // then we just delete the ObjectMonitor and loop around again.
1473     //
1474     LogStreamHandle(Trace, monitorinflation) lsh;
1475     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1476       ObjectMonitor* m = new ObjectMonitor(object);
1477       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1478       // We do this before the CAS in order to minimize the length of time
1479       // in which INFLATING appears in the mark.
1480 
1481       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1482       if (cmp != mark) {
1483         delete m;
1484         continue;       // Interference -- just retry
1485       }
1486 
1487       // We've successfully installed INFLATING (0) into the mark-word.
1488       // This is the only case where 0 will appear in a mark-word.
1489       // Only the singular thread that successfully swings the mark-word
1490       // to 0 can perform (or more precisely, complete) inflation.
1491       //
1492       // Why do we CAS a 0 into the mark-word instead of just CASing the
1493       // mark-word from the stack-locked value directly to the new inflated state?
1494       // Consider what happens when a thread unlocks a stack-locked object.
1495       // It attempts to use CAS to swing the displaced header value from the
1496       // on-stack BasicLock back into the object header.  Recall also that the
1497       // header value (hash code, etc) can reside in (a) the object header, or
1498       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1499       // header in an ObjectMonitor.  The inflate() routine must copy the header
1500       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1501       // the while preserving the hashCode stability invariants.  If the owner
1502       // decides to release the lock while the value is 0, the unlock will fail
1503       // and control will eventually pass from slow_exit() to inflate.  The owner
1504       // will then spin, waiting for the 0 value to disappear.   Put another way,
1505       // the 0 causes the owner to stall if the owner happens to try to
1506       // drop the lock (restoring the header from the BasicLock to the object)
1507       // while inflation is in-progress.  This protocol avoids races that might
1508       // would otherwise permit hashCode values to change or "flicker" for an object.
1509       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1510       // 0 serves as a "BUSY" inflate-in-progress indicator.
1511 
1512 
1513       // fetch the displaced mark from the owner's stack.
1514       // The owner can't die or unwind past the lock while our INFLATING
1515       // object is in the mark.  Furthermore the owner can't complete
1516       // an unlock on the object, either.
1517       markWord dmw = mark.displaced_mark_helper();
1518       // Catch if the object's header is not neutral (not locked and
1519       // not marked is what we care about here).
1520       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1521 
1522       // Setup monitor fields to proper values -- prepare the monitor
1523       m->set_header(dmw);
1524 
1525       // Optimization: if the mark.locker stack address is associated
1526       // with this thread we could simply set m->_owner = current.
1527       // Note that a thread can inflate an object
1528       // that it has stack-locked -- as might happen in wait() -- directly
1529       // with CAS.  That is, we can avoid the xchg-nullptr .... ST idiom.
1530       m->set_owner_from(nullptr, mark.locker());
1531       // TODO-FIXME: assert BasicLock->dhw != 0.
1532 
1533       // Must preserve store ordering. The monitor state must
1534       // be stable at the time of publishing the monitor address.
1535       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1536       // Release semantics so that above set_object() is seen first.
1537       object->release_set_mark(markWord::encode(m));
1538 
1539       // Once ObjectMonitor is configured and the object is associated
1540       // with the ObjectMonitor, it is safe to allow async deflation:
1541       _in_use_list.add(m);
1542 
1543       // Hopefully the performance counters are allocated on distinct cache lines
1544       // to avoid false sharing on MP systems ...
1545       OM_PERFDATA_OP(Inflations, inc());
1546       if (log_is_enabled(Trace, monitorinflation)) {
1547         ResourceMark rm;
1548         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1549                      INTPTR_FORMAT ", type='%s'", p2i(object),
1550                      object->mark().value(), object->klass()->external_name());
1551       }
1552       if (event.should_commit()) {
1553         post_monitor_inflate_event(&event, object, cause);
1554       }
1555       return m;
1556     }
1557 
1558     // CASE: unlocked
1559     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1560     // If we know we're inflating for entry it's better to inflate by swinging a
1561     // pre-locked ObjectMonitor pointer into the object header.   A successful
1562     // CAS inflates the object *and* confers ownership to the inflating thread.
1563     // In the current implementation we use a 2-step mechanism where we CAS()
1564     // to inflate and then CAS() again to try to swing _owner from null to current.
1565     // An inflateTry() method that we could call from enter() would be useful.
1566 
1567     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
1568     ObjectMonitor* m = new ObjectMonitor(object);
1569     // prepare m for installation - set monitor to initial state
1570     m->set_header(mark);
1571 
1572     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1573       delete m;
1574       m = nullptr;
1575       continue;
1576       // interference - the markword changed - just retry.
1577       // The state-transitions are one-way, so there's no chance of
1578       // live-lock -- "Inflated" is an absorbing state.
1579     }
1580 
1581     // Once the ObjectMonitor is configured and object is associated
1582     // with the ObjectMonitor, it is safe to allow async deflation:
1583     _in_use_list.add(m);
1584 
1585     // Hopefully the performance counters are allocated on distinct
1586     // cache lines to avoid false sharing on MP systems ...
1587     OM_PERFDATA_OP(Inflations, inc());
1588     if (log_is_enabled(Trace, monitorinflation)) {
1589       ResourceMark rm;
1590       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1591                    INTPTR_FORMAT ", type='%s'", p2i(object),
1592                    object->mark().value(), object->klass()->external_name());
1593     }
1594     if (event.should_commit()) {
1595       post_monitor_inflate_event(&event, object, cause);
1596     }
1597     return m;
1598   }
1599 }
1600 
1601 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1602 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1603 //
1604 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1605   MonitorList::Iterator iter = _in_use_list.iterator();
1606   size_t deflated_count = 0;
1607   Thread* current = Thread::current();
1608 
1609   while (iter.has_next()) {
1610     if (deflated_count >= (size_t)MonitorDeflationMax) {
1611       break;
1612     }
1613     ObjectMonitor* mid = iter.next();
1614     if (mid->deflate_monitor(current)) {
1615       deflated_count++;
1616     }
1617 
1618     // Must check for a safepoint/handshake and honor it.
1619     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1620   }
1621 
1622   return deflated_count;
1623 }
1624 
1625 class HandshakeForDeflation : public HandshakeClosure {
1626  public:
1627   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1628 
1629   void do_thread(Thread* thread) {
1630     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1631                                 INTPTR_FORMAT, p2i(thread));
1632     if (thread->is_Java_thread()) {
1633       // Clear OM cache
1634       JavaThread* jt = JavaThread::cast(thread);
1635       jt->om_clear_monitor_cache();
1636     }
1637   }
1638 };
1639 
1640 class VM_RendezvousGCThreads : public VM_Operation {
1641 public:
1642   bool evaluate_at_safepoint() const override { return false; }
1643   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1644   void doit() override {
1645     Universe::heap()->safepoint_synchronize_begin();
1646     Universe::heap()->safepoint_synchronize_end();
1647   };
1648 };
1649 
1650 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1651                               ObjectMonitorDeflationSafepointer* safepointer) {
1652   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1653   size_t deleted_count = 0;
1654   for (ObjectMonitor* monitor: *delete_list) {
1655     delete monitor;
1656     deleted_count++;
1657     // A JavaThread must check for a safepoint/handshake and honor it.
1658     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1659   }
1660   return deleted_count;
1661 }
1662 
1663 class ObjectMonitorDeflationLogging: public StackObj {
1664   LogStreamHandle(Debug, monitorinflation) _debug;
1665   LogStreamHandle(Info, monitorinflation)  _info;
1666   LogStream*                               _stream;
1667   elapsedTimer                             _timer;
1668 
1669   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1670   size_t count() const   { return ObjectSynchronizer::_in_use_list.count(); }
1671   size_t max() const     { return ObjectSynchronizer::_in_use_list.max(); }
1672 
1673 public:
1674   ObjectMonitorDeflationLogging()
1675     : _debug(), _info(), _stream(nullptr) {
1676     if (_debug.is_enabled()) {
1677       _stream = &_debug;
1678     } else if (_info.is_enabled()) {
1679       _stream = &_info;
1680     }
1681   }
1682 
1683   void begin() {
1684     if (_stream != nullptr) {
1685       _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1686                         ceiling(), count(), max());
1687       _timer.start();
1688     }
1689   }
1690 
1691   void before_handshake(size_t unlinked_count) {
1692     if (_stream != nullptr) {
1693       _timer.stop();
1694       _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1695                         ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1696                         SIZE_FORMAT ", max=" SIZE_FORMAT,
1697                         unlinked_count, ceiling(), count(), max());
1698     }
1699   }
1700 
1701   void after_handshake() {
1702     if (_stream != nullptr) {
1703       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1704                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1705                         ceiling(), count(), max());
1706       _timer.start();
1707     }
1708   }
1709 
1710   void end(size_t deflated_count, size_t unlinked_count) {
1711     if (_stream != nullptr) {
1712       _timer.stop();
1713       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1714         _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs",
1715                           deflated_count, unlinked_count, _timer.seconds());
1716       }
1717       _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1718                         ceiling(), count(), max());
1719     }
1720   }
1721 
1722   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1723     if (_stream != nullptr) {
1724       _timer.stop();
1725       _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1726                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1727                         op_name, cnt_name, cnt, ceiling(), count(), max());
1728     }
1729   }
1730 
1731   void after_block_for_safepoint(const char* op_name) {
1732     if (_stream != nullptr) {
1733       _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1734                         ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1735                         ceiling(), count(), max());
1736       _timer.start();
1737     }
1738   }
1739 };
1740 
1741 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1742   if (!SafepointMechanism::should_process(_current)) {
1743     return;
1744   }
1745 
1746   // A safepoint/handshake has started.
1747   _log->before_block_for_safepoint(op_name, count_name, counter);
1748 
1749   {
1750     // Honor block request.
1751     ThreadBlockInVM tbivm(_current);
1752   }
1753 
1754   _log->after_block_for_safepoint(op_name);
1755 }
1756 
1757 // This function is called by the MonitorDeflationThread to deflate
1758 // ObjectMonitors.
1759 size_t ObjectSynchronizer::deflate_idle_monitors() {
1760   JavaThread* current = JavaThread::current();
1761   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1762 
1763   // The async deflation request has been processed.
1764   _last_async_deflation_time_ns = os::javaTimeNanos();
1765   set_is_async_deflation_requested(false);
1766 
1767   ObjectMonitorDeflationLogging log;
1768   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1769 
1770   log.begin();
1771 
1772   // Deflate some idle ObjectMonitors.
1773   size_t deflated_count = deflate_monitor_list(&safepointer);
1774 
1775   // Unlink the deflated ObjectMonitors from the in-use list.
1776   size_t unlinked_count = 0;
1777   size_t deleted_count = 0;
1778   if (deflated_count > 0) {
1779     ResourceMark rm(current);
1780     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1781     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1782 
1783 #ifdef ASSERT
1784     if (UseObjectMonitorTable) {
1785       for (ObjectMonitor* monitor : delete_list) {
1786         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1787       }
1788     }
1789 #endif
1790 
1791     log.before_handshake(unlinked_count);
1792 
1793     // A JavaThread needs to handshake in order to safely free the
1794     // ObjectMonitors that were deflated in this cycle.
1795     HandshakeForDeflation hfd_hc;
1796     Handshake::execute(&hfd_hc);
1797     // Also, we sync and desync GC threads around the handshake, so that they can
1798     // safely read the mark-word and look-through to the object-monitor, without
1799     // being afraid that the object-monitor is going away.
1800     VM_RendezvousGCThreads sync_gc;
1801     VMThread::execute(&sync_gc);
1802 
1803     log.after_handshake();
1804 
1805     // After the handshake, safely free the ObjectMonitors that were
1806     // deflated and unlinked in this cycle.
1807 
1808     // Delete the unlinked ObjectMonitors.
1809     deleted_count = delete_monitors(&delete_list, &safepointer);
1810     assert(unlinked_count == deleted_count, "must be");
1811   }
1812 
1813   log.end(deflated_count, unlinked_count);
1814 
1815   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1816   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1817 
1818   GVars.stw_random = os::random();
1819 
1820   if (deflated_count != 0) {
1821     _no_progress_cnt = 0;
1822   } else if (_no_progress_skip_increment) {
1823     _no_progress_skip_increment = false;
1824   } else {
1825     _no_progress_cnt++;
1826   }
1827 
1828   return deflated_count;
1829 }
1830 
1831 // Monitor cleanup on JavaThread::exit
1832 
1833 // Iterate through monitor cache and attempt to release thread's monitors
1834 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1835  private:
1836   JavaThread* _thread;
1837 
1838  public:
1839   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1840   void do_monitor(ObjectMonitor* mid) {
1841     intx rec = mid->complete_exit(_thread);
1842     _thread->dec_held_monitor_count(rec + 1);
1843   }
1844 };
1845 
1846 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1847 // ignored.  This is meant to be called during JNI thread detach which assumes
1848 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1849 // Scanning the extant monitor list can be time consuming.
1850 // A simple optimization is to add a per-thread flag that indicates a thread
1851 // called jni_monitorenter() during its lifetime.
1852 //
1853 // Instead of NoSafepointVerifier it might be cheaper to
1854 // use an idiom of the form:
1855 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1856 //   <code that must not run at safepoint>
1857 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1858 // Since the tests are extremely cheap we could leave them enabled
1859 // for normal product builds.
1860 
1861 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1862   assert(current == JavaThread::current(), "must be current Java thread");
1863   NoSafepointVerifier nsv;
1864   ReleaseJavaMonitorsClosure rjmc(current);
1865   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1866   assert(!current->has_pending_exception(), "Should not be possible");
1867   current->clear_pending_exception();
1868   assert(current->held_monitor_count() == 0, "Should not be possible");
1869   // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count.
1870   current->clear_jni_monitor_count();
1871 }
1872 
1873 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1874   switch (cause) {
1875     case inflate_cause_vm_internal:    return "VM Internal";
1876     case inflate_cause_monitor_enter:  return "Monitor Enter";
1877     case inflate_cause_wait:           return "Monitor Wait";
1878     case inflate_cause_notify:         return "Monitor Notify";
1879     case inflate_cause_hash_code:      return "Monitor Hash Code";
1880     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1881     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1882     default:
1883       ShouldNotReachHere();
1884   }
1885   return "Unknown";
1886 }
1887 
1888 //------------------------------------------------------------------------------
1889 // Debugging code
1890 
1891 u_char* ObjectSynchronizer::get_gvars_addr() {
1892   return (u_char*)&GVars;
1893 }
1894 
1895 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1896   return (u_char*)&GVars.hc_sequence;
1897 }
1898 
1899 size_t ObjectSynchronizer::get_gvars_size() {
1900   return sizeof(SharedGlobals);
1901 }
1902 
1903 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1904   return (u_char*)&GVars.stw_random;
1905 }
1906 
1907 // Do the final audit and print of ObjectMonitor stats; must be done
1908 // by the VMThread at VM exit time.
1909 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1910   assert(Thread::current()->is_VM_thread(), "sanity check");
1911 
1912   if (is_final_audit()) {  // Only do the audit once.
1913     return;
1914   }
1915   set_is_final_audit();
1916   log_info(monitorinflation)("Starting the final audit.");
1917 
1918   if (log_is_enabled(Info, monitorinflation)) {
1919     LogStreamHandle(Info, monitorinflation) ls;
1920     audit_and_print_stats(&ls, true /* on_exit */);
1921   }
1922 }
1923 
1924 // This function can be called by the MonitorDeflationThread or it can be called when
1925 // we are trying to exit the VM. The list walker functions can run in parallel with
1926 // the other list operations.
1927 // Calls to this function can be added in various places as a debugging
1928 // aid.
1929 //
1930 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1931   int error_cnt = 0;
1932 
1933   ls->print_cr("Checking in_use_list:");
1934   chk_in_use_list(ls, &error_cnt);
1935 
1936   if (error_cnt == 0) {
1937     ls->print_cr("No errors found in in_use_list checks.");
1938   } else {
1939     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1940   }
1941 
1942   // When exiting, only log the interesting entries at the Info level.
1943   // When called at intervals by the MonitorDeflationThread, log output
1944   // at the Trace level since there can be a lot of it.
1945   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
1946     LogStreamHandle(Trace, monitorinflation) ls_tr;
1947     log_in_use_monitor_details(&ls_tr, true /* log_all */);
1948   } else if (on_exit) {
1949     log_in_use_monitor_details(ls, false /* log_all */);
1950   }
1951 
1952   ls->flush();
1953 
1954   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1955 }
1956 
1957 // Check the in_use_list; log the results of the checks.
1958 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1959   size_t l_in_use_count = _in_use_list.count();
1960   size_t l_in_use_max = _in_use_list.max();
1961   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1962                 l_in_use_max);
1963 
1964   size_t ck_in_use_count = 0;
1965   MonitorList::Iterator iter = _in_use_list.iterator();
1966   while (iter.has_next()) {
1967     ObjectMonitor* mid = iter.next();
1968     chk_in_use_entry(mid, out, error_cnt_p);
1969     ck_in_use_count++;
1970   }
1971 
1972   if (l_in_use_count == ck_in_use_count) {
1973     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
1974                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
1975   } else {
1976     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
1977                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
1978                   ck_in_use_count);
1979   }
1980 
1981   size_t ck_in_use_max = _in_use_list.max();
1982   if (l_in_use_max == ck_in_use_max) {
1983     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1984                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1985   } else {
1986     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1987                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1988   }
1989 }
1990 
1991 // Check an in-use monitor entry; log any errors.
1992 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1993                                           int* error_cnt_p) {
1994   if (n->owner_is_DEFLATER_MARKER()) {
1995     // This could happen when monitor deflation blocks for a safepoint.
1996     return;
1997   }
1998 
1999 
2000   if (n->metadata() == 0) {
2001     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
2002                   "have non-null _metadata (header/hash) field.", p2i(n));
2003     *error_cnt_p = *error_cnt_p + 1;
2004   }
2005 
2006   const oop obj = n->object_peek();
2007   if (obj == nullptr) {
2008     return;
2009   }
2010 
2011   const markWord mark = obj->mark();
2012   if (!mark.has_monitor()) {
2013     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2014                   "object does not think it has a monitor: obj="
2015                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2016                   p2i(obj), mark.value());
2017     *error_cnt_p = *error_cnt_p + 1;
2018     return;
2019   }
2020 
2021   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
2022   if (n != obj_mon) {
2023     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2024                   "object does not refer to the same monitor: obj="
2025                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2026                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2027     *error_cnt_p = *error_cnt_p + 1;
2028   }
2029 }
2030 
2031 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2032 // flags indicate why the entry is in-use, 'object' and 'object type'
2033 // indicate the associated object and its type.
2034 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2035   if (_in_use_list.count() > 0) {
2036     stringStream ss;
2037     out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)");
2038     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2039     out->print_cr("%18s  %s  %18s  %18s",
2040                   "monitor", "BHL", "object", "object type");
2041     out->print_cr("==================  ===  ==================  ==================");
2042 
2043     auto is_interesting = [&](ObjectMonitor* monitor) {
2044       return log_all || monitor->has_owner() || monitor->is_busy();
2045     };
2046 
2047     monitors_iterate([&](ObjectMonitor* monitor) {
2048       if (is_interesting(monitor)) {
2049         const oop obj = monitor->object_peek();
2050         const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash();
2051         ResourceMark rm;
2052         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2053                    monitor->is_busy(), hash != 0, monitor->owner() != nullptr,
2054                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2055         if (monitor->is_busy()) {
2056           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2057           ss.reset();
2058         }
2059         out->cr();
2060       }
2061     });
2062   }
2063 
2064   out->flush();
2065 }