1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmSymbols.hpp"
  26 #include "gc/shared/collectedHeap.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "logging/log.hpp"
  29 #include "logging/logStream.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/padded.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomicAccess.hpp"
  37 #include "runtime/basicLock.inline.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"
  44 #include "runtime/lightweightSynchronizer.hpp"
  45 #include "runtime/lockStack.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepointMechanism.inline.hpp"
  51 #include "runtime/safepointVerifiers.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/synchronizer.inline.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "runtime/timer.hpp"
  57 #include "runtime/trimNativeHeap.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "utilities/align.hpp"
  61 #include "utilities/dtrace.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/globalCounter.inline.hpp"
  64 #include "utilities/globalDefinitions.hpp"
  65 #include "utilities/linkedlist.hpp"
  66 #include "utilities/preserveException.hpp"
  67 
  68 class ObjectMonitorDeflationLogging;
  69 
  70 void MonitorList::add(ObjectMonitor* m) {
  71   ObjectMonitor* head;
  72   do {
  73     head = AtomicAccess::load(&_head);
  74     m->set_next_om(head);
  75   } while (AtomicAccess::cmpxchg(&_head, head, m) != head);
  76 
  77   size_t count = AtomicAccess::add(&_count, 1u, memory_order_relaxed);
  78   size_t old_max;
  79   do {
  80     old_max = AtomicAccess::load(&_max);
  81     if (count <= old_max) {
  82       break;
  83     }
  84   } while (AtomicAccess::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max);
  85 }
  86 
  87 size_t MonitorList::count() const {
  88   return AtomicAccess::load(&_count);
  89 }
  90 
  91 size_t MonitorList::max() const {
  92   return AtomicAccess::load(&_max);
  93 }
  94 
  95 class ObjectMonitorDeflationSafepointer : public StackObj {
  96   JavaThread* const                    _current;
  97   ObjectMonitorDeflationLogging* const _log;
  98 
  99 public:
 100   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
 101     : _current(current), _log(log) {}
 102 
 103   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 104 };
 105 
 106 // Walk the in-use list and unlink deflated ObjectMonitors.
 107 // Returns the number of unlinked ObjectMonitors.
 108 size_t MonitorList::unlink_deflated(size_t deflated_count,
 109                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 110                                     ObjectMonitorDeflationSafepointer* safepointer) {
 111   size_t unlinked_count = 0;
 112   ObjectMonitor* prev = nullptr;
 113   ObjectMonitor* m = AtomicAccess::load_acquire(&_head);
 114 
 115   while (m != nullptr) {
 116     if (m->is_being_async_deflated()) {
 117       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 118       // modify the list once per batch. The batch starts at "m".
 119       size_t unlinked_batch = 0;
 120       ObjectMonitor* next = m;
 121       // Look for at most MonitorUnlinkBatch monitors, or the number of
 122       // deflated and not unlinked monitors, whatever comes first.
 123       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 124       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 125       do {
 126         ObjectMonitor* next_next = next->next_om();
 127         unlinked_batch++;
 128         unlinked_list->append(next);
 129         next = next_next;
 130         if (unlinked_batch >= unlinked_batch_limit) {
 131           // Reached the max batch, so bail out of the gathering loop.
 132           break;
 133         }
 134         if (prev == nullptr && AtomicAccess::load(&_head) != m) {
 135           // Current batch used to be at head, but it is not at head anymore.
 136           // Bail out and figure out where we currently are. This avoids long
 137           // walks searching for new prev during unlink under heavy list inserts.
 138           break;
 139         }
 140       } while (next != nullptr && next->is_being_async_deflated());
 141 
 142       // Unlink the found batch.
 143       if (prev == nullptr) {
 144         // The current batch is the first batch, so there is a chance that it starts at head.
 145         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 146         ObjectMonitor* prev_head = AtomicAccess::cmpxchg(&_head, m, next);
 147         if (prev_head != m) {
 148           // Something must have updated the head. Figure out the actual prev for this batch.
 149           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 150             prev = n;
 151           }
 152           assert(prev != nullptr, "Should have found the prev for the current batch");
 153           prev->set_next_om(next);
 154         }
 155       } else {
 156         // The current batch is preceded by another batch. This guarantees the current batch
 157         // does not start at head. Unlink the entire current batch without updating the head.
 158         assert(AtomicAccess::load(&_head) != m, "Sanity");
 159         prev->set_next_om(next);
 160       }
 161 
 162       unlinked_count += unlinked_batch;
 163       if (unlinked_count >= deflated_count) {
 164         // Reached the max so bail out of the searching loop.
 165         // There should be no more deflated monitors left.
 166         break;
 167       }
 168       m = next;
 169     } else {
 170       prev = m;
 171       m = m->next_om();
 172     }
 173 
 174     // Must check for a safepoint/handshake and honor it.
 175     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 176   }
 177 
 178 #ifdef ASSERT
 179   // Invariant: the code above should unlink all deflated monitors.
 180   // The code that runs after this unlinking does not expect deflated monitors.
 181   // Notably, attempting to deflate the already deflated monitor would break.
 182   {
 183     ObjectMonitor* m = AtomicAccess::load_acquire(&_head);
 184     while (m != nullptr) {
 185       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 186       m = m->next_om();
 187     }
 188   }
 189 #endif
 190 
 191   AtomicAccess::sub(&_count, unlinked_count);
 192   return unlinked_count;
 193 }
 194 
 195 MonitorList::Iterator MonitorList::iterator() const {
 196   return Iterator(AtomicAccess::load_acquire(&_head));
 197 }
 198 
 199 ObjectMonitor* MonitorList::Iterator::next() {
 200   ObjectMonitor* current = _current;
 201   _current = current->next_om();
 202   return current;
 203 }
 204 
 205 // The "core" versions of monitor enter and exit reside in this file.
 206 // The interpreter and compilers contain specialized transliterated
 207 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 208 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 209 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 210 //
 211 // -----------------------------------------------------------------------------
 212 
 213 #ifdef DTRACE_ENABLED
 214 
 215 // Only bother with this argument setup if dtrace is available
 216 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 217 
 218 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 219   char* bytes = nullptr;                                                      \
 220   int len = 0;                                                             \
 221   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 222   Symbol* klassname = obj->klass()->name();                                \
 223   if (klassname != nullptr) {                                                 \
 224     bytes = (char*)klassname->bytes();                                     \
 225     len = klassname->utf8_length();                                        \
 226   }
 227 
 228 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 229   {                                                                        \
 230     if (DTraceMonitorProbes) {                                             \
 231       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 232       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 233                            (uintptr_t)(monitor), bytes, len, (millis));    \
 234     }                                                                      \
 235   }
 236 
 237 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 238 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 239 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 240 
 241 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 242   {                                                                        \
 243     if (DTraceMonitorProbes) {                                             \
 244       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 245       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 246                                     (uintptr_t)(monitor), bytes, len);     \
 247     }                                                                      \
 248   }
 249 
 250 #else //  ndef DTRACE_ENABLED
 251 
 252 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 253 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 254 
 255 #endif // ndef DTRACE_ENABLED
 256 
 257 // This exists only as a workaround of dtrace bug 6254741
 258 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 259   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 260   return 0;
 261 }
 262 
 263 static constexpr size_t inflation_lock_count() {
 264   return 256;
 265 }
 266 
 267 // Static storage for an array of PlatformMutex.
 268 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 269 
 270 static inline PlatformMutex* inflation_lock(size_t index) {
 271   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 272 }
 273 
 274 void ObjectSynchronizer::initialize() {
 275   for (size_t i = 0; i < inflation_lock_count(); i++) {
 276     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 277   }
 278   // Start the ceiling with the estimate for one thread.
 279   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 280 
 281   // Start the timer for deflations, so it does not trigger immediately.
 282   _last_async_deflation_time_ns = os::javaTimeNanos();
 283 
 284   LightweightSynchronizer::initialize();
 285 }
 286 
 287 MonitorList ObjectSynchronizer::_in_use_list;
 288 // monitors_used_above_threshold() policy is as follows:
 289 //
 290 // The ratio of the current _in_use_list count to the ceiling is used
 291 // to determine if we are above MonitorUsedDeflationThreshold and need
 292 // to do an async monitor deflation cycle. The ceiling is increased by
 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 295 // removed from the system.
 296 //
 297 // Note: If the _in_use_list max exceeds the ceiling, then
 298 // monitors_used_above_threshold() will use the in_use_list max instead
 299 // of the thread count derived ceiling because we have used more
 300 // ObjectMonitors than the estimated average.
 301 //
 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 303 // no-progress async monitor deflation cycles in a row, then the ceiling
 304 // is adjusted upwards by monitors_used_above_threshold().
 305 //
 306 // Start the ceiling with the estimate for one thread in initialize()
 307 // which is called after cmd line options are processed.
 308 static size_t _in_use_list_ceiling = 0;
 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 310 bool volatile ObjectSynchronizer::_is_final_audit = false;
 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 312 static uintx _no_progress_cnt = 0;
 313 static bool _no_progress_skip_increment = false;
 314 
 315 // These checks are required for wait, notify and exit to avoid inflating the monitor to
 316 // find out this inline type object cannot be locked.
 317 #define CHECK_THROW_NOSYNC_IMSE(obj)  \
 318   if ((obj)->mark().is_inline_type()) {  \
 319     JavaThread* THREAD = current;           \
 320     ResourceMark rm(THREAD);                \
 321     THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \
 322   }
 323 
 324 #define CHECK_THROW_NOSYNC_IMSE_0(obj)  \
 325   if ((obj)->mark().is_inline_type()) {  \
 326     JavaThread* THREAD = current;             \
 327     ResourceMark rm(THREAD);                  \
 328     THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \
 329   }
 330 
 331 // =====================> Quick functions
 332 
 333 // The quick_* forms are special fast-path variants used to improve
 334 // performance.  In the simplest case, a "quick_*" implementation could
 335 // simply return false, in which case the caller will perform the necessary
 336 // state transitions and call the slow-path form.
 337 // The fast-path is designed to handle frequently arising cases in an efficient
 338 // manner and is just a degenerate "optimistic" variant of the slow-path.
 339 // returns true  -- to indicate the call was satisfied.
 340 // returns false -- to indicate the call needs the services of the slow-path.
 341 // A no-loitering ordinance is in effect for code in the quick_* family
 342 // operators: safepoints or indefinite blocking (blocking that might span a
 343 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 344 // entry.
 345 //
 346 // Consider: An interesting optimization is to have the JIT recognize the
 347 // following common idiom:
 348 //   synchronized (someobj) { .... ; notify(); }
 349 // That is, we find a notify() or notifyAll() call that immediately precedes
 350 // the monitorexit operation.  In that case the JIT could fuse the operations
 351 // into a single notifyAndExit() runtime primitive.
 352 
 353 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 354   assert(current->thread_state() == _thread_in_Java, "invariant");
 355   NoSafepointVerifier nsv;
 356   if (obj == nullptr) return false;  // slow-path for invalid obj
 357   assert(!obj->klass()->is_inline_klass(), "monitor op on inline type");
 358   const markWord mark = obj->mark();
 359 
 360   if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 361     // Degenerate notify
 362     // fast-locked by caller so by definition the implied waitset is empty.
 363     return true;
 364   }
 365 
 366   if (mark.has_monitor()) {
 367     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 368     if (mon == nullptr) {
 369       // Racing with inflation/deflation go slow path
 370       return false;
 371     }
 372     assert(mon->object() == oop(obj), "invariant");
 373     if (!mon->has_owner(current)) return false;  // slow-path for IMS exception
 374 
 375     if (mon->first_waiter() != nullptr) {
 376       // We have one or more waiters. Since this is an inflated monitor
 377       // that we own, we quickly notify them here and now, avoiding the slow-path.
 378       if (all) {
 379         mon->quick_notifyAll(current);
 380       } else {
 381         mon->quick_notify(current);
 382       }
 383     }
 384     return true;
 385   }
 386 
 387   // other IMS exception states take the slow-path
 388   return false;
 389 }
 390 
 391 // Handle notifications when synchronizing on value based classes
 392 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 393   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 394   frame last_frame = locking_thread->last_frame();
 395   bool bcp_was_adjusted = false;
 396   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 397   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 398   // is no actual monitorenter instruction in the byte code in this case.
 399   if (last_frame.is_interpreted_frame() &&
 400       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 401     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 402     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 403     bcp_was_adjusted = true;
 404   }
 405 
 406   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 407     ResourceMark rm;
 408     stringStream ss;
 409     locking_thread->print_active_stack_on(&ss);
 410     char* base = (char*)strstr(ss.base(), "at");
 411     char* newline = (char*)strchr(ss.base(), '\n');
 412     if (newline != nullptr) {
 413       *newline = '\0';
 414     }
 415     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 416   } else {
 417     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 418     ResourceMark rm;
 419     Log(valuebasedclasses) vblog;
 420 
 421     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 422     if (locking_thread->has_last_Java_frame()) {
 423       LogStream info_stream(vblog.info());
 424       locking_thread->print_active_stack_on(&info_stream);
 425     } else {
 426       vblog.info("Cannot find the last Java frame");
 427     }
 428 
 429     EventSyncOnValueBasedClass event;
 430     if (event.should_commit()) {
 431       event.set_valueBasedClass(obj->klass());
 432       event.commit();
 433     }
 434   }
 435 
 436   if (bcp_was_adjusted) {
 437     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 438   }
 439 }
 440 
 441 // -----------------------------------------------------------------------------
 442 // Monitor Enter/Exit
 443 
 444 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 445   // When called with locking_thread != Thread::current() some mechanism must synchronize
 446   // the locking_thread with respect to the current thread. Currently only used when
 447   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 448   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 449   assert(!obj->klass()->is_inline_klass(), "JITed code should never have locked an instance of a value class");
 450   return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 451 }
 452 
 453 // -----------------------------------------------------------------------------
 454 // JNI locks on java objects
 455 // NOTE: must use heavy weight monitor to handle jni monitor enter
 456 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 457   JavaThread* THREAD = current;
 458   // Top native frames in the stack will not be seen if we attempt
 459   // preemption, since we start walking from the last Java anchor.
 460   NoPreemptMark npm(current);
 461 
 462   if (obj->klass()->is_value_based()) {
 463     handle_sync_on_value_based_class(obj, current);
 464   }
 465 
 466   if (obj->klass()->is_inline_klass()) {
 467     ResourceMark rm(THREAD);
 468     const char* desc = "Cannot synchronize on an instance of value class ";
 469     const char* className = obj->klass()->external_name();
 470     size_t msglen = strlen(desc) + strlen(className) + 1;
 471     char* message = NEW_RESOURCE_ARRAY(char, msglen);
 472     assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr");
 473     THROW_MSG(vmSymbols::java_lang_IdentityException(), className);
 474   }
 475 
 476   // the current locking is from JNI instead of Java code
 477   current->set_current_pending_monitor_is_from_java(false);
 478   // An async deflation can race after the inflate() call and before
 479   // enter() can make the ObjectMonitor busy. enter() returns false if
 480   // we have lost the race to async deflation and we simply try again.
 481   while (true) {
 482     BasicLock lock;
 483     if (LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr) {
 484       break;
 485     }
 486   }
 487   current->set_current_pending_monitor_is_from_java(true);
 488 }
 489 
 490 // NOTE: must use heavy weight monitor to handle jni monitor exit
 491 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 492   JavaThread* current = THREAD;
 493   CHECK_THROW_NOSYNC_IMSE(obj);
 494 
 495   ObjectMonitor* monitor;
 496   monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 497   // If this thread has locked the object, exit the monitor. We
 498   // intentionally do not use CHECK on check_owner because we must exit the
 499   // monitor even if an exception was already pending.
 500   if (monitor->check_owner(THREAD)) {
 501     monitor->exit(current);
 502   }
 503 }
 504 
 505 // -----------------------------------------------------------------------------
 506 // Internal VM locks on java objects
 507 // standard constructor, allows locking failures
 508 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) {
 509   _thread = thread;
 510   _thread->check_for_valid_safepoint_state();
 511   _obj = obj;
 512 
 513   if (_obj() != nullptr) {
 514     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 515   }
 516 }
 517 
 518 ObjectLocker::~ObjectLocker() {
 519   if (_obj() != nullptr) {
 520     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 521   }
 522 }
 523 
 524 
 525 // -----------------------------------------------------------------------------
 526 //  Wait/Notify/NotifyAll
 527 // NOTE: must use heavy weight monitor to handle wait()
 528 
 529 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 530   JavaThread* current = THREAD;
 531   CHECK_THROW_NOSYNC_IMSE_0(obj);
 532   if (millis < 0) {
 533     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 534   }
 535 
 536   ObjectMonitor* monitor;
 537   monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 538 
 539   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 540   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 541 
 542   // This dummy call is in place to get around dtrace bug 6254741.  Once
 543   // that's fixed we can uncomment the following line, remove the call
 544   // and change this function back into a "void" func.
 545   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 546   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 547   return ret_code;
 548 }
 549 
 550 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 551   if (millis < 0) {
 552     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 553   }
 554 
 555   ObjectMonitor* monitor;
 556   monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK);
 557   monitor->wait(millis, false, THREAD);
 558 }
 559 
 560 
 561 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 562   JavaThread* current = THREAD;
 563   CHECK_THROW_NOSYNC_IMSE(obj);
 564 
 565   markWord mark = obj->mark();
 566   if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 567     // Not inflated so there can't be any waiters to notify.
 568     return;
 569   }
 570   ObjectMonitor* monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 571   monitor->notify(CHECK);
 572 }
 573 
 574 // NOTE: see comment of notify()
 575 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 576   JavaThread* current = THREAD;
 577   CHECK_THROW_NOSYNC_IMSE(obj);
 578 
 579   markWord mark = obj->mark();
 580   if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 581     // Not inflated so there can't be any waiters to notify.
 582     return;
 583   }
 584 
 585   ObjectMonitor* monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 586   monitor->notifyAll(CHECK);
 587 }
 588 
 589 // -----------------------------------------------------------------------------
 590 // Hash Code handling
 591 
 592 struct SharedGlobals {
 593   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 594   // This is a highly shared mostly-read variable.
 595   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 596   volatile int stw_random;
 597   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 598   // Hot RW variable -- Sequester to avoid false-sharing
 599   volatile int hc_sequence;
 600   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 601 };
 602 
 603 static SharedGlobals GVars;
 604 
 605 // hashCode() generation :
 606 //
 607 // Possibilities:
 608 // * MD5Digest of {obj,stw_random}
 609 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 610 // * A DES- or AES-style SBox[] mechanism
 611 // * One of the Phi-based schemes, such as:
 612 //   2654435761 = 2^32 * Phi (golden ratio)
 613 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 614 // * A variation of Marsaglia's shift-xor RNG scheme.
 615 // * (obj ^ stw_random) is appealing, but can result
 616 //   in undesirable regularity in the hashCode values of adjacent objects
 617 //   (objects allocated back-to-back, in particular).  This could potentially
 618 //   result in hashtable collisions and reduced hashtable efficiency.
 619 //   There are simple ways to "diffuse" the middle address bits over the
 620 //   generated hashCode values:
 621 
 622 static intptr_t get_next_hash(Thread* current, oop obj) {
 623   intptr_t value = 0;
 624   if (hashCode == 0) {
 625     // This form uses global Park-Miller RNG.
 626     // On MP system we'll have lots of RW access to a global, so the
 627     // mechanism induces lots of coherency traffic.
 628     value = os::random();
 629   } else if (hashCode == 1) {
 630     // This variation has the property of being stable (idempotent)
 631     // between STW operations.  This can be useful in some of the 1-0
 632     // synchronization schemes.
 633     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 634     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 635   } else if (hashCode == 2) {
 636     value = 1;            // for sensitivity testing
 637   } else if (hashCode == 3) {
 638     value = ++GVars.hc_sequence;
 639   } else if (hashCode == 4) {
 640     value = cast_from_oop<intptr_t>(obj);
 641   } else {
 642     // Marsaglia's xor-shift scheme with thread-specific state
 643     // This is probably the best overall implementation -- we'll
 644     // likely make this the default in future releases.
 645     unsigned t = current->_hashStateX;
 646     t ^= (t << 11);
 647     current->_hashStateX = current->_hashStateY;
 648     current->_hashStateY = current->_hashStateZ;
 649     current->_hashStateZ = current->_hashStateW;
 650     unsigned v = current->_hashStateW;
 651     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 652     current->_hashStateW = v;
 653     value = v;
 654   }
 655 
 656   value &= markWord::hash_mask;
 657   if (value == 0) value = 0xBAD;
 658   assert(value != markWord::no_hash, "invariant");
 659   return value;
 660 }
 661 
 662 static intptr_t install_hash_code(Thread* current, oop obj) {
 663   assert(UseObjectMonitorTable, "must be");
 664 
 665   markWord mark = obj->mark_acquire();
 666   for (;;) {
 667     intptr_t hash = mark.hash();
 668     if (hash != 0) {
 669       return hash;
 670     }
 671 
 672     hash = get_next_hash(current, obj);
 673     const markWord old_mark = mark;
 674     const markWord new_mark = old_mark.copy_set_hash(hash);
 675 
 676     mark = obj->cas_set_mark(new_mark, old_mark);
 677     if (old_mark == mark) {
 678       return hash;
 679     }
 680   }
 681 }
 682 
 683 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 684   // VM should be calling bootstrap method.
 685   assert(!obj->klass()->is_inline_klass(), "FastHashCode should not be called for inline classes");
 686 
 687   if (UseObjectMonitorTable) {
 688     // Since the monitor isn't in the object header, the hash can simply be
 689     // installed in the object header.
 690     return install_hash_code(current, obj);
 691   }
 692 
 693   while (true) {
 694     ObjectMonitor* monitor = nullptr;
 695     markWord temp, test;
 696     intptr_t hash;
 697     markWord mark = obj->mark_acquire();
 698     if (mark.is_unlocked() || mark.is_fast_locked()) {
 699       hash = mark.hash();
 700       if (hash != 0) {                     // if it has a hash, just return it
 701         return hash;
 702       }
 703       hash = get_next_hash(current, obj);  // get a new hash
 704       temp = mark.copy_set_hash(hash);     // merge the hash into header
 705                                            // try to install the hash
 706       test = obj->cas_set_mark(temp, mark);
 707       if (test == mark) {                  // if the hash was installed, return it
 708         return hash;
 709       }
 710       // CAS failed, retry
 711       continue;
 712 
 713       // Failed to install the hash. It could be that another thread
 714       // installed the hash just before our attempt or inflation has
 715       // occurred or... so we fall thru to inflate the monitor for
 716       // stability and then install the hash.
 717     } else if (mark.has_monitor()) {
 718       monitor = mark.monitor();
 719       temp = monitor->header();
 720       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 721       hash = temp.hash();
 722       if (hash != 0) {
 723         // It has a hash.
 724 
 725         // Separate load of dmw/header above from the loads in
 726         // is_being_async_deflated().
 727 
 728         // dmw/header and _contentions may get written by different threads.
 729         // Make sure to observe them in the same order when having several observers.
 730         OrderAccess::loadload_for_IRIW();
 731 
 732         if (monitor->is_being_async_deflated()) {
 733           // But we can't safely use the hash if we detect that async
 734           // deflation has occurred. So we attempt to restore the
 735           // header/dmw to the object's header so that we only retry
 736           // once if the deflater thread happens to be slow.
 737           monitor->install_displaced_markword_in_object(obj);
 738           continue;
 739         }
 740         return hash;
 741       }
 742       // Fall thru so we only have one place that installs the hash in
 743       // the ObjectMonitor.
 744     }
 745 
 746     // NOTE: an async deflation can race after we get the monitor and
 747     // before we can update the ObjectMonitor's header with the hash
 748     // value below.
 749     assert(mark.has_monitor(), "must be");
 750     monitor = mark.monitor();
 751 
 752     // Load ObjectMonitor's header/dmw field and see if it has a hash.
 753     mark = monitor->header();
 754     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 755     hash = mark.hash();
 756     if (hash == 0) {                       // if it does not have a hash
 757       hash = get_next_hash(current, obj);  // get a new hash
 758       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
 759       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 760       uintptr_t v = AtomicAccess::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
 761       test = markWord(v);
 762       if (test != mark) {
 763         // The attempt to update the ObjectMonitor's header/dmw field
 764         // did not work. This can happen if another thread managed to
 765         // merge in the hash just before our cmpxchg().
 766         // If we add any new usages of the header/dmw field, this code
 767         // will need to be updated.
 768         hash = test.hash();
 769         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 770         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
 771       }
 772       if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) {
 773         // If we detect that async deflation has occurred, then we
 774         // attempt to restore the header/dmw to the object's header
 775         // so that we only retry once if the deflater thread happens
 776         // to be slow.
 777         monitor->install_displaced_markword_in_object(obj);
 778         continue;
 779       }
 780     }
 781     // We finally get the hash.
 782     return hash;
 783   }
 784 }
 785 
 786 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
 787                                                    Handle h_obj) {
 788   if (h_obj->mark().is_inline_type()) {
 789     return false;
 790   }
 791   assert(current == JavaThread::current(), "Can only be called on current thread");
 792   oop obj = h_obj();
 793 
 794   markWord mark = obj->mark_acquire();
 795 
 796   if (mark.is_fast_locked()) {
 797     // fast-locking case, see if lock is in current's lock stack
 798     return current->lock_stack().contains(h_obj());
 799   }
 800 
 801   while (mark.has_monitor()) {
 802     ObjectMonitor* monitor = read_monitor(current, obj, mark);
 803     if (monitor != nullptr) {
 804       return monitor->is_entered(current) != 0;
 805     }
 806     // Racing with inflation/deflation, retry
 807     mark = obj->mark_acquire();
 808 
 809     if (mark.is_fast_locked()) {
 810       // Some other thread fast_locked, current could not have held the lock
 811       return false;
 812     }
 813   }
 814 
 815   // Unlocked case, header in place
 816   assert(mark.is_unlocked(), "sanity check");
 817   return false;
 818 }
 819 
 820 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 821   oop obj = h_obj();
 822   markWord mark = obj->mark_acquire();
 823 
 824   if (mark.is_fast_locked()) {
 825     // fast-locked so get owner from the object.
 826     // owning_thread_from_object() may also return null here:
 827     return Threads::owning_thread_from_object(t_list, h_obj());
 828   }
 829 
 830   while (mark.has_monitor()) {
 831     ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark);
 832     if (monitor != nullptr) {
 833       return Threads::owning_thread_from_monitor(t_list, monitor);
 834     }
 835     // Racing with inflation/deflation, retry
 836     mark = obj->mark_acquire();
 837 
 838     if (mark.is_fast_locked()) {
 839       // Some other thread fast_locked
 840       return Threads::owning_thread_from_object(t_list, h_obj());
 841     }
 842   }
 843 
 844   // Unlocked case, header in place
 845   // Cannot have assertion since this object may have been
 846   // locked by another thread when reaching here.
 847   // assert(mark.is_unlocked(), "sanity check");
 848 
 849   return nullptr;
 850 }
 851 
 852 // Visitors ...
 853 
 854 // Iterate over all ObjectMonitors.
 855 template <typename Function>
 856 void ObjectSynchronizer::monitors_iterate(Function function) {
 857   MonitorList::Iterator iter = _in_use_list.iterator();
 858   while (iter.has_next()) {
 859     ObjectMonitor* monitor = iter.next();
 860     function(monitor);
 861   }
 862 }
 863 
 864 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
 865 // returns true.
 866 template <typename OwnerFilter>
 867 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
 868   monitors_iterate([&](ObjectMonitor* monitor) {
 869     // This function is only called at a safepoint or when the
 870     // target thread is suspended or when the target thread is
 871     // operating on itself. The current closures in use today are
 872     // only interested in an owned ObjectMonitor and ownership
 873     // cannot be dropped under the calling contexts so the
 874     // ObjectMonitor cannot be async deflated.
 875     if (monitor->has_owner() && filter(monitor)) {
 876       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
 877 
 878       closure->do_monitor(monitor);
 879     }
 880   });
 881 }
 882 
 883 // Iterate ObjectMonitors where the owner == thread; this does NOT include
 884 // ObjectMonitors where owner is set to a stack-lock address in thread.
 885 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
 886   int64_t key = ObjectMonitor::owner_id_from(thread);
 887   auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; };
 888   return owned_monitors_iterate_filtered(closure, thread_filter);
 889 }
 890 
 891 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) {
 892   int64_t key = ObjectMonitor::owner_id_from(vthread);
 893   auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; };
 894   return owned_monitors_iterate_filtered(closure, thread_filter);
 895 }
 896 
 897 // Iterate ObjectMonitors owned by any thread.
 898 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
 899   auto all_filter = [&](ObjectMonitor* monitor) { return true; };
 900   return owned_monitors_iterate_filtered(closure, all_filter);
 901 }
 902 
 903 static bool monitors_used_above_threshold(MonitorList* list) {
 904   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
 905     return false;
 906   }
 907   size_t monitors_used = list->count();
 908   if (monitors_used == 0) {  // empty list is easy
 909     return false;
 910   }
 911   size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling();
 912   // Make sure that we use a ceiling value that is not lower than
 913   // previous, not lower than the recorded max used by the system, and
 914   // not lower than the current number of monitors in use (which can
 915   // race ahead of max). The result is guaranteed > 0.
 916   size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used);
 917 
 918   // Check if our monitor usage is above the threshold:
 919   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
 920   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
 921     // Deflate monitors if over the threshold percentage, unless no
 922     // progress on previous deflations.
 923     bool is_above_threshold = true;
 924 
 925     // Check if it's time to adjust the in_use_list_ceiling up, due
 926     // to too many async deflation attempts without any progress.
 927     if (NoAsyncDeflationProgressMax != 0 &&
 928         _no_progress_cnt >= NoAsyncDeflationProgressMax) {
 929       double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
 930       size_t delta = (size_t)(ceiling * remainder) + 1;
 931       size_t new_ceiling = (ceiling > SIZE_MAX - delta)
 932         ? SIZE_MAX         // Overflow, let's clamp new_ceiling.
 933         : ceiling + delta;
 934 
 935       ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
 936       log_info(monitorinflation)("Too many deflations without progress; "
 937                                  "bumping in_use_list_ceiling from %zu"
 938                                  " to %zu", old_ceiling, new_ceiling);
 939       _no_progress_cnt = 0;
 940       ceiling = new_ceiling;
 941 
 942       // Check if our monitor usage is still above the threshold:
 943       monitor_usage = (monitors_used * 100LL) / ceiling;
 944       is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold;
 945     }
 946     log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu"
 947                                ", monitor_usage=%zu, threshold=%d",
 948                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
 949     return is_above_threshold;
 950   }
 951 
 952   return false;
 953 }
 954 
 955 size_t ObjectSynchronizer::in_use_list_count() {
 956   return _in_use_list.count();
 957 }
 958 
 959 size_t ObjectSynchronizer::in_use_list_max() {
 960   return _in_use_list.max();
 961 }
 962 
 963 size_t ObjectSynchronizer::in_use_list_ceiling() {
 964   return _in_use_list_ceiling;
 965 }
 966 
 967 void ObjectSynchronizer::dec_in_use_list_ceiling() {
 968   AtomicAccess::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
 969 }
 970 
 971 void ObjectSynchronizer::inc_in_use_list_ceiling() {
 972   AtomicAccess::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
 973 }
 974 
 975 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
 976   _in_use_list_ceiling = new_value;
 977 }
 978 
 979 bool ObjectSynchronizer::is_async_deflation_needed() {
 980   if (is_async_deflation_requested()) {
 981     // Async deflation request.
 982     log_info(monitorinflation)("Async deflation needed: explicit request");
 983     return true;
 984   }
 985 
 986   jlong time_since_last = time_since_last_async_deflation_ms();
 987 
 988   if (AsyncDeflationInterval > 0 &&
 989       time_since_last > AsyncDeflationInterval &&
 990       monitors_used_above_threshold(&_in_use_list)) {
 991     // It's been longer than our specified deflate interval and there
 992     // are too many monitors in use. We don't deflate more frequently
 993     // than AsyncDeflationInterval (unless is_async_deflation_requested)
 994     // in order to not swamp the MonitorDeflationThread.
 995     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
 996     return true;
 997   }
 998 
 999   if (GuaranteedAsyncDeflationInterval > 0 &&
1000       time_since_last > GuaranteedAsyncDeflationInterval) {
1001     // It's been longer than our specified guaranteed deflate interval.
1002     // We need to clean up the used monitors even if the threshold is
1003     // not reached, to keep the memory utilization at bay when many threads
1004     // touched many monitors.
1005     log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) "
1006                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1007                                GuaranteedAsyncDeflationInterval, time_since_last);
1008 
1009     // If this deflation has no progress, then it should not affect the no-progress
1010     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1011     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1012     // the generic code would bump the no-progress counter, and we compensate for that
1013     // by telling it to skip the update.
1014     //
1015     // If this deflation has progress, then it should let non-progress tracking
1016     // know about this, otherwise the threshold heuristics would kick in, potentially
1017     // experience no-progress due to aggressive cleanup by this deflation, and think
1018     // it is still in no-progress stride. In this "progress" case, the generic code would
1019     // zero the counter, and we allow it to happen.
1020     _no_progress_skip_increment = true;
1021 
1022     return true;
1023   }
1024 
1025   return false;
1026 }
1027 
1028 void ObjectSynchronizer::request_deflate_idle_monitors() {
1029   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1030   set_is_async_deflation_requested(true);
1031   ml.notify_all();
1032 }
1033 
1034 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1035   JavaThread* current = JavaThread::current();
1036   bool ret_code = false;
1037 
1038   jlong last_time = last_async_deflation_time_ns();
1039 
1040   request_deflate_idle_monitors();
1041 
1042   const int N_CHECKS = 5;
1043   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1044     if (last_async_deflation_time_ns() > last_time) {
1045       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1046       ret_code = true;
1047       break;
1048     }
1049     {
1050       // JavaThread has to honor the blocking protocol.
1051       ThreadBlockInVM tbivm(current);
1052       os::naked_short_sleep(999);  // sleep for almost 1 second
1053     }
1054   }
1055   if (!ret_code) {
1056     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1057   }
1058 
1059   return ret_code;
1060 }
1061 
1062 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1063   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1064 }
1065 
1066 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1067 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1068 //
1069 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1070   MonitorList::Iterator iter = _in_use_list.iterator();
1071   size_t deflated_count = 0;
1072   Thread* current = Thread::current();
1073 
1074   while (iter.has_next()) {
1075     if (deflated_count >= (size_t)MonitorDeflationMax) {
1076       break;
1077     }
1078     ObjectMonitor* mid = iter.next();
1079     if (mid->deflate_monitor(current)) {
1080       deflated_count++;
1081     }
1082 
1083     // Must check for a safepoint/handshake and honor it.
1084     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1085   }
1086 
1087   return deflated_count;
1088 }
1089 
1090 class DeflationHandshakeClosure : public HandshakeClosure {
1091  public:
1092   DeflationHandshakeClosure() : HandshakeClosure("DeflationHandshakeClosure") {}
1093 
1094   void do_thread(Thread* thread) {
1095     log_trace(monitorinflation)("DeflationHandshakeClosure::do_thread: thread="
1096                                 INTPTR_FORMAT, p2i(thread));
1097     if (thread->is_Java_thread()) {
1098       // Clear OM cache
1099       JavaThread* jt = JavaThread::cast(thread);
1100       jt->om_clear_monitor_cache();
1101     }
1102   }
1103 };
1104 
1105 class VM_RendezvousGCThreads : public VM_Operation {
1106 public:
1107   bool evaluate_at_safepoint() const override { return false; }
1108   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1109   void doit() override {
1110     Universe::heap()->safepoint_synchronize_begin();
1111     Universe::heap()->safepoint_synchronize_end();
1112   };
1113 };
1114 
1115 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1116                               ObjectMonitorDeflationSafepointer* safepointer) {
1117   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1118   size_t deleted_count = 0;
1119   for (ObjectMonitor* monitor: *delete_list) {
1120     delete monitor;
1121     deleted_count++;
1122     // A JavaThread must check for a safepoint/handshake and honor it.
1123     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1124   }
1125   return deleted_count;
1126 }
1127 
1128 class ObjectMonitorDeflationLogging: public StackObj {
1129   LogStreamHandle(Debug, monitorinflation) _debug;
1130   LogStreamHandle(Info, monitorinflation)  _info;
1131   LogStream*                               _stream;
1132   elapsedTimer                             _timer;
1133 
1134   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1135   size_t count() const   { return ObjectSynchronizer::in_use_list_count(); }
1136   size_t max() const     { return ObjectSynchronizer::in_use_list_max(); }
1137 
1138 public:
1139   ObjectMonitorDeflationLogging()
1140     : _debug(), _info(), _stream(nullptr) {
1141     if (_debug.is_enabled()) {
1142       _stream = &_debug;
1143     } else if (_info.is_enabled()) {
1144       _stream = &_info;
1145     }
1146   }
1147 
1148   void begin() {
1149     if (_stream != nullptr) {
1150       _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu",
1151                         ceiling(), count(), max());
1152       _timer.start();
1153     }
1154   }
1155 
1156   void before_handshake(size_t unlinked_count) {
1157     if (_stream != nullptr) {
1158       _timer.stop();
1159       _stream->print_cr("before handshaking: unlinked_count=%zu"
1160                         ", in_use_list stats: ceiling=%zu, count="
1161                         "%zu, max=%zu",
1162                         unlinked_count, ceiling(), count(), max());
1163     }
1164   }
1165 
1166   void after_handshake() {
1167     if (_stream != nullptr) {
1168       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1169                         "%zu, count=%zu, max=%zu",
1170                         ceiling(), count(), max());
1171       _timer.start();
1172     }
1173   }
1174 
1175   void end(size_t deflated_count, size_t unlinked_count) {
1176     if (_stream != nullptr) {
1177       _timer.stop();
1178       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1179         _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs",
1180                           deflated_count, unlinked_count, _timer.seconds());
1181       }
1182       _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu",
1183                         ceiling(), count(), max());
1184     }
1185   }
1186 
1187   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1188     if (_stream != nullptr) {
1189       _timer.stop();
1190       _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling="
1191                         "%zu, count=%zu, max=%zu",
1192                         op_name, cnt_name, cnt, ceiling(), count(), max());
1193     }
1194   }
1195 
1196   void after_block_for_safepoint(const char* op_name) {
1197     if (_stream != nullptr) {
1198       _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu"
1199                         ", count=%zu, max=%zu", op_name,
1200                         ceiling(), count(), max());
1201       _timer.start();
1202     }
1203   }
1204 };
1205 
1206 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1207   if (!SafepointMechanism::should_process(_current)) {
1208     return;
1209   }
1210 
1211   // A safepoint/handshake has started.
1212   _log->before_block_for_safepoint(op_name, count_name, counter);
1213 
1214   {
1215     // Honor block request.
1216     ThreadBlockInVM tbivm(_current);
1217   }
1218 
1219   _log->after_block_for_safepoint(op_name);
1220 }
1221 
1222 // This function is called by the MonitorDeflationThread to deflate
1223 // ObjectMonitors.
1224 size_t ObjectSynchronizer::deflate_idle_monitors() {
1225   JavaThread* current = JavaThread::current();
1226   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1227 
1228   // The async deflation request has been processed.
1229   _last_async_deflation_time_ns = os::javaTimeNanos();
1230   set_is_async_deflation_requested(false);
1231 
1232   ObjectMonitorDeflationLogging log;
1233   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1234 
1235   log.begin();
1236 
1237   // Deflate some idle ObjectMonitors.
1238   size_t deflated_count = deflate_monitor_list(&safepointer);
1239 
1240   // Unlink the deflated ObjectMonitors from the in-use list.
1241   size_t unlinked_count = 0;
1242   size_t deleted_count = 0;
1243   if (deflated_count > 0) {
1244     ResourceMark rm(current);
1245     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1246     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1247 
1248 #ifdef ASSERT
1249     if (UseObjectMonitorTable) {
1250       for (ObjectMonitor* monitor : delete_list) {
1251         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1252       }
1253     }
1254 #endif
1255 
1256     log.before_handshake(unlinked_count);
1257 
1258     // A JavaThread needs to handshake in order to safely free the
1259     // ObjectMonitors that were deflated in this cycle.
1260     DeflationHandshakeClosure dhc;
1261     Handshake::execute(&dhc);
1262     // Also, we sync and desync GC threads around the handshake, so that they can
1263     // safely read the mark-word and look-through to the object-monitor, without
1264     // being afraid that the object-monitor is going away.
1265     VM_RendezvousGCThreads sync_gc;
1266     VMThread::execute(&sync_gc);
1267 
1268     log.after_handshake();
1269 
1270     // After the handshake, safely free the ObjectMonitors that were
1271     // deflated and unlinked in this cycle.
1272 
1273     // Delete the unlinked ObjectMonitors.
1274     deleted_count = delete_monitors(&delete_list, &safepointer);
1275     assert(unlinked_count == deleted_count, "must be");
1276   }
1277 
1278   log.end(deflated_count, unlinked_count);
1279 
1280   GVars.stw_random = os::random();
1281 
1282   if (deflated_count != 0) {
1283     _no_progress_cnt = 0;
1284   } else if (_no_progress_skip_increment) {
1285     _no_progress_skip_increment = false;
1286   } else {
1287     _no_progress_cnt++;
1288   }
1289 
1290   return deflated_count;
1291 }
1292 
1293 // Monitor cleanup on JavaThread::exit
1294 
1295 // Iterate through monitor cache and attempt to release thread's monitors
1296 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1297  private:
1298   JavaThread* _thread;
1299 
1300  public:
1301   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1302   void do_monitor(ObjectMonitor* mid) {
1303     mid->complete_exit(_thread);
1304   }
1305 };
1306 
1307 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1308 // ignored.  This is meant to be called during JNI thread detach which assumes
1309 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1310 // Scanning the extant monitor list can be time consuming.
1311 // A simple optimization is to add a per-thread flag that indicates a thread
1312 // called jni_monitorenter() during its lifetime.
1313 //
1314 // Instead of NoSafepointVerifier it might be cheaper to
1315 // use an idiom of the form:
1316 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1317 //   <code that must not run at safepoint>
1318 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1319 // Since the tests are extremely cheap we could leave them enabled
1320 // for normal product builds.
1321 
1322 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1323   assert(current == JavaThread::current(), "must be current Java thread");
1324   NoSafepointVerifier nsv;
1325   ReleaseJavaMonitorsClosure rjmc(current);
1326   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1327   assert(!current->has_pending_exception(), "Should not be possible");
1328   current->clear_pending_exception();
1329 }
1330 
1331 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1332   switch (cause) {
1333     case inflate_cause_vm_internal:    return "VM Internal";
1334     case inflate_cause_monitor_enter:  return "Monitor Enter";
1335     case inflate_cause_wait:           return "Monitor Wait";
1336     case inflate_cause_notify:         return "Monitor Notify";
1337     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1338     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1339     default:
1340       ShouldNotReachHere();
1341   }
1342   return "Unknown";
1343 }
1344 
1345 //------------------------------------------------------------------------------
1346 // Debugging code
1347 
1348 u_char* ObjectSynchronizer::get_gvars_addr() {
1349   return (u_char*)&GVars;
1350 }
1351 
1352 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1353   return (u_char*)&GVars.hc_sequence;
1354 }
1355 
1356 size_t ObjectSynchronizer::get_gvars_size() {
1357   return sizeof(SharedGlobals);
1358 }
1359 
1360 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1361   return (u_char*)&GVars.stw_random;
1362 }
1363 
1364 // Do the final audit and print of ObjectMonitor stats; must be done
1365 // by the VMThread at VM exit time.
1366 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1367   assert(Thread::current()->is_VM_thread(), "sanity check");
1368 
1369   if (is_final_audit()) {  // Only do the audit once.
1370     return;
1371   }
1372   set_is_final_audit();
1373   log_info(monitorinflation)("Starting the final audit.");
1374 
1375   if (log_is_enabled(Info, monitorinflation)) {
1376     LogStreamHandle(Info, monitorinflation) ls;
1377     audit_and_print_stats(&ls, true /* on_exit */);
1378   }
1379 }
1380 
1381 // This function can be called by the MonitorDeflationThread or it can be called when
1382 // we are trying to exit the VM. The list walker functions can run in parallel with
1383 // the other list operations.
1384 // Calls to this function can be added in various places as a debugging
1385 // aid.
1386 //
1387 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1388   int error_cnt = 0;
1389 
1390   ls->print_cr("Checking in_use_list:");
1391   chk_in_use_list(ls, &error_cnt);
1392 
1393   if (error_cnt == 0) {
1394     ls->print_cr("No errors found in in_use_list checks.");
1395   } else {
1396     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1397   }
1398 
1399   // When exiting, only log the interesting entries at the Info level.
1400   // When called at intervals by the MonitorDeflationThread, log output
1401   // at the Trace level since there can be a lot of it.
1402   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
1403     LogStreamHandle(Trace, monitorinflation) ls_tr;
1404     log_in_use_monitor_details(&ls_tr, true /* log_all */);
1405   } else if (on_exit) {
1406     log_in_use_monitor_details(ls, false /* log_all */);
1407   }
1408 
1409   ls->flush();
1410 
1411   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1412 }
1413 
1414 // Check the in_use_list; log the results of the checks.
1415 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1416   size_t l_in_use_count = _in_use_list.count();
1417   size_t l_in_use_max = _in_use_list.max();
1418   out->print_cr("count=%zu, max=%zu", l_in_use_count,
1419                 l_in_use_max);
1420 
1421   size_t ck_in_use_count = 0;
1422   MonitorList::Iterator iter = _in_use_list.iterator();
1423   while (iter.has_next()) {
1424     ObjectMonitor* mid = iter.next();
1425     chk_in_use_entry(mid, out, error_cnt_p);
1426     ck_in_use_count++;
1427   }
1428 
1429   if (l_in_use_count == ck_in_use_count) {
1430     out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu",
1431                   l_in_use_count, ck_in_use_count);
1432   } else {
1433     out->print_cr("WARNING: in_use_count=%zu is not equal to "
1434                   "ck_in_use_count=%zu", l_in_use_count,
1435                   ck_in_use_count);
1436   }
1437 
1438   size_t ck_in_use_max = _in_use_list.max();
1439   if (l_in_use_max == ck_in_use_max) {
1440     out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu",
1441                   l_in_use_max, ck_in_use_max);
1442   } else {
1443     out->print_cr("WARNING: in_use_max=%zu is not equal to "
1444                   "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max);
1445   }
1446 }
1447 
1448 // Check an in-use monitor entry; log any errors.
1449 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1450                                           int* error_cnt_p) {
1451   if (n->owner_is_DEFLATER_MARKER()) {
1452     // This could happen when monitor deflation blocks for a safepoint.
1453     return;
1454   }
1455 
1456 
1457   if (n->metadata() == 0) {
1458     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1459                   "have non-null _metadata (header/hash) field.", p2i(n));
1460     *error_cnt_p = *error_cnt_p + 1;
1461   }
1462 
1463   const oop obj = n->object_peek();
1464   if (obj == nullptr) {
1465     return;
1466   }
1467 
1468   const markWord mark = obj->mark();
1469   if (!mark.has_monitor()) {
1470     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1471                   "object does not think it has a monitor: obj="
1472                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
1473                   p2i(obj), mark.value());
1474     *error_cnt_p = *error_cnt_p + 1;
1475     return;
1476   }
1477 
1478   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
1479   if (n != obj_mon) {
1480     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1481                   "object does not refer to the same monitor: obj="
1482                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
1483                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
1484     *error_cnt_p = *error_cnt_p + 1;
1485   }
1486 }
1487 
1488 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
1489 // flags indicate why the entry is in-use, 'object' and 'object type'
1490 // indicate the associated object and its type.
1491 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
1492   if (_in_use_list.count() > 0) {
1493     stringStream ss;
1494     out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)");
1495     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
1496     out->print_cr("%18s  %s  %18s  %18s",
1497                   "monitor", "BHL", "object", "object type");
1498     out->print_cr("==================  ===  ==================  ==================");
1499 
1500     auto is_interesting = [&](ObjectMonitor* monitor) {
1501       return log_all || monitor->has_owner() || monitor->is_busy();
1502     };
1503 
1504     monitors_iterate([&](ObjectMonitor* monitor) {
1505       if (is_interesting(monitor)) {
1506         const oop obj = monitor->object_peek();
1507         const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash();
1508         ResourceMark rm;
1509         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
1510                    monitor->is_busy(), hash != 0, monitor->has_owner(),
1511                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
1512         if (monitor->is_busy()) {
1513           out->print(" (%s)", monitor->is_busy_to_string(&ss));
1514           ss.reset();
1515         }
1516         out->cr();
1517       }
1518     });
1519   }
1520 
1521   out->flush();
1522 }