1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/linkedlist.hpp" 67 #include "utilities/preserveException.hpp" 68 69 class ObjectMonitorDeflationLogging; 70 71 void MonitorList::add(ObjectMonitor* m) { 72 ObjectMonitor* head; 73 do { 74 head = Atomic::load(&_head); 75 m->set_next_om(head); 76 } while (Atomic::cmpxchg(&_head, head, m) != head); 77 78 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 79 size_t old_max; 80 do { 81 old_max = Atomic::load(&_max); 82 if (count <= old_max) { 83 break; 84 } 85 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 86 } 87 88 size_t MonitorList::count() const { 89 return Atomic::load(&_count); 90 } 91 92 size_t MonitorList::max() const { 93 return Atomic::load(&_max); 94 } 95 96 class ObjectMonitorDeflationSafepointer : public StackObj { 97 JavaThread* const _current; 98 ObjectMonitorDeflationLogging* const _log; 99 100 public: 101 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 102 : _current(current), _log(log) {} 103 104 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 105 }; 106 107 // Walk the in-use list and unlink deflated ObjectMonitors. 108 // Returns the number of unlinked ObjectMonitors. 109 size_t MonitorList::unlink_deflated(size_t deflated_count, 110 GrowableArray<ObjectMonitor*>* unlinked_list, 111 ObjectMonitorDeflationSafepointer* safepointer) { 112 size_t unlinked_count = 0; 113 ObjectMonitor* prev = nullptr; 114 ObjectMonitor* m = Atomic::load_acquire(&_head); 115 116 while (m != nullptr) { 117 if (m->is_being_async_deflated()) { 118 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 119 // modify the list once per batch. The batch starts at "m". 120 size_t unlinked_batch = 0; 121 ObjectMonitor* next = m; 122 // Look for at most MonitorUnlinkBatch monitors, or the number of 123 // deflated and not unlinked monitors, whatever comes first. 124 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 125 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 126 do { 127 ObjectMonitor* next_next = next->next_om(); 128 unlinked_batch++; 129 unlinked_list->append(next); 130 next = next_next; 131 if (unlinked_batch >= unlinked_batch_limit) { 132 // Reached the max batch, so bail out of the gathering loop. 133 break; 134 } 135 if (prev == nullptr && Atomic::load(&_head) != m) { 136 // Current batch used to be at head, but it is not at head anymore. 137 // Bail out and figure out where we currently are. This avoids long 138 // walks searching for new prev during unlink under heavy list inserts. 139 break; 140 } 141 } while (next != nullptr && next->is_being_async_deflated()); 142 143 // Unlink the found batch. 144 if (prev == nullptr) { 145 // The current batch is the first batch, so there is a chance that it starts at head. 146 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 147 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 148 if (prev_head != m) { 149 // Something must have updated the head. Figure out the actual prev for this batch. 150 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 151 prev = n; 152 } 153 assert(prev != nullptr, "Should have found the prev for the current batch"); 154 prev->set_next_om(next); 155 } 156 } else { 157 // The current batch is preceded by another batch. This guarantees the current batch 158 // does not start at head. Unlink the entire current batch without updating the head. 159 assert(Atomic::load(&_head) != m, "Sanity"); 160 prev->set_next_om(next); 161 } 162 163 unlinked_count += unlinked_batch; 164 if (unlinked_count >= deflated_count) { 165 // Reached the max so bail out of the searching loop. 166 // There should be no more deflated monitors left. 167 break; 168 } 169 m = next; 170 } else { 171 prev = m; 172 m = m->next_om(); 173 } 174 175 // Must check for a safepoint/handshake and honor it. 176 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 177 } 178 179 #ifdef ASSERT 180 // Invariant: the code above should unlink all deflated monitors. 181 // The code that runs after this unlinking does not expect deflated monitors. 182 // Notably, attempting to deflate the already deflated monitor would break. 183 { 184 ObjectMonitor* m = Atomic::load_acquire(&_head); 185 while (m != nullptr) { 186 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 187 m = m->next_om(); 188 } 189 } 190 #endif 191 192 Atomic::sub(&_count, unlinked_count); 193 return unlinked_count; 194 } 195 196 MonitorList::Iterator MonitorList::iterator() const { 197 return Iterator(Atomic::load_acquire(&_head)); 198 } 199 200 ObjectMonitor* MonitorList::Iterator::next() { 201 ObjectMonitor* current = _current; 202 _current = current->next_om(); 203 return current; 204 } 205 206 // The "core" versions of monitor enter and exit reside in this file. 207 // The interpreter and compilers contain specialized transliterated 208 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 209 // fast_lock(...) for instance. If you make changes here, make sure to modify the 210 // interpreter, and both C1 and C2 fast-path inline locking code emission. 211 // 212 // ----------------------------------------------------------------------------- 213 214 #ifdef DTRACE_ENABLED 215 216 // Only bother with this argument setup if dtrace is available 217 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 218 219 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 220 char* bytes = nullptr; \ 221 int len = 0; \ 222 jlong jtid = SharedRuntime::get_java_tid(thread); \ 223 Symbol* klassname = obj->klass()->name(); \ 224 if (klassname != nullptr) { \ 225 bytes = (char*)klassname->bytes(); \ 226 len = klassname->utf8_length(); \ 227 } 228 229 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 230 { \ 231 if (DTraceMonitorProbes) { \ 232 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 233 HOTSPOT_MONITOR_WAIT(jtid, \ 234 (uintptr_t)(monitor), bytes, len, (millis)); \ 235 } \ 236 } 237 238 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 239 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 240 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 241 242 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 243 { \ 244 if (DTraceMonitorProbes) { \ 245 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 246 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 247 (uintptr_t)(monitor), bytes, len); \ 248 } \ 249 } 250 251 #else // ndef DTRACE_ENABLED 252 253 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 254 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 255 256 #endif // ndef DTRACE_ENABLED 257 258 // This exists only as a workaround of dtrace bug 6254741 259 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 260 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 261 return 0; 262 } 263 264 static constexpr size_t inflation_lock_count() { 265 return 256; 266 } 267 268 // Static storage for an array of PlatformMutex. 269 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 270 271 static inline PlatformMutex* inflation_lock(size_t index) { 272 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 273 } 274 275 void ObjectSynchronizer::initialize() { 276 for (size_t i = 0; i < inflation_lock_count(); i++) { 277 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 278 } 279 // Start the ceiling with the estimate for one thread. 280 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 281 282 // Start the timer for deflations, so it does not trigger immediately. 283 _last_async_deflation_time_ns = os::javaTimeNanos(); 284 285 if (LockingMode == LM_LIGHTWEIGHT) { 286 LightweightSynchronizer::initialize(); 287 } 288 } 289 290 MonitorList ObjectSynchronizer::_in_use_list; 291 // monitors_used_above_threshold() policy is as follows: 292 // 293 // The ratio of the current _in_use_list count to the ceiling is used 294 // to determine if we are above MonitorUsedDeflationThreshold and need 295 // to do an async monitor deflation cycle. The ceiling is increased by 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 298 // removed from the system. 299 // 300 // Note: If the _in_use_list max exceeds the ceiling, then 301 // monitors_used_above_threshold() will use the in_use_list max instead 302 // of the thread count derived ceiling because we have used more 303 // ObjectMonitors than the estimated average. 304 // 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 306 // no-progress async monitor deflation cycles in a row, then the ceiling 307 // is adjusted upwards by monitors_used_above_threshold(). 308 // 309 // Start the ceiling with the estimate for one thread in initialize() 310 // which is called after cmd line options are processed. 311 static size_t _in_use_list_ceiling = 0; 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 313 bool volatile ObjectSynchronizer::_is_final_audit = false; 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 315 static uintx _no_progress_cnt = 0; 316 static bool _no_progress_skip_increment = false; 317 318 // These checks are required for wait, notify and exit to avoid inflating the monitor to 319 // find out this inline type object cannot be locked. 320 #define CHECK_THROW_NOSYNC_IMSE(obj) \ 321 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 322 JavaThread* THREAD = current; \ 323 ResourceMark rm(THREAD); \ 324 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 325 } 326 327 #define CHECK_THROW_NOSYNC_IMSE_0(obj) \ 328 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 329 JavaThread* THREAD = current; \ 330 ResourceMark rm(THREAD); \ 331 THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 332 } 333 334 // =====================> Quick functions 335 336 // The quick_* forms are special fast-path variants used to improve 337 // performance. In the simplest case, a "quick_*" implementation could 338 // simply return false, in which case the caller will perform the necessary 339 // state transitions and call the slow-path form. 340 // The fast-path is designed to handle frequently arising cases in an efficient 341 // manner and is just a degenerate "optimistic" variant of the slow-path. 342 // returns true -- to indicate the call was satisfied. 343 // returns false -- to indicate the call needs the services of the slow-path. 344 // A no-loitering ordinance is in effect for code in the quick_* family 345 // operators: safepoints or indefinite blocking (blocking that might span a 346 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 347 // entry. 348 // 349 // Consider: An interesting optimization is to have the JIT recognize the 350 // following common idiom: 351 // synchronized (someobj) { .... ; notify(); } 352 // That is, we find a notify() or notifyAll() call that immediately precedes 353 // the monitorexit operation. In that case the JIT could fuse the operations 354 // into a single notifyAndExit() runtime primitive. 355 356 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 357 assert(current->thread_state() == _thread_in_Java, "invariant"); 358 NoSafepointVerifier nsv; 359 if (obj == nullptr) return false; // slow-path for invalid obj 360 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 361 const markWord mark = obj->mark(); 362 363 if (LockingMode == LM_LIGHTWEIGHT) { 364 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 365 // Degenerate notify 366 // fast-locked by caller so by definition the implied waitset is empty. 367 return true; 368 } 369 } else if (LockingMode == LM_LEGACY) { 370 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 371 // Degenerate notify 372 // stack-locked by caller so by definition the implied waitset is empty. 373 return true; 374 } 375 } 376 377 if (mark.has_monitor()) { 378 ObjectMonitor* const mon = read_monitor(current, obj, mark); 379 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 380 // Racing with inflation/deflation go slow path 381 return false; 382 } 383 assert(mon->object() == oop(obj), "invariant"); 384 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 385 386 if (mon->first_waiter() != nullptr) { 387 // We have one or more waiters. Since this is an inflated monitor 388 // that we own, we can transfer one or more threads from the waitset 389 // to the entry_list here and now, avoiding the slow-path. 390 if (all) { 391 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 392 } else { 393 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 394 } 395 do { 396 mon->notify_internal(current); 397 } while (mon->first_waiter() != nullptr && all); 398 } 399 return true; 400 } 401 402 // other IMS exception states take the slow-path 403 return false; 404 } 405 406 static bool useHeavyMonitors() { 407 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 408 return LockingMode == LM_MONITOR; 409 #else 410 return false; 411 #endif 412 } 413 414 // The LockNode emitted directly at the synchronization site would have 415 // been too big if it were to have included support for the cases of inflated 416 // recursive enter and exit, so they go here instead. 417 // Note that we can't safely call AsyncPrintJavaStack() from within 418 // quick_enter() as our thread state remains _in_Java. 419 420 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 421 assert(current->thread_state() == _thread_in_Java, "invariant"); 422 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 423 424 if (useHeavyMonitors()) { 425 return false; // Slow path 426 } 427 428 assert(LockingMode == LM_LEGACY, "legacy mode below"); 429 430 const markWord mark = obj->mark(); 431 432 if (mark.has_monitor()) { 433 434 ObjectMonitor* const m = read_monitor(mark); 435 // An async deflation or GC can race us before we manage to make 436 // the ObjectMonitor busy by setting the owner below. If we detect 437 // that race we just bail out to the slow-path here. 438 if (m->object_peek() == nullptr) { 439 return false; 440 } 441 442 // Lock contention and Transactional Lock Elision (TLE) diagnostics 443 // and observability 444 // Case: light contention possibly amenable to TLE 445 // Case: TLE inimical operations such as nested/recursive synchronization 446 447 if (m->has_owner(current)) { 448 m->_recursions++; 449 current->inc_held_monitor_count(); 450 return true; 451 } 452 453 // This Java Monitor is inflated so obj's header will never be 454 // displaced to this thread's BasicLock. Make the displaced header 455 // non-null so this BasicLock is not seen as recursive nor as 456 // being locked. We do this unconditionally so that this thread's 457 // BasicLock cannot be mis-interpreted by any stack walkers. For 458 // performance reasons, stack walkers generally first check for 459 // stack-locking in the object's header, the second check is for 460 // recursive stack-locking in the displaced header in the BasicLock, 461 // and last are the inflated Java Monitor (ObjectMonitor) checks. 462 lock->set_displaced_header(markWord::unused_mark()); 463 464 if (!m->has_owner() && m->try_set_owner(current)) { 465 assert(m->_recursions == 0, "invariant"); 466 current->inc_held_monitor_count(); 467 return true; 468 } 469 } 470 471 // Note that we could inflate in quick_enter. 472 // This is likely a useful optimization 473 // Critically, in quick_enter() we must not: 474 // -- block indefinitely, or 475 // -- reach a safepoint 476 477 return false; // revert to slow-path 478 } 479 480 // Handle notifications when synchronizing on value based classes 481 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 482 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 483 frame last_frame = locking_thread->last_frame(); 484 bool bcp_was_adjusted = false; 485 // Don't decrement bcp if it points to the frame's first instruction. This happens when 486 // handle_sync_on_value_based_class() is called because of a synchronized method. There 487 // is no actual monitorenter instruction in the byte code in this case. 488 if (last_frame.is_interpreted_frame() && 489 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 490 // adjust bcp to point back to monitorenter so that we print the correct line numbers 491 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 492 bcp_was_adjusted = true; 493 } 494 495 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 496 ResourceMark rm; 497 stringStream ss; 498 locking_thread->print_active_stack_on(&ss); 499 char* base = (char*)strstr(ss.base(), "at"); 500 char* newline = (char*)strchr(ss.base(), '\n'); 501 if (newline != nullptr) { 502 *newline = '\0'; 503 } 504 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 505 } else { 506 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 507 ResourceMark rm; 508 Log(valuebasedclasses) vblog; 509 510 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 511 if (locking_thread->has_last_Java_frame()) { 512 LogStream info_stream(vblog.info()); 513 locking_thread->print_active_stack_on(&info_stream); 514 } else { 515 vblog.info("Cannot find the last Java frame"); 516 } 517 518 EventSyncOnValueBasedClass event; 519 if (event.should_commit()) { 520 event.set_valueBasedClass(obj->klass()); 521 event.commit(); 522 } 523 } 524 525 if (bcp_was_adjusted) { 526 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 527 } 528 } 529 530 // ----------------------------------------------------------------------------- 531 // Monitor Enter/Exit 532 533 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 534 // When called with locking_thread != Thread::current() some mechanism must synchronize 535 // the locking_thread with respect to the current thread. Currently only used when 536 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 537 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 538 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "JITed code should never have locked an instance of a value class"); 539 540 if (LockingMode == LM_LIGHTWEIGHT) { 541 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 542 } 543 544 if (!enter_fast_impl(obj, lock, locking_thread)) { 545 // Inflated ObjectMonitor::enter_for is required 546 547 // An async deflation can race after the inflate_for() call and before 548 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 549 // if we have lost the race to async deflation and we simply try again. 550 while (true) { 551 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 552 if (monitor->enter_for(locking_thread)) { 553 return; 554 } 555 assert(monitor->is_being_async_deflated(), "must be"); 556 } 557 } 558 } 559 560 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 561 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "This method should never be called on an instance of an inline class"); 562 if (!enter_fast_impl(obj, lock, current)) { 563 // Inflated ObjectMonitor::enter is required 564 565 // An async deflation can race after the inflate() call and before 566 // enter() can make the ObjectMonitor busy. enter() returns false if 567 // we have lost the race to async deflation and we simply try again. 568 while (true) { 569 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 570 if (monitor->enter(current)) { 571 return; 572 } 573 } 574 } 575 } 576 577 // The interpreter and compiler assembly code tries to lock using the fast path 578 // of this algorithm. Make sure to update that code if the following function is 579 // changed. The implementation is extremely sensitive to race condition. Be careful. 580 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 581 guarantee(!EnableValhalla || !obj->klass()->is_inline_klass(), "Attempt to inflate inline type"); 582 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 583 584 if (obj->klass()->is_value_based()) { 585 handle_sync_on_value_based_class(obj, locking_thread); 586 } 587 588 locking_thread->inc_held_monitor_count(); 589 590 if (!useHeavyMonitors()) { 591 if (LockingMode == LM_LEGACY) { 592 markWord mark = obj->mark(); 593 if (mark.is_unlocked()) { 594 // Anticipate successful CAS -- the ST of the displaced mark must 595 // be visible <= the ST performed by the CAS. 596 lock->set_displaced_header(mark); 597 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 598 return true; 599 } 600 } else if (mark.has_locker() && 601 locking_thread->is_lock_owned((address) mark.locker())) { 602 assert(lock != mark.locker(), "must not re-lock the same lock"); 603 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 604 lock->set_displaced_header(markWord::from_pointer(nullptr)); 605 return true; 606 } 607 608 // The object header will never be displaced to this lock, 609 // so it does not matter what the value is, except that it 610 // must be non-zero to avoid looking like a re-entrant lock, 611 // and must not look locked either. 612 lock->set_displaced_header(markWord::unused_mark()); 613 614 // Failed to fast lock. 615 return false; 616 } 617 } else if (VerifyHeavyMonitors) { 618 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 619 } 620 621 return false; 622 } 623 624 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 625 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 626 627 if (!useHeavyMonitors()) { 628 markWord mark = object->mark(); 629 if (EnableValhalla && mark.is_inline_type()) { 630 return; 631 } 632 if (LockingMode == LM_LEGACY) { 633 markWord dhw = lock->displaced_header(); 634 if (dhw.value() == 0) { 635 // If the displaced header is null, then this exit matches up with 636 // a recursive enter. No real work to do here except for diagnostics. 637 #ifndef PRODUCT 638 if (mark != markWord::INFLATING()) { 639 // Only do diagnostics if we are not racing an inflation. Simply 640 // exiting a recursive enter of a Java Monitor that is being 641 // inflated is safe; see the has_monitor() comment below. 642 assert(!mark.is_unlocked(), "invariant"); 643 assert(!mark.has_locker() || 644 current->is_lock_owned((address)mark.locker()), "invariant"); 645 if (mark.has_monitor()) { 646 // The BasicLock's displaced_header is marked as a recursive 647 // enter and we have an inflated Java Monitor (ObjectMonitor). 648 // This is a special case where the Java Monitor was inflated 649 // after this thread entered the stack-lock recursively. When a 650 // Java Monitor is inflated, we cannot safely walk the Java 651 // Monitor owner's stack and update the BasicLocks because a 652 // Java Monitor can be asynchronously inflated by a thread that 653 // does not own the Java Monitor. 654 ObjectMonitor* m = read_monitor(mark); 655 assert(m->object()->mark() == mark, "invariant"); 656 assert(m->is_entered(current), "invariant"); 657 } 658 } 659 #endif 660 return; 661 } 662 663 if (mark == markWord::from_pointer(lock)) { 664 // If the object is stack-locked by the current thread, try to 665 // swing the displaced header from the BasicLock back to the mark. 666 assert(dhw.is_neutral(), "invariant"); 667 if (object->cas_set_mark(dhw, mark) == mark) { 668 return; 669 } 670 } 671 } 672 } else if (VerifyHeavyMonitors) { 673 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 674 } 675 676 // We have to take the slow-path of possible inflation and then exit. 677 // The ObjectMonitor* can't be async deflated until ownership is 678 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 679 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 680 assert(!monitor->has_anonymous_owner(), "must not be"); 681 monitor->exit(current); 682 } 683 684 // ----------------------------------------------------------------------------- 685 // JNI locks on java objects 686 // NOTE: must use heavy weight monitor to handle jni monitor enter 687 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 688 JavaThread* THREAD = current; 689 // Top native frames in the stack will not be seen if we attempt 690 // preemption, since we start walking from the last Java anchor. 691 NoPreemptMark npm(current); 692 693 if (obj->klass()->is_value_based()) { 694 handle_sync_on_value_based_class(obj, current); 695 } 696 697 if (EnableValhalla && obj->klass()->is_inline_klass()) { 698 ResourceMark rm(THREAD); 699 const char* desc = "Cannot synchronize on an instance of value class "; 700 const char* className = obj->klass()->external_name(); 701 size_t msglen = strlen(desc) + strlen(className) + 1; 702 char* message = NEW_RESOURCE_ARRAY(char, msglen); 703 assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr"); 704 THROW_MSG(vmSymbols::java_lang_IdentityException(), className); 705 } 706 707 // the current locking is from JNI instead of Java code 708 current->set_current_pending_monitor_is_from_java(false); 709 // An async deflation can race after the inflate() call and before 710 // enter() can make the ObjectMonitor busy. enter() returns false if 711 // we have lost the race to async deflation and we simply try again. 712 while (true) { 713 ObjectMonitor* monitor; 714 bool entered; 715 if (LockingMode == LM_LIGHTWEIGHT) { 716 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 717 } else { 718 monitor = inflate(current, obj(), inflate_cause_jni_enter); 719 entered = monitor->enter(current); 720 } 721 722 if (entered) { 723 current->inc_held_monitor_count(1, true); 724 break; 725 } 726 } 727 current->set_current_pending_monitor_is_from_java(true); 728 } 729 730 // NOTE: must use heavy weight monitor to handle jni monitor exit 731 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 732 JavaThread* current = THREAD; 733 CHECK_THROW_NOSYNC_IMSE(obj); 734 735 ObjectMonitor* monitor; 736 if (LockingMode == LM_LIGHTWEIGHT) { 737 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 738 } else { 739 // The ObjectMonitor* can't be async deflated until ownership is 740 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 741 monitor = inflate(current, obj, inflate_cause_jni_exit); 742 } 743 // If this thread has locked the object, exit the monitor. We 744 // intentionally do not use CHECK on check_owner because we must exit the 745 // monitor even if an exception was already pending. 746 if (monitor->check_owner(THREAD)) { 747 monitor->exit(current); 748 current->dec_held_monitor_count(1, true); 749 } 750 } 751 752 // ----------------------------------------------------------------------------- 753 // Internal VM locks on java objects 754 // standard constructor, allows locking failures 755 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 756 _thread = thread; 757 _thread->check_for_valid_safepoint_state(); 758 _obj = obj; 759 760 if (_obj() != nullptr) { 761 ObjectSynchronizer::enter(_obj, &_lock, _thread); 762 } 763 } 764 765 ObjectLocker::~ObjectLocker() { 766 if (_obj() != nullptr) { 767 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 768 } 769 } 770 771 772 // ----------------------------------------------------------------------------- 773 // Wait/Notify/NotifyAll 774 // NOTE: must use heavy weight monitor to handle wait() 775 776 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 777 JavaThread* current = THREAD; 778 CHECK_THROW_NOSYNC_IMSE_0(obj); 779 if (millis < 0) { 780 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 781 } 782 783 ObjectMonitor* monitor; 784 if (LockingMode == LM_LIGHTWEIGHT) { 785 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 786 } else { 787 // The ObjectMonitor* can't be async deflated because the _waiters 788 // field is incremented before ownership is dropped and decremented 789 // after ownership is regained. 790 monitor = inflate(current, obj(), inflate_cause_wait); 791 } 792 793 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 794 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 795 796 // This dummy call is in place to get around dtrace bug 6254741. Once 797 // that's fixed we can uncomment the following line, remove the call 798 // and change this function back into a "void" func. 799 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 800 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 801 return ret_code; 802 } 803 804 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 805 if (millis < 0) { 806 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 807 } 808 809 ObjectMonitor* monitor; 810 if (LockingMode == LM_LIGHTWEIGHT) { 811 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 812 } else { 813 monitor = inflate(THREAD, obj(), inflate_cause_wait); 814 } 815 monitor->wait(millis, false, THREAD); 816 } 817 818 819 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 820 JavaThread* current = THREAD; 821 CHECK_THROW_NOSYNC_IMSE(obj); 822 823 markWord mark = obj->mark(); 824 if (LockingMode == LM_LIGHTWEIGHT) { 825 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 826 // Not inflated so there can't be any waiters to notify. 827 return; 828 } 829 } else if (LockingMode == LM_LEGACY) { 830 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 831 // Not inflated so there can't be any waiters to notify. 832 return; 833 } 834 } 835 836 ObjectMonitor* monitor; 837 if (LockingMode == LM_LIGHTWEIGHT) { 838 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 839 } else { 840 // The ObjectMonitor* can't be async deflated until ownership is 841 // dropped by the calling thread. 842 monitor = inflate(current, obj(), inflate_cause_notify); 843 } 844 monitor->notify(CHECK); 845 } 846 847 // NOTE: see comment of notify() 848 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 849 JavaThread* current = THREAD; 850 CHECK_THROW_NOSYNC_IMSE(obj); 851 852 markWord mark = obj->mark(); 853 if (LockingMode == LM_LIGHTWEIGHT) { 854 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 855 // Not inflated so there can't be any waiters to notify. 856 return; 857 } 858 } else if (LockingMode == LM_LEGACY) { 859 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 860 // Not inflated so there can't be any waiters to notify. 861 return; 862 } 863 } 864 865 ObjectMonitor* monitor; 866 if (LockingMode == LM_LIGHTWEIGHT) { 867 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 868 } else { 869 // The ObjectMonitor* can't be async deflated until ownership is 870 // dropped by the calling thread. 871 monitor = inflate(current, obj(), inflate_cause_notify); 872 } 873 monitor->notifyAll(CHECK); 874 } 875 876 // ----------------------------------------------------------------------------- 877 // Hash Code handling 878 879 struct SharedGlobals { 880 char _pad_prefix[OM_CACHE_LINE_SIZE]; 881 // This is a highly shared mostly-read variable. 882 // To avoid false-sharing it needs to be the sole occupant of a cache line. 883 volatile int stw_random; 884 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 885 // Hot RW variable -- Sequester to avoid false-sharing 886 volatile int hc_sequence; 887 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 888 }; 889 890 static SharedGlobals GVars; 891 892 static markWord read_stable_mark(oop obj) { 893 markWord mark = obj->mark_acquire(); 894 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 895 // New lightweight locking does not use the markWord::INFLATING() protocol. 896 return mark; // normal fast-path return 897 } 898 899 int its = 0; 900 for (;;) { 901 markWord mark = obj->mark_acquire(); 902 if (!mark.is_being_inflated()) { 903 return mark; // normal fast-path return 904 } 905 906 // The object is being inflated by some other thread. 907 // The caller of read_stable_mark() must wait for inflation to complete. 908 // Avoid live-lock. 909 910 ++its; 911 if (its > 10000 || !os::is_MP()) { 912 if (its & 1) { 913 os::naked_yield(); 914 } else { 915 // Note that the following code attenuates the livelock problem but is not 916 // a complete remedy. A more complete solution would require that the inflating 917 // thread hold the associated inflation lock. The following code simply restricts 918 // the number of spinners to at most one. We'll have N-2 threads blocked 919 // on the inflationlock, 1 thread holding the inflation lock and using 920 // a yield/park strategy, and 1 thread in the midst of inflation. 921 // A more refined approach would be to change the encoding of INFLATING 922 // to allow encapsulation of a native thread pointer. Threads waiting for 923 // inflation to complete would use CAS to push themselves onto a singly linked 924 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 925 // and calling park(). When inflation was complete the thread that accomplished inflation 926 // would detach the list and set the markword to inflated with a single CAS and 927 // then for each thread on the list, set the flag and unpark() the thread. 928 929 // Index into the lock array based on the current object address. 930 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 931 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 932 int YieldThenBlock = 0; 933 assert(ix < inflation_lock_count(), "invariant"); 934 inflation_lock(ix)->lock(); 935 while (obj->mark_acquire() == markWord::INFLATING()) { 936 // Beware: naked_yield() is advisory and has almost no effect on some platforms 937 // so we periodically call current->_ParkEvent->park(1). 938 // We use a mixed spin/yield/block mechanism. 939 if ((YieldThenBlock++) >= 16) { 940 Thread::current()->_ParkEvent->park(1); 941 } else { 942 os::naked_yield(); 943 } 944 } 945 inflation_lock(ix)->unlock(); 946 } 947 } else { 948 SpinPause(); // SMP-polite spinning 949 } 950 } 951 } 952 953 // hashCode() generation : 954 // 955 // Possibilities: 956 // * MD5Digest of {obj,stw_random} 957 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 958 // * A DES- or AES-style SBox[] mechanism 959 // * One of the Phi-based schemes, such as: 960 // 2654435761 = 2^32 * Phi (golden ratio) 961 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 962 // * A variation of Marsaglia's shift-xor RNG scheme. 963 // * (obj ^ stw_random) is appealing, but can result 964 // in undesirable regularity in the hashCode values of adjacent objects 965 // (objects allocated back-to-back, in particular). This could potentially 966 // result in hashtable collisions and reduced hashtable efficiency. 967 // There are simple ways to "diffuse" the middle address bits over the 968 // generated hashCode values: 969 970 static intptr_t get_next_hash(Thread* current, oop obj) { 971 intptr_t value = 0; 972 if (hashCode == 0) { 973 // This form uses global Park-Miller RNG. 974 // On MP system we'll have lots of RW access to a global, so the 975 // mechanism induces lots of coherency traffic. 976 value = os::random(); 977 } else if (hashCode == 1) { 978 // This variation has the property of being stable (idempotent) 979 // between STW operations. This can be useful in some of the 1-0 980 // synchronization schemes. 981 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 982 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 983 } else if (hashCode == 2) { 984 value = 1; // for sensitivity testing 985 } else if (hashCode == 3) { 986 value = ++GVars.hc_sequence; 987 } else if (hashCode == 4) { 988 value = cast_from_oop<intptr_t>(obj); 989 } else { 990 // Marsaglia's xor-shift scheme with thread-specific state 991 // This is probably the best overall implementation -- we'll 992 // likely make this the default in future releases. 993 unsigned t = current->_hashStateX; 994 t ^= (t << 11); 995 current->_hashStateX = current->_hashStateY; 996 current->_hashStateY = current->_hashStateZ; 997 current->_hashStateZ = current->_hashStateW; 998 unsigned v = current->_hashStateW; 999 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 1000 current->_hashStateW = v; 1001 value = v; 1002 } 1003 1004 value &= markWord::hash_mask; 1005 if (value == 0) value = 0xBAD; 1006 assert(value != markWord::no_hash, "invariant"); 1007 return value; 1008 } 1009 1010 static intptr_t install_hash_code(Thread* current, oop obj) { 1011 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 1012 1013 markWord mark = obj->mark_acquire(); 1014 for (;;) { 1015 intptr_t hash = mark.hash(); 1016 if (hash != 0) { 1017 return hash; 1018 } 1019 1020 hash = get_next_hash(current, obj); 1021 const markWord old_mark = mark; 1022 const markWord new_mark = old_mark.copy_set_hash(hash); 1023 1024 mark = obj->cas_set_mark(new_mark, old_mark); 1025 if (old_mark == mark) { 1026 return hash; 1027 } 1028 } 1029 } 1030 1031 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1032 if (EnableValhalla && obj->klass()->is_inline_klass()) { 1033 // VM should be calling bootstrap method 1034 ShouldNotReachHere(); 1035 } 1036 if (UseObjectMonitorTable) { 1037 // Since the monitor isn't in the object header, the hash can simply be 1038 // installed in the object header. 1039 return install_hash_code(current, obj); 1040 } 1041 1042 while (true) { 1043 ObjectMonitor* monitor = nullptr; 1044 markWord temp, test; 1045 intptr_t hash; 1046 markWord mark = read_stable_mark(obj); 1047 if (VerifyHeavyMonitors) { 1048 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1049 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1050 } 1051 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1052 hash = mark.hash(); 1053 if (hash != 0) { // if it has a hash, just return it 1054 return hash; 1055 } 1056 hash = get_next_hash(current, obj); // get a new hash 1057 temp = mark.copy_set_hash(hash); // merge the hash into header 1058 // try to install the hash 1059 test = obj->cas_set_mark(temp, mark); 1060 if (test == mark) { // if the hash was installed, return it 1061 return hash; 1062 } 1063 if (LockingMode == LM_LIGHTWEIGHT) { 1064 // CAS failed, retry 1065 continue; 1066 } 1067 // Failed to install the hash. It could be that another thread 1068 // installed the hash just before our attempt or inflation has 1069 // occurred or... so we fall thru to inflate the monitor for 1070 // stability and then install the hash. 1071 } else if (mark.has_monitor()) { 1072 monitor = mark.monitor(); 1073 temp = monitor->header(); 1074 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1075 hash = temp.hash(); 1076 if (hash != 0) { 1077 // It has a hash. 1078 1079 // Separate load of dmw/header above from the loads in 1080 // is_being_async_deflated(). 1081 1082 // dmw/header and _contentions may get written by different threads. 1083 // Make sure to observe them in the same order when having several observers. 1084 OrderAccess::loadload_for_IRIW(); 1085 1086 if (monitor->is_being_async_deflated()) { 1087 // But we can't safely use the hash if we detect that async 1088 // deflation has occurred. So we attempt to restore the 1089 // header/dmw to the object's header so that we only retry 1090 // once if the deflater thread happens to be slow. 1091 monitor->install_displaced_markword_in_object(obj); 1092 continue; 1093 } 1094 return hash; 1095 } 1096 // Fall thru so we only have one place that installs the hash in 1097 // the ObjectMonitor. 1098 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1099 && current->is_Java_thread() 1100 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1101 // This is a stack-lock owned by the calling thread so fetch the 1102 // displaced markWord from the BasicLock on the stack. 1103 temp = mark.displaced_mark_helper(); 1104 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1105 hash = temp.hash(); 1106 if (hash != 0) { // if it has a hash, just return it 1107 return hash; 1108 } 1109 // WARNING: 1110 // The displaced header in the BasicLock on a thread's stack 1111 // is strictly immutable. It CANNOT be changed in ANY cases. 1112 // So we have to inflate the stack-lock into an ObjectMonitor 1113 // even if the current thread owns the lock. The BasicLock on 1114 // a thread's stack can be asynchronously read by other threads 1115 // during an inflate() call so any change to that stack memory 1116 // may not propagate to other threads correctly. 1117 } 1118 1119 // Inflate the monitor to set the hash. 1120 1121 // There's no need to inflate if the mark has already got a monitor. 1122 // NOTE: an async deflation can race after we get the monitor and 1123 // before we can update the ObjectMonitor's header with the hash 1124 // value below. 1125 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1126 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1127 mark = monitor->header(); 1128 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1129 hash = mark.hash(); 1130 if (hash == 0) { // if it does not have a hash 1131 hash = get_next_hash(current, obj); // get a new hash 1132 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1133 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1134 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1135 test = markWord(v); 1136 if (test != mark) { 1137 // The attempt to update the ObjectMonitor's header/dmw field 1138 // did not work. This can happen if another thread managed to 1139 // merge in the hash just before our cmpxchg(). 1140 // If we add any new usages of the header/dmw field, this code 1141 // will need to be updated. 1142 hash = test.hash(); 1143 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1144 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1145 } 1146 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1147 // If we detect that async deflation has occurred, then we 1148 // attempt to restore the header/dmw to the object's header 1149 // so that we only retry once if the deflater thread happens 1150 // to be slow. 1151 monitor->install_displaced_markword_in_object(obj); 1152 continue; 1153 } 1154 } 1155 // We finally get the hash. 1156 return hash; 1157 } 1158 } 1159 1160 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1161 Handle h_obj) { 1162 if (EnableValhalla && h_obj->mark().is_inline_type()) { 1163 return false; 1164 } 1165 assert(current == JavaThread::current(), "Can only be called on current thread"); 1166 oop obj = h_obj(); 1167 1168 markWord mark = read_stable_mark(obj); 1169 1170 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1171 // stack-locked case, header points into owner's stack 1172 return current->is_lock_owned((address)mark.locker()); 1173 } 1174 1175 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1176 // fast-locking case, see if lock is in current's lock stack 1177 return current->lock_stack().contains(h_obj()); 1178 } 1179 1180 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1181 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1182 if (monitor != nullptr) { 1183 return monitor->is_entered(current) != 0; 1184 } 1185 // Racing with inflation/deflation, retry 1186 mark = obj->mark_acquire(); 1187 1188 if (mark.is_fast_locked()) { 1189 // Some other thread fast_locked, current could not have held the lock 1190 return false; 1191 } 1192 } 1193 1194 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1195 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1196 // The first stage of async deflation does not affect any field 1197 // used by this comparison so the ObjectMonitor* is usable here. 1198 ObjectMonitor* monitor = read_monitor(mark); 1199 return monitor->is_entered(current) != 0; 1200 } 1201 // Unlocked case, header in place 1202 assert(mark.is_unlocked(), "sanity check"); 1203 return false; 1204 } 1205 1206 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1207 oop obj = h_obj(); 1208 markWord mark = read_stable_mark(obj); 1209 1210 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1211 // stack-locked so header points into owner's stack. 1212 // owning_thread_from_monitor_owner() may also return null here: 1213 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1214 } 1215 1216 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1217 // fast-locked so get owner from the object. 1218 // owning_thread_from_object() may also return null here: 1219 return Threads::owning_thread_from_object(t_list, h_obj()); 1220 } 1221 1222 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1223 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1224 if (monitor != nullptr) { 1225 return Threads::owning_thread_from_monitor(t_list, monitor); 1226 } 1227 // Racing with inflation/deflation, retry 1228 mark = obj->mark_acquire(); 1229 1230 if (mark.is_fast_locked()) { 1231 // Some other thread fast_locked 1232 return Threads::owning_thread_from_object(t_list, h_obj()); 1233 } 1234 } 1235 1236 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1237 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1238 // The first stage of async deflation does not affect any field 1239 // used by this comparison so the ObjectMonitor* is usable here. 1240 ObjectMonitor* monitor = read_monitor(mark); 1241 assert(monitor != nullptr, "monitor should be non-null"); 1242 // owning_thread_from_monitor() may also return null here: 1243 return Threads::owning_thread_from_monitor(t_list, monitor); 1244 } 1245 1246 // Unlocked case, header in place 1247 // Cannot have assertion since this object may have been 1248 // locked by another thread when reaching here. 1249 // assert(mark.is_unlocked(), "sanity check"); 1250 1251 return nullptr; 1252 } 1253 1254 // Visitors ... 1255 1256 // Iterate over all ObjectMonitors. 1257 template <typename Function> 1258 void ObjectSynchronizer::monitors_iterate(Function function) { 1259 MonitorList::Iterator iter = _in_use_list.iterator(); 1260 while (iter.has_next()) { 1261 ObjectMonitor* monitor = iter.next(); 1262 function(monitor); 1263 } 1264 } 1265 1266 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1267 // returns true. 1268 template <typename OwnerFilter> 1269 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1270 monitors_iterate([&](ObjectMonitor* monitor) { 1271 // This function is only called at a safepoint or when the 1272 // target thread is suspended or when the target thread is 1273 // operating on itself. The current closures in use today are 1274 // only interested in an owned ObjectMonitor and ownership 1275 // cannot be dropped under the calling contexts so the 1276 // ObjectMonitor cannot be async deflated. 1277 if (monitor->has_owner() && filter(monitor)) { 1278 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1279 1280 closure->do_monitor(monitor); 1281 } 1282 }); 1283 } 1284 1285 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1286 // ObjectMonitors where owner is set to a stack-lock address in thread. 1287 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1288 int64_t key = ObjectMonitor::owner_id_from(thread); 1289 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1290 return owned_monitors_iterate_filtered(closure, thread_filter); 1291 } 1292 1293 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1294 int64_t key = ObjectMonitor::owner_id_from(vthread); 1295 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1296 return owned_monitors_iterate_filtered(closure, thread_filter); 1297 } 1298 1299 // Iterate ObjectMonitors owned by any thread. 1300 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1301 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1302 return owned_monitors_iterate_filtered(closure, all_filter); 1303 } 1304 1305 static bool monitors_used_above_threshold(MonitorList* list) { 1306 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1307 return false; 1308 } 1309 size_t monitors_used = list->count(); 1310 if (monitors_used == 0) { // empty list is easy 1311 return false; 1312 } 1313 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1314 // Make sure that we use a ceiling value that is not lower than 1315 // previous, not lower than the recorded max used by the system, and 1316 // not lower than the current number of monitors in use (which can 1317 // race ahead of max). The result is guaranteed > 0. 1318 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1319 1320 // Check if our monitor usage is above the threshold: 1321 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1322 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1323 // Deflate monitors if over the threshold percentage, unless no 1324 // progress on previous deflations. 1325 bool is_above_threshold = true; 1326 1327 // Check if it's time to adjust the in_use_list_ceiling up, due 1328 // to too many async deflation attempts without any progress. 1329 if (NoAsyncDeflationProgressMax != 0 && 1330 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1331 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1332 size_t delta = (size_t)(ceiling * remainder) + 1; 1333 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1334 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1335 : ceiling + delta; 1336 1337 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1338 log_info(monitorinflation)("Too many deflations without progress; " 1339 "bumping in_use_list_ceiling from %zu" 1340 " to %zu", old_ceiling, new_ceiling); 1341 _no_progress_cnt = 0; 1342 ceiling = new_ceiling; 1343 1344 // Check if our monitor usage is still above the threshold: 1345 monitor_usage = (monitors_used * 100LL) / ceiling; 1346 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1347 } 1348 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1349 ", monitor_usage=%zu, threshold=%d", 1350 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1351 return is_above_threshold; 1352 } 1353 1354 return false; 1355 } 1356 1357 size_t ObjectSynchronizer::in_use_list_count() { 1358 return _in_use_list.count(); 1359 } 1360 1361 size_t ObjectSynchronizer::in_use_list_max() { 1362 return _in_use_list.max(); 1363 } 1364 1365 size_t ObjectSynchronizer::in_use_list_ceiling() { 1366 return _in_use_list_ceiling; 1367 } 1368 1369 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1370 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1371 } 1372 1373 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1374 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1375 } 1376 1377 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1378 _in_use_list_ceiling = new_value; 1379 } 1380 1381 bool ObjectSynchronizer::is_async_deflation_needed() { 1382 if (is_async_deflation_requested()) { 1383 // Async deflation request. 1384 log_info(monitorinflation)("Async deflation needed: explicit request"); 1385 return true; 1386 } 1387 1388 jlong time_since_last = time_since_last_async_deflation_ms(); 1389 1390 if (AsyncDeflationInterval > 0 && 1391 time_since_last > AsyncDeflationInterval && 1392 monitors_used_above_threshold(&_in_use_list)) { 1393 // It's been longer than our specified deflate interval and there 1394 // are too many monitors in use. We don't deflate more frequently 1395 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1396 // in order to not swamp the MonitorDeflationThread. 1397 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1398 return true; 1399 } 1400 1401 if (GuaranteedAsyncDeflationInterval > 0 && 1402 time_since_last > GuaranteedAsyncDeflationInterval) { 1403 // It's been longer than our specified guaranteed deflate interval. 1404 // We need to clean up the used monitors even if the threshold is 1405 // not reached, to keep the memory utilization at bay when many threads 1406 // touched many monitors. 1407 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1408 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1409 GuaranteedAsyncDeflationInterval, time_since_last); 1410 1411 // If this deflation has no progress, then it should not affect the no-progress 1412 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1413 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1414 // the generic code would bump the no-progress counter, and we compensate for that 1415 // by telling it to skip the update. 1416 // 1417 // If this deflation has progress, then it should let non-progress tracking 1418 // know about this, otherwise the threshold heuristics would kick in, potentially 1419 // experience no-progress due to aggressive cleanup by this deflation, and think 1420 // it is still in no-progress stride. In this "progress" case, the generic code would 1421 // zero the counter, and we allow it to happen. 1422 _no_progress_skip_increment = true; 1423 1424 return true; 1425 } 1426 1427 return false; 1428 } 1429 1430 void ObjectSynchronizer::request_deflate_idle_monitors() { 1431 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1432 set_is_async_deflation_requested(true); 1433 ml.notify_all(); 1434 } 1435 1436 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1437 JavaThread* current = JavaThread::current(); 1438 bool ret_code = false; 1439 1440 jlong last_time = last_async_deflation_time_ns(); 1441 1442 request_deflate_idle_monitors(); 1443 1444 const int N_CHECKS = 5; 1445 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1446 if (last_async_deflation_time_ns() > last_time) { 1447 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1448 ret_code = true; 1449 break; 1450 } 1451 { 1452 // JavaThread has to honor the blocking protocol. 1453 ThreadBlockInVM tbivm(current); 1454 os::naked_short_sleep(999); // sleep for almost 1 second 1455 } 1456 } 1457 if (!ret_code) { 1458 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1459 } 1460 1461 return ret_code; 1462 } 1463 1464 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1465 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1466 } 1467 1468 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1469 const oop obj, 1470 ObjectSynchronizer::InflateCause cause) { 1471 assert(event != nullptr, "invariant"); 1472 const Klass* monitor_klass = obj->klass(); 1473 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1474 return; 1475 } 1476 event->set_monitorClass(monitor_klass); 1477 event->set_address((uintptr_t)(void*)obj); 1478 event->set_cause((u1)cause); 1479 event->commit(); 1480 } 1481 1482 // Fast path code shared by multiple functions 1483 void ObjectSynchronizer::inflate_helper(oop obj) { 1484 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1485 markWord mark = obj->mark_acquire(); 1486 if (mark.has_monitor()) { 1487 ObjectMonitor* monitor = read_monitor(mark); 1488 markWord dmw = monitor->header(); 1489 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1490 return; 1491 } 1492 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1493 } 1494 1495 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1496 assert(current == Thread::current(), "must be"); 1497 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1498 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1499 } 1500 1501 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1502 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1503 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1504 return inflate_impl(thread, obj, cause); 1505 } 1506 1507 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1508 if (EnableValhalla) { 1509 guarantee(!object->klass()->is_inline_klass(), "Attempt to inflate inline type"); 1510 } 1511 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1512 // is suspended throughout the call by some other mechanism. 1513 // The thread might be nullptr when called from a non JavaThread. (As may still be 1514 // the case from FastHashCode). However it is only important for correctness that the 1515 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1516 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1517 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1518 EventJavaMonitorInflate event; 1519 1520 for (;;) { 1521 const markWord mark = object->mark_acquire(); 1522 1523 // The mark can be in one of the following states: 1524 // * inflated - If the ObjectMonitor owner is anonymous and the 1525 // locking_thread owns the object lock, then we 1526 // make the locking_thread the ObjectMonitor owner. 1527 // * stack-locked - Coerce it to inflated from stack-locked. 1528 // * INFLATING - Busy wait for conversion from stack-locked to 1529 // inflated. 1530 // * unlocked - Aggressively inflate the object. 1531 1532 // CASE: inflated 1533 if (mark.has_monitor()) { 1534 ObjectMonitor* inf = mark.monitor(); 1535 markWord dmw = inf->header(); 1536 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1537 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1538 assert(LockingMode == LM_LEGACY, "invariant"); 1539 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1540 inf->set_stack_locker(nullptr); 1541 inf->set_owner_from_anonymous(locking_thread); 1542 } 1543 } 1544 return inf; 1545 } 1546 1547 // CASE: inflation in progress - inflating over a stack-lock. 1548 // Some other thread is converting from stack-locked to inflated. 1549 // Only that thread can complete inflation -- other threads must wait. 1550 // The INFLATING value is transient. 1551 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1552 // We could always eliminate polling by parking the thread on some auxiliary list. 1553 if (mark == markWord::INFLATING()) { 1554 read_stable_mark(object); 1555 continue; 1556 } 1557 1558 // CASE: stack-locked 1559 // Could be stack-locked either by current or by some other thread. 1560 // 1561 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1562 // to install INFLATING into the mark word. We originally installed INFLATING, 1563 // allocated the ObjectMonitor, and then finally STed the address of the 1564 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1565 // the interval in which INFLATING appeared in the mark, thus increasing 1566 // the odds of inflation contention. If we lose the race to set INFLATING, 1567 // then we just delete the ObjectMonitor and loop around again. 1568 // 1569 LogStreamHandle(Trace, monitorinflation) lsh; 1570 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1571 ObjectMonitor* m = new ObjectMonitor(object); 1572 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1573 // We do this before the CAS in order to minimize the length of time 1574 // in which INFLATING appears in the mark. 1575 1576 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1577 if (cmp != mark) { 1578 delete m; 1579 continue; // Interference -- just retry 1580 } 1581 1582 // We've successfully installed INFLATING (0) into the mark-word. 1583 // This is the only case where 0 will appear in a mark-word. 1584 // Only the singular thread that successfully swings the mark-word 1585 // to 0 can perform (or more precisely, complete) inflation. 1586 // 1587 // Why do we CAS a 0 into the mark-word instead of just CASing the 1588 // mark-word from the stack-locked value directly to the new inflated state? 1589 // Consider what happens when a thread unlocks a stack-locked object. 1590 // It attempts to use CAS to swing the displaced header value from the 1591 // on-stack BasicLock back into the object header. Recall also that the 1592 // header value (hash code, etc) can reside in (a) the object header, or 1593 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1594 // header in an ObjectMonitor. The inflate() routine must copy the header 1595 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1596 // the while preserving the hashCode stability invariants. If the owner 1597 // decides to release the lock while the value is 0, the unlock will fail 1598 // and control will eventually pass from slow_exit() to inflate. The owner 1599 // will then spin, waiting for the 0 value to disappear. Put another way, 1600 // the 0 causes the owner to stall if the owner happens to try to 1601 // drop the lock (restoring the header from the BasicLock to the object) 1602 // while inflation is in-progress. This protocol avoids races that might 1603 // would otherwise permit hashCode values to change or "flicker" for an object. 1604 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1605 // 0 serves as a "BUSY" inflate-in-progress indicator. 1606 1607 1608 // fetch the displaced mark from the owner's stack. 1609 // The owner can't die or unwind past the lock while our INFLATING 1610 // object is in the mark. Furthermore the owner can't complete 1611 // an unlock on the object, either. 1612 markWord dmw = mark.displaced_mark_helper(); 1613 // Catch if the object's header is not neutral (not locked and 1614 // not marked is what we care about here). 1615 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1616 1617 // Setup monitor fields to proper values -- prepare the monitor 1618 m->set_header(dmw); 1619 1620 // Note that a thread can inflate an object 1621 // that it has stack-locked -- as might happen in wait() -- directly 1622 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1623 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1624 m->set_owner(locking_thread); 1625 } else { 1626 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1627 // and set the stack locker field in the monitor. 1628 m->set_stack_locker(mark.locker()); 1629 m->set_anonymous_owner(); 1630 } 1631 // TODO-FIXME: assert BasicLock->dhw != 0. 1632 1633 // Must preserve store ordering. The monitor state must 1634 // be stable at the time of publishing the monitor address. 1635 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1636 // Release semantics so that above set_object() is seen first. 1637 object->release_set_mark(markWord::encode(m)); 1638 1639 // Once ObjectMonitor is configured and the object is associated 1640 // with the ObjectMonitor, it is safe to allow async deflation: 1641 _in_use_list.add(m); 1642 1643 if (log_is_enabled(Trace, monitorinflation)) { 1644 ResourceMark rm; 1645 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1646 INTPTR_FORMAT ", type='%s'", p2i(object), 1647 object->mark().value(), object->klass()->external_name()); 1648 } 1649 if (event.should_commit()) { 1650 post_monitor_inflate_event(&event, object, cause); 1651 } 1652 return m; 1653 } 1654 1655 // CASE: unlocked 1656 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1657 // If we know we're inflating for entry it's better to inflate by swinging a 1658 // pre-locked ObjectMonitor pointer into the object header. A successful 1659 // CAS inflates the object *and* confers ownership to the inflating thread. 1660 // In the current implementation we use a 2-step mechanism where we CAS() 1661 // to inflate and then CAS() again to try to swing _owner from null to current. 1662 // An inflateTry() method that we could call from enter() would be useful. 1663 1664 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1665 ObjectMonitor* m = new ObjectMonitor(object); 1666 // prepare m for installation - set monitor to initial state 1667 m->set_header(mark); 1668 1669 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1670 delete m; 1671 m = nullptr; 1672 continue; 1673 // interference - the markword changed - just retry. 1674 // The state-transitions are one-way, so there's no chance of 1675 // live-lock -- "Inflated" is an absorbing state. 1676 } 1677 1678 // Once the ObjectMonitor is configured and object is associated 1679 // with the ObjectMonitor, it is safe to allow async deflation: 1680 _in_use_list.add(m); 1681 1682 if (log_is_enabled(Trace, monitorinflation)) { 1683 ResourceMark rm; 1684 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1685 INTPTR_FORMAT ", type='%s'", p2i(object), 1686 object->mark().value(), object->klass()->external_name()); 1687 } 1688 if (event.should_commit()) { 1689 post_monitor_inflate_event(&event, object, cause); 1690 } 1691 return m; 1692 } 1693 } 1694 1695 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1696 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1697 // 1698 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1699 MonitorList::Iterator iter = _in_use_list.iterator(); 1700 size_t deflated_count = 0; 1701 Thread* current = Thread::current(); 1702 1703 while (iter.has_next()) { 1704 if (deflated_count >= (size_t)MonitorDeflationMax) { 1705 break; 1706 } 1707 ObjectMonitor* mid = iter.next(); 1708 if (mid->deflate_monitor(current)) { 1709 deflated_count++; 1710 } 1711 1712 // Must check for a safepoint/handshake and honor it. 1713 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1714 } 1715 1716 return deflated_count; 1717 } 1718 1719 class HandshakeForDeflation : public HandshakeClosure { 1720 public: 1721 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1722 1723 void do_thread(Thread* thread) { 1724 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1725 INTPTR_FORMAT, p2i(thread)); 1726 if (thread->is_Java_thread()) { 1727 // Clear OM cache 1728 JavaThread* jt = JavaThread::cast(thread); 1729 jt->om_clear_monitor_cache(); 1730 } 1731 } 1732 }; 1733 1734 class VM_RendezvousGCThreads : public VM_Operation { 1735 public: 1736 bool evaluate_at_safepoint() const override { return false; } 1737 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1738 void doit() override { 1739 Universe::heap()->safepoint_synchronize_begin(); 1740 Universe::heap()->safepoint_synchronize_end(); 1741 }; 1742 }; 1743 1744 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1745 ObjectMonitorDeflationSafepointer* safepointer) { 1746 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1747 size_t deleted_count = 0; 1748 for (ObjectMonitor* monitor: *delete_list) { 1749 delete monitor; 1750 deleted_count++; 1751 // A JavaThread must check for a safepoint/handshake and honor it. 1752 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1753 } 1754 return deleted_count; 1755 } 1756 1757 class ObjectMonitorDeflationLogging: public StackObj { 1758 LogStreamHandle(Debug, monitorinflation) _debug; 1759 LogStreamHandle(Info, monitorinflation) _info; 1760 LogStream* _stream; 1761 elapsedTimer _timer; 1762 1763 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1764 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1765 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1766 1767 public: 1768 ObjectMonitorDeflationLogging() 1769 : _debug(), _info(), _stream(nullptr) { 1770 if (_debug.is_enabled()) { 1771 _stream = &_debug; 1772 } else if (_info.is_enabled()) { 1773 _stream = &_info; 1774 } 1775 } 1776 1777 void begin() { 1778 if (_stream != nullptr) { 1779 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1780 ceiling(), count(), max()); 1781 _timer.start(); 1782 } 1783 } 1784 1785 void before_handshake(size_t unlinked_count) { 1786 if (_stream != nullptr) { 1787 _timer.stop(); 1788 _stream->print_cr("before handshaking: unlinked_count=%zu" 1789 ", in_use_list stats: ceiling=%zu, count=" 1790 "%zu, max=%zu", 1791 unlinked_count, ceiling(), count(), max()); 1792 } 1793 } 1794 1795 void after_handshake() { 1796 if (_stream != nullptr) { 1797 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1798 "%zu, count=%zu, max=%zu", 1799 ceiling(), count(), max()); 1800 _timer.start(); 1801 } 1802 } 1803 1804 void end(size_t deflated_count, size_t unlinked_count) { 1805 if (_stream != nullptr) { 1806 _timer.stop(); 1807 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1808 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1809 deflated_count, unlinked_count, _timer.seconds()); 1810 } 1811 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1812 ceiling(), count(), max()); 1813 } 1814 } 1815 1816 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1817 if (_stream != nullptr) { 1818 _timer.stop(); 1819 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1820 "%zu, count=%zu, max=%zu", 1821 op_name, cnt_name, cnt, ceiling(), count(), max()); 1822 } 1823 } 1824 1825 void after_block_for_safepoint(const char* op_name) { 1826 if (_stream != nullptr) { 1827 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1828 ", count=%zu, max=%zu", op_name, 1829 ceiling(), count(), max()); 1830 _timer.start(); 1831 } 1832 } 1833 }; 1834 1835 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1836 if (!SafepointMechanism::should_process(_current)) { 1837 return; 1838 } 1839 1840 // A safepoint/handshake has started. 1841 _log->before_block_for_safepoint(op_name, count_name, counter); 1842 1843 { 1844 // Honor block request. 1845 ThreadBlockInVM tbivm(_current); 1846 } 1847 1848 _log->after_block_for_safepoint(op_name); 1849 } 1850 1851 // This function is called by the MonitorDeflationThread to deflate 1852 // ObjectMonitors. 1853 size_t ObjectSynchronizer::deflate_idle_monitors() { 1854 JavaThread* current = JavaThread::current(); 1855 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1856 1857 // The async deflation request has been processed. 1858 _last_async_deflation_time_ns = os::javaTimeNanos(); 1859 set_is_async_deflation_requested(false); 1860 1861 ObjectMonitorDeflationLogging log; 1862 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1863 1864 log.begin(); 1865 1866 // Deflate some idle ObjectMonitors. 1867 size_t deflated_count = deflate_monitor_list(&safepointer); 1868 1869 // Unlink the deflated ObjectMonitors from the in-use list. 1870 size_t unlinked_count = 0; 1871 size_t deleted_count = 0; 1872 if (deflated_count > 0) { 1873 ResourceMark rm(current); 1874 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1875 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1876 1877 #ifdef ASSERT 1878 if (UseObjectMonitorTable) { 1879 for (ObjectMonitor* monitor : delete_list) { 1880 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1881 } 1882 } 1883 #endif 1884 1885 log.before_handshake(unlinked_count); 1886 1887 // A JavaThread needs to handshake in order to safely free the 1888 // ObjectMonitors that were deflated in this cycle. 1889 HandshakeForDeflation hfd_hc; 1890 Handshake::execute(&hfd_hc); 1891 // Also, we sync and desync GC threads around the handshake, so that they can 1892 // safely read the mark-word and look-through to the object-monitor, without 1893 // being afraid that the object-monitor is going away. 1894 VM_RendezvousGCThreads sync_gc; 1895 VMThread::execute(&sync_gc); 1896 1897 log.after_handshake(); 1898 1899 // After the handshake, safely free the ObjectMonitors that were 1900 // deflated and unlinked in this cycle. 1901 1902 // Delete the unlinked ObjectMonitors. 1903 deleted_count = delete_monitors(&delete_list, &safepointer); 1904 assert(unlinked_count == deleted_count, "must be"); 1905 } 1906 1907 log.end(deflated_count, unlinked_count); 1908 1909 GVars.stw_random = os::random(); 1910 1911 if (deflated_count != 0) { 1912 _no_progress_cnt = 0; 1913 } else if (_no_progress_skip_increment) { 1914 _no_progress_skip_increment = false; 1915 } else { 1916 _no_progress_cnt++; 1917 } 1918 1919 return deflated_count; 1920 } 1921 1922 // Monitor cleanup on JavaThread::exit 1923 1924 // Iterate through monitor cache and attempt to release thread's monitors 1925 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1926 private: 1927 JavaThread* _thread; 1928 1929 public: 1930 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1931 void do_monitor(ObjectMonitor* mid) { 1932 intx rec = mid->complete_exit(_thread); 1933 _thread->dec_held_monitor_count(rec + 1); 1934 } 1935 }; 1936 1937 // Release all inflated monitors owned by current thread. Lightweight monitors are 1938 // ignored. This is meant to be called during JNI thread detach which assumes 1939 // all remaining monitors are heavyweight. All exceptions are swallowed. 1940 // Scanning the extant monitor list can be time consuming. 1941 // A simple optimization is to add a per-thread flag that indicates a thread 1942 // called jni_monitorenter() during its lifetime. 1943 // 1944 // Instead of NoSafepointVerifier it might be cheaper to 1945 // use an idiom of the form: 1946 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1947 // <code that must not run at safepoint> 1948 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1949 // Since the tests are extremely cheap we could leave them enabled 1950 // for normal product builds. 1951 1952 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1953 assert(current == JavaThread::current(), "must be current Java thread"); 1954 NoSafepointVerifier nsv; 1955 ReleaseJavaMonitorsClosure rjmc(current); 1956 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1957 assert(!current->has_pending_exception(), "Should not be possible"); 1958 current->clear_pending_exception(); 1959 assert(current->held_monitor_count() == 0, "Should not be possible"); 1960 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1961 current->clear_jni_monitor_count(); 1962 } 1963 1964 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1965 switch (cause) { 1966 case inflate_cause_vm_internal: return "VM Internal"; 1967 case inflate_cause_monitor_enter: return "Monitor Enter"; 1968 case inflate_cause_wait: return "Monitor Wait"; 1969 case inflate_cause_notify: return "Monitor Notify"; 1970 case inflate_cause_hash_code: return "Monitor Hash Code"; 1971 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1972 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1973 default: 1974 ShouldNotReachHere(); 1975 } 1976 return "Unknown"; 1977 } 1978 1979 //------------------------------------------------------------------------------ 1980 // Debugging code 1981 1982 u_char* ObjectSynchronizer::get_gvars_addr() { 1983 return (u_char*)&GVars; 1984 } 1985 1986 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1987 return (u_char*)&GVars.hc_sequence; 1988 } 1989 1990 size_t ObjectSynchronizer::get_gvars_size() { 1991 return sizeof(SharedGlobals); 1992 } 1993 1994 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1995 return (u_char*)&GVars.stw_random; 1996 } 1997 1998 // Do the final audit and print of ObjectMonitor stats; must be done 1999 // by the VMThread at VM exit time. 2000 void ObjectSynchronizer::do_final_audit_and_print_stats() { 2001 assert(Thread::current()->is_VM_thread(), "sanity check"); 2002 2003 if (is_final_audit()) { // Only do the audit once. 2004 return; 2005 } 2006 set_is_final_audit(); 2007 log_info(monitorinflation)("Starting the final audit."); 2008 2009 if (log_is_enabled(Info, monitorinflation)) { 2010 LogStreamHandle(Info, monitorinflation) ls; 2011 audit_and_print_stats(&ls, true /* on_exit */); 2012 } 2013 } 2014 2015 // This function can be called by the MonitorDeflationThread or it can be called when 2016 // we are trying to exit the VM. The list walker functions can run in parallel with 2017 // the other list operations. 2018 // Calls to this function can be added in various places as a debugging 2019 // aid. 2020 // 2021 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 2022 int error_cnt = 0; 2023 2024 ls->print_cr("Checking in_use_list:"); 2025 chk_in_use_list(ls, &error_cnt); 2026 2027 if (error_cnt == 0) { 2028 ls->print_cr("No errors found in in_use_list checks."); 2029 } else { 2030 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2031 } 2032 2033 // When exiting, only log the interesting entries at the Info level. 2034 // When called at intervals by the MonitorDeflationThread, log output 2035 // at the Trace level since there can be a lot of it. 2036 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2037 LogStreamHandle(Trace, monitorinflation) ls_tr; 2038 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2039 } else if (on_exit) { 2040 log_in_use_monitor_details(ls, false /* log_all */); 2041 } 2042 2043 ls->flush(); 2044 2045 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2046 } 2047 2048 // Check the in_use_list; log the results of the checks. 2049 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2050 size_t l_in_use_count = _in_use_list.count(); 2051 size_t l_in_use_max = _in_use_list.max(); 2052 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2053 l_in_use_max); 2054 2055 size_t ck_in_use_count = 0; 2056 MonitorList::Iterator iter = _in_use_list.iterator(); 2057 while (iter.has_next()) { 2058 ObjectMonitor* mid = iter.next(); 2059 chk_in_use_entry(mid, out, error_cnt_p); 2060 ck_in_use_count++; 2061 } 2062 2063 if (l_in_use_count == ck_in_use_count) { 2064 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2065 l_in_use_count, ck_in_use_count); 2066 } else { 2067 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2068 "ck_in_use_count=%zu", l_in_use_count, 2069 ck_in_use_count); 2070 } 2071 2072 size_t ck_in_use_max = _in_use_list.max(); 2073 if (l_in_use_max == ck_in_use_max) { 2074 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2075 l_in_use_max, ck_in_use_max); 2076 } else { 2077 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2078 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2079 } 2080 } 2081 2082 // Check an in-use monitor entry; log any errors. 2083 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2084 int* error_cnt_p) { 2085 if (n->owner_is_DEFLATER_MARKER()) { 2086 // This could happen when monitor deflation blocks for a safepoint. 2087 return; 2088 } 2089 2090 2091 if (n->metadata() == 0) { 2092 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2093 "have non-null _metadata (header/hash) field.", p2i(n)); 2094 *error_cnt_p = *error_cnt_p + 1; 2095 } 2096 2097 const oop obj = n->object_peek(); 2098 if (obj == nullptr) { 2099 return; 2100 } 2101 2102 const markWord mark = obj->mark(); 2103 if (!mark.has_monitor()) { 2104 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2105 "object does not think it has a monitor: obj=" 2106 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2107 p2i(obj), mark.value()); 2108 *error_cnt_p = *error_cnt_p + 1; 2109 return; 2110 } 2111 2112 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2113 if (n != obj_mon) { 2114 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2115 "object does not refer to the same monitor: obj=" 2116 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2117 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2118 *error_cnt_p = *error_cnt_p + 1; 2119 } 2120 } 2121 2122 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2123 // flags indicate why the entry is in-use, 'object' and 'object type' 2124 // indicate the associated object and its type. 2125 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2126 if (_in_use_list.count() > 0) { 2127 stringStream ss; 2128 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2129 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2130 out->print_cr("%18s %s %18s %18s", 2131 "monitor", "BHL", "object", "object type"); 2132 out->print_cr("================== === ================== =================="); 2133 2134 auto is_interesting = [&](ObjectMonitor* monitor) { 2135 return log_all || monitor->has_owner() || monitor->is_busy(); 2136 }; 2137 2138 monitors_iterate([&](ObjectMonitor* monitor) { 2139 if (is_interesting(monitor)) { 2140 const oop obj = monitor->object_peek(); 2141 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2142 ResourceMark rm; 2143 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2144 monitor->is_busy(), hash != 0, monitor->has_owner(), 2145 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2146 if (monitor->is_busy()) { 2147 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2148 ss.reset(); 2149 } 2150 out->cr(); 2151 } 2152 }); 2153 } 2154 2155 out->flush(); 2156 }