1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmSymbols.hpp"
  26 #include "gc/shared/collectedHeap.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "logging/log.hpp"
  29 #include "logging/logStream.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/padded.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomicAccess.hpp"
  37 #include "runtime/basicLock.inline.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"
  44 #include "runtime/lockStack.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.inline.hpp"
  47 #include "runtime/objectMonitorTable.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepointMechanism.inline.hpp"
  51 #include "runtime/safepointVerifiers.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/synchronizer.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "runtime/timer.hpp"
  57 #include "runtime/timerTrace.hpp"
  58 #include "runtime/trimNativeHeap.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/concurrentHashTable.inline.hpp"
  63 #include "utilities/concurrentHashTableTasks.inline.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalCounter.inline.hpp"
  67 #include "utilities/globalDefinitions.hpp"
  68 #include "utilities/linkedlist.hpp"
  69 #include "utilities/preserveException.hpp"
  70 
  71 class ObjectMonitorDeflationLogging;
  72 
  73 void MonitorList::add(ObjectMonitor* m) {
  74   ObjectMonitor* head;
  75   do {
  76     head = AtomicAccess::load(&_head);
  77     m->set_next_om(head);
  78   } while (AtomicAccess::cmpxchg(&_head, head, m) != head);
  79 
  80   size_t count = AtomicAccess::add(&_count, 1u, memory_order_relaxed);
  81   size_t old_max;
  82   do {
  83     old_max = AtomicAccess::load(&_max);
  84     if (count <= old_max) {
  85       break;
  86     }
  87   } while (AtomicAccess::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max);
  88 }
  89 
  90 size_t MonitorList::count() const {
  91   return AtomicAccess::load(&_count);
  92 }
  93 
  94 size_t MonitorList::max() const {
  95   return AtomicAccess::load(&_max);
  96 }
  97 
  98 class ObjectMonitorDeflationSafepointer : public StackObj {
  99   JavaThread* const                    _current;
 100   ObjectMonitorDeflationLogging* const _log;
 101 
 102 public:
 103   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
 104     : _current(current), _log(log) {}
 105 
 106   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 107 };
 108 
 109 // Walk the in-use list and unlink deflated ObjectMonitors.
 110 // Returns the number of unlinked ObjectMonitors.
 111 size_t MonitorList::unlink_deflated(size_t deflated_count,
 112                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 113                                     ObjectMonitorDeflationSafepointer* safepointer) {
 114   size_t unlinked_count = 0;
 115   ObjectMonitor* prev = nullptr;
 116   ObjectMonitor* m = AtomicAccess::load_acquire(&_head);
 117 
 118   while (m != nullptr) {
 119     if (m->is_being_async_deflated()) {
 120       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 121       // modify the list once per batch. The batch starts at "m".
 122       size_t unlinked_batch = 0;
 123       ObjectMonitor* next = m;
 124       // Look for at most MonitorUnlinkBatch monitors, or the number of
 125       // deflated and not unlinked monitors, whatever comes first.
 126       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 127       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 128       do {
 129         ObjectMonitor* next_next = next->next_om();
 130         unlinked_batch++;
 131         unlinked_list->append(next);
 132         next = next_next;
 133         if (unlinked_batch >= unlinked_batch_limit) {
 134           // Reached the max batch, so bail out of the gathering loop.
 135           break;
 136         }
 137         if (prev == nullptr && AtomicAccess::load(&_head) != m) {
 138           // Current batch used to be at head, but it is not at head anymore.
 139           // Bail out and figure out where we currently are. This avoids long
 140           // walks searching for new prev during unlink under heavy list inserts.
 141           break;
 142         }
 143       } while (next != nullptr && next->is_being_async_deflated());
 144 
 145       // Unlink the found batch.
 146       if (prev == nullptr) {
 147         // The current batch is the first batch, so there is a chance that it starts at head.
 148         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 149         ObjectMonitor* prev_head = AtomicAccess::cmpxchg(&_head, m, next);
 150         if (prev_head != m) {
 151           // Something must have updated the head. Figure out the actual prev for this batch.
 152           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 153             prev = n;
 154           }
 155           assert(prev != nullptr, "Should have found the prev for the current batch");
 156           prev->set_next_om(next);
 157         }
 158       } else {
 159         // The current batch is preceded by another batch. This guarantees the current batch
 160         // does not start at head. Unlink the entire current batch without updating the head.
 161         assert(AtomicAccess::load(&_head) != m, "Sanity");
 162         prev->set_next_om(next);
 163       }
 164 
 165       unlinked_count += unlinked_batch;
 166       if (unlinked_count >= deflated_count) {
 167         // Reached the max so bail out of the searching loop.
 168         // There should be no more deflated monitors left.
 169         break;
 170       }
 171       m = next;
 172     } else {
 173       prev = m;
 174       m = m->next_om();
 175     }
 176 
 177     // Must check for a safepoint/handshake and honor it.
 178     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 179   }
 180 
 181 #ifdef ASSERT
 182   // Invariant: the code above should unlink all deflated monitors.
 183   // The code that runs after this unlinking does not expect deflated monitors.
 184   // Notably, attempting to deflate the already deflated monitor would break.
 185   {
 186     ObjectMonitor* m = AtomicAccess::load_acquire(&_head);
 187     while (m != nullptr) {
 188       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 189       m = m->next_om();
 190     }
 191   }
 192 #endif
 193 
 194   AtomicAccess::sub(&_count, unlinked_count);
 195   return unlinked_count;
 196 }
 197 
 198 MonitorList::Iterator MonitorList::iterator() const {
 199   return Iterator(AtomicAccess::load_acquire(&_head));
 200 }
 201 
 202 ObjectMonitor* MonitorList::Iterator::next() {
 203   ObjectMonitor* current = _current;
 204   _current = current->next_om();
 205   return current;
 206 }
 207 
 208 // The "core" versions of monitor enter and exit reside in this file.
 209 // The interpreter and compilers contain specialized transliterated
 210 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 211 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 212 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 213 //
 214 // -----------------------------------------------------------------------------
 215 
 216 #ifdef DTRACE_ENABLED
 217 
 218 // Only bother with this argument setup if dtrace is available
 219 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 220 
 221 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 222   char* bytes = nullptr;                                                      \
 223   int len = 0;                                                             \
 224   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 225   Symbol* klassname = obj->klass()->name();                                \
 226   if (klassname != nullptr) {                                                 \
 227     bytes = (char*)klassname->bytes();                                     \
 228     len = klassname->utf8_length();                                        \
 229   }
 230 
 231 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 232   {                                                                        \
 233     if (DTraceMonitorProbes) {                                             \
 234       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 235       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 236                            (uintptr_t)(monitor), bytes, len, (millis));    \
 237     }                                                                      \
 238   }
 239 
 240 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 241 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 242 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 243 
 244 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 245   {                                                                        \
 246     if (DTraceMonitorProbes) {                                             \
 247       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 248       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 249                                     (uintptr_t)(monitor), bytes, len);     \
 250     }                                                                      \
 251   }
 252 
 253 #else //  ndef DTRACE_ENABLED
 254 
 255 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 256 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 257 
 258 #endif // ndef DTRACE_ENABLED
 259 
 260 // This exists only as a workaround of dtrace bug 6254741
 261 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 262   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 263   return 0;
 264 }
 265 
 266 static constexpr size_t inflation_lock_count() {
 267   return 256;
 268 }
 269 
 270 // Static storage for an array of PlatformMutex.
 271 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 272 
 273 static inline PlatformMutex* inflation_lock(size_t index) {
 274   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 275 }
 276 
 277 void ObjectSynchronizer::initialize() {
 278   for (size_t i = 0; i < inflation_lock_count(); i++) {
 279     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 280   }
 281   // Start the ceiling with the estimate for one thread.
 282   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 283 
 284   // Start the timer for deflations, so it does not trigger immediately.
 285   _last_async_deflation_time_ns = os::javaTimeNanos();
 286 
 287   ObjectSynchronizer::create_om_table();
 288 }
 289 
 290 MonitorList ObjectSynchronizer::_in_use_list;
 291 // monitors_used_above_threshold() policy is as follows:
 292 //
 293 // The ratio of the current _in_use_list count to the ceiling is used
 294 // to determine if we are above MonitorUsedDeflationThreshold and need
 295 // to do an async monitor deflation cycle. The ceiling is increased by
 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 298 // removed from the system.
 299 //
 300 // Note: If the _in_use_list max exceeds the ceiling, then
 301 // monitors_used_above_threshold() will use the in_use_list max instead
 302 // of the thread count derived ceiling because we have used more
 303 // ObjectMonitors than the estimated average.
 304 //
 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 306 // no-progress async monitor deflation cycles in a row, then the ceiling
 307 // is adjusted upwards by monitors_used_above_threshold().
 308 //
 309 // Start the ceiling with the estimate for one thread in initialize()
 310 // which is called after cmd line options are processed.
 311 static size_t _in_use_list_ceiling = 0;
 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 313 bool volatile ObjectSynchronizer::_is_final_audit = false;
 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 315 static uintx _no_progress_cnt = 0;
 316 static bool _no_progress_skip_increment = false;
 317 
 318 // These checks are required for wait, notify and exit to avoid inflating the monitor to
 319 // find out this inline type object cannot be locked.
 320 #define CHECK_THROW_NOSYNC_IMSE(obj)  \
 321   if ((obj)->mark().is_inline_type()) {  \
 322     JavaThread* THREAD = current;           \
 323     ResourceMark rm(THREAD);                \
 324     THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \
 325   }
 326 
 327 #define CHECK_THROW_NOSYNC_IMSE_0(obj)  \
 328   if ((obj)->mark().is_inline_type()) {  \
 329     JavaThread* THREAD = current;             \
 330     ResourceMark rm(THREAD);                  \
 331     THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \
 332   }
 333 
 334 // =====================> Quick functions
 335 
 336 // The quick_* forms are special fast-path variants used to improve
 337 // performance.  In the simplest case, a "quick_*" implementation could
 338 // simply return false, in which case the caller will perform the necessary
 339 // state transitions and call the slow-path form.
 340 // The fast-path is designed to handle frequently arising cases in an efficient
 341 // manner and is just a degenerate "optimistic" variant of the slow-path.
 342 // returns true  -- to indicate the call was satisfied.
 343 // returns false -- to indicate the call needs the services of the slow-path.
 344 // A no-loitering ordinance is in effect for code in the quick_* family
 345 // operators: safepoints or indefinite blocking (blocking that might span a
 346 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 347 // entry.
 348 //
 349 // Consider: An interesting optimization is to have the JIT recognize the
 350 // following common idiom:
 351 //   synchronized (someobj) { .... ; notify(); }
 352 // That is, we find a notify() or notifyAll() call that immediately precedes
 353 // the monitorexit operation.  In that case the JIT could fuse the operations
 354 // into a single notifyAndExit() runtime primitive.
 355 
 356 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 357   assert(current->thread_state() == _thread_in_Java, "invariant");
 358   NoSafepointVerifier nsv;
 359   if (obj == nullptr) return false;  // slow-path for invalid obj
 360   assert(!obj->klass()->is_inline_klass(), "monitor op on inline type");
 361   const markWord mark = obj->mark();
 362 
 363   if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 364     // Degenerate notify
 365     // fast-locked by caller so by definition the implied waitset is empty.
 366     return true;
 367   }
 368 
 369   if (mark.has_monitor()) {
 370     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 371     if (mon == nullptr) {
 372       // Racing with inflation/deflation go slow path
 373       return false;
 374     }
 375     assert(mon->object() == oop(obj), "invariant");
 376     if (!mon->has_owner(current)) return false;  // slow-path for IMS exception
 377 
 378     if (mon->first_waiter() != nullptr) {
 379       // We have one or more waiters. Since this is an inflated monitor
 380       // that we own, we quickly notify them here and now, avoiding the slow-path.
 381       if (all) {
 382         mon->quick_notifyAll(current);
 383       } else {
 384         mon->quick_notify(current);
 385       }
 386     }
 387     return true;
 388   }
 389 
 390   // other IMS exception states take the slow-path
 391   return false;
 392 }
 393 
 394 // Handle notifications when synchronizing on value based classes
 395 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 396   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 397   frame last_frame = locking_thread->last_frame();
 398   bool bcp_was_adjusted = false;
 399   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 400   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 401   // is no actual monitorenter instruction in the byte code in this case.
 402   if (last_frame.is_interpreted_frame() &&
 403       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 404     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 405     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 406     bcp_was_adjusted = true;
 407   }
 408 
 409   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 410     ResourceMark rm;
 411     stringStream ss;
 412     locking_thread->print_active_stack_on(&ss);
 413     char* base = (char*)strstr(ss.base(), "at");
 414     char* newline = (char*)strchr(ss.base(), '\n');
 415     if (newline != nullptr) {
 416       *newline = '\0';
 417     }
 418     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 419   } else {
 420     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 421     ResourceMark rm;
 422     Log(valuebasedclasses) vblog;
 423 
 424     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 425     if (locking_thread->has_last_Java_frame()) {
 426       LogStream info_stream(vblog.info());
 427       locking_thread->print_active_stack_on(&info_stream);
 428     } else {
 429       vblog.info("Cannot find the last Java frame");
 430     }
 431 
 432     EventSyncOnValueBasedClass event;
 433     if (event.should_commit()) {
 434       event.set_valueBasedClass(obj->klass());
 435       event.commit();
 436     }
 437   }
 438 
 439   if (bcp_was_adjusted) {
 440     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 441   }
 442 }
 443 
 444 // -----------------------------------------------------------------------------
 445 // JNI locks on java objects
 446 // NOTE: must use heavy weight monitor to handle jni monitor enter
 447 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 448   JavaThread* THREAD = current;
 449   // Top native frames in the stack will not be seen if we attempt
 450   // preemption, since we start walking from the last Java anchor.
 451   NoPreemptMark npm(current);
 452 
 453   if (obj->klass()->is_value_based()) {
 454     handle_sync_on_value_based_class(obj, current);
 455   }
 456 
 457   if (obj->klass()->is_inline_klass()) {
 458     ResourceMark rm(THREAD);
 459     const char* desc = "Cannot synchronize on an instance of value class ";
 460     const char* className = obj->klass()->external_name();
 461     size_t msglen = strlen(desc) + strlen(className) + 1;
 462     char* message = NEW_RESOURCE_ARRAY(char, msglen);
 463     assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr");
 464     THROW_MSG(vmSymbols::java_lang_IdentityException(), className);
 465   }
 466 
 467   // the current locking is from JNI instead of Java code
 468   current->set_current_pending_monitor_is_from_java(false);
 469   // An async deflation can race after the inflate() call and before
 470   // enter() can make the ObjectMonitor busy. enter() returns false if
 471   // we have lost the race to async deflation and we simply try again.
 472   while (true) {
 473     BasicLock lock;
 474     if (ObjectSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr) {
 475       break;
 476     }
 477   }
 478   current->set_current_pending_monitor_is_from_java(true);
 479 }
 480 
 481 // NOTE: must use heavy weight monitor to handle jni monitor exit
 482 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 483   JavaThread* current = THREAD;
 484   CHECK_THROW_NOSYNC_IMSE(obj);
 485 
 486   ObjectMonitor* monitor;
 487   monitor = ObjectSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 488   // If this thread has locked the object, exit the monitor. We
 489   // intentionally do not use CHECK on check_owner because we must exit the
 490   // monitor even if an exception was already pending.
 491   if (monitor->check_owner(THREAD)) {
 492     monitor->exit(current);
 493   }
 494 }
 495 
 496 // -----------------------------------------------------------------------------
 497 // Internal VM locks on java objects
 498 // standard constructor, allows locking failures
 499 ObjectLocker::ObjectLocker(Handle obj, TRAPS) : _thread(THREAD), _obj(obj),
 500   _npm(_thread, _thread->at_preemptable_init() /* ignore_mark */), _skip_exit(false) {
 501   assert(!_thread->preempting(), "");
 502 
 503   _thread->check_for_valid_safepoint_state();
 504 
 505   if (_obj() != nullptr) {
 506     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 507 
 508     if (_thread->preempting()) {
 509       // If preemption was cancelled we acquired the monitor after freezing
 510       // the frames. Redoing the vm call laterĀ in thaw will require us to
 511       // release it since the call should look like the original one. We
 512       // do it in ~ObjectLocker to reduce the window of time we hold the
 513       // monitor since we can't do anything useful with it now, and would
 514       // otherwise just force other vthreads to preempt in case they try
 515       // to acquire this monitor.
 516       _skip_exit = !_thread->preemption_cancelled();
 517       ObjectSynchronizer::read_monitor(_thread, _obj())->set_object_strong();
 518       _thread->set_pending_preempted_exception();
 519 
 520     }
 521   }
 522 }
 523 
 524 ObjectLocker::~ObjectLocker() {
 525   if (_obj() != nullptr && !_skip_exit) {
 526     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 527   }
 528 }
 529 
 530 void ObjectLocker::wait_uninterruptibly(TRAPS) {
 531   ObjectSynchronizer::waitUninterruptibly(_obj, 0, _thread);
 532   if (_thread->preempting()) {
 533     _skip_exit = true;
 534     ObjectSynchronizer::read_monitor(_thread, _obj())->set_object_strong();
 535     _thread->set_pending_preempted_exception();
 536   }
 537 }
 538 
 539 // -----------------------------------------------------------------------------
 540 //  Wait/Notify/NotifyAll
 541 // NOTE: must use heavy weight monitor to handle wait()
 542 
 543 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 544   JavaThread* current = THREAD;
 545   CHECK_THROW_NOSYNC_IMSE_0(obj);
 546   if (millis < 0) {
 547     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 548   }
 549 
 550   ObjectMonitor* monitor;
 551   monitor = ObjectSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 552 
 553   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 554   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 555 
 556   // This dummy call is in place to get around dtrace bug 6254741.  Once
 557   // that's fixed we can uncomment the following line, remove the call
 558   // and change this function back into a "void" func.
 559   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 560   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 561   return ret_code;
 562 }
 563 
 564 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 565   assert(millis >= 0, "timeout value is negative");
 566 
 567   ObjectMonitor* monitor;
 568   monitor = ObjectSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK);
 569   monitor->wait(millis, false, THREAD);
 570 }
 571 
 572 
 573 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 574   JavaThread* current = THREAD;
 575   CHECK_THROW_NOSYNC_IMSE(obj);
 576 
 577   markWord mark = obj->mark();
 578   if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 579     // Not inflated so there can't be any waiters to notify.
 580     return;
 581   }
 582   ObjectMonitor* monitor = ObjectSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 583   monitor->notify(CHECK);
 584 }
 585 
 586 // NOTE: see comment of notify()
 587 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 588   JavaThread* current = THREAD;
 589   CHECK_THROW_NOSYNC_IMSE(obj);
 590 
 591   markWord mark = obj->mark();
 592   if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 593     // Not inflated so there can't be any waiters to notify.
 594     return;
 595   }
 596 
 597   ObjectMonitor* monitor = ObjectSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 598   monitor->notifyAll(CHECK);
 599 }
 600 
 601 // -----------------------------------------------------------------------------
 602 // Hash Code handling
 603 
 604 struct SharedGlobals {
 605   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 606   // This is a highly shared mostly-read variable.
 607   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 608   volatile int stw_random;
 609   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 610   // Hot RW variable -- Sequester to avoid false-sharing
 611   volatile int hc_sequence;
 612   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 613 };
 614 
 615 static SharedGlobals GVars;
 616 
 617 // hashCode() generation :
 618 //
 619 // Possibilities:
 620 // * MD5Digest of {obj,stw_random}
 621 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 622 // * A DES- or AES-style SBox[] mechanism
 623 // * One of the Phi-based schemes, such as:
 624 //   2654435761 = 2^32 * Phi (golden ratio)
 625 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 626 // * A variation of Marsaglia's shift-xor RNG scheme.
 627 // * (obj ^ stw_random) is appealing, but can result
 628 //   in undesirable regularity in the hashCode values of adjacent objects
 629 //   (objects allocated back-to-back, in particular).  This could potentially
 630 //   result in hashtable collisions and reduced hashtable efficiency.
 631 //   There are simple ways to "diffuse" the middle address bits over the
 632 //   generated hashCode values:
 633 
 634 static intptr_t get_next_hash(Thread* current, oop obj) {
 635   intptr_t value = 0;
 636   if (hashCode == 0) {
 637     // This form uses global Park-Miller RNG.
 638     // On MP system we'll have lots of RW access to a global, so the
 639     // mechanism induces lots of coherency traffic.
 640     value = os::random();
 641   } else if (hashCode == 1) {
 642     // This variation has the property of being stable (idempotent)
 643     // between STW operations.  This can be useful in some of the 1-0
 644     // synchronization schemes.
 645     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 646     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 647   } else if (hashCode == 2) {
 648     value = 1;            // for sensitivity testing
 649   } else if (hashCode == 3) {
 650     value = ++GVars.hc_sequence;
 651   } else if (hashCode == 4) {
 652     value = cast_from_oop<intptr_t>(obj);
 653   } else {
 654     // Marsaglia's xor-shift scheme with thread-specific state
 655     // This is probably the best overall implementation -- we'll
 656     // likely make this the default in future releases.
 657     unsigned t = current->_hashStateX;
 658     t ^= (t << 11);
 659     current->_hashStateX = current->_hashStateY;
 660     current->_hashStateY = current->_hashStateZ;
 661     current->_hashStateZ = current->_hashStateW;
 662     unsigned v = current->_hashStateW;
 663     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 664     current->_hashStateW = v;
 665     value = v;
 666   }
 667 
 668   value &= markWord::hash_mask;
 669   if (value == 0) value = 0xBAD;
 670   assert(value != markWord::no_hash, "invariant");
 671   return value;
 672 }
 673 
 674 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 675   // VM should be calling bootstrap method.
 676   assert(!obj->klass()->is_inline_klass(), "FastHashCode should not be called for inline classes");
 677 
 678   while (true) {
 679     ObjectMonitor* monitor = nullptr;
 680     markWord temp, test;
 681     intptr_t hash;
 682     markWord mark = obj->mark_acquire();
 683     // If UseObjectMonitorTable is set the hash can simply be installed in the
 684     // object header, since the monitor isn't in the object header.
 685     if (UseObjectMonitorTable || !mark.has_monitor()) {
 686       hash = mark.hash();
 687       if (hash != 0) {                     // if it has a hash, just return it
 688         return hash;
 689       }
 690       hash = get_next_hash(current, obj);  // get a new hash
 691       temp = mark.copy_set_hash(hash);     // merge the hash into header
 692                                            // try to install the hash
 693       test = obj->cas_set_mark(temp, mark);
 694       if (test == mark) {                  // if the hash was installed, return it
 695         return hash;
 696       }
 697       // CAS failed, retry
 698       continue;
 699 
 700       // Failed to install the hash. It could be that another thread
 701       // installed the hash just before our attempt or inflation has
 702       // occurred or... so we fall thru to inflate the monitor for
 703       // stability and then install the hash.
 704     } else {
 705       assert(!mark.is_unlocked() && !mark.is_fast_locked(), "invariant");
 706       monitor = mark.monitor();
 707       temp = monitor->header();
 708       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 709       hash = temp.hash();
 710       if (hash != 0) {
 711         // It has a hash.
 712 
 713         // Separate load of dmw/header above from the loads in
 714         // is_being_async_deflated().
 715 
 716         // dmw/header and _contentions may get written by different threads.
 717         // Make sure to observe them in the same order when having several observers.
 718         OrderAccess::loadload_for_IRIW();
 719 
 720         if (monitor->is_being_async_deflated()) {
 721           // But we can't safely use the hash if we detect that async
 722           // deflation has occurred. So we attempt to restore the
 723           // header/dmw to the object's header so that we only retry
 724           // once if the deflater thread happens to be slow.
 725           monitor->install_displaced_markword_in_object(obj);
 726           continue;
 727         }
 728         return hash;
 729       }
 730       // Fall thru so we only have one place that installs the hash in
 731       // the ObjectMonitor.
 732     }
 733 
 734     // NOTE: an async deflation can race after we get the monitor and
 735     // before we can update the ObjectMonitor's header with the hash
 736     // value below.
 737     assert(mark.has_monitor(), "must be");
 738     monitor = mark.monitor();
 739 
 740     // Load ObjectMonitor's header/dmw field and see if it has a hash.
 741     mark = monitor->header();
 742     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 743     hash = mark.hash();
 744     if (hash == 0) {                       // if it does not have a hash
 745       hash = get_next_hash(current, obj);  // get a new hash
 746       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
 747       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 748       uintptr_t v = AtomicAccess::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
 749       test = markWord(v);
 750       if (test != mark) {
 751         // The attempt to update the ObjectMonitor's header/dmw field
 752         // did not work. This can happen if another thread managed to
 753         // merge in the hash just before our cmpxchg().
 754         // If we add any new usages of the header/dmw field, this code
 755         // will need to be updated.
 756         hash = test.hash();
 757         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 758         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
 759       }
 760       if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) {
 761         // If we detect that async deflation has occurred, then we
 762         // attempt to restore the header/dmw to the object's header
 763         // so that we only retry once if the deflater thread happens
 764         // to be slow.
 765         monitor->install_displaced_markword_in_object(obj);
 766         continue;
 767       }
 768     }
 769     // We finally get the hash.
 770     return hash;
 771   }
 772 }
 773 
 774 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
 775                                                    Handle h_obj) {
 776   if (h_obj->mark().is_inline_type()) {
 777     return false;
 778   }
 779   assert(current == JavaThread::current(), "Can only be called on current thread");
 780   oop obj = h_obj();
 781 
 782   markWord mark = obj->mark_acquire();
 783 
 784   if (mark.is_fast_locked()) {
 785     // fast-locking case, see if lock is in current's lock stack
 786     return current->lock_stack().contains(h_obj());
 787   }
 788 
 789   while (mark.has_monitor()) {
 790     ObjectMonitor* monitor = read_monitor(current, obj, mark);
 791     if (monitor != nullptr) {
 792       return monitor->is_entered(current) != 0;
 793     }
 794     // Racing with inflation/deflation, retry
 795     mark = obj->mark_acquire();
 796 
 797     if (mark.is_fast_locked()) {
 798       // Some other thread fast_locked, current could not have held the lock
 799       return false;
 800     }
 801   }
 802 
 803   // Unlocked case, header in place
 804   assert(mark.is_unlocked(), "sanity check");
 805   return false;
 806 }
 807 
 808 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 809   oop obj = h_obj();
 810   markWord mark = obj->mark_acquire();
 811 
 812   if (mark.is_fast_locked()) {
 813     // fast-locked so get owner from the object.
 814     // owning_thread_from_object() may also return null here:
 815     return Threads::owning_thread_from_object(t_list, h_obj());
 816   }
 817 
 818   while (mark.has_monitor()) {
 819     ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark);
 820     if (monitor != nullptr) {
 821       return Threads::owning_thread_from_monitor(t_list, monitor);
 822     }
 823     // Racing with inflation/deflation, retry
 824     mark = obj->mark_acquire();
 825 
 826     if (mark.is_fast_locked()) {
 827       // Some other thread fast_locked
 828       return Threads::owning_thread_from_object(t_list, h_obj());
 829     }
 830   }
 831 
 832   // Unlocked case, header in place
 833   // Cannot have assertion since this object may have been
 834   // locked by another thread when reaching here.
 835   // assert(mark.is_unlocked(), "sanity check");
 836 
 837   return nullptr;
 838 }
 839 
 840 // Visitors ...
 841 
 842 // Iterate over all ObjectMonitors.
 843 template <typename Function>
 844 void ObjectSynchronizer::monitors_iterate(Function function) {
 845   MonitorList::Iterator iter = _in_use_list.iterator();
 846   while (iter.has_next()) {
 847     ObjectMonitor* monitor = iter.next();
 848     function(monitor);
 849   }
 850 }
 851 
 852 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
 853 // returns true.
 854 template <typename OwnerFilter>
 855 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
 856   monitors_iterate([&](ObjectMonitor* monitor) {
 857     // This function is only called at a safepoint or when the
 858     // target thread is suspended or when the target thread is
 859     // operating on itself. The current closures in use today are
 860     // only interested in an owned ObjectMonitor and ownership
 861     // cannot be dropped under the calling contexts so the
 862     // ObjectMonitor cannot be async deflated.
 863     if (monitor->has_owner() && filter(monitor)) {
 864       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
 865 
 866       closure->do_monitor(monitor);
 867     }
 868   });
 869 }
 870 
 871 // Iterate ObjectMonitors where the owner == thread; this does NOT include
 872 // ObjectMonitors where owner is set to a stack-lock address in thread.
 873 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
 874   int64_t key = ObjectMonitor::owner_id_from(thread);
 875   auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; };
 876   return owned_monitors_iterate_filtered(closure, thread_filter);
 877 }
 878 
 879 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) {
 880   int64_t key = ObjectMonitor::owner_id_from(vthread);
 881   auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; };
 882   return owned_monitors_iterate_filtered(closure, thread_filter);
 883 }
 884 
 885 // Iterate ObjectMonitors owned by any thread.
 886 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
 887   auto all_filter = [&](ObjectMonitor* monitor) { return true; };
 888   return owned_monitors_iterate_filtered(closure, all_filter);
 889 }
 890 
 891 static bool monitors_used_above_threshold(MonitorList* list) {
 892   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
 893     return false;
 894   }
 895   size_t monitors_used = list->count();
 896   if (monitors_used == 0) {  // empty list is easy
 897     return false;
 898   }
 899   size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling();
 900   // Make sure that we use a ceiling value that is not lower than
 901   // previous, not lower than the recorded max used by the system, and
 902   // not lower than the current number of monitors in use (which can
 903   // race ahead of max). The result is guaranteed > 0.
 904   size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used);
 905 
 906   // Check if our monitor usage is above the threshold:
 907   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
 908   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
 909     // Deflate monitors if over the threshold percentage, unless no
 910     // progress on previous deflations.
 911     bool is_above_threshold = true;
 912 
 913     // Check if it's time to adjust the in_use_list_ceiling up, due
 914     // to too many async deflation attempts without any progress.
 915     if (NoAsyncDeflationProgressMax != 0 &&
 916         _no_progress_cnt >= NoAsyncDeflationProgressMax) {
 917       double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
 918       size_t delta = (size_t)(ceiling * remainder) + 1;
 919       size_t new_ceiling = (ceiling > SIZE_MAX - delta)
 920         ? SIZE_MAX         // Overflow, let's clamp new_ceiling.
 921         : ceiling + delta;
 922 
 923       ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
 924       log_info(monitorinflation)("Too many deflations without progress; "
 925                                  "bumping in_use_list_ceiling from %zu"
 926                                  " to %zu", old_ceiling, new_ceiling);
 927       _no_progress_cnt = 0;
 928       ceiling = new_ceiling;
 929 
 930       // Check if our monitor usage is still above the threshold:
 931       monitor_usage = (monitors_used * 100LL) / ceiling;
 932       is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold;
 933     }
 934     log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu"
 935                                ", monitor_usage=%zu, threshold=%d",
 936                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
 937     return is_above_threshold;
 938   }
 939 
 940   return false;
 941 }
 942 
 943 size_t ObjectSynchronizer::in_use_list_count() {
 944   return _in_use_list.count();
 945 }
 946 
 947 size_t ObjectSynchronizer::in_use_list_max() {
 948   return _in_use_list.max();
 949 }
 950 
 951 size_t ObjectSynchronizer::in_use_list_ceiling() {
 952   return _in_use_list_ceiling;
 953 }
 954 
 955 void ObjectSynchronizer::dec_in_use_list_ceiling() {
 956   AtomicAccess::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
 957 }
 958 
 959 void ObjectSynchronizer::inc_in_use_list_ceiling() {
 960   AtomicAccess::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
 961 }
 962 
 963 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
 964   _in_use_list_ceiling = new_value;
 965 }
 966 
 967 bool ObjectSynchronizer::is_async_deflation_needed() {
 968   if (is_async_deflation_requested()) {
 969     // Async deflation request.
 970     log_info(monitorinflation)("Async deflation needed: explicit request");
 971     return true;
 972   }
 973 
 974   jlong time_since_last = time_since_last_async_deflation_ms();
 975 
 976   if (AsyncDeflationInterval > 0 &&
 977       time_since_last > AsyncDeflationInterval &&
 978       monitors_used_above_threshold(&_in_use_list)) {
 979     // It's been longer than our specified deflate interval and there
 980     // are too many monitors in use. We don't deflate more frequently
 981     // than AsyncDeflationInterval (unless is_async_deflation_requested)
 982     // in order to not swamp the MonitorDeflationThread.
 983     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
 984     return true;
 985   }
 986 
 987   if (GuaranteedAsyncDeflationInterval > 0 &&
 988       time_since_last > GuaranteedAsyncDeflationInterval) {
 989     // It's been longer than our specified guaranteed deflate interval.
 990     // We need to clean up the used monitors even if the threshold is
 991     // not reached, to keep the memory utilization at bay when many threads
 992     // touched many monitors.
 993     log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) "
 994                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
 995                                GuaranteedAsyncDeflationInterval, time_since_last);
 996 
 997     // If this deflation has no progress, then it should not affect the no-progress
 998     // tracking, otherwise threshold heuristics would think it was triggered, experienced
 999     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1000     // the generic code would bump the no-progress counter, and we compensate for that
1001     // by telling it to skip the update.
1002     //
1003     // If this deflation has progress, then it should let non-progress tracking
1004     // know about this, otherwise the threshold heuristics would kick in, potentially
1005     // experience no-progress due to aggressive cleanup by this deflation, and think
1006     // it is still in no-progress stride. In this "progress" case, the generic code would
1007     // zero the counter, and we allow it to happen.
1008     _no_progress_skip_increment = true;
1009 
1010     return true;
1011   }
1012 
1013   return false;
1014 }
1015 
1016 void ObjectSynchronizer::request_deflate_idle_monitors() {
1017   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1018   set_is_async_deflation_requested(true);
1019   ml.notify_all();
1020 }
1021 
1022 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1023   JavaThread* current = JavaThread::current();
1024   bool ret_code = false;
1025 
1026   jlong last_time = last_async_deflation_time_ns();
1027 
1028   request_deflate_idle_monitors();
1029 
1030   const int N_CHECKS = 5;
1031   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1032     if (last_async_deflation_time_ns() > last_time) {
1033       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1034       ret_code = true;
1035       break;
1036     }
1037     {
1038       // JavaThread has to honor the blocking protocol.
1039       ThreadBlockInVM tbivm(current);
1040       os::naked_short_sleep(999);  // sleep for almost 1 second
1041     }
1042   }
1043   if (!ret_code) {
1044     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1045   }
1046 
1047   return ret_code;
1048 }
1049 
1050 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1051   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1052 }
1053 
1054 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1055 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1056 //
1057 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1058   MonitorList::Iterator iter = _in_use_list.iterator();
1059   size_t deflated_count = 0;
1060   Thread* current = Thread::current();
1061 
1062   while (iter.has_next()) {
1063     if (deflated_count >= (size_t)MonitorDeflationMax) {
1064       break;
1065     }
1066     ObjectMonitor* mid = iter.next();
1067     if (mid->deflate_monitor(current)) {
1068       deflated_count++;
1069     }
1070 
1071     // Must check for a safepoint/handshake and honor it.
1072     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1073   }
1074 
1075   return deflated_count;
1076 }
1077 
1078 class DeflationHandshakeClosure : public HandshakeClosure {
1079  public:
1080   DeflationHandshakeClosure() : HandshakeClosure("DeflationHandshakeClosure") {}
1081 
1082   void do_thread(Thread* thread) {
1083     log_trace(monitorinflation)("DeflationHandshakeClosure::do_thread: thread="
1084                                 INTPTR_FORMAT, p2i(thread));
1085     if (thread->is_Java_thread()) {
1086       // Clear OM cache
1087       JavaThread* jt = JavaThread::cast(thread);
1088       jt->om_clear_monitor_cache();
1089     }
1090   }
1091 };
1092 
1093 class VM_RendezvousGCThreads : public VM_Operation {
1094 public:
1095   bool evaluate_at_safepoint() const override { return false; }
1096   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1097   void doit() override {
1098     Universe::heap()->safepoint_synchronize_begin();
1099     Universe::heap()->safepoint_synchronize_end();
1100   };
1101 };
1102 
1103 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1104                               ObjectMonitorDeflationSafepointer* safepointer) {
1105   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1106   size_t deleted_count = 0;
1107   for (ObjectMonitor* monitor: *delete_list) {
1108     delete monitor;
1109     deleted_count++;
1110     // A JavaThread must check for a safepoint/handshake and honor it.
1111     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1112   }
1113   return deleted_count;
1114 }
1115 
1116 class ObjectMonitorDeflationLogging: public StackObj {
1117   LogStreamHandle(Debug, monitorinflation) _debug;
1118   LogStreamHandle(Info, monitorinflation)  _info;
1119   LogStream*                               _stream;
1120   elapsedTimer                             _timer;
1121 
1122   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1123   size_t count() const   { return ObjectSynchronizer::in_use_list_count(); }
1124   size_t max() const     { return ObjectSynchronizer::in_use_list_max(); }
1125 
1126 public:
1127   ObjectMonitorDeflationLogging()
1128     : _debug(), _info(), _stream(nullptr) {
1129     if (_debug.is_enabled()) {
1130       _stream = &_debug;
1131     } else if (_info.is_enabled()) {
1132       _stream = &_info;
1133     }
1134   }
1135 
1136   void begin() {
1137     if (_stream != nullptr) {
1138       _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu",
1139                         ceiling(), count(), max());
1140       _timer.start();
1141     }
1142   }
1143 
1144   void before_handshake(size_t unlinked_count) {
1145     if (_stream != nullptr) {
1146       _timer.stop();
1147       _stream->print_cr("before handshaking: unlinked_count=%zu"
1148                         ", in_use_list stats: ceiling=%zu, count="
1149                         "%zu, max=%zu",
1150                         unlinked_count, ceiling(), count(), max());
1151     }
1152   }
1153 
1154   void after_handshake() {
1155     if (_stream != nullptr) {
1156       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1157                         "%zu, count=%zu, max=%zu",
1158                         ceiling(), count(), max());
1159       _timer.start();
1160     }
1161   }
1162 
1163   void end(size_t deflated_count, size_t unlinked_count) {
1164     if (_stream != nullptr) {
1165       _timer.stop();
1166       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1167         _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs",
1168                           deflated_count, unlinked_count, _timer.seconds());
1169       }
1170       _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu",
1171                         ceiling(), count(), max());
1172     }
1173   }
1174 
1175   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1176     if (_stream != nullptr) {
1177       _timer.stop();
1178       _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling="
1179                         "%zu, count=%zu, max=%zu",
1180                         op_name, cnt_name, cnt, ceiling(), count(), max());
1181     }
1182   }
1183 
1184   void after_block_for_safepoint(const char* op_name) {
1185     if (_stream != nullptr) {
1186       _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu"
1187                         ", count=%zu, max=%zu", op_name,
1188                         ceiling(), count(), max());
1189       _timer.start();
1190     }
1191   }
1192 };
1193 
1194 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1195   if (!SafepointMechanism::should_process(_current)) {
1196     return;
1197   }
1198 
1199   // A safepoint/handshake has started.
1200   _log->before_block_for_safepoint(op_name, count_name, counter);
1201 
1202   {
1203     // Honor block request.
1204     ThreadBlockInVM tbivm(_current);
1205   }
1206 
1207   _log->after_block_for_safepoint(op_name);
1208 }
1209 
1210 // This function is called by the MonitorDeflationThread to deflate
1211 // ObjectMonitors.
1212 size_t ObjectSynchronizer::deflate_idle_monitors() {
1213   JavaThread* current = JavaThread::current();
1214   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1215 
1216   // The async deflation request has been processed.
1217   _last_async_deflation_time_ns = os::javaTimeNanos();
1218   set_is_async_deflation_requested(false);
1219 
1220   ObjectMonitorDeflationLogging log;
1221   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1222 
1223   log.begin();
1224 
1225   // Deflate some idle ObjectMonitors.
1226   size_t deflated_count = deflate_monitor_list(&safepointer);
1227 
1228   // Unlink the deflated ObjectMonitors from the in-use list.
1229   size_t unlinked_count = 0;
1230   size_t deleted_count = 0;
1231   if (deflated_count > 0) {
1232     ResourceMark rm(current);
1233     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1234     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1235 
1236 #ifdef ASSERT
1237     if (UseObjectMonitorTable) {
1238       for (ObjectMonitor* monitor : delete_list) {
1239         assert(!ObjectSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1240       }
1241     }
1242 #endif
1243 
1244     log.before_handshake(unlinked_count);
1245 
1246     // A JavaThread needs to handshake in order to safely free the
1247     // ObjectMonitors that were deflated in this cycle.
1248     DeflationHandshakeClosure dhc;
1249     Handshake::execute(&dhc);
1250     // Also, we sync and desync GC threads around the handshake, so that they can
1251     // safely read the mark-word and look-through to the object-monitor, without
1252     // being afraid that the object-monitor is going away.
1253     VM_RendezvousGCThreads sync_gc;
1254     VMThread::execute(&sync_gc);
1255 
1256     log.after_handshake();
1257 
1258     // After the handshake, safely free the ObjectMonitors that were
1259     // deflated and unlinked in this cycle.
1260 
1261     // Delete the unlinked ObjectMonitors.
1262     deleted_count = delete_monitors(&delete_list, &safepointer);
1263     assert(unlinked_count == deleted_count, "must be");
1264   }
1265 
1266   log.end(deflated_count, unlinked_count);
1267 
1268   GVars.stw_random = os::random();
1269 
1270   if (deflated_count != 0) {
1271     _no_progress_cnt = 0;
1272   } else if (_no_progress_skip_increment) {
1273     _no_progress_skip_increment = false;
1274   } else {
1275     _no_progress_cnt++;
1276   }
1277 
1278   return deflated_count;
1279 }
1280 
1281 // Monitor cleanup on JavaThread::exit
1282 
1283 // Iterate through monitor cache and attempt to release thread's monitors
1284 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1285  private:
1286   JavaThread* _thread;
1287 
1288  public:
1289   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1290   void do_monitor(ObjectMonitor* mid) {
1291     mid->complete_exit(_thread);
1292   }
1293 };
1294 
1295 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1296 // ignored.  This is meant to be called during JNI thread detach which assumes
1297 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1298 // Scanning the extant monitor list can be time consuming.
1299 // A simple optimization is to add a per-thread flag that indicates a thread
1300 // called jni_monitorenter() during its lifetime.
1301 //
1302 // Instead of NoSafepointVerifier it might be cheaper to
1303 // use an idiom of the form:
1304 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1305 //   <code that must not run at safepoint>
1306 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1307 // Since the tests are extremely cheap we could leave them enabled
1308 // for normal product builds.
1309 
1310 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1311   assert(current == JavaThread::current(), "must be current Java thread");
1312   NoSafepointVerifier nsv;
1313   ReleaseJavaMonitorsClosure rjmc(current);
1314   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1315   assert(!current->has_pending_exception(), "Should not be possible");
1316   current->clear_pending_exception();
1317 }
1318 
1319 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1320   switch (cause) {
1321     case inflate_cause_vm_internal:    return "VM Internal";
1322     case inflate_cause_monitor_enter:  return "Monitor Enter";
1323     case inflate_cause_wait:           return "Monitor Wait";
1324     case inflate_cause_notify:         return "Monitor Notify";
1325     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1326     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1327     default:
1328       ShouldNotReachHere();
1329   }
1330   return "Unknown";
1331 }
1332 
1333 //------------------------------------------------------------------------------
1334 // Debugging code
1335 
1336 u_char* ObjectSynchronizer::get_gvars_addr() {
1337   return (u_char*)&GVars;
1338 }
1339 
1340 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1341   return (u_char*)&GVars.hc_sequence;
1342 }
1343 
1344 size_t ObjectSynchronizer::get_gvars_size() {
1345   return sizeof(SharedGlobals);
1346 }
1347 
1348 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1349   return (u_char*)&GVars.stw_random;
1350 }
1351 
1352 // Do the final audit and print of ObjectMonitor stats; must be done
1353 // by the VMThread at VM exit time.
1354 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1355   assert(Thread::current()->is_VM_thread(), "sanity check");
1356 
1357   if (is_final_audit()) {  // Only do the audit once.
1358     return;
1359   }
1360   set_is_final_audit();
1361   log_info(monitorinflation)("Starting the final audit.");
1362 
1363   if (log_is_enabled(Info, monitorinflation)) {
1364     LogStreamHandle(Info, monitorinflation) ls;
1365     audit_and_print_stats(&ls, true /* on_exit */);
1366   }
1367 }
1368 
1369 // This function can be called by the MonitorDeflationThread or it can be called when
1370 // we are trying to exit the VM. The list walker functions can run in parallel with
1371 // the other list operations.
1372 // Calls to this function can be added in various places as a debugging
1373 // aid.
1374 //
1375 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1376   int error_cnt = 0;
1377 
1378   ls->print_cr("Checking in_use_list:");
1379   chk_in_use_list(ls, &error_cnt);
1380 
1381   if (error_cnt == 0) {
1382     ls->print_cr("No errors found in in_use_list checks.");
1383   } else {
1384     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1385   }
1386 
1387   // When exiting, only log the interesting entries at the Info level.
1388   // When called at intervals by the MonitorDeflationThread, log output
1389   // at the Trace level since there can be a lot of it.
1390   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
1391     LogStreamHandle(Trace, monitorinflation) ls_tr;
1392     log_in_use_monitor_details(&ls_tr, true /* log_all */);
1393   } else if (on_exit) {
1394     log_in_use_monitor_details(ls, false /* log_all */);
1395   }
1396 
1397   ls->flush();
1398 
1399   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1400 }
1401 
1402 // Check the in_use_list; log the results of the checks.
1403 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1404   size_t l_in_use_count = _in_use_list.count();
1405   size_t l_in_use_max = _in_use_list.max();
1406   out->print_cr("count=%zu, max=%zu", l_in_use_count,
1407                 l_in_use_max);
1408 
1409   size_t ck_in_use_count = 0;
1410   MonitorList::Iterator iter = _in_use_list.iterator();
1411   while (iter.has_next()) {
1412     ObjectMonitor* mid = iter.next();
1413     chk_in_use_entry(mid, out, error_cnt_p);
1414     ck_in_use_count++;
1415   }
1416 
1417   if (l_in_use_count == ck_in_use_count) {
1418     out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu",
1419                   l_in_use_count, ck_in_use_count);
1420   } else {
1421     out->print_cr("WARNING: in_use_count=%zu is not equal to "
1422                   "ck_in_use_count=%zu", l_in_use_count,
1423                   ck_in_use_count);
1424   }
1425 
1426   size_t ck_in_use_max = _in_use_list.max();
1427   if (l_in_use_max == ck_in_use_max) {
1428     out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu",
1429                   l_in_use_max, ck_in_use_max);
1430   } else {
1431     out->print_cr("WARNING: in_use_max=%zu is not equal to "
1432                   "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max);
1433   }
1434 }
1435 
1436 // Check an in-use monitor entry; log any errors.
1437 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1438                                           int* error_cnt_p) {
1439   if (n->owner_is_DEFLATER_MARKER()) {
1440     // This could happen when monitor deflation blocks for a safepoint.
1441     return;
1442   }
1443 
1444 
1445   if (n->metadata() == 0) {
1446     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1447                   "have non-null _metadata (header/hash) field.", p2i(n));
1448     *error_cnt_p = *error_cnt_p + 1;
1449   }
1450 
1451   const oop obj = n->object_peek();
1452   if (obj == nullptr) {
1453     return;
1454   }
1455 
1456   const markWord mark = obj->mark();
1457   if (!mark.has_monitor()) {
1458     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1459                   "object does not think it has a monitor: obj="
1460                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
1461                   p2i(obj), mark.value());
1462     *error_cnt_p = *error_cnt_p + 1;
1463     return;
1464   }
1465 
1466   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
1467   if (n != obj_mon) {
1468     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1469                   "object does not refer to the same monitor: obj="
1470                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
1471                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
1472     *error_cnt_p = *error_cnt_p + 1;
1473   }
1474 }
1475 
1476 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
1477 // flags indicate why the entry is in-use, 'object' and 'object type'
1478 // indicate the associated object and its type.
1479 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
1480   if (_in_use_list.count() > 0) {
1481     stringStream ss;
1482     out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)");
1483     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
1484     out->print_cr("%18s  %s  %18s  %18s",
1485                   "monitor", "BHL", "object", "object type");
1486     out->print_cr("==================  ===  ==================  ==================");
1487 
1488     auto is_interesting = [&](ObjectMonitor* monitor) {
1489       return log_all || monitor->has_owner() || monitor->is_busy();
1490     };
1491 
1492     monitors_iterate([&](ObjectMonitor* monitor) {
1493       if (is_interesting(monitor)) {
1494         const oop obj = monitor->object_peek();
1495         const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash();
1496         ResourceMark rm;
1497         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
1498                    monitor->is_busy(), hash != 0, monitor->has_owner(),
1499                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
1500         if (monitor->is_busy()) {
1501           out->print(" (%s)", monitor->is_busy_to_string(&ss));
1502           ss.reset();
1503         }
1504         out->cr();
1505       }
1506     });
1507   }
1508 
1509   out->flush();
1510 }
1511 
1512 ObjectMonitor* ObjectSynchronizer::get_or_insert_monitor_from_table(oop object, JavaThread* current, bool* inserted) {
1513   ObjectMonitor* monitor = get_monitor_from_table(current, object);
1514   if (monitor != nullptr) {
1515     *inserted = false;
1516     return monitor;
1517   }
1518 
1519   ObjectMonitor* alloced_monitor = new ObjectMonitor(object);
1520   alloced_monitor->set_anonymous_owner();
1521 
1522   // Try insert monitor
1523   monitor = add_monitor(current, alloced_monitor, object);
1524 
1525   *inserted = alloced_monitor == monitor;
1526   if (!*inserted) {
1527     delete alloced_monitor;
1528   }
1529 
1530   return monitor;
1531 }
1532 
1533 static void log_inflate(Thread* current, oop object, ObjectSynchronizer::InflateCause cause) {
1534   if (log_is_enabled(Trace, monitorinflation)) {
1535     ResourceMark rm(current);
1536     log_trace(monitorinflation)("inflate: object=" INTPTR_FORMAT ", mark="
1537                                 INTPTR_FORMAT ", type='%s' cause=%s", p2i(object),
1538                                 object->mark().value(), object->klass()->external_name(),
1539                                 ObjectSynchronizer::inflate_cause_name(cause));
1540   }
1541 }
1542 
1543 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1544                                        const oop obj,
1545                                        ObjectSynchronizer::InflateCause cause) {
1546   assert(event != nullptr, "invariant");
1547   const Klass* monitor_klass = obj->klass();
1548   if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
1549     return;
1550   }
1551   event->set_monitorClass(monitor_klass);
1552   event->set_address((uintptr_t)(void*)obj);
1553   event->set_cause((u1)cause);
1554   event->commit();
1555 }
1556 
1557 ObjectMonitor* ObjectSynchronizer::get_or_insert_monitor(oop object, JavaThread* current, ObjectSynchronizer::InflateCause cause) {
1558   assert(UseObjectMonitorTable, "must be");
1559 
1560   EventJavaMonitorInflate event;
1561 
1562   bool inserted;
1563   ObjectMonitor* monitor = get_or_insert_monitor_from_table(object, current, &inserted);
1564 
1565   if (inserted) {
1566     log_inflate(current, object, cause);
1567     if (event.should_commit()) {
1568       post_monitor_inflate_event(&event, object, cause);
1569     }
1570 
1571     // The monitor has an anonymous owner so it is safe from async deflation.
1572     ObjectSynchronizer::_in_use_list.add(monitor);
1573   }
1574 
1575   return monitor;
1576 }
1577 
1578 // Add the hashcode to the monitor to match the object and put it in the hashtable.
1579 ObjectMonitor* ObjectSynchronizer::add_monitor(JavaThread* current, ObjectMonitor* monitor, oop obj) {
1580   assert(UseObjectMonitorTable, "must be");
1581   assert(obj == monitor->object(), "must be");
1582 
1583   intptr_t hash = obj->mark().hash();
1584   assert(hash != 0, "must be set when claiming the object monitor");
1585   monitor->set_hash(hash);
1586 
1587   return ObjectMonitorTable::monitor_put_get(current, monitor, obj);
1588 }
1589 
1590 bool ObjectSynchronizer::remove_monitor(Thread* current, ObjectMonitor* monitor, oop obj) {
1591   assert(UseObjectMonitorTable, "must be");
1592   assert(monitor->object_peek() == obj, "must be, cleared objects are removed by is_dead");
1593 
1594   return ObjectMonitorTable::remove_monitor_entry(current, monitor);
1595 }
1596 
1597 void ObjectSynchronizer::deflate_mark_word(oop obj) {
1598   assert(UseObjectMonitorTable, "must be");
1599 
1600   markWord mark = obj->mark_acquire();
1601   assert(!mark.has_no_hash(), "obj with inflated monitor must have had a hash");
1602 
1603   while (mark.has_monitor()) {
1604     const markWord new_mark = mark.clear_lock_bits().set_unlocked();
1605     mark = obj->cas_set_mark(new_mark, mark);
1606   }
1607 }
1608 
1609 void ObjectSynchronizer::create_om_table() {
1610   if (!UseObjectMonitorTable) {
1611     return;
1612   }
1613   ObjectMonitorTable::create();
1614 }
1615 
1616 bool ObjectSynchronizer::needs_resize() {
1617   if (!UseObjectMonitorTable) {
1618     return false;
1619   }
1620   return ObjectMonitorTable::should_resize();
1621 }
1622 
1623 bool ObjectSynchronizer::resize_table(JavaThread* current) {
1624   if (!UseObjectMonitorTable) {
1625     return true;
1626   }
1627   return ObjectMonitorTable::resize(current);
1628 }
1629 
1630 class ObjectSynchronizer::LockStackInflateContendedLocks : private OopClosure {
1631  private:
1632   oop _contended_oops[LockStack::CAPACITY];
1633   int _length;
1634 
1635   void do_oop(oop* o) final {
1636     oop obj = *o;
1637     if (obj->mark_acquire().has_monitor()) {
1638       if (_length > 0 && _contended_oops[_length - 1] == obj) {
1639         // Recursive
1640         return;
1641       }
1642       _contended_oops[_length++] = obj;
1643     }
1644   }
1645 
1646   void do_oop(narrowOop* o) final {
1647     ShouldNotReachHere();
1648   }
1649 
1650  public:
1651   LockStackInflateContendedLocks() :
1652     _contended_oops(),
1653     _length(0) {};
1654 
1655   void inflate(JavaThread* current) {
1656     assert(current == JavaThread::current(), "must be");
1657     current->lock_stack().oops_do(this);
1658     for (int i = 0; i < _length; i++) {
1659       ObjectSynchronizer::
1660         inflate_fast_locked_object(_contended_oops[i], ObjectSynchronizer::inflate_cause_vm_internal, current, current);
1661     }
1662   }
1663 };
1664 
1665 void ObjectSynchronizer::ensure_lock_stack_space(JavaThread* current) {
1666   assert(current == JavaThread::current(), "must be");
1667   LockStack& lock_stack = current->lock_stack();
1668 
1669   // Make room on lock_stack
1670   if (lock_stack.is_full()) {
1671     // Inflate contended objects
1672     LockStackInflateContendedLocks().inflate(current);
1673     if (lock_stack.is_full()) {
1674       // Inflate the oldest object
1675       inflate_fast_locked_object(lock_stack.bottom(), ObjectSynchronizer::inflate_cause_vm_internal, current, current);
1676     }
1677   }
1678 }
1679 
1680 class ObjectSynchronizer::CacheSetter : StackObj {
1681   JavaThread* const _thread;
1682   BasicLock* const _lock;
1683   ObjectMonitor* _monitor;
1684 
1685   NONCOPYABLE(CacheSetter);
1686 
1687  public:
1688   CacheSetter(JavaThread* thread, BasicLock* lock) :
1689     _thread(thread),
1690     _lock(lock),
1691     _monitor(nullptr) {}
1692 
1693   ~CacheSetter() {
1694     // Only use the cache if using the table.
1695     if (UseObjectMonitorTable) {
1696       if (_monitor != nullptr) {
1697         // If the monitor is already in the BasicLock cache then it is most
1698         // likely in the thread cache, do not set it again to avoid reordering.
1699         if (_monitor != _lock->object_monitor_cache()) {
1700           _thread->om_set_monitor_cache(_monitor);
1701           _lock->set_object_monitor_cache(_monitor);
1702         }
1703       } else {
1704         _lock->clear_object_monitor_cache();
1705       }
1706     }
1707   }
1708 
1709   void set_monitor(ObjectMonitor* monitor) {
1710     assert(_monitor == nullptr, "only set once");
1711     _monitor = monitor;
1712   }
1713 
1714 };
1715 
1716 // Reads first from the BasicLock cache then from the OMCache in the current thread.
1717 // C2 fast-path may have put the monitor in the cache in the BasicLock.
1718 inline static ObjectMonitor* read_caches(JavaThread* current, BasicLock* lock, oop object) {
1719   ObjectMonitor* monitor = lock->object_monitor_cache();
1720   if (monitor == nullptr) {
1721     monitor = current->om_get_from_monitor_cache(object);
1722   }
1723   return monitor;
1724 }
1725 
1726 class ObjectSynchronizer::VerifyThreadState {
1727   bool _no_safepoint;
1728 
1729  public:
1730   VerifyThreadState(JavaThread* locking_thread, JavaThread* current) : _no_safepoint(locking_thread != current) {
1731     assert(current == Thread::current(), "must be");
1732     assert(locking_thread == current || locking_thread->is_obj_deopt_suspend(), "locking_thread may not run concurrently");
1733     if (_no_safepoint) {
1734       DEBUG_ONLY(JavaThread::current()->inc_no_safepoint_count();)
1735     }
1736   }
1737   ~VerifyThreadState() {
1738     if (_no_safepoint){
1739       DEBUG_ONLY(JavaThread::current()->dec_no_safepoint_count();)
1740     }
1741   }
1742 };
1743 
1744 inline bool ObjectSynchronizer::fast_lock_try_enter(oop obj, LockStack& lock_stack, JavaThread* current) {
1745   markWord mark = obj->mark();
1746   while (mark.is_unlocked()) {
1747     ensure_lock_stack_space(current);
1748     assert(!lock_stack.is_full(), "must have made room on the lock stack");
1749     assert(!lock_stack.contains(obj), "thread must not already hold the lock");
1750     // Try to swing into 'fast-locked' state.
1751     markWord locked_mark = mark.set_fast_locked();
1752     markWord old_mark = mark;
1753     mark = obj->cas_set_mark(locked_mark, old_mark);
1754     if (old_mark == mark) {
1755       // Successfully fast-locked, push object to lock-stack and return.
1756       lock_stack.push(obj);
1757       return true;
1758     }
1759   }
1760   return false;
1761 }
1762 
1763 bool ObjectSynchronizer::fast_lock_spin_enter(oop obj, LockStack& lock_stack, JavaThread* current, bool observed_deflation) {
1764   assert(UseObjectMonitorTable, "must be");
1765   // Will spin with exponential backoff with an accumulative O(2^spin_limit) spins.
1766   const int log_spin_limit = os::is_MP() ? FastLockingSpins : 1;
1767   const int log_min_safepoint_check_interval = 10;
1768 
1769   markWord mark = obj->mark();
1770   const auto should_spin = [&]() {
1771     if (!mark.has_monitor()) {
1772       // Spin while not inflated.
1773       return true;
1774     } else if (observed_deflation) {
1775       // Spin while monitor is being deflated.
1776       ObjectMonitor* monitor = ObjectSynchronizer::read_monitor(current, obj, mark);
1777       return monitor == nullptr || monitor->is_being_async_deflated();
1778     }
1779     // Else stop spinning.
1780     return false;
1781   };
1782   // Always attempt to lock once even when safepoint synchronizing.
1783   bool should_process = false;
1784   for (int i = 0; should_spin() && !should_process && i < log_spin_limit; i++) {
1785     // Spin with exponential backoff.
1786     const int total_spin_count = 1 << i;
1787     const int inner_spin_count = MIN2(1 << log_min_safepoint_check_interval, total_spin_count);
1788     const int outer_spin_count = total_spin_count / inner_spin_count;
1789     for (int outer = 0; outer < outer_spin_count; outer++) {
1790       should_process = SafepointMechanism::should_process(current);
1791       if (should_process) {
1792         // Stop spinning for safepoint.
1793         break;
1794       }
1795       for (int inner = 1; inner < inner_spin_count; inner++) {
1796         SpinPause();
1797       }
1798     }
1799 
1800     if (fast_lock_try_enter(obj, lock_stack, current)) return true;
1801   }
1802   return false;
1803 }
1804 
1805 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
1806   // When called with locking_thread != Thread::current() some mechanism must synchronize
1807   // the locking_thread with respect to the current thread. Currently only used when
1808   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
1809   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
1810 
1811   assert(!UseObjectMonitorTable || lock->object_monitor_cache() == nullptr, "must be cleared");
1812   JavaThread* current = JavaThread::current();
1813   VerifyThreadState vts(locking_thread, current);
1814 
1815   if (obj->klass()->is_value_based()) {
1816     ObjectSynchronizer::handle_sync_on_value_based_class(obj, locking_thread);
1817   }
1818 
1819   LockStack& lock_stack = locking_thread->lock_stack();
1820 
1821   ObjectMonitor* monitor = nullptr;
1822   if (lock_stack.contains(obj())) {
1823     monitor = inflate_fast_locked_object(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, locking_thread, current);
1824     bool entered = monitor->enter_for(locking_thread);
1825     assert(entered, "recursive ObjectMonitor::enter_for must succeed");
1826   } else {
1827     do {
1828       // It is assumed that enter_for must enter on an object without contention.
1829       monitor = inflate_and_enter(obj(), lock, ObjectSynchronizer::inflate_cause_monitor_enter, locking_thread, current);
1830       // But there may still be a race with deflation.
1831     } while (monitor == nullptr);
1832   }
1833 
1834   assert(monitor != nullptr, "ObjectSynchronizer::enter_for must succeed");
1835   assert(!UseObjectMonitorTable || lock->object_monitor_cache() == nullptr, "unused. already cleared");
1836 }
1837 
1838 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
1839   assert(current == JavaThread::current(), "must be");
1840 
1841   if (obj->klass()->is_value_based()) {
1842     ObjectSynchronizer::handle_sync_on_value_based_class(obj, current);
1843   }
1844 
1845   CacheSetter cache_setter(current, lock);
1846 
1847   // Used when deflation is observed. Progress here requires progress
1848   // from the deflator. After observing that the deflator is not
1849   // making progress (after two yields), switch to sleeping.
1850   SpinYield spin_yield(0, 2);
1851   bool observed_deflation = false;
1852 
1853   LockStack& lock_stack = current->lock_stack();
1854 
1855   if (!lock_stack.is_full() && lock_stack.try_recursive_enter(obj())) {
1856     // Recursively fast locked
1857     return;
1858   }
1859 
1860   if (lock_stack.contains(obj())) {
1861     ObjectMonitor* monitor = inflate_fast_locked_object(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, current, current);
1862     bool entered = monitor->enter(current);
1863     assert(entered, "recursive ObjectMonitor::enter must succeed");
1864     cache_setter.set_monitor(monitor);
1865     return;
1866   }
1867 
1868   while (true) {
1869     // Fast-locking does not use the 'lock' argument.
1870     // Fast-lock spinning to avoid inflating for short critical sections.
1871     // The goal is to only inflate when the extra cost of using ObjectMonitors
1872     // is worth it.
1873     // If deflation has been observed we also spin while deflation is ongoing.
1874     if (fast_lock_try_enter(obj(), lock_stack, current)) {
1875       return;
1876     } else if (UseObjectMonitorTable && fast_lock_spin_enter(obj(), lock_stack, current, observed_deflation)) {
1877       return;
1878     }
1879 
1880     if (observed_deflation) {
1881       spin_yield.wait();
1882     }
1883 
1884     ObjectMonitor* monitor = inflate_and_enter(obj(), lock, ObjectSynchronizer::inflate_cause_monitor_enter, current, current);
1885     if (monitor != nullptr) {
1886       cache_setter.set_monitor(monitor);
1887       return;
1888     }
1889 
1890     // If inflate_and_enter returns nullptr it is because a deflated monitor
1891     // was encountered. Fallback to fast locking. The deflater is responsible
1892     // for clearing out the monitor and transitioning the markWord back to
1893     // fast locking.
1894     observed_deflation = true;
1895   }
1896 }
1897 
1898 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
1899   assert(current == Thread::current(), "must be");
1900 
1901   markWord mark = object->mark();
1902   assert(!mark.is_unlocked(), "must be");
1903 
1904   LockStack& lock_stack = current->lock_stack();
1905   if (mark.is_fast_locked()) {
1906     if (lock_stack.try_recursive_exit(object)) {
1907       // This is a recursive exit which succeeded
1908       return;
1909     }
1910     if (lock_stack.is_recursive(object)) {
1911       // Must inflate recursive locks if try_recursive_exit fails
1912       // This happens for un-structured unlocks, could potentially
1913       // fix try_recursive_exit to handle these.
1914       inflate_fast_locked_object(object, ObjectSynchronizer::inflate_cause_vm_internal, current, current);
1915     }
1916   }
1917 
1918   while (mark.is_fast_locked()) {
1919     markWord unlocked_mark = mark.set_unlocked();
1920     markWord old_mark = mark;
1921     mark = object->cas_set_mark(unlocked_mark, old_mark);
1922     if (old_mark == mark) {
1923       // CAS successful, remove from lock_stack
1924       size_t recursion = lock_stack.remove(object) - 1;
1925       assert(recursion == 0, "Should not have unlocked here");
1926       return;
1927     }
1928   }
1929 
1930   assert(mark.has_monitor(), "must be");
1931   // The monitor exists
1932   ObjectMonitor* monitor;
1933   if (UseObjectMonitorTable) {
1934     monitor = read_caches(current, lock, object);
1935     if (monitor == nullptr) {
1936       monitor = get_monitor_from_table(current, object);
1937     }
1938   } else {
1939     monitor = ObjectSynchronizer::read_monitor(mark);
1940   }
1941   if (monitor->has_anonymous_owner()) {
1942     assert(current->lock_stack().contains(object), "current must have object on its lock stack");
1943     monitor->set_owner_from_anonymous(current);
1944     monitor->set_recursions(current->lock_stack().remove(object) - 1);
1945   }
1946 
1947   monitor->exit(current);
1948 }
1949 
1950 // ObjectSynchronizer::inflate_locked_or_imse is used to get an
1951 // inflated ObjectMonitor* from contexts which require that, such as
1952 // notify/wait and jni_exit. Fast locking keeps the invariant that it
1953 // only inflates if it is already locked by the current thread or the current
1954 // thread is in the process of entering. To maintain this invariant we need to
1955 // throw a java.lang.IllegalMonitorStateException before inflating if the
1956 // current thread is not the owner.
1957 ObjectMonitor* ObjectSynchronizer::inflate_locked_or_imse(oop obj, ObjectSynchronizer::InflateCause cause, TRAPS) {
1958   JavaThread* current = THREAD;
1959 
1960   for (;;) {
1961     markWord mark = obj->mark_acquire();
1962     if (mark.is_unlocked()) {
1963       // No lock, IMSE.
1964       THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1965                  "current thread is not owner", nullptr);
1966     }
1967 
1968     if (mark.is_fast_locked()) {
1969       if (!current->lock_stack().contains(obj)) {
1970         // Fast locked by other thread, IMSE.
1971         THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1972                    "current thread is not owner", nullptr);
1973       } else {
1974         // Current thread owns the lock, must inflate
1975         return inflate_fast_locked_object(obj, cause, current, current);
1976       }
1977     }
1978 
1979     assert(mark.has_monitor(), "must be");
1980     ObjectMonitor* monitor = ObjectSynchronizer::read_monitor(current, obj, mark);
1981     if (monitor != nullptr) {
1982       if (monitor->has_anonymous_owner()) {
1983         LockStack& lock_stack = current->lock_stack();
1984         if (lock_stack.contains(obj)) {
1985           // Current thread owns the lock but someone else inflated it.
1986           // Fix owner and pop lock stack.
1987           monitor->set_owner_from_anonymous(current);
1988           monitor->set_recursions(lock_stack.remove(obj) - 1);
1989         } else {
1990           // Fast locked (and inflated) by other thread, or deflation in progress, IMSE.
1991           THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1992                      "current thread is not owner", nullptr);
1993         }
1994       }
1995       return monitor;
1996     }
1997   }
1998 }
1999 
2000 ObjectMonitor* ObjectSynchronizer::inflate_into_object_header(oop object, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, Thread* current) {
2001 
2002   // The JavaThread* locking parameter requires that the locking_thread == JavaThread::current,
2003   // or is suspended throughout the call by some other mechanism.
2004   // Even with fast locking the thread might be nullptr when called from a non
2005   // JavaThread. (As may still be the case from FastHashCode). However it is only
2006   // important for the correctness of the fast locking algorithm that the thread
2007   // is set when called from ObjectSynchronizer::enter from the owning thread,
2008   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
2009   EventJavaMonitorInflate event;
2010 
2011   for (;;) {
2012     const markWord mark = object->mark_acquire();
2013 
2014     // The mark can be in one of the following states:
2015     // *  inflated     - Just return if using stack-locking.
2016     //                   If using fast-locking and the ObjectMonitor owner
2017     //                   is anonymous and the locking_thread owns the
2018     //                   object lock, then we make the locking_thread
2019     //                   the ObjectMonitor owner and remove the lock from
2020     //                   the locking_thread's lock stack.
2021     // *  fast-locked  - Coerce it to inflated from fast-locked.
2022     // *  unlocked     - Aggressively inflate the object.
2023 
2024     // CASE: inflated
2025     if (mark.has_monitor()) {
2026       ObjectMonitor* inf = mark.monitor();
2027       markWord dmw = inf->header();
2028       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2029       if (inf->has_anonymous_owner() &&
2030           locking_thread != nullptr && locking_thread->lock_stack().contains(object)) {
2031         inf->set_owner_from_anonymous(locking_thread);
2032         size_t removed = locking_thread->lock_stack().remove(object);
2033         inf->set_recursions(removed - 1);
2034       }
2035       return inf;
2036     }
2037 
2038     // CASE: fast-locked
2039     // Could be fast-locked either by the locking_thread or by some other thread.
2040     //
2041     // Note that we allocate the ObjectMonitor speculatively, _before_
2042     // attempting to set the object's mark to the new ObjectMonitor. If
2043     // the locking_thread owns the monitor, then we set the ObjectMonitor's
2044     // owner to the locking_thread. Otherwise, we set the ObjectMonitor's owner
2045     // to anonymous. If we lose the race to set the object's mark to the
2046     // new ObjectMonitor, then we just delete it and loop around again.
2047     //
2048     if (mark.is_fast_locked()) {
2049       ObjectMonitor* monitor = new ObjectMonitor(object);
2050       monitor->set_header(mark.set_unlocked());
2051       bool own = locking_thread != nullptr && locking_thread->lock_stack().contains(object);
2052       if (own) {
2053         // Owned by locking_thread.
2054         monitor->set_owner(locking_thread);
2055       } else {
2056         // Owned by somebody else.
2057         monitor->set_anonymous_owner();
2058       }
2059       markWord monitor_mark = markWord::encode(monitor);
2060       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
2061       if (old_mark == mark) {
2062         // Success! Return inflated monitor.
2063         if (own) {
2064           size_t removed = locking_thread->lock_stack().remove(object);
2065           monitor->set_recursions(removed - 1);
2066         }
2067         // Once the ObjectMonitor is configured and object is associated
2068         // with the ObjectMonitor, it is safe to allow async deflation:
2069         ObjectSynchronizer::_in_use_list.add(monitor);
2070 
2071         log_inflate(current, object, cause);
2072         if (event.should_commit()) {
2073           post_monitor_inflate_event(&event, object, cause);
2074         }
2075         return monitor;
2076       } else {
2077         delete monitor;
2078         continue;  // Interference -- just retry
2079       }
2080     }
2081 
2082     // CASE: unlocked
2083     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
2084     // If we know we're inflating for entry it's better to inflate by swinging a
2085     // pre-locked ObjectMonitor pointer into the object header.   A successful
2086     // CAS inflates the object *and* confers ownership to the inflating thread.
2087     // In the current implementation we use a 2-step mechanism where we CAS()
2088     // to inflate and then CAS() again to try to swing _owner from null to current.
2089     // An inflateTry() method that we could call from enter() would be useful.
2090 
2091     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
2092     ObjectMonitor* m = new ObjectMonitor(object);
2093     // prepare m for installation - set monitor to initial state
2094     m->set_header(mark);
2095 
2096     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
2097       delete m;
2098       m = nullptr;
2099       continue;
2100       // interference - the markword changed - just retry.
2101       // The state-transitions are one-way, so there's no chance of
2102       // live-lock -- "Inflated" is an absorbing state.
2103     }
2104 
2105     // Once the ObjectMonitor is configured and object is associated
2106     // with the ObjectMonitor, it is safe to allow async deflation:
2107     ObjectSynchronizer::_in_use_list.add(m);
2108 
2109     log_inflate(current, object, cause);
2110     if (event.should_commit()) {
2111       post_monitor_inflate_event(&event, object, cause);
2112     }
2113     return m;
2114   }
2115 }
2116 
2117 ObjectMonitor* ObjectSynchronizer::inflate_fast_locked_object(oop object, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, JavaThread* current) {
2118   VerifyThreadState vts(locking_thread, current);
2119   assert(locking_thread->lock_stack().contains(object), "locking_thread must have object on its lock stack");
2120 
2121   ObjectMonitor* monitor;
2122 
2123   if (!UseObjectMonitorTable) {
2124     return inflate_into_object_header(object, cause, locking_thread, current);
2125   }
2126 
2127   // Inflating requires a hash code
2128   ObjectSynchronizer::FastHashCode(current, object);
2129 
2130   markWord mark = object->mark_acquire();
2131   assert(!mark.is_unlocked(), "Cannot be unlocked");
2132 
2133   for (;;) {
2134     // Fetch the monitor from the table
2135     monitor = get_or_insert_monitor(object, current, cause);
2136 
2137     // ObjectMonitors are always inserted as anonymously owned, this thread is
2138     // the current holder of the monitor. So unless the entry is stale and
2139     // contains a deflating monitor it must be anonymously owned.
2140     if (monitor->has_anonymous_owner()) {
2141       // The monitor must be anonymously owned if it was added
2142       assert(monitor == get_monitor_from_table(current, object), "The monitor must be found");
2143       // New fresh monitor
2144       break;
2145     }
2146 
2147     // If the monitor was not anonymously owned then we got a deflating monitor
2148     // from the table. We need to let the deflator make progress and remove this
2149     // entry before we are allowed to add a new one.
2150     os::naked_yield();
2151     assert(monitor->is_being_async_deflated(), "Should be the reason");
2152   }
2153 
2154   // Set the mark word; loop to handle concurrent updates to other parts of the mark word
2155   while (mark.is_fast_locked()) {
2156     mark = object->cas_set_mark(mark.set_has_monitor(), mark);
2157   }
2158 
2159   // Indicate that the monitor now has a known owner
2160   monitor->set_owner_from_anonymous(locking_thread);
2161 
2162   // Remove the entry from the thread's lock stack
2163   monitor->set_recursions(locking_thread->lock_stack().remove(object) - 1);
2164 
2165   if (locking_thread == current) {
2166     // Only change the thread local state of the current thread.
2167     locking_thread->om_set_monitor_cache(monitor);
2168   }
2169 
2170   return monitor;
2171 }
2172 
2173 ObjectMonitor* ObjectSynchronizer::inflate_and_enter(oop object, BasicLock* lock, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, JavaThread* current) {
2174   VerifyThreadState vts(locking_thread, current);
2175 
2176   // Note: In some paths (deoptimization) the 'current' thread inflates and
2177   // enters the lock on behalf of the 'locking_thread' thread.
2178 
2179   ObjectMonitor* monitor = nullptr;
2180 
2181   if (!UseObjectMonitorTable) {
2182     // Do the old inflate and enter.
2183     monitor = inflate_into_object_header(object, cause, locking_thread, current);
2184 
2185     bool entered;
2186     if (locking_thread == current) {
2187       entered = monitor->enter(locking_thread);
2188     } else {
2189       entered = monitor->enter_for(locking_thread);
2190     }
2191 
2192     // enter returns false for deflation found.
2193     return entered ? monitor : nullptr;
2194   }
2195 
2196   NoSafepointVerifier nsv;
2197 
2198   // Try to get the monitor from the thread-local cache.
2199   // There's no need to use the cache if we are locking
2200   // on behalf of another thread.
2201   if (current == locking_thread) {
2202     monitor = read_caches(current, lock, object);
2203   }
2204 
2205   // Get or create the monitor
2206   if (monitor == nullptr) {
2207     // Lightweight monitors require that hash codes are installed first
2208     ObjectSynchronizer::FastHashCode(locking_thread, object);
2209     monitor = get_or_insert_monitor(object, current, cause);
2210   }
2211 
2212   if (monitor->try_enter(locking_thread)) {
2213     return monitor;
2214   }
2215 
2216   // Holds is_being_async_deflated() stable throughout this function.
2217   ObjectMonitorContentionMark contention_mark(monitor);
2218 
2219   /// First handle the case where the monitor from the table is deflated
2220   if (monitor->is_being_async_deflated()) {
2221     // The MonitorDeflation thread is deflating the monitor. The locking thread
2222     // must spin until further progress has been made.
2223 
2224     // Clear the BasicLock cache as it may contain this monitor.
2225     lock->clear_object_monitor_cache();
2226 
2227     const markWord mark = object->mark_acquire();
2228 
2229     if (mark.has_monitor()) {
2230       // Waiting on the deflation thread to remove the deflated monitor from the table.
2231       os::naked_yield();
2232 
2233     } else if (mark.is_fast_locked()) {
2234       // Some other thread managed to fast-lock the lock, or this is a
2235       // recursive lock from the same thread; yield for the deflation
2236       // thread to remove the deflated monitor from the table.
2237       os::naked_yield();
2238 
2239     } else {
2240       assert(mark.is_unlocked(), "Implied");
2241       // Retry immediately
2242     }
2243 
2244     // Retry
2245     return nullptr;
2246   }
2247 
2248   for (;;) {
2249     const markWord mark = object->mark_acquire();
2250     // The mark can be in one of the following states:
2251     // *  inflated     - If the ObjectMonitor owner is anonymous
2252     //                   and the locking_thread owns the object
2253     //                   lock, then we make the locking_thread
2254     //                   the ObjectMonitor owner and remove the
2255     //                   lock from the locking_thread's lock stack.
2256     // *  fast-locked  - Coerce it to inflated from fast-locked.
2257     // *  neutral      - Inflate the object. Successful CAS is locked
2258 
2259     // CASE: inflated
2260     if (mark.has_monitor()) {
2261       LockStack& lock_stack = locking_thread->lock_stack();
2262       if (monitor->has_anonymous_owner() && lock_stack.contains(object)) {
2263         // The lock is fast-locked by the locking thread,
2264         // convert it to a held monitor with a known owner.
2265         monitor->set_owner_from_anonymous(locking_thread);
2266         monitor->set_recursions(lock_stack.remove(object) - 1);
2267       }
2268 
2269       break; // Success
2270     }
2271 
2272     // CASE: fast-locked
2273     // Could be fast-locked either by locking_thread or by some other thread.
2274     //
2275     if (mark.is_fast_locked()) {
2276       markWord old_mark = object->cas_set_mark(mark.set_has_monitor(), mark);
2277       if (old_mark != mark) {
2278         // CAS failed
2279         continue;
2280       }
2281 
2282       // Success! Return inflated monitor.
2283       LockStack& lock_stack = locking_thread->lock_stack();
2284       if (lock_stack.contains(object)) {
2285         // The lock is fast-locked by the locking thread,
2286         // convert it to a held monitor with a known owner.
2287         monitor->set_owner_from_anonymous(locking_thread);
2288         monitor->set_recursions(lock_stack.remove(object) - 1);
2289       }
2290 
2291       break; // Success
2292     }
2293 
2294     // CASE: neutral (unlocked)
2295 
2296     // Catch if the object's header is not neutral (not locked and
2297     // not marked is what we care about here).
2298     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
2299     markWord old_mark = object->cas_set_mark(mark.set_has_monitor(), mark);
2300     if (old_mark != mark) {
2301       // CAS failed
2302       continue;
2303     }
2304 
2305     // Transitioned from unlocked to monitor means locking_thread owns the lock.
2306     monitor->set_owner_from_anonymous(locking_thread);
2307 
2308     return monitor;
2309   }
2310 
2311   if (current == locking_thread) {
2312     // One round of spinning
2313     if (monitor->spin_enter(locking_thread)) {
2314       return monitor;
2315     }
2316 
2317     // Monitor is contended, take the time before entering to fix the lock stack.
2318     LockStackInflateContendedLocks().inflate(current);
2319   }
2320 
2321   // enter can block for safepoints; clear the unhandled object oop
2322   PauseNoSafepointVerifier pnsv(&nsv);
2323   object = nullptr;
2324 
2325   if (current == locking_thread) {
2326     monitor->enter_with_contention_mark(locking_thread, contention_mark);
2327   } else {
2328     monitor->enter_for_with_contention_mark(locking_thread, contention_mark);
2329   }
2330 
2331   return monitor;
2332 }
2333 
2334 void ObjectSynchronizer::deflate_monitor(Thread* current, oop obj, ObjectMonitor* monitor) {
2335   if (obj != nullptr) {
2336     deflate_mark_word(obj);
2337   }
2338   bool removed = remove_monitor(current, monitor, obj);
2339   if (obj != nullptr) {
2340     assert(removed, "Should have removed the entry if obj was alive");
2341   }
2342 }
2343 
2344 ObjectMonitor* ObjectSynchronizer::get_monitor_from_table(Thread* current, oop obj) {
2345   assert(UseObjectMonitorTable, "must be");
2346   return ObjectMonitorTable::monitor_get(current, obj);
2347 }
2348 
2349 bool ObjectSynchronizer::contains_monitor(Thread* current, ObjectMonitor* monitor) {
2350   assert(UseObjectMonitorTable, "must be");
2351   return ObjectMonitorTable::contains_monitor(current, monitor);
2352 }
2353 
2354 ObjectMonitor* ObjectSynchronizer::read_monitor(markWord mark) {
2355   return mark.monitor();
2356 }
2357 
2358 ObjectMonitor* ObjectSynchronizer::read_monitor(Thread* current, oop obj) {
2359   return ObjectSynchronizer::read_monitor(current, obj, obj->mark());
2360 }
2361 
2362 ObjectMonitor* ObjectSynchronizer::read_monitor(Thread* current, oop obj, markWord mark) {
2363   if (!UseObjectMonitorTable) {
2364     return read_monitor(mark);
2365   } else {
2366     return ObjectSynchronizer::get_monitor_from_table(current, obj);
2367   }
2368 }
2369 
2370 bool ObjectSynchronizer::quick_enter_internal(oop obj, BasicLock* lock, JavaThread* current) {
2371   assert(current->thread_state() == _thread_in_Java, "must be");
2372   assert(obj != nullptr, "must be");
2373   NoSafepointVerifier nsv;
2374 
2375   LockStack& lock_stack = current->lock_stack();
2376   if (lock_stack.is_full()) {
2377     // Always go into runtime if the lock stack is full.
2378     return false;
2379   }
2380 
2381   const markWord mark = obj->mark();
2382 
2383 #ifndef _LP64
2384   // Only for 32bit which has limited support for fast locking outside the runtime.
2385   if (lock_stack.try_recursive_enter(obj)) {
2386     // Recursive lock successful.
2387     return true;
2388   }
2389 
2390   if (mark.is_unlocked()) {
2391     markWord locked_mark = mark.set_fast_locked();
2392     if (obj->cas_set_mark(locked_mark, mark) == mark) {
2393       // Successfully fast-locked, push object to lock-stack and return.
2394       lock_stack.push(obj);
2395       return true;
2396     }
2397   }
2398 #endif
2399 
2400   if (mark.has_monitor()) {
2401     ObjectMonitor* monitor;
2402     if (UseObjectMonitorTable) {
2403       monitor = read_caches(current, lock, obj);
2404     } else {
2405       monitor = ObjectSynchronizer::read_monitor(mark);
2406     }
2407 
2408     if (monitor == nullptr) {
2409       // Take the slow-path on a cache miss.
2410       return false;
2411     }
2412 
2413     if (UseObjectMonitorTable) {
2414       // Set the monitor regardless of success.
2415       // Either we successfully lock on the monitor, or we retry with the
2416       // monitor in the slow path. If the monitor gets deflated, it will be
2417       // cleared, either by the CacheSetter if we fast lock in enter or in
2418       // inflate_and_enter when we see that the monitor is deflated.
2419       lock->set_object_monitor_cache(monitor);
2420     }
2421 
2422     if (monitor->spin_enter(current)) {
2423       return true;
2424     }
2425   }
2426 
2427   // Slow-path.
2428   return false;
2429 }
2430 
2431 bool ObjectSynchronizer::quick_enter(oop obj, BasicLock* lock, JavaThread* current) {
2432   assert(current->thread_state() == _thread_in_Java, "invariant");
2433   NoSafepointVerifier nsv;
2434   if (obj == nullptr) return false;       // Need to throw NPE
2435 
2436   if (obj->klass()->is_value_based()) {
2437     return false;
2438   }
2439 
2440   return ObjectSynchronizer::quick_enter_internal(obj, lock, current);
2441 }