1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/linkedlist.hpp" 67 #include "utilities/preserveException.hpp" 68 69 class ObjectMonitorDeflationLogging; 70 71 void MonitorList::add(ObjectMonitor* m) { 72 ObjectMonitor* head; 73 do { 74 head = Atomic::load(&_head); 75 m->set_next_om(head); 76 } while (Atomic::cmpxchg(&_head, head, m) != head); 77 78 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 79 size_t old_max; 80 do { 81 old_max = Atomic::load(&_max); 82 if (count <= old_max) { 83 break; 84 } 85 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 86 } 87 88 size_t MonitorList::count() const { 89 return Atomic::load(&_count); 90 } 91 92 size_t MonitorList::max() const { 93 return Atomic::load(&_max); 94 } 95 96 class ObjectMonitorDeflationSafepointer : public StackObj { 97 JavaThread* const _current; 98 ObjectMonitorDeflationLogging* const _log; 99 100 public: 101 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 102 : _current(current), _log(log) {} 103 104 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 105 }; 106 107 // Walk the in-use list and unlink deflated ObjectMonitors. 108 // Returns the number of unlinked ObjectMonitors. 109 size_t MonitorList::unlink_deflated(size_t deflated_count, 110 GrowableArray<ObjectMonitor*>* unlinked_list, 111 ObjectMonitorDeflationSafepointer* safepointer) { 112 size_t unlinked_count = 0; 113 ObjectMonitor* prev = nullptr; 114 ObjectMonitor* m = Atomic::load_acquire(&_head); 115 116 while (m != nullptr) { 117 if (m->is_being_async_deflated()) { 118 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 119 // modify the list once per batch. The batch starts at "m". 120 size_t unlinked_batch = 0; 121 ObjectMonitor* next = m; 122 // Look for at most MonitorUnlinkBatch monitors, or the number of 123 // deflated and not unlinked monitors, whatever comes first. 124 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 125 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 126 do { 127 ObjectMonitor* next_next = next->next_om(); 128 unlinked_batch++; 129 unlinked_list->append(next); 130 next = next_next; 131 if (unlinked_batch >= unlinked_batch_limit) { 132 // Reached the max batch, so bail out of the gathering loop. 133 break; 134 } 135 if (prev == nullptr && Atomic::load(&_head) != m) { 136 // Current batch used to be at head, but it is not at head anymore. 137 // Bail out and figure out where we currently are. This avoids long 138 // walks searching for new prev during unlink under heavy list inserts. 139 break; 140 } 141 } while (next != nullptr && next->is_being_async_deflated()); 142 143 // Unlink the found batch. 144 if (prev == nullptr) { 145 // The current batch is the first batch, so there is a chance that it starts at head. 146 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 147 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 148 if (prev_head != m) { 149 // Something must have updated the head. Figure out the actual prev for this batch. 150 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 151 prev = n; 152 } 153 assert(prev != nullptr, "Should have found the prev for the current batch"); 154 prev->set_next_om(next); 155 } 156 } else { 157 // The current batch is preceded by another batch. This guarantees the current batch 158 // does not start at head. Unlink the entire current batch without updating the head. 159 assert(Atomic::load(&_head) != m, "Sanity"); 160 prev->set_next_om(next); 161 } 162 163 unlinked_count += unlinked_batch; 164 if (unlinked_count >= deflated_count) { 165 // Reached the max so bail out of the searching loop. 166 // There should be no more deflated monitors left. 167 break; 168 } 169 m = next; 170 } else { 171 prev = m; 172 m = m->next_om(); 173 } 174 175 // Must check for a safepoint/handshake and honor it. 176 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 177 } 178 179 #ifdef ASSERT 180 // Invariant: the code above should unlink all deflated monitors. 181 // The code that runs after this unlinking does not expect deflated monitors. 182 // Notably, attempting to deflate the already deflated monitor would break. 183 { 184 ObjectMonitor* m = Atomic::load_acquire(&_head); 185 while (m != nullptr) { 186 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 187 m = m->next_om(); 188 } 189 } 190 #endif 191 192 Atomic::sub(&_count, unlinked_count); 193 return unlinked_count; 194 } 195 196 MonitorList::Iterator MonitorList::iterator() const { 197 return Iterator(Atomic::load_acquire(&_head)); 198 } 199 200 ObjectMonitor* MonitorList::Iterator::next() { 201 ObjectMonitor* current = _current; 202 _current = current->next_om(); 203 return current; 204 } 205 206 // The "core" versions of monitor enter and exit reside in this file. 207 // The interpreter and compilers contain specialized transliterated 208 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 209 // fast_lock(...) for instance. If you make changes here, make sure to modify the 210 // interpreter, and both C1 and C2 fast-path inline locking code emission. 211 // 212 // ----------------------------------------------------------------------------- 213 214 #ifdef DTRACE_ENABLED 215 216 // Only bother with this argument setup if dtrace is available 217 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 218 219 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 220 char* bytes = nullptr; \ 221 int len = 0; \ 222 jlong jtid = SharedRuntime::get_java_tid(thread); \ 223 Symbol* klassname = obj->klass()->name(); \ 224 if (klassname != nullptr) { \ 225 bytes = (char*)klassname->bytes(); \ 226 len = klassname->utf8_length(); \ 227 } 228 229 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 230 { \ 231 if (DTraceMonitorProbes) { \ 232 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 233 HOTSPOT_MONITOR_WAIT(jtid, \ 234 (uintptr_t)(monitor), bytes, len, (millis)); \ 235 } \ 236 } 237 238 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 239 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 240 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 241 242 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 243 { \ 244 if (DTraceMonitorProbes) { \ 245 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 246 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 247 (uintptr_t)(monitor), bytes, len); \ 248 } \ 249 } 250 251 #else // ndef DTRACE_ENABLED 252 253 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 254 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 255 256 #endif // ndef DTRACE_ENABLED 257 258 // This exists only as a workaround of dtrace bug 6254741 259 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 260 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 261 return 0; 262 } 263 264 static constexpr size_t inflation_lock_count() { 265 return 256; 266 } 267 268 // Static storage for an array of PlatformMutex. 269 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 270 271 static inline PlatformMutex* inflation_lock(size_t index) { 272 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 273 } 274 275 void ObjectSynchronizer::initialize() { 276 for (size_t i = 0; i < inflation_lock_count(); i++) { 277 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 278 } 279 // Start the ceiling with the estimate for one thread. 280 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 281 282 // Start the timer for deflations, so it does not trigger immediately. 283 _last_async_deflation_time_ns = os::javaTimeNanos(); 284 285 if (LockingMode == LM_LIGHTWEIGHT) { 286 LightweightSynchronizer::initialize(); 287 } 288 } 289 290 MonitorList ObjectSynchronizer::_in_use_list; 291 // monitors_used_above_threshold() policy is as follows: 292 // 293 // The ratio of the current _in_use_list count to the ceiling is used 294 // to determine if we are above MonitorUsedDeflationThreshold and need 295 // to do an async monitor deflation cycle. The ceiling is increased by 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 298 // removed from the system. 299 // 300 // Note: If the _in_use_list max exceeds the ceiling, then 301 // monitors_used_above_threshold() will use the in_use_list max instead 302 // of the thread count derived ceiling because we have used more 303 // ObjectMonitors than the estimated average. 304 // 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 306 // no-progress async monitor deflation cycles in a row, then the ceiling 307 // is adjusted upwards by monitors_used_above_threshold(). 308 // 309 // Start the ceiling with the estimate for one thread in initialize() 310 // which is called after cmd line options are processed. 311 static size_t _in_use_list_ceiling = 0; 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 313 bool volatile ObjectSynchronizer::_is_final_audit = false; 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 315 static uintx _no_progress_cnt = 0; 316 static bool _no_progress_skip_increment = false; 317 318 // These checks are required for wait, notify and exit to avoid inflating the monitor to 319 // find out this inline type object cannot be locked. 320 #define CHECK_THROW_NOSYNC_IMSE(obj) \ 321 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 322 JavaThread* THREAD = current; \ 323 ResourceMark rm(THREAD); \ 324 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 325 } 326 327 #define CHECK_THROW_NOSYNC_IMSE_0(obj) \ 328 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 329 JavaThread* THREAD = current; \ 330 ResourceMark rm(THREAD); \ 331 THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 332 } 333 334 // =====================> Quick functions 335 336 // The quick_* forms are special fast-path variants used to improve 337 // performance. In the simplest case, a "quick_*" implementation could 338 // simply return false, in which case the caller will perform the necessary 339 // state transitions and call the slow-path form. 340 // The fast-path is designed to handle frequently arising cases in an efficient 341 // manner and is just a degenerate "optimistic" variant of the slow-path. 342 // returns true -- to indicate the call was satisfied. 343 // returns false -- to indicate the call needs the services of the slow-path. 344 // A no-loitering ordinance is in effect for code in the quick_* family 345 // operators: safepoints or indefinite blocking (blocking that might span a 346 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 347 // entry. 348 // 349 // Consider: An interesting optimization is to have the JIT recognize the 350 // following common idiom: 351 // synchronized (someobj) { .... ; notify(); } 352 // That is, we find a notify() or notifyAll() call that immediately precedes 353 // the monitorexit operation. In that case the JIT could fuse the operations 354 // into a single notifyAndExit() runtime primitive. 355 356 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 357 assert(current->thread_state() == _thread_in_Java, "invariant"); 358 NoSafepointVerifier nsv; 359 if (obj == nullptr) return false; // slow-path for invalid obj 360 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 361 const markWord mark = obj->mark(); 362 363 if (LockingMode == LM_LIGHTWEIGHT) { 364 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 365 // Degenerate notify 366 // fast-locked by caller so by definition the implied waitset is empty. 367 return true; 368 } 369 } else if (LockingMode == LM_LEGACY) { 370 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 371 // Degenerate notify 372 // stack-locked by caller so by definition the implied waitset is empty. 373 return true; 374 } 375 } 376 377 if (mark.has_monitor()) { 378 ObjectMonitor* const mon = read_monitor(current, obj, mark); 379 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 380 // Racing with inflation/deflation go slow path 381 return false; 382 } 383 assert(mon->object() == oop(obj), "invariant"); 384 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 385 386 if (mon->first_waiter() != nullptr) { 387 // We have one or more waiters. Since this is an inflated monitor 388 // that we own, we quickly notify them here and now, avoiding the slow-path. 389 if (all) { 390 mon->quick_notifyAll(current); 391 } else { 392 mon->quick_notify(current); 393 } 394 } 395 return true; 396 } 397 398 // other IMS exception states take the slow-path 399 return false; 400 } 401 402 static bool useHeavyMonitors() { 403 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 404 return LockingMode == LM_MONITOR; 405 #else 406 return false; 407 #endif 408 } 409 410 // The LockNode emitted directly at the synchronization site would have 411 // been too big if it were to have included support for the cases of inflated 412 // recursive enter and exit, so they go here instead. 413 // Note that we can't safely call AsyncPrintJavaStack() from within 414 // quick_enter() as our thread state remains _in_Java. 415 416 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 417 assert(current->thread_state() == _thread_in_Java, "invariant"); 418 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 419 420 if (useHeavyMonitors()) { 421 return false; // Slow path 422 } 423 424 assert(LockingMode == LM_LEGACY, "legacy mode below"); 425 426 const markWord mark = obj->mark(); 427 428 if (mark.has_monitor()) { 429 430 ObjectMonitor* const m = read_monitor(mark); 431 // An async deflation or GC can race us before we manage to make 432 // the ObjectMonitor busy by setting the owner below. If we detect 433 // that race we just bail out to the slow-path here. 434 if (m->object_peek() == nullptr) { 435 return false; 436 } 437 438 // Lock contention and Transactional Lock Elision (TLE) diagnostics 439 // and observability 440 // Case: light contention possibly amenable to TLE 441 // Case: TLE inimical operations such as nested/recursive synchronization 442 443 if (m->has_owner(current)) { 444 m->increment_recursions(current); 445 current->inc_held_monitor_count(); 446 return true; 447 } 448 449 // This Java Monitor is inflated so obj's header will never be 450 // displaced to this thread's BasicLock. Make the displaced header 451 // non-null so this BasicLock is not seen as recursive nor as 452 // being locked. We do this unconditionally so that this thread's 453 // BasicLock cannot be mis-interpreted by any stack walkers. For 454 // performance reasons, stack walkers generally first check for 455 // stack-locking in the object's header, the second check is for 456 // recursive stack-locking in the displaced header in the BasicLock, 457 // and last are the inflated Java Monitor (ObjectMonitor) checks. 458 lock->set_displaced_header(markWord::unused_mark()); 459 460 if (!m->has_owner() && m->try_set_owner(current)) { 461 assert(m->recursions() == 0, "invariant"); 462 current->inc_held_monitor_count(); 463 return true; 464 } 465 } 466 467 // Note that we could inflate in quick_enter. 468 // This is likely a useful optimization 469 // Critically, in quick_enter() we must not: 470 // -- block indefinitely, or 471 // -- reach a safepoint 472 473 return false; // revert to slow-path 474 } 475 476 // Handle notifications when synchronizing on value based classes 477 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 478 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 479 frame last_frame = locking_thread->last_frame(); 480 bool bcp_was_adjusted = false; 481 // Don't decrement bcp if it points to the frame's first instruction. This happens when 482 // handle_sync_on_value_based_class() is called because of a synchronized method. There 483 // is no actual monitorenter instruction in the byte code in this case. 484 if (last_frame.is_interpreted_frame() && 485 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 486 // adjust bcp to point back to monitorenter so that we print the correct line numbers 487 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 488 bcp_was_adjusted = true; 489 } 490 491 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 492 ResourceMark rm; 493 stringStream ss; 494 locking_thread->print_active_stack_on(&ss); 495 char* base = (char*)strstr(ss.base(), "at"); 496 char* newline = (char*)strchr(ss.base(), '\n'); 497 if (newline != nullptr) { 498 *newline = '\0'; 499 } 500 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 501 } else { 502 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 503 ResourceMark rm; 504 Log(valuebasedclasses) vblog; 505 506 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 507 if (locking_thread->has_last_Java_frame()) { 508 LogStream info_stream(vblog.info()); 509 locking_thread->print_active_stack_on(&info_stream); 510 } else { 511 vblog.info("Cannot find the last Java frame"); 512 } 513 514 EventSyncOnValueBasedClass event; 515 if (event.should_commit()) { 516 event.set_valueBasedClass(obj->klass()); 517 event.commit(); 518 } 519 } 520 521 if (bcp_was_adjusted) { 522 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 523 } 524 } 525 526 // ----------------------------------------------------------------------------- 527 // Monitor Enter/Exit 528 529 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 530 // When called with locking_thread != Thread::current() some mechanism must synchronize 531 // the locking_thread with respect to the current thread. Currently only used when 532 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 533 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 534 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "JITed code should never have locked an instance of a value class"); 535 536 if (LockingMode == LM_LIGHTWEIGHT) { 537 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 538 } 539 540 if (!enter_fast_impl(obj, lock, locking_thread)) { 541 // Inflated ObjectMonitor::enter_for is required 542 543 // An async deflation can race after the inflate_for() call and before 544 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 545 // if we have lost the race to async deflation and we simply try again. 546 while (true) { 547 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 548 if (monitor->enter_for(locking_thread)) { 549 return; 550 } 551 assert(monitor->is_being_async_deflated(), "must be"); 552 } 553 } 554 } 555 556 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 557 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "This method should never be called on an instance of an inline class"); 558 if (!enter_fast_impl(obj, lock, current)) { 559 // Inflated ObjectMonitor::enter is required 560 561 // An async deflation can race after the inflate() call and before 562 // enter() can make the ObjectMonitor busy. enter() returns false if 563 // we have lost the race to async deflation and we simply try again. 564 while (true) { 565 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 566 if (monitor->enter(current)) { 567 return; 568 } 569 } 570 } 571 } 572 573 // The interpreter and compiler assembly code tries to lock using the fast path 574 // of this algorithm. Make sure to update that code if the following function is 575 // changed. The implementation is extremely sensitive to race condition. Be careful. 576 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 577 guarantee(!EnableValhalla || !obj->klass()->is_inline_klass(), "Attempt to inflate inline type"); 578 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 579 580 if (obj->klass()->is_value_based()) { 581 handle_sync_on_value_based_class(obj, locking_thread); 582 } 583 584 locking_thread->inc_held_monitor_count(); 585 586 if (!useHeavyMonitors()) { 587 if (LockingMode == LM_LEGACY) { 588 markWord mark = obj->mark(); 589 if (mark.is_unlocked()) { 590 // Anticipate successful CAS -- the ST of the displaced mark must 591 // be visible <= the ST performed by the CAS. 592 lock->set_displaced_header(mark); 593 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 594 return true; 595 } 596 } else if (mark.has_locker() && 597 locking_thread->is_lock_owned((address) mark.locker())) { 598 assert(lock != mark.locker(), "must not re-lock the same lock"); 599 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 600 lock->set_displaced_header(markWord::from_pointer(nullptr)); 601 return true; 602 } 603 604 // The object header will never be displaced to this lock, 605 // so it does not matter what the value is, except that it 606 // must be non-zero to avoid looking like a re-entrant lock, 607 // and must not look locked either. 608 lock->set_displaced_header(markWord::unused_mark()); 609 610 // Failed to fast lock. 611 return false; 612 } 613 } else if (VerifyHeavyMonitors) { 614 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 615 } 616 617 return false; 618 } 619 620 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 621 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 622 623 if (!useHeavyMonitors()) { 624 markWord mark = object->mark(); 625 if (EnableValhalla && mark.is_inline_type()) { 626 return; 627 } 628 if (LockingMode == LM_LEGACY) { 629 markWord dhw = lock->displaced_header(); 630 if (dhw.value() == 0) { 631 // If the displaced header is null, then this exit matches up with 632 // a recursive enter. No real work to do here except for diagnostics. 633 #ifndef PRODUCT 634 if (mark != markWord::INFLATING()) { 635 // Only do diagnostics if we are not racing an inflation. Simply 636 // exiting a recursive enter of a Java Monitor that is being 637 // inflated is safe; see the has_monitor() comment below. 638 assert(!mark.is_unlocked(), "invariant"); 639 assert(!mark.has_locker() || 640 current->is_lock_owned((address)mark.locker()), "invariant"); 641 if (mark.has_monitor()) { 642 // The BasicLock's displaced_header is marked as a recursive 643 // enter and we have an inflated Java Monitor (ObjectMonitor). 644 // This is a special case where the Java Monitor was inflated 645 // after this thread entered the stack-lock recursively. When a 646 // Java Monitor is inflated, we cannot safely walk the Java 647 // Monitor owner's stack and update the BasicLocks because a 648 // Java Monitor can be asynchronously inflated by a thread that 649 // does not own the Java Monitor. 650 ObjectMonitor* m = read_monitor(mark); 651 assert(m->object()->mark() == mark, "invariant"); 652 assert(m->is_entered(current), "invariant"); 653 } 654 } 655 #endif 656 return; 657 } 658 659 if (mark == markWord::from_pointer(lock)) { 660 // If the object is stack-locked by the current thread, try to 661 // swing the displaced header from the BasicLock back to the mark. 662 assert(dhw.is_neutral(), "invariant"); 663 if (object->cas_set_mark(dhw, mark) == mark) { 664 return; 665 } 666 } 667 } 668 } else if (VerifyHeavyMonitors) { 669 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 670 } 671 672 // We have to take the slow-path of possible inflation and then exit. 673 // The ObjectMonitor* can't be async deflated until ownership is 674 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 675 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 676 assert(!monitor->has_anonymous_owner(), "must not be"); 677 monitor->exit(current); 678 } 679 680 // ----------------------------------------------------------------------------- 681 // JNI locks on java objects 682 // NOTE: must use heavy weight monitor to handle jni monitor enter 683 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 684 JavaThread* THREAD = current; 685 // Top native frames in the stack will not be seen if we attempt 686 // preemption, since we start walking from the last Java anchor. 687 NoPreemptMark npm(current); 688 689 if (obj->klass()->is_value_based()) { 690 handle_sync_on_value_based_class(obj, current); 691 } 692 693 if (EnableValhalla && obj->klass()->is_inline_klass()) { 694 ResourceMark rm(THREAD); 695 const char* desc = "Cannot synchronize on an instance of value class "; 696 const char* className = obj->klass()->external_name(); 697 size_t msglen = strlen(desc) + strlen(className) + 1; 698 char* message = NEW_RESOURCE_ARRAY(char, msglen); 699 assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr"); 700 THROW_MSG(vmSymbols::java_lang_IdentityException(), className); 701 } 702 703 // the current locking is from JNI instead of Java code 704 current->set_current_pending_monitor_is_from_java(false); 705 // An async deflation can race after the inflate() call and before 706 // enter() can make the ObjectMonitor busy. enter() returns false if 707 // we have lost the race to async deflation and we simply try again. 708 while (true) { 709 ObjectMonitor* monitor; 710 bool entered; 711 if (LockingMode == LM_LIGHTWEIGHT) { 712 BasicLock lock; 713 entered = LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr; 714 } else { 715 monitor = inflate(current, obj(), inflate_cause_jni_enter); 716 entered = monitor->enter(current); 717 } 718 719 if (entered) { 720 current->inc_held_monitor_count(1, true); 721 break; 722 } 723 } 724 current->set_current_pending_monitor_is_from_java(true); 725 } 726 727 // NOTE: must use heavy weight monitor to handle jni monitor exit 728 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 729 JavaThread* current = THREAD; 730 CHECK_THROW_NOSYNC_IMSE(obj); 731 732 ObjectMonitor* monitor; 733 if (LockingMode == LM_LIGHTWEIGHT) { 734 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 735 } else { 736 // The ObjectMonitor* can't be async deflated until ownership is 737 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 738 monitor = inflate(current, obj, inflate_cause_jni_exit); 739 } 740 // If this thread has locked the object, exit the monitor. We 741 // intentionally do not use CHECK on check_owner because we must exit the 742 // monitor even if an exception was already pending. 743 if (monitor->check_owner(THREAD)) { 744 monitor->exit(current); 745 current->dec_held_monitor_count(1, true); 746 } 747 } 748 749 // ----------------------------------------------------------------------------- 750 // Internal VM locks on java objects 751 // standard constructor, allows locking failures 752 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 753 _thread = thread; 754 _thread->check_for_valid_safepoint_state(); 755 _obj = obj; 756 757 if (_obj() != nullptr) { 758 ObjectSynchronizer::enter(_obj, &_lock, _thread); 759 } 760 } 761 762 ObjectLocker::~ObjectLocker() { 763 if (_obj() != nullptr) { 764 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 765 } 766 } 767 768 769 // ----------------------------------------------------------------------------- 770 // Wait/Notify/NotifyAll 771 // NOTE: must use heavy weight monitor to handle wait() 772 773 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 774 JavaThread* current = THREAD; 775 CHECK_THROW_NOSYNC_IMSE_0(obj); 776 if (millis < 0) { 777 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 778 } 779 780 ObjectMonitor* monitor; 781 if (LockingMode == LM_LIGHTWEIGHT) { 782 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 783 } else { 784 // The ObjectMonitor* can't be async deflated because the _waiters 785 // field is incremented before ownership is dropped and decremented 786 // after ownership is regained. 787 monitor = inflate(current, obj(), inflate_cause_wait); 788 } 789 790 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 791 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 792 793 // This dummy call is in place to get around dtrace bug 6254741. Once 794 // that's fixed we can uncomment the following line, remove the call 795 // and change this function back into a "void" func. 796 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 797 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 798 return ret_code; 799 } 800 801 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 802 if (millis < 0) { 803 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 804 } 805 806 ObjectMonitor* monitor; 807 if (LockingMode == LM_LIGHTWEIGHT) { 808 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 809 } else { 810 monitor = inflate(THREAD, obj(), inflate_cause_wait); 811 } 812 monitor->wait(millis, false, THREAD); 813 } 814 815 816 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 817 JavaThread* current = THREAD; 818 CHECK_THROW_NOSYNC_IMSE(obj); 819 820 markWord mark = obj->mark(); 821 if (LockingMode == LM_LIGHTWEIGHT) { 822 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 823 // Not inflated so there can't be any waiters to notify. 824 return; 825 } 826 } else if (LockingMode == LM_LEGACY) { 827 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 828 // Not inflated so there can't be any waiters to notify. 829 return; 830 } 831 } 832 833 ObjectMonitor* monitor; 834 if (LockingMode == LM_LIGHTWEIGHT) { 835 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 836 } else { 837 // The ObjectMonitor* can't be async deflated until ownership is 838 // dropped by the calling thread. 839 monitor = inflate(current, obj(), inflate_cause_notify); 840 } 841 monitor->notify(CHECK); 842 } 843 844 // NOTE: see comment of notify() 845 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 846 JavaThread* current = THREAD; 847 CHECK_THROW_NOSYNC_IMSE(obj); 848 849 markWord mark = obj->mark(); 850 if (LockingMode == LM_LIGHTWEIGHT) { 851 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 852 // Not inflated so there can't be any waiters to notify. 853 return; 854 } 855 } else if (LockingMode == LM_LEGACY) { 856 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 857 // Not inflated so there can't be any waiters to notify. 858 return; 859 } 860 } 861 862 ObjectMonitor* monitor; 863 if (LockingMode == LM_LIGHTWEIGHT) { 864 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 865 } else { 866 // The ObjectMonitor* can't be async deflated until ownership is 867 // dropped by the calling thread. 868 monitor = inflate(current, obj(), inflate_cause_notify); 869 } 870 monitor->notifyAll(CHECK); 871 } 872 873 // ----------------------------------------------------------------------------- 874 // Hash Code handling 875 876 struct SharedGlobals { 877 char _pad_prefix[OM_CACHE_LINE_SIZE]; 878 // This is a highly shared mostly-read variable. 879 // To avoid false-sharing it needs to be the sole occupant of a cache line. 880 volatile int stw_random; 881 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 882 // Hot RW variable -- Sequester to avoid false-sharing 883 volatile int hc_sequence; 884 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 885 }; 886 887 static SharedGlobals GVars; 888 889 static markWord read_stable_mark(oop obj) { 890 markWord mark = obj->mark_acquire(); 891 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 892 // New lightweight locking does not use the markWord::INFLATING() protocol. 893 return mark; // normal fast-path return 894 } 895 896 int its = 0; 897 for (;;) { 898 markWord mark = obj->mark_acquire(); 899 if (!mark.is_being_inflated()) { 900 return mark; // normal fast-path return 901 } 902 903 // The object is being inflated by some other thread. 904 // The caller of read_stable_mark() must wait for inflation to complete. 905 // Avoid live-lock. 906 907 ++its; 908 if (its > 10000 || !os::is_MP()) { 909 if (its & 1) { 910 os::naked_yield(); 911 } else { 912 // Note that the following code attenuates the livelock problem but is not 913 // a complete remedy. A more complete solution would require that the inflating 914 // thread hold the associated inflation lock. The following code simply restricts 915 // the number of spinners to at most one. We'll have N-2 threads blocked 916 // on the inflationlock, 1 thread holding the inflation lock and using 917 // a yield/park strategy, and 1 thread in the midst of inflation. 918 // A more refined approach would be to change the encoding of INFLATING 919 // to allow encapsulation of a native thread pointer. Threads waiting for 920 // inflation to complete would use CAS to push themselves onto a singly linked 921 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 922 // and calling park(). When inflation was complete the thread that accomplished inflation 923 // would detach the list and set the markword to inflated with a single CAS and 924 // then for each thread on the list, set the flag and unpark() the thread. 925 926 // Index into the lock array based on the current object address. 927 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 928 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 929 int YieldThenBlock = 0; 930 assert(ix < inflation_lock_count(), "invariant"); 931 inflation_lock(ix)->lock(); 932 while (obj->mark_acquire() == markWord::INFLATING()) { 933 // Beware: naked_yield() is advisory and has almost no effect on some platforms 934 // so we periodically call current->_ParkEvent->park(1). 935 // We use a mixed spin/yield/block mechanism. 936 if ((YieldThenBlock++) >= 16) { 937 Thread::current()->_ParkEvent->park(1); 938 } else { 939 os::naked_yield(); 940 } 941 } 942 inflation_lock(ix)->unlock(); 943 } 944 } else { 945 SpinPause(); // SMP-polite spinning 946 } 947 } 948 } 949 950 // hashCode() generation : 951 // 952 // Possibilities: 953 // * MD5Digest of {obj,stw_random} 954 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 955 // * A DES- or AES-style SBox[] mechanism 956 // * One of the Phi-based schemes, such as: 957 // 2654435761 = 2^32 * Phi (golden ratio) 958 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 959 // * A variation of Marsaglia's shift-xor RNG scheme. 960 // * (obj ^ stw_random) is appealing, but can result 961 // in undesirable regularity in the hashCode values of adjacent objects 962 // (objects allocated back-to-back, in particular). This could potentially 963 // result in hashtable collisions and reduced hashtable efficiency. 964 // There are simple ways to "diffuse" the middle address bits over the 965 // generated hashCode values: 966 967 static intptr_t get_next_hash(Thread* current, oop obj) { 968 intptr_t value = 0; 969 if (hashCode == 0) { 970 // This form uses global Park-Miller RNG. 971 // On MP system we'll have lots of RW access to a global, so the 972 // mechanism induces lots of coherency traffic. 973 value = os::random(); 974 } else if (hashCode == 1) { 975 // This variation has the property of being stable (idempotent) 976 // between STW operations. This can be useful in some of the 1-0 977 // synchronization schemes. 978 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 979 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 980 } else if (hashCode == 2) { 981 value = 1; // for sensitivity testing 982 } else if (hashCode == 3) { 983 value = ++GVars.hc_sequence; 984 } else if (hashCode == 4) { 985 value = cast_from_oop<intptr_t>(obj); 986 } else { 987 // Marsaglia's xor-shift scheme with thread-specific state 988 // This is probably the best overall implementation -- we'll 989 // likely make this the default in future releases. 990 unsigned t = current->_hashStateX; 991 t ^= (t << 11); 992 current->_hashStateX = current->_hashStateY; 993 current->_hashStateY = current->_hashStateZ; 994 current->_hashStateZ = current->_hashStateW; 995 unsigned v = current->_hashStateW; 996 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 997 current->_hashStateW = v; 998 value = v; 999 } 1000 1001 value &= markWord::hash_mask; 1002 if (value == 0) value = 0xBAD; 1003 assert(value != markWord::no_hash, "invariant"); 1004 return value; 1005 } 1006 1007 static intptr_t install_hash_code(Thread* current, oop obj) { 1008 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 1009 1010 markWord mark = obj->mark_acquire(); 1011 for (;;) { 1012 intptr_t hash = mark.hash(); 1013 if (hash != 0) { 1014 return hash; 1015 } 1016 1017 hash = get_next_hash(current, obj); 1018 const markWord old_mark = mark; 1019 const markWord new_mark = old_mark.copy_set_hash(hash); 1020 1021 mark = obj->cas_set_mark(new_mark, old_mark); 1022 if (old_mark == mark) { 1023 return hash; 1024 } 1025 } 1026 } 1027 1028 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1029 if (EnableValhalla && obj->klass()->is_inline_klass()) { 1030 // VM should be calling bootstrap method 1031 ShouldNotReachHere(); 1032 } 1033 if (UseObjectMonitorTable) { 1034 // Since the monitor isn't in the object header, the hash can simply be 1035 // installed in the object header. 1036 return install_hash_code(current, obj); 1037 } 1038 1039 while (true) { 1040 ObjectMonitor* monitor = nullptr; 1041 markWord temp, test; 1042 intptr_t hash; 1043 markWord mark = read_stable_mark(obj); 1044 if (VerifyHeavyMonitors) { 1045 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1046 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1047 } 1048 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1049 hash = mark.hash(); 1050 if (hash != 0) { // if it has a hash, just return it 1051 return hash; 1052 } 1053 hash = get_next_hash(current, obj); // get a new hash 1054 temp = mark.copy_set_hash(hash); // merge the hash into header 1055 // try to install the hash 1056 test = obj->cas_set_mark(temp, mark); 1057 if (test == mark) { // if the hash was installed, return it 1058 return hash; 1059 } 1060 if (LockingMode == LM_LIGHTWEIGHT) { 1061 // CAS failed, retry 1062 continue; 1063 } 1064 // Failed to install the hash. It could be that another thread 1065 // installed the hash just before our attempt or inflation has 1066 // occurred or... so we fall thru to inflate the monitor for 1067 // stability and then install the hash. 1068 } else if (mark.has_monitor()) { 1069 monitor = mark.monitor(); 1070 temp = monitor->header(); 1071 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1072 hash = temp.hash(); 1073 if (hash != 0) { 1074 // It has a hash. 1075 1076 // Separate load of dmw/header above from the loads in 1077 // is_being_async_deflated(). 1078 1079 // dmw/header and _contentions may get written by different threads. 1080 // Make sure to observe them in the same order when having several observers. 1081 OrderAccess::loadload_for_IRIW(); 1082 1083 if (monitor->is_being_async_deflated()) { 1084 // But we can't safely use the hash if we detect that async 1085 // deflation has occurred. So we attempt to restore the 1086 // header/dmw to the object's header so that we only retry 1087 // once if the deflater thread happens to be slow. 1088 monitor->install_displaced_markword_in_object(obj); 1089 continue; 1090 } 1091 return hash; 1092 } 1093 // Fall thru so we only have one place that installs the hash in 1094 // the ObjectMonitor. 1095 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1096 && current->is_Java_thread() 1097 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1098 // This is a stack-lock owned by the calling thread so fetch the 1099 // displaced markWord from the BasicLock on the stack. 1100 temp = mark.displaced_mark_helper(); 1101 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1102 hash = temp.hash(); 1103 if (hash != 0) { // if it has a hash, just return it 1104 return hash; 1105 } 1106 // WARNING: 1107 // The displaced header in the BasicLock on a thread's stack 1108 // is strictly immutable. It CANNOT be changed in ANY cases. 1109 // So we have to inflate the stack-lock into an ObjectMonitor 1110 // even if the current thread owns the lock. The BasicLock on 1111 // a thread's stack can be asynchronously read by other threads 1112 // during an inflate() call so any change to that stack memory 1113 // may not propagate to other threads correctly. 1114 } 1115 1116 // Inflate the monitor to set the hash. 1117 1118 // There's no need to inflate if the mark has already got a monitor. 1119 // NOTE: an async deflation can race after we get the monitor and 1120 // before we can update the ObjectMonitor's header with the hash 1121 // value below. 1122 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1123 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1124 mark = monitor->header(); 1125 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1126 hash = mark.hash(); 1127 if (hash == 0) { // if it does not have a hash 1128 hash = get_next_hash(current, obj); // get a new hash 1129 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1130 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1131 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1132 test = markWord(v); 1133 if (test != mark) { 1134 // The attempt to update the ObjectMonitor's header/dmw field 1135 // did not work. This can happen if another thread managed to 1136 // merge in the hash just before our cmpxchg(). 1137 // If we add any new usages of the header/dmw field, this code 1138 // will need to be updated. 1139 hash = test.hash(); 1140 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1141 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1142 } 1143 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1144 // If we detect that async deflation has occurred, then we 1145 // attempt to restore the header/dmw to the object's header 1146 // so that we only retry once if the deflater thread happens 1147 // to be slow. 1148 monitor->install_displaced_markword_in_object(obj); 1149 continue; 1150 } 1151 } 1152 // We finally get the hash. 1153 return hash; 1154 } 1155 } 1156 1157 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1158 Handle h_obj) { 1159 if (EnableValhalla && h_obj->mark().is_inline_type()) { 1160 return false; 1161 } 1162 assert(current == JavaThread::current(), "Can only be called on current thread"); 1163 oop obj = h_obj(); 1164 1165 markWord mark = read_stable_mark(obj); 1166 1167 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1168 // stack-locked case, header points into owner's stack 1169 return current->is_lock_owned((address)mark.locker()); 1170 } 1171 1172 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1173 // fast-locking case, see if lock is in current's lock stack 1174 return current->lock_stack().contains(h_obj()); 1175 } 1176 1177 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1178 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1179 if (monitor != nullptr) { 1180 return monitor->is_entered(current) != 0; 1181 } 1182 // Racing with inflation/deflation, retry 1183 mark = obj->mark_acquire(); 1184 1185 if (mark.is_fast_locked()) { 1186 // Some other thread fast_locked, current could not have held the lock 1187 return false; 1188 } 1189 } 1190 1191 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1192 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1193 // The first stage of async deflation does not affect any field 1194 // used by this comparison so the ObjectMonitor* is usable here. 1195 ObjectMonitor* monitor = read_monitor(mark); 1196 return monitor->is_entered(current) != 0; 1197 } 1198 // Unlocked case, header in place 1199 assert(mark.is_unlocked(), "sanity check"); 1200 return false; 1201 } 1202 1203 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1204 oop obj = h_obj(); 1205 markWord mark = read_stable_mark(obj); 1206 1207 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1208 // stack-locked so header points into owner's stack. 1209 // owning_thread_from_monitor_owner() may also return null here: 1210 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1211 } 1212 1213 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1214 // fast-locked so get owner from the object. 1215 // owning_thread_from_object() may also return null here: 1216 return Threads::owning_thread_from_object(t_list, h_obj()); 1217 } 1218 1219 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1220 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1221 if (monitor != nullptr) { 1222 return Threads::owning_thread_from_monitor(t_list, monitor); 1223 } 1224 // Racing with inflation/deflation, retry 1225 mark = obj->mark_acquire(); 1226 1227 if (mark.is_fast_locked()) { 1228 // Some other thread fast_locked 1229 return Threads::owning_thread_from_object(t_list, h_obj()); 1230 } 1231 } 1232 1233 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1234 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1235 // The first stage of async deflation does not affect any field 1236 // used by this comparison so the ObjectMonitor* is usable here. 1237 ObjectMonitor* monitor = read_monitor(mark); 1238 assert(monitor != nullptr, "monitor should be non-null"); 1239 // owning_thread_from_monitor() may also return null here: 1240 return Threads::owning_thread_from_monitor(t_list, monitor); 1241 } 1242 1243 // Unlocked case, header in place 1244 // Cannot have assertion since this object may have been 1245 // locked by another thread when reaching here. 1246 // assert(mark.is_unlocked(), "sanity check"); 1247 1248 return nullptr; 1249 } 1250 1251 // Visitors ... 1252 1253 // Iterate over all ObjectMonitors. 1254 template <typename Function> 1255 void ObjectSynchronizer::monitors_iterate(Function function) { 1256 MonitorList::Iterator iter = _in_use_list.iterator(); 1257 while (iter.has_next()) { 1258 ObjectMonitor* monitor = iter.next(); 1259 function(monitor); 1260 } 1261 } 1262 1263 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1264 // returns true. 1265 template <typename OwnerFilter> 1266 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1267 monitors_iterate([&](ObjectMonitor* monitor) { 1268 // This function is only called at a safepoint or when the 1269 // target thread is suspended or when the target thread is 1270 // operating on itself. The current closures in use today are 1271 // only interested in an owned ObjectMonitor and ownership 1272 // cannot be dropped under the calling contexts so the 1273 // ObjectMonitor cannot be async deflated. 1274 if (monitor->has_owner() && filter(monitor)) { 1275 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1276 1277 closure->do_monitor(monitor); 1278 } 1279 }); 1280 } 1281 1282 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1283 // ObjectMonitors where owner is set to a stack-lock address in thread. 1284 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1285 int64_t key = ObjectMonitor::owner_id_from(thread); 1286 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1287 return owned_monitors_iterate_filtered(closure, thread_filter); 1288 } 1289 1290 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1291 int64_t key = ObjectMonitor::owner_id_from(vthread); 1292 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1293 return owned_monitors_iterate_filtered(closure, thread_filter); 1294 } 1295 1296 // Iterate ObjectMonitors owned by any thread. 1297 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1298 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1299 return owned_monitors_iterate_filtered(closure, all_filter); 1300 } 1301 1302 static bool monitors_used_above_threshold(MonitorList* list) { 1303 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1304 return false; 1305 } 1306 size_t monitors_used = list->count(); 1307 if (monitors_used == 0) { // empty list is easy 1308 return false; 1309 } 1310 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1311 // Make sure that we use a ceiling value that is not lower than 1312 // previous, not lower than the recorded max used by the system, and 1313 // not lower than the current number of monitors in use (which can 1314 // race ahead of max). The result is guaranteed > 0. 1315 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1316 1317 // Check if our monitor usage is above the threshold: 1318 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1319 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1320 // Deflate monitors if over the threshold percentage, unless no 1321 // progress on previous deflations. 1322 bool is_above_threshold = true; 1323 1324 // Check if it's time to adjust the in_use_list_ceiling up, due 1325 // to too many async deflation attempts without any progress. 1326 if (NoAsyncDeflationProgressMax != 0 && 1327 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1328 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1329 size_t delta = (size_t)(ceiling * remainder) + 1; 1330 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1331 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1332 : ceiling + delta; 1333 1334 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1335 log_info(monitorinflation)("Too many deflations without progress; " 1336 "bumping in_use_list_ceiling from %zu" 1337 " to %zu", old_ceiling, new_ceiling); 1338 _no_progress_cnt = 0; 1339 ceiling = new_ceiling; 1340 1341 // Check if our monitor usage is still above the threshold: 1342 monitor_usage = (monitors_used * 100LL) / ceiling; 1343 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1344 } 1345 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1346 ", monitor_usage=%zu, threshold=%d", 1347 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1348 return is_above_threshold; 1349 } 1350 1351 return false; 1352 } 1353 1354 size_t ObjectSynchronizer::in_use_list_count() { 1355 return _in_use_list.count(); 1356 } 1357 1358 size_t ObjectSynchronizer::in_use_list_max() { 1359 return _in_use_list.max(); 1360 } 1361 1362 size_t ObjectSynchronizer::in_use_list_ceiling() { 1363 return _in_use_list_ceiling; 1364 } 1365 1366 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1367 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1368 } 1369 1370 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1371 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1372 } 1373 1374 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1375 _in_use_list_ceiling = new_value; 1376 } 1377 1378 bool ObjectSynchronizer::is_async_deflation_needed() { 1379 if (is_async_deflation_requested()) { 1380 // Async deflation request. 1381 log_info(monitorinflation)("Async deflation needed: explicit request"); 1382 return true; 1383 } 1384 1385 jlong time_since_last = time_since_last_async_deflation_ms(); 1386 1387 if (AsyncDeflationInterval > 0 && 1388 time_since_last > AsyncDeflationInterval && 1389 monitors_used_above_threshold(&_in_use_list)) { 1390 // It's been longer than our specified deflate interval and there 1391 // are too many monitors in use. We don't deflate more frequently 1392 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1393 // in order to not swamp the MonitorDeflationThread. 1394 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1395 return true; 1396 } 1397 1398 if (GuaranteedAsyncDeflationInterval > 0 && 1399 time_since_last > GuaranteedAsyncDeflationInterval) { 1400 // It's been longer than our specified guaranteed deflate interval. 1401 // We need to clean up the used monitors even if the threshold is 1402 // not reached, to keep the memory utilization at bay when many threads 1403 // touched many monitors. 1404 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1405 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1406 GuaranteedAsyncDeflationInterval, time_since_last); 1407 1408 // If this deflation has no progress, then it should not affect the no-progress 1409 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1410 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1411 // the generic code would bump the no-progress counter, and we compensate for that 1412 // by telling it to skip the update. 1413 // 1414 // If this deflation has progress, then it should let non-progress tracking 1415 // know about this, otherwise the threshold heuristics would kick in, potentially 1416 // experience no-progress due to aggressive cleanup by this deflation, and think 1417 // it is still in no-progress stride. In this "progress" case, the generic code would 1418 // zero the counter, and we allow it to happen. 1419 _no_progress_skip_increment = true; 1420 1421 return true; 1422 } 1423 1424 return false; 1425 } 1426 1427 void ObjectSynchronizer::request_deflate_idle_monitors() { 1428 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1429 set_is_async_deflation_requested(true); 1430 ml.notify_all(); 1431 } 1432 1433 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1434 JavaThread* current = JavaThread::current(); 1435 bool ret_code = false; 1436 1437 jlong last_time = last_async_deflation_time_ns(); 1438 1439 request_deflate_idle_monitors(); 1440 1441 const int N_CHECKS = 5; 1442 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1443 if (last_async_deflation_time_ns() > last_time) { 1444 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1445 ret_code = true; 1446 break; 1447 } 1448 { 1449 // JavaThread has to honor the blocking protocol. 1450 ThreadBlockInVM tbivm(current); 1451 os::naked_short_sleep(999); // sleep for almost 1 second 1452 } 1453 } 1454 if (!ret_code) { 1455 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1456 } 1457 1458 return ret_code; 1459 } 1460 1461 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1462 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1463 } 1464 1465 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1466 const oop obj, 1467 ObjectSynchronizer::InflateCause cause) { 1468 assert(event != nullptr, "invariant"); 1469 const Klass* monitor_klass = obj->klass(); 1470 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1471 return; 1472 } 1473 event->set_monitorClass(monitor_klass); 1474 event->set_address((uintptr_t)(void*)obj); 1475 event->set_cause((u1)cause); 1476 event->commit(); 1477 } 1478 1479 // Fast path code shared by multiple functions 1480 void ObjectSynchronizer::inflate_helper(oop obj) { 1481 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1482 markWord mark = obj->mark_acquire(); 1483 if (mark.has_monitor()) { 1484 ObjectMonitor* monitor = read_monitor(mark); 1485 markWord dmw = monitor->header(); 1486 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1487 return; 1488 } 1489 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1490 } 1491 1492 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1493 assert(current == Thread::current(), "must be"); 1494 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1495 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1496 } 1497 1498 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1499 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1500 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1501 return inflate_impl(thread, obj, cause); 1502 } 1503 1504 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1505 if (EnableValhalla) { 1506 guarantee(!object->klass()->is_inline_klass(), "Attempt to inflate inline type"); 1507 } 1508 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1509 // is suspended throughout the call by some other mechanism. 1510 // The thread might be nullptr when called from a non JavaThread. (As may still be 1511 // the case from FastHashCode). However it is only important for correctness that the 1512 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1513 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1514 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1515 EventJavaMonitorInflate event; 1516 1517 for (;;) { 1518 const markWord mark = object->mark_acquire(); 1519 1520 // The mark can be in one of the following states: 1521 // * inflated - If the ObjectMonitor owner is anonymous and the 1522 // locking_thread owns the object lock, then we 1523 // make the locking_thread the ObjectMonitor owner. 1524 // * stack-locked - Coerce it to inflated from stack-locked. 1525 // * INFLATING - Busy wait for conversion from stack-locked to 1526 // inflated. 1527 // * unlocked - Aggressively inflate the object. 1528 1529 // CASE: inflated 1530 if (mark.has_monitor()) { 1531 ObjectMonitor* inf = mark.monitor(); 1532 markWord dmw = inf->header(); 1533 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1534 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1535 assert(LockingMode == LM_LEGACY, "invariant"); 1536 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1537 inf->set_stack_locker(nullptr); 1538 inf->set_owner_from_anonymous(locking_thread); 1539 } 1540 } 1541 return inf; 1542 } 1543 1544 // CASE: inflation in progress - inflating over a stack-lock. 1545 // Some other thread is converting from stack-locked to inflated. 1546 // Only that thread can complete inflation -- other threads must wait. 1547 // The INFLATING value is transient. 1548 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1549 // We could always eliminate polling by parking the thread on some auxiliary list. 1550 if (mark == markWord::INFLATING()) { 1551 read_stable_mark(object); 1552 continue; 1553 } 1554 1555 // CASE: stack-locked 1556 // Could be stack-locked either by current or by some other thread. 1557 // 1558 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1559 // to install INFLATING into the mark word. We originally installed INFLATING, 1560 // allocated the ObjectMonitor, and then finally STed the address of the 1561 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1562 // the interval in which INFLATING appeared in the mark, thus increasing 1563 // the odds of inflation contention. If we lose the race to set INFLATING, 1564 // then we just delete the ObjectMonitor and loop around again. 1565 // 1566 LogStreamHandle(Trace, monitorinflation) lsh; 1567 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1568 ObjectMonitor* m = new ObjectMonitor(object); 1569 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1570 // We do this before the CAS in order to minimize the length of time 1571 // in which INFLATING appears in the mark. 1572 1573 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1574 if (cmp != mark) { 1575 delete m; 1576 continue; // Interference -- just retry 1577 } 1578 1579 // We've successfully installed INFLATING (0) into the mark-word. 1580 // This is the only case where 0 will appear in a mark-word. 1581 // Only the singular thread that successfully swings the mark-word 1582 // to 0 can perform (or more precisely, complete) inflation. 1583 // 1584 // Why do we CAS a 0 into the mark-word instead of just CASing the 1585 // mark-word from the stack-locked value directly to the new inflated state? 1586 // Consider what happens when a thread unlocks a stack-locked object. 1587 // It attempts to use CAS to swing the displaced header value from the 1588 // on-stack BasicLock back into the object header. Recall also that the 1589 // header value (hash code, etc) can reside in (a) the object header, or 1590 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1591 // header in an ObjectMonitor. The inflate() routine must copy the header 1592 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1593 // the while preserving the hashCode stability invariants. If the owner 1594 // decides to release the lock while the value is 0, the unlock will fail 1595 // and control will eventually pass from slow_exit() to inflate. The owner 1596 // will then spin, waiting for the 0 value to disappear. Put another way, 1597 // the 0 causes the owner to stall if the owner happens to try to 1598 // drop the lock (restoring the header from the BasicLock to the object) 1599 // while inflation is in-progress. This protocol avoids races that might 1600 // would otherwise permit hashCode values to change or "flicker" for an object. 1601 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1602 // 0 serves as a "BUSY" inflate-in-progress indicator. 1603 1604 1605 // fetch the displaced mark from the owner's stack. 1606 // The owner can't die or unwind past the lock while our INFLATING 1607 // object is in the mark. Furthermore the owner can't complete 1608 // an unlock on the object, either. 1609 markWord dmw = mark.displaced_mark_helper(); 1610 // Catch if the object's header is not neutral (not locked and 1611 // not marked is what we care about here). 1612 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1613 1614 // Setup monitor fields to proper values -- prepare the monitor 1615 m->set_header(dmw); 1616 1617 // Note that a thread can inflate an object 1618 // that it has stack-locked -- as might happen in wait() -- directly 1619 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1620 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1621 m->set_owner(locking_thread); 1622 } else { 1623 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1624 // and set the stack locker field in the monitor. 1625 m->set_stack_locker(mark.locker()); 1626 m->set_anonymous_owner(); 1627 } 1628 // TODO-FIXME: assert BasicLock->dhw != 0. 1629 1630 // Must preserve store ordering. The monitor state must 1631 // be stable at the time of publishing the monitor address. 1632 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1633 // Release semantics so that above set_object() is seen first. 1634 object->release_set_mark(markWord::encode(m)); 1635 1636 // Once ObjectMonitor is configured and the object is associated 1637 // with the ObjectMonitor, it is safe to allow async deflation: 1638 _in_use_list.add(m); 1639 1640 if (log_is_enabled(Trace, monitorinflation)) { 1641 ResourceMark rm; 1642 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1643 INTPTR_FORMAT ", type='%s'", p2i(object), 1644 object->mark().value(), object->klass()->external_name()); 1645 } 1646 if (event.should_commit()) { 1647 post_monitor_inflate_event(&event, object, cause); 1648 } 1649 return m; 1650 } 1651 1652 // CASE: unlocked 1653 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1654 // If we know we're inflating for entry it's better to inflate by swinging a 1655 // pre-locked ObjectMonitor pointer into the object header. A successful 1656 // CAS inflates the object *and* confers ownership to the inflating thread. 1657 // In the current implementation we use a 2-step mechanism where we CAS() 1658 // to inflate and then CAS() again to try to swing _owner from null to current. 1659 // An inflateTry() method that we could call from enter() would be useful. 1660 1661 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1662 ObjectMonitor* m = new ObjectMonitor(object); 1663 // prepare m for installation - set monitor to initial state 1664 m->set_header(mark); 1665 1666 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1667 delete m; 1668 m = nullptr; 1669 continue; 1670 // interference - the markword changed - just retry. 1671 // The state-transitions are one-way, so there's no chance of 1672 // live-lock -- "Inflated" is an absorbing state. 1673 } 1674 1675 // Once the ObjectMonitor is configured and object is associated 1676 // with the ObjectMonitor, it is safe to allow async deflation: 1677 _in_use_list.add(m); 1678 1679 if (log_is_enabled(Trace, monitorinflation)) { 1680 ResourceMark rm; 1681 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1682 INTPTR_FORMAT ", type='%s'", p2i(object), 1683 object->mark().value(), object->klass()->external_name()); 1684 } 1685 if (event.should_commit()) { 1686 post_monitor_inflate_event(&event, object, cause); 1687 } 1688 return m; 1689 } 1690 } 1691 1692 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1693 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1694 // 1695 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1696 MonitorList::Iterator iter = _in_use_list.iterator(); 1697 size_t deflated_count = 0; 1698 Thread* current = Thread::current(); 1699 1700 while (iter.has_next()) { 1701 if (deflated_count >= (size_t)MonitorDeflationMax) { 1702 break; 1703 } 1704 ObjectMonitor* mid = iter.next(); 1705 if (mid->deflate_monitor(current)) { 1706 deflated_count++; 1707 } 1708 1709 // Must check for a safepoint/handshake and honor it. 1710 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1711 } 1712 1713 return deflated_count; 1714 } 1715 1716 class HandshakeForDeflation : public HandshakeClosure { 1717 public: 1718 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1719 1720 void do_thread(Thread* thread) { 1721 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1722 INTPTR_FORMAT, p2i(thread)); 1723 if (thread->is_Java_thread()) { 1724 // Clear OM cache 1725 JavaThread* jt = JavaThread::cast(thread); 1726 jt->om_clear_monitor_cache(); 1727 } 1728 } 1729 }; 1730 1731 class VM_RendezvousGCThreads : public VM_Operation { 1732 public: 1733 bool evaluate_at_safepoint() const override { return false; } 1734 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1735 void doit() override { 1736 Universe::heap()->safepoint_synchronize_begin(); 1737 Universe::heap()->safepoint_synchronize_end(); 1738 }; 1739 }; 1740 1741 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1742 ObjectMonitorDeflationSafepointer* safepointer) { 1743 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1744 size_t deleted_count = 0; 1745 for (ObjectMonitor* monitor: *delete_list) { 1746 delete monitor; 1747 deleted_count++; 1748 // A JavaThread must check for a safepoint/handshake and honor it. 1749 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1750 } 1751 return deleted_count; 1752 } 1753 1754 class ObjectMonitorDeflationLogging: public StackObj { 1755 LogStreamHandle(Debug, monitorinflation) _debug; 1756 LogStreamHandle(Info, monitorinflation) _info; 1757 LogStream* _stream; 1758 elapsedTimer _timer; 1759 1760 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1761 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1762 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1763 1764 public: 1765 ObjectMonitorDeflationLogging() 1766 : _debug(), _info(), _stream(nullptr) { 1767 if (_debug.is_enabled()) { 1768 _stream = &_debug; 1769 } else if (_info.is_enabled()) { 1770 _stream = &_info; 1771 } 1772 } 1773 1774 void begin() { 1775 if (_stream != nullptr) { 1776 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1777 ceiling(), count(), max()); 1778 _timer.start(); 1779 } 1780 } 1781 1782 void before_handshake(size_t unlinked_count) { 1783 if (_stream != nullptr) { 1784 _timer.stop(); 1785 _stream->print_cr("before handshaking: unlinked_count=%zu" 1786 ", in_use_list stats: ceiling=%zu, count=" 1787 "%zu, max=%zu", 1788 unlinked_count, ceiling(), count(), max()); 1789 } 1790 } 1791 1792 void after_handshake() { 1793 if (_stream != nullptr) { 1794 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1795 "%zu, count=%zu, max=%zu", 1796 ceiling(), count(), max()); 1797 _timer.start(); 1798 } 1799 } 1800 1801 void end(size_t deflated_count, size_t unlinked_count) { 1802 if (_stream != nullptr) { 1803 _timer.stop(); 1804 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1805 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1806 deflated_count, unlinked_count, _timer.seconds()); 1807 } 1808 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1809 ceiling(), count(), max()); 1810 } 1811 } 1812 1813 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1814 if (_stream != nullptr) { 1815 _timer.stop(); 1816 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1817 "%zu, count=%zu, max=%zu", 1818 op_name, cnt_name, cnt, ceiling(), count(), max()); 1819 } 1820 } 1821 1822 void after_block_for_safepoint(const char* op_name) { 1823 if (_stream != nullptr) { 1824 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1825 ", count=%zu, max=%zu", op_name, 1826 ceiling(), count(), max()); 1827 _timer.start(); 1828 } 1829 } 1830 }; 1831 1832 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1833 if (!SafepointMechanism::should_process(_current)) { 1834 return; 1835 } 1836 1837 // A safepoint/handshake has started. 1838 _log->before_block_for_safepoint(op_name, count_name, counter); 1839 1840 { 1841 // Honor block request. 1842 ThreadBlockInVM tbivm(_current); 1843 } 1844 1845 _log->after_block_for_safepoint(op_name); 1846 } 1847 1848 // This function is called by the MonitorDeflationThread to deflate 1849 // ObjectMonitors. 1850 size_t ObjectSynchronizer::deflate_idle_monitors() { 1851 JavaThread* current = JavaThread::current(); 1852 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1853 1854 // The async deflation request has been processed. 1855 _last_async_deflation_time_ns = os::javaTimeNanos(); 1856 set_is_async_deflation_requested(false); 1857 1858 ObjectMonitorDeflationLogging log; 1859 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1860 1861 log.begin(); 1862 1863 // Deflate some idle ObjectMonitors. 1864 size_t deflated_count = deflate_monitor_list(&safepointer); 1865 1866 // Unlink the deflated ObjectMonitors from the in-use list. 1867 size_t unlinked_count = 0; 1868 size_t deleted_count = 0; 1869 if (deflated_count > 0) { 1870 ResourceMark rm(current); 1871 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1872 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1873 1874 #ifdef ASSERT 1875 if (UseObjectMonitorTable) { 1876 for (ObjectMonitor* monitor : delete_list) { 1877 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1878 } 1879 } 1880 #endif 1881 1882 log.before_handshake(unlinked_count); 1883 1884 // A JavaThread needs to handshake in order to safely free the 1885 // ObjectMonitors that were deflated in this cycle. 1886 HandshakeForDeflation hfd_hc; 1887 Handshake::execute(&hfd_hc); 1888 // Also, we sync and desync GC threads around the handshake, so that they can 1889 // safely read the mark-word and look-through to the object-monitor, without 1890 // being afraid that the object-monitor is going away. 1891 VM_RendezvousGCThreads sync_gc; 1892 VMThread::execute(&sync_gc); 1893 1894 log.after_handshake(); 1895 1896 // After the handshake, safely free the ObjectMonitors that were 1897 // deflated and unlinked in this cycle. 1898 1899 // Delete the unlinked ObjectMonitors. 1900 deleted_count = delete_monitors(&delete_list, &safepointer); 1901 assert(unlinked_count == deleted_count, "must be"); 1902 } 1903 1904 log.end(deflated_count, unlinked_count); 1905 1906 GVars.stw_random = os::random(); 1907 1908 if (deflated_count != 0) { 1909 _no_progress_cnt = 0; 1910 } else if (_no_progress_skip_increment) { 1911 _no_progress_skip_increment = false; 1912 } else { 1913 _no_progress_cnt++; 1914 } 1915 1916 return deflated_count; 1917 } 1918 1919 // Monitor cleanup on JavaThread::exit 1920 1921 // Iterate through monitor cache and attempt to release thread's monitors 1922 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1923 private: 1924 JavaThread* _thread; 1925 1926 public: 1927 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1928 void do_monitor(ObjectMonitor* mid) { 1929 intx rec = mid->complete_exit(_thread); 1930 _thread->dec_held_monitor_count(rec + 1); 1931 } 1932 }; 1933 1934 // Release all inflated monitors owned by current thread. Lightweight monitors are 1935 // ignored. This is meant to be called during JNI thread detach which assumes 1936 // all remaining monitors are heavyweight. All exceptions are swallowed. 1937 // Scanning the extant monitor list can be time consuming. 1938 // A simple optimization is to add a per-thread flag that indicates a thread 1939 // called jni_monitorenter() during its lifetime. 1940 // 1941 // Instead of NoSafepointVerifier it might be cheaper to 1942 // use an idiom of the form: 1943 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1944 // <code that must not run at safepoint> 1945 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1946 // Since the tests are extremely cheap we could leave them enabled 1947 // for normal product builds. 1948 1949 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1950 assert(current == JavaThread::current(), "must be current Java thread"); 1951 NoSafepointVerifier nsv; 1952 ReleaseJavaMonitorsClosure rjmc(current); 1953 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1954 assert(!current->has_pending_exception(), "Should not be possible"); 1955 current->clear_pending_exception(); 1956 assert(current->held_monitor_count() == 0, "Should not be possible"); 1957 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1958 current->clear_jni_monitor_count(); 1959 } 1960 1961 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1962 switch (cause) { 1963 case inflate_cause_vm_internal: return "VM Internal"; 1964 case inflate_cause_monitor_enter: return "Monitor Enter"; 1965 case inflate_cause_wait: return "Monitor Wait"; 1966 case inflate_cause_notify: return "Monitor Notify"; 1967 case inflate_cause_hash_code: return "Monitor Hash Code"; 1968 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1969 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1970 default: 1971 ShouldNotReachHere(); 1972 } 1973 return "Unknown"; 1974 } 1975 1976 //------------------------------------------------------------------------------ 1977 // Debugging code 1978 1979 u_char* ObjectSynchronizer::get_gvars_addr() { 1980 return (u_char*)&GVars; 1981 } 1982 1983 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1984 return (u_char*)&GVars.hc_sequence; 1985 } 1986 1987 size_t ObjectSynchronizer::get_gvars_size() { 1988 return sizeof(SharedGlobals); 1989 } 1990 1991 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1992 return (u_char*)&GVars.stw_random; 1993 } 1994 1995 // Do the final audit and print of ObjectMonitor stats; must be done 1996 // by the VMThread at VM exit time. 1997 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1998 assert(Thread::current()->is_VM_thread(), "sanity check"); 1999 2000 if (is_final_audit()) { // Only do the audit once. 2001 return; 2002 } 2003 set_is_final_audit(); 2004 log_info(monitorinflation)("Starting the final audit."); 2005 2006 if (log_is_enabled(Info, monitorinflation)) { 2007 LogStreamHandle(Info, monitorinflation) ls; 2008 audit_and_print_stats(&ls, true /* on_exit */); 2009 } 2010 } 2011 2012 // This function can be called by the MonitorDeflationThread or it can be called when 2013 // we are trying to exit the VM. The list walker functions can run in parallel with 2014 // the other list operations. 2015 // Calls to this function can be added in various places as a debugging 2016 // aid. 2017 // 2018 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 2019 int error_cnt = 0; 2020 2021 ls->print_cr("Checking in_use_list:"); 2022 chk_in_use_list(ls, &error_cnt); 2023 2024 if (error_cnt == 0) { 2025 ls->print_cr("No errors found in in_use_list checks."); 2026 } else { 2027 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2028 } 2029 2030 // When exiting, only log the interesting entries at the Info level. 2031 // When called at intervals by the MonitorDeflationThread, log output 2032 // at the Trace level since there can be a lot of it. 2033 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2034 LogStreamHandle(Trace, monitorinflation) ls_tr; 2035 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2036 } else if (on_exit) { 2037 log_in_use_monitor_details(ls, false /* log_all */); 2038 } 2039 2040 ls->flush(); 2041 2042 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2043 } 2044 2045 // Check the in_use_list; log the results of the checks. 2046 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2047 size_t l_in_use_count = _in_use_list.count(); 2048 size_t l_in_use_max = _in_use_list.max(); 2049 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2050 l_in_use_max); 2051 2052 size_t ck_in_use_count = 0; 2053 MonitorList::Iterator iter = _in_use_list.iterator(); 2054 while (iter.has_next()) { 2055 ObjectMonitor* mid = iter.next(); 2056 chk_in_use_entry(mid, out, error_cnt_p); 2057 ck_in_use_count++; 2058 } 2059 2060 if (l_in_use_count == ck_in_use_count) { 2061 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2062 l_in_use_count, ck_in_use_count); 2063 } else { 2064 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2065 "ck_in_use_count=%zu", l_in_use_count, 2066 ck_in_use_count); 2067 } 2068 2069 size_t ck_in_use_max = _in_use_list.max(); 2070 if (l_in_use_max == ck_in_use_max) { 2071 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2072 l_in_use_max, ck_in_use_max); 2073 } else { 2074 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2075 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2076 } 2077 } 2078 2079 // Check an in-use monitor entry; log any errors. 2080 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2081 int* error_cnt_p) { 2082 if (n->owner_is_DEFLATER_MARKER()) { 2083 // This could happen when monitor deflation blocks for a safepoint. 2084 return; 2085 } 2086 2087 2088 if (n->metadata() == 0) { 2089 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2090 "have non-null _metadata (header/hash) field.", p2i(n)); 2091 *error_cnt_p = *error_cnt_p + 1; 2092 } 2093 2094 const oop obj = n->object_peek(); 2095 if (obj == nullptr) { 2096 return; 2097 } 2098 2099 const markWord mark = obj->mark(); 2100 if (!mark.has_monitor()) { 2101 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2102 "object does not think it has a monitor: obj=" 2103 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2104 p2i(obj), mark.value()); 2105 *error_cnt_p = *error_cnt_p + 1; 2106 return; 2107 } 2108 2109 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2110 if (n != obj_mon) { 2111 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2112 "object does not refer to the same monitor: obj=" 2113 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2114 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2115 *error_cnt_p = *error_cnt_p + 1; 2116 } 2117 } 2118 2119 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2120 // flags indicate why the entry is in-use, 'object' and 'object type' 2121 // indicate the associated object and its type. 2122 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2123 if (_in_use_list.count() > 0) { 2124 stringStream ss; 2125 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2126 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2127 out->print_cr("%18s %s %18s %18s", 2128 "monitor", "BHL", "object", "object type"); 2129 out->print_cr("================== === ================== =================="); 2130 2131 auto is_interesting = [&](ObjectMonitor* monitor) { 2132 return log_all || monitor->has_owner() || monitor->is_busy(); 2133 }; 2134 2135 monitors_iterate([&](ObjectMonitor* monitor) { 2136 if (is_interesting(monitor)) { 2137 const oop obj = monitor->object_peek(); 2138 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2139 ResourceMark rm; 2140 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2141 monitor->is_busy(), hash != 0, monitor->has_owner(), 2142 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2143 if (monitor->is_busy()) { 2144 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2145 ss.reset(); 2146 } 2147 out->cr(); 2148 } 2149 }); 2150 } 2151 2152 out->flush(); 2153 }