1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/os.inline.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/safepointMechanism.inline.hpp" 51 #include "runtime/safepointVerifiers.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/synchronizer.inline.hpp" 55 #include "runtime/threads.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/trimNativeHeap.hpp" 58 #include "runtime/vframe.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "utilities/align.hpp" 61 #include "utilities/dtrace.hpp" 62 #include "utilities/events.hpp" 63 #include "utilities/globalCounter.inline.hpp" 64 #include "utilities/globalDefinitions.hpp" 65 #include "utilities/linkedlist.hpp" 66 #include "utilities/preserveException.hpp" 67 68 class ObjectMonitorDeflationLogging; 69 70 void MonitorList::add(ObjectMonitor* m) { 71 ObjectMonitor* head; 72 do { 73 head = Atomic::load(&_head); 74 m->set_next_om(head); 75 } while (Atomic::cmpxchg(&_head, head, m) != head); 76 77 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 78 size_t old_max; 79 do { 80 old_max = Atomic::load(&_max); 81 if (count <= old_max) { 82 break; 83 } 84 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 85 } 86 87 size_t MonitorList::count() const { 88 return Atomic::load(&_count); 89 } 90 91 size_t MonitorList::max() const { 92 return Atomic::load(&_max); 93 } 94 95 class ObjectMonitorDeflationSafepointer : public StackObj { 96 JavaThread* const _current; 97 ObjectMonitorDeflationLogging* const _log; 98 99 public: 100 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 101 : _current(current), _log(log) {} 102 103 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 104 }; 105 106 // Walk the in-use list and unlink deflated ObjectMonitors. 107 // Returns the number of unlinked ObjectMonitors. 108 size_t MonitorList::unlink_deflated(size_t deflated_count, 109 GrowableArray<ObjectMonitor*>* unlinked_list, 110 ObjectMonitorDeflationSafepointer* safepointer) { 111 size_t unlinked_count = 0; 112 ObjectMonitor* prev = nullptr; 113 ObjectMonitor* m = Atomic::load_acquire(&_head); 114 115 while (m != nullptr) { 116 if (m->is_being_async_deflated()) { 117 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 118 // modify the list once per batch. The batch starts at "m". 119 size_t unlinked_batch = 0; 120 ObjectMonitor* next = m; 121 // Look for at most MonitorUnlinkBatch monitors, or the number of 122 // deflated and not unlinked monitors, whatever comes first. 123 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 124 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 125 do { 126 ObjectMonitor* next_next = next->next_om(); 127 unlinked_batch++; 128 unlinked_list->append(next); 129 next = next_next; 130 if (unlinked_batch >= unlinked_batch_limit) { 131 // Reached the max batch, so bail out of the gathering loop. 132 break; 133 } 134 if (prev == nullptr && Atomic::load(&_head) != m) { 135 // Current batch used to be at head, but it is not at head anymore. 136 // Bail out and figure out where we currently are. This avoids long 137 // walks searching for new prev during unlink under heavy list inserts. 138 break; 139 } 140 } while (next != nullptr && next->is_being_async_deflated()); 141 142 // Unlink the found batch. 143 if (prev == nullptr) { 144 // The current batch is the first batch, so there is a chance that it starts at head. 145 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 146 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 147 if (prev_head != m) { 148 // Something must have updated the head. Figure out the actual prev for this batch. 149 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 150 prev = n; 151 } 152 assert(prev != nullptr, "Should have found the prev for the current batch"); 153 prev->set_next_om(next); 154 } 155 } else { 156 // The current batch is preceded by another batch. This guarantees the current batch 157 // does not start at head. Unlink the entire current batch without updating the head. 158 assert(Atomic::load(&_head) != m, "Sanity"); 159 prev->set_next_om(next); 160 } 161 162 unlinked_count += unlinked_batch; 163 if (unlinked_count >= deflated_count) { 164 // Reached the max so bail out of the searching loop. 165 // There should be no more deflated monitors left. 166 break; 167 } 168 m = next; 169 } else { 170 prev = m; 171 m = m->next_om(); 172 } 173 174 // Must check for a safepoint/handshake and honor it. 175 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 176 } 177 178 #ifdef ASSERT 179 // Invariant: the code above should unlink all deflated monitors. 180 // The code that runs after this unlinking does not expect deflated monitors. 181 // Notably, attempting to deflate the already deflated monitor would break. 182 { 183 ObjectMonitor* m = Atomic::load_acquire(&_head); 184 while (m != nullptr) { 185 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 186 m = m->next_om(); 187 } 188 } 189 #endif 190 191 Atomic::sub(&_count, unlinked_count); 192 return unlinked_count; 193 } 194 195 MonitorList::Iterator MonitorList::iterator() const { 196 return Iterator(Atomic::load_acquire(&_head)); 197 } 198 199 ObjectMonitor* MonitorList::Iterator::next() { 200 ObjectMonitor* current = _current; 201 _current = current->next_om(); 202 return current; 203 } 204 205 // The "core" versions of monitor enter and exit reside in this file. 206 // The interpreter and compilers contain specialized transliterated 207 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 208 // fast_lock(...) for instance. If you make changes here, make sure to modify the 209 // interpreter, and both C1 and C2 fast-path inline locking code emission. 210 // 211 // ----------------------------------------------------------------------------- 212 213 #ifdef DTRACE_ENABLED 214 215 // Only bother with this argument setup if dtrace is available 216 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 217 218 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 219 char* bytes = nullptr; \ 220 int len = 0; \ 221 jlong jtid = SharedRuntime::get_java_tid(thread); \ 222 Symbol* klassname = obj->klass()->name(); \ 223 if (klassname != nullptr) { \ 224 bytes = (char*)klassname->bytes(); \ 225 len = klassname->utf8_length(); \ 226 } 227 228 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 229 { \ 230 if (DTraceMonitorProbes) { \ 231 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 232 HOTSPOT_MONITOR_WAIT(jtid, \ 233 (uintptr_t)(monitor), bytes, len, (millis)); \ 234 } \ 235 } 236 237 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 238 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 239 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 240 241 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 242 { \ 243 if (DTraceMonitorProbes) { \ 244 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 245 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 246 (uintptr_t)(monitor), bytes, len); \ 247 } \ 248 } 249 250 #else // ndef DTRACE_ENABLED 251 252 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 253 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 254 255 #endif // ndef DTRACE_ENABLED 256 257 // This exists only as a workaround of dtrace bug 6254741 258 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 259 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 260 return 0; 261 } 262 263 static constexpr size_t inflation_lock_count() { 264 return 256; 265 } 266 267 // Static storage for an array of PlatformMutex. 268 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 269 270 static inline PlatformMutex* inflation_lock(size_t index) { 271 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 272 } 273 274 void ObjectSynchronizer::initialize() { 275 for (size_t i = 0; i < inflation_lock_count(); i++) { 276 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 277 } 278 // Start the ceiling with the estimate for one thread. 279 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 280 281 // Start the timer for deflations, so it does not trigger immediately. 282 _last_async_deflation_time_ns = os::javaTimeNanos(); 283 284 if (LockingMode == LM_LIGHTWEIGHT) { 285 LightweightSynchronizer::initialize(); 286 } 287 } 288 289 MonitorList ObjectSynchronizer::_in_use_list; 290 // monitors_used_above_threshold() policy is as follows: 291 // 292 // The ratio of the current _in_use_list count to the ceiling is used 293 // to determine if we are above MonitorUsedDeflationThreshold and need 294 // to do an async monitor deflation cycle. The ceiling is increased by 295 // AvgMonitorsPerThreadEstimate when a thread is added to the system 296 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 297 // removed from the system. 298 // 299 // Note: If the _in_use_list max exceeds the ceiling, then 300 // monitors_used_above_threshold() will use the in_use_list max instead 301 // of the thread count derived ceiling because we have used more 302 // ObjectMonitors than the estimated average. 303 // 304 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 305 // no-progress async monitor deflation cycles in a row, then the ceiling 306 // is adjusted upwards by monitors_used_above_threshold(). 307 // 308 // Start the ceiling with the estimate for one thread in initialize() 309 // which is called after cmd line options are processed. 310 static size_t _in_use_list_ceiling = 0; 311 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 312 bool volatile ObjectSynchronizer::_is_final_audit = false; 313 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 314 static uintx _no_progress_cnt = 0; 315 static bool _no_progress_skip_increment = false; 316 317 // These checks are required for wait, notify and exit to avoid inflating the monitor to 318 // find out this inline type object cannot be locked. 319 #define CHECK_THROW_NOSYNC_IMSE(obj) \ 320 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 321 JavaThread* THREAD = current; \ 322 ResourceMark rm(THREAD); \ 323 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 324 } 325 326 #define CHECK_THROW_NOSYNC_IMSE_0(obj) \ 327 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 328 JavaThread* THREAD = current; \ 329 ResourceMark rm(THREAD); \ 330 THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 331 } 332 333 // =====================> Quick functions 334 335 // The quick_* forms are special fast-path variants used to improve 336 // performance. In the simplest case, a "quick_*" implementation could 337 // simply return false, in which case the caller will perform the necessary 338 // state transitions and call the slow-path form. 339 // The fast-path is designed to handle frequently arising cases in an efficient 340 // manner and is just a degenerate "optimistic" variant of the slow-path. 341 // returns true -- to indicate the call was satisfied. 342 // returns false -- to indicate the call needs the services of the slow-path. 343 // A no-loitering ordinance is in effect for code in the quick_* family 344 // operators: safepoints or indefinite blocking (blocking that might span a 345 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 346 // entry. 347 // 348 // Consider: An interesting optimization is to have the JIT recognize the 349 // following common idiom: 350 // synchronized (someobj) { .... ; notify(); } 351 // That is, we find a notify() or notifyAll() call that immediately precedes 352 // the monitorexit operation. In that case the JIT could fuse the operations 353 // into a single notifyAndExit() runtime primitive. 354 355 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 356 assert(current->thread_state() == _thread_in_Java, "invariant"); 357 NoSafepointVerifier nsv; 358 if (obj == nullptr) return false; // slow-path for invalid obj 359 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 360 const markWord mark = obj->mark(); 361 362 if (LockingMode == LM_LIGHTWEIGHT) { 363 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 364 // Degenerate notify 365 // fast-locked by caller so by definition the implied waitset is empty. 366 return true; 367 } 368 } else if (LockingMode == LM_LEGACY) { 369 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 370 // Degenerate notify 371 // stack-locked by caller so by definition the implied waitset is empty. 372 return true; 373 } 374 } 375 376 if (mark.has_monitor()) { 377 ObjectMonitor* const mon = read_monitor(current, obj, mark); 378 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 379 // Racing with inflation/deflation go slow path 380 return false; 381 } 382 assert(mon->object() == oop(obj), "invariant"); 383 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 384 385 if (mon->first_waiter() != nullptr) { 386 // We have one or more waiters. Since this is an inflated monitor 387 // that we own, we quickly notify them here and now, avoiding the slow-path. 388 if (all) { 389 mon->quick_notifyAll(current); 390 } else { 391 mon->quick_notify(current); 392 } 393 } 394 return true; 395 } 396 397 // other IMS exception states take the slow-path 398 return false; 399 } 400 401 static bool useHeavyMonitors() { 402 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 403 return LockingMode == LM_MONITOR; 404 #else 405 return false; 406 #endif 407 } 408 409 // The LockNode emitted directly at the synchronization site would have 410 // been too big if it were to have included support for the cases of inflated 411 // recursive enter and exit, so they go here instead. 412 // Note that we can't safely call AsyncPrintJavaStack() from within 413 // quick_enter() as our thread state remains _in_Java. 414 415 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 416 assert(current->thread_state() == _thread_in_Java, "invariant"); 417 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 418 419 if (useHeavyMonitors()) { 420 return false; // Slow path 421 } 422 423 assert(LockingMode == LM_LEGACY, "legacy mode below"); 424 425 const markWord mark = obj->mark(); 426 427 if (mark.has_monitor()) { 428 429 ObjectMonitor* const m = read_monitor(mark); 430 // An async deflation or GC can race us before we manage to make 431 // the ObjectMonitor busy by setting the owner below. If we detect 432 // that race we just bail out to the slow-path here. 433 if (m->object_peek() == nullptr) { 434 return false; 435 } 436 437 // Lock contention and Transactional Lock Elision (TLE) diagnostics 438 // and observability 439 // Case: light contention possibly amenable to TLE 440 // Case: TLE inimical operations such as nested/recursive synchronization 441 442 if (m->has_owner(current)) { 443 m->increment_recursions(current); 444 current->inc_held_monitor_count(); 445 return true; 446 } 447 448 // This Java Monitor is inflated so obj's header will never be 449 // displaced to this thread's BasicLock. Make the displaced header 450 // non-null so this BasicLock is not seen as recursive nor as 451 // being locked. We do this unconditionally so that this thread's 452 // BasicLock cannot be mis-interpreted by any stack walkers. For 453 // performance reasons, stack walkers generally first check for 454 // stack-locking in the object's header, the second check is for 455 // recursive stack-locking in the displaced header in the BasicLock, 456 // and last are the inflated Java Monitor (ObjectMonitor) checks. 457 lock->set_displaced_header(markWord::unused_mark()); 458 459 if (!m->has_owner() && m->try_set_owner(current)) { 460 assert(m->recursions() == 0, "invariant"); 461 current->inc_held_monitor_count(); 462 return true; 463 } 464 } 465 466 // Note that we could inflate in quick_enter. 467 // This is likely a useful optimization 468 // Critically, in quick_enter() we must not: 469 // -- block indefinitely, or 470 // -- reach a safepoint 471 472 return false; // revert to slow-path 473 } 474 475 // Handle notifications when synchronizing on value based classes 476 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 477 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 478 frame last_frame = locking_thread->last_frame(); 479 bool bcp_was_adjusted = false; 480 // Don't decrement bcp if it points to the frame's first instruction. This happens when 481 // handle_sync_on_value_based_class() is called because of a synchronized method. There 482 // is no actual monitorenter instruction in the byte code in this case. 483 if (last_frame.is_interpreted_frame() && 484 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 485 // adjust bcp to point back to monitorenter so that we print the correct line numbers 486 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 487 bcp_was_adjusted = true; 488 } 489 490 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 491 ResourceMark rm; 492 stringStream ss; 493 locking_thread->print_active_stack_on(&ss); 494 char* base = (char*)strstr(ss.base(), "at"); 495 char* newline = (char*)strchr(ss.base(), '\n'); 496 if (newline != nullptr) { 497 *newline = '\0'; 498 } 499 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 500 } else { 501 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 502 ResourceMark rm; 503 Log(valuebasedclasses) vblog; 504 505 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 506 if (locking_thread->has_last_Java_frame()) { 507 LogStream info_stream(vblog.info()); 508 locking_thread->print_active_stack_on(&info_stream); 509 } else { 510 vblog.info("Cannot find the last Java frame"); 511 } 512 513 EventSyncOnValueBasedClass event; 514 if (event.should_commit()) { 515 event.set_valueBasedClass(obj->klass()); 516 event.commit(); 517 } 518 } 519 520 if (bcp_was_adjusted) { 521 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 522 } 523 } 524 525 // ----------------------------------------------------------------------------- 526 // Monitor Enter/Exit 527 528 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 529 // When called with locking_thread != Thread::current() some mechanism must synchronize 530 // the locking_thread with respect to the current thread. Currently only used when 531 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 532 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 533 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "JITed code should never have locked an instance of a value class"); 534 535 if (LockingMode == LM_LIGHTWEIGHT) { 536 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 537 } 538 539 if (!enter_fast_impl(obj, lock, locking_thread)) { 540 // Inflated ObjectMonitor::enter_for is required 541 542 // An async deflation can race after the inflate_for() call and before 543 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 544 // if we have lost the race to async deflation and we simply try again. 545 while (true) { 546 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 547 if (monitor->enter_for(locking_thread)) { 548 return; 549 } 550 assert(monitor->is_being_async_deflated(), "must be"); 551 } 552 } 553 } 554 555 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 556 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "This method should never be called on an instance of an inline class"); 557 if (!enter_fast_impl(obj, lock, current)) { 558 // Inflated ObjectMonitor::enter is required 559 560 // An async deflation can race after the inflate() call and before 561 // enter() can make the ObjectMonitor busy. enter() returns false if 562 // we have lost the race to async deflation and we simply try again. 563 while (true) { 564 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 565 if (monitor->enter(current)) { 566 return; 567 } 568 } 569 } 570 } 571 572 // The interpreter and compiler assembly code tries to lock using the fast path 573 // of this algorithm. Make sure to update that code if the following function is 574 // changed. The implementation is extremely sensitive to race condition. Be careful. 575 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 576 guarantee(!EnableValhalla || !obj->klass()->is_inline_klass(), "Attempt to inflate inline type"); 577 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 578 579 if (obj->klass()->is_value_based()) { 580 handle_sync_on_value_based_class(obj, locking_thread); 581 } 582 583 locking_thread->inc_held_monitor_count(); 584 585 if (!useHeavyMonitors()) { 586 if (LockingMode == LM_LEGACY) { 587 markWord mark = obj->mark(); 588 if (mark.is_unlocked()) { 589 // Anticipate successful CAS -- the ST of the displaced mark must 590 // be visible <= the ST performed by the CAS. 591 lock->set_displaced_header(mark); 592 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 593 return true; 594 } 595 } else if (mark.has_locker() && 596 locking_thread->is_lock_owned((address) mark.locker())) { 597 assert(lock != mark.locker(), "must not re-lock the same lock"); 598 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 599 lock->set_displaced_header(markWord::from_pointer(nullptr)); 600 return true; 601 } 602 603 // The object header will never be displaced to this lock, 604 // so it does not matter what the value is, except that it 605 // must be non-zero to avoid looking like a re-entrant lock, 606 // and must not look locked either. 607 lock->set_displaced_header(markWord::unused_mark()); 608 609 // Failed to fast lock. 610 return false; 611 } 612 } else if (VerifyHeavyMonitors) { 613 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 614 } 615 616 return false; 617 } 618 619 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 620 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 621 622 if (!useHeavyMonitors()) { 623 markWord mark = object->mark(); 624 if (EnableValhalla && mark.is_inline_type()) { 625 return; 626 } 627 if (LockingMode == LM_LEGACY) { 628 markWord dhw = lock->displaced_header(); 629 if (dhw.value() == 0) { 630 // If the displaced header is null, then this exit matches up with 631 // a recursive enter. No real work to do here except for diagnostics. 632 #ifndef PRODUCT 633 if (mark != markWord::INFLATING()) { 634 // Only do diagnostics if we are not racing an inflation. Simply 635 // exiting a recursive enter of a Java Monitor that is being 636 // inflated is safe; see the has_monitor() comment below. 637 assert(!mark.is_unlocked(), "invariant"); 638 assert(!mark.has_locker() || 639 current->is_lock_owned((address)mark.locker()), "invariant"); 640 if (mark.has_monitor()) { 641 // The BasicLock's displaced_header is marked as a recursive 642 // enter and we have an inflated Java Monitor (ObjectMonitor). 643 // This is a special case where the Java Monitor was inflated 644 // after this thread entered the stack-lock recursively. When a 645 // Java Monitor is inflated, we cannot safely walk the Java 646 // Monitor owner's stack and update the BasicLocks because a 647 // Java Monitor can be asynchronously inflated by a thread that 648 // does not own the Java Monitor. 649 ObjectMonitor* m = read_monitor(mark); 650 assert(m->object()->mark() == mark, "invariant"); 651 assert(m->is_entered(current), "invariant"); 652 } 653 } 654 #endif 655 return; 656 } 657 658 if (mark == markWord::from_pointer(lock)) { 659 // If the object is stack-locked by the current thread, try to 660 // swing the displaced header from the BasicLock back to the mark. 661 assert(dhw.is_neutral(), "invariant"); 662 if (object->cas_set_mark(dhw, mark) == mark) { 663 return; 664 } 665 } 666 } 667 } else if (VerifyHeavyMonitors) { 668 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 669 } 670 671 // We have to take the slow-path of possible inflation and then exit. 672 // The ObjectMonitor* can't be async deflated until ownership is 673 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 674 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 675 assert(!monitor->has_anonymous_owner(), "must not be"); 676 monitor->exit(current); 677 } 678 679 // ----------------------------------------------------------------------------- 680 // JNI locks on java objects 681 // NOTE: must use heavy weight monitor to handle jni monitor enter 682 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 683 JavaThread* THREAD = current; 684 // Top native frames in the stack will not be seen if we attempt 685 // preemption, since we start walking from the last Java anchor. 686 NoPreemptMark npm(current); 687 688 if (obj->klass()->is_value_based()) { 689 handle_sync_on_value_based_class(obj, current); 690 } 691 692 if (EnableValhalla && obj->klass()->is_inline_klass()) { 693 ResourceMark rm(THREAD); 694 const char* desc = "Cannot synchronize on an instance of value class "; 695 const char* className = obj->klass()->external_name(); 696 size_t msglen = strlen(desc) + strlen(className) + 1; 697 char* message = NEW_RESOURCE_ARRAY(char, msglen); 698 assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr"); 699 THROW_MSG(vmSymbols::java_lang_IdentityException(), className); 700 } 701 702 // the current locking is from JNI instead of Java code 703 current->set_current_pending_monitor_is_from_java(false); 704 // An async deflation can race after the inflate() call and before 705 // enter() can make the ObjectMonitor busy. enter() returns false if 706 // we have lost the race to async deflation and we simply try again. 707 while (true) { 708 ObjectMonitor* monitor; 709 bool entered; 710 if (LockingMode == LM_LIGHTWEIGHT) { 711 BasicLock lock; 712 entered = LightweightSynchronizer::inflate_and_enter(obj(), &lock, inflate_cause_jni_enter, current, current) != nullptr; 713 } else { 714 monitor = inflate(current, obj(), inflate_cause_jni_enter); 715 entered = monitor->enter(current); 716 } 717 718 if (entered) { 719 current->inc_held_monitor_count(1, true); 720 break; 721 } 722 } 723 current->set_current_pending_monitor_is_from_java(true); 724 } 725 726 // NOTE: must use heavy weight monitor to handle jni monitor exit 727 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 728 JavaThread* current = THREAD; 729 CHECK_THROW_NOSYNC_IMSE(obj); 730 731 ObjectMonitor* monitor; 732 if (LockingMode == LM_LIGHTWEIGHT) { 733 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 734 } else { 735 // The ObjectMonitor* can't be async deflated until ownership is 736 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 737 monitor = inflate(current, obj, inflate_cause_jni_exit); 738 } 739 // If this thread has locked the object, exit the monitor. We 740 // intentionally do not use CHECK on check_owner because we must exit the 741 // monitor even if an exception was already pending. 742 if (monitor->check_owner(THREAD)) { 743 monitor->exit(current); 744 current->dec_held_monitor_count(1, true); 745 } 746 } 747 748 // ----------------------------------------------------------------------------- 749 // Internal VM locks on java objects 750 // standard constructor, allows locking failures 751 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 752 _thread = thread; 753 _thread->check_for_valid_safepoint_state(); 754 _obj = obj; 755 756 if (_obj() != nullptr) { 757 ObjectSynchronizer::enter(_obj, &_lock, _thread); 758 } 759 } 760 761 ObjectLocker::~ObjectLocker() { 762 if (_obj() != nullptr) { 763 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 764 } 765 } 766 767 768 // ----------------------------------------------------------------------------- 769 // Wait/Notify/NotifyAll 770 // NOTE: must use heavy weight monitor to handle wait() 771 772 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 773 JavaThread* current = THREAD; 774 CHECK_THROW_NOSYNC_IMSE_0(obj); 775 if (millis < 0) { 776 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 777 } 778 779 ObjectMonitor* monitor; 780 if (LockingMode == LM_LIGHTWEIGHT) { 781 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 782 } else { 783 // The ObjectMonitor* can't be async deflated because the _waiters 784 // field is incremented before ownership is dropped and decremented 785 // after ownership is regained. 786 monitor = inflate(current, obj(), inflate_cause_wait); 787 } 788 789 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 790 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 791 792 // This dummy call is in place to get around dtrace bug 6254741. Once 793 // that's fixed we can uncomment the following line, remove the call 794 // and change this function back into a "void" func. 795 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 796 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 797 return ret_code; 798 } 799 800 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 801 if (millis < 0) { 802 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 803 } 804 805 ObjectMonitor* monitor; 806 if (LockingMode == LM_LIGHTWEIGHT) { 807 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 808 } else { 809 monitor = inflate(THREAD, obj(), inflate_cause_wait); 810 } 811 monitor->wait(millis, false, THREAD); 812 } 813 814 815 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 816 JavaThread* current = THREAD; 817 CHECK_THROW_NOSYNC_IMSE(obj); 818 819 markWord mark = obj->mark(); 820 if (LockingMode == LM_LIGHTWEIGHT) { 821 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 822 // Not inflated so there can't be any waiters to notify. 823 return; 824 } 825 } else if (LockingMode == LM_LEGACY) { 826 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 827 // Not inflated so there can't be any waiters to notify. 828 return; 829 } 830 } 831 832 ObjectMonitor* monitor; 833 if (LockingMode == LM_LIGHTWEIGHT) { 834 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 835 } else { 836 // The ObjectMonitor* can't be async deflated until ownership is 837 // dropped by the calling thread. 838 monitor = inflate(current, obj(), inflate_cause_notify); 839 } 840 monitor->notify(CHECK); 841 } 842 843 // NOTE: see comment of notify() 844 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 845 JavaThread* current = THREAD; 846 CHECK_THROW_NOSYNC_IMSE(obj); 847 848 markWord mark = obj->mark(); 849 if (LockingMode == LM_LIGHTWEIGHT) { 850 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 851 // Not inflated so there can't be any waiters to notify. 852 return; 853 } 854 } else if (LockingMode == LM_LEGACY) { 855 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 856 // Not inflated so there can't be any waiters to notify. 857 return; 858 } 859 } 860 861 ObjectMonitor* monitor; 862 if (LockingMode == LM_LIGHTWEIGHT) { 863 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 864 } else { 865 // The ObjectMonitor* can't be async deflated until ownership is 866 // dropped by the calling thread. 867 monitor = inflate(current, obj(), inflate_cause_notify); 868 } 869 monitor->notifyAll(CHECK); 870 } 871 872 // ----------------------------------------------------------------------------- 873 // Hash Code handling 874 875 struct SharedGlobals { 876 char _pad_prefix[OM_CACHE_LINE_SIZE]; 877 // This is a highly shared mostly-read variable. 878 // To avoid false-sharing it needs to be the sole occupant of a cache line. 879 volatile int stw_random; 880 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 881 // Hot RW variable -- Sequester to avoid false-sharing 882 volatile int hc_sequence; 883 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 884 }; 885 886 static SharedGlobals GVars; 887 888 static markWord read_stable_mark(oop obj) { 889 markWord mark = obj->mark_acquire(); 890 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 891 // New lightweight locking does not use the markWord::INFLATING() protocol. 892 return mark; // normal fast-path return 893 } 894 895 int its = 0; 896 for (;;) { 897 markWord mark = obj->mark_acquire(); 898 if (!mark.is_being_inflated()) { 899 return mark; // normal fast-path return 900 } 901 902 // The object is being inflated by some other thread. 903 // The caller of read_stable_mark() must wait for inflation to complete. 904 // Avoid live-lock. 905 906 ++its; 907 if (its > 10000 || !os::is_MP()) { 908 if (its & 1) { 909 os::naked_yield(); 910 } else { 911 // Note that the following code attenuates the livelock problem but is not 912 // a complete remedy. A more complete solution would require that the inflating 913 // thread hold the associated inflation lock. The following code simply restricts 914 // the number of spinners to at most one. We'll have N-2 threads blocked 915 // on the inflationlock, 1 thread holding the inflation lock and using 916 // a yield/park strategy, and 1 thread in the midst of inflation. 917 // A more refined approach would be to change the encoding of INFLATING 918 // to allow encapsulation of a native thread pointer. Threads waiting for 919 // inflation to complete would use CAS to push themselves onto a singly linked 920 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 921 // and calling park(). When inflation was complete the thread that accomplished inflation 922 // would detach the list and set the markword to inflated with a single CAS and 923 // then for each thread on the list, set the flag and unpark() the thread. 924 925 // Index into the lock array based on the current object address. 926 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 927 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 928 int YieldThenBlock = 0; 929 assert(ix < inflation_lock_count(), "invariant"); 930 inflation_lock(ix)->lock(); 931 while (obj->mark_acquire() == markWord::INFLATING()) { 932 // Beware: naked_yield() is advisory and has almost no effect on some platforms 933 // so we periodically call current->_ParkEvent->park(1). 934 // We use a mixed spin/yield/block mechanism. 935 if ((YieldThenBlock++) >= 16) { 936 Thread::current()->_ParkEvent->park(1); 937 } else { 938 os::naked_yield(); 939 } 940 } 941 inflation_lock(ix)->unlock(); 942 } 943 } else { 944 SpinPause(); // SMP-polite spinning 945 } 946 } 947 } 948 949 // hashCode() generation : 950 // 951 // Possibilities: 952 // * MD5Digest of {obj,stw_random} 953 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 954 // * A DES- or AES-style SBox[] mechanism 955 // * One of the Phi-based schemes, such as: 956 // 2654435761 = 2^32 * Phi (golden ratio) 957 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 958 // * A variation of Marsaglia's shift-xor RNG scheme. 959 // * (obj ^ stw_random) is appealing, but can result 960 // in undesirable regularity in the hashCode values of adjacent objects 961 // (objects allocated back-to-back, in particular). This could potentially 962 // result in hashtable collisions and reduced hashtable efficiency. 963 // There are simple ways to "diffuse" the middle address bits over the 964 // generated hashCode values: 965 966 static intptr_t get_next_hash(Thread* current, oop obj) { 967 intptr_t value = 0; 968 if (hashCode == 0) { 969 // This form uses global Park-Miller RNG. 970 // On MP system we'll have lots of RW access to a global, so the 971 // mechanism induces lots of coherency traffic. 972 value = os::random(); 973 } else if (hashCode == 1) { 974 // This variation has the property of being stable (idempotent) 975 // between STW operations. This can be useful in some of the 1-0 976 // synchronization schemes. 977 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 978 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 979 } else if (hashCode == 2) { 980 value = 1; // for sensitivity testing 981 } else if (hashCode == 3) { 982 value = ++GVars.hc_sequence; 983 } else if (hashCode == 4) { 984 value = cast_from_oop<intptr_t>(obj); 985 } else { 986 // Marsaglia's xor-shift scheme with thread-specific state 987 // This is probably the best overall implementation -- we'll 988 // likely make this the default in future releases. 989 unsigned t = current->_hashStateX; 990 t ^= (t << 11); 991 current->_hashStateX = current->_hashStateY; 992 current->_hashStateY = current->_hashStateZ; 993 current->_hashStateZ = current->_hashStateW; 994 unsigned v = current->_hashStateW; 995 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 996 current->_hashStateW = v; 997 value = v; 998 } 999 1000 value &= markWord::hash_mask; 1001 if (value == 0) value = 0xBAD; 1002 assert(value != markWord::no_hash, "invariant"); 1003 return value; 1004 } 1005 1006 static intptr_t install_hash_code(Thread* current, oop obj) { 1007 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 1008 1009 markWord mark = obj->mark_acquire(); 1010 for (;;) { 1011 intptr_t hash = mark.hash(); 1012 if (hash != 0) { 1013 return hash; 1014 } 1015 1016 hash = get_next_hash(current, obj); 1017 const markWord old_mark = mark; 1018 const markWord new_mark = old_mark.copy_set_hash(hash); 1019 1020 mark = obj->cas_set_mark(new_mark, old_mark); 1021 if (old_mark == mark) { 1022 return hash; 1023 } 1024 } 1025 } 1026 1027 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1028 if (EnableValhalla && obj->klass()->is_inline_klass()) { 1029 // VM should be calling bootstrap method 1030 ShouldNotReachHere(); 1031 } 1032 if (UseObjectMonitorTable) { 1033 // Since the monitor isn't in the object header, the hash can simply be 1034 // installed in the object header. 1035 return install_hash_code(current, obj); 1036 } 1037 1038 while (true) { 1039 ObjectMonitor* monitor = nullptr; 1040 markWord temp, test; 1041 intptr_t hash; 1042 markWord mark = read_stable_mark(obj); 1043 if (VerifyHeavyMonitors) { 1044 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1045 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1046 } 1047 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1048 hash = mark.hash(); 1049 if (hash != 0) { // if it has a hash, just return it 1050 return hash; 1051 } 1052 hash = get_next_hash(current, obj); // get a new hash 1053 temp = mark.copy_set_hash(hash); // merge the hash into header 1054 // try to install the hash 1055 test = obj->cas_set_mark(temp, mark); 1056 if (test == mark) { // if the hash was installed, return it 1057 return hash; 1058 } 1059 if (LockingMode == LM_LIGHTWEIGHT) { 1060 // CAS failed, retry 1061 continue; 1062 } 1063 // Failed to install the hash. It could be that another thread 1064 // installed the hash just before our attempt or inflation has 1065 // occurred or... so we fall thru to inflate the monitor for 1066 // stability and then install the hash. 1067 } else if (mark.has_monitor()) { 1068 monitor = mark.monitor(); 1069 temp = monitor->header(); 1070 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1071 hash = temp.hash(); 1072 if (hash != 0) { 1073 // It has a hash. 1074 1075 // Separate load of dmw/header above from the loads in 1076 // is_being_async_deflated(). 1077 1078 // dmw/header and _contentions may get written by different threads. 1079 // Make sure to observe them in the same order when having several observers. 1080 OrderAccess::loadload_for_IRIW(); 1081 1082 if (monitor->is_being_async_deflated()) { 1083 // But we can't safely use the hash if we detect that async 1084 // deflation has occurred. So we attempt to restore the 1085 // header/dmw to the object's header so that we only retry 1086 // once if the deflater thread happens to be slow. 1087 monitor->install_displaced_markword_in_object(obj); 1088 continue; 1089 } 1090 return hash; 1091 } 1092 // Fall thru so we only have one place that installs the hash in 1093 // the ObjectMonitor. 1094 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1095 && current->is_Java_thread() 1096 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1097 // This is a stack-lock owned by the calling thread so fetch the 1098 // displaced markWord from the BasicLock on the stack. 1099 temp = mark.displaced_mark_helper(); 1100 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1101 hash = temp.hash(); 1102 if (hash != 0) { // if it has a hash, just return it 1103 return hash; 1104 } 1105 // WARNING: 1106 // The displaced header in the BasicLock on a thread's stack 1107 // is strictly immutable. It CANNOT be changed in ANY cases. 1108 // So we have to inflate the stack-lock into an ObjectMonitor 1109 // even if the current thread owns the lock. The BasicLock on 1110 // a thread's stack can be asynchronously read by other threads 1111 // during an inflate() call so any change to that stack memory 1112 // may not propagate to other threads correctly. 1113 } 1114 1115 // Inflate the monitor to set the hash. 1116 1117 // There's no need to inflate if the mark has already got a monitor. 1118 // NOTE: an async deflation can race after we get the monitor and 1119 // before we can update the ObjectMonitor's header with the hash 1120 // value below. 1121 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1122 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1123 mark = monitor->header(); 1124 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1125 hash = mark.hash(); 1126 if (hash == 0) { // if it does not have a hash 1127 hash = get_next_hash(current, obj); // get a new hash 1128 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1129 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1130 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1131 test = markWord(v); 1132 if (test != mark) { 1133 // The attempt to update the ObjectMonitor's header/dmw field 1134 // did not work. This can happen if another thread managed to 1135 // merge in the hash just before our cmpxchg(). 1136 // If we add any new usages of the header/dmw field, this code 1137 // will need to be updated. 1138 hash = test.hash(); 1139 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1140 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1141 } 1142 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1143 // If we detect that async deflation has occurred, then we 1144 // attempt to restore the header/dmw to the object's header 1145 // so that we only retry once if the deflater thread happens 1146 // to be slow. 1147 monitor->install_displaced_markword_in_object(obj); 1148 continue; 1149 } 1150 } 1151 // We finally get the hash. 1152 return hash; 1153 } 1154 } 1155 1156 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1157 Handle h_obj) { 1158 if (EnableValhalla && h_obj->mark().is_inline_type()) { 1159 return false; 1160 } 1161 assert(current == JavaThread::current(), "Can only be called on current thread"); 1162 oop obj = h_obj(); 1163 1164 markWord mark = read_stable_mark(obj); 1165 1166 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1167 // stack-locked case, header points into owner's stack 1168 return current->is_lock_owned((address)mark.locker()); 1169 } 1170 1171 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1172 // fast-locking case, see if lock is in current's lock stack 1173 return current->lock_stack().contains(h_obj()); 1174 } 1175 1176 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1177 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1178 if (monitor != nullptr) { 1179 return monitor->is_entered(current) != 0; 1180 } 1181 // Racing with inflation/deflation, retry 1182 mark = obj->mark_acquire(); 1183 1184 if (mark.is_fast_locked()) { 1185 // Some other thread fast_locked, current could not have held the lock 1186 return false; 1187 } 1188 } 1189 1190 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1191 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1192 // The first stage of async deflation does not affect any field 1193 // used by this comparison so the ObjectMonitor* is usable here. 1194 ObjectMonitor* monitor = read_monitor(mark); 1195 return monitor->is_entered(current) != 0; 1196 } 1197 // Unlocked case, header in place 1198 assert(mark.is_unlocked(), "sanity check"); 1199 return false; 1200 } 1201 1202 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1203 oop obj = h_obj(); 1204 markWord mark = read_stable_mark(obj); 1205 1206 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1207 // stack-locked so header points into owner's stack. 1208 // owning_thread_from_monitor_owner() may also return null here: 1209 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1210 } 1211 1212 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1213 // fast-locked so get owner from the object. 1214 // owning_thread_from_object() may also return null here: 1215 return Threads::owning_thread_from_object(t_list, h_obj()); 1216 } 1217 1218 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1219 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1220 if (monitor != nullptr) { 1221 return Threads::owning_thread_from_monitor(t_list, monitor); 1222 } 1223 // Racing with inflation/deflation, retry 1224 mark = obj->mark_acquire(); 1225 1226 if (mark.is_fast_locked()) { 1227 // Some other thread fast_locked 1228 return Threads::owning_thread_from_object(t_list, h_obj()); 1229 } 1230 } 1231 1232 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1233 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1234 // The first stage of async deflation does not affect any field 1235 // used by this comparison so the ObjectMonitor* is usable here. 1236 ObjectMonitor* monitor = read_monitor(mark); 1237 assert(monitor != nullptr, "monitor should be non-null"); 1238 // owning_thread_from_monitor() may also return null here: 1239 return Threads::owning_thread_from_monitor(t_list, monitor); 1240 } 1241 1242 // Unlocked case, header in place 1243 // Cannot have assertion since this object may have been 1244 // locked by another thread when reaching here. 1245 // assert(mark.is_unlocked(), "sanity check"); 1246 1247 return nullptr; 1248 } 1249 1250 // Visitors ... 1251 1252 // Iterate over all ObjectMonitors. 1253 template <typename Function> 1254 void ObjectSynchronizer::monitors_iterate(Function function) { 1255 MonitorList::Iterator iter = _in_use_list.iterator(); 1256 while (iter.has_next()) { 1257 ObjectMonitor* monitor = iter.next(); 1258 function(monitor); 1259 } 1260 } 1261 1262 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1263 // returns true. 1264 template <typename OwnerFilter> 1265 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1266 monitors_iterate([&](ObjectMonitor* monitor) { 1267 // This function is only called at a safepoint or when the 1268 // target thread is suspended or when the target thread is 1269 // operating on itself. The current closures in use today are 1270 // only interested in an owned ObjectMonitor and ownership 1271 // cannot be dropped under the calling contexts so the 1272 // ObjectMonitor cannot be async deflated. 1273 if (monitor->has_owner() && filter(monitor)) { 1274 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1275 1276 closure->do_monitor(monitor); 1277 } 1278 }); 1279 } 1280 1281 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1282 // ObjectMonitors where owner is set to a stack-lock address in thread. 1283 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1284 int64_t key = ObjectMonitor::owner_id_from(thread); 1285 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1286 return owned_monitors_iterate_filtered(closure, thread_filter); 1287 } 1288 1289 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1290 int64_t key = ObjectMonitor::owner_id_from(vthread); 1291 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1292 return owned_monitors_iterate_filtered(closure, thread_filter); 1293 } 1294 1295 // Iterate ObjectMonitors owned by any thread. 1296 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1297 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1298 return owned_monitors_iterate_filtered(closure, all_filter); 1299 } 1300 1301 static bool monitors_used_above_threshold(MonitorList* list) { 1302 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1303 return false; 1304 } 1305 size_t monitors_used = list->count(); 1306 if (monitors_used == 0) { // empty list is easy 1307 return false; 1308 } 1309 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1310 // Make sure that we use a ceiling value that is not lower than 1311 // previous, not lower than the recorded max used by the system, and 1312 // not lower than the current number of monitors in use (which can 1313 // race ahead of max). The result is guaranteed > 0. 1314 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1315 1316 // Check if our monitor usage is above the threshold: 1317 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1318 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1319 // Deflate monitors if over the threshold percentage, unless no 1320 // progress on previous deflations. 1321 bool is_above_threshold = true; 1322 1323 // Check if it's time to adjust the in_use_list_ceiling up, due 1324 // to too many async deflation attempts without any progress. 1325 if (NoAsyncDeflationProgressMax != 0 && 1326 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1327 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1328 size_t delta = (size_t)(ceiling * remainder) + 1; 1329 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1330 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1331 : ceiling + delta; 1332 1333 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1334 log_info(monitorinflation)("Too many deflations without progress; " 1335 "bumping in_use_list_ceiling from %zu" 1336 " to %zu", old_ceiling, new_ceiling); 1337 _no_progress_cnt = 0; 1338 ceiling = new_ceiling; 1339 1340 // Check if our monitor usage is still above the threshold: 1341 monitor_usage = (monitors_used * 100LL) / ceiling; 1342 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1343 } 1344 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1345 ", monitor_usage=%zu, threshold=%d", 1346 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1347 return is_above_threshold; 1348 } 1349 1350 return false; 1351 } 1352 1353 size_t ObjectSynchronizer::in_use_list_count() { 1354 return _in_use_list.count(); 1355 } 1356 1357 size_t ObjectSynchronizer::in_use_list_max() { 1358 return _in_use_list.max(); 1359 } 1360 1361 size_t ObjectSynchronizer::in_use_list_ceiling() { 1362 return _in_use_list_ceiling; 1363 } 1364 1365 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1366 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1367 } 1368 1369 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1370 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1371 } 1372 1373 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1374 _in_use_list_ceiling = new_value; 1375 } 1376 1377 bool ObjectSynchronizer::is_async_deflation_needed() { 1378 if (is_async_deflation_requested()) { 1379 // Async deflation request. 1380 log_info(monitorinflation)("Async deflation needed: explicit request"); 1381 return true; 1382 } 1383 1384 jlong time_since_last = time_since_last_async_deflation_ms(); 1385 1386 if (AsyncDeflationInterval > 0 && 1387 time_since_last > AsyncDeflationInterval && 1388 monitors_used_above_threshold(&_in_use_list)) { 1389 // It's been longer than our specified deflate interval and there 1390 // are too many monitors in use. We don't deflate more frequently 1391 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1392 // in order to not swamp the MonitorDeflationThread. 1393 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1394 return true; 1395 } 1396 1397 if (GuaranteedAsyncDeflationInterval > 0 && 1398 time_since_last > GuaranteedAsyncDeflationInterval) { 1399 // It's been longer than our specified guaranteed deflate interval. 1400 // We need to clean up the used monitors even if the threshold is 1401 // not reached, to keep the memory utilization at bay when many threads 1402 // touched many monitors. 1403 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1404 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1405 GuaranteedAsyncDeflationInterval, time_since_last); 1406 1407 // If this deflation has no progress, then it should not affect the no-progress 1408 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1409 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1410 // the generic code would bump the no-progress counter, and we compensate for that 1411 // by telling it to skip the update. 1412 // 1413 // If this deflation has progress, then it should let non-progress tracking 1414 // know about this, otherwise the threshold heuristics would kick in, potentially 1415 // experience no-progress due to aggressive cleanup by this deflation, and think 1416 // it is still in no-progress stride. In this "progress" case, the generic code would 1417 // zero the counter, and we allow it to happen. 1418 _no_progress_skip_increment = true; 1419 1420 return true; 1421 } 1422 1423 return false; 1424 } 1425 1426 void ObjectSynchronizer::request_deflate_idle_monitors() { 1427 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1428 set_is_async_deflation_requested(true); 1429 ml.notify_all(); 1430 } 1431 1432 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1433 JavaThread* current = JavaThread::current(); 1434 bool ret_code = false; 1435 1436 jlong last_time = last_async_deflation_time_ns(); 1437 1438 request_deflate_idle_monitors(); 1439 1440 const int N_CHECKS = 5; 1441 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1442 if (last_async_deflation_time_ns() > last_time) { 1443 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1444 ret_code = true; 1445 break; 1446 } 1447 { 1448 // JavaThread has to honor the blocking protocol. 1449 ThreadBlockInVM tbivm(current); 1450 os::naked_short_sleep(999); // sleep for almost 1 second 1451 } 1452 } 1453 if (!ret_code) { 1454 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1455 } 1456 1457 return ret_code; 1458 } 1459 1460 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1461 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1462 } 1463 1464 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1465 const oop obj, 1466 ObjectSynchronizer::InflateCause cause) { 1467 assert(event != nullptr, "invariant"); 1468 const Klass* monitor_klass = obj->klass(); 1469 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1470 return; 1471 } 1472 event->set_monitorClass(monitor_klass); 1473 event->set_address((uintptr_t)(void*)obj); 1474 event->set_cause((u1)cause); 1475 event->commit(); 1476 } 1477 1478 // Fast path code shared by multiple functions 1479 void ObjectSynchronizer::inflate_helper(oop obj) { 1480 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1481 markWord mark = obj->mark_acquire(); 1482 if (mark.has_monitor()) { 1483 ObjectMonitor* monitor = read_monitor(mark); 1484 markWord dmw = monitor->header(); 1485 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1486 return; 1487 } 1488 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1489 } 1490 1491 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1492 assert(current == Thread::current(), "must be"); 1493 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1494 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1495 } 1496 1497 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1498 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1499 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1500 return inflate_impl(thread, obj, cause); 1501 } 1502 1503 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1504 if (EnableValhalla) { 1505 guarantee(!object->klass()->is_inline_klass(), "Attempt to inflate inline type"); 1506 } 1507 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1508 // is suspended throughout the call by some other mechanism. 1509 // The thread might be nullptr when called from a non JavaThread. (As may still be 1510 // the case from FastHashCode). However it is only important for correctness that the 1511 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1512 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1513 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1514 EventJavaMonitorInflate event; 1515 1516 for (;;) { 1517 const markWord mark = object->mark_acquire(); 1518 1519 // The mark can be in one of the following states: 1520 // * inflated - If the ObjectMonitor owner is anonymous and the 1521 // locking_thread owns the object lock, then we 1522 // make the locking_thread the ObjectMonitor owner. 1523 // * stack-locked - Coerce it to inflated from stack-locked. 1524 // * INFLATING - Busy wait for conversion from stack-locked to 1525 // inflated. 1526 // * unlocked - Aggressively inflate the object. 1527 1528 // CASE: inflated 1529 if (mark.has_monitor()) { 1530 ObjectMonitor* inf = mark.monitor(); 1531 markWord dmw = inf->header(); 1532 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1533 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1534 assert(LockingMode == LM_LEGACY, "invariant"); 1535 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1536 inf->set_stack_locker(nullptr); 1537 inf->set_owner_from_anonymous(locking_thread); 1538 } 1539 } 1540 return inf; 1541 } 1542 1543 // CASE: inflation in progress - inflating over a stack-lock. 1544 // Some other thread is converting from stack-locked to inflated. 1545 // Only that thread can complete inflation -- other threads must wait. 1546 // The INFLATING value is transient. 1547 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1548 // We could always eliminate polling by parking the thread on some auxiliary list. 1549 if (mark == markWord::INFLATING()) { 1550 read_stable_mark(object); 1551 continue; 1552 } 1553 1554 // CASE: stack-locked 1555 // Could be stack-locked either by current or by some other thread. 1556 // 1557 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1558 // to install INFLATING into the mark word. We originally installed INFLATING, 1559 // allocated the ObjectMonitor, and then finally STed the address of the 1560 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1561 // the interval in which INFLATING appeared in the mark, thus increasing 1562 // the odds of inflation contention. If we lose the race to set INFLATING, 1563 // then we just delete the ObjectMonitor and loop around again. 1564 // 1565 LogStreamHandle(Trace, monitorinflation) lsh; 1566 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1567 ObjectMonitor* m = new ObjectMonitor(object); 1568 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1569 // We do this before the CAS in order to minimize the length of time 1570 // in which INFLATING appears in the mark. 1571 1572 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1573 if (cmp != mark) { 1574 delete m; 1575 continue; // Interference -- just retry 1576 } 1577 1578 // We've successfully installed INFLATING (0) into the mark-word. 1579 // This is the only case where 0 will appear in a mark-word. 1580 // Only the singular thread that successfully swings the mark-word 1581 // to 0 can perform (or more precisely, complete) inflation. 1582 // 1583 // Why do we CAS a 0 into the mark-word instead of just CASing the 1584 // mark-word from the stack-locked value directly to the new inflated state? 1585 // Consider what happens when a thread unlocks a stack-locked object. 1586 // It attempts to use CAS to swing the displaced header value from the 1587 // on-stack BasicLock back into the object header. Recall also that the 1588 // header value (hash code, etc) can reside in (a) the object header, or 1589 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1590 // header in an ObjectMonitor. The inflate() routine must copy the header 1591 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1592 // the while preserving the hashCode stability invariants. If the owner 1593 // decides to release the lock while the value is 0, the unlock will fail 1594 // and control will eventually pass from slow_exit() to inflate. The owner 1595 // will then spin, waiting for the 0 value to disappear. Put another way, 1596 // the 0 causes the owner to stall if the owner happens to try to 1597 // drop the lock (restoring the header from the BasicLock to the object) 1598 // while inflation is in-progress. This protocol avoids races that might 1599 // would otherwise permit hashCode values to change or "flicker" for an object. 1600 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1601 // 0 serves as a "BUSY" inflate-in-progress indicator. 1602 1603 1604 // fetch the displaced mark from the owner's stack. 1605 // The owner can't die or unwind past the lock while our INFLATING 1606 // object is in the mark. Furthermore the owner can't complete 1607 // an unlock on the object, either. 1608 markWord dmw = mark.displaced_mark_helper(); 1609 // Catch if the object's header is not neutral (not locked and 1610 // not marked is what we care about here). 1611 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1612 1613 // Setup monitor fields to proper values -- prepare the monitor 1614 m->set_header(dmw); 1615 1616 // Note that a thread can inflate an object 1617 // that it has stack-locked -- as might happen in wait() -- directly 1618 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1619 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1620 m->set_owner(locking_thread); 1621 } else { 1622 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1623 // and set the stack locker field in the monitor. 1624 m->set_stack_locker(mark.locker()); 1625 m->set_anonymous_owner(); 1626 } 1627 // TODO-FIXME: assert BasicLock->dhw != 0. 1628 1629 // Must preserve store ordering. The monitor state must 1630 // be stable at the time of publishing the monitor address. 1631 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1632 // Release semantics so that above set_object() is seen first. 1633 object->release_set_mark(markWord::encode(m)); 1634 1635 // Once ObjectMonitor is configured and the object is associated 1636 // with the ObjectMonitor, it is safe to allow async deflation: 1637 _in_use_list.add(m); 1638 1639 if (log_is_enabled(Trace, monitorinflation)) { 1640 ResourceMark rm; 1641 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1642 INTPTR_FORMAT ", type='%s'", p2i(object), 1643 object->mark().value(), object->klass()->external_name()); 1644 } 1645 if (event.should_commit()) { 1646 post_monitor_inflate_event(&event, object, cause); 1647 } 1648 return m; 1649 } 1650 1651 // CASE: unlocked 1652 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1653 // If we know we're inflating for entry it's better to inflate by swinging a 1654 // pre-locked ObjectMonitor pointer into the object header. A successful 1655 // CAS inflates the object *and* confers ownership to the inflating thread. 1656 // In the current implementation we use a 2-step mechanism where we CAS() 1657 // to inflate and then CAS() again to try to swing _owner from null to current. 1658 // An inflateTry() method that we could call from enter() would be useful. 1659 1660 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1661 ObjectMonitor* m = new ObjectMonitor(object); 1662 // prepare m for installation - set monitor to initial state 1663 m->set_header(mark); 1664 1665 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1666 delete m; 1667 m = nullptr; 1668 continue; 1669 // interference - the markword changed - just retry. 1670 // The state-transitions are one-way, so there's no chance of 1671 // live-lock -- "Inflated" is an absorbing state. 1672 } 1673 1674 // Once the ObjectMonitor is configured and object is associated 1675 // with the ObjectMonitor, it is safe to allow async deflation: 1676 _in_use_list.add(m); 1677 1678 if (log_is_enabled(Trace, monitorinflation)) { 1679 ResourceMark rm; 1680 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1681 INTPTR_FORMAT ", type='%s'", p2i(object), 1682 object->mark().value(), object->klass()->external_name()); 1683 } 1684 if (event.should_commit()) { 1685 post_monitor_inflate_event(&event, object, cause); 1686 } 1687 return m; 1688 } 1689 } 1690 1691 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1692 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1693 // 1694 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1695 MonitorList::Iterator iter = _in_use_list.iterator(); 1696 size_t deflated_count = 0; 1697 Thread* current = Thread::current(); 1698 1699 while (iter.has_next()) { 1700 if (deflated_count >= (size_t)MonitorDeflationMax) { 1701 break; 1702 } 1703 ObjectMonitor* mid = iter.next(); 1704 if (mid->deflate_monitor(current)) { 1705 deflated_count++; 1706 } 1707 1708 // Must check for a safepoint/handshake and honor it. 1709 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1710 } 1711 1712 return deflated_count; 1713 } 1714 1715 class DeflationHandshakeClosure : public HandshakeClosure { 1716 public: 1717 DeflationHandshakeClosure() : HandshakeClosure("DeflationHandshakeClosure") {} 1718 1719 void do_thread(Thread* thread) { 1720 log_trace(monitorinflation)("DeflationHandshakeClosure::do_thread: thread=" 1721 INTPTR_FORMAT, p2i(thread)); 1722 if (thread->is_Java_thread()) { 1723 // Clear OM cache 1724 JavaThread* jt = JavaThread::cast(thread); 1725 jt->om_clear_monitor_cache(); 1726 } 1727 } 1728 }; 1729 1730 class VM_RendezvousGCThreads : public VM_Operation { 1731 public: 1732 bool evaluate_at_safepoint() const override { return false; } 1733 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1734 void doit() override { 1735 Universe::heap()->safepoint_synchronize_begin(); 1736 Universe::heap()->safepoint_synchronize_end(); 1737 }; 1738 }; 1739 1740 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1741 ObjectMonitorDeflationSafepointer* safepointer) { 1742 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1743 size_t deleted_count = 0; 1744 for (ObjectMonitor* monitor: *delete_list) { 1745 delete monitor; 1746 deleted_count++; 1747 // A JavaThread must check for a safepoint/handshake and honor it. 1748 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1749 } 1750 return deleted_count; 1751 } 1752 1753 class ObjectMonitorDeflationLogging: public StackObj { 1754 LogStreamHandle(Debug, monitorinflation) _debug; 1755 LogStreamHandle(Info, monitorinflation) _info; 1756 LogStream* _stream; 1757 elapsedTimer _timer; 1758 1759 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1760 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1761 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1762 1763 public: 1764 ObjectMonitorDeflationLogging() 1765 : _debug(), _info(), _stream(nullptr) { 1766 if (_debug.is_enabled()) { 1767 _stream = &_debug; 1768 } else if (_info.is_enabled()) { 1769 _stream = &_info; 1770 } 1771 } 1772 1773 void begin() { 1774 if (_stream != nullptr) { 1775 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1776 ceiling(), count(), max()); 1777 _timer.start(); 1778 } 1779 } 1780 1781 void before_handshake(size_t unlinked_count) { 1782 if (_stream != nullptr) { 1783 _timer.stop(); 1784 _stream->print_cr("before handshaking: unlinked_count=%zu" 1785 ", in_use_list stats: ceiling=%zu, count=" 1786 "%zu, max=%zu", 1787 unlinked_count, ceiling(), count(), max()); 1788 } 1789 } 1790 1791 void after_handshake() { 1792 if (_stream != nullptr) { 1793 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1794 "%zu, count=%zu, max=%zu", 1795 ceiling(), count(), max()); 1796 _timer.start(); 1797 } 1798 } 1799 1800 void end(size_t deflated_count, size_t unlinked_count) { 1801 if (_stream != nullptr) { 1802 _timer.stop(); 1803 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1804 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1805 deflated_count, unlinked_count, _timer.seconds()); 1806 } 1807 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1808 ceiling(), count(), max()); 1809 } 1810 } 1811 1812 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1813 if (_stream != nullptr) { 1814 _timer.stop(); 1815 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1816 "%zu, count=%zu, max=%zu", 1817 op_name, cnt_name, cnt, ceiling(), count(), max()); 1818 } 1819 } 1820 1821 void after_block_for_safepoint(const char* op_name) { 1822 if (_stream != nullptr) { 1823 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1824 ", count=%zu, max=%zu", op_name, 1825 ceiling(), count(), max()); 1826 _timer.start(); 1827 } 1828 } 1829 }; 1830 1831 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1832 if (!SafepointMechanism::should_process(_current)) { 1833 return; 1834 } 1835 1836 // A safepoint/handshake has started. 1837 _log->before_block_for_safepoint(op_name, count_name, counter); 1838 1839 { 1840 // Honor block request. 1841 ThreadBlockInVM tbivm(_current); 1842 } 1843 1844 _log->after_block_for_safepoint(op_name); 1845 } 1846 1847 // This function is called by the MonitorDeflationThread to deflate 1848 // ObjectMonitors. 1849 size_t ObjectSynchronizer::deflate_idle_monitors() { 1850 JavaThread* current = JavaThread::current(); 1851 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1852 1853 // The async deflation request has been processed. 1854 _last_async_deflation_time_ns = os::javaTimeNanos(); 1855 set_is_async_deflation_requested(false); 1856 1857 ObjectMonitorDeflationLogging log; 1858 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1859 1860 log.begin(); 1861 1862 // Deflate some idle ObjectMonitors. 1863 size_t deflated_count = deflate_monitor_list(&safepointer); 1864 1865 // Unlink the deflated ObjectMonitors from the in-use list. 1866 size_t unlinked_count = 0; 1867 size_t deleted_count = 0; 1868 if (deflated_count > 0) { 1869 ResourceMark rm(current); 1870 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1871 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1872 1873 #ifdef ASSERT 1874 if (UseObjectMonitorTable) { 1875 for (ObjectMonitor* monitor : delete_list) { 1876 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1877 } 1878 } 1879 #endif 1880 1881 log.before_handshake(unlinked_count); 1882 1883 // A JavaThread needs to handshake in order to safely free the 1884 // ObjectMonitors that were deflated in this cycle. 1885 DeflationHandshakeClosure dhc; 1886 Handshake::execute(&dhc); 1887 // Also, we sync and desync GC threads around the handshake, so that they can 1888 // safely read the mark-word and look-through to the object-monitor, without 1889 // being afraid that the object-monitor is going away. 1890 VM_RendezvousGCThreads sync_gc; 1891 VMThread::execute(&sync_gc); 1892 1893 log.after_handshake(); 1894 1895 // After the handshake, safely free the ObjectMonitors that were 1896 // deflated and unlinked in this cycle. 1897 1898 // Delete the unlinked ObjectMonitors. 1899 deleted_count = delete_monitors(&delete_list, &safepointer); 1900 assert(unlinked_count == deleted_count, "must be"); 1901 } 1902 1903 log.end(deflated_count, unlinked_count); 1904 1905 GVars.stw_random = os::random(); 1906 1907 if (deflated_count != 0) { 1908 _no_progress_cnt = 0; 1909 } else if (_no_progress_skip_increment) { 1910 _no_progress_skip_increment = false; 1911 } else { 1912 _no_progress_cnt++; 1913 } 1914 1915 return deflated_count; 1916 } 1917 1918 // Monitor cleanup on JavaThread::exit 1919 1920 // Iterate through monitor cache and attempt to release thread's monitors 1921 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1922 private: 1923 JavaThread* _thread; 1924 1925 public: 1926 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1927 void do_monitor(ObjectMonitor* mid) { 1928 intx rec = mid->complete_exit(_thread); 1929 _thread->dec_held_monitor_count(rec + 1); 1930 } 1931 }; 1932 1933 // Release all inflated monitors owned by current thread. Lightweight monitors are 1934 // ignored. This is meant to be called during JNI thread detach which assumes 1935 // all remaining monitors are heavyweight. All exceptions are swallowed. 1936 // Scanning the extant monitor list can be time consuming. 1937 // A simple optimization is to add a per-thread flag that indicates a thread 1938 // called jni_monitorenter() during its lifetime. 1939 // 1940 // Instead of NoSafepointVerifier it might be cheaper to 1941 // use an idiom of the form: 1942 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1943 // <code that must not run at safepoint> 1944 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1945 // Since the tests are extremely cheap we could leave them enabled 1946 // for normal product builds. 1947 1948 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1949 assert(current == JavaThread::current(), "must be current Java thread"); 1950 NoSafepointVerifier nsv; 1951 ReleaseJavaMonitorsClosure rjmc(current); 1952 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1953 assert(!current->has_pending_exception(), "Should not be possible"); 1954 current->clear_pending_exception(); 1955 assert(current->held_monitor_count() == 0, "Should not be possible"); 1956 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1957 current->clear_jni_monitor_count(); 1958 } 1959 1960 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1961 switch (cause) { 1962 case inflate_cause_vm_internal: return "VM Internal"; 1963 case inflate_cause_monitor_enter: return "Monitor Enter"; 1964 case inflate_cause_wait: return "Monitor Wait"; 1965 case inflate_cause_notify: return "Monitor Notify"; 1966 case inflate_cause_hash_code: return "Monitor Hash Code"; 1967 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1968 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1969 default: 1970 ShouldNotReachHere(); 1971 } 1972 return "Unknown"; 1973 } 1974 1975 //------------------------------------------------------------------------------ 1976 // Debugging code 1977 1978 u_char* ObjectSynchronizer::get_gvars_addr() { 1979 return (u_char*)&GVars; 1980 } 1981 1982 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1983 return (u_char*)&GVars.hc_sequence; 1984 } 1985 1986 size_t ObjectSynchronizer::get_gvars_size() { 1987 return sizeof(SharedGlobals); 1988 } 1989 1990 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1991 return (u_char*)&GVars.stw_random; 1992 } 1993 1994 // Do the final audit and print of ObjectMonitor stats; must be done 1995 // by the VMThread at VM exit time. 1996 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1997 assert(Thread::current()->is_VM_thread(), "sanity check"); 1998 1999 if (is_final_audit()) { // Only do the audit once. 2000 return; 2001 } 2002 set_is_final_audit(); 2003 log_info(monitorinflation)("Starting the final audit."); 2004 2005 if (log_is_enabled(Info, monitorinflation)) { 2006 LogStreamHandle(Info, monitorinflation) ls; 2007 audit_and_print_stats(&ls, true /* on_exit */); 2008 } 2009 } 2010 2011 // This function can be called by the MonitorDeflationThread or it can be called when 2012 // we are trying to exit the VM. The list walker functions can run in parallel with 2013 // the other list operations. 2014 // Calls to this function can be added in various places as a debugging 2015 // aid. 2016 // 2017 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 2018 int error_cnt = 0; 2019 2020 ls->print_cr("Checking in_use_list:"); 2021 chk_in_use_list(ls, &error_cnt); 2022 2023 if (error_cnt == 0) { 2024 ls->print_cr("No errors found in in_use_list checks."); 2025 } else { 2026 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2027 } 2028 2029 // When exiting, only log the interesting entries at the Info level. 2030 // When called at intervals by the MonitorDeflationThread, log output 2031 // at the Trace level since there can be a lot of it. 2032 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2033 LogStreamHandle(Trace, monitorinflation) ls_tr; 2034 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2035 } else if (on_exit) { 2036 log_in_use_monitor_details(ls, false /* log_all */); 2037 } 2038 2039 ls->flush(); 2040 2041 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2042 } 2043 2044 // Check the in_use_list; log the results of the checks. 2045 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2046 size_t l_in_use_count = _in_use_list.count(); 2047 size_t l_in_use_max = _in_use_list.max(); 2048 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2049 l_in_use_max); 2050 2051 size_t ck_in_use_count = 0; 2052 MonitorList::Iterator iter = _in_use_list.iterator(); 2053 while (iter.has_next()) { 2054 ObjectMonitor* mid = iter.next(); 2055 chk_in_use_entry(mid, out, error_cnt_p); 2056 ck_in_use_count++; 2057 } 2058 2059 if (l_in_use_count == ck_in_use_count) { 2060 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2061 l_in_use_count, ck_in_use_count); 2062 } else { 2063 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2064 "ck_in_use_count=%zu", l_in_use_count, 2065 ck_in_use_count); 2066 } 2067 2068 size_t ck_in_use_max = _in_use_list.max(); 2069 if (l_in_use_max == ck_in_use_max) { 2070 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2071 l_in_use_max, ck_in_use_max); 2072 } else { 2073 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2074 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2075 } 2076 } 2077 2078 // Check an in-use monitor entry; log any errors. 2079 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2080 int* error_cnt_p) { 2081 if (n->owner_is_DEFLATER_MARKER()) { 2082 // This could happen when monitor deflation blocks for a safepoint. 2083 return; 2084 } 2085 2086 2087 if (n->metadata() == 0) { 2088 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2089 "have non-null _metadata (header/hash) field.", p2i(n)); 2090 *error_cnt_p = *error_cnt_p + 1; 2091 } 2092 2093 const oop obj = n->object_peek(); 2094 if (obj == nullptr) { 2095 return; 2096 } 2097 2098 const markWord mark = obj->mark(); 2099 if (!mark.has_monitor()) { 2100 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2101 "object does not think it has a monitor: obj=" 2102 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2103 p2i(obj), mark.value()); 2104 *error_cnt_p = *error_cnt_p + 1; 2105 return; 2106 } 2107 2108 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2109 if (n != obj_mon) { 2110 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2111 "object does not refer to the same monitor: obj=" 2112 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2113 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2114 *error_cnt_p = *error_cnt_p + 1; 2115 } 2116 } 2117 2118 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2119 // flags indicate why the entry is in-use, 'object' and 'object type' 2120 // indicate the associated object and its type. 2121 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2122 if (_in_use_list.count() > 0) { 2123 stringStream ss; 2124 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2125 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2126 out->print_cr("%18s %s %18s %18s", 2127 "monitor", "BHL", "object", "object type"); 2128 out->print_cr("================== === ================== =================="); 2129 2130 auto is_interesting = [&](ObjectMonitor* monitor) { 2131 return log_all || monitor->has_owner() || monitor->is_busy(); 2132 }; 2133 2134 monitors_iterate([&](ObjectMonitor* monitor) { 2135 if (is_interesting(monitor)) { 2136 const oop obj = monitor->object_peek(); 2137 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2138 ResourceMark rm; 2139 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2140 monitor->is_busy(), hash != 0, monitor->has_owner(), 2141 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2142 if (monitor->is_busy()) { 2143 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2144 ss.reset(); 2145 } 2146 out->cr(); 2147 } 2148 }); 2149 } 2150 2151 out->flush(); 2152 }