1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/basicLock.inline.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/globals.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/handshake.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/javaThread.hpp" 45 #include "runtime/lightweightSynchronizer.hpp" 46 #include "runtime/lockStack.inline.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/os.inline.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/safepointVerifiers.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "runtime/synchronizer.inline.hpp" 58 #include "runtime/threads.hpp" 59 #include "runtime/timer.hpp" 60 #include "runtime/trimNativeHeap.hpp" 61 #include "runtime/vframe.hpp" 62 #include "runtime/vmThread.hpp" 63 #include "utilities/align.hpp" 64 #include "utilities/dtrace.hpp" 65 #include "utilities/events.hpp" 66 #include "utilities/globalDefinitions.hpp" 67 #include "utilities/linkedlist.hpp" 68 #include "utilities/preserveException.hpp" 69 70 class ObjectMonitorDeflationLogging; 71 72 void MonitorList::add(ObjectMonitor* m) { 73 ObjectMonitor* head; 74 do { 75 head = Atomic::load(&_head); 76 m->set_next_om(head); 77 } while (Atomic::cmpxchg(&_head, head, m) != head); 78 79 size_t count = Atomic::add(&_count, 1u); 80 if (count > max()) { 81 Atomic::inc(&_max); 82 } 83 } 84 85 size_t MonitorList::count() const { 86 return Atomic::load(&_count); 87 } 88 89 size_t MonitorList::max() const { 90 return Atomic::load(&_max); 91 } 92 93 class ObjectMonitorDeflationSafepointer : public StackObj { 94 JavaThread* const _current; 95 ObjectMonitorDeflationLogging* const _log; 96 97 public: 98 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 99 : _current(current), _log(log) {} 100 101 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 102 }; 103 104 // Walk the in-use list and unlink deflated ObjectMonitors. 105 // Returns the number of unlinked ObjectMonitors. 106 size_t MonitorList::unlink_deflated(size_t deflated_count, 107 GrowableArray<ObjectMonitor*>* unlinked_list, 108 ObjectMonitorDeflationSafepointer* safepointer) { 109 size_t unlinked_count = 0; 110 ObjectMonitor* prev = nullptr; 111 ObjectMonitor* m = Atomic::load_acquire(&_head); 112 113 while (m != nullptr) { 114 if (m->is_being_async_deflated()) { 115 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 116 // modify the list once per batch. The batch starts at "m". 117 size_t unlinked_batch = 0; 118 ObjectMonitor* next = m; 119 // Look for at most MonitorUnlinkBatch monitors, or the number of 120 // deflated and not unlinked monitors, whatever comes first. 121 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 122 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 123 do { 124 ObjectMonitor* next_next = next->next_om(); 125 unlinked_batch++; 126 unlinked_list->append(next); 127 next = next_next; 128 if (unlinked_batch >= unlinked_batch_limit) { 129 // Reached the max batch, so bail out of the gathering loop. 130 break; 131 } 132 if (prev == nullptr && Atomic::load(&_head) != m) { 133 // Current batch used to be at head, but it is not at head anymore. 134 // Bail out and figure out where we currently are. This avoids long 135 // walks searching for new prev during unlink under heavy list inserts. 136 break; 137 } 138 } while (next != nullptr && next->is_being_async_deflated()); 139 140 // Unlink the found batch. 141 if (prev == nullptr) { 142 // The current batch is the first batch, so there is a chance that it starts at head. 143 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 144 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 145 if (prev_head != m) { 146 // Something must have updated the head. Figure out the actual prev for this batch. 147 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 148 prev = n; 149 } 150 assert(prev != nullptr, "Should have found the prev for the current batch"); 151 prev->set_next_om(next); 152 } 153 } else { 154 // The current batch is preceded by another batch. This guarantees the current batch 155 // does not start at head. Unlink the entire current batch without updating the head. 156 assert(Atomic::load(&_head) != m, "Sanity"); 157 prev->set_next_om(next); 158 } 159 160 unlinked_count += unlinked_batch; 161 if (unlinked_count >= deflated_count) { 162 // Reached the max so bail out of the searching loop. 163 // There should be no more deflated monitors left. 164 break; 165 } 166 m = next; 167 } else { 168 prev = m; 169 m = m->next_om(); 170 } 171 172 // Must check for a safepoint/handshake and honor it. 173 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 174 } 175 176 #ifdef ASSERT 177 // Invariant: the code above should unlink all deflated monitors. 178 // The code that runs after this unlinking does not expect deflated monitors. 179 // Notably, attempting to deflate the already deflated monitor would break. 180 { 181 ObjectMonitor* m = Atomic::load_acquire(&_head); 182 while (m != nullptr) { 183 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 184 m = m->next_om(); 185 } 186 } 187 #endif 188 189 Atomic::sub(&_count, unlinked_count); 190 return unlinked_count; 191 } 192 193 MonitorList::Iterator MonitorList::iterator() const { 194 return Iterator(Atomic::load_acquire(&_head)); 195 } 196 197 ObjectMonitor* MonitorList::Iterator::next() { 198 ObjectMonitor* current = _current; 199 _current = current->next_om(); 200 return current; 201 } 202 203 // The "core" versions of monitor enter and exit reside in this file. 204 // The interpreter and compilers contain specialized transliterated 205 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 206 // fast_lock(...) for instance. If you make changes here, make sure to modify the 207 // interpreter, and both C1 and C2 fast-path inline locking code emission. 208 // 209 // ----------------------------------------------------------------------------- 210 211 #ifdef DTRACE_ENABLED 212 213 // Only bother with this argument setup if dtrace is available 214 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 215 216 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 217 char* bytes = nullptr; \ 218 int len = 0; \ 219 jlong jtid = SharedRuntime::get_java_tid(thread); \ 220 Symbol* klassname = obj->klass()->name(); \ 221 if (klassname != nullptr) { \ 222 bytes = (char*)klassname->bytes(); \ 223 len = klassname->utf8_length(); \ 224 } 225 226 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 227 { \ 228 if (DTraceMonitorProbes) { \ 229 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 230 HOTSPOT_MONITOR_WAIT(jtid, \ 231 (uintptr_t)(monitor), bytes, len, (millis)); \ 232 } \ 233 } 234 235 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 236 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 237 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 238 239 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 240 { \ 241 if (DTraceMonitorProbes) { \ 242 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 243 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 244 (uintptr_t)(monitor), bytes, len); \ 245 } \ 246 } 247 248 #else // ndef DTRACE_ENABLED 249 250 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 251 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 252 253 #endif // ndef DTRACE_ENABLED 254 255 // This exists only as a workaround of dtrace bug 6254741 256 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 257 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 258 return 0; 259 } 260 261 static constexpr size_t inflation_lock_count() { 262 return 256; 263 } 264 265 // Static storage for an array of PlatformMutex. 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 267 268 static inline PlatformMutex* inflation_lock(size_t index) { 269 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 270 } 271 272 void ObjectSynchronizer::initialize() { 273 for (size_t i = 0; i < inflation_lock_count(); i++) { 274 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 275 } 276 // Start the ceiling with the estimate for one thread. 277 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 278 279 // Start the timer for deflations, so it does not trigger immediately. 280 _last_async_deflation_time_ns = os::javaTimeNanos(); 281 282 if (LockingMode == LM_LIGHTWEIGHT) { 283 LightweightSynchronizer::initialize(); 284 } 285 } 286 287 MonitorList ObjectSynchronizer::_in_use_list; 288 // monitors_used_above_threshold() policy is as follows: 289 // 290 // The ratio of the current _in_use_list count to the ceiling is used 291 // to determine if we are above MonitorUsedDeflationThreshold and need 292 // to do an async monitor deflation cycle. The ceiling is increased by 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 295 // removed from the system. 296 // 297 // Note: If the _in_use_list max exceeds the ceiling, then 298 // monitors_used_above_threshold() will use the in_use_list max instead 299 // of the thread count derived ceiling because we have used more 300 // ObjectMonitors than the estimated average. 301 // 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 303 // no-progress async monitor deflation cycles in a row, then the ceiling 304 // is adjusted upwards by monitors_used_above_threshold(). 305 // 306 // Start the ceiling with the estimate for one thread in initialize() 307 // which is called after cmd line options are processed. 308 static size_t _in_use_list_ceiling = 0; 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 310 bool volatile ObjectSynchronizer::_is_final_audit = false; 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 312 static uintx _no_progress_cnt = 0; 313 static bool _no_progress_skip_increment = false; 314 315 // These checks are required for wait, notify and exit to avoid inflating the monitor to 316 // find out this inline type object cannot be locked. 317 #define CHECK_THROW_NOSYNC_IMSE(obj) \ 318 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 319 JavaThread* THREAD = current; \ 320 ResourceMark rm(THREAD); \ 321 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 322 } 323 324 #define CHECK_THROW_NOSYNC_IMSE_0(obj) \ 325 if (EnableValhalla && (obj)->mark().is_inline_type()) { \ 326 JavaThread* THREAD = current; \ 327 ResourceMark rm(THREAD); \ 328 THROW_MSG_0(vmSymbols::java_lang_IllegalMonitorStateException(), obj->klass()->external_name()); \ 329 } 330 331 // =====================> Quick functions 332 333 // The quick_* forms are special fast-path variants used to improve 334 // performance. In the simplest case, a "quick_*" implementation could 335 // simply return false, in which case the caller will perform the necessary 336 // state transitions and call the slow-path form. 337 // The fast-path is designed to handle frequently arising cases in an efficient 338 // manner and is just a degenerate "optimistic" variant of the slow-path. 339 // returns true -- to indicate the call was satisfied. 340 // returns false -- to indicate the call needs the services of the slow-path. 341 // A no-loitering ordinance is in effect for code in the quick_* family 342 // operators: safepoints or indefinite blocking (blocking that might span a 343 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 344 // entry. 345 // 346 // Consider: An interesting optimization is to have the JIT recognize the 347 // following common idiom: 348 // synchronized (someobj) { .... ; notify(); } 349 // That is, we find a notify() or notifyAll() call that immediately precedes 350 // the monitorexit operation. In that case the JIT could fuse the operations 351 // into a single notifyAndExit() runtime primitive. 352 353 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 354 assert(current->thread_state() == _thread_in_Java, "invariant"); 355 NoSafepointVerifier nsv; 356 if (obj == nullptr) return false; // slow-path for invalid obj 357 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 358 const markWord mark = obj->mark(); 359 360 if (LockingMode == LM_LIGHTWEIGHT) { 361 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 362 // Degenerate notify 363 // fast-locked by caller so by definition the implied waitset is empty. 364 return true; 365 } 366 } else if (LockingMode == LM_LEGACY) { 367 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 368 // Degenerate notify 369 // stack-locked by caller so by definition the implied waitset is empty. 370 return true; 371 } 372 } 373 374 if (mark.has_monitor()) { 375 ObjectMonitor* const mon = read_monitor(current, obj, mark); 376 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 377 // Racing with inflation/deflation go slow path 378 return false; 379 } 380 assert(mon->object() == oop(obj), "invariant"); 381 if (mon->owner() != current) return false; // slow-path for IMS exception 382 383 if (mon->first_waiter() != nullptr) { 384 // We have one or more waiters. Since this is an inflated monitor 385 // that we own, we can transfer one or more threads from the waitset 386 // to the entrylist here and now, avoiding the slow-path. 387 if (all) { 388 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 389 } else { 390 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 391 } 392 int free_count = 0; 393 do { 394 mon->INotify(current); 395 ++free_count; 396 } while (mon->first_waiter() != nullptr && all); 397 OM_PERFDATA_OP(Notifications, inc(free_count)); 398 } 399 return true; 400 } 401 402 // other IMS exception states take the slow-path 403 return false; 404 } 405 406 static bool useHeavyMonitors() { 407 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 408 return LockingMode == LM_MONITOR; 409 #else 410 return false; 411 #endif 412 } 413 414 // The LockNode emitted directly at the synchronization site would have 415 // been too big if it were to have included support for the cases of inflated 416 // recursive enter and exit, so they go here instead. 417 // Note that we can't safely call AsyncPrintJavaStack() from within 418 // quick_enter() as our thread state remains _in_Java. 419 420 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 421 assert(current->thread_state() == _thread_in_Java, "invariant"); 422 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "monitor op on inline type"); 423 424 if (useHeavyMonitors()) { 425 return false; // Slow path 426 } 427 428 if (LockingMode == LM_LIGHTWEIGHT) { 429 return LightweightSynchronizer::quick_enter(obj, lock, current); 430 } 431 432 assert(LockingMode == LM_LEGACY, "legacy mode below"); 433 434 const markWord mark = obj->mark(); 435 436 if (mark.has_monitor()) { 437 438 ObjectMonitor* const m = read_monitor(mark); 439 // An async deflation or GC can race us before we manage to make 440 // the ObjectMonitor busy by setting the owner below. If we detect 441 // that race we just bail out to the slow-path here. 442 if (m->object_peek() == nullptr) { 443 return false; 444 } 445 JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw()); 446 447 // Lock contention and Transactional Lock Elision (TLE) diagnostics 448 // and observability 449 // Case: light contention possibly amenable to TLE 450 // Case: TLE inimical operations such as nested/recursive synchronization 451 452 if (owner == current) { 453 m->_recursions++; 454 current->inc_held_monitor_count(); 455 return true; 456 } 457 458 // This Java Monitor is inflated so obj's header will never be 459 // displaced to this thread's BasicLock. Make the displaced header 460 // non-null so this BasicLock is not seen as recursive nor as 461 // being locked. We do this unconditionally so that this thread's 462 // BasicLock cannot be mis-interpreted by any stack walkers. For 463 // performance reasons, stack walkers generally first check for 464 // stack-locking in the object's header, the second check is for 465 // recursive stack-locking in the displaced header in the BasicLock, 466 // and last are the inflated Java Monitor (ObjectMonitor) checks. 467 lock->set_displaced_header(markWord::unused_mark()); 468 469 if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) { 470 assert(m->_recursions == 0, "invariant"); 471 current->inc_held_monitor_count(); 472 return true; 473 } 474 } 475 476 // Note that we could inflate in quick_enter. 477 // This is likely a useful optimization 478 // Critically, in quick_enter() we must not: 479 // -- block indefinitely, or 480 // -- reach a safepoint 481 482 return false; // revert to slow-path 483 } 484 485 // Handle notifications when synchronizing on value based classes 486 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 487 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 488 frame last_frame = locking_thread->last_frame(); 489 bool bcp_was_adjusted = false; 490 // Don't decrement bcp if it points to the frame's first instruction. This happens when 491 // handle_sync_on_value_based_class() is called because of a synchronized method. There 492 // is no actual monitorenter instruction in the byte code in this case. 493 if (last_frame.is_interpreted_frame() && 494 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 495 // adjust bcp to point back to monitorenter so that we print the correct line numbers 496 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 497 bcp_was_adjusted = true; 498 } 499 500 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 501 ResourceMark rm; 502 stringStream ss; 503 locking_thread->print_active_stack_on(&ss); 504 char* base = (char*)strstr(ss.base(), "at"); 505 char* newline = (char*)strchr(ss.base(), '\n'); 506 if (newline != nullptr) { 507 *newline = '\0'; 508 } 509 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 510 } else { 511 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 512 ResourceMark rm; 513 Log(valuebasedclasses) vblog; 514 515 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 516 if (locking_thread->has_last_Java_frame()) { 517 LogStream info_stream(vblog.info()); 518 locking_thread->print_active_stack_on(&info_stream); 519 } else { 520 vblog.info("Cannot find the last Java frame"); 521 } 522 523 EventSyncOnValueBasedClass event; 524 if (event.should_commit()) { 525 event.set_valueBasedClass(obj->klass()); 526 event.commit(); 527 } 528 } 529 530 if (bcp_was_adjusted) { 531 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 532 } 533 } 534 535 // ----------------------------------------------------------------------------- 536 // Monitor Enter/Exit 537 538 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 539 // When called with locking_thread != Thread::current() some mechanism must synchronize 540 // the locking_thread with respect to the current thread. Currently only used when 541 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 542 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 543 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "JITed code should never have locked an instance of a value class"); 544 545 if (LockingMode == LM_LIGHTWEIGHT) { 546 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 547 } 548 549 if (!enter_fast_impl(obj, lock, locking_thread)) { 550 // Inflated ObjectMonitor::enter_for is required 551 552 // An async deflation can race after the inflate_for() call and before 553 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 554 // if we have lost the race to async deflation and we simply try again. 555 while (true) { 556 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 557 if (monitor->enter_for(locking_thread)) { 558 return; 559 } 560 assert(monitor->is_being_async_deflated(), "must be"); 561 } 562 } 563 } 564 565 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 566 assert(!EnableValhalla || !obj->klass()->is_inline_klass(), "This method should never be called on an instance of an inline class"); 567 if (!enter_fast_impl(obj, lock, current)) { 568 // Inflated ObjectMonitor::enter is required 569 570 // An async deflation can race after the inflate() call and before 571 // enter() can make the ObjectMonitor busy. enter() returns false if 572 // we have lost the race to async deflation and we simply try again. 573 while (true) { 574 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 575 if (monitor->enter(current)) { 576 return; 577 } 578 } 579 } 580 } 581 582 // The interpreter and compiler assembly code tries to lock using the fast path 583 // of this algorithm. Make sure to update that code if the following function is 584 // changed. The implementation is extremely sensitive to race condition. Be careful. 585 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 586 guarantee(!EnableValhalla || !obj->klass()->is_inline_klass(), "Attempt to inflate inline type"); 587 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 588 589 if (obj->klass()->is_value_based()) { 590 handle_sync_on_value_based_class(obj, locking_thread); 591 } 592 593 locking_thread->inc_held_monitor_count(); 594 595 if (!useHeavyMonitors()) { 596 if (LockingMode == LM_LEGACY) { 597 markWord mark = obj->mark(); 598 if (mark.is_unlocked()) { 599 // Anticipate successful CAS -- the ST of the displaced mark must 600 // be visible <= the ST performed by the CAS. 601 lock->set_displaced_header(mark); 602 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 603 return true; 604 } 605 } else if (mark.has_locker() && 606 locking_thread->is_lock_owned((address) mark.locker())) { 607 assert(lock != mark.locker(), "must not re-lock the same lock"); 608 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 609 lock->set_displaced_header(markWord::from_pointer(nullptr)); 610 return true; 611 } 612 613 // The object header will never be displaced to this lock, 614 // so it does not matter what the value is, except that it 615 // must be non-zero to avoid looking like a re-entrant lock, 616 // and must not look locked either. 617 lock->set_displaced_header(markWord::unused_mark()); 618 619 // Failed to fast lock. 620 return false; 621 } 622 } else if (VerifyHeavyMonitors) { 623 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 624 } 625 626 return false; 627 } 628 629 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 630 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 631 632 if (!useHeavyMonitors()) { 633 markWord mark = object->mark(); 634 if (EnableValhalla && mark.is_inline_type()) { 635 return; 636 } 637 if (LockingMode == LM_LEGACY) { 638 markWord dhw = lock->displaced_header(); 639 if (dhw.value() == 0) { 640 // If the displaced header is null, then this exit matches up with 641 // a recursive enter. No real work to do here except for diagnostics. 642 #ifndef PRODUCT 643 if (mark != markWord::INFLATING()) { 644 // Only do diagnostics if we are not racing an inflation. Simply 645 // exiting a recursive enter of a Java Monitor that is being 646 // inflated is safe; see the has_monitor() comment below. 647 assert(!mark.is_unlocked(), "invariant"); 648 assert(!mark.has_locker() || 649 current->is_lock_owned((address)mark.locker()), "invariant"); 650 if (mark.has_monitor()) { 651 // The BasicLock's displaced_header is marked as a recursive 652 // enter and we have an inflated Java Monitor (ObjectMonitor). 653 // This is a special case where the Java Monitor was inflated 654 // after this thread entered the stack-lock recursively. When a 655 // Java Monitor is inflated, we cannot safely walk the Java 656 // Monitor owner's stack and update the BasicLocks because a 657 // Java Monitor can be asynchronously inflated by a thread that 658 // does not own the Java Monitor. 659 ObjectMonitor* m = read_monitor(mark); 660 assert(m->object()->mark() == mark, "invariant"); 661 assert(m->is_entered(current), "invariant"); 662 } 663 } 664 #endif 665 return; 666 } 667 668 if (mark == markWord::from_pointer(lock)) { 669 // If the object is stack-locked by the current thread, try to 670 // swing the displaced header from the BasicLock back to the mark. 671 assert(dhw.is_neutral(), "invariant"); 672 if (object->cas_set_mark(dhw, mark) == mark) { 673 return; 674 } 675 } 676 } 677 } else if (VerifyHeavyMonitors) { 678 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 679 } 680 681 // We have to take the slow-path of possible inflation and then exit. 682 // The ObjectMonitor* can't be async deflated until ownership is 683 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 684 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 685 assert(!monitor->is_owner_anonymous(), "must not be"); 686 monitor->exit(current); 687 } 688 689 // ----------------------------------------------------------------------------- 690 // JNI locks on java objects 691 // NOTE: must use heavy weight monitor to handle jni monitor enter 692 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 693 JavaThread* THREAD = current; 694 if (obj->klass()->is_value_based()) { 695 handle_sync_on_value_based_class(obj, current); 696 } 697 698 if (EnableValhalla && obj->klass()->is_inline_klass()) { 699 ResourceMark rm(THREAD); 700 const char* desc = "Cannot synchronize on an instance of value class "; 701 const char* className = obj->klass()->external_name(); 702 size_t msglen = strlen(desc) + strlen(className) + 1; 703 char* message = NEW_RESOURCE_ARRAY(char, msglen); 704 assert(message != nullptr, "NEW_RESOURCE_ARRAY should have called vm_exit_out_of_memory and not return nullptr"); 705 THROW_MSG(vmSymbols::java_lang_IdentityException(), className); 706 } 707 708 // the current locking is from JNI instead of Java code 709 current->set_current_pending_monitor_is_from_java(false); 710 // An async deflation can race after the inflate() call and before 711 // enter() can make the ObjectMonitor busy. enter() returns false if 712 // we have lost the race to async deflation and we simply try again. 713 while (true) { 714 ObjectMonitor* monitor; 715 bool entered; 716 if (LockingMode == LM_LIGHTWEIGHT) { 717 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 718 } else { 719 monitor = inflate(current, obj(), inflate_cause_jni_enter); 720 entered = monitor->enter(current); 721 } 722 723 if (entered) { 724 current->inc_held_monitor_count(1, true); 725 break; 726 } 727 } 728 current->set_current_pending_monitor_is_from_java(true); 729 } 730 731 // NOTE: must use heavy weight monitor to handle jni monitor exit 732 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 733 JavaThread* current = THREAD; 734 CHECK_THROW_NOSYNC_IMSE(obj); 735 736 ObjectMonitor* monitor; 737 if (LockingMode == LM_LIGHTWEIGHT) { 738 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 739 } else { 740 // The ObjectMonitor* can't be async deflated until ownership is 741 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 742 monitor = inflate(current, obj, inflate_cause_jni_exit); 743 } 744 // If this thread has locked the object, exit the monitor. We 745 // intentionally do not use CHECK on check_owner because we must exit the 746 // monitor even if an exception was already pending. 747 if (monitor->check_owner(THREAD)) { 748 monitor->exit(current); 749 current->dec_held_monitor_count(1, true); 750 } 751 } 752 753 // ----------------------------------------------------------------------------- 754 // Internal VM locks on java objects 755 // standard constructor, allows locking failures 756 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 757 _thread = thread; 758 _thread->check_for_valid_safepoint_state(); 759 _obj = obj; 760 761 if (_obj() != nullptr) { 762 ObjectSynchronizer::enter(_obj, &_lock, _thread); 763 } 764 } 765 766 ObjectLocker::~ObjectLocker() { 767 if (_obj() != nullptr) { 768 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 769 } 770 } 771 772 773 // ----------------------------------------------------------------------------- 774 // Wait/Notify/NotifyAll 775 // NOTE: must use heavy weight monitor to handle wait() 776 777 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 778 JavaThread* current = THREAD; 779 CHECK_THROW_NOSYNC_IMSE_0(obj); 780 if (millis < 0) { 781 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 782 } 783 784 ObjectMonitor* monitor; 785 if (LockingMode == LM_LIGHTWEIGHT) { 786 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 787 } else { 788 // The ObjectMonitor* can't be async deflated because the _waiters 789 // field is incremented before ownership is dropped and decremented 790 // after ownership is regained. 791 monitor = inflate(current, obj(), inflate_cause_wait); 792 } 793 794 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 795 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 796 797 // This dummy call is in place to get around dtrace bug 6254741. Once 798 // that's fixed we can uncomment the following line, remove the call 799 // and change this function back into a "void" func. 800 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 801 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 802 return ret_code; 803 } 804 805 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 806 if (millis < 0) { 807 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 808 } 809 810 ObjectMonitor* monitor; 811 if (LockingMode == LM_LIGHTWEIGHT) { 812 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 813 } else { 814 monitor = inflate(THREAD, obj(), inflate_cause_wait); 815 } 816 monitor->wait(millis, false, THREAD); 817 } 818 819 820 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 821 JavaThread* current = THREAD; 822 CHECK_THROW_NOSYNC_IMSE(obj); 823 824 markWord mark = obj->mark(); 825 if (LockingMode == LM_LIGHTWEIGHT) { 826 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 827 // Not inflated so there can't be any waiters to notify. 828 return; 829 } 830 } else if (LockingMode == LM_LEGACY) { 831 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 832 // Not inflated so there can't be any waiters to notify. 833 return; 834 } 835 } 836 837 ObjectMonitor* monitor; 838 if (LockingMode == LM_LIGHTWEIGHT) { 839 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 840 } else { 841 // The ObjectMonitor* can't be async deflated until ownership is 842 // dropped by the calling thread. 843 monitor = inflate(current, obj(), inflate_cause_notify); 844 } 845 monitor->notify(CHECK); 846 } 847 848 // NOTE: see comment of notify() 849 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 850 JavaThread* current = THREAD; 851 CHECK_THROW_NOSYNC_IMSE(obj); 852 853 markWord mark = obj->mark(); 854 if (LockingMode == LM_LIGHTWEIGHT) { 855 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 856 // Not inflated so there can't be any waiters to notify. 857 return; 858 } 859 } else if (LockingMode == LM_LEGACY) { 860 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 861 // Not inflated so there can't be any waiters to notify. 862 return; 863 } 864 } 865 866 ObjectMonitor* monitor; 867 if (LockingMode == LM_LIGHTWEIGHT) { 868 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 869 } else { 870 // The ObjectMonitor* can't be async deflated until ownership is 871 // dropped by the calling thread. 872 monitor = inflate(current, obj(), inflate_cause_notify); 873 } 874 monitor->notifyAll(CHECK); 875 } 876 877 // ----------------------------------------------------------------------------- 878 // Hash Code handling 879 880 struct SharedGlobals { 881 char _pad_prefix[OM_CACHE_LINE_SIZE]; 882 // This is a highly shared mostly-read variable. 883 // To avoid false-sharing it needs to be the sole occupant of a cache line. 884 volatile int stw_random; 885 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 886 // Hot RW variable -- Sequester to avoid false-sharing 887 volatile int hc_sequence; 888 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 889 }; 890 891 static SharedGlobals GVars; 892 893 static markWord read_stable_mark(oop obj) { 894 markWord mark = obj->mark_acquire(); 895 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 896 // New lightweight locking does not use the markWord::INFLATING() protocol. 897 return mark; // normal fast-path return 898 } 899 900 int its = 0; 901 for (;;) { 902 markWord mark = obj->mark_acquire(); 903 if (!mark.is_being_inflated()) { 904 return mark; // normal fast-path return 905 } 906 907 // The object is being inflated by some other thread. 908 // The caller of read_stable_mark() must wait for inflation to complete. 909 // Avoid live-lock. 910 911 ++its; 912 if (its > 10000 || !os::is_MP()) { 913 if (its & 1) { 914 os::naked_yield(); 915 } else { 916 // Note that the following code attenuates the livelock problem but is not 917 // a complete remedy. A more complete solution would require that the inflating 918 // thread hold the associated inflation lock. The following code simply restricts 919 // the number of spinners to at most one. We'll have N-2 threads blocked 920 // on the inflationlock, 1 thread holding the inflation lock and using 921 // a yield/park strategy, and 1 thread in the midst of inflation. 922 // A more refined approach would be to change the encoding of INFLATING 923 // to allow encapsulation of a native thread pointer. Threads waiting for 924 // inflation to complete would use CAS to push themselves onto a singly linked 925 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 926 // and calling park(). When inflation was complete the thread that accomplished inflation 927 // would detach the list and set the markword to inflated with a single CAS and 928 // then for each thread on the list, set the flag and unpark() the thread. 929 930 // Index into the lock array based on the current object address. 931 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 932 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 933 int YieldThenBlock = 0; 934 assert(ix < inflation_lock_count(), "invariant"); 935 inflation_lock(ix)->lock(); 936 while (obj->mark_acquire() == markWord::INFLATING()) { 937 // Beware: naked_yield() is advisory and has almost no effect on some platforms 938 // so we periodically call current->_ParkEvent->park(1). 939 // We use a mixed spin/yield/block mechanism. 940 if ((YieldThenBlock++) >= 16) { 941 Thread::current()->_ParkEvent->park(1); 942 } else { 943 os::naked_yield(); 944 } 945 } 946 inflation_lock(ix)->unlock(); 947 } 948 } else { 949 SpinPause(); // SMP-polite spinning 950 } 951 } 952 } 953 954 // hashCode() generation : 955 // 956 // Possibilities: 957 // * MD5Digest of {obj,stw_random} 958 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 959 // * A DES- or AES-style SBox[] mechanism 960 // * One of the Phi-based schemes, such as: 961 // 2654435761 = 2^32 * Phi (golden ratio) 962 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 963 // * A variation of Marsaglia's shift-xor RNG scheme. 964 // * (obj ^ stw_random) is appealing, but can result 965 // in undesirable regularity in the hashCode values of adjacent objects 966 // (objects allocated back-to-back, in particular). This could potentially 967 // result in hashtable collisions and reduced hashtable efficiency. 968 // There are simple ways to "diffuse" the middle address bits over the 969 // generated hashCode values: 970 971 static intptr_t get_next_hash(Thread* current, oop obj) { 972 intptr_t value = 0; 973 if (hashCode == 0) { 974 // This form uses global Park-Miller RNG. 975 // On MP system we'll have lots of RW access to a global, so the 976 // mechanism induces lots of coherency traffic. 977 value = os::random(); 978 } else if (hashCode == 1) { 979 // This variation has the property of being stable (idempotent) 980 // between STW operations. This can be useful in some of the 1-0 981 // synchronization schemes. 982 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 983 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 984 } else if (hashCode == 2) { 985 value = 1; // for sensitivity testing 986 } else if (hashCode == 3) { 987 value = ++GVars.hc_sequence; 988 } else if (hashCode == 4) { 989 value = cast_from_oop<intptr_t>(obj); 990 } else { 991 // Marsaglia's xor-shift scheme with thread-specific state 992 // This is probably the best overall implementation -- we'll 993 // likely make this the default in future releases. 994 unsigned t = current->_hashStateX; 995 t ^= (t << 11); 996 current->_hashStateX = current->_hashStateY; 997 current->_hashStateY = current->_hashStateZ; 998 current->_hashStateZ = current->_hashStateW; 999 unsigned v = current->_hashStateW; 1000 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 1001 current->_hashStateW = v; 1002 value = v; 1003 } 1004 1005 value &= markWord::hash_mask; 1006 if (value == 0) value = 0xBAD; 1007 assert(value != markWord::no_hash, "invariant"); 1008 return value; 1009 } 1010 1011 static intptr_t install_hash_code(Thread* current, oop obj) { 1012 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 1013 1014 markWord mark = obj->mark_acquire(); 1015 for (;;) { 1016 intptr_t hash = mark.hash(); 1017 if (hash != 0) { 1018 return hash; 1019 } 1020 1021 hash = get_next_hash(current, obj); 1022 const markWord old_mark = mark; 1023 const markWord new_mark = old_mark.copy_set_hash(hash); 1024 1025 mark = obj->cas_set_mark(new_mark, old_mark); 1026 if (old_mark == mark) { 1027 return hash; 1028 } 1029 } 1030 } 1031 1032 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1033 if (EnableValhalla && obj->klass()->is_inline_klass()) { 1034 // VM should be calling bootstrap method 1035 ShouldNotReachHere(); 1036 } 1037 if (UseObjectMonitorTable) { 1038 // Since the monitor isn't in the object header, the hash can simply be 1039 // installed in the object header. 1040 return install_hash_code(current, obj); 1041 } 1042 1043 while (true) { 1044 ObjectMonitor* monitor = nullptr; 1045 markWord temp, test; 1046 intptr_t hash; 1047 markWord mark = read_stable_mark(obj); 1048 if (VerifyHeavyMonitors) { 1049 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1050 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1051 } 1052 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1053 hash = mark.hash(); 1054 if (hash != 0) { // if it has a hash, just return it 1055 return hash; 1056 } 1057 hash = get_next_hash(current, obj); // get a new hash 1058 temp = mark.copy_set_hash(hash); // merge the hash into header 1059 // try to install the hash 1060 test = obj->cas_set_mark(temp, mark); 1061 if (test == mark) { // if the hash was installed, return it 1062 return hash; 1063 } 1064 if (LockingMode == LM_LIGHTWEIGHT) { 1065 // CAS failed, retry 1066 continue; 1067 } 1068 // Failed to install the hash. It could be that another thread 1069 // installed the hash just before our attempt or inflation has 1070 // occurred or... so we fall thru to inflate the monitor for 1071 // stability and then install the hash. 1072 } else if (mark.has_monitor()) { 1073 monitor = mark.monitor(); 1074 temp = monitor->header(); 1075 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1076 hash = temp.hash(); 1077 if (hash != 0) { 1078 // It has a hash. 1079 1080 // Separate load of dmw/header above from the loads in 1081 // is_being_async_deflated(). 1082 1083 // dmw/header and _contentions may get written by different threads. 1084 // Make sure to observe them in the same order when having several observers. 1085 OrderAccess::loadload_for_IRIW(); 1086 1087 if (monitor->is_being_async_deflated()) { 1088 // But we can't safely use the hash if we detect that async 1089 // deflation has occurred. So we attempt to restore the 1090 // header/dmw to the object's header so that we only retry 1091 // once if the deflater thread happens to be slow. 1092 monitor->install_displaced_markword_in_object(obj); 1093 continue; 1094 } 1095 return hash; 1096 } 1097 // Fall thru so we only have one place that installs the hash in 1098 // the ObjectMonitor. 1099 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1100 && current->is_Java_thread() 1101 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1102 // This is a stack-lock owned by the calling thread so fetch the 1103 // displaced markWord from the BasicLock on the stack. 1104 temp = mark.displaced_mark_helper(); 1105 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1106 hash = temp.hash(); 1107 if (hash != 0) { // if it has a hash, just return it 1108 return hash; 1109 } 1110 // WARNING: 1111 // The displaced header in the BasicLock on a thread's stack 1112 // is strictly immutable. It CANNOT be changed in ANY cases. 1113 // So we have to inflate the stack-lock into an ObjectMonitor 1114 // even if the current thread owns the lock. The BasicLock on 1115 // a thread's stack can be asynchronously read by other threads 1116 // during an inflate() call so any change to that stack memory 1117 // may not propagate to other threads correctly. 1118 } 1119 1120 // Inflate the monitor to set the hash. 1121 1122 // There's no need to inflate if the mark has already got a monitor. 1123 // NOTE: an async deflation can race after we get the monitor and 1124 // before we can update the ObjectMonitor's header with the hash 1125 // value below. 1126 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1127 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1128 mark = monitor->header(); 1129 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1130 hash = mark.hash(); 1131 if (hash == 0) { // if it does not have a hash 1132 hash = get_next_hash(current, obj); // get a new hash 1133 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1134 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1135 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1136 test = markWord(v); 1137 if (test != mark) { 1138 // The attempt to update the ObjectMonitor's header/dmw field 1139 // did not work. This can happen if another thread managed to 1140 // merge in the hash just before our cmpxchg(). 1141 // If we add any new usages of the header/dmw field, this code 1142 // will need to be updated. 1143 hash = test.hash(); 1144 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1145 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1146 } 1147 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1148 // If we detect that async deflation has occurred, then we 1149 // attempt to restore the header/dmw to the object's header 1150 // so that we only retry once if the deflater thread happens 1151 // to be slow. 1152 monitor->install_displaced_markword_in_object(obj); 1153 continue; 1154 } 1155 } 1156 // We finally get the hash. 1157 return hash; 1158 } 1159 } 1160 1161 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1162 Handle h_obj) { 1163 if (EnableValhalla && h_obj->mark().is_inline_type()) { 1164 return false; 1165 } 1166 assert(current == JavaThread::current(), "Can only be called on current thread"); 1167 oop obj = h_obj(); 1168 1169 markWord mark = read_stable_mark(obj); 1170 1171 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1172 // stack-locked case, header points into owner's stack 1173 return current->is_lock_owned((address)mark.locker()); 1174 } 1175 1176 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1177 // fast-locking case, see if lock is in current's lock stack 1178 return current->lock_stack().contains(h_obj()); 1179 } 1180 1181 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1182 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1183 if (monitor != nullptr) { 1184 return monitor->is_entered(current) != 0; 1185 } 1186 // Racing with inflation/deflation, retry 1187 mark = obj->mark_acquire(); 1188 1189 if (mark.is_fast_locked()) { 1190 // Some other thread fast_locked, current could not have held the lock 1191 return false; 1192 } 1193 } 1194 1195 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1196 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1197 // The first stage of async deflation does not affect any field 1198 // used by this comparison so the ObjectMonitor* is usable here. 1199 ObjectMonitor* monitor = read_monitor(mark); 1200 return monitor->is_entered(current) != 0; 1201 } 1202 // Unlocked case, header in place 1203 assert(mark.is_unlocked(), "sanity check"); 1204 return false; 1205 } 1206 1207 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1208 oop obj = h_obj(); 1209 markWord mark = read_stable_mark(obj); 1210 1211 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1212 // stack-locked so header points into owner's stack. 1213 // owning_thread_from_monitor_owner() may also return null here: 1214 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1215 } 1216 1217 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1218 // fast-locked so get owner from the object. 1219 // owning_thread_from_object() may also return null here: 1220 return Threads::owning_thread_from_object(t_list, h_obj()); 1221 } 1222 1223 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1224 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1225 if (monitor != nullptr) { 1226 return Threads::owning_thread_from_monitor(t_list, monitor); 1227 } 1228 // Racing with inflation/deflation, retry 1229 mark = obj->mark_acquire(); 1230 1231 if (mark.is_fast_locked()) { 1232 // Some other thread fast_locked 1233 return Threads::owning_thread_from_object(t_list, h_obj()); 1234 } 1235 } 1236 1237 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1238 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1239 // The first stage of async deflation does not affect any field 1240 // used by this comparison so the ObjectMonitor* is usable here. 1241 ObjectMonitor* monitor = read_monitor(mark); 1242 assert(monitor != nullptr, "monitor should be non-null"); 1243 // owning_thread_from_monitor() may also return null here: 1244 return Threads::owning_thread_from_monitor(t_list, monitor); 1245 } 1246 1247 // Unlocked case, header in place 1248 // Cannot have assertion since this object may have been 1249 // locked by another thread when reaching here. 1250 // assert(mark.is_unlocked(), "sanity check"); 1251 1252 return nullptr; 1253 } 1254 1255 // Visitors ... 1256 1257 // Iterate over all ObjectMonitors. 1258 template <typename Function> 1259 void ObjectSynchronizer::monitors_iterate(Function function) { 1260 MonitorList::Iterator iter = _in_use_list.iterator(); 1261 while (iter.has_next()) { 1262 ObjectMonitor* monitor = iter.next(); 1263 function(monitor); 1264 } 1265 } 1266 1267 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1268 // returns true. 1269 template <typename OwnerFilter> 1270 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1271 monitors_iterate([&](ObjectMonitor* monitor) { 1272 // This function is only called at a safepoint or when the 1273 // target thread is suspended or when the target thread is 1274 // operating on itself. The current closures in use today are 1275 // only interested in an owned ObjectMonitor and ownership 1276 // cannot be dropped under the calling contexts so the 1277 // ObjectMonitor cannot be async deflated. 1278 if (monitor->has_owner() && filter(monitor->owner_raw())) { 1279 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1280 1281 closure->do_monitor(monitor); 1282 } 1283 }); 1284 } 1285 1286 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1287 // ObjectMonitors where owner is set to a stack-lock address in thread. 1288 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1289 auto thread_filter = [&](void* owner) { return owner == thread; }; 1290 return owned_monitors_iterate_filtered(closure, thread_filter); 1291 } 1292 1293 // Iterate ObjectMonitors owned by any thread. 1294 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1295 auto all_filter = [&](void* owner) { return true; }; 1296 return owned_monitors_iterate_filtered(closure, all_filter); 1297 } 1298 1299 static bool monitors_used_above_threshold(MonitorList* list) { 1300 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1301 return false; 1302 } 1303 // Start with ceiling based on a per-thread estimate: 1304 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1305 size_t old_ceiling = ceiling; 1306 if (ceiling < list->max()) { 1307 // The max used by the system has exceeded the ceiling so use that: 1308 ceiling = list->max(); 1309 } 1310 size_t monitors_used = list->count(); 1311 if (monitors_used == 0) { // empty list is easy 1312 return false; 1313 } 1314 if (NoAsyncDeflationProgressMax != 0 && 1315 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1316 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1317 size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1; 1318 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1319 log_info(monitorinflation)("Too many deflations without progress; " 1320 "bumping in_use_list_ceiling from " SIZE_FORMAT 1321 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1322 _no_progress_cnt = 0; 1323 ceiling = new_ceiling; 1324 } 1325 1326 // Check if our monitor usage is above the threshold: 1327 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1328 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1329 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1330 ", monitor_usage=" SIZE_FORMAT ", threshold=%d", 1331 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1332 return true; 1333 } 1334 1335 return false; 1336 } 1337 1338 size_t ObjectSynchronizer::in_use_list_ceiling() { 1339 return _in_use_list_ceiling; 1340 } 1341 1342 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1343 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1344 } 1345 1346 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1347 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1348 } 1349 1350 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1351 _in_use_list_ceiling = new_value; 1352 } 1353 1354 bool ObjectSynchronizer::is_async_deflation_needed() { 1355 if (is_async_deflation_requested()) { 1356 // Async deflation request. 1357 log_info(monitorinflation)("Async deflation needed: explicit request"); 1358 return true; 1359 } 1360 1361 jlong time_since_last = time_since_last_async_deflation_ms(); 1362 1363 if (AsyncDeflationInterval > 0 && 1364 time_since_last > AsyncDeflationInterval && 1365 monitors_used_above_threshold(&_in_use_list)) { 1366 // It's been longer than our specified deflate interval and there 1367 // are too many monitors in use. We don't deflate more frequently 1368 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1369 // in order to not swamp the MonitorDeflationThread. 1370 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1371 return true; 1372 } 1373 1374 if (GuaranteedAsyncDeflationInterval > 0 && 1375 time_since_last > GuaranteedAsyncDeflationInterval) { 1376 // It's been longer than our specified guaranteed deflate interval. 1377 // We need to clean up the used monitors even if the threshold is 1378 // not reached, to keep the memory utilization at bay when many threads 1379 // touched many monitors. 1380 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1381 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1382 GuaranteedAsyncDeflationInterval, time_since_last); 1383 1384 // If this deflation has no progress, then it should not affect the no-progress 1385 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1386 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1387 // the generic code would bump the no-progress counter, and we compensate for that 1388 // by telling it to skip the update. 1389 // 1390 // If this deflation has progress, then it should let non-progress tracking 1391 // know about this, otherwise the threshold heuristics would kick in, potentially 1392 // experience no-progress due to aggressive cleanup by this deflation, and think 1393 // it is still in no-progress stride. In this "progress" case, the generic code would 1394 // zero the counter, and we allow it to happen. 1395 _no_progress_skip_increment = true; 1396 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 void ObjectSynchronizer::request_deflate_idle_monitors() { 1404 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1405 set_is_async_deflation_requested(true); 1406 ml.notify_all(); 1407 } 1408 1409 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1410 JavaThread* current = JavaThread::current(); 1411 bool ret_code = false; 1412 1413 jlong last_time = last_async_deflation_time_ns(); 1414 1415 request_deflate_idle_monitors(); 1416 1417 const int N_CHECKS = 5; 1418 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1419 if (last_async_deflation_time_ns() > last_time) { 1420 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1421 ret_code = true; 1422 break; 1423 } 1424 { 1425 // JavaThread has to honor the blocking protocol. 1426 ThreadBlockInVM tbivm(current); 1427 os::naked_short_sleep(999); // sleep for almost 1 second 1428 } 1429 } 1430 if (!ret_code) { 1431 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1432 } 1433 1434 return ret_code; 1435 } 1436 1437 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1438 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1439 } 1440 1441 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1442 const oop obj, 1443 ObjectSynchronizer::InflateCause cause) { 1444 assert(event != nullptr, "invariant"); 1445 event->set_monitorClass(obj->klass()); 1446 event->set_address((uintptr_t)(void*)obj); 1447 event->set_cause((u1)cause); 1448 event->commit(); 1449 } 1450 1451 // Fast path code shared by multiple functions 1452 void ObjectSynchronizer::inflate_helper(oop obj) { 1453 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1454 markWord mark = obj->mark_acquire(); 1455 if (mark.has_monitor()) { 1456 ObjectMonitor* monitor = read_monitor(mark); 1457 markWord dmw = monitor->header(); 1458 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1459 return; 1460 } 1461 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1462 } 1463 1464 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1465 assert(current == Thread::current(), "must be"); 1466 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1467 return inflate_impl(obj, cause); 1468 } 1469 1470 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1471 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1472 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1473 return inflate_impl(obj, cause); 1474 } 1475 1476 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) { 1477 if (EnableValhalla) { 1478 guarantee(!object->klass()->is_inline_klass(), "Attempt to inflate inline type"); 1479 } 1480 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1481 EventJavaMonitorInflate event; 1482 1483 for (;;) { 1484 const markWord mark = object->mark_acquire(); 1485 1486 // The mark can be in one of the following states: 1487 // * inflated - Just return it. 1488 // * stack-locked - Coerce it to inflated from stack-locked. 1489 // * INFLATING - Busy wait for conversion from stack-locked to 1490 // inflated. 1491 // * unlocked - Aggressively inflate the object. 1492 1493 // CASE: inflated 1494 if (mark.has_monitor()) { 1495 ObjectMonitor* inf = mark.monitor(); 1496 markWord dmw = inf->header(); 1497 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1498 return inf; 1499 } 1500 1501 // CASE: inflation in progress - inflating over a stack-lock. 1502 // Some other thread is converting from stack-locked to inflated. 1503 // Only that thread can complete inflation -- other threads must wait. 1504 // The INFLATING value is transient. 1505 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1506 // We could always eliminate polling by parking the thread on some auxiliary list. 1507 if (mark == markWord::INFLATING()) { 1508 read_stable_mark(object); 1509 continue; 1510 } 1511 1512 // CASE: stack-locked 1513 // Could be stack-locked either by current or by some other thread. 1514 // 1515 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1516 // to install INFLATING into the mark word. We originally installed INFLATING, 1517 // allocated the ObjectMonitor, and then finally STed the address of the 1518 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1519 // the interval in which INFLATING appeared in the mark, thus increasing 1520 // the odds of inflation contention. If we lose the race to set INFLATING, 1521 // then we just delete the ObjectMonitor and loop around again. 1522 // 1523 LogStreamHandle(Trace, monitorinflation) lsh; 1524 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1525 ObjectMonitor* m = new ObjectMonitor(object); 1526 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1527 // We do this before the CAS in order to minimize the length of time 1528 // in which INFLATING appears in the mark. 1529 1530 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1531 if (cmp != mark) { 1532 delete m; 1533 continue; // Interference -- just retry 1534 } 1535 1536 // We've successfully installed INFLATING (0) into the mark-word. 1537 // This is the only case where 0 will appear in a mark-word. 1538 // Only the singular thread that successfully swings the mark-word 1539 // to 0 can perform (or more precisely, complete) inflation. 1540 // 1541 // Why do we CAS a 0 into the mark-word instead of just CASing the 1542 // mark-word from the stack-locked value directly to the new inflated state? 1543 // Consider what happens when a thread unlocks a stack-locked object. 1544 // It attempts to use CAS to swing the displaced header value from the 1545 // on-stack BasicLock back into the object header. Recall also that the 1546 // header value (hash code, etc) can reside in (a) the object header, or 1547 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1548 // header in an ObjectMonitor. The inflate() routine must copy the header 1549 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1550 // the while preserving the hashCode stability invariants. If the owner 1551 // decides to release the lock while the value is 0, the unlock will fail 1552 // and control will eventually pass from slow_exit() to inflate. The owner 1553 // will then spin, waiting for the 0 value to disappear. Put another way, 1554 // the 0 causes the owner to stall if the owner happens to try to 1555 // drop the lock (restoring the header from the BasicLock to the object) 1556 // while inflation is in-progress. This protocol avoids races that might 1557 // would otherwise permit hashCode values to change or "flicker" for an object. 1558 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1559 // 0 serves as a "BUSY" inflate-in-progress indicator. 1560 1561 1562 // fetch the displaced mark from the owner's stack. 1563 // The owner can't die or unwind past the lock while our INFLATING 1564 // object is in the mark. Furthermore the owner can't complete 1565 // an unlock on the object, either. 1566 markWord dmw = mark.displaced_mark_helper(); 1567 // Catch if the object's header is not neutral (not locked and 1568 // not marked is what we care about here). 1569 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1570 1571 // Setup monitor fields to proper values -- prepare the monitor 1572 m->set_header(dmw); 1573 1574 // Optimization: if the mark.locker stack address is associated 1575 // with this thread we could simply set m->_owner = current. 1576 // Note that a thread can inflate an object 1577 // that it has stack-locked -- as might happen in wait() -- directly 1578 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1579 m->set_owner_from(nullptr, mark.locker()); 1580 // TODO-FIXME: assert BasicLock->dhw != 0. 1581 1582 // Must preserve store ordering. The monitor state must 1583 // be stable at the time of publishing the monitor address. 1584 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1585 // Release semantics so that above set_object() is seen first. 1586 object->release_set_mark(markWord::encode(m)); 1587 1588 // Once ObjectMonitor is configured and the object is associated 1589 // with the ObjectMonitor, it is safe to allow async deflation: 1590 _in_use_list.add(m); 1591 1592 // Hopefully the performance counters are allocated on distinct cache lines 1593 // to avoid false sharing on MP systems ... 1594 OM_PERFDATA_OP(Inflations, inc()); 1595 if (log_is_enabled(Trace, monitorinflation)) { 1596 ResourceMark rm; 1597 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1598 INTPTR_FORMAT ", type='%s'", p2i(object), 1599 object->mark().value(), object->klass()->external_name()); 1600 } 1601 if (event.should_commit()) { 1602 post_monitor_inflate_event(&event, object, cause); 1603 } 1604 return m; 1605 } 1606 1607 // CASE: unlocked 1608 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1609 // If we know we're inflating for entry it's better to inflate by swinging a 1610 // pre-locked ObjectMonitor pointer into the object header. A successful 1611 // CAS inflates the object *and* confers ownership to the inflating thread. 1612 // In the current implementation we use a 2-step mechanism where we CAS() 1613 // to inflate and then CAS() again to try to swing _owner from null to current. 1614 // An inflateTry() method that we could call from enter() would be useful. 1615 1616 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1617 ObjectMonitor* m = new ObjectMonitor(object); 1618 // prepare m for installation - set monitor to initial state 1619 m->set_header(mark); 1620 1621 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1622 delete m; 1623 m = nullptr; 1624 continue; 1625 // interference - the markword changed - just retry. 1626 // The state-transitions are one-way, so there's no chance of 1627 // live-lock -- "Inflated" is an absorbing state. 1628 } 1629 1630 // Once the ObjectMonitor is configured and object is associated 1631 // with the ObjectMonitor, it is safe to allow async deflation: 1632 _in_use_list.add(m); 1633 1634 // Hopefully the performance counters are allocated on distinct 1635 // cache lines to avoid false sharing on MP systems ... 1636 OM_PERFDATA_OP(Inflations, inc()); 1637 if (log_is_enabled(Trace, monitorinflation)) { 1638 ResourceMark rm; 1639 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1640 INTPTR_FORMAT ", type='%s'", p2i(object), 1641 object->mark().value(), object->klass()->external_name()); 1642 } 1643 if (event.should_commit()) { 1644 post_monitor_inflate_event(&event, object, cause); 1645 } 1646 return m; 1647 } 1648 } 1649 1650 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1651 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1652 // 1653 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1654 MonitorList::Iterator iter = _in_use_list.iterator(); 1655 size_t deflated_count = 0; 1656 Thread* current = Thread::current(); 1657 1658 while (iter.has_next()) { 1659 if (deflated_count >= (size_t)MonitorDeflationMax) { 1660 break; 1661 } 1662 ObjectMonitor* mid = iter.next(); 1663 if (mid->deflate_monitor(current)) { 1664 deflated_count++; 1665 } 1666 1667 // Must check for a safepoint/handshake and honor it. 1668 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1669 } 1670 1671 return deflated_count; 1672 } 1673 1674 class HandshakeForDeflation : public HandshakeClosure { 1675 public: 1676 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1677 1678 void do_thread(Thread* thread) { 1679 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1680 INTPTR_FORMAT, p2i(thread)); 1681 if (thread->is_Java_thread()) { 1682 // Clear OM cache 1683 JavaThread* jt = JavaThread::cast(thread); 1684 jt->om_clear_monitor_cache(); 1685 } 1686 } 1687 }; 1688 1689 class VM_RendezvousGCThreads : public VM_Operation { 1690 public: 1691 bool evaluate_at_safepoint() const override { return false; } 1692 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1693 void doit() override { 1694 Universe::heap()->safepoint_synchronize_begin(); 1695 Universe::heap()->safepoint_synchronize_end(); 1696 }; 1697 }; 1698 1699 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1700 ObjectMonitorDeflationSafepointer* safepointer) { 1701 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1702 size_t deleted_count = 0; 1703 for (ObjectMonitor* monitor: *delete_list) { 1704 delete monitor; 1705 deleted_count++; 1706 // A JavaThread must check for a safepoint/handshake and honor it. 1707 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1708 } 1709 return deleted_count; 1710 } 1711 1712 class ObjectMonitorDeflationLogging: public StackObj { 1713 LogStreamHandle(Debug, monitorinflation) _debug; 1714 LogStreamHandle(Info, monitorinflation) _info; 1715 LogStream* _stream; 1716 elapsedTimer _timer; 1717 1718 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1719 size_t count() const { return ObjectSynchronizer::_in_use_list.count(); } 1720 size_t max() const { return ObjectSynchronizer::_in_use_list.max(); } 1721 1722 public: 1723 ObjectMonitorDeflationLogging() 1724 : _debug(), _info(), _stream(nullptr) { 1725 if (_debug.is_enabled()) { 1726 _stream = &_debug; 1727 } else if (_info.is_enabled()) { 1728 _stream = &_info; 1729 } 1730 } 1731 1732 void begin() { 1733 if (_stream != nullptr) { 1734 _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1735 ceiling(), count(), max()); 1736 _timer.start(); 1737 } 1738 } 1739 1740 void before_handshake(size_t unlinked_count) { 1741 if (_stream != nullptr) { 1742 _timer.stop(); 1743 _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1744 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1745 SIZE_FORMAT ", max=" SIZE_FORMAT, 1746 unlinked_count, ceiling(), count(), max()); 1747 } 1748 } 1749 1750 void after_handshake() { 1751 if (_stream != nullptr) { 1752 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1753 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1754 ceiling(), count(), max()); 1755 _timer.start(); 1756 } 1757 } 1758 1759 void end(size_t deflated_count, size_t unlinked_count) { 1760 if (_stream != nullptr) { 1761 _timer.stop(); 1762 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1763 _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1764 deflated_count, unlinked_count, _timer.seconds()); 1765 } 1766 _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1767 ceiling(), count(), max()); 1768 } 1769 } 1770 1771 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1772 if (_stream != nullptr) { 1773 _timer.stop(); 1774 _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1775 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1776 op_name, cnt_name, cnt, ceiling(), count(), max()); 1777 } 1778 } 1779 1780 void after_block_for_safepoint(const char* op_name) { 1781 if (_stream != nullptr) { 1782 _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1783 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1784 ceiling(), count(), max()); 1785 _timer.start(); 1786 } 1787 } 1788 }; 1789 1790 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1791 if (!SafepointMechanism::should_process(_current)) { 1792 return; 1793 } 1794 1795 // A safepoint/handshake has started. 1796 _log->before_block_for_safepoint(op_name, count_name, counter); 1797 1798 { 1799 // Honor block request. 1800 ThreadBlockInVM tbivm(_current); 1801 } 1802 1803 _log->after_block_for_safepoint(op_name); 1804 } 1805 1806 // This function is called by the MonitorDeflationThread to deflate 1807 // ObjectMonitors. 1808 size_t ObjectSynchronizer::deflate_idle_monitors() { 1809 JavaThread* current = JavaThread::current(); 1810 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1811 1812 // The async deflation request has been processed. 1813 _last_async_deflation_time_ns = os::javaTimeNanos(); 1814 set_is_async_deflation_requested(false); 1815 1816 ObjectMonitorDeflationLogging log; 1817 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1818 1819 log.begin(); 1820 1821 // Deflate some idle ObjectMonitors. 1822 size_t deflated_count = deflate_monitor_list(&safepointer); 1823 1824 // Unlink the deflated ObjectMonitors from the in-use list. 1825 size_t unlinked_count = 0; 1826 size_t deleted_count = 0; 1827 if (deflated_count > 0) { 1828 ResourceMark rm(current); 1829 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1830 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1831 1832 #ifdef ASSERT 1833 if (UseObjectMonitorTable) { 1834 for (ObjectMonitor* monitor : delete_list) { 1835 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1836 } 1837 } 1838 #endif 1839 1840 log.before_handshake(unlinked_count); 1841 1842 // A JavaThread needs to handshake in order to safely free the 1843 // ObjectMonitors that were deflated in this cycle. 1844 HandshakeForDeflation hfd_hc; 1845 Handshake::execute(&hfd_hc); 1846 // Also, we sync and desync GC threads around the handshake, so that they can 1847 // safely read the mark-word and look-through to the object-monitor, without 1848 // being afraid that the object-monitor is going away. 1849 VM_RendezvousGCThreads sync_gc; 1850 VMThread::execute(&sync_gc); 1851 1852 log.after_handshake(); 1853 1854 // After the handshake, safely free the ObjectMonitors that were 1855 // deflated and unlinked in this cycle. 1856 1857 // Delete the unlinked ObjectMonitors. 1858 deleted_count = delete_monitors(&delete_list, &safepointer); 1859 assert(unlinked_count == deleted_count, "must be"); 1860 } 1861 1862 log.end(deflated_count, unlinked_count); 1863 1864 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1865 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1866 1867 GVars.stw_random = os::random(); 1868 1869 if (deflated_count != 0) { 1870 _no_progress_cnt = 0; 1871 } else if (_no_progress_skip_increment) { 1872 _no_progress_skip_increment = false; 1873 } else { 1874 _no_progress_cnt++; 1875 } 1876 1877 return deflated_count; 1878 } 1879 1880 // Monitor cleanup on JavaThread::exit 1881 1882 // Iterate through monitor cache and attempt to release thread's monitors 1883 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1884 private: 1885 JavaThread* _thread; 1886 1887 public: 1888 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1889 void do_monitor(ObjectMonitor* mid) { 1890 intx rec = mid->complete_exit(_thread); 1891 _thread->dec_held_monitor_count(rec + 1); 1892 } 1893 }; 1894 1895 // Release all inflated monitors owned by current thread. Lightweight monitors are 1896 // ignored. This is meant to be called during JNI thread detach which assumes 1897 // all remaining monitors are heavyweight. All exceptions are swallowed. 1898 // Scanning the extant monitor list can be time consuming. 1899 // A simple optimization is to add a per-thread flag that indicates a thread 1900 // called jni_monitorenter() during its lifetime. 1901 // 1902 // Instead of NoSafepointVerifier it might be cheaper to 1903 // use an idiom of the form: 1904 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1905 // <code that must not run at safepoint> 1906 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1907 // Since the tests are extremely cheap we could leave them enabled 1908 // for normal product builds. 1909 1910 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1911 assert(current == JavaThread::current(), "must be current Java thread"); 1912 NoSafepointVerifier nsv; 1913 ReleaseJavaMonitorsClosure rjmc(current); 1914 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1915 assert(!current->has_pending_exception(), "Should not be possible"); 1916 current->clear_pending_exception(); 1917 assert(current->held_monitor_count() == 0, "Should not be possible"); 1918 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1919 current->clear_jni_monitor_count(); 1920 } 1921 1922 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1923 switch (cause) { 1924 case inflate_cause_vm_internal: return "VM Internal"; 1925 case inflate_cause_monitor_enter: return "Monitor Enter"; 1926 case inflate_cause_wait: return "Monitor Wait"; 1927 case inflate_cause_notify: return "Monitor Notify"; 1928 case inflate_cause_hash_code: return "Monitor Hash Code"; 1929 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1930 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1931 default: 1932 ShouldNotReachHere(); 1933 } 1934 return "Unknown"; 1935 } 1936 1937 //------------------------------------------------------------------------------ 1938 // Debugging code 1939 1940 u_char* ObjectSynchronizer::get_gvars_addr() { 1941 return (u_char*)&GVars; 1942 } 1943 1944 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1945 return (u_char*)&GVars.hc_sequence; 1946 } 1947 1948 size_t ObjectSynchronizer::get_gvars_size() { 1949 return sizeof(SharedGlobals); 1950 } 1951 1952 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1953 return (u_char*)&GVars.stw_random; 1954 } 1955 1956 // Do the final audit and print of ObjectMonitor stats; must be done 1957 // by the VMThread at VM exit time. 1958 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1959 assert(Thread::current()->is_VM_thread(), "sanity check"); 1960 1961 if (is_final_audit()) { // Only do the audit once. 1962 return; 1963 } 1964 set_is_final_audit(); 1965 log_info(monitorinflation)("Starting the final audit."); 1966 1967 if (log_is_enabled(Info, monitorinflation)) { 1968 LogStreamHandle(Info, monitorinflation) ls; 1969 audit_and_print_stats(&ls, true /* on_exit */); 1970 } 1971 } 1972 1973 // This function can be called by the MonitorDeflationThread or it can be called when 1974 // we are trying to exit the VM. The list walker functions can run in parallel with 1975 // the other list operations. 1976 // Calls to this function can be added in various places as a debugging 1977 // aid. 1978 // 1979 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1980 int error_cnt = 0; 1981 1982 ls->print_cr("Checking in_use_list:"); 1983 chk_in_use_list(ls, &error_cnt); 1984 1985 if (error_cnt == 0) { 1986 ls->print_cr("No errors found in in_use_list checks."); 1987 } else { 1988 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1989 } 1990 1991 // When exiting, only log the interesting entries at the Info level. 1992 // When called at intervals by the MonitorDeflationThread, log output 1993 // at the Trace level since there can be a lot of it. 1994 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1995 LogStreamHandle(Trace, monitorinflation) ls_tr; 1996 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1997 } else if (on_exit) { 1998 log_in_use_monitor_details(ls, false /* log_all */); 1999 } 2000 2001 ls->flush(); 2002 2003 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2004 } 2005 2006 // Check the in_use_list; log the results of the checks. 2007 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2008 size_t l_in_use_count = _in_use_list.count(); 2009 size_t l_in_use_max = _in_use_list.max(); 2010 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 2011 l_in_use_max); 2012 2013 size_t ck_in_use_count = 0; 2014 MonitorList::Iterator iter = _in_use_list.iterator(); 2015 while (iter.has_next()) { 2016 ObjectMonitor* mid = iter.next(); 2017 chk_in_use_entry(mid, out, error_cnt_p); 2018 ck_in_use_count++; 2019 } 2020 2021 if (l_in_use_count == ck_in_use_count) { 2022 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 2023 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 2024 } else { 2025 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 2026 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 2027 ck_in_use_count); 2028 } 2029 2030 size_t ck_in_use_max = _in_use_list.max(); 2031 if (l_in_use_max == ck_in_use_max) { 2032 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 2033 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2034 } else { 2035 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 2036 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2037 } 2038 } 2039 2040 // Check an in-use monitor entry; log any errors. 2041 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2042 int* error_cnt_p) { 2043 if (n->owner_is_DEFLATER_MARKER()) { 2044 // This could happen when monitor deflation blocks for a safepoint. 2045 return; 2046 } 2047 2048 2049 if (n->metadata() == 0) { 2050 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2051 "have non-null _metadata (header/hash) field.", p2i(n)); 2052 *error_cnt_p = *error_cnt_p + 1; 2053 } 2054 2055 const oop obj = n->object_peek(); 2056 if (obj == nullptr) { 2057 return; 2058 } 2059 2060 const markWord mark = obj->mark(); 2061 if (!mark.has_monitor()) { 2062 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2063 "object does not think it has a monitor: obj=" 2064 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2065 p2i(obj), mark.value()); 2066 *error_cnt_p = *error_cnt_p + 1; 2067 return; 2068 } 2069 2070 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2071 if (n != obj_mon) { 2072 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2073 "object does not refer to the same monitor: obj=" 2074 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2075 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2076 *error_cnt_p = *error_cnt_p + 1; 2077 } 2078 } 2079 2080 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2081 // flags indicate why the entry is in-use, 'object' and 'object type' 2082 // indicate the associated object and its type. 2083 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2084 if (_in_use_list.count() > 0) { 2085 stringStream ss; 2086 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2087 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2088 out->print_cr("%18s %s %18s %18s", 2089 "monitor", "BHL", "object", "object type"); 2090 out->print_cr("================== === ================== =================="); 2091 2092 auto is_interesting = [&](ObjectMonitor* monitor) { 2093 return log_all || monitor->has_owner() || monitor->is_busy(); 2094 }; 2095 2096 monitors_iterate([&](ObjectMonitor* monitor) { 2097 if (is_interesting(monitor)) { 2098 const oop obj = monitor->object_peek(); 2099 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2100 ResourceMark rm; 2101 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2102 monitor->is_busy(), hash != 0, monitor->owner() != nullptr, 2103 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2104 if (monitor->is_busy()) { 2105 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2106 ss.reset(); 2107 } 2108 out->cr(); 2109 } 2110 }); 2111 } 2112 2113 out->flush(); 2114 }