1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2023, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "classfile/classLoaderData.inline.hpp" 28 #include "classfile/classLoaderDataGraph.hpp" 29 #include "classfile/javaClasses.inline.hpp" 30 #include "classfile/symbolTable.hpp" 31 #include "classfile/vmClasses.hpp" 32 #include "classfile/vmSymbols.hpp" 33 #include "gc/shared/gcLocker.hpp" 34 #include "gc/shared/gcVMOperations.hpp" 35 #include "gc/shared/workerThread.hpp" 36 #include "jfr/jfrEvents.hpp" 37 #include "jvm.h" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/fieldStreams.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/objArrayKlass.hpp" 44 #include "oops/objArrayOop.inline.hpp" 45 #include "oops/flatArrayKlass.hpp" 46 #include "oops/flatArrayOop.inline.hpp" 47 #include "oops/oop.inline.hpp" 48 #include "oops/typeArrayOop.inline.hpp" 49 #include "runtime/continuationWrapper.inline.hpp" 50 #include "runtime/fieldDescriptor.inline.hpp" 51 #include "runtime/frame.inline.hpp" 52 #include "runtime/handles.inline.hpp" 53 #include "runtime/javaCalls.hpp" 54 #include "runtime/javaThread.inline.hpp" 55 #include "runtime/jniHandles.hpp" 56 #include "runtime/os.hpp" 57 #include "runtime/threads.hpp" 58 #include "runtime/threadSMR.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmOperations.hpp" 61 #include "runtime/vmThread.hpp" 62 #include "runtime/timerTrace.hpp" 63 #include "services/heapDumper.hpp" 64 #include "services/heapDumperCompression.hpp" 65 #include "services/threadService.hpp" 66 #include "utilities/checkedCast.hpp" 67 #include "utilities/macros.hpp" 68 #include "utilities/ostream.hpp" 69 #ifdef LINUX 70 #include "os_linux.hpp" 71 #endif 72 73 /* 74 * HPROF binary format - description copied from: 75 * src/share/demo/jvmti/hprof/hprof_io.c 76 * 77 * 78 * header "JAVA PROFILE 1.0.2" (0-terminated) 79 * 80 * u4 size of identifiers. Identifiers are used to represent 81 * UTF8 strings, objects, stack traces, etc. They usually 82 * have the same size as host pointers. 83 * u4 high word 84 * u4 low word number of milliseconds since 0:00 GMT, 1/1/70 85 * [record]* a sequence of records. 86 * 87 * 88 * Record format: 89 * 90 * u1 a TAG denoting the type of the record 91 * u4 number of *microseconds* since the time stamp in the 92 * header. (wraps around in a little more than an hour) 93 * u4 number of bytes *remaining* in the record. Note that 94 * this number excludes the tag and the length field itself. 95 * [u1]* BODY of the record (a sequence of bytes) 96 * 97 * 98 * The following TAGs are supported: 99 * 100 * TAG BODY notes 101 *---------------------------------------------------------- 102 * HPROF_UTF8 a UTF8-encoded name 103 * 104 * id name ID 105 * [u1]* UTF8 characters (no trailing zero) 106 * 107 * HPROF_LOAD_CLASS a newly loaded class 108 * 109 * u4 class serial number (> 0) 110 * id class object ID 111 * u4 stack trace serial number 112 * id class name ID 113 * 114 * HPROF_UNLOAD_CLASS an unloading class 115 * 116 * u4 class serial_number 117 * 118 * HPROF_FRAME a Java stack frame 119 * 120 * id stack frame ID 121 * id method name ID 122 * id method signature ID 123 * id source file name ID 124 * u4 class serial number 125 * i4 line number. >0: normal 126 * -1: unknown 127 * -2: compiled method 128 * -3: native method 129 * 130 * HPROF_TRACE a Java stack trace 131 * 132 * u4 stack trace serial number 133 * u4 thread serial number 134 * u4 number of frames 135 * [id]* stack frame IDs 136 * 137 * 138 * HPROF_ALLOC_SITES a set of heap allocation sites, obtained after GC 139 * 140 * u2 flags 0x0001: incremental vs. complete 141 * 0x0002: sorted by allocation vs. live 142 * 0x0004: whether to force a GC 143 * u4 cutoff ratio 144 * u4 total live bytes 145 * u4 total live instances 146 * u8 total bytes allocated 147 * u8 total instances allocated 148 * u4 number of sites that follow 149 * [u1 is_array: 0: normal object 150 * 2: object array 151 * 4: boolean array 152 * 5: char array 153 * 6: float array 154 * 7: double array 155 * 8: byte array 156 * 9: short array 157 * 10: int array 158 * 11: long array 159 * u4 class serial number (may be zero during startup) 160 * u4 stack trace serial number 161 * u4 number of bytes alive 162 * u4 number of instances alive 163 * u4 number of bytes allocated 164 * u4]* number of instance allocated 165 * 166 * HPROF_START_THREAD a newly started thread. 167 * 168 * u4 thread serial number (> 0) 169 * id thread object ID 170 * u4 stack trace serial number 171 * id thread name ID 172 * id thread group name ID 173 * id thread group parent name ID 174 * 175 * HPROF_END_THREAD a terminating thread. 176 * 177 * u4 thread serial number 178 * 179 * HPROF_HEAP_SUMMARY heap summary 180 * 181 * u4 total live bytes 182 * u4 total live instances 183 * u8 total bytes allocated 184 * u8 total instances allocated 185 * 186 * HPROF_HEAP_DUMP denote a heap dump 187 * 188 * [heap dump sub-records]* 189 * 190 * There are four kinds of heap dump sub-records: 191 * 192 * u1 sub-record type 193 * 194 * HPROF_GC_ROOT_UNKNOWN unknown root 195 * 196 * id object ID 197 * 198 * HPROF_GC_ROOT_THREAD_OBJ thread object 199 * 200 * id thread object ID (may be 0 for a 201 * thread newly attached through JNI) 202 * u4 thread sequence number 203 * u4 stack trace sequence number 204 * 205 * HPROF_GC_ROOT_JNI_GLOBAL JNI global ref root 206 * 207 * id object ID 208 * id JNI global ref ID 209 * 210 * HPROF_GC_ROOT_JNI_LOCAL JNI local ref 211 * 212 * id object ID 213 * u4 thread serial number 214 * u4 frame # in stack trace (-1 for empty) 215 * 216 * HPROF_GC_ROOT_JAVA_FRAME Java stack frame 217 * 218 * id object ID 219 * u4 thread serial number 220 * u4 frame # in stack trace (-1 for empty) 221 * 222 * HPROF_GC_ROOT_NATIVE_STACK Native stack 223 * 224 * id object ID 225 * u4 thread serial number 226 * 227 * HPROF_GC_ROOT_STICKY_CLASS System class 228 * 229 * id object ID 230 * 231 * HPROF_GC_ROOT_THREAD_BLOCK Reference from thread block 232 * 233 * id object ID 234 * u4 thread serial number 235 * 236 * HPROF_GC_ROOT_MONITOR_USED Busy monitor 237 * 238 * id object ID 239 * 240 * HPROF_GC_CLASS_DUMP dump of a class object 241 * 242 * id class object ID 243 * u4 stack trace serial number 244 * id super class object ID 245 * id class loader object ID 246 * id signers object ID 247 * id protection domain object ID 248 * id reserved 249 * id reserved 250 * 251 * u4 instance size (in bytes) 252 * 253 * u2 size of constant pool 254 * [u2, constant pool index, 255 * ty, type 256 * 2: object 257 * 4: boolean 258 * 5: char 259 * 6: float 260 * 7: double 261 * 8: byte 262 * 9: short 263 * 10: int 264 * 11: long 265 * vl]* and value 266 * 267 * u2 number of static fields 268 * [id, static field name, 269 * ty, type, 270 * vl]* and value 271 * 272 * u2 number of inst. fields (not inc. super) 273 * [id, instance field name, 274 * ty]* type 275 * 276 * HPROF_GC_INSTANCE_DUMP dump of a normal object 277 * 278 * id object ID 279 * u4 stack trace serial number 280 * id class object ID 281 * u4 number of bytes that follow 282 * [vl]* instance field values (class, followed 283 * by super, super's super ...) 284 * 285 * HPROF_GC_OBJ_ARRAY_DUMP dump of an object array 286 * 287 * id array object ID 288 * u4 stack trace serial number 289 * u4 number of elements 290 * id array class ID 291 * [id]* elements 292 * 293 * HPROF_GC_PRIM_ARRAY_DUMP dump of a primitive array 294 * 295 * id array object ID 296 * u4 stack trace serial number 297 * u4 number of elements 298 * u1 element type 299 * 4: boolean array 300 * 5: char array 301 * 6: float array 302 * 7: double array 303 * 8: byte array 304 * 9: short array 305 * 10: int array 306 * 11: long array 307 * [u1]* elements 308 * 309 * HPROF_CPU_SAMPLES a set of sample traces of running threads 310 * 311 * u4 total number of samples 312 * u4 # of traces 313 * [u4 # of samples 314 * u4]* stack trace serial number 315 * 316 * HPROF_CONTROL_SETTINGS the settings of on/off switches 317 * 318 * u4 0x00000001: alloc traces on/off 319 * 0x00000002: cpu sampling on/off 320 * u2 stack trace depth 321 * 322 * HPROF_FLAT_ARRAYS list of flat arrays 323 * 324 * [flat array sub-records]* 325 * 326 * HPROF_FLAT_ARRAY flat array 327 * 328 * id array object ID (dumped as HPROF_GC_PRIM_ARRAY_DUMP) 329 * id element class ID (dumped by HPROF_GC_CLASS_DUMP) 330 * 331 * HPROF_INLINED_FIELDS decribes inlined fields 332 * 333 * [class with inlined fields sub-records]* 334 * 335 * HPROF_CLASS_WITH_INLINED_FIELDS 336 * 337 * id class ID (dumped as HPROF_GC_CLASS_DUMP) 338 * 339 * u2 number of instance inlined fields (not including super) 340 * [u2, inlined field index, 341 * u2, synthetic field count, 342 * id, original field name, 343 * id]* inlined field class ID (dumped by HPROF_GC_CLASS_DUMP) 344 * 345 * When the header is "JAVA PROFILE 1.0.2" a heap dump can optionally 346 * be generated as a sequence of heap dump segments. This sequence is 347 * terminated by an end record. The additional tags allowed by format 348 * "JAVA PROFILE 1.0.2" are: 349 * 350 * HPROF_HEAP_DUMP_SEGMENT denote a heap dump segment 351 * 352 * [heap dump sub-records]* 353 * The same sub-record types allowed by HPROF_HEAP_DUMP 354 * 355 * HPROF_HEAP_DUMP_END denotes the end of a heap dump 356 * 357 */ 358 359 360 // HPROF tags 361 362 enum hprofTag : u1 { 363 // top-level records 364 HPROF_UTF8 = 0x01, 365 HPROF_LOAD_CLASS = 0x02, 366 HPROF_UNLOAD_CLASS = 0x03, 367 HPROF_FRAME = 0x04, 368 HPROF_TRACE = 0x05, 369 HPROF_ALLOC_SITES = 0x06, 370 HPROF_HEAP_SUMMARY = 0x07, 371 HPROF_START_THREAD = 0x0A, 372 HPROF_END_THREAD = 0x0B, 373 HPROF_HEAP_DUMP = 0x0C, 374 HPROF_CPU_SAMPLES = 0x0D, 375 HPROF_CONTROL_SETTINGS = 0x0E, 376 377 // 1.0.2 record types 378 HPROF_HEAP_DUMP_SEGMENT = 0x1C, 379 HPROF_HEAP_DUMP_END = 0x2C, 380 381 // inlined object support 382 HPROF_FLAT_ARRAYS = 0x12, 383 HPROF_INLINED_FIELDS = 0x13, 384 // inlined object subrecords 385 HPROF_FLAT_ARRAY = 0x01, 386 HPROF_CLASS_WITH_INLINED_FIELDS = 0x01, 387 388 // field types 389 HPROF_ARRAY_OBJECT = 0x01, 390 HPROF_NORMAL_OBJECT = 0x02, 391 HPROF_BOOLEAN = 0x04, 392 HPROF_CHAR = 0x05, 393 HPROF_FLOAT = 0x06, 394 HPROF_DOUBLE = 0x07, 395 HPROF_BYTE = 0x08, 396 HPROF_SHORT = 0x09, 397 HPROF_INT = 0x0A, 398 HPROF_LONG = 0x0B, 399 400 // data-dump sub-records 401 HPROF_GC_ROOT_UNKNOWN = 0xFF, 402 HPROF_GC_ROOT_JNI_GLOBAL = 0x01, 403 HPROF_GC_ROOT_JNI_LOCAL = 0x02, 404 HPROF_GC_ROOT_JAVA_FRAME = 0x03, 405 HPROF_GC_ROOT_NATIVE_STACK = 0x04, 406 HPROF_GC_ROOT_STICKY_CLASS = 0x05, 407 HPROF_GC_ROOT_THREAD_BLOCK = 0x06, 408 HPROF_GC_ROOT_MONITOR_USED = 0x07, 409 HPROF_GC_ROOT_THREAD_OBJ = 0x08, 410 HPROF_GC_CLASS_DUMP = 0x20, 411 HPROF_GC_INSTANCE_DUMP = 0x21, 412 HPROF_GC_OBJ_ARRAY_DUMP = 0x22, 413 HPROF_GC_PRIM_ARRAY_DUMP = 0x23 414 }; 415 416 // Default stack trace ID (used for dummy HPROF_TRACE record) 417 enum { 418 STACK_TRACE_ID = 1, 419 INITIAL_CLASS_COUNT = 200 420 }; 421 422 423 class AbstractDumpWriter; 424 425 class InlinedObjects { 426 427 struct ClassInlinedFields { 428 const Klass *klass; 429 uintx base_index; // base index of the inlined field names (1st field has index base_index+1). 430 ClassInlinedFields(const Klass *klass = nullptr, uintx base_index = 0) : klass(klass), base_index(base_index) {} 431 432 // For GrowableArray::find_sorted(). 433 static int compare(const ClassInlinedFields& a, const ClassInlinedFields& b) { 434 return a.klass - b.klass; 435 } 436 // For GrowableArray::sort(). 437 static int compare(ClassInlinedFields* a, ClassInlinedFields* b) { 438 return compare(*a, *b); 439 } 440 }; 441 442 uintx _min_string_id; 443 uintx _max_string_id; 444 445 GrowableArray<ClassInlinedFields> *_inlined_field_map; 446 447 // counters for classes with inlined fields and for the fields 448 int _classes_count; 449 int _inlined_fields_count; 450 451 static InlinedObjects *_instance; 452 453 static void inlined_field_names_callback(InlinedObjects* _this, const Klass *klass, uintx base_index, int count); 454 455 GrowableArray<oop> *_flat_arrays; 456 457 public: 458 InlinedObjects() 459 : _min_string_id(0), _max_string_id(0), 460 _inlined_field_map(nullptr), 461 _classes_count(0), _inlined_fields_count(0), 462 _flat_arrays(nullptr) { 463 } 464 465 static InlinedObjects* get_instance() { 466 return _instance; 467 } 468 469 void init(); 470 void release(); 471 472 void dump_inlined_field_names(AbstractDumpWriter *writer); 473 474 uintx get_base_index_for(Klass* k); 475 uintx get_next_string_id(uintx id); 476 477 void dump_classed_with_inlined_fields(AbstractDumpWriter* writer); 478 479 void add_flat_array(oop array); 480 void dump_flat_arrays(AbstractDumpWriter* writer); 481 482 }; 483 484 InlinedObjects *InlinedObjects::_instance = nullptr; 485 486 487 // Supports I/O operations for a dump 488 // Base class for dump and parallel dump 489 class AbstractDumpWriter : public CHeapObj<mtInternal> { 490 protected: 491 enum { 492 io_buffer_max_size = 1*M, 493 dump_segment_header_size = 9 494 }; 495 496 char* _buffer; // internal buffer 497 size_t _size; 498 size_t _pos; 499 500 bool _in_dump_segment; // Are we currently in a dump segment? 501 bool _is_huge_sub_record; // Are we writing a sub-record larger than the buffer size? 502 DEBUG_ONLY(size_t _sub_record_left;) // The bytes not written for the current sub-record. 503 DEBUG_ONLY(bool _sub_record_ended;) // True if we have called the end_sub_record(). 504 505 char* buffer() const { return _buffer; } 506 size_t buffer_size() const { return _size; } 507 void set_position(size_t pos) { _pos = pos; } 508 509 // Can be called if we have enough room in the buffer. 510 void write_fast(const void* s, size_t len); 511 512 // Returns true if we have enough room in the buffer for 'len' bytes. 513 bool can_write_fast(size_t len); 514 515 void write_address(address a); 516 517 public: 518 AbstractDumpWriter() : 519 _buffer(nullptr), 520 _size(io_buffer_max_size), 521 _pos(0), 522 _in_dump_segment(false) { } 523 524 // Total number of bytes written to the disk 525 virtual julong bytes_written() const = 0; 526 // Return non-null if error occurred 527 virtual char const* error() const = 0; 528 529 size_t position() const { return _pos; } 530 // writer functions 531 virtual void write_raw(const void* s, size_t len); 532 void write_u1(u1 x); 533 void write_u2(u2 x); 534 void write_u4(u4 x); 535 void write_u8(u8 x); 536 void write_objectID(oop o); 537 void write_rootID(oop* p); 538 void write_symbolID(Symbol* o); 539 void write_classID(Klass* k); 540 void write_id(u4 x); 541 542 // Start a new sub-record. Starts a new heap dump segment if needed. 543 void start_sub_record(u1 tag, u4 len); 544 // Ends the current sub-record. 545 void end_sub_record(); 546 // Finishes the current dump segment if not already finished. 547 void finish_dump_segment(); 548 // Flush internal buffer to persistent storage 549 virtual void flush() = 0; 550 }; 551 552 void AbstractDumpWriter::write_fast(const void* s, size_t len) { 553 assert(!_in_dump_segment || (_sub_record_left >= len), "sub-record too large"); 554 assert(buffer_size() - position() >= len, "Must fit"); 555 debug_only(_sub_record_left -= len); 556 memcpy(buffer() + position(), s, len); 557 set_position(position() + len); 558 } 559 560 bool AbstractDumpWriter::can_write_fast(size_t len) { 561 return buffer_size() - position() >= len; 562 } 563 564 // write raw bytes 565 void AbstractDumpWriter::write_raw(const void* s, size_t len) { 566 assert(!_in_dump_segment || (_sub_record_left >= len), "sub-record too large"); 567 debug_only(_sub_record_left -= len); 568 569 // flush buffer to make room. 570 while (len > buffer_size() - position()) { 571 assert(!_in_dump_segment || _is_huge_sub_record, 572 "Cannot overflow in non-huge sub-record."); 573 size_t to_write = buffer_size() - position(); 574 memcpy(buffer() + position(), s, to_write); 575 s = (void*) ((char*) s + to_write); 576 len -= to_write; 577 set_position(position() + to_write); 578 flush(); 579 } 580 581 memcpy(buffer() + position(), s, len); 582 set_position(position() + len); 583 } 584 585 // Makes sure we inline the fast write into the write_u* functions. This is a big speedup. 586 #define WRITE_KNOWN_TYPE(p, len) do { if (can_write_fast((len))) write_fast((p), (len)); \ 587 else write_raw((p), (len)); } while (0) 588 589 void AbstractDumpWriter::write_u1(u1 x) { 590 WRITE_KNOWN_TYPE(&x, 1); 591 } 592 593 void AbstractDumpWriter::write_u2(u2 x) { 594 u2 v; 595 Bytes::put_Java_u2((address)&v, x); 596 WRITE_KNOWN_TYPE(&v, 2); 597 } 598 599 void AbstractDumpWriter::write_u4(u4 x) { 600 u4 v; 601 Bytes::put_Java_u4((address)&v, x); 602 WRITE_KNOWN_TYPE(&v, 4); 603 } 604 605 void AbstractDumpWriter::write_u8(u8 x) { 606 u8 v; 607 Bytes::put_Java_u8((address)&v, x); 608 WRITE_KNOWN_TYPE(&v, 8); 609 } 610 611 void AbstractDumpWriter::write_address(address a) { 612 #ifdef _LP64 613 write_u8((u8)a); 614 #else 615 write_u4((u4)a); 616 #endif 617 } 618 619 void AbstractDumpWriter::write_objectID(oop o) { 620 write_address(cast_from_oop<address>(o)); 621 } 622 623 void AbstractDumpWriter::write_rootID(oop* p) { 624 write_address((address)p); 625 } 626 627 void AbstractDumpWriter::write_symbolID(Symbol* s) { 628 write_address((address)((uintptr_t)s)); 629 } 630 631 void AbstractDumpWriter::write_id(u4 x) { 632 #ifdef _LP64 633 write_u8((u8) x); 634 #else 635 write_u4(x); 636 #endif 637 } 638 639 // We use java mirror as the class ID 640 void AbstractDumpWriter::write_classID(Klass* k) { 641 write_objectID(k->java_mirror()); 642 } 643 644 void AbstractDumpWriter::finish_dump_segment() { 645 if (_in_dump_segment) { 646 assert(_sub_record_left == 0, "Last sub-record not written completely"); 647 assert(_sub_record_ended, "sub-record must have ended"); 648 649 // Fix up the dump segment length if we haven't written a huge sub-record last 650 // (in which case the segment length was already set to the correct value initially). 651 if (!_is_huge_sub_record) { 652 assert(position() > dump_segment_header_size, "Dump segment should have some content"); 653 Bytes::put_Java_u4((address) (buffer() + 5), 654 (u4) (position() - dump_segment_header_size)); 655 } else { 656 // Finish process huge sub record 657 // Set _is_huge_sub_record to false so the parallel dump writer can flush data to file. 658 _is_huge_sub_record = false; 659 } 660 661 _in_dump_segment = false; 662 flush(); 663 } 664 } 665 666 void AbstractDumpWriter::start_sub_record(u1 tag, u4 len) { 667 if (!_in_dump_segment) { 668 if (position() > 0) { 669 flush(); 670 } 671 672 assert(position() == 0 && buffer_size() > dump_segment_header_size, "Must be at the start"); 673 674 write_u1(HPROF_HEAP_DUMP_SEGMENT); 675 write_u4(0); // timestamp 676 // Will be fixed up later if we add more sub-records. If this is a huge sub-record, 677 // this is already the correct length, since we don't add more sub-records. 678 write_u4(len); 679 assert(Bytes::get_Java_u4((address)(buffer() + 5)) == len, "Inconsistent size!"); 680 _in_dump_segment = true; 681 _is_huge_sub_record = len > buffer_size() - dump_segment_header_size; 682 } else if (_is_huge_sub_record || (len > buffer_size() - position())) { 683 // This object will not fit in completely or the last sub-record was huge. 684 // Finish the current segment and try again. 685 finish_dump_segment(); 686 start_sub_record(tag, len); 687 688 return; 689 } 690 691 debug_only(_sub_record_left = len); 692 debug_only(_sub_record_ended = false); 693 694 write_u1(tag); 695 } 696 697 void AbstractDumpWriter::end_sub_record() { 698 assert(_in_dump_segment, "must be in dump segment"); 699 assert(_sub_record_left == 0, "sub-record not written completely"); 700 assert(!_sub_record_ended, "Must not have ended yet"); 701 debug_only(_sub_record_ended = true); 702 } 703 704 // Supports I/O operations for a dump 705 706 class DumpWriter : public AbstractDumpWriter { 707 private: 708 FileWriter* _writer; 709 AbstractCompressor* _compressor; 710 size_t _bytes_written; 711 char* _error; 712 // Compression support 713 char* _out_buffer; 714 size_t _out_size; 715 size_t _out_pos; 716 char* _tmp_buffer; 717 size_t _tmp_size; 718 719 private: 720 void do_compress(); 721 722 public: 723 DumpWriter(const char* path, bool overwrite, AbstractCompressor* compressor); 724 ~DumpWriter(); 725 julong bytes_written() const override { return (julong) _bytes_written; } 726 char const* error() const override { return _error; } 727 void set_error(const char* error) { _error = (char*)error; } 728 bool has_error() const { return _error != nullptr; } 729 const char* get_file_path() const { return _writer->get_file_path(); } 730 AbstractCompressor* compressor() { return _compressor; } 731 bool is_overwrite() const { return _writer->is_overwrite(); } 732 733 void flush() override; 734 735 private: 736 // internals for DumpMerger 737 friend class DumpMerger; 738 void set_bytes_written(julong bytes_written) { _bytes_written = bytes_written; } 739 int get_fd() const { return _writer->get_fd(); } 740 void set_compressor(AbstractCompressor* p) { _compressor = p; } 741 }; 742 743 DumpWriter::DumpWriter(const char* path, bool overwrite, AbstractCompressor* compressor) : 744 AbstractDumpWriter(), 745 _writer(new (std::nothrow) FileWriter(path, overwrite)), 746 _compressor(compressor), 747 _bytes_written(0), 748 _error(nullptr), 749 _out_buffer(nullptr), 750 _out_size(0), 751 _out_pos(0), 752 _tmp_buffer(nullptr), 753 _tmp_size(0) { 754 _error = (char*)_writer->open_writer(); 755 if (_error == nullptr) { 756 _buffer = (char*)os::malloc(io_buffer_max_size, mtInternal); 757 if (compressor != nullptr) { 758 _error = (char*)_compressor->init(io_buffer_max_size, &_out_size, &_tmp_size); 759 if (_error == nullptr) { 760 if (_out_size > 0) { 761 _out_buffer = (char*)os::malloc(_out_size, mtInternal); 762 } 763 if (_tmp_size > 0) { 764 _tmp_buffer = (char*)os::malloc(_tmp_size, mtInternal); 765 } 766 } 767 } 768 } 769 // initialize internal buffer 770 _pos = 0; 771 _size = io_buffer_max_size; 772 } 773 774 DumpWriter::~DumpWriter(){ 775 if (_buffer != nullptr) { 776 os::free(_buffer); 777 } 778 if (_out_buffer != nullptr) { 779 os::free(_out_buffer); 780 } 781 if (_tmp_buffer != nullptr) { 782 os::free(_tmp_buffer); 783 } 784 if (_writer != nullptr) { 785 delete _writer; 786 } 787 _bytes_written = -1; 788 } 789 790 // flush any buffered bytes to the file 791 void DumpWriter::flush() { 792 if (_pos <= 0) { 793 return; 794 } 795 if (has_error()) { 796 _pos = 0; 797 return; 798 } 799 char* result = nullptr; 800 if (_compressor == nullptr) { 801 result = (char*)_writer->write_buf(_buffer, _pos); 802 _bytes_written += _pos; 803 } else { 804 do_compress(); 805 if (!has_error()) { 806 result = (char*)_writer->write_buf(_out_buffer, _out_pos); 807 _bytes_written += _out_pos; 808 } 809 } 810 _pos = 0; // reset pos to make internal buffer available 811 812 if (result != nullptr) { 813 set_error(result); 814 } 815 } 816 817 void DumpWriter::do_compress() { 818 const char* msg = _compressor->compress(_buffer, _pos, _out_buffer, _out_size, 819 _tmp_buffer, _tmp_size, &_out_pos); 820 821 if (msg != nullptr) { 822 set_error(msg); 823 } 824 } 825 826 class DumperClassCacheTable; 827 class DumperClassCacheTableEntry; 828 829 // Support class with a collection of functions used when dumping the heap 830 class DumperSupport : AllStatic { 831 public: 832 833 // write a header of the given type 834 static void write_header(AbstractDumpWriter* writer, hprofTag tag, u4 len); 835 836 // returns hprof tag for the given type signature 837 static hprofTag sig2tag(Symbol* sig); 838 // returns hprof tag for the given basic type 839 static hprofTag type2tag(BasicType type); 840 // Returns the size of the data to write. 841 static u4 sig2size(Symbol* sig); 842 843 // calculates the total size of the all fields of the given class. 844 static u4 instance_size(InstanceKlass* ik, DumperClassCacheTableEntry* class_cache_entry = nullptr); 845 846 // dump a jfloat 847 static void dump_float(AbstractDumpWriter* writer, jfloat f); 848 // dump a jdouble 849 static void dump_double(AbstractDumpWriter* writer, jdouble d); 850 // dumps the raw value of the given field 851 static void dump_field_value(AbstractDumpWriter* writer, char type, oop obj, int offset); 852 // returns the size of the static fields; also counts the static fields 853 static u4 get_static_fields_size(InstanceKlass* ik, u2& field_count); 854 // dumps static fields of the given class 855 static void dump_static_fields(AbstractDumpWriter* writer, Klass* k); 856 // dump the raw values of the instance fields of the given identity or inlined object; 857 // for identity objects offset is 0 and 'klass' is o->klass(), 858 // for inlined objects offset is the offset in the holder object, 'klass' is inlined object class 859 static void dump_instance_fields(AbstractDumpWriter* writer, oop o, int offset, DumperClassCacheTable* class_cache, DumperClassCacheTableEntry* class_cache_entry); 860 // dump the raw values of the instance fields of the given inlined object; 861 // dump_instance_fields wrapper for inlined objects 862 static void dump_inlined_object_fields(AbstractDumpWriter* writer, oop o, int offset, DumperClassCacheTable* class_cache, DumperClassCacheTableEntry* class_cache_entry); 863 864 // get the count of the instance fields for a given class 865 static u2 get_instance_fields_count(InstanceKlass* ik); 866 // dumps the definition of the instance fields for a given class 867 static void dump_instance_field_descriptors(AbstractDumpWriter* writer, InstanceKlass* k, uintx *inlined_fields_index = nullptr); 868 // creates HPROF_GC_INSTANCE_DUMP record for the given object 869 static void dump_instance(AbstractDumpWriter* writer, oop o, DumperClassCacheTable* class_cache); 870 // creates HPROF_GC_CLASS_DUMP record for the given instance class 871 static void dump_instance_class(AbstractDumpWriter* writer, Klass* k); 872 // creates HPROF_GC_CLASS_DUMP record for a given array class 873 static void dump_array_class(AbstractDumpWriter* writer, Klass* k); 874 875 // creates HPROF_GC_OBJ_ARRAY_DUMP record for the given object array 876 static void dump_object_array(AbstractDumpWriter* writer, objArrayOop array); 877 // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given flat array 878 static void dump_flat_array(AbstractDumpWriter* writer, flatArrayOop array, DumperClassCacheTable* class_cache); 879 // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given type array 880 static void dump_prim_array(AbstractDumpWriter* writer, typeArrayOop array); 881 // create HPROF_FRAME record for the given method and bci 882 static void dump_stack_frame(AbstractDumpWriter* writer, int frame_serial_num, int class_serial_num, Method* m, int bci); 883 884 // check if we need to truncate an array 885 static int calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, short header_size); 886 // extended version to dump flat arrays as primitive arrays; 887 // type_size specifies size of the inlined objects. 888 static int calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, int type_size, short header_size); 889 890 // fixes up the current dump record and writes HPROF_HEAP_DUMP_END record 891 static void end_of_dump(AbstractDumpWriter* writer); 892 893 static oop mask_dormant_archived_object(oop o, oop ref_obj) { 894 if (o != nullptr && o->klass()->java_mirror_no_keepalive() == nullptr) { 895 // Ignore this object since the corresponding java mirror is not loaded. 896 // Might be a dormant archive object. 897 report_dormant_archived_object(o, ref_obj); 898 return nullptr; 899 } else { 900 return o; 901 } 902 } 903 904 // helper methods for inlined fields. 905 static bool is_inlined_field(const fieldDescriptor& fld) { 906 return fld.is_flat(); 907 } 908 static InlineKlass* get_inlined_field_klass(const fieldDescriptor& fld) { 909 assert(is_inlined_field(fld), "must be inlined field"); 910 InstanceKlass* holder_klass = fld.field_holder(); 911 return InlineKlass::cast(holder_klass->get_inline_type_field_klass(fld.index())); 912 } 913 914 static void report_dormant_archived_object(oop o, oop ref_obj) { 915 if (log_is_enabled(Trace, cds, heap)) { 916 ResourceMark rm; 917 if (ref_obj != nullptr) { 918 log_trace(cds, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s) referenced by " INTPTR_FORMAT " (%s)", 919 p2i(o), o->klass()->external_name(), 920 p2i(ref_obj), ref_obj->klass()->external_name()); 921 } else { 922 log_trace(cds, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)", 923 p2i(o), o->klass()->external_name()); 924 } 925 } 926 } 927 }; 928 929 // Hash table of klasses to the klass metadata. This should greatly improve the 930 // hash dumping performance. This hash table is supposed to be used by a single 931 // thread only. 932 // 933 class DumperClassCacheTableEntry : public CHeapObj<mtServiceability> { 934 friend class DumperClassCacheTable; 935 private: 936 GrowableArray<char> _sigs_start; 937 GrowableArray<int> _offsets; 938 GrowableArray<InlineKlass*> _inline_klasses; 939 u4 _instance_size; 940 int _entries; 941 942 public: 943 DumperClassCacheTableEntry() : _instance_size(0), _entries(0) {}; 944 945 int field_count() { return _entries; } 946 char sig_start(int field_idx) { return _sigs_start.at(field_idx); } 947 void push_sig_start_inlined() { _sigs_start.push('Q'); } 948 bool is_inlined(int field_idx){ return _sigs_start.at(field_idx) == 'Q'; } 949 InlineKlass* inline_klass(int field_idx) { assert(is_inlined(field_idx), "Not inlined"); return _inline_klasses.at(field_idx); } 950 int offset(int field_idx) { return _offsets.at(field_idx); } 951 u4 instance_size() { return _instance_size; } 952 }; 953 954 class DumperClassCacheTable { 955 private: 956 // ResourceHashtable SIZE is specified at compile time so we 957 // use 1031 which is the first prime after 1024. 958 static constexpr size_t TABLE_SIZE = 1031; 959 960 // Maintain the cache for N classes. This limits memory footprint 961 // impact, regardless of how many classes we have in the dump. 962 // This also improves look up performance by keeping the statically 963 // sized table from overloading. 964 static constexpr int CACHE_TOP = 256; 965 966 typedef ResourceHashtable<InstanceKlass*, DumperClassCacheTableEntry*, 967 TABLE_SIZE, AnyObj::C_HEAP, mtServiceability> PtrTable; 968 PtrTable* _ptrs; 969 970 // Single-slot cache to handle the major case of objects of the same 971 // class back-to-back, e.g. from T[]. 972 InstanceKlass* _last_ik; 973 DumperClassCacheTableEntry* _last_entry; 974 975 void unlink_all(PtrTable* table) { 976 class CleanupEntry: StackObj { 977 public: 978 bool do_entry(InstanceKlass*& key, DumperClassCacheTableEntry*& entry) { 979 delete entry; 980 return true; 981 } 982 } cleanup; 983 table->unlink(&cleanup); 984 } 985 986 public: 987 DumperClassCacheTableEntry* lookup_or_create(InstanceKlass* ik) { 988 if (_last_ik == ik) { 989 return _last_entry; 990 } 991 992 DumperClassCacheTableEntry* entry; 993 DumperClassCacheTableEntry** from_cache = _ptrs->get(ik); 994 if (from_cache == nullptr) { 995 entry = new DumperClassCacheTableEntry(); 996 for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) { 997 if (!fld.access_flags().is_static()) { 998 InlineKlass* inlineKlass = nullptr; 999 if (DumperSupport::is_inlined_field(fld.field_descriptor())) { 1000 inlineKlass = DumperSupport::get_inlined_field_klass(fld.field_descriptor()); 1001 entry->push_sig_start_inlined(); 1002 entry->_instance_size += DumperSupport::instance_size(inlineKlass); 1003 } else { 1004 Symbol* sig = fld.signature(); 1005 entry->_sigs_start.push(sig->char_at(0)); 1006 entry->_instance_size += DumperSupport::sig2size(sig); 1007 } 1008 entry->_inline_klasses.push(inlineKlass); 1009 entry->_offsets.push(fld.offset()); 1010 entry->_entries++; 1011 } 1012 } 1013 1014 if (_ptrs->number_of_entries() >= CACHE_TOP) { 1015 // We do not track the individual hit rates for table entries. 1016 // Purge the entire table, and let the cache catch up with new 1017 // distribution. 1018 unlink_all(_ptrs); 1019 } 1020 1021 _ptrs->put(ik, entry); 1022 } else { 1023 entry = *from_cache; 1024 } 1025 1026 // Remember for single-slot cache. 1027 _last_ik = ik; 1028 _last_entry = entry; 1029 1030 return entry; 1031 } 1032 1033 DumperClassCacheTable() : _ptrs(new (mtServiceability) PtrTable), _last_ik(nullptr), _last_entry(nullptr) {} 1034 1035 ~DumperClassCacheTable() { 1036 unlink_all(_ptrs); 1037 delete _ptrs; 1038 } 1039 }; 1040 1041 // write a header of the given type 1042 void DumperSupport:: write_header(AbstractDumpWriter* writer, hprofTag tag, u4 len) { 1043 writer->write_u1(tag); 1044 writer->write_u4(0); // current ticks 1045 writer->write_u4(len); 1046 } 1047 1048 // returns hprof tag for the given type signature 1049 hprofTag DumperSupport::sig2tag(Symbol* sig) { 1050 switch (sig->char_at(0)) { 1051 case JVM_SIGNATURE_CLASS : return HPROF_NORMAL_OBJECT; 1052 case JVM_SIGNATURE_ARRAY : return HPROF_NORMAL_OBJECT; 1053 case JVM_SIGNATURE_BYTE : return HPROF_BYTE; 1054 case JVM_SIGNATURE_CHAR : return HPROF_CHAR; 1055 case JVM_SIGNATURE_FLOAT : return HPROF_FLOAT; 1056 case JVM_SIGNATURE_DOUBLE : return HPROF_DOUBLE; 1057 case JVM_SIGNATURE_INT : return HPROF_INT; 1058 case JVM_SIGNATURE_LONG : return HPROF_LONG; 1059 case JVM_SIGNATURE_SHORT : return HPROF_SHORT; 1060 case JVM_SIGNATURE_BOOLEAN : return HPROF_BOOLEAN; 1061 default : ShouldNotReachHere(); /* to shut up compiler */ return HPROF_BYTE; 1062 } 1063 } 1064 1065 hprofTag DumperSupport::type2tag(BasicType type) { 1066 switch (type) { 1067 case T_BYTE : return HPROF_BYTE; 1068 case T_CHAR : return HPROF_CHAR; 1069 case T_FLOAT : return HPROF_FLOAT; 1070 case T_DOUBLE : return HPROF_DOUBLE; 1071 case T_INT : return HPROF_INT; 1072 case T_LONG : return HPROF_LONG; 1073 case T_SHORT : return HPROF_SHORT; 1074 case T_BOOLEAN : return HPROF_BOOLEAN; 1075 default : ShouldNotReachHere(); /* to shut up compiler */ return HPROF_BYTE; 1076 } 1077 } 1078 1079 u4 DumperSupport::sig2size(Symbol* sig) { 1080 switch (sig->char_at(0)) { 1081 case JVM_SIGNATURE_CLASS: 1082 case JVM_SIGNATURE_ARRAY: return sizeof(address); 1083 case JVM_SIGNATURE_BOOLEAN: 1084 case JVM_SIGNATURE_BYTE: return 1; 1085 case JVM_SIGNATURE_SHORT: 1086 case JVM_SIGNATURE_CHAR: return 2; 1087 case JVM_SIGNATURE_INT: 1088 case JVM_SIGNATURE_FLOAT: return 4; 1089 case JVM_SIGNATURE_LONG: 1090 case JVM_SIGNATURE_DOUBLE: return 8; 1091 default: ShouldNotReachHere(); /* to shut up compiler */ return 0; 1092 } 1093 } 1094 1095 template<typename T, typename F> T bit_cast(F from) { // replace with the real thing when we can use c++20 1096 T to; 1097 static_assert(sizeof(to) == sizeof(from), "must be of the same size"); 1098 memcpy(&to, &from, sizeof(to)); 1099 return to; 1100 } 1101 1102 // dump a jfloat 1103 void DumperSupport::dump_float(AbstractDumpWriter* writer, jfloat f) { 1104 if (g_isnan(f)) { 1105 writer->write_u4(0x7fc00000); // collapsing NaNs 1106 } else { 1107 writer->write_u4(bit_cast<u4>(f)); 1108 } 1109 } 1110 1111 // dump a jdouble 1112 void DumperSupport::dump_double(AbstractDumpWriter* writer, jdouble d) { 1113 if (g_isnan(d)) { 1114 writer->write_u8(0x7ff80000ull << 32); // collapsing NaNs 1115 } else { 1116 writer->write_u8(bit_cast<u8>(d)); 1117 } 1118 } 1119 1120 1121 // dumps the raw value of the given field 1122 void DumperSupport::dump_field_value(AbstractDumpWriter* writer, char type, oop obj, int offset) { 1123 switch (type) { 1124 case JVM_SIGNATURE_CLASS : 1125 case JVM_SIGNATURE_ARRAY : { 1126 oop o = obj->obj_field_access<ON_UNKNOWN_OOP_REF | AS_NO_KEEPALIVE>(offset); 1127 o = mask_dormant_archived_object(o, obj); 1128 assert(oopDesc::is_oop_or_null(o), "Expected an oop or nullptr at " PTR_FORMAT, p2i(o)); 1129 writer->write_objectID(o); 1130 break; 1131 } 1132 case JVM_SIGNATURE_BYTE : { 1133 jbyte b = obj->byte_field(offset); 1134 writer->write_u1(b); 1135 break; 1136 } 1137 case JVM_SIGNATURE_CHAR : { 1138 jchar c = obj->char_field(offset); 1139 writer->write_u2(c); 1140 break; 1141 } 1142 case JVM_SIGNATURE_SHORT : { 1143 jshort s = obj->short_field(offset); 1144 writer->write_u2(s); 1145 break; 1146 } 1147 case JVM_SIGNATURE_FLOAT : { 1148 jfloat f = obj->float_field(offset); 1149 dump_float(writer, f); 1150 break; 1151 } 1152 case JVM_SIGNATURE_DOUBLE : { 1153 jdouble d = obj->double_field(offset); 1154 dump_double(writer, d); 1155 break; 1156 } 1157 case JVM_SIGNATURE_INT : { 1158 jint i = obj->int_field(offset); 1159 writer->write_u4(i); 1160 break; 1161 } 1162 case JVM_SIGNATURE_LONG : { 1163 jlong l = obj->long_field(offset); 1164 writer->write_u8(l); 1165 break; 1166 } 1167 case JVM_SIGNATURE_BOOLEAN : { 1168 jboolean b = obj->bool_field(offset); 1169 writer->write_u1(b); 1170 break; 1171 } 1172 default : { 1173 ShouldNotReachHere(); 1174 break; 1175 } 1176 } 1177 } 1178 1179 // calculates the total size of the all fields of the given class. 1180 u4 DumperSupport::instance_size(InstanceKlass* ik, DumperClassCacheTableEntry* class_cache_entry) { 1181 if (class_cache_entry != nullptr) { 1182 return class_cache_entry->instance_size(); 1183 } else { 1184 u4 size = 0; 1185 for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) { 1186 if (!fld.access_flags().is_static()) { 1187 if (is_inlined_field(fld.field_descriptor())) { 1188 size += instance_size(get_inlined_field_klass(fld.field_descriptor())); 1189 } else { 1190 size += sig2size(fld.signature()); 1191 } 1192 } 1193 } 1194 return size; 1195 } 1196 } 1197 1198 u4 DumperSupport::get_static_fields_size(InstanceKlass* ik, u2& field_count) { 1199 field_count = 0; 1200 u4 size = 0; 1201 1202 for (JavaFieldStream fldc(ik); !fldc.done(); fldc.next()) { 1203 if (fldc.access_flags().is_static()) { 1204 assert(!is_inlined_field(fldc.field_descriptor()), "static fields cannot be inlined"); 1205 1206 field_count++; 1207 size += sig2size(fldc.signature()); 1208 } 1209 } 1210 1211 // Add in resolved_references which is referenced by the cpCache 1212 // The resolved_references is an array per InstanceKlass holding the 1213 // strings and other oops resolved from the constant pool. 1214 oop resolved_references = ik->constants()->resolved_references_or_null(); 1215 if (resolved_references != nullptr) { 1216 field_count++; 1217 size += sizeof(address); 1218 1219 // Add in the resolved_references of the used previous versions of the class 1220 // in the case of RedefineClasses 1221 InstanceKlass* prev = ik->previous_versions(); 1222 while (prev != nullptr && prev->constants()->resolved_references_or_null() != nullptr) { 1223 field_count++; 1224 size += sizeof(address); 1225 prev = prev->previous_versions(); 1226 } 1227 } 1228 1229 // Also provide a pointer to the init_lock if present, so there aren't unreferenced int[0] 1230 // arrays. 1231 oop init_lock = ik->init_lock(); 1232 if (init_lock != nullptr) { 1233 field_count++; 1234 size += sizeof(address); 1235 } 1236 1237 // We write the value itself plus a name and a one byte type tag per field. 1238 return checked_cast<u4>(size + field_count * (sizeof(address) + 1)); 1239 } 1240 1241 // dumps static fields of the given class 1242 void DumperSupport::dump_static_fields(AbstractDumpWriter* writer, Klass* k) { 1243 InstanceKlass* ik = InstanceKlass::cast(k); 1244 1245 // dump the field descriptors and raw values 1246 for (JavaFieldStream fld(ik); !fld.done(); fld.next()) { 1247 if (fld.access_flags().is_static()) { 1248 assert(!is_inlined_field(fld.field_descriptor()), "static fields cannot be inlined"); 1249 1250 Symbol* sig = fld.signature(); 1251 1252 writer->write_symbolID(fld.name()); // name 1253 writer->write_u1(sig2tag(sig)); // type 1254 1255 // value 1256 dump_field_value(writer, sig->char_at(0), ik->java_mirror(), fld.offset()); 1257 } 1258 } 1259 1260 // Add resolved_references for each class that has them 1261 oop resolved_references = ik->constants()->resolved_references_or_null(); 1262 if (resolved_references != nullptr) { 1263 writer->write_symbolID(vmSymbols::resolved_references_name()); // name 1264 writer->write_u1(sig2tag(vmSymbols::object_array_signature())); // type 1265 writer->write_objectID(resolved_references); 1266 1267 // Also write any previous versions 1268 InstanceKlass* prev = ik->previous_versions(); 1269 while (prev != nullptr && prev->constants()->resolved_references_or_null() != nullptr) { 1270 writer->write_symbolID(vmSymbols::resolved_references_name()); // name 1271 writer->write_u1(sig2tag(vmSymbols::object_array_signature())); // type 1272 writer->write_objectID(prev->constants()->resolved_references()); 1273 prev = prev->previous_versions(); 1274 } 1275 } 1276 1277 // Add init lock to the end if the class is not yet initialized 1278 oop init_lock = ik->init_lock(); 1279 if (init_lock != nullptr) { 1280 writer->write_symbolID(vmSymbols::init_lock_name()); // name 1281 writer->write_u1(sig2tag(vmSymbols::int_array_signature())); // type 1282 writer->write_objectID(init_lock); 1283 } 1284 } 1285 1286 // dump the raw values of the instance fields of the given identity or inlined object; 1287 // for identity objects offset is 0 and 'klass' is o->klass(), 1288 // for inlined objects offset is the offset in the holder object, 'klass' is inlined object class. 1289 void DumperSupport::dump_instance_fields(AbstractDumpWriter* writer, oop o, int offset, DumperClassCacheTable* class_cache, DumperClassCacheTableEntry* class_cache_entry) { 1290 assert(class_cache_entry != nullptr, "Pre-condition: must be provided"); 1291 for (int idx = 0; idx < class_cache_entry->field_count(); idx++) { 1292 if (class_cache_entry->is_inlined(idx)) { 1293 InlineKlass* field_klass = class_cache_entry->inline_klass(idx); 1294 int fields_offset = offset + (class_cache_entry->offset(idx) - field_klass->first_field_offset()); 1295 DumperClassCacheTableEntry* inline_class_cache_entry = class_cache->lookup_or_create(field_klass); 1296 dump_inlined_object_fields(writer, o, fields_offset, class_cache, inline_class_cache_entry); 1297 } else { 1298 dump_field_value(writer, class_cache_entry->sig_start(idx), o, class_cache_entry->offset(idx)); 1299 } 1300 } 1301 } 1302 1303 void DumperSupport::dump_inlined_object_fields(AbstractDumpWriter* writer, oop o, int offset, DumperClassCacheTable* class_cache, DumperClassCacheTableEntry* class_cache_entry) { 1304 // the object is inlined, so all its fields are stored without headers. 1305 dump_instance_fields(writer, o, offset, class_cache, class_cache_entry); 1306 } 1307 1308 // gets the count of the instance fields for a given class 1309 u2 DumperSupport::get_instance_fields_count(InstanceKlass* ik) { 1310 u2 field_count = 0; 1311 1312 for (JavaFieldStream fldc(ik); !fldc.done(); fldc.next()) { 1313 if (!fldc.access_flags().is_static()) { 1314 if (is_inlined_field(fldc.field_descriptor())) { 1315 // add "synthetic" fields for inlined fields. 1316 field_count += get_instance_fields_count(get_inlined_field_klass(fldc.field_descriptor())); 1317 } else { 1318 field_count++; 1319 } 1320 } 1321 } 1322 1323 return field_count; 1324 } 1325 1326 // dumps the definition of the instance fields for a given class 1327 // inlined_fields_id is not-nullptr for inlined fields (to get synthetic field name IDs 1328 // by using InlinedObjects::get_next_string_id()). 1329 void DumperSupport::dump_instance_field_descriptors(AbstractDumpWriter* writer, InstanceKlass* ik, uintx* inlined_fields_id) { 1330 // inlined_fields_id != nullptr means ik is a class of inlined field. 1331 // Inlined field id pointer for this class; lazyly initialized 1332 // if the class has inlined field(s) and the caller didn't provide inlined_fields_id. 1333 uintx *this_klass_inlined_fields_id = inlined_fields_id; 1334 uintx inlined_id = 0; 1335 1336 // dump the field descriptors 1337 for (JavaFieldStream fld(ik); !fld.done(); fld.next()) { 1338 if (!fld.access_flags().is_static()) { 1339 if (is_inlined_field(fld.field_descriptor())) { 1340 // dump "synthetic" fields for inlined fields. 1341 if (this_klass_inlined_fields_id == nullptr) { 1342 inlined_id = InlinedObjects::get_instance()->get_base_index_for(ik); 1343 this_klass_inlined_fields_id = &inlined_id; 1344 } 1345 dump_instance_field_descriptors(writer, get_inlined_field_klass(fld.field_descriptor()), this_klass_inlined_fields_id); 1346 } else { 1347 Symbol* sig = fld.signature(); 1348 Symbol* name = nullptr; 1349 // Use inlined_fields_id provided by caller. 1350 if (inlined_fields_id != nullptr) { 1351 uintx name_id = InlinedObjects::get_instance()->get_next_string_id(*inlined_fields_id); 1352 1353 // name_id == 0 is returned on error. use original field signature. 1354 if (name_id != 0) { 1355 *inlined_fields_id = name_id; 1356 name = reinterpret_cast<Symbol*>(name_id); 1357 } 1358 } 1359 if (name == nullptr) { 1360 name = fld.name(); 1361 } 1362 1363 writer->write_symbolID(name); // name 1364 writer->write_u1(sig2tag(sig)); // type 1365 } 1366 } 1367 } 1368 } 1369 1370 // creates HPROF_GC_INSTANCE_DUMP record for the given object 1371 void DumperSupport::dump_instance(AbstractDumpWriter* writer, oop o, DumperClassCacheTable* class_cache) { 1372 InstanceKlass* ik = InstanceKlass::cast(o->klass()); 1373 1374 DumperClassCacheTableEntry* cache_entry = class_cache->lookup_or_create(ik); 1375 1376 u4 is = instance_size(ik, cache_entry); 1377 u4 size = 1 + sizeof(address) + 4 + sizeof(address) + 4 + is; 1378 1379 writer->start_sub_record(HPROF_GC_INSTANCE_DUMP, size); 1380 writer->write_objectID(o); 1381 writer->write_u4(STACK_TRACE_ID); 1382 1383 // class ID 1384 writer->write_classID(ik); 1385 1386 // number of bytes that follow 1387 writer->write_u4(is); 1388 1389 // field values 1390 dump_instance_fields(writer, o, 0, class_cache, cache_entry); 1391 1392 writer->end_sub_record(); 1393 } 1394 1395 // creates HPROF_GC_CLASS_DUMP record for the given instance class 1396 void DumperSupport::dump_instance_class(AbstractDumpWriter* writer, Klass* k) { 1397 InstanceKlass* ik = InstanceKlass::cast(k); 1398 1399 // We can safepoint and do a heap dump at a point where we have a Klass, 1400 // but no java mirror class has been setup for it. So we need to check 1401 // that the class is at least loaded, to avoid crash from a null mirror. 1402 if (!ik->is_loaded()) { 1403 return; 1404 } 1405 1406 u2 static_fields_count = 0; 1407 u4 static_size = get_static_fields_size(ik, static_fields_count); 1408 u2 instance_fields_count = get_instance_fields_count(ik); 1409 u4 instance_fields_size = instance_fields_count * (sizeof(address) + 1); 1410 u4 size = checked_cast<u4>(1 + sizeof(address) + 4 + 6 * sizeof(address) + 4 + 2 + 2 + static_size + 2 + instance_fields_size); 1411 1412 writer->start_sub_record(HPROF_GC_CLASS_DUMP, size); 1413 1414 // class ID 1415 writer->write_classID(ik); 1416 writer->write_u4(STACK_TRACE_ID); 1417 1418 // super class ID 1419 InstanceKlass* java_super = ik->java_super(); 1420 if (java_super == nullptr) { 1421 writer->write_objectID(oop(nullptr)); 1422 } else { 1423 writer->write_classID(java_super); 1424 } 1425 1426 writer->write_objectID(ik->class_loader()); 1427 writer->write_objectID(ik->signers()); 1428 writer->write_objectID(ik->protection_domain()); 1429 1430 // reserved 1431 writer->write_objectID(oop(nullptr)); 1432 writer->write_objectID(oop(nullptr)); 1433 1434 // instance size 1435 writer->write_u4(HeapWordSize * ik->size_helper()); 1436 1437 // size of constant pool - ignored by HAT 1.1 1438 writer->write_u2(0); 1439 1440 // static fields 1441 writer->write_u2(static_fields_count); 1442 dump_static_fields(writer, ik); 1443 1444 // description of instance fields 1445 writer->write_u2(instance_fields_count); 1446 dump_instance_field_descriptors(writer, ik); 1447 1448 writer->end_sub_record(); 1449 } 1450 1451 // creates HPROF_GC_CLASS_DUMP record for the given array class 1452 void DumperSupport::dump_array_class(AbstractDumpWriter* writer, Klass* k) { 1453 InstanceKlass* ik = nullptr; // bottom class for object arrays, null for primitive type arrays 1454 if (k->is_objArray_klass()) { 1455 Klass *bk = ObjArrayKlass::cast(k)->bottom_klass(); 1456 assert(bk != nullptr, "checking"); 1457 if (bk->is_instance_klass()) { 1458 ik = InstanceKlass::cast(bk); 1459 } 1460 } 1461 1462 u4 size = 1 + sizeof(address) + 4 + 6 * sizeof(address) + 4 + 2 + 2 + 2; 1463 writer->start_sub_record(HPROF_GC_CLASS_DUMP, size); 1464 writer->write_classID(k); 1465 writer->write_u4(STACK_TRACE_ID); 1466 1467 // super class of array classes is java.lang.Object 1468 InstanceKlass* java_super = k->java_super(); 1469 assert(java_super != nullptr, "checking"); 1470 writer->write_classID(java_super); 1471 1472 writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->class_loader()); 1473 writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->signers()); 1474 writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->protection_domain()); 1475 1476 writer->write_objectID(oop(nullptr)); // reserved 1477 writer->write_objectID(oop(nullptr)); 1478 writer->write_u4(0); // instance size 1479 writer->write_u2(0); // constant pool 1480 writer->write_u2(0); // static fields 1481 writer->write_u2(0); // instance fields 1482 1483 writer->end_sub_record(); 1484 1485 } 1486 1487 // Hprof uses an u4 as record length field, 1488 // which means we need to truncate arrays that are too long. 1489 int DumperSupport::calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, int type_size, short header_size) { 1490 int length = array->length(); 1491 1492 size_t length_in_bytes = (size_t)length * type_size; 1493 uint max_bytes = max_juint - header_size; 1494 1495 if (length_in_bytes > max_bytes) { 1496 length = max_bytes / type_size; 1497 length_in_bytes = (size_t)length * type_size; 1498 1499 BasicType type = ArrayKlass::cast(array->klass())->element_type(); 1500 warning("cannot dump array of type %s[] with length %d; truncating to length %d", 1501 type2name_tab[type], array->length(), length); 1502 } 1503 return length; 1504 } 1505 1506 int DumperSupport::calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, short header_size) { 1507 BasicType type = ArrayKlass::cast(array->klass())->element_type(); 1508 assert((type >= T_BOOLEAN && type <= T_OBJECT) || type == T_FLAT_ELEMENT, "invalid array element type"); 1509 int type_size; 1510 if (type == T_OBJECT) { 1511 type_size = sizeof(address); 1512 } else if (type == T_FLAT_ELEMENT) { 1513 // TODO: FIXME 1514 fatal("Not supported yet"); // FIXME: JDK-8325678 1515 } else { 1516 type_size = type2aelembytes(type); 1517 } 1518 1519 return calculate_array_max_length(writer, array, type_size, header_size); 1520 } 1521 1522 // creates HPROF_GC_OBJ_ARRAY_DUMP record for the given object array 1523 void DumperSupport::dump_object_array(AbstractDumpWriter* writer, objArrayOop array) { 1524 // sizeof(u1) + 2 * sizeof(u4) + sizeof(objectID) + sizeof(classID) 1525 short header_size = 1 + 2 * 4 + 2 * sizeof(address); 1526 int length = calculate_array_max_length(writer, array, header_size); 1527 u4 size = checked_cast<u4>(header_size + length * sizeof(address)); 1528 1529 writer->start_sub_record(HPROF_GC_OBJ_ARRAY_DUMP, size); 1530 writer->write_objectID(array); 1531 writer->write_u4(STACK_TRACE_ID); 1532 writer->write_u4(length); 1533 1534 // array class ID 1535 writer->write_classID(array->klass()); 1536 1537 // [id]* elements 1538 for (int index = 0; index < length; index++) { 1539 oop o = array->obj_at(index); 1540 o = mask_dormant_archived_object(o, array); 1541 writer->write_objectID(o); 1542 } 1543 1544 writer->end_sub_record(); 1545 } 1546 1547 // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given flat array 1548 void DumperSupport::dump_flat_array(AbstractDumpWriter* writer, flatArrayOop array, DumperClassCacheTable* class_cache) { 1549 FlatArrayKlass* array_klass = FlatArrayKlass::cast(array->klass()); 1550 InlineKlass* element_klass = array_klass->element_klass(); 1551 int element_size = instance_size(element_klass); 1552 /* id array object ID 1553 * u4 stack trace serial number 1554 * u4 number of elements 1555 * u1 element type 1556 */ 1557 short header_size = 1 + sizeof(address) + 2 * 4 + 1; 1558 1559 // TODO: use T_SHORT/T_INT/T_LONG if needed to avoid truncation 1560 BasicType type = T_BYTE; 1561 int type_size = type2aelembytes(type); 1562 int length = calculate_array_max_length(writer, array, element_size, header_size); 1563 u4 length_in_bytes = (u4)(length * element_size); 1564 u4 size = header_size + length_in_bytes; 1565 1566 writer->start_sub_record(HPROF_GC_PRIM_ARRAY_DUMP, size); 1567 writer->write_objectID(array); 1568 writer->write_u4(STACK_TRACE_ID); 1569 // TODO: round up array length for T_SHORT/T_INT/T_LONG 1570 writer->write_u4(length * element_size); 1571 writer->write_u1(type2tag(type)); 1572 1573 for (int index = 0; index < length; index++) { 1574 // need offset in the holder to read inlined object. calculate it from flatArrayOop::value_at_addr() 1575 int offset = (int)((address)array->value_at_addr(index, array_klass->layout_helper()) 1576 - cast_from_oop<address>(array)); 1577 DumperClassCacheTableEntry* class_cache_entry = class_cache->lookup_or_create(element_klass); 1578 dump_inlined_object_fields(writer, array, offset, class_cache, class_cache_entry); 1579 } 1580 1581 // TODO: write padding bytes for T_SHORT/T_INT/T_LONG 1582 1583 InlinedObjects::get_instance()->add_flat_array(array); 1584 1585 writer->end_sub_record(); 1586 } 1587 1588 #define WRITE_ARRAY(Array, Type, Size, Length) \ 1589 for (int i = 0; i < Length; i++) { writer->write_##Size((Size)Array->Type##_at(i)); } 1590 1591 // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given type array 1592 void DumperSupport::dump_prim_array(AbstractDumpWriter* writer, typeArrayOop array) { 1593 BasicType type = TypeArrayKlass::cast(array->klass())->element_type(); 1594 // 2 * sizeof(u1) + 2 * sizeof(u4) + sizeof(objectID) 1595 short header_size = 2 * 1 + 2 * 4 + sizeof(address); 1596 1597 int length = calculate_array_max_length(writer, array, header_size); 1598 int type_size = type2aelembytes(type); 1599 u4 length_in_bytes = (u4)length * type_size; 1600 u4 size = header_size + length_in_bytes; 1601 1602 writer->start_sub_record(HPROF_GC_PRIM_ARRAY_DUMP, size); 1603 writer->write_objectID(array); 1604 writer->write_u4(STACK_TRACE_ID); 1605 writer->write_u4(length); 1606 writer->write_u1(type2tag(type)); 1607 1608 // nothing to copy 1609 if (length == 0) { 1610 writer->end_sub_record(); 1611 return; 1612 } 1613 1614 // If the byte ordering is big endian then we can copy most types directly 1615 1616 switch (type) { 1617 case T_INT : { 1618 if (Endian::is_Java_byte_ordering_different()) { 1619 WRITE_ARRAY(array, int, u4, length); 1620 } else { 1621 writer->write_raw(array->int_at_addr(0), length_in_bytes); 1622 } 1623 break; 1624 } 1625 case T_BYTE : { 1626 writer->write_raw(array->byte_at_addr(0), length_in_bytes); 1627 break; 1628 } 1629 case T_CHAR : { 1630 if (Endian::is_Java_byte_ordering_different()) { 1631 WRITE_ARRAY(array, char, u2, length); 1632 } else { 1633 writer->write_raw(array->char_at_addr(0), length_in_bytes); 1634 } 1635 break; 1636 } 1637 case T_SHORT : { 1638 if (Endian::is_Java_byte_ordering_different()) { 1639 WRITE_ARRAY(array, short, u2, length); 1640 } else { 1641 writer->write_raw(array->short_at_addr(0), length_in_bytes); 1642 } 1643 break; 1644 } 1645 case T_BOOLEAN : { 1646 if (Endian::is_Java_byte_ordering_different()) { 1647 WRITE_ARRAY(array, bool, u1, length); 1648 } else { 1649 writer->write_raw(array->bool_at_addr(0), length_in_bytes); 1650 } 1651 break; 1652 } 1653 case T_LONG : { 1654 if (Endian::is_Java_byte_ordering_different()) { 1655 WRITE_ARRAY(array, long, u8, length); 1656 } else { 1657 writer->write_raw(array->long_at_addr(0), length_in_bytes); 1658 } 1659 break; 1660 } 1661 1662 // handle float/doubles in a special value to ensure than NaNs are 1663 // written correctly. TO DO: Check if we can avoid this on processors that 1664 // use IEEE 754. 1665 1666 case T_FLOAT : { 1667 for (int i = 0; i < length; i++) { 1668 dump_float(writer, array->float_at(i)); 1669 } 1670 break; 1671 } 1672 case T_DOUBLE : { 1673 for (int i = 0; i < length; i++) { 1674 dump_double(writer, array->double_at(i)); 1675 } 1676 break; 1677 } 1678 default : ShouldNotReachHere(); 1679 } 1680 1681 writer->end_sub_record(); 1682 } 1683 1684 // create a HPROF_FRAME record of the given Method* and bci 1685 void DumperSupport::dump_stack_frame(AbstractDumpWriter* writer, 1686 int frame_serial_num, 1687 int class_serial_num, 1688 Method* m, 1689 int bci) { 1690 int line_number; 1691 if (m->is_native()) { 1692 line_number = -3; // native frame 1693 } else { 1694 line_number = m->line_number_from_bci(bci); 1695 } 1696 1697 write_header(writer, HPROF_FRAME, 4*oopSize + 2*sizeof(u4)); 1698 writer->write_id(frame_serial_num); // frame serial number 1699 writer->write_symbolID(m->name()); // method's name 1700 writer->write_symbolID(m->signature()); // method's signature 1701 1702 assert(m->method_holder()->is_instance_klass(), "not InstanceKlass"); 1703 writer->write_symbolID(m->method_holder()->source_file_name()); // source file name 1704 writer->write_u4(class_serial_num); // class serial number 1705 writer->write_u4((u4) line_number); // line number 1706 } 1707 1708 1709 class InlinedFieldNameDumper : public LockedClassesDo { 1710 public: 1711 typedef void (*Callback)(InlinedObjects *owner, const Klass *klass, uintx base_index, int count); 1712 1713 private: 1714 AbstractDumpWriter* _writer; 1715 InlinedObjects *_owner; 1716 Callback _callback; 1717 uintx _index; 1718 1719 void dump_inlined_field_names(GrowableArray<Symbol*>* super_names, Symbol* field_name, InlineKlass* klass) { 1720 super_names->push(field_name); 1721 for (HierarchicalFieldStream<JavaFieldStream> fld(klass); !fld.done(); fld.next()) { 1722 if (!fld.access_flags().is_static()) { 1723 if (DumperSupport::is_inlined_field(fld.field_descriptor())) { 1724 dump_inlined_field_names(super_names, fld.name(), DumperSupport::get_inlined_field_klass(fld.field_descriptor())); 1725 } else { 1726 // get next string ID. 1727 uintx next_index = _owner->get_next_string_id(_index); 1728 if (next_index == 0) { 1729 // something went wrong (overflow?) 1730 // stop generation; the rest of inlined objects will have original field names. 1731 return; 1732 } 1733 _index = next_index; 1734 1735 // Calculate length. 1736 int len = fld.name()->utf8_length(); 1737 for (GrowableArrayIterator<Symbol*> it = super_names->begin(); it != super_names->end(); ++it) { 1738 len += (*it)->utf8_length() + 1; // +1 for ".". 1739 } 1740 1741 DumperSupport::write_header(_writer, HPROF_UTF8, oopSize + len); 1742 _writer->write_symbolID(reinterpret_cast<Symbol*>(_index)); 1743 // Write the string value. 1744 // 1) super_names. 1745 for (GrowableArrayIterator<Symbol*> it = super_names->begin(); it != super_names->end(); ++it) { 1746 _writer->write_raw((*it)->bytes(), (*it)->utf8_length()); 1747 _writer->write_u1('.'); 1748 } 1749 // 2) field name. 1750 _writer->write_raw(fld.name()->bytes(), fld.name()->utf8_length()); 1751 } 1752 } 1753 } 1754 super_names->pop(); 1755 } 1756 1757 void dump_inlined_field_names(Symbol* field_name, InlineKlass* field_klass) { 1758 GrowableArray<Symbol*> super_names(4, mtServiceability); 1759 dump_inlined_field_names(&super_names, field_name, field_klass); 1760 } 1761 1762 public: 1763 InlinedFieldNameDumper(AbstractDumpWriter* writer, InlinedObjects* owner, Callback callback) 1764 : _writer(writer), _owner(owner), _callback(callback), _index(0) { 1765 } 1766 1767 void do_klass(Klass* k) { 1768 if (!k->is_instance_klass()) { 1769 return; 1770 } 1771 InstanceKlass* ik = InstanceKlass::cast(k); 1772 // if (ik->has_inline_type_fields()) { 1773 // return; 1774 // } 1775 1776 uintx base_index = _index; 1777 int count = 0; 1778 1779 for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) { 1780 if (!fld.access_flags().is_static()) { 1781 if (DumperSupport::is_inlined_field(fld.field_descriptor())) { 1782 dump_inlined_field_names(fld.name(), DumperSupport::get_inlined_field_klass(fld.field_descriptor())); 1783 count++; 1784 } 1785 } 1786 } 1787 1788 if (count != 0) { 1789 _callback(_owner, k, base_index, count); 1790 } 1791 } 1792 }; 1793 1794 class InlinedFieldsDumper : public LockedClassesDo { 1795 private: 1796 AbstractDumpWriter* _writer; 1797 1798 public: 1799 InlinedFieldsDumper(AbstractDumpWriter* writer) : _writer(writer) {} 1800 1801 void do_klass(Klass* k) { 1802 if (!k->is_instance_klass()) { 1803 return; 1804 } 1805 InstanceKlass* ik = InstanceKlass::cast(k); 1806 // if (ik->has_inline_type_fields()) { 1807 // return; 1808 // } 1809 1810 // We can be at a point where java mirror does not exist yet. 1811 // So we need to check that the class is at least loaded, to avoid crash from a null mirror. 1812 if (!ik->is_loaded()) { 1813 return; 1814 } 1815 1816 u2 inlined_count = 0; 1817 for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) { 1818 if (!fld.access_flags().is_static()) { 1819 if (DumperSupport::is_inlined_field(fld.field_descriptor())) { 1820 inlined_count++; 1821 } 1822 } 1823 } 1824 if (inlined_count != 0) { 1825 _writer->write_u1(HPROF_CLASS_WITH_INLINED_FIELDS); 1826 1827 // class ID 1828 _writer->write_classID(ik); 1829 // number of inlined fields 1830 _writer->write_u2(inlined_count); 1831 u2 index = 0; 1832 for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) { 1833 if (!fld.access_flags().is_static()) { 1834 if (DumperSupport::is_inlined_field(fld.field_descriptor())) { 1835 // inlined field index 1836 _writer->write_u2(index); 1837 // synthetic field count 1838 u2 field_count = DumperSupport::get_instance_fields_count(DumperSupport::get_inlined_field_klass(fld.field_descriptor())); 1839 _writer->write_u2(field_count); 1840 // original field name 1841 _writer->write_symbolID(fld.name()); 1842 // inlined field class ID 1843 _writer->write_classID(DumperSupport::get_inlined_field_klass(fld.field_descriptor())); 1844 1845 index += field_count; 1846 } else { 1847 index++; 1848 } 1849 } 1850 } 1851 } 1852 } 1853 }; 1854 1855 1856 void InlinedObjects::init() { 1857 _instance = this; 1858 1859 struct Closure : public SymbolClosure { 1860 uintx _min_id = max_uintx; 1861 uintx _max_id = 0; 1862 Closure() : _min_id(max_uintx), _max_id(0) {} 1863 1864 void do_symbol(Symbol** p) { 1865 uintx val = reinterpret_cast<uintx>(*p); 1866 if (val < _min_id) { 1867 _min_id = val; 1868 } 1869 if (val > _max_id) { 1870 _max_id = val; 1871 } 1872 } 1873 } closure; 1874 1875 SymbolTable::symbols_do(&closure); 1876 1877 _min_string_id = closure._min_id; 1878 _max_string_id = closure._max_id; 1879 } 1880 1881 void InlinedObjects::release() { 1882 _instance = nullptr; 1883 1884 if (_inlined_field_map != nullptr) { 1885 delete _inlined_field_map; 1886 _inlined_field_map = nullptr; 1887 } 1888 if (_flat_arrays != nullptr) { 1889 delete _flat_arrays; 1890 _flat_arrays = nullptr; 1891 } 1892 } 1893 1894 void InlinedObjects::inlined_field_names_callback(InlinedObjects* _this, const Klass* klass, uintx base_index, int count) { 1895 if (_this->_inlined_field_map == nullptr) { 1896 _this->_inlined_field_map = new (mtServiceability) GrowableArray<ClassInlinedFields>(100, mtServiceability); 1897 } 1898 _this->_inlined_field_map->append(ClassInlinedFields(klass, base_index)); 1899 1900 // counters for dumping classes with inlined fields 1901 _this->_classes_count++; 1902 _this->_inlined_fields_count += count; 1903 } 1904 1905 void InlinedObjects::dump_inlined_field_names(AbstractDumpWriter* writer) { 1906 InlinedFieldNameDumper nameDumper(writer, this, inlined_field_names_callback); 1907 ClassLoaderDataGraph::classes_do(&nameDumper); 1908 1909 if (_inlined_field_map != nullptr) { 1910 // prepare the map for get_base_index_for(). 1911 _inlined_field_map->sort(ClassInlinedFields::compare); 1912 } 1913 } 1914 1915 uintx InlinedObjects::get_base_index_for(Klass* k) { 1916 if (_inlined_field_map != nullptr) { 1917 bool found = false; 1918 int idx = _inlined_field_map->find_sorted<ClassInlinedFields, ClassInlinedFields::compare>(ClassInlinedFields(k, 0), found); 1919 if (found) { 1920 return _inlined_field_map->at(idx).base_index; 1921 } 1922 } 1923 1924 // return max_uintx, so get_next_string_id returns 0. 1925 return max_uintx; 1926 } 1927 1928 uintx InlinedObjects::get_next_string_id(uintx id) { 1929 if (++id == _min_string_id) { 1930 return _max_string_id + 1; 1931 } 1932 return id; 1933 } 1934 1935 void InlinedObjects::dump_classed_with_inlined_fields(AbstractDumpWriter* writer) { 1936 if (_classes_count != 0) { 1937 // Record for each class contains tag(u1), class ID and count(u2) 1938 // for each inlined field index(u2), synthetic fields count(u2), original field name and class ID 1939 int size = _classes_count * (1 + sizeof(address) + 2) 1940 + _inlined_fields_count * (2 + 2 + sizeof(address) + sizeof(address)); 1941 DumperSupport::write_header(writer, HPROF_INLINED_FIELDS, (u4)size); 1942 1943 InlinedFieldsDumper dumper(writer); 1944 ClassLoaderDataGraph::classes_do(&dumper); 1945 } 1946 } 1947 1948 void InlinedObjects::add_flat_array(oop array) { 1949 if (_flat_arrays == nullptr) { 1950 _flat_arrays = new (mtServiceability) GrowableArray<oop>(100, mtServiceability); 1951 } 1952 _flat_arrays->append(array); 1953 } 1954 1955 void InlinedObjects::dump_flat_arrays(AbstractDumpWriter* writer) { 1956 if (_flat_arrays != nullptr) { 1957 // For each flat array the record contains tag (u1), object ID and class ID. 1958 int size = _flat_arrays->length() * (1 + sizeof(address) + sizeof(address)); 1959 1960 DumperSupport::write_header(writer, HPROF_FLAT_ARRAYS, (u4)size); 1961 for (GrowableArrayIterator<oop> it = _flat_arrays->begin(); it != _flat_arrays->end(); ++it) { 1962 flatArrayOop array = flatArrayOop(*it); 1963 FlatArrayKlass* array_klass = FlatArrayKlass::cast(array->klass()); 1964 InlineKlass* element_klass = array_klass->element_klass(); 1965 writer->write_u1(HPROF_FLAT_ARRAY); 1966 writer->write_objectID(array); 1967 writer->write_classID(element_klass); 1968 } 1969 } 1970 } 1971 1972 1973 // Support class used to generate HPROF_UTF8 records from the entries in the 1974 // SymbolTable. 1975 1976 class SymbolTableDumper : public SymbolClosure { 1977 private: 1978 AbstractDumpWriter* _writer; 1979 AbstractDumpWriter* writer() const { return _writer; } 1980 public: 1981 SymbolTableDumper(AbstractDumpWriter* writer) { _writer = writer; } 1982 void do_symbol(Symbol** p); 1983 }; 1984 1985 void SymbolTableDumper::do_symbol(Symbol** p) { 1986 ResourceMark rm; 1987 Symbol* sym = *p; 1988 int len = sym->utf8_length(); 1989 if (len > 0) { 1990 char* s = sym->as_utf8(); 1991 DumperSupport::write_header(writer(), HPROF_UTF8, oopSize + len); 1992 writer()->write_symbolID(sym); 1993 writer()->write_raw(s, len); 1994 } 1995 } 1996 1997 // Support class used to generate HPROF_GC_CLASS_DUMP records 1998 1999 class ClassDumper : public KlassClosure { 2000 private: 2001 AbstractDumpWriter* _writer; 2002 AbstractDumpWriter* writer() const { return _writer; } 2003 2004 public: 2005 ClassDumper(AbstractDumpWriter* writer) : _writer(writer) {} 2006 2007 void do_klass(Klass* k) { 2008 if (k->is_instance_klass()) { 2009 DumperSupport::dump_instance_class(writer(), k); 2010 } else { 2011 DumperSupport::dump_array_class(writer(), k); 2012 } 2013 } 2014 }; 2015 2016 // Support class used to generate HPROF_LOAD_CLASS records 2017 2018 class LoadedClassDumper : public LockedClassesDo { 2019 private: 2020 AbstractDumpWriter* _writer; 2021 GrowableArray<Klass*>* _klass_map; 2022 u4 _class_serial_num; 2023 AbstractDumpWriter* writer() const { return _writer; } 2024 void add_class_serial_number(Klass* k, int serial_num) { 2025 _klass_map->at_put_grow(serial_num, k); 2026 } 2027 public: 2028 LoadedClassDumper(AbstractDumpWriter* writer, GrowableArray<Klass*>* klass_map) 2029 : _writer(writer), _klass_map(klass_map), _class_serial_num(0) {} 2030 2031 void do_klass(Klass* k) { 2032 // len of HPROF_LOAD_CLASS record 2033 u4 remaining = 2 * oopSize + 2 * sizeof(u4); 2034 DumperSupport::write_header(writer(), HPROF_LOAD_CLASS, remaining); 2035 // class serial number is just a number 2036 writer()->write_u4(++_class_serial_num); 2037 // class ID 2038 writer()->write_classID(k); 2039 // add the Klass* and class serial number pair 2040 add_class_serial_number(k, _class_serial_num); 2041 writer()->write_u4(STACK_TRACE_ID); 2042 // class name ID 2043 Symbol* name = k->name(); 2044 writer()->write_symbolID(name); 2045 } 2046 }; 2047 2048 // Support class used to generate HPROF_GC_ROOT_JNI_LOCAL records 2049 2050 class JNILocalsDumper : public OopClosure { 2051 private: 2052 AbstractDumpWriter* _writer; 2053 u4 _thread_serial_num; 2054 int _frame_num; 2055 AbstractDumpWriter* writer() const { return _writer; } 2056 public: 2057 JNILocalsDumper(AbstractDumpWriter* writer, u4 thread_serial_num) { 2058 _writer = writer; 2059 _thread_serial_num = thread_serial_num; 2060 _frame_num = -1; // default - empty stack 2061 } 2062 void set_frame_number(int n) { _frame_num = n; } 2063 void do_oop(oop* obj_p); 2064 void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2065 }; 2066 2067 void JNILocalsDumper::do_oop(oop* obj_p) { 2068 // ignore null handles 2069 oop o = *obj_p; 2070 if (o != nullptr) { 2071 u4 size = 1 + sizeof(address) + 4 + 4; 2072 writer()->start_sub_record(HPROF_GC_ROOT_JNI_LOCAL, size); 2073 writer()->write_objectID(o); 2074 writer()->write_u4(_thread_serial_num); 2075 writer()->write_u4((u4)_frame_num); 2076 writer()->end_sub_record(); 2077 } 2078 } 2079 2080 2081 // Support class used to generate HPROF_GC_ROOT_JNI_GLOBAL records 2082 2083 class JNIGlobalsDumper : public OopClosure { 2084 private: 2085 AbstractDumpWriter* _writer; 2086 AbstractDumpWriter* writer() const { return _writer; } 2087 2088 public: 2089 JNIGlobalsDumper(AbstractDumpWriter* writer) { 2090 _writer = writer; 2091 } 2092 void do_oop(oop* obj_p); 2093 void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); } 2094 }; 2095 2096 void JNIGlobalsDumper::do_oop(oop* obj_p) { 2097 oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p); 2098 2099 // ignore these 2100 if (o == nullptr) return; 2101 // we ignore global ref to symbols and other internal objects 2102 if (o->is_instance() || o->is_objArray() || o->is_typeArray()) { 2103 u4 size = 1 + 2 * sizeof(address); 2104 writer()->start_sub_record(HPROF_GC_ROOT_JNI_GLOBAL, size); 2105 writer()->write_objectID(o); 2106 writer()->write_rootID(obj_p); // global ref ID 2107 writer()->end_sub_record(); 2108 } 2109 }; 2110 2111 // Support class used to generate HPROF_GC_ROOT_STICKY_CLASS records 2112 2113 class StickyClassDumper : public KlassClosure { 2114 private: 2115 AbstractDumpWriter* _writer; 2116 AbstractDumpWriter* writer() const { return _writer; } 2117 public: 2118 StickyClassDumper(AbstractDumpWriter* writer) { 2119 _writer = writer; 2120 } 2121 void do_klass(Klass* k) { 2122 if (k->is_instance_klass()) { 2123 InstanceKlass* ik = InstanceKlass::cast(k); 2124 u4 size = 1 + sizeof(address); 2125 writer()->start_sub_record(HPROF_GC_ROOT_STICKY_CLASS, size); 2126 writer()->write_classID(ik); 2127 writer()->end_sub_record(); 2128 } 2129 } 2130 }; 2131 2132 // Support class used to generate HPROF_GC_ROOT_JAVA_FRAME records. 2133 2134 class JavaStackRefDumper : public StackObj { 2135 private: 2136 AbstractDumpWriter* _writer; 2137 u4 _thread_serial_num; 2138 int _frame_num; 2139 AbstractDumpWriter* writer() const { return _writer; } 2140 public: 2141 JavaStackRefDumper(AbstractDumpWriter* writer, u4 thread_serial_num) 2142 : _writer(writer), _thread_serial_num(thread_serial_num), _frame_num(-1) // default - empty stack 2143 { 2144 } 2145 2146 void set_frame_number(int n) { _frame_num = n; } 2147 2148 void dump_java_stack_refs(StackValueCollection* values); 2149 }; 2150 2151 void JavaStackRefDumper::dump_java_stack_refs(StackValueCollection* values) { 2152 for (int index = 0; index < values->size(); index++) { 2153 if (values->at(index)->type() == T_OBJECT) { 2154 oop o = values->obj_at(index)(); 2155 if (o != nullptr) { 2156 u4 size = 1 + sizeof(address) + 4 + 4; 2157 writer()->start_sub_record(HPROF_GC_ROOT_JAVA_FRAME, size); 2158 writer()->write_objectID(o); 2159 writer()->write_u4(_thread_serial_num); 2160 writer()->write_u4((u4)_frame_num); 2161 writer()->end_sub_record(); 2162 } 2163 } 2164 } 2165 } 2166 2167 // Class to collect, store and dump thread-related data: 2168 // - HPROF_TRACE and HPROF_FRAME records; 2169 // - HPROF_GC_ROOT_THREAD_OBJ/HPROF_GC_ROOT_JAVA_FRAME/HPROF_GC_ROOT_JNI_LOCAL subrecords. 2170 class ThreadDumper : public CHeapObj<mtInternal> { 2171 public: 2172 enum class ThreadType { Platform, MountedVirtual, UnmountedVirtual }; 2173 2174 private: 2175 ThreadType _thread_type; 2176 JavaThread* _java_thread; 2177 oop _thread_oop; 2178 2179 GrowableArray<StackFrameInfo*>* _frames; 2180 // non-null if the thread is OOM thread 2181 Method* _oome_constructor; 2182 int _thread_serial_num; 2183 int _start_frame_serial_num; 2184 2185 vframe* get_top_frame() const; 2186 2187 public: 2188 static bool should_dump_pthread(JavaThread* thread) { 2189 return thread->threadObj() != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view(); 2190 } 2191 2192 static bool should_dump_vthread(oop vt) { 2193 return java_lang_VirtualThread::state(vt) != java_lang_VirtualThread::NEW 2194 && java_lang_VirtualThread::state(vt) != java_lang_VirtualThread::TERMINATED; 2195 } 2196 2197 static bool is_vthread_mounted(oop vt) { 2198 // The code should be consistent with the "mounted virtual thread" case 2199 // (VM_HeapDumper::dump_stack_traces(), ThreadDumper::get_top_frame()). 2200 // I.e. virtual thread is mounted if its carrierThread is not null 2201 // and is_vthread_mounted() for the carrier thread returns true. 2202 oop carrier_thread = java_lang_VirtualThread::carrier_thread(vt); 2203 if (carrier_thread == nullptr) { 2204 return false; 2205 } 2206 JavaThread* java_thread = java_lang_Thread::thread(carrier_thread); 2207 return java_thread->is_vthread_mounted(); 2208 } 2209 2210 ThreadDumper(ThreadType thread_type, JavaThread* java_thread, oop thread_oop); 2211 2212 // affects frame_count 2213 void add_oom_frame(Method* oome_constructor) { 2214 assert(_start_frame_serial_num == 0, "add_oom_frame cannot be called after init_serial_nums"); 2215 _oome_constructor = oome_constructor; 2216 } 2217 2218 void init_serial_nums(volatile int* thread_counter, volatile int* frame_counter) { 2219 assert(_start_frame_serial_num == 0, "already initialized"); 2220 _thread_serial_num = Atomic::fetch_then_add(thread_counter, 1); 2221 _start_frame_serial_num = Atomic::fetch_then_add(frame_counter, frame_count()); 2222 } 2223 2224 bool oom_thread() const { 2225 return _oome_constructor != nullptr; 2226 } 2227 2228 int frame_count() const { 2229 return _frames->length() + (oom_thread() ? 1 : 0); 2230 } 2231 2232 u4 thread_serial_num() const { 2233 return (u4)_thread_serial_num; 2234 } 2235 2236 u4 stack_trace_serial_num() const { 2237 return (u4)(_thread_serial_num + STACK_TRACE_ID); 2238 } 2239 2240 // writes HPROF_TRACE and HPROF_FRAME records 2241 // returns number of dumped frames 2242 void dump_stack_traces(AbstractDumpWriter* writer, GrowableArray<Klass*>* klass_map); 2243 2244 // writes HPROF_GC_ROOT_THREAD_OBJ subrecord 2245 void dump_thread_obj(AbstractDumpWriter* writer); 2246 2247 // Walk the stack of the thread. 2248 // Dumps a HPROF_GC_ROOT_JAVA_FRAME subrecord for each local 2249 // Dumps a HPROF_GC_ROOT_JNI_LOCAL subrecord for each JNI local 2250 void dump_stack_refs(AbstractDumpWriter* writer); 2251 2252 }; 2253 2254 ThreadDumper::ThreadDumper(ThreadType thread_type, JavaThread* java_thread, oop thread_oop) 2255 : _thread_type(thread_type), _java_thread(java_thread), _thread_oop(thread_oop), 2256 _oome_constructor(nullptr), 2257 _thread_serial_num(0), _start_frame_serial_num(0) 2258 { 2259 // sanity checks 2260 if (_thread_type == ThreadType::UnmountedVirtual) { 2261 assert(_java_thread == nullptr, "sanity"); 2262 assert(_thread_oop != nullptr, "sanity"); 2263 } else { 2264 assert(_java_thread != nullptr, "sanity"); 2265 assert(_thread_oop != nullptr, "sanity"); 2266 } 2267 2268 _frames = new (mtServiceability) GrowableArray<StackFrameInfo*>(10, mtServiceability); 2269 bool stop_at_vthread_entry = _thread_type == ThreadType::MountedVirtual; 2270 2271 // vframes are resource allocated 2272 Thread* current_thread = Thread::current(); 2273 ResourceMark rm(current_thread); 2274 HandleMark hm(current_thread); 2275 2276 for (vframe* vf = get_top_frame(); vf != nullptr; vf = vf->sender()) { 2277 if (stop_at_vthread_entry && vf->is_vthread_entry()) { 2278 break; 2279 } 2280 if (vf->is_java_frame()) { 2281 javaVFrame* jvf = javaVFrame::cast(vf); 2282 _frames->append(new StackFrameInfo(jvf, false)); 2283 } else { 2284 // ignore non-Java frames 2285 } 2286 } 2287 } 2288 2289 void ThreadDumper::dump_stack_traces(AbstractDumpWriter* writer, GrowableArray<Klass*>* klass_map) { 2290 assert(_thread_serial_num != 0 && _start_frame_serial_num != 0, "serial_nums are not initialized"); 2291 2292 // write HPROF_FRAME records for this thread's stack trace 2293 int depth = _frames->length(); 2294 int frame_serial_num = _start_frame_serial_num; 2295 2296 if (oom_thread()) { 2297 // OOM thread 2298 // write fake frame that makes it look like the thread, which caused OOME, 2299 // is in the OutOfMemoryError zero-parameter constructor 2300 int oome_serial_num = klass_map->find(_oome_constructor->method_holder()); 2301 // the class serial number starts from 1 2302 assert(oome_serial_num > 0, "OutOfMemoryError class not found"); 2303 DumperSupport::dump_stack_frame(writer, ++frame_serial_num, oome_serial_num, _oome_constructor, 0); 2304 depth++; 2305 } 2306 2307 for (int j = 0; j < _frames->length(); j++) { 2308 StackFrameInfo* frame = _frames->at(j); 2309 Method* m = frame->method(); 2310 int class_serial_num = klass_map->find(m->method_holder()); 2311 // the class serial number starts from 1 2312 assert(class_serial_num > 0, "class not found"); 2313 DumperSupport::dump_stack_frame(writer, ++frame_serial_num, class_serial_num, m, frame->bci()); 2314 } 2315 2316 // write HPROF_TRACE record for the thread 2317 DumperSupport::write_header(writer, HPROF_TRACE, checked_cast<u4>(3 * sizeof(u4) + depth * oopSize)); 2318 writer->write_u4(stack_trace_serial_num()); // stack trace serial number 2319 writer->write_u4(thread_serial_num()); // thread serial number 2320 writer->write_u4((u4)depth); // frame count (including oom frame) 2321 for (int j = 1; j <= depth; j++) { 2322 writer->write_id(_start_frame_serial_num + j); 2323 } 2324 } 2325 2326 void ThreadDumper::dump_thread_obj(AbstractDumpWriter * writer) { 2327 assert(_thread_serial_num != 0 && _start_frame_serial_num != 0, "serial_num is not initialized"); 2328 2329 u4 size = 1 + sizeof(address) + 4 + 4; 2330 writer->start_sub_record(HPROF_GC_ROOT_THREAD_OBJ, size); 2331 writer->write_objectID(_thread_oop); 2332 writer->write_u4(thread_serial_num()); // thread serial number 2333 writer->write_u4(stack_trace_serial_num()); // stack trace serial number 2334 writer->end_sub_record(); 2335 } 2336 2337 void ThreadDumper::dump_stack_refs(AbstractDumpWriter * writer) { 2338 assert(_thread_serial_num != 0 && _start_frame_serial_num != 0, "serial_num is not initialized"); 2339 2340 JNILocalsDumper blk(writer, thread_serial_num()); 2341 if (_thread_type == ThreadType::Platform) { 2342 if (!_java_thread->has_last_Java_frame()) { 2343 // no last java frame but there may be JNI locals 2344 _java_thread->active_handles()->oops_do(&blk); 2345 return; 2346 } 2347 } 2348 2349 JavaStackRefDumper java_ref_dumper(writer, thread_serial_num()); 2350 2351 // vframes are resource allocated 2352 Thread* current_thread = Thread::current(); 2353 ResourceMark rm(current_thread); 2354 HandleMark hm(current_thread); 2355 2356 bool stopAtVthreadEntry = _thread_type == ThreadType::MountedVirtual; 2357 frame* last_entry_frame = nullptr; 2358 bool is_top_frame = true; 2359 int depth = 0; 2360 if (oom_thread()) { 2361 depth++; 2362 } 2363 2364 for (vframe* vf = get_top_frame(); vf != nullptr; vf = vf->sender()) { 2365 if (stopAtVthreadEntry && vf->is_vthread_entry()) { 2366 break; 2367 } 2368 2369 if (vf->is_java_frame()) { 2370 javaVFrame* jvf = javaVFrame::cast(vf); 2371 if (!(jvf->method()->is_native())) { 2372 java_ref_dumper.set_frame_number(depth); 2373 java_ref_dumper.dump_java_stack_refs(jvf->locals()); 2374 java_ref_dumper.dump_java_stack_refs(jvf->expressions()); 2375 } else { 2376 // native frame 2377 blk.set_frame_number(depth); 2378 if (is_top_frame) { 2379 // JNI locals for the top frame. 2380 assert(_java_thread != nullptr, "impossible for unmounted vthread"); 2381 _java_thread->active_handles()->oops_do(&blk); 2382 } else { 2383 if (last_entry_frame != nullptr) { 2384 // JNI locals for the entry frame 2385 assert(last_entry_frame->is_entry_frame(), "checking"); 2386 last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(&blk); 2387 } 2388 } 2389 } 2390 last_entry_frame = nullptr; 2391 // increment only for Java frames 2392 depth++; 2393 } else { 2394 // externalVFrame - for an entry frame then we report the JNI locals 2395 // when we find the corresponding javaVFrame 2396 frame* fr = vf->frame_pointer(); 2397 assert(fr != nullptr, "sanity check"); 2398 if (fr->is_entry_frame()) { 2399 last_entry_frame = fr; 2400 } 2401 } 2402 is_top_frame = false; 2403 } 2404 assert(depth == frame_count(), "total number of Java frames not matched"); 2405 } 2406 2407 vframe* ThreadDumper::get_top_frame() const { 2408 if (_thread_type == ThreadType::UnmountedVirtual) { 2409 ContinuationWrapper cont(java_lang_VirtualThread::continuation(_thread_oop)); 2410 if (cont.is_empty()) { 2411 return nullptr; 2412 } 2413 assert(!cont.is_mounted(), "sanity check"); 2414 stackChunkOop chunk = cont.last_nonempty_chunk(); 2415 if (chunk == nullptr || chunk->is_empty()) { 2416 return nullptr; 2417 } 2418 2419 RegisterMap reg_map(cont.continuation(), RegisterMap::UpdateMap::include); 2420 frame fr = chunk->top_frame(®_map); 2421 vframe* vf = vframe::new_vframe(&fr, ®_map, nullptr); // don't need JavaThread 2422 return vf; 2423 } 2424 2425 RegisterMap reg_map(_java_thread, 2426 RegisterMap::UpdateMap::include, 2427 RegisterMap::ProcessFrames::include, 2428 RegisterMap::WalkContinuation::skip); 2429 switch (_thread_type) { 2430 case ThreadType::Platform: 2431 if (!_java_thread->has_last_Java_frame()) { 2432 return nullptr; 2433 } 2434 return _java_thread->is_vthread_mounted() 2435 ? _java_thread->carrier_last_java_vframe(®_map) 2436 : _java_thread->platform_thread_last_java_vframe(®_map); 2437 2438 case ThreadType::MountedVirtual: 2439 return _java_thread->last_java_vframe(®_map); 2440 2441 default: // make compilers happy 2442 break; 2443 } 2444 ShouldNotReachHere(); 2445 return nullptr; 2446 } 2447 2448 // Callback to dump thread-related data for unmounted virtual threads; 2449 // implemented by VM_HeapDumper. 2450 class UnmountedVThreadDumper { 2451 public: 2452 virtual void dump_vthread(oop vt, AbstractDumpWriter* segment_writer) = 0; 2453 }; 2454 2455 // Support class used when iterating over the heap. 2456 class HeapObjectDumper : public ObjectClosure { 2457 private: 2458 AbstractDumpWriter* _writer; 2459 AbstractDumpWriter* writer() { return _writer; } 2460 UnmountedVThreadDumper* _vthread_dumper; 2461 2462 DumperClassCacheTable _class_cache; 2463 2464 public: 2465 HeapObjectDumper(AbstractDumpWriter* writer, UnmountedVThreadDumper* vthread_dumper) 2466 : _writer(writer), _vthread_dumper(vthread_dumper) {} 2467 2468 // called for each object in the heap 2469 void do_object(oop o); 2470 }; 2471 2472 void HeapObjectDumper::do_object(oop o) { 2473 // skip classes as these emitted as HPROF_GC_CLASS_DUMP records 2474 if (o->klass() == vmClasses::Class_klass()) { 2475 if (!java_lang_Class::is_primitive(o)) { 2476 return; 2477 } 2478 } 2479 2480 if (DumperSupport::mask_dormant_archived_object(o, nullptr) == nullptr) { 2481 return; 2482 } 2483 2484 if (o->is_instance()) { 2485 // create a HPROF_GC_INSTANCE record for each object 2486 DumperSupport::dump_instance(writer(), o, &_class_cache); 2487 // If we encounter an unmounted virtual thread it needs to be dumped explicitly 2488 // (mounted virtual threads are dumped with their carriers). 2489 if (java_lang_VirtualThread::is_instance(o) 2490 && ThreadDumper::should_dump_vthread(o) && !ThreadDumper::is_vthread_mounted(o)) { 2491 _vthread_dumper->dump_vthread(o, writer()); 2492 } 2493 } else if (o->is_objArray()) { 2494 // create a HPROF_GC_OBJ_ARRAY_DUMP record for each object array 2495 DumperSupport::dump_object_array(writer(), objArrayOop(o)); 2496 } else if (o->is_flatArray()) { 2497 DumperSupport::dump_flat_array(writer(), flatArrayOop(o), &_class_cache); 2498 } else if (o->is_typeArray()) { 2499 // create a HPROF_GC_PRIM_ARRAY_DUMP record for each type array 2500 DumperSupport::dump_prim_array(writer(), typeArrayOop(o)); 2501 } 2502 } 2503 2504 // The dumper controller for parallel heap dump 2505 class DumperController : public CHeapObj<mtInternal> { 2506 private: 2507 Monitor* _lock; 2508 Mutex* _global_writer_lock; 2509 2510 const uint _dumper_number; 2511 uint _complete_number; 2512 2513 bool _started; // VM dumper started and acquired global writer lock 2514 2515 public: 2516 DumperController(uint number) : 2517 // _lock and _global_writer_lock are used for synchronization between GC worker threads inside safepoint, 2518 // so we lock with _no_safepoint_check_flag. 2519 // signal_start() acquires _lock when global writer is locked, 2520 // its rank must be less than _global_writer_lock rank. 2521 _lock(new (std::nothrow) PaddedMonitor(Mutex::nosafepoint - 1, "DumperController_lock")), 2522 _global_writer_lock(new (std::nothrow) Mutex(Mutex::nosafepoint, "DumpWriter_lock")), 2523 _dumper_number(number), 2524 _complete_number(0), 2525 _started(false) 2526 {} 2527 2528 ~DumperController() { 2529 delete _lock; 2530 delete _global_writer_lock; 2531 } 2532 2533 // parallel (non VM) dumpers must wait until VM dumper acquires global writer lock 2534 void wait_for_start_signal() { 2535 MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag); 2536 while (_started == false) { 2537 ml.wait(); 2538 } 2539 } 2540 2541 void signal_start() { 2542 MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag); 2543 _started = true; 2544 ml.notify_all(); 2545 } 2546 2547 void lock_global_writer() { 2548 _global_writer_lock->lock_without_safepoint_check(); 2549 } 2550 2551 void unlock_global_writer() { 2552 _global_writer_lock->unlock(); 2553 } 2554 2555 void dumper_complete(DumpWriter* local_writer, DumpWriter* global_writer) { 2556 MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag); 2557 _complete_number++; 2558 // propagate local error to global if any 2559 if (local_writer->has_error()) { 2560 global_writer->set_error(local_writer->error()); 2561 } 2562 ml.notify(); 2563 } 2564 2565 void wait_all_dumpers_complete() { 2566 MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag); 2567 while (_complete_number != _dumper_number) { 2568 ml.wait(); 2569 } 2570 } 2571 }; 2572 2573 // DumpMerger merges separate dump files into a complete one 2574 class DumpMerger : public StackObj { 2575 private: 2576 DumpWriter* _writer; 2577 InlinedObjects* _inlined_objects; 2578 const char* _path; 2579 bool _has_error; 2580 int _dump_seq; 2581 2582 private: 2583 void merge_file(const char* path); 2584 void merge_done(); 2585 void set_error(const char* msg); 2586 2587 public: 2588 DumpMerger(const char* path, DumpWriter* writer, InlinedObjects* inlined_objects, int dump_seq) : 2589 _writer(writer), 2590 _inlined_objects(inlined_objects), 2591 _path(path), 2592 _has_error(_writer->has_error()), 2593 _dump_seq(dump_seq) {} 2594 2595 void do_merge(); 2596 2597 // returns path for the parallel DumpWriter (resource allocated) 2598 static char* get_writer_path(const char* base_path, int seq); 2599 2600 }; 2601 2602 char* DumpMerger::get_writer_path(const char* base_path, int seq) { 2603 // approximate required buffer size 2604 size_t buf_size = strlen(base_path) 2605 + 2 // ".p" 2606 + 10 // number (that's enough for 2^32 parallel dumpers) 2607 + 1; // '\0' 2608 2609 char* path = NEW_RESOURCE_ARRAY(char, buf_size); 2610 memset(path, 0, buf_size); 2611 2612 os::snprintf(path, buf_size, "%s.p%d", base_path, seq); 2613 2614 return path; 2615 } 2616 2617 2618 void DumpMerger::merge_done() { 2619 // Writes the HPROF_HEAP_DUMP_END record. 2620 if (!_has_error) { 2621 DumperSupport::end_of_dump(_writer); 2622 _inlined_objects->dump_flat_arrays(_writer); 2623 _writer->flush(); 2624 _inlined_objects->release(); 2625 } 2626 _dump_seq = 0; //reset 2627 } 2628 2629 void DumpMerger::set_error(const char* msg) { 2630 assert(msg != nullptr, "sanity check"); 2631 log_error(heapdump)("%s (file: %s)", msg, _path); 2632 _writer->set_error(msg); 2633 _has_error = true; 2634 } 2635 2636 #ifdef LINUX 2637 // Merge segmented heap files via sendfile, it's more efficient than the 2638 // read+write combination, which would require transferring data to and from 2639 // user space. 2640 void DumpMerger::merge_file(const char* path) { 2641 TraceTime timer("Merge segmented heap file directly", TRACETIME_LOG(Info, heapdump)); 2642 2643 int segment_fd = os::open(path, O_RDONLY, 0); 2644 if (segment_fd == -1) { 2645 set_error("Can not open segmented heap file during merging"); 2646 return; 2647 } 2648 2649 struct stat st; 2650 if (os::stat(path, &st) != 0) { 2651 ::close(segment_fd); 2652 set_error("Can not get segmented heap file size during merging"); 2653 return; 2654 } 2655 2656 // A successful call to sendfile may write fewer bytes than requested; the 2657 // caller should be prepared to retry the call if there were unsent bytes. 2658 jlong offset = 0; 2659 while (offset < st.st_size) { 2660 int ret = os::Linux::sendfile(_writer->get_fd(), segment_fd, &offset, st.st_size); 2661 if (ret == -1) { 2662 ::close(segment_fd); 2663 set_error("Failed to merge segmented heap file"); 2664 return; 2665 } 2666 } 2667 2668 // As sendfile variant does not call the write method of the global writer, 2669 // bytes_written is also incorrect for this variant, we need to explicitly 2670 // accumulate bytes_written for the global writer in this case 2671 julong accum = _writer->bytes_written() + st.st_size; 2672 _writer->set_bytes_written(accum); 2673 ::close(segment_fd); 2674 } 2675 #else 2676 // Generic implementation using read+write 2677 void DumpMerger::merge_file(const char* path) { 2678 TraceTime timer("Merge segmented heap file", TRACETIME_LOG(Info, heapdump)); 2679 2680 fileStream segment_fs(path, "rb"); 2681 if (!segment_fs.is_open()) { 2682 set_error("Can not open segmented heap file during merging"); 2683 return; 2684 } 2685 2686 jlong total = 0; 2687 size_t cnt = 0; 2688 2689 // Use _writer buffer for reading. 2690 while ((cnt = segment_fs.read(_writer->buffer(), 1, _writer->buffer_size())) != 0) { 2691 _writer->set_position(cnt); 2692 _writer->flush(); 2693 total += cnt; 2694 } 2695 2696 if (segment_fs.fileSize() != total) { 2697 set_error("Merged heap dump is incomplete"); 2698 } 2699 } 2700 #endif 2701 2702 void DumpMerger::do_merge() { 2703 TraceTime timer("Merge heap files complete", TRACETIME_LOG(Info, heapdump)); 2704 2705 // Since contents in segmented heap file were already zipped, we don't need to zip 2706 // them again during merging. 2707 AbstractCompressor* saved_compressor = _writer->compressor(); 2708 _writer->set_compressor(nullptr); 2709 2710 // Merge the content of the remaining files into base file. Regardless of whether 2711 // the merge process is successful or not, these segmented files will be deleted. 2712 for (int i = 0; i < _dump_seq; i++) { 2713 ResourceMark rm; 2714 const char* path = get_writer_path(_path, i); 2715 if (!_has_error) { 2716 merge_file(path); 2717 } 2718 // Delete selected segmented heap file nevertheless 2719 if (remove(path) != 0) { 2720 log_info(heapdump)("Removal of segment file (%d) failed (%d)", i, errno); 2721 } 2722 } 2723 2724 // restore compressor for further use 2725 _writer->set_compressor(saved_compressor); 2726 merge_done(); 2727 } 2728 2729 // The VM operation that performs the heap dump 2730 class VM_HeapDumper : public VM_GC_Operation, public WorkerTask, public UnmountedVThreadDumper { 2731 private: 2732 DumpWriter* _writer; 2733 JavaThread* _oome_thread; 2734 Method* _oome_constructor; 2735 bool _gc_before_heap_dump; 2736 GrowableArray<Klass*>* _klass_map; 2737 2738 ThreadDumper** _thread_dumpers; // platform, carrier and mounted virtual threads 2739 int _thread_dumpers_count; 2740 volatile int _thread_serial_num; 2741 volatile int _frame_serial_num; 2742 2743 volatile int _dump_seq; 2744 2745 // Inlined object support. 2746 InlinedObjects _inlined_objects; 2747 2748 // parallel heap dump support 2749 uint _num_dumper_threads; 2750 DumperController* _dumper_controller; 2751 ParallelObjectIterator* _poi; 2752 2753 // Dumper id of VMDumper thread. 2754 static const int VMDumperId = 0; 2755 // VM dumper dumps both heap and non-heap data, other dumpers dump heap-only data. 2756 static bool is_vm_dumper(int dumper_id) { return dumper_id == VMDumperId; } 2757 // the 1st dumper calling get_next_dumper_id becomes VM dumper 2758 int get_next_dumper_id() { 2759 return Atomic::fetch_then_add(&_dump_seq, 1); 2760 } 2761 2762 DumpWriter* writer() const { return _writer; } 2763 2764 bool skip_operation() const; 2765 2766 // HPROF_GC_ROOT_THREAD_OBJ records for platform and mounted virtual threads 2767 void dump_threads(AbstractDumpWriter* writer); 2768 2769 bool is_oom_thread(JavaThread* thread) const { 2770 return thread == _oome_thread && _oome_constructor != nullptr; 2771 } 2772 2773 // HPROF_TRACE and HPROF_FRAME records for platform and mounted virtual threads 2774 void dump_stack_traces(AbstractDumpWriter* writer); 2775 2776 public: 2777 VM_HeapDumper(DumpWriter* writer, bool gc_before_heap_dump, bool oome, uint num_dump_threads) : 2778 VM_GC_Operation(0 /* total collections, dummy, ignored */, 2779 GCCause::_heap_dump /* GC Cause */, 2780 0 /* total full collections, dummy, ignored */, 2781 gc_before_heap_dump), 2782 WorkerTask("dump heap") { 2783 _writer = writer; 2784 _gc_before_heap_dump = gc_before_heap_dump; 2785 _klass_map = new (mtServiceability) GrowableArray<Klass*>(INITIAL_CLASS_COUNT, mtServiceability); 2786 2787 _thread_dumpers = nullptr; 2788 _thread_dumpers_count = 0; 2789 _thread_serial_num = 1; 2790 _frame_serial_num = 1; 2791 2792 _dump_seq = VMDumperId; 2793 _num_dumper_threads = num_dump_threads; 2794 _dumper_controller = nullptr; 2795 _poi = nullptr; 2796 if (oome) { 2797 assert(!Thread::current()->is_VM_thread(), "Dump from OutOfMemoryError cannot be called by the VMThread"); 2798 // get OutOfMemoryError zero-parameter constructor 2799 InstanceKlass* oome_ik = vmClasses::OutOfMemoryError_klass(); 2800 _oome_constructor = oome_ik->find_method(vmSymbols::object_initializer_name(), 2801 vmSymbols::void_method_signature()); 2802 // get thread throwing OOME when generating the heap dump at OOME 2803 _oome_thread = JavaThread::current(); 2804 } else { 2805 _oome_thread = nullptr; 2806 _oome_constructor = nullptr; 2807 } 2808 } 2809 2810 ~VM_HeapDumper() { 2811 if (_thread_dumpers != nullptr) { 2812 for (int i = 0; i < _thread_dumpers_count; i++) { 2813 delete _thread_dumpers[i]; 2814 } 2815 FREE_C_HEAP_ARRAY(ThreadDumper*, _thread_dumpers); 2816 } 2817 2818 if (_dumper_controller != nullptr) { 2819 delete _dumper_controller; 2820 _dumper_controller = nullptr; 2821 } 2822 delete _klass_map; 2823 } 2824 int dump_seq() { return _dump_seq; } 2825 bool is_parallel_dump() { return _num_dumper_threads > 1; } 2826 void prepare_parallel_dump(WorkerThreads* workers); 2827 2828 InlinedObjects* inlined_objects() { return &_inlined_objects; } 2829 2830 VMOp_Type type() const { return VMOp_HeapDumper; } 2831 virtual bool doit_prologue(); 2832 void doit(); 2833 void work(uint worker_id); 2834 2835 // UnmountedVThreadDumper implementation 2836 void dump_vthread(oop vt, AbstractDumpWriter* segment_writer); 2837 }; 2838 2839 bool VM_HeapDumper::skip_operation() const { 2840 return false; 2841 } 2842 2843 // fixes up the current dump record and writes HPROF_HEAP_DUMP_END record 2844 void DumperSupport::end_of_dump(AbstractDumpWriter* writer) { 2845 writer->finish_dump_segment(); 2846 2847 writer->write_u1(HPROF_HEAP_DUMP_END); 2848 writer->write_u4(0); 2849 writer->write_u4(0); 2850 } 2851 2852 // Write a HPROF_GC_ROOT_THREAD_OBJ record for platform/carrier and mounted virtual threads. 2853 // Then walk the stack so that locals and JNI locals are dumped. 2854 void VM_HeapDumper::dump_threads(AbstractDumpWriter* writer) { 2855 for (int i = 0; i < _thread_dumpers_count; i++) { 2856 _thread_dumpers[i]->dump_thread_obj(writer); 2857 _thread_dumpers[i]->dump_stack_refs(writer); 2858 } 2859 } 2860 2861 bool VM_HeapDumper::doit_prologue() { 2862 if (_gc_before_heap_dump && UseZGC) { 2863 // ZGC cannot perform a synchronous GC cycle from within the VM thread. 2864 // So ZCollectedHeap::collect_as_vm_thread() is a noop. To respect the 2865 // _gc_before_heap_dump flag a synchronous GC cycle is performed from 2866 // the caller thread in the prologue. 2867 Universe::heap()->collect(GCCause::_heap_dump); 2868 } 2869 return VM_GC_Operation::doit_prologue(); 2870 } 2871 2872 void VM_HeapDumper::prepare_parallel_dump(WorkerThreads* workers) { 2873 uint num_active_workers = workers != nullptr ? workers->active_workers() : 0; 2874 uint num_requested_dump_threads = _num_dumper_threads; 2875 // check if we can dump in parallel based on requested and active threads 2876 if (num_active_workers <= 1 || num_requested_dump_threads <= 1) { 2877 _num_dumper_threads = 1; 2878 } else { 2879 _num_dumper_threads = clamp(num_requested_dump_threads, 2U, num_active_workers); 2880 } 2881 _dumper_controller = new (std::nothrow) DumperController(_num_dumper_threads); 2882 bool can_parallel = _num_dumper_threads > 1; 2883 log_info(heapdump)("Requested dump threads %u, active dump threads %u, " 2884 "actual dump threads %u, parallelism %s", 2885 num_requested_dump_threads, num_active_workers, 2886 _num_dumper_threads, can_parallel ? "true" : "false"); 2887 } 2888 2889 // The VM operation that dumps the heap. The dump consists of the following 2890 // records: 2891 // 2892 // HPROF_HEADER 2893 // [HPROF_UTF8]* 2894 // [HPROF_LOAD_CLASS]* 2895 // [[HPROF_FRAME]*|HPROF_TRACE]* 2896 // [HPROF_GC_CLASS_DUMP]* 2897 // [HPROF_HEAP_DUMP_SEGMENT]* 2898 // HPROF_HEAP_DUMP_END 2899 // 2900 // The HPROF_TRACE records represent the stack traces where the heap dump 2901 // is generated and a "dummy trace" record which does not include 2902 // any frames. The dummy trace record is used to be referenced as the 2903 // unknown object alloc site. 2904 // 2905 // Each HPROF_HEAP_DUMP_SEGMENT record has a length followed by sub-records. 2906 // To allow the heap dump be generated in a single pass we remember the position 2907 // of the dump length and fix it up after all sub-records have been written. 2908 // To generate the sub-records we iterate over the heap, writing 2909 // HPROF_GC_INSTANCE_DUMP, HPROF_GC_OBJ_ARRAY_DUMP, and HPROF_GC_PRIM_ARRAY_DUMP 2910 // records as we go. Once that is done we write records for some of the GC 2911 // roots. 2912 2913 void VM_HeapDumper::doit() { 2914 2915 CollectedHeap* ch = Universe::heap(); 2916 2917 ch->ensure_parsability(false); // must happen, even if collection does 2918 // not happen (e.g. due to GCLocker) 2919 2920 if (_gc_before_heap_dump) { 2921 if (GCLocker::is_active()) { 2922 warning("GC locker is held; pre-heapdump GC was skipped"); 2923 } else { 2924 ch->collect_as_vm_thread(GCCause::_heap_dump); 2925 } 2926 } 2927 2928 WorkerThreads* workers = ch->safepoint_workers(); 2929 prepare_parallel_dump(workers); 2930 2931 if (!is_parallel_dump()) { 2932 work(VMDumperId); 2933 } else { 2934 ParallelObjectIterator poi(_num_dumper_threads); 2935 _poi = &poi; 2936 workers->run_task(this, _num_dumper_threads); 2937 _poi = nullptr; 2938 } 2939 } 2940 2941 void VM_HeapDumper::work(uint worker_id) { 2942 // VM Dumper works on all non-heap data dumping and part of heap iteration. 2943 int dumper_id = get_next_dumper_id(); 2944 2945 if (is_vm_dumper(dumper_id)) { 2946 // lock global writer, it will be unlocked after VM Dumper finishes with non-heap data 2947 _dumper_controller->lock_global_writer(); 2948 _dumper_controller->signal_start(); 2949 } else { 2950 _dumper_controller->wait_for_start_signal(); 2951 } 2952 2953 if (is_vm_dumper(dumper_id)) { 2954 TraceTime timer("Dump non-objects", TRACETIME_LOG(Info, heapdump)); 2955 // Write the file header - we always use 1.0.2 2956 const char* header = "JAVA PROFILE 1.0.2"; 2957 2958 // header is few bytes long - no chance to overflow int 2959 writer()->write_raw(header, strlen(header) + 1); // NUL terminated 2960 writer()->write_u4(oopSize); 2961 // timestamp is current time in ms 2962 writer()->write_u8(os::javaTimeMillis()); 2963 // HPROF_UTF8 records 2964 SymbolTableDumper sym_dumper(writer()); 2965 SymbolTable::symbols_do(&sym_dumper); 2966 2967 // HPROF_UTF8 records for inlined field names. 2968 inlined_objects()->init(); 2969 inlined_objects()->dump_inlined_field_names(writer()); 2970 2971 // HPROF_INLINED_FIELDS 2972 inlined_objects()->dump_classed_with_inlined_fields(writer()); 2973 2974 // write HPROF_LOAD_CLASS records 2975 { 2976 LoadedClassDumper loaded_class_dumper(writer(), _klass_map); 2977 ClassLoaderDataGraph::classes_do(&loaded_class_dumper); 2978 } 2979 2980 // write HPROF_FRAME and HPROF_TRACE records 2981 // this must be called after _klass_map is built when iterating the classes above. 2982 dump_stack_traces(writer()); 2983 2984 // unlock global writer, so parallel dumpers can dump stack traces of unmounted virtual threads 2985 _dumper_controller->unlock_global_writer(); 2986 } 2987 2988 // HPROF_HEAP_DUMP/HPROF_HEAP_DUMP_SEGMENT starts here 2989 2990 ResourceMark rm; 2991 // share global compressor, local DumpWriter is not responsible for its life cycle 2992 DumpWriter segment_writer(DumpMerger::get_writer_path(writer()->get_file_path(), dumper_id), 2993 writer()->is_overwrite(), writer()->compressor()); 2994 if (!segment_writer.has_error()) { 2995 if (is_vm_dumper(dumper_id)) { 2996 // dump some non-heap subrecords to heap dump segment 2997 TraceTime timer("Dump non-objects (part 2)", TRACETIME_LOG(Info, heapdump)); 2998 // Writes HPROF_GC_CLASS_DUMP records 2999 ClassDumper class_dumper(&segment_writer); 3000 ClassLoaderDataGraph::classes_do(&class_dumper); 3001 3002 // HPROF_GC_ROOT_THREAD_OBJ + frames + jni locals 3003 dump_threads(&segment_writer); 3004 3005 // HPROF_GC_ROOT_JNI_GLOBAL 3006 JNIGlobalsDumper jni_dumper(&segment_writer); 3007 JNIHandles::oops_do(&jni_dumper); 3008 // technically not jni roots, but global roots 3009 // for things like preallocated throwable backtraces 3010 Universe::vm_global()->oops_do(&jni_dumper); 3011 // HPROF_GC_ROOT_STICKY_CLASS 3012 // These should be classes in the null class loader data, and not all classes 3013 // if !ClassUnloading 3014 StickyClassDumper stiky_class_dumper(&segment_writer); 3015 ClassLoaderData::the_null_class_loader_data()->classes_do(&stiky_class_dumper); 3016 } 3017 3018 // Heap iteration. 3019 // writes HPROF_GC_INSTANCE_DUMP records. 3020 // After each sub-record is written check_segment_length will be invoked 3021 // to check if the current segment exceeds a threshold. If so, a new 3022 // segment is started. 3023 // The HPROF_GC_CLASS_DUMP and HPROF_GC_INSTANCE_DUMP are the vast bulk 3024 // of the heap dump. 3025 3026 TraceTime timer(is_parallel_dump() ? "Dump heap objects in parallel" : "Dump heap objects", TRACETIME_LOG(Info, heapdump)); 3027 HeapObjectDumper obj_dumper(&segment_writer, this); 3028 if (!is_parallel_dump()) { 3029 Universe::heap()->object_iterate(&obj_dumper); 3030 } else { 3031 // == Parallel dump 3032 _poi->object_iterate(&obj_dumper, worker_id); 3033 } 3034 3035 segment_writer.finish_dump_segment(); 3036 segment_writer.flush(); 3037 } 3038 3039 _dumper_controller->dumper_complete(&segment_writer, writer()); 3040 3041 if (is_vm_dumper(dumper_id)) { 3042 _dumper_controller->wait_all_dumpers_complete(); 3043 3044 // flush global writer 3045 writer()->flush(); 3046 3047 // At this point, all fragments of the heapdump have been written to separate files. 3048 // We need to merge them into a complete heapdump and write HPROF_HEAP_DUMP_END at that time. 3049 } 3050 } 3051 3052 void VM_HeapDumper::dump_stack_traces(AbstractDumpWriter* writer) { 3053 // write a HPROF_TRACE record without any frames to be referenced as object alloc sites 3054 DumperSupport::write_header(writer, HPROF_TRACE, 3 * sizeof(u4)); 3055 writer->write_u4((u4)STACK_TRACE_ID); 3056 writer->write_u4(0); // thread number 3057 writer->write_u4(0); // frame count 3058 3059 // max number if every platform thread is carrier with mounted virtual thread 3060 _thread_dumpers = NEW_C_HEAP_ARRAY(ThreadDumper*, Threads::number_of_threads() * 2, mtInternal); 3061 3062 for (JavaThreadIteratorWithHandle jtiwh; JavaThread * thread = jtiwh.next(); ) { 3063 if (ThreadDumper::should_dump_pthread(thread)) { 3064 bool add_oom_frame = is_oom_thread(thread); 3065 3066 oop mounted_vt = thread->is_vthread_mounted() ? thread->vthread() : nullptr; 3067 if (mounted_vt != nullptr && !ThreadDumper::should_dump_vthread(mounted_vt)) { 3068 mounted_vt = nullptr; 3069 } 3070 3071 // mounted vthread (if any) 3072 if (mounted_vt != nullptr) { 3073 ThreadDumper* thread_dumper = new ThreadDumper(ThreadDumper::ThreadType::MountedVirtual, thread, mounted_vt); 3074 _thread_dumpers[_thread_dumpers_count++] = thread_dumper; 3075 if (add_oom_frame) { 3076 thread_dumper->add_oom_frame(_oome_constructor); 3077 // we add oom frame to the VT stack, don't add it to the carrier thread stack 3078 add_oom_frame = false; 3079 } 3080 thread_dumper->init_serial_nums(&_thread_serial_num, &_frame_serial_num); 3081 thread_dumper->dump_stack_traces(writer, _klass_map); 3082 } 3083 3084 // platform or carrier thread 3085 ThreadDumper* thread_dumper = new ThreadDumper(ThreadDumper::ThreadType::Platform, thread, thread->threadObj()); 3086 _thread_dumpers[_thread_dumpers_count++] = thread_dumper; 3087 if (add_oom_frame) { 3088 thread_dumper->add_oom_frame(_oome_constructor); 3089 } 3090 thread_dumper->init_serial_nums(&_thread_serial_num, &_frame_serial_num); 3091 thread_dumper->dump_stack_traces(writer, _klass_map); 3092 } 3093 } 3094 } 3095 3096 void VM_HeapDumper::dump_vthread(oop vt, AbstractDumpWriter* segment_writer) { 3097 // unmounted vthread has no JavaThread 3098 ThreadDumper thread_dumper(ThreadDumper::ThreadType::UnmountedVirtual, nullptr, vt); 3099 thread_dumper.init_serial_nums(&_thread_serial_num, &_frame_serial_num); 3100 3101 // write HPROF_TRACE/HPROF_FRAME records to global writer 3102 _dumper_controller->lock_global_writer(); 3103 thread_dumper.dump_stack_traces(writer(), _klass_map); 3104 _dumper_controller->unlock_global_writer(); 3105 3106 // write HPROF_GC_ROOT_THREAD_OBJ/HPROF_GC_ROOT_JAVA_FRAME/HPROF_GC_ROOT_JNI_LOCAL subrecord 3107 // to segment writer 3108 thread_dumper.dump_thread_obj(segment_writer); 3109 thread_dumper.dump_stack_refs(segment_writer); 3110 } 3111 3112 // dump the heap to given path. 3113 int HeapDumper::dump(const char* path, outputStream* out, int compression, bool overwrite, uint num_dump_threads) { 3114 assert(path != nullptr && strlen(path) > 0, "path missing"); 3115 3116 // print message in interactive case 3117 if (out != nullptr) { 3118 out->print_cr("Dumping heap to %s ...", path); 3119 timer()->start(); 3120 } 3121 3122 if (_oome && num_dump_threads > 1) { 3123 // Each additional parallel writer requires several MB of internal memory 3124 // (DumpWriter buffer, DumperClassCacheTable, GZipCompressor buffers). 3125 // For the OOM handling we may already be limited in memory. 3126 // Lets ensure we have at least 20MB per thread. 3127 julong max_threads = os::free_memory() / (20 * M); 3128 if (num_dump_threads > max_threads) { 3129 num_dump_threads = MAX2<uint>(1, (uint)max_threads); 3130 } 3131 } 3132 3133 // create JFR event 3134 EventHeapDump event; 3135 3136 AbstractCompressor* compressor = nullptr; 3137 3138 if (compression > 0) { 3139 compressor = new (std::nothrow) GZipCompressor(compression); 3140 3141 if (compressor == nullptr) { 3142 set_error("Could not allocate gzip compressor"); 3143 return -1; 3144 } 3145 } 3146 3147 DumpWriter writer(path, overwrite, compressor); 3148 3149 if (writer.error() != nullptr) { 3150 set_error(writer.error()); 3151 if (out != nullptr) { 3152 out->print_cr("Unable to create %s: %s", path, 3153 (error() != nullptr) ? error() : "reason unknown"); 3154 } 3155 return -1; 3156 } 3157 3158 // generate the segmented heap dump into separate files 3159 VM_HeapDumper dumper(&writer, _gc_before_heap_dump, _oome, num_dump_threads); 3160 VMThread::execute(&dumper); 3161 3162 // record any error that the writer may have encountered 3163 set_error(writer.error()); 3164 3165 // Heap dump process is done in two phases 3166 // 3167 // Phase 1: Concurrent threads directly write heap data to multiple heap files. 3168 // This is done by VM_HeapDumper, which is performed within safepoint. 3169 // 3170 // Phase 2: Merge multiple heap files into one complete heap dump file. 3171 // This is done by DumpMerger, which is performed outside safepoint 3172 3173 DumpMerger merger(path, &writer, dumper.inlined_objects(), dumper.dump_seq()); 3174 // Perform heapdump file merge operation in the current thread prevents us 3175 // from occupying the VM Thread, which in turn affects the occurrence of 3176 // GC and other VM operations. 3177 merger.do_merge(); 3178 if (writer.error() != nullptr) { 3179 set_error(writer.error()); 3180 } 3181 3182 // emit JFR event 3183 if (error() == nullptr) { 3184 event.set_destination(path); 3185 event.set_gcBeforeDump(_gc_before_heap_dump); 3186 event.set_size(writer.bytes_written()); 3187 event.set_onOutOfMemoryError(_oome); 3188 event.set_overwrite(overwrite); 3189 event.set_compression(compression); 3190 event.commit(); 3191 } else { 3192 log_debug(cds, heap)("Error %s while dumping heap", error()); 3193 } 3194 3195 // print message in interactive case 3196 if (out != nullptr) { 3197 timer()->stop(); 3198 if (error() == nullptr) { 3199 out->print_cr("Heap dump file created [" JULONG_FORMAT " bytes in %3.3f secs]", 3200 writer.bytes_written(), timer()->seconds()); 3201 } else { 3202 out->print_cr("Dump file is incomplete: %s", writer.error()); 3203 } 3204 } 3205 3206 if (compressor != nullptr) { 3207 delete compressor; 3208 } 3209 return (writer.error() == nullptr) ? 0 : -1; 3210 } 3211 3212 // stop timer (if still active), and free any error string we might be holding 3213 HeapDumper::~HeapDumper() { 3214 if (timer()->is_active()) { 3215 timer()->stop(); 3216 } 3217 set_error(nullptr); 3218 } 3219 3220 3221 // returns the error string (resource allocated), or null 3222 char* HeapDumper::error_as_C_string() const { 3223 if (error() != nullptr) { 3224 char* str = NEW_RESOURCE_ARRAY(char, strlen(error())+1); 3225 strcpy(str, error()); 3226 return str; 3227 } else { 3228 return nullptr; 3229 } 3230 } 3231 3232 // set the error string 3233 void HeapDumper::set_error(char const* error) { 3234 if (_error != nullptr) { 3235 os::free(_error); 3236 } 3237 if (error == nullptr) { 3238 _error = nullptr; 3239 } else { 3240 _error = os::strdup(error); 3241 assert(_error != nullptr, "allocation failure"); 3242 } 3243 } 3244 3245 // Called by out-of-memory error reporting by a single Java thread 3246 // outside of a JVM safepoint 3247 void HeapDumper::dump_heap_from_oome() { 3248 HeapDumper::dump_heap(true); 3249 } 3250 3251 // Called by error reporting by a single Java thread outside of a JVM safepoint, 3252 // or by heap dumping by the VM thread during a (GC) safepoint. Thus, these various 3253 // callers are strictly serialized and guaranteed not to interfere below. For more 3254 // general use, however, this method will need modification to prevent 3255 // inteference when updating the static variables base_path and dump_file_seq below. 3256 void HeapDumper::dump_heap() { 3257 HeapDumper::dump_heap(false); 3258 } 3259 3260 void HeapDumper::dump_heap(bool oome) { 3261 static char base_path[JVM_MAXPATHLEN] = {'\0'}; 3262 static uint dump_file_seq = 0; 3263 char* my_path; 3264 const int max_digit_chars = 20; 3265 3266 const char* dump_file_name = "java_pid"; 3267 const char* dump_file_ext = HeapDumpGzipLevel > 0 ? ".hprof.gz" : ".hprof"; 3268 3269 // The dump file defaults to java_pid<pid>.hprof in the current working 3270 // directory. HeapDumpPath=<file> can be used to specify an alternative 3271 // dump file name or a directory where dump file is created. 3272 if (dump_file_seq == 0) { // first time in, we initialize base_path 3273 // Calculate potentially longest base path and check if we have enough 3274 // allocated statically. 3275 const size_t total_length = 3276 (HeapDumpPath == nullptr ? 0 : strlen(HeapDumpPath)) + 3277 strlen(os::file_separator()) + max_digit_chars + 3278 strlen(dump_file_name) + strlen(dump_file_ext) + 1; 3279 if (total_length > sizeof(base_path)) { 3280 warning("Cannot create heap dump file. HeapDumpPath is too long."); 3281 return; 3282 } 3283 3284 bool use_default_filename = true; 3285 if (HeapDumpPath == nullptr || HeapDumpPath[0] == '\0') { 3286 // HeapDumpPath=<file> not specified 3287 } else { 3288 strcpy(base_path, HeapDumpPath); 3289 // check if the path is a directory (must exist) 3290 DIR* dir = os::opendir(base_path); 3291 if (dir == nullptr) { 3292 use_default_filename = false; 3293 } else { 3294 // HeapDumpPath specified a directory. We append a file separator 3295 // (if needed). 3296 os::closedir(dir); 3297 size_t fs_len = strlen(os::file_separator()); 3298 if (strlen(base_path) >= fs_len) { 3299 char* end = base_path; 3300 end += (strlen(base_path) - fs_len); 3301 if (strcmp(end, os::file_separator()) != 0) { 3302 strcat(base_path, os::file_separator()); 3303 } 3304 } 3305 } 3306 } 3307 // If HeapDumpPath wasn't a file name then we append the default name 3308 if (use_default_filename) { 3309 const size_t dlen = strlen(base_path); // if heap dump dir specified 3310 jio_snprintf(&base_path[dlen], sizeof(base_path)-dlen, "%s%d%s", 3311 dump_file_name, os::current_process_id(), dump_file_ext); 3312 } 3313 const size_t len = strlen(base_path) + 1; 3314 my_path = (char*)os::malloc(len, mtInternal); 3315 if (my_path == nullptr) { 3316 warning("Cannot create heap dump file. Out of system memory."); 3317 return; 3318 } 3319 strncpy(my_path, base_path, len); 3320 } else { 3321 // Append a sequence number id for dumps following the first 3322 const size_t len = strlen(base_path) + max_digit_chars + 2; // for '.' and \0 3323 my_path = (char*)os::malloc(len, mtInternal); 3324 if (my_path == nullptr) { 3325 warning("Cannot create heap dump file. Out of system memory."); 3326 return; 3327 } 3328 jio_snprintf(my_path, len, "%s.%d", base_path, dump_file_seq); 3329 } 3330 dump_file_seq++; // increment seq number for next time we dump 3331 3332 HeapDumper dumper(false /* no GC before heap dump */, 3333 oome /* pass along out-of-memory-error flag */); 3334 dumper.dump(my_path, tty, HeapDumpGzipLevel); 3335 os::free(my_path); 3336 }