1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "classfile_constants.h" 29 #include "utilities/compilerWarnings.hpp" 30 #include "utilities/debug.hpp" 31 #include "utilities/forbiddenFunctions.hpp" 32 #include "utilities/macros.hpp" 33 34 #include COMPILER_HEADER(utilities/globalDefinitions) 35 36 #include <cstddef> 37 #include <cstdint> 38 #include <limits> 39 #include <type_traits> 40 41 class oopDesc; 42 43 // Defaults for macros that might be defined per compiler. 44 #ifndef NOINLINE 45 #define NOINLINE 46 #endif 47 #ifndef ALWAYSINLINE 48 #define ALWAYSINLINE inline 49 #endif 50 51 #ifndef ATTRIBUTE_ALIGNED 52 #define ATTRIBUTE_ALIGNED(x) alignas(x) 53 #endif 54 55 #ifndef ATTRIBUTE_FLATTEN 56 #define ATTRIBUTE_FLATTEN 57 #endif 58 59 // These are #defines to selectively turn on/off the Print(Opto)Assembly 60 // capabilities. Choices should be led by a tradeoff between 61 // code size and improved supportability. 62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 63 // to have a fallback in case hsdis is not available. 64 #if defined(PRODUCT) 65 #define SUPPORT_ABSTRACT_ASSEMBLY 66 #define SUPPORT_ASSEMBLY 67 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 68 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 69 #else 70 #define SUPPORT_ABSTRACT_ASSEMBLY 71 #define SUPPORT_ASSEMBLY 72 #define SUPPORT_OPTO_ASSEMBLY 73 #define SUPPORT_DATA_STRUCTS 74 #endif 75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 76 #define SUPPORT_ABSTRACT_ASSEMBLY 77 #endif 78 79 // This file holds all globally used constants & types, class (forward) 80 // declarations and a few frequently used utility functions. 81 82 // Declare the named class to be noncopyable. This macro must be followed by 83 // a semi-colon. The macro provides deleted declarations for the class's copy 84 // constructor and assignment operator. Because these operations are deleted, 85 // they cannot be defined and potential callers will fail to compile. 86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 87 88 89 //---------------------------------------------------------------------------------------------------- 90 // Printf-style formatters for fixed- and variable-width types as pointers and 91 // integers. These are derived from the definitions in inttypes.h. If the platform 92 // doesn't provide appropriate definitions, they should be provided in 93 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 94 95 // Guide to the suffixes used in the format specifiers for integers: 96 // - print the decimal value: 745565 97 // _X - print as hexadecimal, without leading 0s: 0x12345 98 // _X_0 - print as hexadecimal, with leading 0s: 0x00012345 99 // _W(w) - prints w sized string with the given value right 100 // adjusted. Use -w to print left adjusted. 101 // _0 - print as hexadecimal, with leading 0s, without 0x prefix: 0012345 102 // 103 // Note that the PTR format specifiers print using 0x with leading zeros, 104 // just like the _X_0 version for integers. 105 106 // Format 8-bit quantities. 107 #define INT8_FORMAT_X_0 "0x%02" PRIx8 108 #define UINT8_FORMAT_X_0 "0x%02" PRIx8 109 110 // Format 16-bit quantities. 111 #define INT16_FORMAT_X_0 "0x%04" PRIx16 112 #define UINT16_FORMAT_X_0 "0x%04" PRIx16 113 114 // Format 32-bit quantities. 115 #define INT32_FORMAT "%" PRId32 116 #define INT32_FORMAT_X "0x%" PRIx32 117 #define INT32_FORMAT_X_0 "0x%08" PRIx32 118 #define INT32_FORMAT_W(width) "%" #width PRId32 119 #define UINT32_FORMAT "%" PRIu32 120 #define UINT32_FORMAT_X "0x%" PRIx32 121 #define UINT32_FORMAT_X_0 "0x%08" PRIx32 122 #define UINT32_FORMAT_W(width) "%" #width PRIu32 123 124 // Format 64-bit quantities. 125 #define INT64_FORMAT "%" PRId64 126 #define INT64_PLUS_FORMAT "%+" PRId64 127 #define INT64_FORMAT_X "0x%" PRIx64 128 #define INT64_FORMAT_X_0 "0x%016" PRIx64 129 #define INT64_FORMAT_W(width) "%" #width PRId64 130 #define UINT64_FORMAT "%" PRIu64 131 #define UINT64_FORMAT_X "0x%" PRIx64 132 #define UINT64_FORMAT_X_0 "0x%016" PRIx64 133 #define UINT64_FORMAT_W(width) "%" #width PRIu64 134 #define UINT64_FORMAT_0 "%016" PRIx64 135 136 // Format jlong, if necessary 137 #ifndef JLONG_FORMAT 138 #define JLONG_FORMAT INT64_FORMAT 139 #endif 140 #ifndef JLONG_FORMAT_W 141 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 142 #endif 143 #ifndef JULONG_FORMAT 144 #define JULONG_FORMAT UINT64_FORMAT 145 #endif 146 #ifndef JULONG_FORMAT_X 147 #define JULONG_FORMAT_X UINT64_FORMAT_X 148 #endif 149 #ifndef JULONG_FORMAT_W 150 #define JULONG_FORMAT_W(width) UINT64_FORMAT_W(width) 151 #endif 152 153 // Format pointers and padded integral values which change size between 32- and 64-bit. 154 #ifdef _LP64 155 #define INTPTR_FORMAT "0x%016" PRIxPTR 156 #define PTR_FORMAT "0x%016" PRIxPTR 157 #define UINTX_FORMAT_X_0 "0x%016" PRIxPTR 158 #define SIZE_FORMAT_X_0 "0x%016" PRIxPTR 159 #else // !_LP64 160 #define INTPTR_FORMAT "0x%08" PRIxPTR 161 #define PTR_FORMAT "0x%08" PRIxPTR 162 #define UINTX_FORMAT_X_0 "0x%08" PRIxPTR 163 #define SIZE_FORMAT_X_0 "0x%08" PRIxPTR 164 #endif // _LP64 165 166 // Convert pointer to intptr_t, for use in printing pointers. 167 inline intptr_t p2i(const volatile void* p) { 168 return (intptr_t) p; 169 } 170 171 // Convert pointer to uintptr_t 172 inline uintptr_t p2u(const volatile void* p) { 173 return (uintptr_t) p; 174 } 175 176 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 177 178 //---------------------------------------------------------------------------------------------------- 179 // Constants 180 181 const int LogBytesPerShort = 1; 182 const int LogBytesPerInt = 2; 183 #ifdef _LP64 184 constexpr int LogBytesPerWord = 3; 185 #else 186 constexpr int LogBytesPerWord = 2; 187 #endif 188 const int LogBytesPerLong = 3; 189 190 const int BytesPerShort = 1 << LogBytesPerShort; 191 const int BytesPerInt = 1 << LogBytesPerInt; 192 const int BytesPerWord = 1 << LogBytesPerWord; 193 const int BytesPerLong = 1 << LogBytesPerLong; 194 195 constexpr int LogBitsPerByte = 3; 196 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 197 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 198 constexpr int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 199 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 200 201 const int BitsPerByte = 1 << LogBitsPerByte; 202 const int BitsPerShort = 1 << LogBitsPerShort; 203 const int BitsPerInt = 1 << LogBitsPerInt; 204 constexpr int BitsPerWord = 1 << LogBitsPerWord; 205 const int BitsPerLong = 1 << LogBitsPerLong; 206 207 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 208 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 209 210 const int oopSize = sizeof(char*); // Full-width oop 211 extern int heapOopSize; // Oop within a java object 212 const int wordSize = sizeof(char*); 213 const int longSize = sizeof(jlong); 214 const int jintSize = sizeof(jint); 215 const int size_tSize = sizeof(size_t); 216 217 const int BytesPerOop = BytesPerWord; // Full-width oop 218 219 extern int LogBytesPerHeapOop; // Oop within a java object 220 extern int LogBitsPerHeapOop; 221 extern int BytesPerHeapOop; 222 extern int BitsPerHeapOop; 223 224 const int BitsPerJavaInteger = 32; 225 const int BitsPerJavaLong = 64; 226 const int BitsPerSize_t = size_tSize * BitsPerByte; 227 228 // Size of a char[] needed to represent a jint as a string in decimal. 229 const int jintAsStringSize = 12; 230 231 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 232 // We require that object sizes be measured in units of heap words (e.g. 233 // pointer-sized values), so that given HeapWord* hw, 234 // hw += oop(hw)->foo(); 235 // works, where foo is a method (like size or scavenge) that returns the 236 // object size. 237 class HeapWordImpl; // Opaque, never defined. 238 typedef HeapWordImpl* HeapWord; 239 240 // Analogous opaque struct for metadata allocated from metaspaces. 241 class MetaWordImpl; // Opaque, never defined. 242 typedef MetaWordImpl* MetaWord; 243 244 // HeapWordSize must be 2^LogHeapWordSize. 245 const int HeapWordSize = sizeof(HeapWord); 246 #ifdef _LP64 247 const int LogHeapWordSize = 3; 248 #else 249 const int LogHeapWordSize = 2; 250 #endif 251 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 252 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 253 254 // The minimum number of native machine words necessary to contain "byte_size" 255 // bytes. 256 inline size_t heap_word_size(size_t byte_size) { 257 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 258 } 259 260 inline jfloat jfloat_cast(jint x); 261 inline jdouble jdouble_cast(jlong x); 262 263 //------------------------------------------- 264 // Constant for jlong (standardized by C++11) 265 266 // Build a 64bit integer constant 267 #define CONST64(x) (x ## LL) 268 #define UCONST64(x) (x ## ULL) 269 270 const jlong min_jlong = CONST64(0x8000000000000000); 271 const jlong max_jlong = CONST64(0x7fffffffffffffff); 272 273 // for timer info max values which include all bits, 0xffffffffffffffff 274 const jlong all_bits_jlong = ~jlong(0); 275 276 //------------------------------------------- 277 // Constant for jdouble 278 const jlong min_jlongDouble = CONST64(0x0000000000000001); 279 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 280 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 281 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 282 283 const size_t K = 1024; 284 const size_t M = K*K; 285 const size_t G = M*K; 286 287 // Constants for converting from a base unit to milli-base units. For 288 // example from seconds to milliseconds and microseconds 289 290 const int MILLIUNITS = 1000; // milli units per base unit 291 const int MICROUNITS = 1000000; // micro units per base unit 292 const int NANOUNITS = 1000000000; // nano units per base unit 293 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 294 295 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 296 const jint NANOSECS_PER_MILLISEC = 1000000; 297 298 299 // Unit conversion functions 300 // The caller is responsible for considering overflow. 301 302 inline int64_t nanos_to_millis(int64_t nanos) { 303 return nanos / NANOUNITS_PER_MILLIUNIT; 304 } 305 inline int64_t millis_to_nanos(int64_t millis) { 306 return millis * NANOUNITS_PER_MILLIUNIT; 307 } 308 309 // Proper units routines try to maintain at least three significant digits. 310 // In worst case, it would print five significant digits with lower prefix. 311 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 312 // and therefore we need to be careful. 313 314 inline const char* proper_unit_for_byte_size(size_t s) { 315 #ifdef _LP64 316 if (s >= 100*G) { 317 return "G"; 318 } 319 #endif 320 if (s >= 100*M) { 321 return "M"; 322 } else if (s >= 100*K) { 323 return "K"; 324 } else { 325 return "B"; 326 } 327 } 328 329 template <class T> 330 inline T byte_size_in_proper_unit(T s) { 331 #ifdef _LP64 332 if (s >= 100*G) { 333 return (T)(s/G); 334 } 335 #endif 336 if (s >= 100*M) { 337 return (T)(s/M); 338 } else if (s >= 100*K) { 339 return (T)(s/K); 340 } else { 341 return s; 342 } 343 } 344 345 #define PROPERFMT "%zu%s" 346 #define PROPERFMTARGS(s) byte_size_in_proper_unit<size_t>(s), proper_unit_for_byte_size(s) 347 348 // Printing a range, with start and bytes given 349 #define RANGEFMT "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)" 350 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size 351 352 // Printing a range, with start and end given 353 #define RANGE2FMT "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)" 354 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1) 355 356 inline const char* exact_unit_for_byte_size(size_t s) { 357 #ifdef _LP64 358 if (s >= G && (s % G) == 0) { 359 return "G"; 360 } 361 #endif 362 if (s >= M && (s % M) == 0) { 363 return "M"; 364 } 365 if (s >= K && (s % K) == 0) { 366 return "K"; 367 } 368 return "B"; 369 } 370 371 inline size_t byte_size_in_exact_unit(size_t s) { 372 #ifdef _LP64 373 if (s >= G && (s % G) == 0) { 374 return s / G; 375 } 376 #endif 377 if (s >= M && (s % M) == 0) { 378 return s / M; 379 } 380 if (s >= K && (s % K) == 0) { 381 return s / K; 382 } 383 return s; 384 } 385 386 #define EXACTFMT "%zu%s" 387 #define EXACTFMTARGS(s) byte_size_in_exact_unit(s), exact_unit_for_byte_size(s) 388 389 // Memory size transition formatting. 390 391 #define HEAP_CHANGE_FORMAT "%s: %zuK(%zuK)->%zuK(%zuK)" 392 393 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 394 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 395 396 //---------------------------------------------------------------------------------------------------- 397 // VM type definitions 398 399 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 400 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 401 402 typedef intptr_t intx; 403 typedef uintptr_t uintx; 404 405 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 406 const intx max_intx = (uintx)min_intx - 1; 407 const uintx max_uintx = (uintx)-1; 408 409 // Table of values: 410 // sizeof intx 4 8 411 // min_intx 0x80000000 0x8000000000000000 412 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 413 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 414 415 typedef unsigned int uint; NEEDS_CLEANUP 416 417 //---------------------------------------------------------------------------------------------------- 418 // Java type definitions 419 420 // All kinds of 'plain' byte addresses 421 typedef signed char s_char; 422 typedef unsigned char u_char; 423 typedef u_char* address; 424 typedef const u_char* const_address; 425 426 // Pointer subtraction. 427 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 428 // the range we might need to find differences from one end of the heap 429 // to the other. 430 // A typical use might be: 431 // if (pointer_delta(end(), top()) >= size) { 432 // // enough room for an object of size 433 // ... 434 // and then additions like 435 // ... top() + size ... 436 // are safe because we know that top() is at least size below end(). 437 inline size_t pointer_delta(const volatile void* left, 438 const volatile void* right, 439 size_t element_size) { 440 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 441 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 442 } 443 444 // A version specialized for HeapWord*'s. 445 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 446 return pointer_delta(left, right, sizeof(HeapWord)); 447 } 448 // A version specialized for MetaWord*'s. 449 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 450 return pointer_delta(left, right, sizeof(MetaWord)); 451 } 452 453 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that 454 // returns a non-negative int, usually used as a size of a code buffer range. 455 // This scales to sizeof(T). 456 template <typename T> 457 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) { 458 size_t delta = pointer_delta(left, right, sizeof(T)); 459 assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta); 460 return static_cast<int>(delta); 461 } 462 463 // 464 // ANSI C++ does not allow casting from one pointer type to a function pointer 465 // directly without at best a warning. This macro accomplishes it silently 466 // In every case that is present at this point the value be cast is a pointer 467 // to a C linkage function. In some case the type used for the cast reflects 468 // that linkage and a picky compiler would not complain. In other cases because 469 // there is no convenient place to place a typedef with extern C linkage (i.e 470 // a platform dependent header file) it doesn't. At this point no compiler seems 471 // picky enough to catch these instances (which are few). It is possible that 472 // using templates could fix these for all cases. This use of templates is likely 473 // so far from the middle of the road that it is likely to be problematic in 474 // many C++ compilers. 475 // 476 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 477 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr))) 478 479 // Need the correct linkage to call qsort without warnings 480 extern "C" { 481 typedef int (*_sort_Fn)(const void *, const void *); 482 } 483 484 // Additional Java basic types 485 486 typedef uint8_t jubyte; 487 typedef uint16_t jushort; 488 typedef uint32_t juint; 489 typedef uint64_t julong; 490 491 // Unsigned byte types for os and stream.hpp 492 493 // Unsigned one, two, four and eight byte quantities used for describing 494 // the .class file format. See JVM book chapter 4. 495 496 typedef jubyte u1; 497 typedef jushort u2; 498 typedef juint u4; 499 typedef julong u8; 500 501 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 502 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 503 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 504 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 505 506 typedef jbyte s1; 507 typedef jshort s2; 508 typedef jint s4; 509 typedef jlong s8; 510 511 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 512 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 513 const jshort min_jshort = -(1 << 15); // smallest jshort 514 const jshort max_jshort = (1 << 15) - 1; // largest jshort 515 516 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 517 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 518 519 const jint min_jintFloat = (jint)(0x00000001); 520 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 521 const jint max_jintFloat = (jint)(0x7f7fffff); 522 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 523 524 const jshort max_jfloat16 = 31743; 525 const jshort min_jfloat16 = 1; 526 const jshort one_jfloat16 = 15360; 527 const jshort pos_inf_jfloat16 = 31744; 528 const jshort neg_inf_jfloat16 = -1024; 529 // A named constant for the integral representation of a Java null. 530 const intptr_t NULL_WORD = 0; 531 532 //---------------------------------------------------------------------------------------------------- 533 // JVM spec restrictions 534 535 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 536 537 //---------------------------------------------------------------------------------------------------- 538 // old CDS options 539 extern bool RequireSharedSpaces; 540 extern "C" { 541 // Make sure UseSharedSpaces is accessible to the serviceability agent. 542 extern JNIEXPORT jboolean UseSharedSpaces; 543 } 544 545 //---------------------------------------------------------------------------------------------------- 546 // Object alignment, in units of HeapWords. 547 // 548 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 549 // reference fields can be naturally aligned. 550 551 extern int MinObjAlignment; 552 extern int MinObjAlignmentInBytes; 553 extern int MinObjAlignmentInBytesMask; 554 555 extern int LogMinObjAlignment; 556 extern int LogMinObjAlignmentInBytes; 557 558 // Maximal size of heap where unscaled compression can be used. Also upper bound 559 // for heap placement: 4GB. 560 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 561 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 562 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 563 extern uint64_t OopEncodingHeapMax; 564 565 // Machine dependent stuff 566 567 #include CPU_HEADER(globalDefinitions) 568 569 // The maximum size of the code cache. Can be overridden by targets. 570 #ifndef CODE_CACHE_SIZE_LIMIT 571 #define CODE_CACHE_SIZE_LIMIT (2*G) 572 #endif 573 574 // Allow targets to reduce the default size of the code cache. 575 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 576 577 // To assure the IRIW property on processors that are not multiple copy 578 // atomic, sync instructions must be issued between volatile reads to 579 // assure their ordering, instead of after volatile stores. 580 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 581 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 582 #ifdef CPU_MULTI_COPY_ATOMIC 583 // Not needed. 584 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 585 #else 586 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 587 // Final decision is subject to JEP 188: Java Memory Model Update. 588 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 589 #endif 590 591 // The expected size in bytes of a cache line. 592 #ifndef DEFAULT_CACHE_LINE_SIZE 593 #error "Platform should define DEFAULT_CACHE_LINE_SIZE" 594 #endif 595 596 // The default padding size for data structures to avoid false sharing. 597 #ifndef DEFAULT_PADDING_SIZE 598 #error "Platform should define DEFAULT_PADDING_SIZE" 599 #endif 600 601 602 //---------------------------------------------------------------------------------------------------- 603 // Miscellaneous 604 605 // 6302670 Eliminate Hotspot __fabsf dependency 606 // All fabs() callers should call this function instead, which will implicitly 607 // convert the operand to double, avoiding a dependency on __fabsf which 608 // doesn't exist in early versions of Solaris 8. 609 inline double fabsd(double value) { 610 return fabs(value); 611 } 612 613 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 614 // is zero, return 0.0. 615 template<typename T> 616 inline double percent_of(T numerator, T denominator) { 617 return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0; 618 } 619 620 //---------------------------------------------------------------------------------------------------- 621 // Special casts 622 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 623 typedef union { 624 jfloat f; 625 jint i; 626 } FloatIntConv; 627 628 typedef union { 629 jdouble d; 630 jlong l; 631 julong ul; 632 } DoubleLongConv; 633 634 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 635 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 636 637 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 638 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 639 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 640 641 inline jint low (jlong value) { return jint(value); } 642 inline jint high(jlong value) { return jint(value >> 32); } 643 644 // the fancy casts are a hopefully portable way 645 // to do unsigned 32 to 64 bit type conversion 646 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 647 *value |= (jlong)(julong)(juint)low; } 648 649 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 650 *value |= (jlong)high << 32; } 651 652 inline jlong jlong_from(jint h, jint l) { 653 jlong result = 0; // initialization to avoid warning 654 set_high(&result, h); 655 set_low(&result, l); 656 return result; 657 } 658 659 union jlong_accessor { 660 jint words[2]; 661 jlong long_value; 662 }; 663 664 void basic_types_init(); // cannot define here; uses assert 665 666 667 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 668 enum BasicType : u1 { 669 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 670 T_BOOLEAN = JVM_T_BOOLEAN, 671 T_CHAR = JVM_T_CHAR, 672 T_FLOAT = JVM_T_FLOAT, 673 T_DOUBLE = JVM_T_DOUBLE, 674 T_BYTE = JVM_T_BYTE, 675 T_SHORT = JVM_T_SHORT, 676 T_INT = JVM_T_INT, 677 T_LONG = JVM_T_LONG, 678 // The remaining values are not part of any standard. 679 // T_OBJECT and T_VOID denote two more semantic choices 680 // for method return values. 681 // T_OBJECT and T_ARRAY describe signature syntax. 682 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 683 // internal references within the JVM as if they were Java 684 // types in their own right. 685 T_OBJECT = 12, 686 T_ARRAY = 13, 687 T_VOID = 14, 688 T_ADDRESS = 15, 689 T_NARROWOOP = 16, 690 T_METADATA = 17, 691 T_NARROWKLASS = 18, 692 T_CONFLICT = 19, // for stack value type with conflicting contents 693 T_ILLEGAL = 99 694 }; 695 696 #define SIGNATURE_TYPES_DO(F, N) \ 697 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 698 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 699 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 700 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 701 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 702 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 703 F(JVM_SIGNATURE_INT, T_INT, N) \ 704 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 705 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 706 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 707 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 708 /*end*/ 709 710 inline bool is_java_type(BasicType t) { 711 return T_BOOLEAN <= t && t <= T_VOID; 712 } 713 714 inline bool is_java_primitive(BasicType t) { 715 return T_BOOLEAN <= t && t <= T_LONG; 716 } 717 718 inline bool is_subword_type(BasicType t) { 719 // these guys are processed exactly like T_INT in calling sequences: 720 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 721 } 722 723 inline bool is_signed_subword_type(BasicType t) { 724 return (t == T_BYTE || t == T_SHORT); 725 } 726 727 inline bool is_unsigned_subword_type(BasicType t) { 728 return (t == T_BOOLEAN || t == T_CHAR); 729 } 730 731 inline bool is_double_word_type(BasicType t) { 732 return (t == T_DOUBLE || t == T_LONG); 733 } 734 735 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) { 736 return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP)); 737 } 738 739 inline bool is_integral_type(BasicType t) { 740 return is_subword_type(t) || t == T_INT || t == T_LONG; 741 } 742 743 inline bool is_non_subword_integral_type(BasicType t) { 744 return t == T_INT || t == T_LONG; 745 } 746 747 inline bool is_floating_point_type(BasicType t) { 748 return (t == T_FLOAT || t == T_DOUBLE); 749 } 750 751 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 752 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 753 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 754 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 755 extern BasicType name2type(const char* name); 756 757 const char* type2name(BasicType t); 758 759 inline jlong max_signed_integer(BasicType bt) { 760 if (bt == T_INT) { 761 return max_jint; 762 } 763 assert(bt == T_LONG, "unsupported"); 764 return max_jlong; 765 } 766 767 inline jlong min_signed_integer(BasicType bt) { 768 if (bt == T_INT) { 769 return min_jint; 770 } 771 assert(bt == T_LONG, "unsupported"); 772 return min_jlong; 773 } 774 775 inline julong max_unsigned_integer(BasicType bt) { 776 if (bt == T_INT) { 777 return max_juint; 778 } 779 assert(bt == T_LONG, "unsupported"); 780 return max_julong; 781 } 782 783 inline uint bits_per_java_integer(BasicType bt) { 784 if (bt == T_INT) { 785 return BitsPerJavaInteger; 786 } 787 assert(bt == T_LONG, "int or long only"); 788 return BitsPerJavaLong; 789 } 790 791 // Auxiliary math routines 792 // least common multiple 793 extern size_t lcm(size_t a, size_t b); 794 795 796 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 797 enum BasicTypeSize { 798 T_BOOLEAN_size = 1, 799 T_CHAR_size = 1, 800 T_FLOAT_size = 1, 801 T_DOUBLE_size = 2, 802 T_BYTE_size = 1, 803 T_SHORT_size = 1, 804 T_INT_size = 1, 805 T_LONG_size = 2, 806 T_OBJECT_size = 1, 807 T_ARRAY_size = 1, 808 T_NARROWOOP_size = 1, 809 T_NARROWKLASS_size = 1, 810 T_VOID_size = 0 811 }; 812 813 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 814 inline int parameter_type_word_count(BasicType t) { 815 if (is_double_word_type(t)) return 2; 816 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 817 assert(type2size[t] == 1, "must be"); 818 return 1; 819 } 820 821 // maps a BasicType to its instance field storage type: 822 // all sub-word integral types are widened to T_INT 823 extern BasicType type2field[T_CONFLICT+1]; 824 extern BasicType type2wfield[T_CONFLICT+1]; 825 826 827 // size in bytes 828 enum ArrayElementSize { 829 T_BOOLEAN_aelem_bytes = 1, 830 T_CHAR_aelem_bytes = 2, 831 T_FLOAT_aelem_bytes = 4, 832 T_DOUBLE_aelem_bytes = 8, 833 T_BYTE_aelem_bytes = 1, 834 T_SHORT_aelem_bytes = 2, 835 T_INT_aelem_bytes = 4, 836 T_LONG_aelem_bytes = 8, 837 #ifdef _LP64 838 T_OBJECT_aelem_bytes = 8, 839 T_ARRAY_aelem_bytes = 8, 840 #else 841 T_OBJECT_aelem_bytes = 4, 842 T_ARRAY_aelem_bytes = 4, 843 #endif 844 T_NARROWOOP_aelem_bytes = 4, 845 T_NARROWKLASS_aelem_bytes = 4, 846 T_VOID_aelem_bytes = 0 847 }; 848 849 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 850 #ifdef ASSERT 851 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 852 #else 853 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 854 #endif 855 856 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) { 857 return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2)); 858 } 859 860 // JavaValue serves as a container for arbitrary Java values. 861 862 class JavaValue { 863 864 public: 865 typedef union JavaCallValue { 866 jfloat f; 867 jdouble d; 868 jint i; 869 jlong l; 870 jobject h; 871 oopDesc* o; 872 } JavaCallValue; 873 874 private: 875 BasicType _type; 876 JavaCallValue _value; 877 878 public: 879 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 880 881 JavaValue(jfloat value) { 882 _type = T_FLOAT; 883 _value.f = value; 884 } 885 886 JavaValue(jdouble value) { 887 _type = T_DOUBLE; 888 _value.d = value; 889 } 890 891 jfloat get_jfloat() const { return _value.f; } 892 jdouble get_jdouble() const { return _value.d; } 893 jint get_jint() const { return _value.i; } 894 jlong get_jlong() const { return _value.l; } 895 jobject get_jobject() const { return _value.h; } 896 oopDesc* get_oop() const { return _value.o; } 897 JavaCallValue* get_value_addr() { return &_value; } 898 BasicType get_type() const { return _type; } 899 900 void set_jfloat(jfloat f) { _value.f = f;} 901 void set_jdouble(jdouble d) { _value.d = d;} 902 void set_jint(jint i) { _value.i = i;} 903 void set_jshort(jshort i) { _value.i = i;} 904 void set_jlong(jlong l) { _value.l = l;} 905 void set_jobject(jobject h) { _value.h = h;} 906 void set_oop(oopDesc* o) { _value.o = o;} 907 void set_type(BasicType t) { _type = t; } 908 909 jboolean get_jboolean() const { return (jboolean) (_value.i);} 910 jbyte get_jbyte() const { return (jbyte) (_value.i);} 911 jchar get_jchar() const { return (jchar) (_value.i);} 912 jshort get_jshort() const { return (jshort) (_value.i);} 913 914 }; 915 916 917 // TosState describes the top-of-stack state before and after the execution of 918 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 919 // registers. The TosState corresponds to the 'machine representation' of this cached 920 // value. There's 4 states corresponding to the JAVA types int, long, float & double 921 // as well as a 5th state in case the top-of-stack value is actually on the top 922 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 923 // state when it comes to machine representation but is used separately for (oop) 924 // type specific operations (e.g. verification code). 925 926 enum TosState { // describes the tos cache contents 927 btos = 0, // byte, bool tos cached 928 ztos = 1, // byte, bool tos cached 929 ctos = 2, // char tos cached 930 stos = 3, // short tos cached 931 itos = 4, // int tos cached 932 ltos = 5, // long tos cached 933 ftos = 6, // float tos cached 934 dtos = 7, // double tos cached 935 atos = 8, // object cached 936 vtos = 9, // tos not cached 937 number_of_states, 938 ilgl // illegal state: should not occur 939 }; 940 941 942 inline TosState as_TosState(BasicType type) { 943 switch (type) { 944 case T_BYTE : return btos; 945 case T_BOOLEAN: return ztos; 946 case T_CHAR : return ctos; 947 case T_SHORT : return stos; 948 case T_INT : return itos; 949 case T_LONG : return ltos; 950 case T_FLOAT : return ftos; 951 case T_DOUBLE : return dtos; 952 case T_VOID : return vtos; 953 case T_ARRAY : // fall through 954 case T_OBJECT : return atos; 955 default : return ilgl; 956 } 957 } 958 959 inline BasicType as_BasicType(TosState state) { 960 switch (state) { 961 case btos : return T_BYTE; 962 case ztos : return T_BOOLEAN; 963 case ctos : return T_CHAR; 964 case stos : return T_SHORT; 965 case itos : return T_INT; 966 case ltos : return T_LONG; 967 case ftos : return T_FLOAT; 968 case dtos : return T_DOUBLE; 969 case atos : return T_OBJECT; 970 case vtos : return T_VOID; 971 default : return T_ILLEGAL; 972 } 973 } 974 975 976 // Helper function to convert BasicType info into TosState 977 // Note: Cannot define here as it uses global constant at the time being. 978 TosState as_TosState(BasicType type); 979 980 981 // JavaThreadState keeps track of which part of the code a thread is executing in. This 982 // information is needed by the safepoint code. 983 // 984 // There are 4 essential states: 985 // 986 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 987 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 988 // _thread_in_vm : Executing in the vm 989 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 990 // 991 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 992 // a transition from one state to another. These extra states makes it possible for the safepoint code to 993 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 994 // 995 // Given a state, the xxxx_trans state can always be found by adding 1. 996 // 997 enum JavaThreadState { 998 _thread_uninitialized = 0, // should never happen (missing initialization) 999 _thread_new = 2, // just starting up, i.e., in process of being initialized 1000 _thread_new_trans = 3, // corresponding transition state (not used, included for completeness) 1001 _thread_in_native = 4, // running in native code 1002 _thread_in_native_trans = 5, // corresponding transition state 1003 _thread_in_vm = 6, // running in VM 1004 _thread_in_vm_trans = 7, // corresponding transition state 1005 _thread_in_Java = 8, // running in Java or in stub code 1006 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completeness) 1007 _thread_blocked = 10, // blocked in vm 1008 _thread_blocked_trans = 11, // corresponding transition state 1009 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 1010 }; 1011 1012 enum LockingMode { 1013 // Use only heavy monitors for locking 1014 LM_MONITOR = 0, 1015 // Legacy stack-locking, with monitors as 2nd tier 1016 LM_LEGACY = 1, 1017 // New lightweight locking, with monitors as 2nd tier 1018 LM_LIGHTWEIGHT = 2 1019 }; 1020 1021 extern const int LockingMode; 1022 1023 //---------------------------------------------------------------------------------------------------- 1024 // Special constants for debugging 1025 1026 const jint badInt = -3; // generic "bad int" value 1027 const intptr_t badAddressVal = -2; // generic "bad address" value 1028 const intptr_t badOopVal = -1; // generic "bad oop" value 1029 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1030 const int badStackSegVal = 0xCA; // value used to zap stack segments 1031 const int badHandleValue = 0xBC; // value used to zap vm handle area 1032 const int badResourceValue = 0xAB; // value used to zap resource area 1033 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1034 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1035 const juint uninitMetaWordVal = 0xf7f7f7f7; // value used to zap newly allocated metachunk 1036 const jubyte heapPaddingByteVal = 0xBD; // value used to zap object padding in the heap 1037 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1038 const int badCodeHeapNewVal = 0xCC; // value used to zap Code heap at allocation 1039 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1040 const intptr_t badDispHeaderDeopt = 0xDE0BD000; // value to fill unused displaced header during deoptimization 1041 const intptr_t badDispHeaderOSR = 0xDEAD05A0; // value to fill unused displaced header during OSR 1042 1043 // (These must be implemented as #defines because C++ compilers are 1044 // not obligated to inline non-integral constants!) 1045 #define badAddress ((address)::badAddressVal) 1046 #define badHeapWord (::badHeapWordVal) 1047 1048 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1049 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17)); 1050 1051 //---------------------------------------------------------------------------------------------------- 1052 // Utility functions for bitfield manipulations 1053 1054 const intptr_t AllBits = ~0; // all bits set in a word 1055 const intptr_t NoBits = 0; // no bits set in a word 1056 const jlong NoLongBits = 0; // no bits set in a long 1057 const intptr_t OneBit = 1; // only right_most bit set in a word 1058 1059 // get a word with the n.th or the right-most or left-most n bits set 1060 // (note: #define used only so that they can be used in enum constant definitions) 1061 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1062 #define right_n_bits(n) (nth_bit(n) - 1) 1063 1064 // same as nth_bit(n), but allows handing in a type as template parameter. Allows 1065 // us to use nth_bit with 64-bit types on 32-bit platforms 1066 template<class T> inline T nth_bit_typed(int n) { 1067 return ((T)1) << n; 1068 } 1069 template<class T> inline T right_n_bits_typed(int n) { 1070 return nth_bit_typed<T>(n) - 1; 1071 } 1072 1073 // bit-operations using a mask m 1074 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1075 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1076 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1077 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1078 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1079 1080 // bit-operations using the n.th bit 1081 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1082 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1083 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1084 1085 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1086 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1087 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1088 } 1089 1090 1091 //---------------------------------------------------------------------------------------------------- 1092 // Utility functions for integers 1093 1094 // Avoid use of global min/max macros which may cause unwanted double 1095 // evaluation of arguments. 1096 #ifdef max 1097 #undef max 1098 #endif 1099 1100 #ifdef min 1101 #undef min 1102 #endif 1103 1104 // It is necessary to use templates here. Having normal overloaded 1105 // functions does not work because it is necessary to provide both 32- 1106 // and 64-bit overloaded functions, which does not work, and having 1107 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1108 // will be even more error-prone than macros. 1109 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1110 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1111 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1112 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1113 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1114 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1115 1116 #define ABS(x) asserted_abs(x, __FILE__, __LINE__) 1117 1118 template<class T> inline T asserted_abs(T x, const char* file, int line) { 1119 bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min()); 1120 #ifdef ASSERT 1121 if (!valid_arg) { 1122 report_vm_error(file, line, "ABS: argument should not allow overflow"); 1123 } 1124 #endif 1125 // Prevent exposure to UB by checking valid_arg here as well. 1126 return (x < 0 && valid_arg) ? -x : x; 1127 } 1128 1129 // Return the given value clamped to the range [min ... max] 1130 template<typename T> 1131 inline T clamp(T value, T min, T max) { 1132 assert(min <= max, "must be"); 1133 return MIN2(MAX2(value, min), max); 1134 } 1135 1136 inline bool is_odd (intx x) { return x & 1; } 1137 inline bool is_even(intx x) { return !is_odd(x); } 1138 1139 // abs methods which cannot overflow and so are well-defined across 1140 // the entire domain of integer types. 1141 static inline unsigned int g_uabs(unsigned int n) { 1142 union { 1143 unsigned int result; 1144 int value; 1145 }; 1146 result = n; 1147 if (value < 0) result = 0-result; 1148 return result; 1149 } 1150 static inline julong g_uabs(julong n) { 1151 union { 1152 julong result; 1153 jlong value; 1154 }; 1155 result = n; 1156 if (value < 0) result = 0-result; 1157 return result; 1158 } 1159 static inline julong g_uabs(jlong n) { return g_uabs((julong)n); } 1160 static inline unsigned int g_uabs(int n) { return g_uabs((unsigned int)n); } 1161 1162 // "to" should be greater than "from." 1163 inline size_t byte_size(void* from, void* to) { 1164 return pointer_delta(to, from, sizeof(char)); 1165 } 1166 1167 // Pack and extract shorts to/from ints: 1168 1169 inline u2 extract_low_short_from_int(u4 x) { 1170 return u2(x & 0xffff); 1171 } 1172 1173 inline u2 extract_high_short_from_int(u4 x) { 1174 return u2((x >> 16) & 0xffff); 1175 } 1176 1177 inline int build_int_from_shorts( u2 low, u2 high ) { 1178 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1179 } 1180 1181 // swap a & b 1182 template<class T> static void swap(T& a, T& b) { 1183 T tmp = a; 1184 a = b; 1185 b = tmp; 1186 } 1187 1188 // array_size_impl is a function that takes a reference to T[N] and 1189 // returns a reference to char[N]. It is not ODR-used, so not defined. 1190 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1191 1192 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1193 1194 //---------------------------------------------------------------------------------------------------- 1195 // Sum and product which can never overflow: they wrap, just like the 1196 // Java operations. Note that we don't intend these to be used for 1197 // general-purpose arithmetic: their purpose is to emulate Java 1198 // operations. 1199 1200 // The goal of this code to avoid undefined or implementation-defined 1201 // behavior. The use of an lvalue to reference cast is explicitly 1202 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1203 // 15 in C++03] 1204 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1205 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1206 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1207 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1208 return reinterpret_cast<TYPE&>(ures); \ 1209 } 1210 1211 JAVA_INTEGER_OP(+, java_add, jint, juint) 1212 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1213 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1214 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1215 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1216 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1217 1218 inline jint java_negate(jint v) { return java_subtract((jint) 0, v); } 1219 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); } 1220 1221 #undef JAVA_INTEGER_OP 1222 1223 // Provide integer shift operations with Java semantics. No overflow 1224 // issues - left shifts simply discard shifted out bits. No undefined 1225 // behavior for large or negative shift quantities; instead the actual 1226 // shift distance is the argument modulo the lhs value's size in bits. 1227 // No undefined or implementation defined behavior for shifting negative 1228 // values; left shift discards bits, right shift sign extends. We use 1229 // the same safe conversion technique as above for java_add and friends. 1230 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1231 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1232 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1233 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1234 XTYPE xres = static_cast<XTYPE>(lhs); \ 1235 xres OP ## = (rhs & rhs_mask); \ 1236 return reinterpret_cast<TYPE&>(xres); \ 1237 } 1238 1239 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1240 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1241 1242 // For signed shift right, assume C++ implementation >> sign extends. 1243 // 1244 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type 1245 // and a negative value, the resulting value is implementation-defined." 1246 // 1247 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of 1248 // requiring two's-complement behavior. 1249 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html 1250 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html 1251 // The corresponding C++20 text is "Right-shift on signed integral types is an 1252 // arithmetic right shift, which performs sign-extension." 1253 // 1254 // As discussed in the two's complement proposal, all known modern C++ compilers 1255 // already behave that way. And it is unlikely any would go off and do something 1256 // different now, with C++20 tightening things up. 1257 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1258 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1259 // For >>> use C++ unsigned >>. 1260 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1261 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1262 1263 #undef JAVA_INTEGER_SHIFT_OP 1264 1265 //---------------------------------------------------------------------------------------------------- 1266 // The goal of this code is to provide saturating operations for int/uint. 1267 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1268 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1269 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1270 jlong res = static_cast<jlong>(in1); \ 1271 res OP ## = static_cast<jlong>(in2); \ 1272 if (res > max_jint) { \ 1273 res = max_jint; \ 1274 } else if (res < min_jint) { \ 1275 res = min_jint; \ 1276 } \ 1277 return static_cast<int>(res); \ 1278 } 1279 1280 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1281 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1282 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1283 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1284 1285 #undef SATURATED_INTEGER_OP 1286 1287 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. 1288 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) { 1289 const uint64_t x1 = x >> 32u; 1290 const uint64_t x2 = x & 0xFFFFFFFF; 1291 const uint64_t y1 = y >> 32u; 1292 const uint64_t y2 = y & 0xFFFFFFFF; 1293 const uint64_t z2 = x2 * y2; 1294 const uint64_t t = x1 * y2 + (z2 >> 32u); 1295 uint64_t z1 = t & 0xFFFFFFFF; 1296 const uint64_t z0 = t >> 32u; 1297 z1 += x2 * y1; 1298 1299 return x1 * y1 + z0 + (z1 >> 32u); 1300 } 1301 1302 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr., 1303 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs. 1304 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) { 1305 const jlong x1 = java_shift_right((jlong)x, 32); 1306 const jlong x2 = x & 0xFFFFFFFF; 1307 const jlong y1 = java_shift_right((jlong)y, 32); 1308 const jlong y2 = y & 0xFFFFFFFF; 1309 1310 const uint64_t z2 = (uint64_t)x2 * y2; 1311 const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift 1312 int64_t z1 = t & 0xFFFFFFFF; 1313 const int64_t z0 = java_shift_right((jlong)t, 32); 1314 z1 += x2 * y1; 1315 1316 return x1 * y1 + z0 + java_shift_right((jlong)z1, 32); 1317 } 1318 1319 // Dereference vptr 1320 // All C++ compilers that we know of have the vtbl pointer in the first 1321 // word. If there are exceptions, this function needs to be made compiler 1322 // specific. 1323 static inline void* dereference_vptr(const void* addr) { 1324 return *(void**)addr; 1325 } 1326 1327 //---------------------------------------------------------------------------------------------------- 1328 // String type aliases used by command line flag declarations and 1329 // processing utilities. 1330 1331 typedef const char* ccstr; 1332 typedef const char* ccstrlist; // represents string arguments which accumulate 1333 1334 //---------------------------------------------------------------------------------------------------- 1335 // Default hash/equals functions used by HashTable 1336 1337 template<typename K> unsigned primitive_hash(const K& k) { 1338 unsigned hash = (unsigned)((uintptr_t)k); 1339 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1340 } 1341 1342 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1343 return k0 == k1; 1344 } 1345 1346 template<typename K> int primitive_compare(const K& k0, const K& k1) { 1347 return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1); 1348 } 1349 1350 //---------------------------------------------------------------------------------------------------- 1351 1352 // Allow use of C++ thread_local when approved - see JDK-8282469. 1353 #define APPROVED_CPP_THREAD_LOCAL thread_local 1354 1355 // Converts any type T to a reference type. 1356 template<typename T> 1357 std::add_rvalue_reference_t<T> declval() noexcept; 1358 1359 // Quickly test to make sure IEEE-754 subnormal numbers are correctly 1360 // handled. 1361 bool IEEE_subnormal_handling_OK(); 1362 1363 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP