1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "classfile_constants.h" 29 #include "utilities/compilerWarnings.hpp" 30 #include "utilities/debug.hpp" 31 #include "utilities/forbiddenFunctions.hpp" 32 #include "utilities/macros.hpp" 33 34 #include COMPILER_HEADER(utilities/globalDefinitions) 35 36 #include <cstddef> 37 #include <cstdint> 38 #include <limits> 39 #include <type_traits> 40 41 class oopDesc; 42 43 // Defaults for macros that might be defined per compiler. 44 #ifndef NOINLINE 45 #define NOINLINE 46 #endif 47 #ifndef ALWAYSINLINE 48 #define ALWAYSINLINE inline 49 #endif 50 51 #ifndef ATTRIBUTE_ALIGNED 52 #define ATTRIBUTE_ALIGNED(x) alignas(x) 53 #endif 54 55 #ifndef ATTRIBUTE_FLATTEN 56 #define ATTRIBUTE_FLATTEN 57 #endif 58 59 // These are #defines to selectively turn on/off the Print(Opto)Assembly 60 // capabilities. Choices should be led by a tradeoff between 61 // code size and improved supportability. 62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 63 // to have a fallback in case hsdis is not available. 64 #if defined(PRODUCT) 65 #define SUPPORT_ABSTRACT_ASSEMBLY 66 #define SUPPORT_ASSEMBLY 67 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 68 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 69 #else 70 #define SUPPORT_ABSTRACT_ASSEMBLY 71 #define SUPPORT_ASSEMBLY 72 #define SUPPORT_OPTO_ASSEMBLY 73 #define SUPPORT_DATA_STRUCTS 74 #endif 75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 76 #define SUPPORT_ABSTRACT_ASSEMBLY 77 #endif 78 79 // This file holds all globally used constants & types, class (forward) 80 // declarations and a few frequently used utility functions. 81 82 // Declare the named class to be noncopyable. This macro must be followed by 83 // a semi-colon. The macro provides deleted declarations for the class's copy 84 // constructor and assignment operator. Because these operations are deleted, 85 // they cannot be defined and potential callers will fail to compile. 86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 87 88 // offset_of was a workaround for UB with offsetof uses that are no longer an 89 // issue. This can be removed once all uses have been converted. 90 #define offset_of(klass, field) offsetof(klass, field) 91 92 //---------------------------------------------------------------------------------------------------- 93 // Printf-style formatters for fixed- and variable-width types as pointers and 94 // integers. These are derived from the definitions in inttypes.h. If the platform 95 // doesn't provide appropriate definitions, they should be provided in 96 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 97 98 // Guide to the suffixes used in the format specifiers for integers: 99 // - print the decimal value: 745565 100 // _X - print as hexadecimal, without leading 0s: 0x12345 101 // _X_0 - print as hexadecimal, with leading 0s: 0x00012345 102 // _W(w) - prints w sized string with the given value right 103 // adjusted. Use -w to print left adjusted. 104 // _0 - print as hexadecimal, with leading 0s, without 0x prefix: 0012345 105 // 106 // Note that the PTR format specifiers print using 0x with leading zeros, 107 // just like the _X_0 version for integers. 108 109 // Format 8-bit quantities. 110 #define INT8_FORMAT_X_0 "0x%02" PRIx8 111 #define UINT8_FORMAT_X_0 "0x%02" PRIx8 112 113 // Format 16-bit quantities. 114 #define INT16_FORMAT_X_0 "0x%04" PRIx16 115 #define UINT16_FORMAT_X_0 "0x%04" PRIx16 116 117 // Format 32-bit quantities. 118 #define INT32_FORMAT "%" PRId32 119 #define INT32_FORMAT_X "0x%" PRIx32 120 #define INT32_FORMAT_X_0 "0x%08" PRIx32 121 #define INT32_FORMAT_W(width) "%" #width PRId32 122 #define UINT32_FORMAT "%" PRIu32 123 #define UINT32_FORMAT_X "0x%" PRIx32 124 #define UINT32_FORMAT_X_0 "0x%08" PRIx32 125 #define UINT32_FORMAT_W(width) "%" #width PRIu32 126 127 // Format 64-bit quantities. 128 #define INT64_FORMAT "%" PRId64 129 #define INT64_PLUS_FORMAT "%+" PRId64 130 #define INT64_FORMAT_X "0x%" PRIx64 131 #define INT64_FORMAT_X_0 "0x%016" PRIx64 132 #define INT64_FORMAT_W(width) "%" #width PRId64 133 #define UINT64_FORMAT "%" PRIu64 134 #define UINT64_FORMAT_X "0x%" PRIx64 135 #define UINT64_FORMAT_X_0 "0x%016" PRIx64 136 #define UINT64_FORMAT_W(width) "%" #width PRIu64 137 #define UINT64_FORMAT_0 "%016" PRIx64 138 139 // Format jlong, if necessary 140 #ifndef JLONG_FORMAT 141 #define JLONG_FORMAT INT64_FORMAT 142 #endif 143 #ifndef JLONG_FORMAT_W 144 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 145 #endif 146 #ifndef JULONG_FORMAT 147 #define JULONG_FORMAT UINT64_FORMAT 148 #endif 149 #ifndef JULONG_FORMAT_X 150 #define JULONG_FORMAT_X UINT64_FORMAT_X 151 #endif 152 #ifndef JULONG_FORMAT_W 153 #define JULONG_FORMAT_W(width) UINT64_FORMAT_W(width) 154 #endif 155 156 // Format pointers and padded integral values which change size between 32- and 64-bit. 157 #ifdef _LP64 158 #define INTPTR_FORMAT "0x%016" PRIxPTR 159 #define PTR_FORMAT "0x%016" PRIxPTR 160 #define UINTX_FORMAT_X_0 "0x%016" PRIxPTR 161 #define SIZE_FORMAT_X_0 "0x%016" PRIxPTR 162 #else // !_LP64 163 #define INTPTR_FORMAT "0x%08" PRIxPTR 164 #define PTR_FORMAT "0x%08" PRIxPTR 165 #define UINTX_FORMAT_X_0 "0x%08" PRIxPTR 166 #define SIZE_FORMAT_X_0 "0x%08" PRIxPTR 167 #endif // _LP64 168 169 // Convert pointer to intptr_t, for use in printing pointers. 170 inline intptr_t p2i(const volatile void* p) { 171 return (intptr_t) p; 172 } 173 174 // Convert pointer to uintptr_t 175 inline uintptr_t p2u(const volatile void* p) { 176 return (uintptr_t) p; 177 } 178 179 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 180 181 //---------------------------------------------------------------------------------------------------- 182 // Constants 183 184 const int LogBytesPerShort = 1; 185 const int LogBytesPerInt = 2; 186 #ifdef _LP64 187 constexpr int LogBytesPerWord = 3; 188 #else 189 constexpr int LogBytesPerWord = 2; 190 #endif 191 const int LogBytesPerLong = 3; 192 193 const int BytesPerShort = 1 << LogBytesPerShort; 194 const int BytesPerInt = 1 << LogBytesPerInt; 195 const int BytesPerWord = 1 << LogBytesPerWord; 196 const int BytesPerLong = 1 << LogBytesPerLong; 197 198 constexpr int LogBitsPerByte = 3; 199 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 200 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 201 constexpr int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 202 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 203 204 const int BitsPerByte = 1 << LogBitsPerByte; 205 const int BitsPerShort = 1 << LogBitsPerShort; 206 const int BitsPerInt = 1 << LogBitsPerInt; 207 constexpr int BitsPerWord = 1 << LogBitsPerWord; 208 const int BitsPerLong = 1 << LogBitsPerLong; 209 210 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 211 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 212 213 const int oopSize = sizeof(char*); // Full-width oop 214 extern int heapOopSize; // Oop within a java object 215 const int wordSize = sizeof(char*); 216 const int longSize = sizeof(jlong); 217 const int jintSize = sizeof(jint); 218 const int size_tSize = sizeof(size_t); 219 220 const int BytesPerOop = BytesPerWord; // Full-width oop 221 222 extern int LogBytesPerHeapOop; // Oop within a java object 223 extern int LogBitsPerHeapOop; 224 extern int BytesPerHeapOop; 225 extern int BitsPerHeapOop; 226 227 const int BitsPerJavaInteger = 32; 228 const int BitsPerJavaLong = 64; 229 const int BitsPerSize_t = size_tSize * BitsPerByte; 230 231 // Size of a char[] needed to represent a jint as a string in decimal. 232 const int jintAsStringSize = 12; 233 234 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 235 // We require that object sizes be measured in units of heap words (e.g. 236 // pointer-sized values), so that given HeapWord* hw, 237 // hw += oop(hw)->foo(); 238 // works, where foo is a method (like size or scavenge) that returns the 239 // object size. 240 class HeapWordImpl; // Opaque, never defined. 241 typedef HeapWordImpl* HeapWord; 242 243 // Analogous opaque struct for metadata allocated from metaspaces. 244 class MetaWordImpl; // Opaque, never defined. 245 typedef MetaWordImpl* MetaWord; 246 247 // HeapWordSize must be 2^LogHeapWordSize. 248 const int HeapWordSize = sizeof(HeapWord); 249 #ifdef _LP64 250 const int LogHeapWordSize = 3; 251 #else 252 const int LogHeapWordSize = 2; 253 #endif 254 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 255 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 256 257 // The minimum number of native machine words necessary to contain "byte_size" 258 // bytes. 259 inline size_t heap_word_size(size_t byte_size) { 260 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 261 } 262 263 inline jfloat jfloat_cast(jint x); 264 inline jdouble jdouble_cast(jlong x); 265 266 //------------------------------------------- 267 // Constant for jlong (standardized by C++11) 268 269 // Build a 64bit integer constant 270 #define CONST64(x) (x ## LL) 271 #define UCONST64(x) (x ## ULL) 272 273 const jlong min_jlong = CONST64(0x8000000000000000); 274 const jlong max_jlong = CONST64(0x7fffffffffffffff); 275 276 // for timer info max values which include all bits, 0xffffffffffffffff 277 const jlong all_bits_jlong = ~jlong(0); 278 279 //------------------------------------------- 280 // Constant for jdouble 281 const jlong min_jlongDouble = CONST64(0x0000000000000001); 282 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 283 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 284 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 285 286 const size_t K = 1024; 287 const size_t M = K*K; 288 const size_t G = M*K; 289 290 // Constants for converting from a base unit to milli-base units. For 291 // example from seconds to milliseconds and microseconds 292 293 const int MILLIUNITS = 1000; // milli units per base unit 294 const int MICROUNITS = 1000000; // micro units per base unit 295 const int NANOUNITS = 1000000000; // nano units per base unit 296 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 297 298 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 299 const jint NANOSECS_PER_MILLISEC = 1000000; 300 301 302 // Unit conversion functions 303 // The caller is responsible for considering overflow. 304 305 inline int64_t nanos_to_millis(int64_t nanos) { 306 return nanos / NANOUNITS_PER_MILLIUNIT; 307 } 308 inline int64_t millis_to_nanos(int64_t millis) { 309 return millis * NANOUNITS_PER_MILLIUNIT; 310 } 311 312 // Proper units routines try to maintain at least three significant digits. 313 // In worst case, it would print five significant digits with lower prefix. 314 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 315 // and therefore we need to be careful. 316 317 inline const char* proper_unit_for_byte_size(size_t s) { 318 #ifdef _LP64 319 if (s >= 100*G) { 320 return "G"; 321 } 322 #endif 323 if (s >= 100*M) { 324 return "M"; 325 } else if (s >= 100*K) { 326 return "K"; 327 } else { 328 return "B"; 329 } 330 } 331 332 template <class T> 333 inline T byte_size_in_proper_unit(T s) { 334 #ifdef _LP64 335 if (s >= 100*G) { 336 return (T)(s/G); 337 } 338 #endif 339 if (s >= 100*M) { 340 return (T)(s/M); 341 } else if (s >= 100*K) { 342 return (T)(s/K); 343 } else { 344 return s; 345 } 346 } 347 348 #define PROPERFMT "%zu%s" 349 #define PROPERFMTARGS(s) byte_size_in_proper_unit<size_t>(s), proper_unit_for_byte_size(s) 350 351 // Printing a range, with start and bytes given 352 #define RANGEFMT "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)" 353 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size 354 355 // Printing a range, with start and end given 356 #define RANGE2FMT "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)" 357 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1) 358 359 inline const char* exact_unit_for_byte_size(size_t s) { 360 #ifdef _LP64 361 if (s >= G && (s % G) == 0) { 362 return "G"; 363 } 364 #endif 365 if (s >= M && (s % M) == 0) { 366 return "M"; 367 } 368 if (s >= K && (s % K) == 0) { 369 return "K"; 370 } 371 return "B"; 372 } 373 374 inline size_t byte_size_in_exact_unit(size_t s) { 375 #ifdef _LP64 376 if (s >= G && (s % G) == 0) { 377 return s / G; 378 } 379 #endif 380 if (s >= M && (s % M) == 0) { 381 return s / M; 382 } 383 if (s >= K && (s % K) == 0) { 384 return s / K; 385 } 386 return s; 387 } 388 389 #define EXACTFMT "%zu%s" 390 #define EXACTFMTARGS(s) byte_size_in_exact_unit(s), exact_unit_for_byte_size(s) 391 392 // Memory size transition formatting. 393 394 #define HEAP_CHANGE_FORMAT "%s: %zuK(%zuK)->%zuK(%zuK)" 395 396 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 397 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 398 399 //---------------------------------------------------------------------------------------------------- 400 // VM type definitions 401 402 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 403 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 404 405 typedef intptr_t intx; 406 typedef uintptr_t uintx; 407 408 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 409 const intx max_intx = (uintx)min_intx - 1; 410 const uintx max_uintx = (uintx)-1; 411 412 // Table of values: 413 // sizeof intx 4 8 414 // min_intx 0x80000000 0x8000000000000000 415 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 416 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 417 418 typedef unsigned int uint; NEEDS_CLEANUP 419 420 //---------------------------------------------------------------------------------------------------- 421 // Java type definitions 422 423 // All kinds of 'plain' byte addresses 424 typedef signed char s_char; 425 typedef unsigned char u_char; 426 typedef u_char* address; 427 typedef const u_char* const_address; 428 429 // Pointer subtraction. 430 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 431 // the range we might need to find differences from one end of the heap 432 // to the other. 433 // A typical use might be: 434 // if (pointer_delta(end(), top()) >= size) { 435 // // enough room for an object of size 436 // ... 437 // and then additions like 438 // ... top() + size ... 439 // are safe because we know that top() is at least size below end(). 440 inline size_t pointer_delta(const volatile void* left, 441 const volatile void* right, 442 size_t element_size) { 443 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 444 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 445 } 446 447 // A version specialized for HeapWord*'s. 448 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 449 return pointer_delta(left, right, sizeof(HeapWord)); 450 } 451 // A version specialized for MetaWord*'s. 452 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 453 return pointer_delta(left, right, sizeof(MetaWord)); 454 } 455 456 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that 457 // returns a non-negative int, usually used as a size of a code buffer range. 458 // This scales to sizeof(T). 459 template <typename T> 460 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) { 461 size_t delta = pointer_delta(left, right, sizeof(T)); 462 assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta); 463 return static_cast<int>(delta); 464 } 465 466 // 467 // ANSI C++ does not allow casting from one pointer type to a function pointer 468 // directly without at best a warning. This macro accomplishes it silently 469 // In every case that is present at this point the value be cast is a pointer 470 // to a C linkage function. In some case the type used for the cast reflects 471 // that linkage and a picky compiler would not complain. In other cases because 472 // there is no convenient place to place a typedef with extern C linkage (i.e 473 // a platform dependent header file) it doesn't. At this point no compiler seems 474 // picky enough to catch these instances (which are few). It is possible that 475 // using templates could fix these for all cases. This use of templates is likely 476 // so far from the middle of the road that it is likely to be problematic in 477 // many C++ compilers. 478 // 479 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 480 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr))) 481 482 // Need the correct linkage to call qsort without warnings 483 extern "C" { 484 typedef int (*_sort_Fn)(const void *, const void *); 485 } 486 487 // Additional Java basic types 488 489 typedef uint8_t jubyte; 490 typedef uint16_t jushort; 491 typedef uint32_t juint; 492 typedef uint64_t julong; 493 494 // Unsigned byte types for os and stream.hpp 495 496 // Unsigned one, two, four and eight byte quantities used for describing 497 // the .class file format. See JVM book chapter 4. 498 499 typedef jubyte u1; 500 typedef jushort u2; 501 typedef juint u4; 502 typedef julong u8; 503 504 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 505 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 506 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 507 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 508 509 typedef jbyte s1; 510 typedef jshort s2; 511 typedef jint s4; 512 typedef jlong s8; 513 514 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 515 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 516 const jshort min_jshort = -(1 << 15); // smallest jshort 517 const jshort max_jshort = (1 << 15) - 1; // largest jshort 518 519 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 520 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 521 522 const jint min_jintFloat = (jint)(0x00000001); 523 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 524 const jint max_jintFloat = (jint)(0x7f7fffff); 525 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 526 527 const jshort max_jfloat16 = 31743; 528 const jshort min_jfloat16 = 1; 529 const jshort one_jfloat16 = 15360; 530 const jshort pos_inf_jfloat16 = 31744; 531 const jshort neg_inf_jfloat16 = -1024; 532 // A named constant for the integral representation of a Java null. 533 const intptr_t NULL_WORD = 0; 534 535 //---------------------------------------------------------------------------------------------------- 536 // JVM spec restrictions 537 538 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 539 const int max_method_parameter_length = 255; // JVM spec, 22nd ed. section 4.3.3 (p.83) 540 541 //---------------------------------------------------------------------------------------------------- 542 // old CDS options 543 extern bool RequireSharedSpaces; 544 extern "C" { 545 // Make sure UseSharedSpaces is accessible to the serviceability agent. 546 extern JNIEXPORT jboolean UseSharedSpaces; 547 } 548 549 //---------------------------------------------------------------------------------------------------- 550 // Object alignment, in units of HeapWords. 551 // 552 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 553 // reference fields can be naturally aligned. 554 555 extern int MinObjAlignment; 556 extern int MinObjAlignmentInBytes; 557 extern int MinObjAlignmentInBytesMask; 558 559 extern int LogMinObjAlignment; 560 extern int LogMinObjAlignmentInBytes; 561 562 // Maximal size of heap where unscaled compression can be used. Also upper bound 563 // for heap placement: 4GB. 564 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 565 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 566 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 567 extern uint64_t OopEncodingHeapMax; 568 569 // Machine dependent stuff 570 571 #include CPU_HEADER(globalDefinitions) 572 573 // The maximum size of the code cache. Can be overridden by targets. 574 #ifndef CODE_CACHE_SIZE_LIMIT 575 #define CODE_CACHE_SIZE_LIMIT (2*G) 576 #endif 577 578 // Allow targets to reduce the default size of the code cache. 579 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 580 581 // To assure the IRIW property on processors that are not multiple copy 582 // atomic, sync instructions must be issued between volatile reads to 583 // assure their ordering, instead of after volatile stores. 584 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 585 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 586 #ifdef CPU_MULTI_COPY_ATOMIC 587 // Not needed. 588 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 589 #else 590 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 591 // Final decision is subject to JEP 188: Java Memory Model Update. 592 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 593 #endif 594 595 // The expected size in bytes of a cache line. 596 #ifndef DEFAULT_CACHE_LINE_SIZE 597 #error "Platform should define DEFAULT_CACHE_LINE_SIZE" 598 #endif 599 600 // The default padding size for data structures to avoid false sharing. 601 #ifndef DEFAULT_PADDING_SIZE 602 #error "Platform should define DEFAULT_PADDING_SIZE" 603 #endif 604 605 606 //---------------------------------------------------------------------------------------------------- 607 // Miscellaneous 608 609 // 6302670 Eliminate Hotspot __fabsf dependency 610 // All fabs() callers should call this function instead, which will implicitly 611 // convert the operand to double, avoiding a dependency on __fabsf which 612 // doesn't exist in early versions of Solaris 8. 613 inline double fabsd(double value) { 614 return fabs(value); 615 } 616 617 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 618 // is zero, return 0.0. 619 template<typename T> 620 inline double percent_of(T numerator, T denominator) { 621 return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0; 622 } 623 624 //---------------------------------------------------------------------------------------------------- 625 // Special casts 626 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 627 typedef union { 628 jfloat f; 629 jint i; 630 } FloatIntConv; 631 632 typedef union { 633 jdouble d; 634 jlong l; 635 julong ul; 636 } DoubleLongConv; 637 638 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 639 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 640 641 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 642 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 643 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 644 645 inline jint low (jlong value) { return jint(value); } 646 inline jint high(jlong value) { return jint(value >> 32); } 647 648 inline jlong jlong_from(jint h, jint l) { 649 // First cast jint values to juint, so cast to julong will zero-extend. 650 julong high = (julong)(juint)h << 32; 651 julong low = (julong)(juint)l; 652 return (jlong)(high | low); 653 } 654 655 union jlong_accessor { 656 jint words[2]; 657 jlong long_value; 658 }; 659 660 void basic_types_init(); // cannot define here; uses assert 661 662 663 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 664 enum BasicType : u1 { 665 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 666 T_BOOLEAN = JVM_T_BOOLEAN, 667 T_CHAR = JVM_T_CHAR, 668 T_FLOAT = JVM_T_FLOAT, 669 T_DOUBLE = JVM_T_DOUBLE, 670 T_BYTE = JVM_T_BYTE, 671 T_SHORT = JVM_T_SHORT, 672 T_INT = JVM_T_INT, 673 T_LONG = JVM_T_LONG, 674 // The remaining values are not part of any standard. 675 // T_OBJECT and T_VOID denote two more semantic choices 676 // for method return values. 677 // T_OBJECT and T_ARRAY describe signature syntax. 678 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 679 // internal references within the JVM as if they were Java 680 // types in their own right. 681 T_OBJECT = 12, 682 T_ARRAY = 13, 683 T_VOID = 14, 684 T_ADDRESS = 15, 685 T_NARROWOOP = 16, 686 T_METADATA = 17, 687 T_NARROWKLASS = 18, 688 T_CONFLICT = 19, // for stack value type with conflicting contents 689 T_ILLEGAL = 99 690 }; 691 692 #define SIGNATURE_TYPES_DO(F, N) \ 693 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 694 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 695 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 696 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 697 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 698 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 699 F(JVM_SIGNATURE_INT, T_INT, N) \ 700 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 701 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 702 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 703 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 704 /*end*/ 705 706 inline bool is_java_type(BasicType t) { 707 return T_BOOLEAN <= t && t <= T_VOID; 708 } 709 710 inline bool is_java_primitive(BasicType t) { 711 return T_BOOLEAN <= t && t <= T_LONG; 712 } 713 714 inline bool is_subword_type(BasicType t) { 715 // these guys are processed exactly like T_INT in calling sequences: 716 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 717 } 718 719 inline bool is_signed_subword_type(BasicType t) { 720 return (t == T_BYTE || t == T_SHORT); 721 } 722 723 inline bool is_unsigned_subword_type(BasicType t) { 724 return (t == T_BOOLEAN || t == T_CHAR); 725 } 726 727 inline bool is_double_word_type(BasicType t) { 728 return (t == T_DOUBLE || t == T_LONG); 729 } 730 731 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) { 732 return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP)); 733 } 734 735 inline bool is_integral_type(BasicType t) { 736 return is_subword_type(t) || t == T_INT || t == T_LONG; 737 } 738 739 inline bool is_non_subword_integral_type(BasicType t) { 740 return t == T_INT || t == T_LONG; 741 } 742 743 inline bool is_floating_point_type(BasicType t) { 744 return (t == T_FLOAT || t == T_DOUBLE); 745 } 746 747 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 748 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 749 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 750 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 751 extern BasicType name2type(const char* name); 752 753 const char* type2name(BasicType t); 754 755 inline jlong max_signed_integer(BasicType bt) { 756 if (bt == T_INT) { 757 return max_jint; 758 } 759 assert(bt == T_LONG, "unsupported"); 760 return max_jlong; 761 } 762 763 inline jlong min_signed_integer(BasicType bt) { 764 if (bt == T_INT) { 765 return min_jint; 766 } 767 assert(bt == T_LONG, "unsupported"); 768 return min_jlong; 769 } 770 771 inline julong max_unsigned_integer(BasicType bt) { 772 if (bt == T_INT) { 773 return max_juint; 774 } 775 assert(bt == T_LONG, "unsupported"); 776 return max_julong; 777 } 778 779 inline uint bits_per_java_integer(BasicType bt) { 780 if (bt == T_INT) { 781 return BitsPerJavaInteger; 782 } 783 assert(bt == T_LONG, "int or long only"); 784 return BitsPerJavaLong; 785 } 786 787 // Auxiliary math routines 788 // least common multiple 789 extern size_t lcm(size_t a, size_t b); 790 791 792 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 793 enum BasicTypeSize { 794 T_BOOLEAN_size = 1, 795 T_CHAR_size = 1, 796 T_FLOAT_size = 1, 797 T_DOUBLE_size = 2, 798 T_BYTE_size = 1, 799 T_SHORT_size = 1, 800 T_INT_size = 1, 801 T_LONG_size = 2, 802 T_OBJECT_size = 1, 803 T_ARRAY_size = 1, 804 T_NARROWOOP_size = 1, 805 T_NARROWKLASS_size = 1, 806 T_VOID_size = 0 807 }; 808 809 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 810 inline int parameter_type_word_count(BasicType t) { 811 if (is_double_word_type(t)) return 2; 812 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 813 assert(type2size[t] == 1, "must be"); 814 return 1; 815 } 816 817 // maps a BasicType to its instance field storage type: 818 // all sub-word integral types are widened to T_INT 819 extern BasicType type2field[T_CONFLICT+1]; 820 extern BasicType type2wfield[T_CONFLICT+1]; 821 822 823 // size in bytes 824 enum ArrayElementSize { 825 T_BOOLEAN_aelem_bytes = 1, 826 T_CHAR_aelem_bytes = 2, 827 T_FLOAT_aelem_bytes = 4, 828 T_DOUBLE_aelem_bytes = 8, 829 T_BYTE_aelem_bytes = 1, 830 T_SHORT_aelem_bytes = 2, 831 T_INT_aelem_bytes = 4, 832 T_LONG_aelem_bytes = 8, 833 #ifdef _LP64 834 T_OBJECT_aelem_bytes = 8, 835 T_ARRAY_aelem_bytes = 8, 836 #else 837 T_OBJECT_aelem_bytes = 4, 838 T_ARRAY_aelem_bytes = 4, 839 #endif 840 T_NARROWOOP_aelem_bytes = 4, 841 T_NARROWKLASS_aelem_bytes = 4, 842 T_VOID_aelem_bytes = 0 843 }; 844 845 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 846 #ifdef ASSERT 847 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 848 #else 849 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 850 #endif 851 852 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) { 853 return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2)); 854 } 855 856 // JavaValue serves as a container for arbitrary Java values. 857 858 class JavaValue { 859 860 public: 861 typedef union JavaCallValue { 862 jfloat f; 863 jdouble d; 864 jint i; 865 jlong l; 866 jobject h; 867 oopDesc* o; 868 } JavaCallValue; 869 870 private: 871 BasicType _type; 872 JavaCallValue _value; 873 874 public: 875 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 876 877 JavaValue(jfloat value) { 878 _type = T_FLOAT; 879 _value.f = value; 880 } 881 882 JavaValue(jdouble value) { 883 _type = T_DOUBLE; 884 _value.d = value; 885 } 886 887 jfloat get_jfloat() const { return _value.f; } 888 jdouble get_jdouble() const { return _value.d; } 889 jint get_jint() const { return _value.i; } 890 jlong get_jlong() const { return _value.l; } 891 jobject get_jobject() const { return _value.h; } 892 oopDesc* get_oop() const { return _value.o; } 893 JavaCallValue* get_value_addr() { return &_value; } 894 BasicType get_type() const { return _type; } 895 896 void set_jfloat(jfloat f) { _value.f = f;} 897 void set_jdouble(jdouble d) { _value.d = d;} 898 void set_jint(jint i) { _value.i = i;} 899 void set_jshort(jshort i) { _value.i = i;} 900 void set_jlong(jlong l) { _value.l = l;} 901 void set_jobject(jobject h) { _value.h = h;} 902 void set_oop(oopDesc* o) { _value.o = o;} 903 void set_type(BasicType t) { _type = t; } 904 905 jboolean get_jboolean() const { return (jboolean) (_value.i);} 906 jbyte get_jbyte() const { return (jbyte) (_value.i);} 907 jchar get_jchar() const { return (jchar) (_value.i);} 908 jshort get_jshort() const { return (jshort) (_value.i);} 909 910 }; 911 912 913 // TosState describes the top-of-stack state before and after the execution of 914 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 915 // registers. The TosState corresponds to the 'machine representation' of this cached 916 // value. There's 4 states corresponding to the JAVA types int, long, float & double 917 // as well as a 5th state in case the top-of-stack value is actually on the top 918 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 919 // state when it comes to machine representation but is used separately for (oop) 920 // type specific operations (e.g. verification code). 921 922 enum TosState { // describes the tos cache contents 923 btos = 0, // byte, bool tos cached 924 ztos = 1, // byte, bool tos cached 925 ctos = 2, // char tos cached 926 stos = 3, // short tos cached 927 itos = 4, // int tos cached 928 ltos = 5, // long tos cached 929 ftos = 6, // float tos cached 930 dtos = 7, // double tos cached 931 atos = 8, // object cached 932 vtos = 9, // tos not cached 933 number_of_states, 934 ilgl // illegal state: should not occur 935 }; 936 937 938 inline TosState as_TosState(BasicType type) { 939 switch (type) { 940 case T_BYTE : return btos; 941 case T_BOOLEAN: return ztos; 942 case T_CHAR : return ctos; 943 case T_SHORT : return stos; 944 case T_INT : return itos; 945 case T_LONG : return ltos; 946 case T_FLOAT : return ftos; 947 case T_DOUBLE : return dtos; 948 case T_VOID : return vtos; 949 case T_ARRAY : // fall through 950 case T_OBJECT : return atos; 951 default : return ilgl; 952 } 953 } 954 955 inline BasicType as_BasicType(TosState state) { 956 switch (state) { 957 case btos : return T_BYTE; 958 case ztos : return T_BOOLEAN; 959 case ctos : return T_CHAR; 960 case stos : return T_SHORT; 961 case itos : return T_INT; 962 case ltos : return T_LONG; 963 case ftos : return T_FLOAT; 964 case dtos : return T_DOUBLE; 965 case atos : return T_OBJECT; 966 case vtos : return T_VOID; 967 default : return T_ILLEGAL; 968 } 969 } 970 971 972 // Helper function to convert BasicType info into TosState 973 // Note: Cannot define here as it uses global constant at the time being. 974 TosState as_TosState(BasicType type); 975 976 977 // JavaThreadState keeps track of which part of the code a thread is executing in. This 978 // information is needed by the safepoint code. 979 // 980 // There are 4 essential states: 981 // 982 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 983 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 984 // _thread_in_vm : Executing in the vm 985 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 986 // 987 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 988 // a transition from one state to another. These extra states makes it possible for the safepoint code to 989 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 990 // 991 // Given a state, the xxxx_trans state can always be found by adding 1. 992 // 993 enum JavaThreadState { 994 _thread_uninitialized = 0, // should never happen (missing initialization) 995 _thread_new = 2, // just starting up, i.e., in process of being initialized 996 _thread_new_trans = 3, // corresponding transition state (not used, included for completeness) 997 _thread_in_native = 4, // running in native code 998 _thread_in_native_trans = 5, // corresponding transition state 999 _thread_in_vm = 6, // running in VM 1000 _thread_in_vm_trans = 7, // corresponding transition state 1001 _thread_in_Java = 8, // running in Java or in stub code 1002 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completeness) 1003 _thread_blocked = 10, // blocked in vm 1004 _thread_blocked_trans = 11, // corresponding transition state 1005 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 1006 }; 1007 1008 //---------------------------------------------------------------------------------------------------- 1009 // Special constants for debugging 1010 1011 const jint badInt = -3; // generic "bad int" value 1012 const intptr_t badAddressVal = -2; // generic "bad address" value 1013 const intptr_t badOopVal = -1; // generic "bad oop" value 1014 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1015 const int badStackSegVal = 0xCA; // value used to zap stack segments 1016 const int badHandleValue = 0xBC; // value used to zap vm handle area 1017 const int badResourceValue = 0xAB; // value used to zap resource area 1018 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1019 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1020 const juint uninitMetaWordVal = 0xf7f7f7f7; // value used to zap newly allocated metachunk 1021 const jubyte heapPaddingByteVal = 0xBD; // value used to zap object padding in the heap 1022 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1023 const int badCodeHeapNewVal = 0xCC; // value used to zap Code heap at allocation 1024 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1025 const intptr_t badDispHeaderDeopt = 0xDE0BD000; // value to fill unused displaced header during deoptimization 1026 const intptr_t badDispHeaderOSR = 0xDEAD05A0; // value to fill unused displaced header during OSR 1027 1028 // (These must be implemented as #defines because C++ compilers are 1029 // not obligated to inline non-integral constants!) 1030 #define badAddress ((address)::badAddressVal) 1031 #define badHeapWord (::badHeapWordVal) 1032 1033 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1034 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17)); 1035 1036 //---------------------------------------------------------------------------------------------------- 1037 // Utility functions for bitfield manipulations 1038 1039 const intptr_t AllBits = ~0; // all bits set in a word 1040 const intptr_t NoBits = 0; // no bits set in a word 1041 const jlong NoLongBits = 0; // no bits set in a long 1042 const intptr_t OneBit = 1; // only right_most bit set in a word 1043 1044 // get a word with the n.th or the right-most or left-most n bits set 1045 // (note: #define used only so that they can be used in enum constant definitions) 1046 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1047 #define right_n_bits(n) (nth_bit(n) - 1) 1048 1049 // same as nth_bit(n), but allows handing in a type as template parameter. Allows 1050 // us to use nth_bit with 64-bit types on 32-bit platforms 1051 template<class T> inline T nth_bit_typed(int n) { 1052 return ((T)1) << n; 1053 } 1054 template<class T> inline T right_n_bits_typed(int n) { 1055 return nth_bit_typed<T>(n) - 1; 1056 } 1057 1058 // bit-operations using a mask m 1059 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1060 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1061 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1062 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1063 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1064 1065 // bit-operations using the n.th bit 1066 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1067 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1068 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1069 1070 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1071 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1072 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1073 } 1074 1075 1076 //---------------------------------------------------------------------------------------------------- 1077 // Utility functions for integers 1078 1079 // Avoid use of global min/max macros which may cause unwanted double 1080 // evaluation of arguments. 1081 #ifdef max 1082 #undef max 1083 #endif 1084 1085 #ifdef min 1086 #undef min 1087 #endif 1088 1089 // It is necessary to use templates here. Having normal overloaded 1090 // functions does not work because it is necessary to provide both 32- 1091 // and 64-bit overloaded functions, which does not work, and having 1092 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1093 // will be even more error-prone than macros. 1094 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1095 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1096 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1097 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1098 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1099 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1100 1101 #define ABS(x) asserted_abs(x, __FILE__, __LINE__) 1102 1103 template<class T> inline T asserted_abs(T x, const char* file, int line) { 1104 bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min()); 1105 #ifdef ASSERT 1106 if (!valid_arg) { 1107 report_vm_error(file, line, "ABS: argument should not allow overflow"); 1108 } 1109 #endif 1110 // Prevent exposure to UB by checking valid_arg here as well. 1111 return (x < 0 && valid_arg) ? -x : x; 1112 } 1113 1114 // Return the given value clamped to the range [min ... max] 1115 template<typename T> 1116 inline T clamp(T value, T min, T max) { 1117 assert(min <= max, "must be"); 1118 return MIN2(MAX2(value, min), max); 1119 } 1120 1121 inline bool is_odd (intx x) { return x & 1; } 1122 inline bool is_even(intx x) { return !is_odd(x); } 1123 1124 // abs methods which cannot overflow and so are well-defined across 1125 // the entire domain of integer types. 1126 static inline unsigned int g_uabs(unsigned int n) { 1127 union { 1128 unsigned int result; 1129 int value; 1130 }; 1131 result = n; 1132 if (value < 0) result = 0-result; 1133 return result; 1134 } 1135 static inline julong g_uabs(julong n) { 1136 union { 1137 julong result; 1138 jlong value; 1139 }; 1140 result = n; 1141 if (value < 0) result = 0-result; 1142 return result; 1143 } 1144 static inline julong g_uabs(jlong n) { return g_uabs((julong)n); } 1145 static inline unsigned int g_uabs(int n) { return g_uabs((unsigned int)n); } 1146 1147 // "to" should be greater than "from." 1148 inline size_t byte_size(void* from, void* to) { 1149 return pointer_delta(to, from, sizeof(char)); 1150 } 1151 1152 // Pack and extract shorts to/from ints: 1153 1154 inline u2 extract_low_short_from_int(u4 x) { 1155 return u2(x & 0xffff); 1156 } 1157 1158 inline u2 extract_high_short_from_int(u4 x) { 1159 return u2((x >> 16) & 0xffff); 1160 } 1161 1162 inline int build_int_from_shorts( u2 low, u2 high ) { 1163 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1164 } 1165 1166 // swap a & b 1167 template<class T> static void swap(T& a, T& b) { 1168 T tmp = a; 1169 a = b; 1170 b = tmp; 1171 } 1172 1173 // array_size_impl is a function that takes a reference to T[N] and 1174 // returns a reference to char[N]. It is not ODR-used, so not defined. 1175 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1176 1177 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1178 1179 //---------------------------------------------------------------------------------------------------- 1180 // Sum and product which can never overflow: they wrap, just like the 1181 // Java operations. Note that we don't intend these to be used for 1182 // general-purpose arithmetic: their purpose is to emulate Java 1183 // operations. 1184 1185 // The goal of this code to avoid undefined or implementation-defined 1186 // behavior. The use of an lvalue to reference cast is explicitly 1187 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1188 // 15 in C++03] 1189 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1190 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1191 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1192 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1193 return reinterpret_cast<TYPE&>(ures); \ 1194 } 1195 1196 JAVA_INTEGER_OP(+, java_add, jint, juint) 1197 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1198 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1199 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1200 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1201 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1202 1203 inline jint java_negate(jint v) { return java_subtract((jint) 0, v); } 1204 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); } 1205 1206 #undef JAVA_INTEGER_OP 1207 1208 // Provide integer shift operations with Java semantics. No overflow 1209 // issues - left shifts simply discard shifted out bits. No undefined 1210 // behavior for large or negative shift quantities; instead the actual 1211 // shift distance is the argument modulo the lhs value's size in bits. 1212 // No undefined or implementation defined behavior for shifting negative 1213 // values; left shift discards bits, right shift sign extends. We use 1214 // the same safe conversion technique as above for java_add and friends. 1215 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1216 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1217 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1218 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1219 XTYPE xres = static_cast<XTYPE>(lhs); \ 1220 xres OP ## = (rhs & rhs_mask); \ 1221 return reinterpret_cast<TYPE&>(xres); \ 1222 } 1223 1224 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1225 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1226 1227 // For signed shift right, assume C++ implementation >> sign extends. 1228 // 1229 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type 1230 // and a negative value, the resulting value is implementation-defined." 1231 // 1232 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of 1233 // requiring two's-complement behavior. 1234 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html 1235 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html 1236 // The corresponding C++20 text is "Right-shift on signed integral types is an 1237 // arithmetic right shift, which performs sign-extension." 1238 // 1239 // As discussed in the two's complement proposal, all known modern C++ compilers 1240 // already behave that way. And it is unlikely any would go off and do something 1241 // different now, with C++20 tightening things up. 1242 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1243 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1244 // For >>> use C++ unsigned >>. 1245 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1246 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1247 1248 #undef JAVA_INTEGER_SHIFT_OP 1249 1250 //---------------------------------------------------------------------------------------------------- 1251 // The goal of this code is to provide saturating operations for int/uint. 1252 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1253 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1254 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1255 jlong res = static_cast<jlong>(in1); \ 1256 res OP ## = static_cast<jlong>(in2); \ 1257 if (res > max_jint) { \ 1258 res = max_jint; \ 1259 } else if (res < min_jint) { \ 1260 res = min_jint; \ 1261 } \ 1262 return static_cast<int>(res); \ 1263 } 1264 1265 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1266 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1267 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1268 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1269 1270 #undef SATURATED_INTEGER_OP 1271 1272 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. 1273 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) { 1274 const uint64_t x1 = x >> 32u; 1275 const uint64_t x2 = x & 0xFFFFFFFF; 1276 const uint64_t y1 = y >> 32u; 1277 const uint64_t y2 = y & 0xFFFFFFFF; 1278 const uint64_t z2 = x2 * y2; 1279 const uint64_t t = x1 * y2 + (z2 >> 32u); 1280 uint64_t z1 = t & 0xFFFFFFFF; 1281 const uint64_t z0 = t >> 32u; 1282 z1 += x2 * y1; 1283 1284 return x1 * y1 + z0 + (z1 >> 32u); 1285 } 1286 1287 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr., 1288 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs. 1289 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) { 1290 const jlong x1 = java_shift_right((jlong)x, 32); 1291 const jlong x2 = x & 0xFFFFFFFF; 1292 const jlong y1 = java_shift_right((jlong)y, 32); 1293 const jlong y2 = y & 0xFFFFFFFF; 1294 1295 const uint64_t z2 = (uint64_t)x2 * y2; 1296 const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift 1297 int64_t z1 = t & 0xFFFFFFFF; 1298 const int64_t z0 = java_shift_right((jlong)t, 32); 1299 z1 += x2 * y1; 1300 1301 return x1 * y1 + z0 + java_shift_right((jlong)z1, 32); 1302 } 1303 1304 // Dereference vptr 1305 // All C++ compilers that we know of have the vtbl pointer in the first 1306 // word. If there are exceptions, this function needs to be made compiler 1307 // specific. 1308 static inline void* dereference_vptr(const void* addr) { 1309 return *(void**)addr; 1310 } 1311 1312 //---------------------------------------------------------------------------------------------------- 1313 // String type aliases used by command line flag declarations and 1314 // processing utilities. 1315 1316 typedef const char* ccstr; 1317 typedef const char* ccstrlist; // represents string arguments which accumulate 1318 1319 //---------------------------------------------------------------------------------------------------- 1320 // Default hash/equals functions used by HashTable 1321 1322 template<typename K> unsigned primitive_hash(const K& k) { 1323 unsigned hash = (unsigned)((uintptr_t)k); 1324 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1325 } 1326 1327 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1328 return k0 == k1; 1329 } 1330 1331 template<typename K> int primitive_compare(const K& k0, const K& k1) { 1332 return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1); 1333 } 1334 1335 //---------------------------------------------------------------------------------------------------- 1336 1337 // Allow use of C++ thread_local when approved - see JDK-8282469. 1338 #define APPROVED_CPP_THREAD_LOCAL thread_local 1339 1340 // Converts any type T to a reference type. 1341 template<typename T> 1342 std::add_rvalue_reference_t<T> declval() noexcept; 1343 1344 // Quickly test to make sure IEEE-754 subnormal numbers are correctly 1345 // handled. 1346 bool IEEE_subnormal_handling_OK(); 1347 1348 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP