1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "classfile_constants.h"
  29 #include "utilities/checkedCast.hpp"
  30 #include "utilities/compilerWarnings.hpp"
  31 #include "utilities/debug.hpp"
  32 #include "utilities/forbiddenFunctions.hpp"
  33 #include "utilities/macros.hpp"
  34 
  35 #include COMPILER_HEADER(utilities/globalDefinitions)
  36 
  37 #include <cstddef>
  38 #include <cstdint>
  39 #include <limits>
  40 #include <type_traits>
  41 
  42 class oopDesc;
  43 
  44 // Defaults for macros that might be defined per compiler.
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 
  52 #ifndef ATTRIBUTE_ALIGNED
  53 #define ATTRIBUTE_ALIGNED(x) alignas(x)
  54 #endif
  55 
  56 #ifndef ATTRIBUTE_FLATTEN
  57 #define ATTRIBUTE_FLATTEN
  58 #endif
  59 
  60 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  61 // capabilities. Choices should be led by a tradeoff between
  62 // code size and improved supportability.
  63 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  64 // to have a fallback in case hsdis is not available.
  65 #if defined(PRODUCT)
  66   #define SUPPORT_ABSTRACT_ASSEMBLY
  67   #define SUPPORT_ASSEMBLY
  68   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  69   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  70 #else
  71   #define SUPPORT_ABSTRACT_ASSEMBLY
  72   #define SUPPORT_ASSEMBLY
  73   #define SUPPORT_OPTO_ASSEMBLY
  74   #define SUPPORT_DATA_STRUCTS
  75 #endif
  76 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  77   #define SUPPORT_ABSTRACT_ASSEMBLY
  78 #endif
  79 
  80 // This file holds all globally used constants & types, class (forward)
  81 // declarations and a few frequently used utility functions.
  82 
  83 // Declare the named class to be noncopyable.  This macro must be followed by
  84 // a semi-colon.  The macro provides deleted declarations for the class's copy
  85 // constructor and assignment operator.  Because these operations are deleted,
  86 // they cannot be defined and potential callers will fail to compile.
  87 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
  88 
  89 // offset_of was a workaround for UB with offsetof uses that are no longer an
  90 // issue.  This can be removed once all uses have been converted.
  91 #define offset_of(klass, field) offsetof(klass, field)
  92 
  93 //----------------------------------------------------------------------------------------------------
  94 // Printf-style formatters for fixed- and variable-width types as pointers and
  95 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  96 // doesn't provide appropriate definitions, they should be provided in
  97 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  98 
  99 // Guide to the suffixes used in the format specifiers for integers:
 100 //        - print the decimal value:                   745565
 101 //  _X    - print as hexadecimal, without leading 0s: 0x12345
 102 //  _X_0  - print as hexadecimal, with leading 0s: 0x00012345
 103 //  _W(w) - prints w sized string with the given value right
 104 //          adjusted. Use -w to print left adjusted.
 105 //  _0    - print as hexadecimal, with leading 0s, without 0x prefix: 0012345
 106 //
 107 // Note that the PTR format specifiers print using 0x with leading zeros,
 108 // just like the _X_0 version for integers.
 109 
 110 // Format 8-bit quantities.
 111 #define INT8_FORMAT_X_0          "0x%02"      PRIx8
 112 #define UINT8_FORMAT_X_0         "0x%02"      PRIx8
 113 
 114 // Format 16-bit quantities.
 115 #define INT16_FORMAT_X_0         "0x%04"      PRIx16
 116 #define UINT16_FORMAT_X_0        "0x%04"      PRIx16
 117 
 118 // Format 32-bit quantities.
 119 #define INT32_FORMAT             "%"          PRId32
 120 #define INT32_FORMAT_X           "0x%"        PRIx32
 121 #define INT32_FORMAT_X_0         "0x%08"      PRIx32
 122 #define INT32_FORMAT_W(width)    "%"   #width PRId32
 123 #define UINT32_FORMAT            "%"          PRIu32
 124 #define UINT32_FORMAT_X          "0x%"        PRIx32
 125 #define UINT32_FORMAT_X_0        "0x%08"      PRIx32
 126 #define UINT32_FORMAT_W(width)   "%"   #width PRIu32
 127 
 128 // Format 64-bit quantities.
 129 #define INT64_FORMAT             "%"          PRId64
 130 #define INT64_PLUS_FORMAT        "%+"         PRId64
 131 #define INT64_FORMAT_X           "0x%"        PRIx64
 132 #define INT64_FORMAT_X_0         "0x%016"     PRIx64
 133 #define INT64_FORMAT_W(width)    "%"   #width PRId64
 134 #define UINT64_FORMAT            "%"          PRIu64
 135 #define UINT64_FORMAT_X          "0x%"        PRIx64
 136 #define UINT64_FORMAT_X_0        "0x%016"     PRIx64
 137 #define UINT64_FORMAT_W(width)   "%"   #width PRIu64
 138 #define UINT64_FORMAT_0          "%016"       PRIx64
 139 #define PHYS_MEM_TYPE_FORMAT     "%"          PRIu64
 140 
 141 // Format jlong, if necessary
 142 #ifndef JLONG_FORMAT
 143 #define JLONG_FORMAT             INT64_FORMAT
 144 #endif
 145 #ifndef JLONG_FORMAT_W
 146 #define JLONG_FORMAT_W(width)    INT64_FORMAT_W(width)
 147 #endif
 148 #ifndef JULONG_FORMAT
 149 #define JULONG_FORMAT            UINT64_FORMAT
 150 #endif
 151 #ifndef JULONG_FORMAT_X
 152 #define JULONG_FORMAT_X          UINT64_FORMAT_X
 153 #endif
 154 #ifndef JULONG_FORMAT_W
 155 #define JULONG_FORMAT_W(width)   UINT64_FORMAT_W(width)
 156 #endif
 157 
 158 // Format pointers and padded integral values which change size between 32- and 64-bit.
 159 #ifdef  _LP64
 160 #define INTPTR_FORMAT            "0x%016"     PRIxPTR
 161 #define PTR_FORMAT               "0x%016"     PRIxPTR
 162 #define UINTX_FORMAT_X_0         "0x%016"     PRIxPTR
 163 #define SIZE_FORMAT_X_0          "0x%016"     PRIxPTR
 164 #else   // !_LP64
 165 #define INTPTR_FORMAT            "0x%08"      PRIxPTR
 166 #define PTR_FORMAT               "0x%08"      PRIxPTR
 167 #define UINTX_FORMAT_X_0         "0x%08"      PRIxPTR
 168 #define SIZE_FORMAT_X_0          "0x%08"      PRIxPTR
 169 #endif  // _LP64
 170 
 171 // Convert pointer to intptr_t, for use in printing pointers.
 172 inline intptr_t p2i(const volatile void* p) {
 173   return (intptr_t) p;
 174 }
 175 
 176 // Convert pointer to uintptr_t
 177 inline uintptr_t p2u(const volatile void* p) {
 178   return (uintptr_t) p;
 179 }
 180 
 181 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
 182 
 183 //----------------------------------------------------------------------------------------------------
 184 // Constants
 185 
 186 const int LogBytesPerShort   = 1;
 187 const int LogBytesPerInt     = 2;
 188 #ifdef _LP64
 189 constexpr int LogBytesPerWord    = 3;
 190 #else
 191 constexpr int LogBytesPerWord    = 2;
 192 #endif
 193 const int LogBytesPerLong    = 3;
 194 
 195 const int BytesPerShort      = 1 << LogBytesPerShort;
 196 const int BytesPerInt        = 1 << LogBytesPerInt;
 197 const int BytesPerWord       = 1 << LogBytesPerWord;
 198 const int BytesPerLong       = 1 << LogBytesPerLong;
 199 
 200 constexpr int LogBitsPerByte     = 3;
 201 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 202 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 203 constexpr int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 204 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 205 
 206 const int BitsPerByte        = 1 << LogBitsPerByte;
 207 const int BitsPerShort       = 1 << LogBitsPerShort;
 208 const int BitsPerInt         = 1 << LogBitsPerInt;
 209 constexpr int BitsPerWord        = 1 << LogBitsPerWord;
 210 const int BitsPerLong        = 1 << LogBitsPerLong;
 211 
 212 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 213 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 214 
 215 const int oopSize            = sizeof(char*); // Full-width oop
 216 extern int heapOopSize;                       // Oop within a java object
 217 const int wordSize           = sizeof(char*);
 218 const int longSize           = sizeof(jlong);
 219 const int jintSize           = sizeof(jint);
 220 const int size_tSize         = sizeof(size_t);
 221 
 222 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 223 
 224 extern int LogBytesPerHeapOop;                // Oop within a java object
 225 extern int LogBitsPerHeapOop;
 226 extern int BytesPerHeapOop;
 227 extern int BitsPerHeapOop;
 228 
 229 const int BitsPerJavaInteger = 32;
 230 const int BitsPerJavaLong    = 64;
 231 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 232 
 233 // Size of a char[] needed to represent a jint as a string in decimal.
 234 const int jintAsStringSize = 12;
 235 
 236 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 237 // We require that object sizes be measured in units of heap words (e.g.
 238 // pointer-sized values), so that given HeapWord* hw,
 239 //   hw += oop(hw)->foo();
 240 // works, where foo is a method (like size or scavenge) that returns the
 241 // object size.
 242 class HeapWordImpl;             // Opaque, never defined.
 243 typedef HeapWordImpl* HeapWord;
 244 
 245 // Analogous opaque struct for metadata allocated from metaspaces.
 246 class MetaWordImpl;             // Opaque, never defined.
 247 typedef MetaWordImpl* MetaWord;
 248 
 249 // HeapWordSize must be 2^LogHeapWordSize.
 250 const int HeapWordSize        = sizeof(HeapWord);
 251 #ifdef _LP64
 252 const int LogHeapWordSize     = 3;
 253 #else
 254 const int LogHeapWordSize     = 2;
 255 #endif
 256 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 257 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 258 
 259 // The minimum number of native machine words necessary to contain "byte_size"
 260 // bytes.
 261 inline size_t heap_word_size(size_t byte_size) {
 262   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 263 }
 264 
 265 inline jfloat jfloat_cast(jint x);
 266 inline jdouble jdouble_cast(jlong x);
 267 
 268 //-------------------------------------------
 269 // Constant for jlong (standardized by C++11)
 270 
 271 // Build a 64bit integer constant
 272 #define CONST64(x)  (x ## LL)
 273 #define UCONST64(x) (x ## ULL)
 274 
 275 const jlong min_jlong = CONST64(0x8000000000000000);
 276 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 277 
 278 // for timer info max values which include all bits, 0xffffffffffffffff
 279 const jlong all_bits_jlong = ~jlong(0);
 280 
 281 //-------------------------------------------
 282 // Constant for jdouble
 283 const jlong min_jlongDouble = CONST64(0x0000000000000001);
 284 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
 285 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
 286 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
 287 
 288 const size_t K                  = 1024;
 289 const size_t M                  = K*K;
 290 const size_t G                  = M*K;
 291 
 292 // Constants for converting from a base unit to milli-base units.  For
 293 // example from seconds to milliseconds and microseconds
 294 
 295 const int MILLIUNITS    = 1000;         // milli units per base unit
 296 const int MICROUNITS    = 1000000;      // micro units per base unit
 297 const int NANOUNITS     = 1000000000;   // nano units per base unit
 298 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 299 
 300 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 301 const jint  NANOSECS_PER_MILLISEC = 1000000;
 302 
 303 
 304 // Unit conversion functions
 305 // The caller is responsible for considering overflow.
 306 
 307 inline int64_t nanos_to_millis(int64_t nanos) {
 308   return nanos / NANOUNITS_PER_MILLIUNIT;
 309 }
 310 inline int64_t millis_to_nanos(int64_t millis) {
 311   return millis * NANOUNITS_PER_MILLIUNIT;
 312 }
 313 
 314 // Proper units routines try to maintain at least three significant digits.
 315 // In worst case, it would print five significant digits with lower prefix.
 316 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 317 // and therefore we need to be careful.
 318 
 319 inline const char* proper_unit_for_byte_size(size_t s) {
 320 #ifdef _LP64
 321   if (s >= 100*G) {
 322     return "G";
 323   }
 324 #endif
 325   if (s >= 100*M) {
 326     return "M";
 327   } else if (s >= 100*K) {
 328     return "K";
 329   } else {
 330     return "B";
 331   }
 332 }
 333 
 334 template <class T>
 335 inline T byte_size_in_proper_unit(T s) {
 336 #ifdef _LP64
 337   if (s >= 100*G) {
 338     return (T)(s/G);
 339   }
 340 #endif
 341   if (s >= 100*M) {
 342     return (T)(s/M);
 343   } else if (s >= 100*K) {
 344     return (T)(s/K);
 345   } else {
 346     return s;
 347   }
 348 }
 349 
 350 #define PROPERFMT             "%zu%s"
 351 #define PROPERFMTARGS(s)      byte_size_in_proper_unit<size_t>(s), proper_unit_for_byte_size(s)
 352 
 353 // Printing a range, with start and bytes given
 354 #define RANGEFMT              "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 355 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size
 356 
 357 // Printing a range, with start and end given
 358 #define RANGE2FMT             "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 359 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1)
 360 
 361 inline const char* exact_unit_for_byte_size(size_t s) {
 362 #ifdef _LP64
 363   if (s >= G && (s % G) == 0) {
 364     return "G";
 365   }
 366 #endif
 367   if (s >= M && (s % M) == 0) {
 368     return "M";
 369   }
 370   if (s >= K && (s % K) == 0) {
 371     return "K";
 372   }
 373   return "B";
 374 }
 375 
 376 inline size_t byte_size_in_exact_unit(size_t s) {
 377 #ifdef _LP64
 378   if (s >= G && (s % G) == 0) {
 379     return s / G;
 380   }
 381 #endif
 382   if (s >= M && (s % M) == 0) {
 383     return s / M;
 384   }
 385   if (s >= K && (s % K) == 0) {
 386     return s / K;
 387   }
 388   return s;
 389 }
 390 
 391 #define EXACTFMT            "%zu%s"
 392 #define EXACTFMTARGS(s)     byte_size_in_exact_unit(s), exact_unit_for_byte_size(s)
 393 
 394 // Memory size transition formatting.
 395 
 396 #define HEAP_CHANGE_FORMAT "%s: %zuK(%zuK)->%zuK(%zuK)"
 397 
 398 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 399   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 400 
 401 //----------------------------------------------------------------------------------------------------
 402 // VM type definitions
 403 
 404 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 405 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 406 
 407 typedef intptr_t  intx;
 408 typedef uintptr_t uintx;
 409 
 410 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 411 const intx  max_intx  = (uintx)min_intx - 1;
 412 const uintx max_uintx = (uintx)-1;
 413 
 414 // Table of values:
 415 //      sizeof intx         4               8
 416 // min_intx             0x80000000      0x8000000000000000
 417 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 418 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 419 
 420 typedef unsigned int uint;   NEEDS_CLEANUP
 421 
 422 // This typedef is to address the issue of running a 32-bit VM. In this case the amount
 423 // of physical memory may not fit in size_t, so we have to have a larger type. Once 32-bit
 424 // is deprecated, one can use size_t.
 425 typedef uint64_t physical_memory_size_type;
 426 
 427 //----------------------------------------------------------------------------------------------------
 428 // Java type definitions
 429 
 430 // All kinds of 'plain' byte addresses
 431 typedef   signed char s_char;
 432 typedef unsigned char u_char;
 433 typedef u_char*       address;
 434 typedef const u_char* const_address;
 435 
 436 // Pointer subtraction.
 437 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 438 // the range we might need to find differences from one end of the heap
 439 // to the other.
 440 // A typical use might be:
 441 //     if (pointer_delta(end(), top()) >= size) {
 442 //       // enough room for an object of size
 443 //       ...
 444 // and then additions like
 445 //       ... top() + size ...
 446 // are safe because we know that top() is at least size below end().
 447 inline size_t pointer_delta(const volatile void* left,
 448                             const volatile void* right,
 449                             size_t element_size) {
 450   assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
 451   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 452 }
 453 
 454 // A version specialized for HeapWord*'s.
 455 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 456   return pointer_delta(left, right, sizeof(HeapWord));
 457 }
 458 // A version specialized for MetaWord*'s.
 459 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 460   return pointer_delta(left, right, sizeof(MetaWord));
 461 }
 462 
 463 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that
 464 // returns a non-negative int, usually used as a size of a code buffer range.
 465 // This scales to sizeof(T).
 466 template <typename T>
 467 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) {
 468   size_t delta = pointer_delta(left, right, sizeof(T));
 469   assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta);
 470   return static_cast<int>(delta);
 471 }
 472 
 473 //
 474 // ANSI C++ does not allow casting from one pointer type to a function pointer
 475 // directly without at best a warning. This macro accomplishes it silently
 476 // In every case that is present at this point the value be cast is a pointer
 477 // to a C linkage function. In some case the type used for the cast reflects
 478 // that linkage and a picky compiler would not complain. In other cases because
 479 // there is no convenient place to place a typedef with extern C linkage (i.e
 480 // a platform dependent header file) it doesn't. At this point no compiler seems
 481 // picky enough to catch these instances (which are few). It is possible that
 482 // using templates could fix these for all cases. This use of templates is likely
 483 // so far from the middle of the road that it is likely to be problematic in
 484 // many C++ compilers.
 485 //
 486 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 487 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr)))
 488 
 489 // Need the correct linkage to call qsort without warnings
 490 extern "C" {
 491   typedef int (*_sort_Fn)(const void *, const void *);
 492 }
 493 
 494 // Additional Java basic types
 495 
 496 typedef uint8_t  jubyte;
 497 typedef uint16_t jushort;
 498 typedef uint32_t juint;
 499 typedef uint64_t julong;
 500 
 501 // Unsigned byte types for os and stream.hpp
 502 
 503 // Unsigned one, two, four and eight byte quantities used for describing
 504 // the .class file format. See JVM book chapter 4.
 505 
 506 typedef jubyte  u1;
 507 typedef jushort u2;
 508 typedef juint   u4;
 509 typedef julong  u8;
 510 
 511 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 512 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 513 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 514 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 515 
 516 typedef jbyte  s1;
 517 typedef jshort s2;
 518 typedef jint   s4;
 519 typedef jlong  s8;
 520 
 521 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 522 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 523 const jshort min_jshort = -(1 << 15);    // smallest jshort
 524 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 525 
 526 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 527 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 528 
 529 const jint min_jintFloat = (jint)(0x00000001);
 530 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
 531 const jint max_jintFloat = (jint)(0x7f7fffff);
 532 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
 533 
 534 const jshort max_jfloat16 = 31743;
 535 const jshort min_jfloat16 = 1;
 536 const jshort one_jfloat16 = 15360;
 537 const jshort pos_inf_jfloat16 = 31744;
 538 const jshort neg_inf_jfloat16 = -1024;
 539 // A named constant for the integral representation of a Java null.
 540 const intptr_t NULL_WORD = 0;
 541 
 542 //----------------------------------------------------------------------------------------------------
 543 // JVM spec restrictions
 544 
 545 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 546 const int max_method_parameter_length = 255; // JVM spec, 22nd ed. section 4.3.3 (p.83)
 547 
 548 //----------------------------------------------------------------------------------------------------
 549 // old CDS options
 550 extern bool RequireSharedSpaces;
 551 extern "C" {
 552 // Make sure UseSharedSpaces is accessible to the serviceability agent.
 553 extern JNIEXPORT jboolean UseSharedSpaces;
 554 }
 555 
 556 //----------------------------------------------------------------------------------------------------
 557 // Object alignment, in units of HeapWords.
 558 //
 559 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 560 // reference fields can be naturally aligned.
 561 
 562 extern int MinObjAlignment;
 563 extern int MinObjAlignmentInBytes;
 564 extern int MinObjAlignmentInBytesMask;
 565 
 566 extern int LogMinObjAlignment;
 567 extern int LogMinObjAlignmentInBytes;
 568 
 569 // Maximal size of heap where unscaled compression can be used. Also upper bound
 570 // for heap placement: 4GB.
 571 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 572 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 573 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 574 extern uint64_t OopEncodingHeapMax;
 575 
 576 // Machine dependent stuff
 577 
 578 #include CPU_HEADER(globalDefinitions)
 579 
 580 // The maximum size of the code cache.  Can be overridden by targets.
 581 #ifndef CODE_CACHE_SIZE_LIMIT
 582 #define CODE_CACHE_SIZE_LIMIT (2*G)
 583 #endif
 584 
 585 // Allow targets to reduce the default size of the code cache.
 586 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 587 
 588 // To assure the IRIW property on processors that are not multiple copy
 589 // atomic, sync instructions must be issued between volatile reads to
 590 // assure their ordering, instead of after volatile stores.
 591 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 592 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 593 #ifdef CPU_MULTI_COPY_ATOMIC
 594 // Not needed.
 595 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 596 #else
 597 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 598 // Final decision is subject to JEP 188: Java Memory Model Update.
 599 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 600 #endif
 601 
 602 // The expected size in bytes of a cache line.
 603 #ifndef DEFAULT_CACHE_LINE_SIZE
 604 #error "Platform should define DEFAULT_CACHE_LINE_SIZE"
 605 #endif
 606 
 607 // The default padding size for data structures to avoid false sharing.
 608 #ifndef DEFAULT_PADDING_SIZE
 609 #error "Platform should define DEFAULT_PADDING_SIZE"
 610 #endif
 611 
 612 
 613 //----------------------------------------------------------------------------------------------------
 614 // Miscellaneous
 615 
 616 // 6302670 Eliminate Hotspot __fabsf dependency
 617 // All fabs() callers should call this function instead, which will implicitly
 618 // convert the operand to double, avoiding a dependency on __fabsf which
 619 // doesn't exist in early versions of Solaris 8.
 620 inline double fabsd(double value) {
 621   return fabs(value);
 622 }
 623 
 624 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 625 // is zero, return 0.0.
 626 template<typename T>
 627 inline double percent_of(T numerator, T denominator) {
 628   return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0;
 629 }
 630 
 631 //----------------------------------------------------------------------------------------------------
 632 // Special casts
 633 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 634 typedef union {
 635   jfloat f;
 636   jint i;
 637 } FloatIntConv;
 638 
 639 typedef union {
 640   jdouble d;
 641   jlong l;
 642   julong ul;
 643 } DoubleLongConv;
 644 
 645 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 646 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 647 
 648 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 649 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 650 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 651 
 652 inline jint low (jlong value)                    { return jint(value); }
 653 inline jint high(jlong value)                    { return jint(value >> 32); }
 654 
 655 inline jlong jlong_from(jint h, jint l) {
 656   // First cast jint values to juint, so cast to julong will zero-extend.
 657   julong high = (julong)(juint)h << 32;
 658   julong low = (julong)(juint)l;
 659   return (jlong)(high | low);
 660 }
 661 
 662 union jlong_accessor {
 663   jint  words[2];
 664   jlong long_value;
 665 };
 666 
 667 void basic_types_init(); // cannot define here; uses assert
 668 
 669 
 670 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 671 enum BasicType : u1 {
 672 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 673   T_BOOLEAN     = JVM_T_BOOLEAN,
 674   T_CHAR        = JVM_T_CHAR,
 675   T_FLOAT       = JVM_T_FLOAT,
 676   T_DOUBLE      = JVM_T_DOUBLE,
 677   T_BYTE        = JVM_T_BYTE,
 678   T_SHORT       = JVM_T_SHORT,
 679   T_INT         = JVM_T_INT,
 680   T_LONG        = JVM_T_LONG,
 681   // The remaining values are not part of any standard.
 682   // T_OBJECT and T_VOID denote two more semantic choices
 683   // for method return values.
 684   // T_OBJECT and T_ARRAY describe signature syntax.
 685   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 686   // internal references within the JVM as if they were Java
 687   // types in their own right.
 688   T_OBJECT      = 12,
 689   T_ARRAY       = 13,
 690   T_VOID        = 14,
 691   T_ADDRESS     = 15,
 692   T_NARROWOOP   = 16,
 693   T_METADATA    = 17,
 694   T_NARROWKLASS = 18,
 695   T_CONFLICT    = 19, // for stack value type with conflicting contents
 696   T_ILLEGAL     = 99
 697 };
 698 
 699 #define SIGNATURE_TYPES_DO(F, N)                \
 700     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 701     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 702     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 703     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 704     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 705     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 706     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 707     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 708     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 709     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 710     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 711     /*end*/
 712 
 713 inline bool is_java_type(BasicType t) {
 714   return T_BOOLEAN <= t && t <= T_VOID;
 715 }
 716 
 717 inline bool is_java_primitive(BasicType t) {
 718   return T_BOOLEAN <= t && t <= T_LONG;
 719 }
 720 
 721 inline bool is_subword_type(BasicType t) {
 722   // these guys are processed exactly like T_INT in calling sequences:
 723   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 724 }
 725 
 726 inline bool is_signed_subword_type(BasicType t) {
 727   return (t == T_BYTE || t == T_SHORT);
 728 }
 729 
 730 inline bool is_unsigned_subword_type(BasicType t) {
 731   return (t == T_BOOLEAN || t == T_CHAR);
 732 }
 733 
 734 inline bool is_double_word_type(BasicType t) {
 735   return (t == T_DOUBLE || t == T_LONG);
 736 }
 737 
 738 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) {
 739   return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP));
 740 }
 741 
 742 inline bool is_integral_type(BasicType t) {
 743   return is_subword_type(t) || t == T_INT || t == T_LONG;
 744 }
 745 
 746 inline bool is_non_subword_integral_type(BasicType t) {
 747   return t == T_INT || t == T_LONG;
 748 }
 749 
 750 inline bool is_floating_point_type(BasicType t) {
 751   return (t == T_FLOAT || t == T_DOUBLE);
 752 }
 753 
 754 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 755 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 756 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 757 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a char*
 758 extern BasicType name2type(const char* name);
 759 
 760 const char* type2name(BasicType t);
 761 
 762 inline jlong max_signed_integer(BasicType bt) {
 763   if (bt == T_INT) {
 764     return max_jint;
 765   }
 766   assert(bt == T_LONG, "unsupported");
 767   return max_jlong;
 768 }
 769 
 770 inline jlong min_signed_integer(BasicType bt) {
 771   if (bt == T_INT) {
 772     return min_jint;
 773   }
 774   assert(bt == T_LONG, "unsupported");
 775   return min_jlong;
 776 }
 777 
 778 inline julong max_unsigned_integer(BasicType bt) {
 779   if (bt == T_INT) {
 780     return max_juint;
 781   }
 782   assert(bt == T_LONG, "unsupported");
 783   return max_julong;
 784 }
 785 
 786 inline uint bits_per_java_integer(BasicType bt) {
 787   if (bt == T_INT) {
 788     return BitsPerJavaInteger;
 789   }
 790   assert(bt == T_LONG, "int or long only");
 791   return BitsPerJavaLong;
 792 }
 793 
 794 // Auxiliary math routines
 795 // least common multiple
 796 extern size_t lcm(size_t a, size_t b);
 797 
 798 
 799 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 800 enum BasicTypeSize {
 801   T_BOOLEAN_size     = 1,
 802   T_CHAR_size        = 1,
 803   T_FLOAT_size       = 1,
 804   T_DOUBLE_size      = 2,
 805   T_BYTE_size        = 1,
 806   T_SHORT_size       = 1,
 807   T_INT_size         = 1,
 808   T_LONG_size        = 2,
 809   T_OBJECT_size      = 1,
 810   T_ARRAY_size       = 1,
 811   T_NARROWOOP_size   = 1,
 812   T_NARROWKLASS_size = 1,
 813   T_VOID_size        = 0
 814 };
 815 
 816 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 817 inline int parameter_type_word_count(BasicType t) {
 818   if (is_double_word_type(t))  return 2;
 819   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 820   assert(type2size[t] == 1, "must be");
 821   return 1;
 822 }
 823 
 824 // maps a BasicType to its instance field storage type:
 825 // all sub-word integral types are widened to T_INT
 826 extern BasicType type2field[T_CONFLICT+1];
 827 extern BasicType type2wfield[T_CONFLICT+1];
 828 
 829 
 830 // size in bytes
 831 enum ArrayElementSize {
 832   T_BOOLEAN_aelem_bytes     = 1,
 833   T_CHAR_aelem_bytes        = 2,
 834   T_FLOAT_aelem_bytes       = 4,
 835   T_DOUBLE_aelem_bytes      = 8,
 836   T_BYTE_aelem_bytes        = 1,
 837   T_SHORT_aelem_bytes       = 2,
 838   T_INT_aelem_bytes         = 4,
 839   T_LONG_aelem_bytes        = 8,
 840 #ifdef _LP64
 841   T_OBJECT_aelem_bytes      = 8,
 842   T_ARRAY_aelem_bytes       = 8,
 843 #else
 844   T_OBJECT_aelem_bytes      = 4,
 845   T_ARRAY_aelem_bytes       = 4,
 846 #endif
 847   T_NARROWOOP_aelem_bytes   = 4,
 848   T_NARROWKLASS_aelem_bytes = 4,
 849   T_VOID_aelem_bytes        = 0
 850 };
 851 
 852 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 853 #ifdef ASSERT
 854 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 855 #else
 856 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 857 #endif
 858 
 859 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) {
 860   return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2));
 861 }
 862 
 863 // JavaValue serves as a container for arbitrary Java values.
 864 
 865 class JavaValue {
 866 
 867  public:
 868   typedef union JavaCallValue {
 869     jfloat   f;
 870     jdouble  d;
 871     jint     i;
 872     jlong    l;
 873     jobject  h;
 874     oopDesc* o;
 875   } JavaCallValue;
 876 
 877  private:
 878   BasicType _type;
 879   JavaCallValue _value;
 880 
 881  public:
 882   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 883 
 884   JavaValue(jfloat value) {
 885     _type    = T_FLOAT;
 886     _value.f = value;
 887   }
 888 
 889   JavaValue(jdouble value) {
 890     _type    = T_DOUBLE;
 891     _value.d = value;
 892   }
 893 
 894  jfloat get_jfloat() const { return _value.f; }
 895  jdouble get_jdouble() const { return _value.d; }
 896  jint get_jint() const { return _value.i; }
 897  jlong get_jlong() const { return _value.l; }
 898  jobject get_jobject() const { return _value.h; }
 899  oopDesc* get_oop() const { return _value.o; }
 900  JavaCallValue* get_value_addr() { return &_value; }
 901  BasicType get_type() const { return _type; }
 902 
 903  void set_jfloat(jfloat f) { _value.f = f;}
 904  void set_jdouble(jdouble d) { _value.d = d;}
 905  void set_jint(jint i) { _value.i = i;}
 906  void set_jshort(jshort i) { _value.i = i;}
 907  void set_jlong(jlong l) { _value.l = l;}
 908  void set_jobject(jobject h) { _value.h = h;}
 909  void set_oop(oopDesc* o) { _value.o = o;}
 910  void set_type(BasicType t) { _type = t; }
 911 
 912  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 913  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 914  jchar get_jchar() const { return (jchar) (_value.i);}
 915  jshort get_jshort() const { return (jshort) (_value.i);}
 916 
 917 };
 918 
 919 
 920 // TosState describes the top-of-stack state before and after the execution of
 921 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 922 // registers. The TosState corresponds to the 'machine representation' of this cached
 923 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 924 // as well as a 5th state in case the top-of-stack value is actually on the top
 925 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 926 // state when it comes to machine representation but is used separately for (oop)
 927 // type specific operations (e.g. verification code).
 928 
 929 enum TosState {         // describes the tos cache contents
 930   btos = 0,             // byte, bool tos cached
 931   ztos = 1,             // byte, bool tos cached
 932   ctos = 2,             // char tos cached
 933   stos = 3,             // short tos cached
 934   itos = 4,             // int tos cached
 935   ltos = 5,             // long tos cached
 936   ftos = 6,             // float tos cached
 937   dtos = 7,             // double tos cached
 938   atos = 8,             // object cached
 939   vtos = 9,             // tos not cached
 940   number_of_states,
 941   ilgl                  // illegal state: should not occur
 942 };
 943 
 944 
 945 inline TosState as_TosState(BasicType type) {
 946   switch (type) {
 947     case T_BYTE   : return btos;
 948     case T_BOOLEAN: return ztos;
 949     case T_CHAR   : return ctos;
 950     case T_SHORT  : return stos;
 951     case T_INT    : return itos;
 952     case T_LONG   : return ltos;
 953     case T_FLOAT  : return ftos;
 954     case T_DOUBLE : return dtos;
 955     case T_VOID   : return vtos;
 956     case T_ARRAY  : // fall through
 957     case T_OBJECT : return atos;
 958     default       : return ilgl;
 959   }
 960 }
 961 
 962 inline BasicType as_BasicType(TosState state) {
 963   switch (state) {
 964     case btos : return T_BYTE;
 965     case ztos : return T_BOOLEAN;
 966     case ctos : return T_CHAR;
 967     case stos : return T_SHORT;
 968     case itos : return T_INT;
 969     case ltos : return T_LONG;
 970     case ftos : return T_FLOAT;
 971     case dtos : return T_DOUBLE;
 972     case atos : return T_OBJECT;
 973     case vtos : return T_VOID;
 974     default   : return T_ILLEGAL;
 975   }
 976 }
 977 
 978 
 979 // Helper function to convert BasicType info into TosState
 980 // Note: Cannot define here as it uses global constant at the time being.
 981 TosState as_TosState(BasicType type);
 982 
 983 
 984 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 985 // information is needed by the safepoint code.
 986 //
 987 // There are 4 essential states:
 988 //
 989 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 990 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 991 //  _thread_in_vm       : Executing in the vm
 992 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 993 //
 994 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 995 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 996 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 997 //
 998 // Given a state, the xxxx_trans state can always be found by adding 1.
 999 //
1000 enum JavaThreadState {
1001   _thread_uninitialized     =  0, // should never happen (missing initialization)
1002   _thread_new               =  2, // just starting up, i.e., in process of being initialized
1003   _thread_new_trans         =  3, // corresponding transition state (not used, included for completeness)
1004   _thread_in_native         =  4, // running in native code
1005   _thread_in_native_trans   =  5, // corresponding transition state
1006   _thread_in_vm             =  6, // running in VM
1007   _thread_in_vm_trans       =  7, // corresponding transition state
1008   _thread_in_Java           =  8, // running in Java or in stub code
1009   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completeness)
1010   _thread_blocked           = 10, // blocked in vm
1011   _thread_blocked_trans     = 11, // corresponding transition state
1012   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
1013 };
1014 
1015 //----------------------------------------------------------------------------------------------------
1016 // Special constants for debugging
1017 
1018 const jint     badInt             = -3;                     // generic "bad int" value
1019 const intptr_t badAddressVal      = -2;                     // generic "bad address" value
1020 const intptr_t badOopVal          = -1;                     // generic "bad oop" value
1021 const intptr_t badHeapOopVal      = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1022 const int      badStackSegVal     = 0xCA;                   // value used to zap stack segments
1023 const int      badHandleValue     = 0xBC;                   // value used to zap vm handle area
1024 const int      badResourceValue   = 0xAB;                   // value used to zap resource area
1025 const int      freeBlockPad       = 0xBA;                   // value used to pad freed blocks.
1026 const int      uninitBlockPad     = 0xF1;                   // value used to zap newly malloc'd blocks.
1027 const juint    uninitMetaWordVal  = 0xf7f7f7f7;             // value used to zap newly allocated metachunk
1028 const jubyte   heapPaddingByteVal = 0xBD;                   // value used to zap object padding in the heap
1029 const juint    badHeapWordVal     = 0xBAADBABE;             // value used to zap heap after GC
1030 const int      badCodeHeapNewVal  = 0xCC;                   // value used to zap Code heap at allocation
1031 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1032 const intptr_t badDispHeaderDeopt = 0xDE0BD000;             // value to fill unused displaced header during deoptimization
1033 const intptr_t badDispHeaderOSR   = 0xDEAD05A0;             // value to fill unused displaced header during OSR
1034 
1035 // (These must be implemented as #defines because C++ compilers are
1036 // not obligated to inline non-integral constants!)
1037 #define       badAddress        ((address)::badAddressVal)
1038 #define       badHeapWord       (::badHeapWordVal)
1039 
1040 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1041 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17));
1042 
1043 //----------------------------------------------------------------------------------------------------
1044 // Utility functions for bitfield manipulations
1045 
1046 const intptr_t AllBits    = ~0; // all bits set in a word
1047 const intptr_t NoBits     =  0; // no bits set in a word
1048 const jlong    NoLongBits =  0; // no bits set in a long
1049 const intptr_t OneBit     =  1; // only right_most bit set in a word
1050 
1051 // get a word with the n.th or the right-most or left-most n bits set
1052 // (note: #define used only so that they can be used in enum constant definitions)
1053 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1054 #define right_n_bits(n)   (nth_bit(n) - 1)
1055 
1056 // same as nth_bit(n), but allows handing in a type as template parameter. Allows
1057 // us to use nth_bit with 64-bit types on 32-bit platforms
1058 template<class T> inline T nth_bit_typed(int n) {
1059   return ((T)1) << n;
1060 }
1061 template<class T> inline T right_n_bits_typed(int n) {
1062   return nth_bit_typed<T>(n) - 1;
1063 }
1064 
1065 // bit-operations using a mask m
1066 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1067 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1068 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1069 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1070 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1071 
1072 // bit-operations using the n.th bit
1073 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1074 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1075 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1076 
1077 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1078 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1079   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1080 }
1081 
1082 
1083 //----------------------------------------------------------------------------------------------------
1084 // Utility functions for integers
1085 
1086 // Avoid use of global min/max macros which may cause unwanted double
1087 // evaluation of arguments.
1088 #ifdef max
1089 #undef max
1090 #endif
1091 
1092 #ifdef min
1093 #undef min
1094 #endif
1095 
1096 // It is necessary to use templates here. Having normal overloaded
1097 // functions does not work because it is necessary to provide both 32-
1098 // and 64-bit overloaded functions, which does not work, and having
1099 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1100 // will be even more error-prone than macros.
1101 template<class T> constexpr T MAX2(T a, T b)           { return (a > b) ? a : b; }
1102 template<class T> constexpr T MIN2(T a, T b)           { return (a < b) ? a : b; }
1103 template<class T> constexpr T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1104 template<class T> constexpr T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1105 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1106 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1107 
1108 #define ABS(x) asserted_abs(x, __FILE__, __LINE__)
1109 
1110 template<class T> inline T asserted_abs(T x, const char* file, int line) {
1111   bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min());
1112 #ifdef ASSERT
1113   if (!valid_arg) {
1114     report_vm_error(file, line, "ABS: argument should not allow overflow");
1115   }
1116 #endif
1117   // Prevent exposure to UB by checking valid_arg here as well.
1118   return (x < 0 && valid_arg) ? -x : x;
1119 }
1120 
1121 // Return the given value clamped to the range [min ... max]
1122 template<typename T>
1123 inline T clamp(T value, T min, T max) {
1124   assert(min <= max, "must be");
1125   return MIN2(MAX2(value, min), max);
1126 }
1127 
1128 inline bool is_odd (intx x) { return x & 1;      }
1129 inline bool is_even(intx x) { return !is_odd(x); }
1130 
1131 // abs methods which cannot overflow and so are well-defined across
1132 // the entire domain of integer types.
1133 static inline unsigned int g_uabs(unsigned int n) {
1134   union {
1135     unsigned int result;
1136     int value;
1137   };
1138   result = n;
1139   if (value < 0) result = 0-result;
1140   return result;
1141 }
1142 static inline julong g_uabs(julong n) {
1143   union {
1144     julong result;
1145     jlong value;
1146   };
1147   result = n;
1148   if (value < 0) result = 0-result;
1149   return result;
1150 }
1151 static inline julong g_uabs(jlong n) { return g_uabs((julong)n); }
1152 static inline unsigned int g_uabs(int n) { return g_uabs((unsigned int)n); }
1153 
1154 // "to" should be greater than "from."
1155 inline size_t byte_size(void* from, void* to) {
1156   return pointer_delta(to, from, sizeof(char));
1157 }
1158 
1159 // Pack and extract shorts to/from ints:
1160 
1161 inline u2 extract_low_short_from_int(u4 x) {
1162   return u2(x & 0xffff);
1163 }
1164 
1165 inline u2 extract_high_short_from_int(u4 x) {
1166   return u2((x >> 16) & 0xffff);
1167 }
1168 
1169 inline int build_int_from_shorts( u2 low, u2 high ) {
1170   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1171 }
1172 
1173 // swap a & b
1174 template<class T> static void swap(T& a, T& b) {
1175   T tmp = a;
1176   a = b;
1177   b = tmp;
1178 }
1179 
1180 // array_size_impl is a function that takes a reference to T[N] and
1181 // returns a reference to char[N].  It is not ODR-used, so not defined.
1182 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1183 
1184 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1185 
1186 //----------------------------------------------------------------------------------------------------
1187 // Sum and product which can never overflow: they wrap, just like the
1188 // Java operations.  Note that we don't intend these to be used for
1189 // general-purpose arithmetic: their purpose is to emulate Java
1190 // operations.
1191 
1192 // The goal of this code to avoid undefined or implementation-defined
1193 // behavior.  The use of an lvalue to reference cast is explicitly
1194 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1195 // 15 in C++03]
1196 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1197 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1198   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1199   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1200   return reinterpret_cast<TYPE&>(ures);                 \
1201 }
1202 
1203 JAVA_INTEGER_OP(+, java_add, jint, juint)
1204 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1205 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1206 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1207 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1208 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1209 
1210 inline jint  java_negate(jint  v) { return java_subtract((jint) 0, v); }
1211 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); }
1212 
1213 #undef JAVA_INTEGER_OP
1214 
1215 // Provide integer shift operations with Java semantics.  No overflow
1216 // issues - left shifts simply discard shifted out bits.  No undefined
1217 // behavior for large or negative shift quantities; instead the actual
1218 // shift distance is the argument modulo the lhs value's size in bits.
1219 // No undefined or implementation defined behavior for shifting negative
1220 // values; left shift discards bits, right shift sign extends.  We use
1221 // the same safe conversion technique as above for java_add and friends.
1222 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1223 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1224   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1225   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1226   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1227   xres OP ## = (rhs & rhs_mask);                        \
1228   return reinterpret_cast<TYPE&>(xres);                 \
1229 }
1230 
1231 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1232 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1233 
1234 // For signed shift right, assume C++ implementation >> sign extends.
1235 //
1236 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type
1237 // and a negative value, the resulting value is implementation-defined."
1238 //
1239 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of
1240 // requiring two's-complement behavior.
1241 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html
1242 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html
1243 // The corresponding C++20 text is "Right-shift on signed integral types is an
1244 // arithmetic right shift, which performs sign-extension."
1245 //
1246 // As discussed in the two's complement proposal, all known modern C++ compilers
1247 // already behave that way. And it is unlikely any would go off and do something
1248 // different now, with C++20 tightening things up.
1249 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1250 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1251 // For >>> use C++ unsigned >>.
1252 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1253 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1254 
1255 #undef JAVA_INTEGER_SHIFT_OP
1256 
1257 inline jlong java_negate(jlong v, BasicType bt) {
1258   if (bt == T_INT) {
1259     return java_negate(checked_cast<jint>(v));
1260   }
1261   assert(bt == T_LONG, "int or long only");
1262   return java_negate(v);
1263 }
1264 
1265 // Some convenient bit shift operations that accepts a BasicType as the last
1266 // argument. These avoid potential mistakes with overloaded functions only
1267 // distinguished by lhs argument type.
1268 #define JAVA_INTEGER_SHIFT_BASIC_TYPE(FUNC)            \
1269 inline jlong FUNC(jlong lhs, jint rhs, BasicType bt) { \
1270   if (bt == T_INT) {                                   \
1271     return FUNC(checked_cast<jint>(lhs), rhs);         \
1272   }                                                    \
1273   assert(bt == T_LONG, "unsupported basic type");      \
1274   return FUNC(lhs, rhs);                              \
1275 }
1276 
1277 JAVA_INTEGER_SHIFT_BASIC_TYPE(java_shift_left)
1278 JAVA_INTEGER_SHIFT_BASIC_TYPE(java_shift_right)
1279 JAVA_INTEGER_SHIFT_BASIC_TYPE(java_shift_right_unsigned)
1280 
1281 #undef JAVA_INTERGER_SHIFT_BASIC_TYPE
1282 
1283 //----------------------------------------------------------------------------------------------------
1284 // The goal of this code is to provide saturating operations for int/uint.
1285 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1286 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1287 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1288   jlong res = static_cast<jlong>(in1);               \
1289   res OP ## = static_cast<jlong>(in2);               \
1290   if (res > max_jint) {                              \
1291     res = max_jint;                                  \
1292   } else if (res < min_jint) {                       \
1293     res = min_jint;                                  \
1294   }                                                  \
1295   return static_cast<int>(res);                      \
1296 }
1297 
1298 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1299 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1300 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1301 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1302 
1303 #undef SATURATED_INTEGER_OP
1304 
1305 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1306 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) {
1307   const uint64_t x1 = x >> 32u;
1308   const uint64_t x2 = x & 0xFFFFFFFF;
1309   const uint64_t y1 = y >> 32u;
1310   const uint64_t y2 = y & 0xFFFFFFFF;
1311   const uint64_t z2 = x2 * y2;
1312   const uint64_t t = x1 * y2 + (z2 >> 32u);
1313   uint64_t z1 = t & 0xFFFFFFFF;
1314   const uint64_t z0 = t >> 32u;
1315   z1 += x2 * y1;
1316 
1317   return x1 * y1 + z0 + (z1 >> 32u);
1318 }
1319 
1320 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr.,
1321 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs.
1322 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) {
1323   const jlong x1 = java_shift_right((jlong)x, 32);
1324   const jlong x2 = x & 0xFFFFFFFF;
1325   const jlong y1 = java_shift_right((jlong)y, 32);
1326   const jlong y2 = y & 0xFFFFFFFF;
1327 
1328   const uint64_t z2 = (uint64_t)x2 * y2;
1329   const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift
1330   int64_t z1 = t & 0xFFFFFFFF;
1331   const int64_t z0 = java_shift_right((jlong)t, 32);
1332   z1 += x2 * y1;
1333 
1334   return x1 * y1 + z0 + java_shift_right((jlong)z1, 32);
1335 }
1336 
1337 // Dereference vptr
1338 // All C++ compilers that we know of have the vtbl pointer in the first
1339 // word.  If there are exceptions, this function needs to be made compiler
1340 // specific.
1341 static inline void* dereference_vptr(const void* addr) {
1342   return *(void**)addr;
1343 }
1344 
1345 //----------------------------------------------------------------------------------------------------
1346 // String type aliases used by command line flag declarations and
1347 // processing utilities.
1348 
1349 typedef const char* ccstr;
1350 typedef const char* ccstrlist;   // represents string arguments which accumulate
1351 
1352 //----------------------------------------------------------------------------------------------------
1353 // Default hash/equals functions used by HashTable
1354 
1355 template<typename K> unsigned primitive_hash(const K& k) {
1356   unsigned hash = (unsigned)((uintptr_t)k);
1357   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1358 }
1359 
1360 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1361   return k0 == k1;
1362 }
1363 
1364 template<typename K> int primitive_compare(const K& k0, const K& k1) {
1365   return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1);
1366 }
1367 
1368 //----------------------------------------------------------------------------------------------------
1369 
1370 // Allow use of C++ thread_local when approved - see JDK-8282469.
1371 #define APPROVED_CPP_THREAD_LOCAL thread_local
1372 
1373 // Converts any type T to a reference type.
1374 template<typename T>
1375 std::add_rvalue_reference_t<T> declval() noexcept;
1376 
1377 // Quickly test to make sure IEEE-754 subnormal numbers are correctly
1378 // handled.
1379 bool IEEE_subnormal_handling_OK();
1380 
1381 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP