1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "classfile_constants.h"
  29 #include "utilities/compilerWarnings.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/forbiddenFunctions.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 #include COMPILER_HEADER(utilities/globalDefinitions)
  35 
  36 #include <cstddef>
  37 #include <cstdint>
  38 #include <limits>
  39 #include <type_traits>
  40 
  41 class oopDesc;
  42 
  43 // Defaults for macros that might be defined per compiler.
  44 #ifndef NOINLINE
  45 #define NOINLINE
  46 #endif
  47 #ifndef ALWAYSINLINE
  48 #define ALWAYSINLINE inline
  49 #endif
  50 
  51 #ifndef ATTRIBUTE_ALIGNED
  52 #define ATTRIBUTE_ALIGNED(x) alignas(x)
  53 #endif
  54 
  55 #ifndef ATTRIBUTE_FLATTEN
  56 #define ATTRIBUTE_FLATTEN
  57 #endif
  58 
  59 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  60 // capabilities. Choices should be led by a tradeoff between
  61 // code size and improved supportability.
  62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  63 // to have a fallback in case hsdis is not available.
  64 #if defined(PRODUCT)
  65   #define SUPPORT_ABSTRACT_ASSEMBLY
  66   #define SUPPORT_ASSEMBLY
  67   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  68   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  69 #else
  70   #define SUPPORT_ABSTRACT_ASSEMBLY
  71   #define SUPPORT_ASSEMBLY
  72   #define SUPPORT_OPTO_ASSEMBLY
  73   #define SUPPORT_DATA_STRUCTS
  74 #endif
  75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  76   #define SUPPORT_ABSTRACT_ASSEMBLY
  77 #endif
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 // Declare the named class to be noncopyable.  This macro must be followed by
  83 // a semi-colon.  The macro provides deleted declarations for the class's copy
  84 // constructor and assignment operator.  Because these operations are deleted,
  85 // they cannot be defined and potential callers will fail to compile.
  86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
  87 
  88 
  89 //----------------------------------------------------------------------------------------------------
  90 // Printf-style formatters for fixed- and variable-width types as pointers and
  91 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  92 // doesn't provide appropriate definitions, they should be provided in
  93 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  94 
  95 // Guide to the suffixes used in the format specifiers for integers:
  96 //        - print the decimal value:                   745565
  97 //  _X    - print as hexadecimal, without leading 0s: 0x12345
  98 //  _X_0  - print as hexadecimal, with leading 0s: 0x00012345
  99 //  _W(w) - prints w sized string with the given value right
 100 //          adjusted. Use -w to print left adjusted.
 101 //  _0    - print as hexadecimal, with leading 0s, without 0x prefix: 0012345
 102 //
 103 // Note that the PTR format specifiers print using 0x with leading zeros,
 104 // just like the _X_0 version for integers.
 105 
 106 // Format 8-bit quantities.
 107 #define INT8_FORMAT_X_0          "0x%02"      PRIx8
 108 #define UINT8_FORMAT_X_0         "0x%02"      PRIx8
 109 
 110 // Format 16-bit quantities.
 111 #define INT16_FORMAT_X_0         "0x%04"      PRIx16
 112 #define UINT16_FORMAT_X_0        "0x%04"      PRIx16
 113 
 114 // Format 32-bit quantities.
 115 #define INT32_FORMAT             "%"          PRId32
 116 #define INT32_FORMAT_X           "0x%"        PRIx32
 117 #define INT32_FORMAT_X_0         "0x%08"      PRIx32
 118 #define INT32_FORMAT_W(width)    "%"   #width PRId32
 119 #define UINT32_FORMAT            "%"          PRIu32
 120 #define UINT32_FORMAT_X          "0x%"        PRIx32
 121 #define UINT32_FORMAT_X_0        "0x%08"      PRIx32
 122 #define UINT32_FORMAT_W(width)   "%"   #width PRIu32
 123 
 124 // Format 64-bit quantities.
 125 #define INT64_FORMAT             "%"          PRId64
 126 #define INT64_PLUS_FORMAT        "%+"         PRId64
 127 #define INT64_FORMAT_X           "0x%"        PRIx64
 128 #define INT64_FORMAT_X_0         "0x%016"     PRIx64
 129 #define INT64_FORMAT_W(width)    "%"   #width PRId64
 130 #define UINT64_FORMAT            "%"          PRIu64
 131 #define UINT64_FORMAT_X          "0x%"        PRIx64
 132 #define UINT64_FORMAT_X_0        "0x%016"     PRIx64
 133 #define UINT64_FORMAT_W(width)   "%"   #width PRIu64
 134 #define UINT64_FORMAT_0          "%016"       PRIx64
 135 
 136 // Format jlong, if necessary
 137 #ifndef JLONG_FORMAT
 138 #define JLONG_FORMAT             INT64_FORMAT
 139 #endif
 140 #ifndef JLONG_FORMAT_W
 141 #define JLONG_FORMAT_W(width)    INT64_FORMAT_W(width)
 142 #endif
 143 #ifndef JULONG_FORMAT
 144 #define JULONG_FORMAT            UINT64_FORMAT
 145 #endif
 146 #ifndef JULONG_FORMAT_X
 147 #define JULONG_FORMAT_X          UINT64_FORMAT_X
 148 #endif
 149 #ifndef JULONG_FORMAT_W
 150 #define JULONG_FORMAT_W(width)   UINT64_FORMAT_W(width)
 151 #endif
 152 
 153 // Format pointers and padded integral values which change size between 32- and 64-bit.
 154 #ifdef  _LP64
 155 #define INTPTR_FORMAT            "0x%016"     PRIxPTR
 156 #define PTR_FORMAT               "0x%016"     PRIxPTR
 157 #define UINTX_FORMAT_X_0         "0x%016"     PRIxPTR
 158 #define SIZE_FORMAT_X_0          "0x%016"     PRIxPTR
 159 #else   // !_LP64
 160 #define INTPTR_FORMAT            "0x%08"      PRIxPTR
 161 #define PTR_FORMAT               "0x%08"      PRIxPTR
 162 #define UINTX_FORMAT_X_0         "0x%08"      PRIxPTR
 163 #define SIZE_FORMAT_X_0          "0x%08"      PRIxPTR
 164 #endif  // _LP64
 165 
 166 // Convert pointer to intptr_t, for use in printing pointers.
 167 inline intptr_t p2i(const volatile void* p) {
 168   return (intptr_t) p;
 169 }
 170 
 171 // Convert pointer to uintptr_t
 172 inline uintptr_t p2u(const volatile void* p) {
 173   return (uintptr_t) p;
 174 }
 175 
 176 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
 177 
 178 //----------------------------------------------------------------------------------------------------
 179 // Constants
 180 
 181 const int LogBytesPerShort   = 1;
 182 const int LogBytesPerInt     = 2;
 183 #ifdef _LP64
 184 constexpr int LogBytesPerWord    = 3;
 185 #else
 186 constexpr int LogBytesPerWord    = 2;
 187 #endif
 188 const int LogBytesPerLong    = 3;
 189 
 190 const int BytesPerShort      = 1 << LogBytesPerShort;
 191 const int BytesPerInt        = 1 << LogBytesPerInt;
 192 const int BytesPerWord       = 1 << LogBytesPerWord;
 193 const int BytesPerLong       = 1 << LogBytesPerLong;
 194 
 195 constexpr int LogBitsPerByte     = 3;
 196 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 197 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 198 constexpr int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 199 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 200 
 201 const int BitsPerByte        = 1 << LogBitsPerByte;
 202 const int BitsPerShort       = 1 << LogBitsPerShort;
 203 const int BitsPerInt         = 1 << LogBitsPerInt;
 204 constexpr int BitsPerWord        = 1 << LogBitsPerWord;
 205 const int BitsPerLong        = 1 << LogBitsPerLong;
 206 
 207 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 208 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 209 
 210 const int oopSize            = sizeof(char*); // Full-width oop
 211 extern int heapOopSize;                       // Oop within a java object
 212 const int wordSize           = sizeof(char*);
 213 const int longSize           = sizeof(jlong);
 214 const int jintSize           = sizeof(jint);
 215 const int size_tSize         = sizeof(size_t);
 216 
 217 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 218 
 219 extern int LogBytesPerHeapOop;                // Oop within a java object
 220 extern int LogBitsPerHeapOop;
 221 extern int BytesPerHeapOop;
 222 extern int BitsPerHeapOop;
 223 
 224 const int BitsPerJavaInteger = 32;
 225 const int BitsPerJavaLong    = 64;
 226 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 227 
 228 // Size of a char[] needed to represent a jint as a string in decimal.
 229 const int jintAsStringSize = 12;
 230 
 231 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 232 // We require that object sizes be measured in units of heap words (e.g.
 233 // pointer-sized values), so that given HeapWord* hw,
 234 //   hw += oop(hw)->foo();
 235 // works, where foo is a method (like size or scavenge) that returns the
 236 // object size.
 237 class HeapWordImpl;             // Opaque, never defined.
 238 typedef HeapWordImpl* HeapWord;
 239 
 240 // Analogous opaque struct for metadata allocated from metaspaces.
 241 class MetaWordImpl;             // Opaque, never defined.
 242 typedef MetaWordImpl* MetaWord;
 243 
 244 // HeapWordSize must be 2^LogHeapWordSize.
 245 const int HeapWordSize        = sizeof(HeapWord);
 246 #ifdef _LP64
 247 const int LogHeapWordSize     = 3;
 248 #else
 249 const int LogHeapWordSize     = 2;
 250 #endif
 251 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 252 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 253 
 254 // The minimum number of native machine words necessary to contain "byte_size"
 255 // bytes.
 256 inline size_t heap_word_size(size_t byte_size) {
 257   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 258 }
 259 
 260 inline jfloat jfloat_cast(jint x);
 261 inline jdouble jdouble_cast(jlong x);
 262 
 263 //-------------------------------------------
 264 // Constant for jlong (standardized by C++11)
 265 
 266 // Build a 64bit integer constant
 267 #define CONST64(x)  (x ## LL)
 268 #define UCONST64(x) (x ## ULL)
 269 
 270 const jlong min_jlong = CONST64(0x8000000000000000);
 271 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 272 
 273 // for timer info max values which include all bits, 0xffffffffffffffff
 274 const jlong all_bits_jlong = ~jlong(0);
 275 
 276 //-------------------------------------------
 277 // Constant for jdouble
 278 const jlong min_jlongDouble = CONST64(0x0000000000000001);
 279 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
 280 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
 281 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
 282 
 283 const size_t K                  = 1024;
 284 const size_t M                  = K*K;
 285 const size_t G                  = M*K;
 286 
 287 // Constants for converting from a base unit to milli-base units.  For
 288 // example from seconds to milliseconds and microseconds
 289 
 290 const int MILLIUNITS    = 1000;         // milli units per base unit
 291 const int MICROUNITS    = 1000000;      // micro units per base unit
 292 const int NANOUNITS     = 1000000000;   // nano units per base unit
 293 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 294 
 295 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 296 const jint  NANOSECS_PER_MILLISEC = 1000000;
 297 
 298 
 299 // Unit conversion functions
 300 // The caller is responsible for considering overflow.
 301 
 302 inline int64_t nanos_to_millis(int64_t nanos) {
 303   return nanos / NANOUNITS_PER_MILLIUNIT;
 304 }
 305 inline int64_t millis_to_nanos(int64_t millis) {
 306   return millis * NANOUNITS_PER_MILLIUNIT;
 307 }
 308 
 309 // Proper units routines try to maintain at least three significant digits.
 310 // In worst case, it would print five significant digits with lower prefix.
 311 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 312 // and therefore we need to be careful.
 313 
 314 inline const char* proper_unit_for_byte_size(size_t s) {
 315 #ifdef _LP64
 316   if (s >= 100*G) {
 317     return "G";
 318   }
 319 #endif
 320   if (s >= 100*M) {
 321     return "M";
 322   } else if (s >= 100*K) {
 323     return "K";
 324   } else {
 325     return "B";
 326   }
 327 }
 328 
 329 template <class T>
 330 inline T byte_size_in_proper_unit(T s) {
 331 #ifdef _LP64
 332   if (s >= 100*G) {
 333     return (T)(s/G);
 334   }
 335 #endif
 336   if (s >= 100*M) {
 337     return (T)(s/M);
 338   } else if (s >= 100*K) {
 339     return (T)(s/K);
 340   } else {
 341     return s;
 342   }
 343 }
 344 
 345 #define PROPERFMT             "%zu%s"
 346 #define PROPERFMTARGS(s)      byte_size_in_proper_unit<size_t>(s), proper_unit_for_byte_size(s)
 347 
 348 // Printing a range, with start and bytes given
 349 #define RANGEFMT              "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 350 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size
 351 
 352 // Printing a range, with start and end given
 353 #define RANGE2FMT             "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 354 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1)
 355 
 356 inline const char* exact_unit_for_byte_size(size_t s) {
 357 #ifdef _LP64
 358   if (s >= G && (s % G) == 0) {
 359     return "G";
 360   }
 361 #endif
 362   if (s >= M && (s % M) == 0) {
 363     return "M";
 364   }
 365   if (s >= K && (s % K) == 0) {
 366     return "K";
 367   }
 368   return "B";
 369 }
 370 
 371 inline size_t byte_size_in_exact_unit(size_t s) {
 372 #ifdef _LP64
 373   if (s >= G && (s % G) == 0) {
 374     return s / G;
 375   }
 376 #endif
 377   if (s >= M && (s % M) == 0) {
 378     return s / M;
 379   }
 380   if (s >= K && (s % K) == 0) {
 381     return s / K;
 382   }
 383   return s;
 384 }
 385 
 386 #define EXACTFMT            "%zu%s"
 387 #define EXACTFMTARGS(s)     byte_size_in_exact_unit(s), exact_unit_for_byte_size(s)
 388 
 389 // Memory size transition formatting.
 390 
 391 #define HEAP_CHANGE_FORMAT "%s: %zuK(%zuK)->%zuK(%zuK)"
 392 
 393 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 394   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 395 
 396 //----------------------------------------------------------------------------------------------------
 397 // VM type definitions
 398 
 399 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 400 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 401 
 402 typedef intptr_t  intx;
 403 typedef uintptr_t uintx;
 404 
 405 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 406 const intx  max_intx  = (uintx)min_intx - 1;
 407 const uintx max_uintx = (uintx)-1;
 408 
 409 // Table of values:
 410 //      sizeof intx         4               8
 411 // min_intx             0x80000000      0x8000000000000000
 412 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 413 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 414 
 415 typedef unsigned int uint;   NEEDS_CLEANUP
 416 
 417 //----------------------------------------------------------------------------------------------------
 418 // Java type definitions
 419 
 420 // All kinds of 'plain' byte addresses
 421 typedef   signed char s_char;
 422 typedef unsigned char u_char;
 423 typedef u_char*       address;
 424 typedef const u_char* const_address;
 425 
 426 // Pointer subtraction.
 427 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 428 // the range we might need to find differences from one end of the heap
 429 // to the other.
 430 // A typical use might be:
 431 //     if (pointer_delta(end(), top()) >= size) {
 432 //       // enough room for an object of size
 433 //       ...
 434 // and then additions like
 435 //       ... top() + size ...
 436 // are safe because we know that top() is at least size below end().
 437 inline size_t pointer_delta(const volatile void* left,
 438                             const volatile void* right,
 439                             size_t element_size) {
 440   assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
 441   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 442 }
 443 
 444 // A version specialized for HeapWord*'s.
 445 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 446   return pointer_delta(left, right, sizeof(HeapWord));
 447 }
 448 // A version specialized for MetaWord*'s.
 449 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 450   return pointer_delta(left, right, sizeof(MetaWord));
 451 }
 452 
 453 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that
 454 // returns a non-negative int, usually used as a size of a code buffer range.
 455 // This scales to sizeof(T).
 456 template <typename T>
 457 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) {
 458   size_t delta = pointer_delta(left, right, sizeof(T));
 459   assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta);
 460   return static_cast<int>(delta);
 461 }
 462 
 463 //
 464 // ANSI C++ does not allow casting from one pointer type to a function pointer
 465 // directly without at best a warning. This macro accomplishes it silently
 466 // In every case that is present at this point the value be cast is a pointer
 467 // to a C linkage function. In some case the type used for the cast reflects
 468 // that linkage and a picky compiler would not complain. In other cases because
 469 // there is no convenient place to place a typedef with extern C linkage (i.e
 470 // a platform dependent header file) it doesn't. At this point no compiler seems
 471 // picky enough to catch these instances (which are few). It is possible that
 472 // using templates could fix these for all cases. This use of templates is likely
 473 // so far from the middle of the road that it is likely to be problematic in
 474 // many C++ compilers.
 475 //
 476 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 477 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr)))
 478 
 479 // Need the correct linkage to call qsort without warnings
 480 extern "C" {
 481   typedef int (*_sort_Fn)(const void *, const void *);
 482 }
 483 
 484 // Additional Java basic types
 485 
 486 typedef uint8_t  jubyte;
 487 typedef uint16_t jushort;
 488 typedef uint32_t juint;
 489 typedef uint64_t julong;
 490 
 491 // Unsigned byte types for os and stream.hpp
 492 
 493 // Unsigned one, two, four and eight byte quantities used for describing
 494 // the .class file format. See JVM book chapter 4.
 495 
 496 typedef jubyte  u1;
 497 typedef jushort u2;
 498 typedef juint   u4;
 499 typedef julong  u8;
 500 
 501 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 502 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 503 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 504 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 505 
 506 typedef jbyte  s1;
 507 typedef jshort s2;
 508 typedef jint   s4;
 509 typedef jlong  s8;
 510 
 511 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 512 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 513 const jshort min_jshort = -(1 << 15);    // smallest jshort
 514 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 515 
 516 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 517 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 518 
 519 const jint min_jintFloat = (jint)(0x00000001);
 520 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
 521 const jint max_jintFloat = (jint)(0x7f7fffff);
 522 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
 523 
 524 const jshort max_jfloat16 = 31743;
 525 const jshort min_jfloat16 = 1;
 526 const jshort one_jfloat16 = 15360;
 527 const jshort pos_inf_jfloat16 = 31744;
 528 const jshort neg_inf_jfloat16 = -1024;
 529 // A named constant for the integral representation of a Java null.
 530 const intptr_t NULL_WORD = 0;
 531 
 532 //----------------------------------------------------------------------------------------------------
 533 // JVM spec restrictions
 534 
 535 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 536 
 537 //----------------------------------------------------------------------------------------------------
 538 // old CDS options
 539 extern bool RequireSharedSpaces;
 540 extern "C" {
 541 // Make sure UseSharedSpaces is accessible to the serviceability agent.
 542 extern JNIEXPORT jboolean UseSharedSpaces;
 543 }
 544 
 545 //----------------------------------------------------------------------------------------------------
 546 // Object alignment, in units of HeapWords.
 547 //
 548 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 549 // reference fields can be naturally aligned.
 550 
 551 extern int MinObjAlignment;
 552 extern int MinObjAlignmentInBytes;
 553 extern int MinObjAlignmentInBytesMask;
 554 
 555 extern int LogMinObjAlignment;
 556 extern int LogMinObjAlignmentInBytes;
 557 
 558 // Maximal size of heap where unscaled compression can be used. Also upper bound
 559 // for heap placement: 4GB.
 560 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 561 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 562 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 563 extern uint64_t OopEncodingHeapMax;
 564 
 565 // Machine dependent stuff
 566 
 567 #include CPU_HEADER(globalDefinitions)
 568 
 569 // The maximum size of the code cache.  Can be overridden by targets.
 570 #ifndef CODE_CACHE_SIZE_LIMIT
 571 #define CODE_CACHE_SIZE_LIMIT (2*G)
 572 #endif
 573 
 574 // Allow targets to reduce the default size of the code cache.
 575 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 576 
 577 // To assure the IRIW property on processors that are not multiple copy
 578 // atomic, sync instructions must be issued between volatile reads to
 579 // assure their ordering, instead of after volatile stores.
 580 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 581 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 582 #ifdef CPU_MULTI_COPY_ATOMIC
 583 // Not needed.
 584 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 585 #else
 586 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 587 // Final decision is subject to JEP 188: Java Memory Model Update.
 588 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 589 #endif
 590 
 591 // The expected size in bytes of a cache line.
 592 #ifndef DEFAULT_CACHE_LINE_SIZE
 593 #error "Platform should define DEFAULT_CACHE_LINE_SIZE"
 594 #endif
 595 
 596 // The default padding size for data structures to avoid false sharing.
 597 #ifndef DEFAULT_PADDING_SIZE
 598 #error "Platform should define DEFAULT_PADDING_SIZE"
 599 #endif
 600 
 601 
 602 //----------------------------------------------------------------------------------------------------
 603 // Prototyping
 604 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break
 605 // compilation on purpose (i.e. "forget me not")
 606 #define PROTOTYPE
 607 #ifdef PROTOTYPE
 608 #define CMH(m)
 609 #endif
 610 
 611 //----------------------------------------------------------------------------------------------------
 612 // Miscellaneous
 613 
 614 // 6302670 Eliminate Hotspot __fabsf dependency
 615 // All fabs() callers should call this function instead, which will implicitly
 616 // convert the operand to double, avoiding a dependency on __fabsf which
 617 // doesn't exist in early versions of Solaris 8.
 618 inline double fabsd(double value) {
 619   return fabs(value);
 620 }
 621 
 622 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 623 // is zero, return 0.0.
 624 template<typename T>
 625 inline double percent_of(T numerator, T denominator) {
 626   return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0;
 627 }
 628 
 629 //----------------------------------------------------------------------------------------------------
 630 // Special casts
 631 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 632 typedef union {
 633   jfloat f;
 634   jint i;
 635 } FloatIntConv;
 636 
 637 typedef union {
 638   jdouble d;
 639   jlong l;
 640   julong ul;
 641 } DoubleLongConv;
 642 
 643 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 644 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 645 
 646 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 647 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 648 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 649 
 650 inline jint low (jlong value)                    { return jint(value); }
 651 inline jint high(jlong value)                    { return jint(value >> 32); }
 652 
 653 // the fancy casts are a hopefully portable way
 654 // to do unsigned 32 to 64 bit type conversion
 655 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 656                                                    *value |= (jlong)(julong)(juint)low; }
 657 
 658 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 659                                                    *value |= (jlong)high       << 32; }
 660 
 661 inline jlong jlong_from(jint h, jint l) {
 662   jlong result = 0; // initialization to avoid warning
 663   set_high(&result, h);
 664   set_low(&result,  l);
 665   return result;
 666 }
 667 
 668 union jlong_accessor {
 669   jint  words[2];
 670   jlong long_value;
 671 };
 672 
 673 void basic_types_init(); // cannot define here; uses assert
 674 
 675 
 676 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 677 enum BasicType : u1 {
 678 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 679   T_BOOLEAN     = JVM_T_BOOLEAN,
 680   T_CHAR        = JVM_T_CHAR,
 681   T_FLOAT       = JVM_T_FLOAT,
 682   T_DOUBLE      = JVM_T_DOUBLE,
 683   T_BYTE        = JVM_T_BYTE,
 684   T_SHORT       = JVM_T_SHORT,
 685   T_INT         = JVM_T_INT,
 686   T_LONG        = JVM_T_LONG,
 687   // The remaining values are not part of any standard.
 688   // T_OBJECT and T_VOID denote two more semantic choices
 689   // for method return values.
 690   // T_OBJECT and T_ARRAY describe signature syntax.
 691   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 692   // internal references within the JVM as if they were Java
 693   // types in their own right.
 694   T_OBJECT      = 12,
 695   T_ARRAY       = 13,
 696   T_VOID        = 14,
 697   T_FLAT_ELEMENT = 15, // Not a true BasicType, only used in layout helpers of flat arrays
 698   T_ADDRESS     = 16,
 699   T_NARROWOOP   = 17,
 700   T_METADATA    = 18,
 701   T_NARROWKLASS = 19,
 702   T_CONFLICT    = 20, // for stack value type with conflicting contents
 703   T_ILLEGAL     = 99
 704 };
 705 
 706 #define SIGNATURE_TYPES_DO(F, N)                \
 707     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 708     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 709     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 710     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 711     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 712     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 713     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 714     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 715     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 716     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 717     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 718     /*end*/
 719 
 720 inline bool is_java_type(BasicType t) {
 721   return T_BOOLEAN <= t && t <= T_VOID;
 722 }
 723 
 724 inline bool is_java_primitive(BasicType t) {
 725   return T_BOOLEAN <= t && t <= T_LONG;
 726 }
 727 
 728 inline bool is_subword_type(BasicType t) {
 729   // these guys are processed exactly like T_INT in calling sequences:
 730   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 731 }
 732 
 733 inline bool is_signed_subword_type(BasicType t) {
 734   return (t == T_BYTE || t == T_SHORT);
 735 }
 736 
 737 inline bool is_unsigned_subword_type(BasicType t) {
 738   return (t == T_BOOLEAN || t == T_CHAR);
 739 }
 740 
 741 inline bool is_double_word_type(BasicType t) {
 742   return (t == T_DOUBLE || t == T_LONG);
 743 }
 744 
 745 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) {
 746   assert(t != T_FLAT_ELEMENT, "");  // Strong assert to detect misuses of T_FLAT_ELEMENT
 747   return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP));
 748 }
 749 
 750 inline bool is_integral_type(BasicType t) {
 751   return is_subword_type(t) || t == T_INT || t == T_LONG;
 752 }
 753 
 754 inline bool is_non_subword_integral_type(BasicType t) {
 755   return t == T_INT || t == T_LONG;
 756 }
 757 
 758 inline bool is_floating_point_type(BasicType t) {
 759   return (t == T_FLOAT || t == T_DOUBLE);
 760 }
 761 
 762 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 763 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 764 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 765 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a char*
 766 extern BasicType name2type(const char* name);
 767 
 768 const char* type2name(BasicType t);
 769 
 770 inline jlong max_signed_integer(BasicType bt) {
 771   if (bt == T_INT) {
 772     return max_jint;
 773   }
 774   assert(bt == T_LONG, "unsupported");
 775   return max_jlong;
 776 }
 777 
 778 inline jlong min_signed_integer(BasicType bt) {
 779   if (bt == T_INT) {
 780     return min_jint;
 781   }
 782   assert(bt == T_LONG, "unsupported");
 783   return min_jlong;
 784 }
 785 
 786 inline julong max_unsigned_integer(BasicType bt) {
 787   if (bt == T_INT) {
 788     return max_juint;
 789   }
 790   assert(bt == T_LONG, "unsupported");
 791   return max_julong;
 792 }
 793 
 794 inline uint bits_per_java_integer(BasicType bt) {
 795   if (bt == T_INT) {
 796     return BitsPerJavaInteger;
 797   }
 798   assert(bt == T_LONG, "int or long only");
 799   return BitsPerJavaLong;
 800 }
 801 
 802 // Auxiliary math routines
 803 // least common multiple
 804 extern size_t lcm(size_t a, size_t b);
 805 
 806 
 807 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 808 enum BasicTypeSize {
 809   T_BOOLEAN_size     = 1,
 810   T_CHAR_size        = 1,
 811   T_FLOAT_size       = 1,
 812   T_DOUBLE_size      = 2,
 813   T_BYTE_size        = 1,
 814   T_SHORT_size       = 1,
 815   T_INT_size         = 1,
 816   T_LONG_size        = 2,
 817   T_OBJECT_size      = 1,
 818   T_ARRAY_size       = 1,
 819   T_NARROWOOP_size   = 1,
 820   T_NARROWKLASS_size = 1,
 821   T_VOID_size        = 0,
 822   T_FLAT_ELEMENT_size = 0
 823 };
 824 
 825 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 826 inline int parameter_type_word_count(BasicType t) {
 827   if (is_double_word_type(t))  return 2;
 828   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 829   assert(type2size[t] == 1, "must be");
 830   return 1;
 831 }
 832 
 833 // maps a BasicType to its instance field storage type:
 834 // all sub-word integral types are widened to T_INT
 835 extern BasicType type2field[T_CONFLICT+1];
 836 extern BasicType type2wfield[T_CONFLICT+1];
 837 
 838 
 839 // size in bytes
 840 enum ArrayElementSize {
 841   T_BOOLEAN_aelem_bytes     = 1,
 842   T_CHAR_aelem_bytes        = 2,
 843   T_FLOAT_aelem_bytes       = 4,
 844   T_DOUBLE_aelem_bytes      = 8,
 845   T_BYTE_aelem_bytes        = 1,
 846   T_SHORT_aelem_bytes       = 2,
 847   T_INT_aelem_bytes         = 4,
 848   T_LONG_aelem_bytes        = 8,
 849 #ifdef _LP64
 850   T_OBJECT_aelem_bytes      = 8,
 851   T_ARRAY_aelem_bytes       = 8,
 852 #else
 853   T_OBJECT_aelem_bytes      = 4,
 854   T_ARRAY_aelem_bytes       = 4,
 855 #endif
 856   T_NARROWOOP_aelem_bytes   = 4,
 857   T_NARROWKLASS_aelem_bytes = 4,
 858   T_VOID_aelem_bytes        = 0,
 859   T_FLAT_ELEMENT_aelem_bytes = 0
 860 };
 861 
 862 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 863 #ifdef ASSERT
 864 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 865 #else
 866 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 867 #endif
 868 
 869 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) {
 870   return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2));
 871 }
 872 
 873 // JavaValue serves as a container for arbitrary Java values.
 874 
 875 class JavaValue {
 876 
 877  public:
 878   typedef union JavaCallValue {
 879     jfloat   f;
 880     jdouble  d;
 881     jint     i;
 882     jlong    l;
 883     jobject  h;
 884     oopDesc* o;
 885   } JavaCallValue;
 886 
 887  private:
 888   BasicType _type;
 889   JavaCallValue _value;
 890 
 891  public:
 892   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 893 
 894   JavaValue(jfloat value) {
 895     _type    = T_FLOAT;
 896     _value.f = value;
 897   }
 898 
 899   JavaValue(jdouble value) {
 900     _type    = T_DOUBLE;
 901     _value.d = value;
 902   }
 903 
 904  jfloat get_jfloat() const { return _value.f; }
 905  jdouble get_jdouble() const { return _value.d; }
 906  jint get_jint() const { return _value.i; }
 907  jlong get_jlong() const { return _value.l; }
 908  jobject get_jobject() const { return _value.h; }
 909  oopDesc* get_oop() const { return _value.o; }
 910  JavaCallValue* get_value_addr() { return &_value; }
 911  BasicType get_type() const { return _type; }
 912 
 913  void set_jfloat(jfloat f) { _value.f = f;}
 914  void set_jdouble(jdouble d) { _value.d = d;}
 915  void set_jint(jint i) { _value.i = i;}
 916  void set_jshort(jshort i) { _value.i = i;}
 917  void set_jlong(jlong l) { _value.l = l;}
 918  void set_jobject(jobject h) { _value.h = h;}
 919  void set_oop(oopDesc* o) { _value.o = o;}
 920  void set_type(BasicType t) { _type = t; }
 921 
 922  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 923  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 924  jchar get_jchar() const { return (jchar) (_value.i);}
 925  jshort get_jshort() const { return (jshort) (_value.i);}
 926 
 927 };
 928 
 929 
 930 // TosState describes the top-of-stack state before and after the execution of
 931 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 932 // registers. The TosState corresponds to the 'machine representation' of this cached
 933 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 934 // as well as a 5th state in case the top-of-stack value is actually on the top
 935 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 936 // state when it comes to machine representation but is used separately for (oop)
 937 // type specific operations (e.g. verification code).
 938 
 939 enum TosState {         // describes the tos cache contents
 940   btos = 0,             // byte, bool tos cached
 941   ztos = 1,             // byte, bool tos cached
 942   ctos = 2,             // char tos cached
 943   stos = 3,             // short tos cached
 944   itos = 4,             // int tos cached
 945   ltos = 5,             // long tos cached
 946   ftos = 6,             // float tos cached
 947   dtos = 7,             // double tos cached
 948   atos = 8,             // object cached
 949   vtos = 9,             // tos not cached,
 950   number_of_states,
 951   ilgl                  // illegal state: should not occur
 952 };
 953 
 954 
 955 inline TosState as_TosState(BasicType type) {
 956   switch (type) {
 957     case T_BYTE   : return btos;
 958     case T_BOOLEAN: return ztos;
 959     case T_CHAR   : return ctos;
 960     case T_SHORT  : return stos;
 961     case T_INT    : return itos;
 962     case T_LONG   : return ltos;
 963     case T_FLOAT  : return ftos;
 964     case T_DOUBLE : return dtos;
 965     case T_VOID   : return vtos;
 966     case T_ARRAY  :   // fall through
 967     case T_OBJECT : return atos;
 968     default       : return ilgl;
 969   }
 970 }
 971 
 972 inline BasicType as_BasicType(TosState state) {
 973   switch (state) {
 974     case btos : return T_BYTE;
 975     case ztos : return T_BOOLEAN;
 976     case ctos : return T_CHAR;
 977     case stos : return T_SHORT;
 978     case itos : return T_INT;
 979     case ltos : return T_LONG;
 980     case ftos : return T_FLOAT;
 981     case dtos : return T_DOUBLE;
 982     case atos : return T_OBJECT;
 983     case vtos : return T_VOID;
 984     default   : return T_ILLEGAL;
 985   }
 986 }
 987 
 988 
 989 // Helper function to convert BasicType info into TosState
 990 // Note: Cannot define here as it uses global constant at the time being.
 991 TosState as_TosState(BasicType type);
 992 
 993 
 994 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 995 // information is needed by the safepoint code.
 996 //
 997 // There are 4 essential states:
 998 //
 999 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
1000 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
1001 //  _thread_in_vm       : Executing in the vm
1002 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
1003 //
1004 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
1005 // a transition from one state to another. These extra states makes it possible for the safepoint code to
1006 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
1007 //
1008 // Given a state, the xxxx_trans state can always be found by adding 1.
1009 //
1010 enum JavaThreadState {
1011   _thread_uninitialized     =  0, // should never happen (missing initialization)
1012   _thread_new               =  2, // just starting up, i.e., in process of being initialized
1013   _thread_new_trans         =  3, // corresponding transition state (not used, included for completeness)
1014   _thread_in_native         =  4, // running in native code
1015   _thread_in_native_trans   =  5, // corresponding transition state
1016   _thread_in_vm             =  6, // running in VM
1017   _thread_in_vm_trans       =  7, // corresponding transition state
1018   _thread_in_Java           =  8, // running in Java or in stub code
1019   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completeness)
1020   _thread_blocked           = 10, // blocked in vm
1021   _thread_blocked_trans     = 11, // corresponding transition state
1022   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
1023 };
1024 
1025 enum LockingMode {
1026   // Use only heavy monitors for locking
1027   LM_MONITOR     = 0,
1028   // Legacy stack-locking, with monitors as 2nd tier
1029   LM_LEGACY      = 1,
1030   // New lightweight locking, with monitors as 2nd tier
1031   LM_LIGHTWEIGHT = 2
1032 };
1033 
1034 extern const int LockingMode;
1035 
1036 //----------------------------------------------------------------------------------------------------
1037 // Special constants for debugging
1038 
1039 const jint     badInt             = -3;                     // generic "bad int" value
1040 const intptr_t badAddressVal      = -2;                     // generic "bad address" value
1041 const intptr_t badOopVal          = -1;                     // generic "bad oop" value
1042 const intptr_t badHeapOopVal      = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1043 const int      badStackSegVal     = 0xCA;                   // value used to zap stack segments
1044 const int      badHandleValue     = 0xBC;                   // value used to zap vm handle area
1045 const int      badResourceValue   = 0xAB;                   // value used to zap resource area
1046 const int      freeBlockPad       = 0xBA;                   // value used to pad freed blocks.
1047 const int      uninitBlockPad     = 0xF1;                   // value used to zap newly malloc'd blocks.
1048 const juint    uninitMetaWordVal  = 0xf7f7f7f7;             // value used to zap newly allocated metachunk
1049 const jubyte   heapPaddingByteVal = 0xBD;                   // value used to zap object padding in the heap
1050 const juint    badHeapWordVal     = 0xBAADBABE;             // value used to zap heap after GC
1051 const int      badCodeHeapNewVal  = 0xCC;                   // value used to zap Code heap at allocation
1052 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1053 const intptr_t badDispHeaderDeopt = 0xDE0BD000;             // value to fill unused displaced header during deoptimization
1054 const intptr_t badDispHeaderOSR   = 0xDEAD05A0;             // value to fill unused displaced header during OSR
1055 
1056 // (These must be implemented as #defines because C++ compilers are
1057 // not obligated to inline non-integral constants!)
1058 #define       badAddress        ((address)::badAddressVal)
1059 #define       badHeapWord       (::badHeapWordVal)
1060 
1061 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1062 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17));
1063 
1064 //----------------------------------------------------------------------------------------------------
1065 // Utility functions for bitfield manipulations
1066 
1067 const intptr_t AllBits    = ~0; // all bits set in a word
1068 const intptr_t NoBits     =  0; // no bits set in a word
1069 const jlong    NoLongBits =  0; // no bits set in a long
1070 const intptr_t OneBit     =  1; // only right_most bit set in a word
1071 
1072 // get a word with the n.th or the right-most or left-most n bits set
1073 // (note: #define used only so that they can be used in enum constant definitions)
1074 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1075 #define right_n_bits(n)   (nth_bit(n) - 1)
1076 
1077 // same as nth_bit(n), but allows handing in a type as template parameter. Allows
1078 // us to use nth_bit with 64-bit types on 32-bit platforms
1079 template<class T> inline T nth_bit_typed(int n) {
1080   return ((T)1) << n;
1081 }
1082 template<class T> inline T right_n_bits_typed(int n) {
1083   return nth_bit_typed<T>(n) - 1;
1084 }
1085 
1086 // bit-operations using a mask m
1087 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1088 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1089 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1090 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1091 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1092 
1093 // bit-operations using the n.th bit
1094 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1095 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1096 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1097 
1098 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1099 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1100   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1101 }
1102 
1103 
1104 //----------------------------------------------------------------------------------------------------
1105 // Utility functions for integers
1106 
1107 // Avoid use of global min/max macros which may cause unwanted double
1108 // evaluation of arguments.
1109 #ifdef max
1110 #undef max
1111 #endif
1112 
1113 #ifdef min
1114 #undef min
1115 #endif
1116 
1117 // It is necessary to use templates here. Having normal overloaded
1118 // functions does not work because it is necessary to provide both 32-
1119 // and 64-bit overloaded functions, which does not work, and having
1120 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1121 // will be even more error-prone than macros.
1122 template<class T> constexpr T MAX2(T a, T b)           { return (a > b) ? a : b; }
1123 template<class T> constexpr T MIN2(T a, T b)           { return (a < b) ? a : b; }
1124 template<class T> constexpr T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1125 template<class T> constexpr T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1126 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1127 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1128 
1129 #define ABS(x) asserted_abs(x, __FILE__, __LINE__)
1130 
1131 template<class T> inline T asserted_abs(T x, const char* file, int line) {
1132   bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min());
1133 #ifdef ASSERT
1134   if (!valid_arg) {
1135     report_vm_error(file, line, "ABS: argument should not allow overflow");
1136   }
1137 #endif
1138   // Prevent exposure to UB by checking valid_arg here as well.
1139   return (x < 0 && valid_arg) ? -x : x;
1140 }
1141 
1142 // Return the given value clamped to the range [min ... max]
1143 template<typename T>
1144 inline T clamp(T value, T min, T max) {
1145   assert(min <= max, "must be");
1146   return MIN2(MAX2(value, min), max);
1147 }
1148 
1149 inline bool is_odd (intx x) { return x & 1;      }
1150 inline bool is_even(intx x) { return !is_odd(x); }
1151 
1152 // abs methods which cannot overflow and so are well-defined across
1153 // the entire domain of integer types.
1154 static inline unsigned int g_uabs(unsigned int n) {
1155   union {
1156     unsigned int result;
1157     int value;
1158   };
1159   result = n;
1160   if (value < 0) result = 0-result;
1161   return result;
1162 }
1163 static inline julong g_uabs(julong n) {
1164   union {
1165     julong result;
1166     jlong value;
1167   };
1168   result = n;
1169   if (value < 0) result = 0-result;
1170   return result;
1171 }
1172 static inline julong g_uabs(jlong n) { return g_uabs((julong)n); }
1173 static inline unsigned int g_uabs(int n) { return g_uabs((unsigned int)n); }
1174 
1175 // "to" should be greater than "from."
1176 inline size_t byte_size(void* from, void* to) {
1177   return pointer_delta(to, from, sizeof(char));
1178 }
1179 
1180 // Pack and extract shorts to/from ints:
1181 
1182 inline u2 extract_low_short_from_int(u4 x) {
1183   return u2(x & 0xffff);
1184 }
1185 
1186 inline u2 extract_high_short_from_int(u4 x) {
1187   return u2((x >> 16) & 0xffff);
1188 }
1189 
1190 inline int build_int_from_shorts( u2 low, u2 high ) {
1191   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1192 }
1193 
1194 // swap a & b
1195 template<class T> static void swap(T& a, T& b) {
1196   T tmp = a;
1197   a = b;
1198   b = tmp;
1199 }
1200 
1201 // array_size_impl is a function that takes a reference to T[N] and
1202 // returns a reference to char[N].  It is not ODR-used, so not defined.
1203 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1204 
1205 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1206 
1207 //----------------------------------------------------------------------------------------------------
1208 // Sum and product which can never overflow: they wrap, just like the
1209 // Java operations.  Note that we don't intend these to be used for
1210 // general-purpose arithmetic: their purpose is to emulate Java
1211 // operations.
1212 
1213 // The goal of this code to avoid undefined or implementation-defined
1214 // behavior.  The use of an lvalue to reference cast is explicitly
1215 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1216 // 15 in C++03]
1217 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1218 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1219   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1220   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1221   return reinterpret_cast<TYPE&>(ures);                 \
1222 }
1223 
1224 JAVA_INTEGER_OP(+, java_add, jint, juint)
1225 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1226 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1227 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1228 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1229 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1230 
1231 inline jint  java_negate(jint  v) { return java_subtract((jint) 0, v); }
1232 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); }
1233 
1234 #undef JAVA_INTEGER_OP
1235 
1236 // Provide integer shift operations with Java semantics.  No overflow
1237 // issues - left shifts simply discard shifted out bits.  No undefined
1238 // behavior for large or negative shift quantities; instead the actual
1239 // shift distance is the argument modulo the lhs value's size in bits.
1240 // No undefined or implementation defined behavior for shifting negative
1241 // values; left shift discards bits, right shift sign extends.  We use
1242 // the same safe conversion technique as above for java_add and friends.
1243 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1244 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1245   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1246   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1247   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1248   xres OP ## = (rhs & rhs_mask);                        \
1249   return reinterpret_cast<TYPE&>(xres);                 \
1250 }
1251 
1252 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1253 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1254 
1255 // For signed shift right, assume C++ implementation >> sign extends.
1256 //
1257 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type
1258 // and a negative value, the resulting value is implementation-defined."
1259 //
1260 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of
1261 // requiring two's-complement behavior.
1262 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html
1263 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html
1264 // The corresponding C++20 text is "Right-shift on signed integral types is an
1265 // arithmetic right shift, which performs sign-extension."
1266 //
1267 // As discussed in the two's complement proposal, all known modern C++ compilers
1268 // already behave that way. And it is unlikely any would go off and do something
1269 // different now, with C++20 tightening things up.
1270 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1271 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1272 // For >>> use C++ unsigned >>.
1273 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1274 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1275 
1276 #undef JAVA_INTEGER_SHIFT_OP
1277 
1278 //----------------------------------------------------------------------------------------------------
1279 // The goal of this code is to provide saturating operations for int/uint.
1280 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1281 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1282 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1283   jlong res = static_cast<jlong>(in1);               \
1284   res OP ## = static_cast<jlong>(in2);               \
1285   if (res > max_jint) {                              \
1286     res = max_jint;                                  \
1287   } else if (res < min_jint) {                       \
1288     res = min_jint;                                  \
1289   }                                                  \
1290   return static_cast<int>(res);                      \
1291 }
1292 
1293 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1294 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1295 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1296 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1297 
1298 #undef SATURATED_INTEGER_OP
1299 
1300 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1301 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) {
1302   const uint64_t x1 = x >> 32u;
1303   const uint64_t x2 = x & 0xFFFFFFFF;
1304   const uint64_t y1 = y >> 32u;
1305   const uint64_t y2 = y & 0xFFFFFFFF;
1306   const uint64_t z2 = x2 * y2;
1307   const uint64_t t = x1 * y2 + (z2 >> 32u);
1308   uint64_t z1 = t & 0xFFFFFFFF;
1309   const uint64_t z0 = t >> 32u;
1310   z1 += x2 * y1;
1311 
1312   return x1 * y1 + z0 + (z1 >> 32u);
1313 }
1314 
1315 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr.,
1316 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs.
1317 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) {
1318   const jlong x1 = java_shift_right((jlong)x, 32);
1319   const jlong x2 = x & 0xFFFFFFFF;
1320   const jlong y1 = java_shift_right((jlong)y, 32);
1321   const jlong y2 = y & 0xFFFFFFFF;
1322 
1323   const uint64_t z2 = (uint64_t)x2 * y2;
1324   const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift
1325   int64_t z1 = t & 0xFFFFFFFF;
1326   const int64_t z0 = java_shift_right((jlong)t, 32);
1327   z1 += x2 * y1;
1328 
1329   return x1 * y1 + z0 + java_shift_right((jlong)z1, 32);
1330 }
1331 
1332 // Dereference vptr
1333 // All C++ compilers that we know of have the vtbl pointer in the first
1334 // word.  If there are exceptions, this function needs to be made compiler
1335 // specific.
1336 static inline void* dereference_vptr(const void* addr) {
1337   return *(void**)addr;
1338 }
1339 
1340 //----------------------------------------------------------------------------------------------------
1341 // String type aliases used by command line flag declarations and
1342 // processing utilities.
1343 
1344 typedef const char* ccstr;
1345 typedef const char* ccstrlist;   // represents string arguments which accumulate
1346 
1347 //----------------------------------------------------------------------------------------------------
1348 // Default hash/equals functions used by HashTable
1349 
1350 template<typename K> unsigned primitive_hash(const K& k) {
1351   unsigned hash = (unsigned)((uintptr_t)k);
1352   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1353 }
1354 
1355 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1356   return k0 == k1;
1357 }
1358 
1359 template<typename K> int primitive_compare(const K& k0, const K& k1) {
1360   return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1);
1361 }
1362 
1363 //----------------------------------------------------------------------------------------------------
1364 
1365 // Allow use of C++ thread_local when approved - see JDK-8282469.
1366 #define APPROVED_CPP_THREAD_LOCAL thread_local
1367 
1368 // Converts any type T to a reference type.
1369 template<typename T>
1370 std::add_rvalue_reference_t<T> declval() noexcept;
1371 
1372 // Quickly test to make sure IEEE-754 subnormal numbers are correctly
1373 // handled.
1374 bool IEEE_subnormal_handling_OK();
1375 
1376 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP