1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "utilities/compilerWarnings.hpp" 29 #include "utilities/debug.hpp" 30 #include "utilities/macros.hpp" 31 32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>. 33 #include "classfile_constants.h" 34 35 #include COMPILER_HEADER(utilities/globalDefinitions) 36 37 #include <cstddef> 38 #include <cstdint> 39 #include <limits> 40 #include <type_traits> 41 42 class oopDesc; 43 44 // Defaults for macros that might be defined per compiler. 45 #ifndef NOINLINE 46 #define NOINLINE 47 #endif 48 #ifndef ALWAYSINLINE 49 #define ALWAYSINLINE inline 50 #endif 51 52 #ifndef ATTRIBUTE_ALIGNED 53 #define ATTRIBUTE_ALIGNED(x) alignas(x) 54 #endif 55 56 #ifndef ATTRIBUTE_FLATTEN 57 #define ATTRIBUTE_FLATTEN 58 #endif 59 60 // These are #defines to selectively turn on/off the Print(Opto)Assembly 61 // capabilities. Choices should be led by a tradeoff between 62 // code size and improved supportability. 63 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 64 // to have a fallback in case hsdis is not available. 65 #if defined(PRODUCT) 66 #define SUPPORT_ABSTRACT_ASSEMBLY 67 #define SUPPORT_ASSEMBLY 68 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 69 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 70 #else 71 #define SUPPORT_ABSTRACT_ASSEMBLY 72 #define SUPPORT_ASSEMBLY 73 #define SUPPORT_OPTO_ASSEMBLY 74 #define SUPPORT_DATA_STRUCTS 75 #endif 76 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 77 #define SUPPORT_ABSTRACT_ASSEMBLY 78 #endif 79 80 // This file holds all globally used constants & types, class (forward) 81 // declarations and a few frequently used utility functions. 82 83 // Declare the named class to be noncopyable. This macro must be followed by 84 // a semi-colon. The macro provides deleted declarations for the class's copy 85 // constructor and assignment operator. Because these operations are deleted, 86 // they cannot be defined and potential callers will fail to compile. 87 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 88 89 90 //---------------------------------------------------------------------------------------------------- 91 // Printf-style formatters for fixed- and variable-width types as pointers and 92 // integers. These are derived from the definitions in inttypes.h. If the platform 93 // doesn't provide appropriate definitions, they should be provided in 94 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 95 96 // Guide to the suffixes used in the format specifiers for integers: 97 // - print the decimal value: 745565 98 // _X - print as hexadecimal, without leading 0s: 0x12345 99 // _X_0 - print as hexadecimal, with leading 0s: 0x00012345 100 // _W(w) - prints w sized string with the given value right 101 // adjusted. Use -w to print left adjusted. 102 // 103 // Note that the PTR format specifiers print using 0x with leading zeros, 104 // just like the _X_0 version for integers. 105 106 // Format 8-bit quantities. 107 #define INT8_FORMAT_X_0 "0x%02" PRIx8 108 #define UINT8_FORMAT_X_0 "0x%02" PRIx8 109 110 // Format 16-bit quantities. 111 #define INT16_FORMAT_X_0 "0x%04" PRIx16 112 #define UINT16_FORMAT_X_0 "0x%04" PRIx16 113 114 // Format 32-bit quantities. 115 #define INT32_FORMAT "%" PRId32 116 #define INT32_FORMAT_X "0x%" PRIx32 117 #define INT32_FORMAT_X_0 "0x%08" PRIx32 118 #define INT32_FORMAT_W(width) "%" #width PRId32 119 #define UINT32_FORMAT "%" PRIu32 120 #define UINT32_FORMAT_X "0x%" PRIx32 121 #define UINT32_FORMAT_X_0 "0x%08" PRIx32 122 #define UINT32_FORMAT_W(width) "%" #width PRIu32 123 124 // Format 64-bit quantities. 125 #define INT64_FORMAT "%" PRId64 126 #define INT64_PLUS_FORMAT "%+" PRId64 127 #define INT64_FORMAT_X "0x%" PRIx64 128 #define INT64_FORMAT_X_0 "0x%016" PRIx64 129 #define INT64_FORMAT_W(width) "%" #width PRId64 130 #define UINT64_FORMAT "%" PRIu64 131 #define UINT64_FORMAT_X "0x%" PRIx64 132 #define UINT64_FORMAT_X_0 "0x%016" PRIx64 133 #define UINT64_FORMAT_W(width) "%" #width PRIu64 134 135 // Format integers which change size between 32- and 64-bit. 136 #define SSIZE_FORMAT "%" PRIdPTR 137 #define SSIZE_PLUS_FORMAT "%+" PRIdPTR 138 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 139 #define SIZE_FORMAT "%" PRIuPTR 140 #define SIZE_FORMAT_X "0x%" PRIxPTR 141 #ifdef _LP64 142 #define SIZE_FORMAT_X_0 "0x%016" PRIxPTR 143 #else 144 #define SIZE_FORMAT_X_0 "0x%08" PRIxPTR 145 #endif 146 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 147 148 #define INTX_FORMAT "%" PRIdPTR 149 #define INTX_FORMAT_X "0x%" PRIxPTR 150 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 151 #define UINTX_FORMAT "%" PRIuPTR 152 #define UINTX_FORMAT_X "0x%" PRIxPTR 153 #ifdef _LP64 154 #define UINTX_FORMAT_X_0 "0x%016" PRIxPTR 155 #else 156 #define UINTX_FORMAT_X_0 "0x%08" PRIxPTR 157 #endif 158 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 159 160 // Format jlong, if necessary 161 #ifndef JLONG_FORMAT 162 #define JLONG_FORMAT INT64_FORMAT 163 #endif 164 #ifndef JLONG_FORMAT_W 165 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 166 #endif 167 #ifndef JULONG_FORMAT 168 #define JULONG_FORMAT UINT64_FORMAT 169 #endif 170 #ifndef JULONG_FORMAT_X 171 #define JULONG_FORMAT_X UINT64_FORMAT_X 172 #endif 173 174 // Format pointers which change size between 32- and 64-bit. 175 #ifdef _LP64 176 #define INTPTR_FORMAT "0x%016" PRIxPTR 177 #define PTR_FORMAT "0x%016" PRIxPTR 178 #else // !_LP64 179 #define INTPTR_FORMAT "0x%08" PRIxPTR 180 #define PTR_FORMAT "0x%08" PRIxPTR 181 #endif // _LP64 182 183 // Convert pointer to intptr_t, for use in printing pointers. 184 inline intptr_t p2i(const volatile void* p) { 185 return (intptr_t) p; 186 } 187 188 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 189 190 //---------------------------------------------------------------------------------------------------- 191 // Forbid the use of various C library functions. 192 // Some of these have os:: replacements that should normally be used instead. 193 // Others are considered security concerns, with preferred alternatives. 194 195 FORBID_C_FUNCTION(void exit(int), "use os::exit"); 196 FORBID_C_FUNCTION(void _exit(int), "use os::exit"); 197 FORBID_C_FUNCTION(char* strerror(int), "use os::strerror"); 198 FORBID_C_FUNCTION(char* strtok(char*, const char*), "use strtok_r"); 199 FORBID_C_FUNCTION(int sprintf(char*, const char*, ...), "use os::snprintf"); 200 FORBID_C_FUNCTION(int vsprintf(char*, const char*, va_list), "use os::vsnprintf"); 201 FORBID_C_FUNCTION(int vsnprintf(char*, size_t, const char*, va_list), "use os::vsnprintf"); 202 203 // All of the following functions return raw C-heap pointers (sometimes as an option, e.g. realpath or getwd) 204 // or, in case of free(), take raw C-heap pointers. Don't use them unless you are really sure you must. 205 FORBID_C_FUNCTION(void* malloc(size_t size), "use os::malloc"); 206 FORBID_C_FUNCTION(void* calloc(size_t nmemb, size_t size), "use os::malloc and zero out manually"); 207 FORBID_C_FUNCTION(void free(void *ptr), "use os::free"); 208 FORBID_C_FUNCTION(void* realloc(void *ptr, size_t size), "use os::realloc"); 209 FORBID_C_FUNCTION(char* strdup(const char *s), "use os::strdup"); 210 FORBID_C_FUNCTION(char* strndup(const char *s, size_t n), "don't use"); 211 FORBID_C_FUNCTION(int posix_memalign(void **memptr, size_t alignment, size_t size), "don't use"); 212 FORBID_C_FUNCTION(void* aligned_alloc(size_t alignment, size_t size), "don't use"); 213 FORBID_C_FUNCTION(char* realpath(const char* path, char* resolved_path), "use os::realpath"); 214 FORBID_C_FUNCTION(char* get_current_dir_name(void), "use os::get_current_directory()"); 215 FORBID_C_FUNCTION(char* getwd(char *buf), "use os::get_current_directory()"); 216 FORBID_C_FUNCTION(wchar_t* wcsdup(const wchar_t *s), "don't use"); 217 FORBID_C_FUNCTION(void* reallocf(void *ptr, size_t size), "don't use"); 218 219 //---------------------------------------------------------------------------------------------------- 220 // Constants 221 222 const int LogBytesPerShort = 1; 223 const int LogBytesPerInt = 2; 224 #ifdef _LP64 225 constexpr int LogBytesPerWord = 3; 226 #else 227 constexpr int LogBytesPerWord = 2; 228 #endif 229 const int LogBytesPerLong = 3; 230 231 const int BytesPerShort = 1 << LogBytesPerShort; 232 const int BytesPerInt = 1 << LogBytesPerInt; 233 const int BytesPerWord = 1 << LogBytesPerWord; 234 const int BytesPerLong = 1 << LogBytesPerLong; 235 236 constexpr int LogBitsPerByte = 3; 237 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 238 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 239 constexpr int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 240 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 241 242 const int BitsPerByte = 1 << LogBitsPerByte; 243 const int BitsPerShort = 1 << LogBitsPerShort; 244 const int BitsPerInt = 1 << LogBitsPerInt; 245 constexpr int BitsPerWord = 1 << LogBitsPerWord; 246 const int BitsPerLong = 1 << LogBitsPerLong; 247 248 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 249 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 250 251 const int oopSize = sizeof(char*); // Full-width oop 252 extern int heapOopSize; // Oop within a java object 253 const int wordSize = sizeof(char*); 254 const int longSize = sizeof(jlong); 255 const int jintSize = sizeof(jint); 256 const int size_tSize = sizeof(size_t); 257 258 const int BytesPerOop = BytesPerWord; // Full-width oop 259 260 extern int LogBytesPerHeapOop; // Oop within a java object 261 extern int LogBitsPerHeapOop; 262 extern int BytesPerHeapOop; 263 extern int BitsPerHeapOop; 264 265 const int BitsPerJavaInteger = 32; 266 const int BitsPerJavaLong = 64; 267 const int BitsPerSize_t = size_tSize * BitsPerByte; 268 269 // Size of a char[] needed to represent a jint as a string in decimal. 270 const int jintAsStringSize = 12; 271 272 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 273 // We require that object sizes be measured in units of heap words (e.g. 274 // pointer-sized values), so that given HeapWord* hw, 275 // hw += oop(hw)->foo(); 276 // works, where foo is a method (like size or scavenge) that returns the 277 // object size. 278 class HeapWordImpl; // Opaque, never defined. 279 typedef HeapWordImpl* HeapWord; 280 281 // Analogous opaque struct for metadata allocated from metaspaces. 282 class MetaWordImpl; // Opaque, never defined. 283 typedef MetaWordImpl* MetaWord; 284 285 // HeapWordSize must be 2^LogHeapWordSize. 286 const int HeapWordSize = sizeof(HeapWord); 287 #ifdef _LP64 288 const int LogHeapWordSize = 3; 289 #else 290 const int LogHeapWordSize = 2; 291 #endif 292 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 293 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 294 295 // The minimum number of native machine words necessary to contain "byte_size" 296 // bytes. 297 inline size_t heap_word_size(size_t byte_size) { 298 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 299 } 300 301 inline jfloat jfloat_cast(jint x); 302 inline jdouble jdouble_cast(jlong x); 303 304 //------------------------------------------- 305 // Constant for jlong (standardized by C++11) 306 307 // Build a 64bit integer constant 308 #define CONST64(x) (x ## LL) 309 #define UCONST64(x) (x ## ULL) 310 311 const jlong min_jlong = CONST64(0x8000000000000000); 312 const jlong max_jlong = CONST64(0x7fffffffffffffff); 313 314 //------------------------------------------- 315 // Constant for jdouble 316 const jlong min_jlongDouble = CONST64(0x0000000000000001); 317 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 318 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 319 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 320 321 const size_t K = 1024; 322 const size_t M = K*K; 323 const size_t G = M*K; 324 const size_t HWperKB = K / sizeof(HeapWord); 325 326 // Constants for converting from a base unit to milli-base units. For 327 // example from seconds to milliseconds and microseconds 328 329 const int MILLIUNITS = 1000; // milli units per base unit 330 const int MICROUNITS = 1000000; // micro units per base unit 331 const int NANOUNITS = 1000000000; // nano units per base unit 332 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 333 334 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 335 const jint NANOSECS_PER_MILLISEC = 1000000; 336 337 338 // Unit conversion functions 339 // The caller is responsible for considering overflow. 340 341 inline int64_t nanos_to_millis(int64_t nanos) { 342 return nanos / NANOUNITS_PER_MILLIUNIT; 343 } 344 inline int64_t millis_to_nanos(int64_t millis) { 345 return millis * NANOUNITS_PER_MILLIUNIT; 346 } 347 348 // Proper units routines try to maintain at least three significant digits. 349 // In worst case, it would print five significant digits with lower prefix. 350 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 351 // and therefore we need to be careful. 352 353 inline const char* proper_unit_for_byte_size(size_t s) { 354 #ifdef _LP64 355 if (s >= 100*G) { 356 return "G"; 357 } 358 #endif 359 if (s >= 100*M) { 360 return "M"; 361 } else if (s >= 100*K) { 362 return "K"; 363 } else { 364 return "B"; 365 } 366 } 367 368 template <class T> 369 inline T byte_size_in_proper_unit(T s) { 370 #ifdef _LP64 371 if (s >= 100*G) { 372 return (T)(s/G); 373 } 374 #endif 375 if (s >= 100*M) { 376 return (T)(s/M); 377 } else if (s >= 100*K) { 378 return (T)(s/K); 379 } else { 380 return s; 381 } 382 } 383 384 #define PROPERFMT SIZE_FORMAT "%s" 385 #define PROPERFMTARGS(s) byte_size_in_proper_unit(s), proper_unit_for_byte_size(s) 386 387 // Printing a range, with start and bytes given 388 #define RANGEFMT "[" PTR_FORMAT " - " PTR_FORMAT "), (" SIZE_FORMAT " bytes)" 389 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size 390 391 // Printing a range, with start and end given 392 #define RANGE2FMT "[" PTR_FORMAT " - " PTR_FORMAT "), (" SIZE_FORMAT " bytes)" 393 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1) 394 395 inline const char* exact_unit_for_byte_size(size_t s) { 396 #ifdef _LP64 397 if (s >= G && (s % G) == 0) { 398 return "G"; 399 } 400 #endif 401 if (s >= M && (s % M) == 0) { 402 return "M"; 403 } 404 if (s >= K && (s % K) == 0) { 405 return "K"; 406 } 407 return "B"; 408 } 409 410 inline size_t byte_size_in_exact_unit(size_t s) { 411 #ifdef _LP64 412 if (s >= G && (s % G) == 0) { 413 return s / G; 414 } 415 #endif 416 if (s >= M && (s % M) == 0) { 417 return s / M; 418 } 419 if (s >= K && (s % K) == 0) { 420 return s / K; 421 } 422 return s; 423 } 424 425 #define EXACTFMT SIZE_FORMAT "%s" 426 #define EXACTFMTARGS(s) byte_size_in_exact_unit(s), exact_unit_for_byte_size(s) 427 428 // Memory size transition formatting. 429 430 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" 431 432 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 433 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 434 435 //---------------------------------------------------------------------------------------------------- 436 // VM type definitions 437 438 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 439 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 440 441 typedef intptr_t intx; 442 typedef uintptr_t uintx; 443 444 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 445 const intx max_intx = (uintx)min_intx - 1; 446 const uintx max_uintx = (uintx)-1; 447 448 // Table of values: 449 // sizeof intx 4 8 450 // min_intx 0x80000000 0x8000000000000000 451 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 452 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 453 454 typedef unsigned int uint; NEEDS_CLEANUP 455 456 //---------------------------------------------------------------------------------------------------- 457 // Java type definitions 458 459 // All kinds of 'plain' byte addresses 460 typedef signed char s_char; 461 typedef unsigned char u_char; 462 typedef u_char* address; 463 typedef const u_char* const_address; 464 465 // Pointer subtraction. 466 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 467 // the range we might need to find differences from one end of the heap 468 // to the other. 469 // A typical use might be: 470 // if (pointer_delta(end(), top()) >= size) { 471 // // enough room for an object of size 472 // ... 473 // and then additions like 474 // ... top() + size ... 475 // are safe because we know that top() is at least size below end(). 476 inline size_t pointer_delta(const volatile void* left, 477 const volatile void* right, 478 size_t element_size) { 479 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 480 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 481 } 482 483 // A version specialized for HeapWord*'s. 484 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 485 return pointer_delta(left, right, sizeof(HeapWord)); 486 } 487 // A version specialized for MetaWord*'s. 488 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 489 return pointer_delta(left, right, sizeof(MetaWord)); 490 } 491 492 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that 493 // returns a non-negative int, usually used as a size of a code buffer range. 494 // This scales to sizeof(T). 495 template <typename T> 496 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) { 497 size_t delta = pointer_delta(left, right, sizeof(T)); 498 assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta); 499 return static_cast<int>(delta); 500 } 501 502 // 503 // ANSI C++ does not allow casting from one pointer type to a function pointer 504 // directly without at best a warning. This macro accomplishes it silently 505 // In every case that is present at this point the value be cast is a pointer 506 // to a C linkage function. In some case the type used for the cast reflects 507 // that linkage and a picky compiler would not complain. In other cases because 508 // there is no convenient place to place a typedef with extern C linkage (i.e 509 // a platform dependent header file) it doesn't. At this point no compiler seems 510 // picky enough to catch these instances (which are few). It is possible that 511 // using templates could fix these for all cases. This use of templates is likely 512 // so far from the middle of the road that it is likely to be problematic in 513 // many C++ compilers. 514 // 515 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 516 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr))) 517 518 // Need the correct linkage to call qsort without warnings 519 extern "C" { 520 typedef int (*_sort_Fn)(const void *, const void *); 521 } 522 523 // Additional Java basic types 524 525 typedef uint8_t jubyte; 526 typedef uint16_t jushort; 527 typedef uint32_t juint; 528 typedef uint64_t julong; 529 530 // Unsigned byte types for os and stream.hpp 531 532 // Unsigned one, two, four and eight byte quantities used for describing 533 // the .class file format. See JVM book chapter 4. 534 535 typedef jubyte u1; 536 typedef jushort u2; 537 typedef juint u4; 538 typedef julong u8; 539 540 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 541 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 542 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 543 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 544 545 typedef jbyte s1; 546 typedef jshort s2; 547 typedef jint s4; 548 typedef jlong s8; 549 550 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 551 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 552 const jshort min_jshort = -(1 << 15); // smallest jshort 553 const jshort max_jshort = (1 << 15) - 1; // largest jshort 554 555 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 556 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 557 558 const jint min_jintFloat = (jint)(0x00000001); 559 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 560 const jint max_jintFloat = (jint)(0x7f7fffff); 561 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 562 563 //---------------------------------------------------------------------------------------------------- 564 // JVM spec restrictions 565 566 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 567 568 //---------------------------------------------------------------------------------------------------- 569 // old CDS options 570 extern bool RequireSharedSpaces; 571 extern "C" { 572 // Make sure UseSharedSpaces is accessible to the serviceability agent. 573 extern JNIEXPORT jboolean UseSharedSpaces; 574 } 575 576 //---------------------------------------------------------------------------------------------------- 577 // Object alignment, in units of HeapWords. 578 // 579 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 580 // reference fields can be naturally aligned. 581 582 extern int MinObjAlignment; 583 extern int MinObjAlignmentInBytes; 584 extern int MinObjAlignmentInBytesMask; 585 586 extern int LogMinObjAlignment; 587 extern int LogMinObjAlignmentInBytes; 588 589 // Maximal size of heap where unscaled compression can be used. Also upper bound 590 // for heap placement: 4GB. 591 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 592 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 593 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 594 extern uint64_t OopEncodingHeapMax; 595 596 // Machine dependent stuff 597 598 #include CPU_HEADER(globalDefinitions) 599 600 // The maximum size of the code cache. Can be overridden by targets. 601 #ifndef CODE_CACHE_SIZE_LIMIT 602 #define CODE_CACHE_SIZE_LIMIT (2*G) 603 #endif 604 605 // Allow targets to reduce the default size of the code cache. 606 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 607 608 // To assure the IRIW property on processors that are not multiple copy 609 // atomic, sync instructions must be issued between volatile reads to 610 // assure their ordering, instead of after volatile stores. 611 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 612 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 613 #ifdef CPU_MULTI_COPY_ATOMIC 614 // Not needed. 615 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 616 #else 617 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 618 // Final decision is subject to JEP 188: Java Memory Model Update. 619 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 620 #endif 621 622 // The expected size in bytes of a cache line. 623 #ifndef DEFAULT_CACHE_LINE_SIZE 624 #error "Platform should define DEFAULT_CACHE_LINE_SIZE" 625 #endif 626 627 // The default padding size for data structures to avoid false sharing. 628 #ifndef DEFAULT_PADDING_SIZE 629 #error "Platform should define DEFAULT_PADDING_SIZE" 630 #endif 631 632 633 //---------------------------------------------------------------------------------------------------- 634 // Prototyping 635 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break 636 // compilation on purpose (i.e. "forget me not") 637 #define PROTOTYPE 638 #ifdef PROTOTYPE 639 #define CMH(m) 640 #endif 641 642 //---------------------------------------------------------------------------------------------------- 643 // Miscellaneous 644 645 // 6302670 Eliminate Hotspot __fabsf dependency 646 // All fabs() callers should call this function instead, which will implicitly 647 // convert the operand to double, avoiding a dependency on __fabsf which 648 // doesn't exist in early versions of Solaris 8. 649 inline double fabsd(double value) { 650 return fabs(value); 651 } 652 653 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 654 // is zero, return 0.0. 655 template<typename T> 656 inline double percent_of(T numerator, T denominator) { 657 return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0; 658 } 659 660 //---------------------------------------------------------------------------------------------------- 661 // Special casts 662 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 663 typedef union { 664 jfloat f; 665 jint i; 666 } FloatIntConv; 667 668 typedef union { 669 jdouble d; 670 jlong l; 671 julong ul; 672 } DoubleLongConv; 673 674 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 675 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 676 677 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 678 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 679 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 680 681 inline jint low (jlong value) { return jint(value); } 682 inline jint high(jlong value) { return jint(value >> 32); } 683 684 // the fancy casts are a hopefully portable way 685 // to do unsigned 32 to 64 bit type conversion 686 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 687 *value |= (jlong)(julong)(juint)low; } 688 689 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 690 *value |= (jlong)high << 32; } 691 692 inline jlong jlong_from(jint h, jint l) { 693 jlong result = 0; // initialization to avoid warning 694 set_high(&result, h); 695 set_low(&result, l); 696 return result; 697 } 698 699 union jlong_accessor { 700 jint words[2]; 701 jlong long_value; 702 }; 703 704 void basic_types_init(); // cannot define here; uses assert 705 706 707 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 708 enum BasicType : u1 { 709 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 710 T_BOOLEAN = JVM_T_BOOLEAN, 711 T_CHAR = JVM_T_CHAR, 712 T_FLOAT = JVM_T_FLOAT, 713 T_DOUBLE = JVM_T_DOUBLE, 714 T_BYTE = JVM_T_BYTE, 715 T_SHORT = JVM_T_SHORT, 716 T_INT = JVM_T_INT, 717 T_LONG = JVM_T_LONG, 718 // The remaining values are not part of any standard. 719 // T_OBJECT and T_VOID denote two more semantic choices 720 // for method return values. 721 // T_OBJECT and T_ARRAY describe signature syntax. 722 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 723 // internal references within the JVM as if they were Java 724 // types in their own right. 725 T_OBJECT = 12, 726 T_ARRAY = 13, 727 T_FLAT_ELEMENT = 14, // Not a true BasicType, only use in headers of flat arrays 728 T_VOID = 15, 729 T_ADDRESS = 16, 730 T_NARROWOOP = 17, 731 T_METADATA = 18, 732 T_NARROWKLASS = 19, 733 T_CONFLICT = 20, // for stack value type with conflicting contents 734 T_ILLEGAL = 99 735 }; 736 737 #define SIGNATURE_TYPES_DO(F, N) \ 738 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 739 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 740 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 741 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 742 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 743 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 744 F(JVM_SIGNATURE_INT, T_INT, N) \ 745 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 746 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 747 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 748 F(JVM_SIGNATURE_FLAT_ELEMENT, T_FLAT_ELEMENT, N) \ 749 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 750 /*end*/ 751 752 inline bool is_java_type(BasicType t) { 753 return T_BOOLEAN <= t && t <= T_VOID; 754 } 755 756 inline bool is_java_primitive(BasicType t) { 757 return T_BOOLEAN <= t && t <= T_LONG; 758 } 759 760 inline bool is_subword_type(BasicType t) { 761 // these guys are processed exactly like T_INT in calling sequences: 762 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 763 } 764 765 inline bool is_signed_subword_type(BasicType t) { 766 return (t == T_BYTE || t == T_SHORT); 767 } 768 769 inline bool is_unsigned_subword_type(BasicType t) { 770 return (t == T_BOOLEAN || t == T_CHAR); 771 } 772 773 inline bool is_double_word_type(BasicType t) { 774 return (t == T_DOUBLE || t == T_LONG); 775 } 776 777 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) { 778 return (t == T_OBJECT || t == T_ARRAY || t == T_FLAT_ELEMENT || (include_narrow_oop && t == T_NARROWOOP)); 779 } 780 781 inline bool is_integral_type(BasicType t) { 782 return is_subword_type(t) || t == T_INT || t == T_LONG; 783 } 784 785 inline bool is_non_subword_integral_type(BasicType t) { 786 return t == T_INT || t == T_LONG; 787 } 788 789 inline bool is_floating_point_type(BasicType t) { 790 return (t == T_FLOAT || t == T_DOUBLE); 791 } 792 793 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 794 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 795 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 796 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 797 extern BasicType name2type(const char* name); 798 799 const char* type2name(BasicType t); 800 801 inline jlong max_signed_integer(BasicType bt) { 802 if (bt == T_INT) { 803 return max_jint; 804 } 805 assert(bt == T_LONG, "unsupported"); 806 return max_jlong; 807 } 808 809 inline jlong min_signed_integer(BasicType bt) { 810 if (bt == T_INT) { 811 return min_jint; 812 } 813 assert(bt == T_LONG, "unsupported"); 814 return min_jlong; 815 } 816 817 // Auxiliary math routines 818 // least common multiple 819 extern size_t lcm(size_t a, size_t b); 820 821 822 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 823 enum BasicTypeSize { 824 T_BOOLEAN_size = 1, 825 T_CHAR_size = 1, 826 T_FLOAT_size = 1, 827 T_DOUBLE_size = 2, 828 T_BYTE_size = 1, 829 T_SHORT_size = 1, 830 T_INT_size = 1, 831 T_LONG_size = 2, 832 T_OBJECT_size = 1, 833 T_ARRAY_size = 1, 834 T_NARROWOOP_size = 1, 835 T_NARROWKLASS_size = 1, 836 T_VOID_size = 0, 837 T_FLAT_ELEMENT_size = 1 838 }; 839 840 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 841 inline int parameter_type_word_count(BasicType t) { 842 if (is_double_word_type(t)) return 2; 843 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 844 assert(type2size[t] == 1, "must be"); 845 return 1; 846 } 847 848 // maps a BasicType to its instance field storage type: 849 // all sub-word integral types are widened to T_INT 850 extern BasicType type2field[T_CONFLICT+1]; 851 extern BasicType type2wfield[T_CONFLICT+1]; 852 853 854 // size in bytes 855 enum ArrayElementSize { 856 T_BOOLEAN_aelem_bytes = 1, 857 T_CHAR_aelem_bytes = 2, 858 T_FLOAT_aelem_bytes = 4, 859 T_DOUBLE_aelem_bytes = 8, 860 T_BYTE_aelem_bytes = 1, 861 T_SHORT_aelem_bytes = 2, 862 T_INT_aelem_bytes = 4, 863 T_LONG_aelem_bytes = 8, 864 #ifdef _LP64 865 T_OBJECT_aelem_bytes = 8, 866 T_ARRAY_aelem_bytes = 8, 867 T_FLAT_ELEMENT_aelem_bytes = 8, 868 #else 869 T_OBJECT_aelem_bytes = 4, 870 T_ARRAY_aelem_bytes = 4, 871 T_FLAT_ELEMENT_aelem_bytes = 4, 872 #endif 873 T_NARROWOOP_aelem_bytes = 4, 874 T_NARROWKLASS_aelem_bytes = 4, 875 T_VOID_aelem_bytes = 0 876 }; 877 878 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 879 #ifdef ASSERT 880 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 881 #else 882 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 883 #endif 884 885 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) { 886 return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2)); 887 } 888 889 // JavaValue serves as a container for arbitrary Java values. 890 891 class JavaValue { 892 893 public: 894 typedef union JavaCallValue { 895 jfloat f; 896 jdouble d; 897 jint i; 898 jlong l; 899 jobject h; 900 oopDesc* o; 901 } JavaCallValue; 902 903 private: 904 BasicType _type; 905 JavaCallValue _value; 906 907 public: 908 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 909 910 JavaValue(jfloat value) { 911 _type = T_FLOAT; 912 _value.f = value; 913 } 914 915 JavaValue(jdouble value) { 916 _type = T_DOUBLE; 917 _value.d = value; 918 } 919 920 jfloat get_jfloat() const { return _value.f; } 921 jdouble get_jdouble() const { return _value.d; } 922 jint get_jint() const { return _value.i; } 923 jlong get_jlong() const { return _value.l; } 924 jobject get_jobject() const { return _value.h; } 925 oopDesc* get_oop() const { return _value.o; } 926 JavaCallValue* get_value_addr() { return &_value; } 927 BasicType get_type() const { return _type; } 928 929 void set_jfloat(jfloat f) { _value.f = f;} 930 void set_jdouble(jdouble d) { _value.d = d;} 931 void set_jint(jint i) { _value.i = i;} 932 void set_jlong(jlong l) { _value.l = l;} 933 void set_jobject(jobject h) { _value.h = h;} 934 void set_oop(oopDesc* o) { _value.o = o;} 935 void set_type(BasicType t) { _type = t; } 936 937 jboolean get_jboolean() const { return (jboolean) (_value.i);} 938 jbyte get_jbyte() const { return (jbyte) (_value.i);} 939 jchar get_jchar() const { return (jchar) (_value.i);} 940 jshort get_jshort() const { return (jshort) (_value.i);} 941 942 }; 943 944 945 // TosState describes the top-of-stack state before and after the execution of 946 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 947 // registers. The TosState corresponds to the 'machine representation' of this cached 948 // value. There's 4 states corresponding to the JAVA types int, long, float & double 949 // as well as a 5th state in case the top-of-stack value is actually on the top 950 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 951 // state when it comes to machine representation but is used separately for (oop) 952 // type specific operations (e.g. verification code). 953 954 enum TosState { // describes the tos cache contents 955 btos = 0, // byte, bool tos cached 956 ztos = 1, // byte, bool tos cached 957 ctos = 2, // char tos cached 958 stos = 3, // short tos cached 959 itos = 4, // int tos cached 960 ltos = 5, // long tos cached 961 ftos = 6, // float tos cached 962 dtos = 7, // double tos cached 963 atos = 8, // object cached 964 vtos = 9, // tos not cached, 965 number_of_states, 966 ilgl // illegal state: should not occur 967 }; 968 969 970 inline TosState as_TosState(BasicType type) { 971 switch (type) { 972 case T_BYTE : return btos; 973 case T_BOOLEAN: return ztos; 974 case T_CHAR : return ctos; 975 case T_SHORT : return stos; 976 case T_INT : return itos; 977 case T_LONG : return ltos; 978 case T_FLOAT : return ftos; 979 case T_DOUBLE : return dtos; 980 case T_VOID : return vtos; 981 case T_ARRAY : // fall through 982 case T_OBJECT : return atos; 983 default : return ilgl; 984 } 985 } 986 987 inline BasicType as_BasicType(TosState state) { 988 switch (state) { 989 case btos : return T_BYTE; 990 case ztos : return T_BOOLEAN; 991 case ctos : return T_CHAR; 992 case stos : return T_SHORT; 993 case itos : return T_INT; 994 case ltos : return T_LONG; 995 case ftos : return T_FLOAT; 996 case dtos : return T_DOUBLE; 997 case atos : return T_OBJECT; 998 case vtos : return T_VOID; 999 default : return T_ILLEGAL; 1000 } 1001 } 1002 1003 1004 // Helper function to convert BasicType info into TosState 1005 // Note: Cannot define here as it uses global constant at the time being. 1006 TosState as_TosState(BasicType type); 1007 1008 1009 // JavaThreadState keeps track of which part of the code a thread is executing in. This 1010 // information is needed by the safepoint code. 1011 // 1012 // There are 4 essential states: 1013 // 1014 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 1015 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 1016 // _thread_in_vm : Executing in the vm 1017 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 1018 // 1019 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 1020 // a transition from one state to another. These extra states makes it possible for the safepoint code to 1021 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 1022 // 1023 // Given a state, the xxxx_trans state can always be found by adding 1. 1024 // 1025 enum JavaThreadState { 1026 _thread_uninitialized = 0, // should never happen (missing initialization) 1027 _thread_new = 2, // just starting up, i.e., in process of being initialized 1028 _thread_new_trans = 3, // corresponding transition state (not used, included for completeness) 1029 _thread_in_native = 4, // running in native code 1030 _thread_in_native_trans = 5, // corresponding transition state 1031 _thread_in_vm = 6, // running in VM 1032 _thread_in_vm_trans = 7, // corresponding transition state 1033 _thread_in_Java = 8, // running in Java or in stub code 1034 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completeness) 1035 _thread_blocked = 10, // blocked in vm 1036 _thread_blocked_trans = 11, // corresponding transition state 1037 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 1038 }; 1039 1040 enum LockingMode { 1041 // Use only heavy monitors for locking 1042 LM_MONITOR = 0, 1043 // Legacy stack-locking, with monitors as 2nd tier 1044 LM_LEGACY = 1, 1045 // New lightweight locking, with monitors as 2nd tier 1046 LM_LIGHTWEIGHT = 2 1047 }; 1048 1049 //---------------------------------------------------------------------------------------------------- 1050 // Special constants for debugging 1051 1052 const jint badInt = -3; // generic "bad int" value 1053 const intptr_t badAddressVal = -2; // generic "bad address" value 1054 const intptr_t badOopVal = -1; // generic "bad oop" value 1055 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1056 const int badStackSegVal = 0xCA; // value used to zap stack segments 1057 const int badHandleValue = 0xBC; // value used to zap vm handle area 1058 const int badResourceValue = 0xAB; // value used to zap resource area 1059 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1060 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1061 const juint uninitMetaWordVal = 0xf7f7f7f7; // value used to zap newly allocated metachunk 1062 const jubyte heapPaddingByteVal = 0xBD; // value used to zap object padding in the heap 1063 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1064 const int badCodeHeapNewVal = 0xCC; // value used to zap Code heap at allocation 1065 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1066 const intptr_t badDispHeaderDeopt = 0xDE0BD000; // value to fill unused displaced header during deoptimization 1067 const intptr_t badDispHeaderOSR = 0xDEAD05A0; // value to fill unused displaced header during OSR 1068 1069 // (These must be implemented as #defines because C++ compilers are 1070 // not obligated to inline non-integral constants!) 1071 #define badAddress ((address)::badAddressVal) 1072 #define badHeapWord (::badHeapWordVal) 1073 1074 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1075 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17)); 1076 1077 //---------------------------------------------------------------------------------------------------- 1078 // Utility functions for bitfield manipulations 1079 1080 const intptr_t AllBits = ~0; // all bits set in a word 1081 const intptr_t NoBits = 0; // no bits set in a word 1082 const jlong NoLongBits = 0; // no bits set in a long 1083 const intptr_t OneBit = 1; // only right_most bit set in a word 1084 1085 // get a word with the n.th or the right-most or left-most n bits set 1086 // (note: #define used only so that they can be used in enum constant definitions) 1087 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1088 #define right_n_bits(n) (nth_bit(n) - 1) 1089 1090 // bit-operations using a mask m 1091 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1092 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1093 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1094 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1095 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1096 1097 // bit-operations using the n.th bit 1098 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1099 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1100 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1101 1102 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1103 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1104 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1105 } 1106 1107 1108 //---------------------------------------------------------------------------------------------------- 1109 // Utility functions for integers 1110 1111 // Avoid use of global min/max macros which may cause unwanted double 1112 // evaluation of arguments. 1113 #ifdef max 1114 #undef max 1115 #endif 1116 1117 #ifdef min 1118 #undef min 1119 #endif 1120 1121 // It is necessary to use templates here. Having normal overloaded 1122 // functions does not work because it is necessary to provide both 32- 1123 // and 64-bit overloaded functions, which does not work, and having 1124 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1125 // will be even more error-prone than macros. 1126 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1127 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1128 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1129 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1130 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1131 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1132 1133 #define ABS(x) asserted_abs(x, __FILE__, __LINE__) 1134 1135 template<class T> inline T asserted_abs(T x, const char* file, int line) { 1136 bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min()); 1137 #ifdef ASSERT 1138 if (!valid_arg) { 1139 report_vm_error(file, line, "ABS: argument should not allow overflow"); 1140 } 1141 #endif 1142 // Prevent exposure to UB by checking valid_arg here as well. 1143 return (x < 0 && valid_arg) ? -x : x; 1144 } 1145 1146 // Return the given value clamped to the range [min ... max] 1147 template<typename T> 1148 inline T clamp(T value, T min, T max) { 1149 assert(min <= max, "must be"); 1150 return MIN2(MAX2(value, min), max); 1151 } 1152 1153 inline bool is_odd (intx x) { return x & 1; } 1154 inline bool is_even(intx x) { return !is_odd(x); } 1155 1156 // abs methods which cannot overflow and so are well-defined across 1157 // the entire domain of integer types. 1158 static inline unsigned int uabs(unsigned int n) { 1159 union { 1160 unsigned int result; 1161 int value; 1162 }; 1163 result = n; 1164 if (value < 0) result = 0-result; 1165 return result; 1166 } 1167 static inline julong uabs(julong n) { 1168 union { 1169 julong result; 1170 jlong value; 1171 }; 1172 result = n; 1173 if (value < 0) result = 0-result; 1174 return result; 1175 } 1176 static inline julong uabs(jlong n) { return uabs((julong)n); } 1177 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1178 1179 // "to" should be greater than "from." 1180 inline size_t byte_size(void* from, void* to) { 1181 return pointer_delta(to, from, sizeof(char)); 1182 } 1183 1184 // Pack and extract shorts to/from ints: 1185 1186 inline u2 extract_low_short_from_int(u4 x) { 1187 return u2(x & 0xffff); 1188 } 1189 1190 inline u2 extract_high_short_from_int(u4 x) { 1191 return u2((x >> 16) & 0xffff); 1192 } 1193 1194 inline int build_int_from_shorts( u2 low, u2 high ) { 1195 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1196 } 1197 1198 // swap a & b 1199 template<class T> static void swap(T& a, T& b) { 1200 T tmp = a; 1201 a = b; 1202 b = tmp; 1203 } 1204 1205 // array_size_impl is a function that takes a reference to T[N] and 1206 // returns a reference to char[N]. It is not ODR-used, so not defined. 1207 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1208 1209 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1210 1211 //---------------------------------------------------------------------------------------------------- 1212 // Sum and product which can never overflow: they wrap, just like the 1213 // Java operations. Note that we don't intend these to be used for 1214 // general-purpose arithmetic: their purpose is to emulate Java 1215 // operations. 1216 1217 // The goal of this code to avoid undefined or implementation-defined 1218 // behavior. The use of an lvalue to reference cast is explicitly 1219 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1220 // 15 in C++03] 1221 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1222 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1223 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1224 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1225 return reinterpret_cast<TYPE&>(ures); \ 1226 } 1227 1228 JAVA_INTEGER_OP(+, java_add, jint, juint) 1229 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1230 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1231 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1232 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1233 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1234 1235 inline jint java_negate(jint v) { return java_subtract((jint) 0, v); } 1236 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); } 1237 1238 #undef JAVA_INTEGER_OP 1239 1240 // Provide integer shift operations with Java semantics. No overflow 1241 // issues - left shifts simply discard shifted out bits. No undefined 1242 // behavior for large or negative shift quantities; instead the actual 1243 // shift distance is the argument modulo the lhs value's size in bits. 1244 // No undefined or implementation defined behavior for shifting negative 1245 // values; left shift discards bits, right shift sign extends. We use 1246 // the same safe conversion technique as above for java_add and friends. 1247 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1248 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1249 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1250 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1251 XTYPE xres = static_cast<XTYPE>(lhs); \ 1252 xres OP ## = (rhs & rhs_mask); \ 1253 return reinterpret_cast<TYPE&>(xres); \ 1254 } 1255 1256 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1257 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1258 1259 // For signed shift right, assume C++ implementation >> sign extends. 1260 // 1261 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type 1262 // and a negative value, the resulting value is implementation-defined." 1263 // 1264 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of 1265 // requiring two's-complement behavior. 1266 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html 1267 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html 1268 // The corresponding C++20 text is "Right-shift on signed integral types is an 1269 // arithmetic right shift, which performs sign-extension." 1270 // 1271 // As discussed in the two's complement proposal, all known modern C++ compilers 1272 // already behave that way. And it is unlikely any would go off and do something 1273 // different now, with C++20 tightening things up. 1274 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1275 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1276 // For >>> use C++ unsigned >>. 1277 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1278 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1279 1280 #undef JAVA_INTEGER_SHIFT_OP 1281 1282 //---------------------------------------------------------------------------------------------------- 1283 // The goal of this code is to provide saturating operations for int/uint. 1284 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1285 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1286 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1287 jlong res = static_cast<jlong>(in1); \ 1288 res OP ## = static_cast<jlong>(in2); \ 1289 if (res > max_jint) { \ 1290 res = max_jint; \ 1291 } else if (res < min_jint) { \ 1292 res = min_jint; \ 1293 } \ 1294 return static_cast<int>(res); \ 1295 } 1296 1297 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1298 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1299 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1300 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1301 1302 #undef SATURATED_INTEGER_OP 1303 1304 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. 1305 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) { 1306 const uint64_t x1 = x >> 32u; 1307 const uint64_t x2 = x & 0xFFFFFFFF; 1308 const uint64_t y1 = y >> 32u; 1309 const uint64_t y2 = y & 0xFFFFFFFF; 1310 const uint64_t z2 = x2 * y2; 1311 const uint64_t t = x1 * y2 + (z2 >> 32u); 1312 uint64_t z1 = t & 0xFFFFFFFF; 1313 const uint64_t z0 = t >> 32u; 1314 z1 += x2 * y1; 1315 1316 return x1 * y1 + z0 + (z1 >> 32u); 1317 } 1318 1319 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr., 1320 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs. 1321 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) { 1322 const jlong x1 = java_shift_right((jlong)x, 32); 1323 const jlong x2 = x & 0xFFFFFFFF; 1324 const jlong y1 = java_shift_right((jlong)y, 32); 1325 const jlong y2 = y & 0xFFFFFFFF; 1326 1327 const uint64_t z2 = (uint64_t)x2 * y2; 1328 const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift 1329 int64_t z1 = t & 0xFFFFFFFF; 1330 const int64_t z0 = java_shift_right((jlong)t, 32); 1331 z1 += x2 * y1; 1332 1333 return x1 * y1 + z0 + java_shift_right((jlong)z1, 32); 1334 } 1335 1336 // Dereference vptr 1337 // All C++ compilers that we know of have the vtbl pointer in the first 1338 // word. If there are exceptions, this function needs to be made compiler 1339 // specific. 1340 static inline void* dereference_vptr(const void* addr) { 1341 return *(void**)addr; 1342 } 1343 1344 //---------------------------------------------------------------------------------------------------- 1345 // String type aliases used by command line flag declarations and 1346 // processing utilities. 1347 1348 typedef const char* ccstr; 1349 typedef const char* ccstrlist; // represents string arguments which accumulate 1350 1351 //---------------------------------------------------------------------------------------------------- 1352 // Default hash/equals functions used by ResourceHashtable 1353 1354 template<typename K> unsigned primitive_hash(const K& k) { 1355 unsigned hash = (unsigned)((uintptr_t)k); 1356 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1357 } 1358 1359 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1360 return k0 == k1; 1361 } 1362 1363 // TEMP!!!! 1364 // This should be removed after LW2 arrays are implemented (JDK-8220790). 1365 // It's an alias to (EnableValhalla && (FlatArrayElementMaxSize != 0)), 1366 // which is actually not 100% correct, but works for the current set of C1/C2 1367 // implementation and test cases. 1368 #define UseFlatArray (EnableValhalla && (FlatArrayElementMaxSize != 0)) 1369 1370 template<typename K> int primitive_compare(const K& k0, const K& k1) { 1371 return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1); 1372 } 1373 1374 //---------------------------------------------------------------------------------------------------- 1375 1376 // Allow use of C++ thread_local when approved - see JDK-8282469. 1377 #define APPROVED_CPP_THREAD_LOCAL thread_local 1378 1379 // Converts any type T to a reference type. 1380 template<typename T> 1381 std::add_rvalue_reference_t<T> declval() noexcept; 1382 1383 // Quickly test to make sure IEEE-754 subnormal numbers are correctly 1384 // handled. 1385 bool IEEE_subnormal_handling_OK(); 1386 1387 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP