1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "classfile_constants.h"
  29 #include "utilities/compilerWarnings.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/forbiddenFunctions.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 #include COMPILER_HEADER(utilities/globalDefinitions)
  35 
  36 #include <cstddef>
  37 #include <cstdint>
  38 #include <limits>
  39 #include <type_traits>
  40 
  41 class oopDesc;
  42 
  43 // Defaults for macros that might be defined per compiler.
  44 #ifndef NOINLINE
  45 #define NOINLINE
  46 #endif
  47 #ifndef ALWAYSINLINE
  48 #define ALWAYSINLINE inline
  49 #endif
  50 
  51 #ifndef ATTRIBUTE_ALIGNED
  52 #define ATTRIBUTE_ALIGNED(x) alignas(x)
  53 #endif
  54 
  55 #ifndef ATTRIBUTE_FLATTEN
  56 #define ATTRIBUTE_FLATTEN
  57 #endif
  58 
  59 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  60 // capabilities. Choices should be led by a tradeoff between
  61 // code size and improved supportability.
  62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  63 // to have a fallback in case hsdis is not available.
  64 #if defined(PRODUCT)
  65   #define SUPPORT_ABSTRACT_ASSEMBLY
  66   #define SUPPORT_ASSEMBLY
  67   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  68   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  69 #else
  70   #define SUPPORT_ABSTRACT_ASSEMBLY
  71   #define SUPPORT_ASSEMBLY
  72   #define SUPPORT_OPTO_ASSEMBLY
  73   #define SUPPORT_DATA_STRUCTS
  74 #endif
  75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  76   #define SUPPORT_ABSTRACT_ASSEMBLY
  77 #endif
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 // Declare the named class to be noncopyable.  This macro must be followed by
  83 // a semi-colon.  The macro provides deleted declarations for the class's copy
  84 // constructor and assignment operator.  Because these operations are deleted,
  85 // they cannot be defined and potential callers will fail to compile.
  86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
  87 
  88 // offset_of was a workaround for UB with offsetof uses that are no longer an
  89 // issue.  This can be removed once all uses have been converted.
  90 #define offset_of(klass, field) offsetof(klass, field)
  91 
  92 //----------------------------------------------------------------------------------------------------
  93 // Printf-style formatters for fixed- and variable-width types as pointers and
  94 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  95 // doesn't provide appropriate definitions, they should be provided in
  96 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  97 
  98 // Guide to the suffixes used in the format specifiers for integers:
  99 //        - print the decimal value:                   745565
 100 //  _X    - print as hexadecimal, without leading 0s: 0x12345
 101 //  _X_0  - print as hexadecimal, with leading 0s: 0x00012345
 102 //  _W(w) - prints w sized string with the given value right
 103 //          adjusted. Use -w to print left adjusted.
 104 //  _0    - print as hexadecimal, with leading 0s, without 0x prefix: 0012345
 105 //
 106 // Note that the PTR format specifiers print using 0x with leading zeros,
 107 // just like the _X_0 version for integers.
 108 
 109 // Format 8-bit quantities.
 110 #define INT8_FORMAT_X_0          "0x%02"      PRIx8
 111 #define UINT8_FORMAT_X_0         "0x%02"      PRIx8
 112 
 113 // Format 16-bit quantities.
 114 #define INT16_FORMAT_X_0         "0x%04"      PRIx16
 115 #define UINT16_FORMAT_X_0        "0x%04"      PRIx16
 116 
 117 // Format 32-bit quantities.
 118 #define INT32_FORMAT             "%"          PRId32
 119 #define INT32_FORMAT_X           "0x%"        PRIx32
 120 #define INT32_FORMAT_X_0         "0x%08"      PRIx32
 121 #define INT32_FORMAT_W(width)    "%"   #width PRId32
 122 #define UINT32_FORMAT            "%"          PRIu32
 123 #define UINT32_FORMAT_X          "0x%"        PRIx32
 124 #define UINT32_FORMAT_X_0        "0x%08"      PRIx32
 125 #define UINT32_FORMAT_W(width)   "%"   #width PRIu32
 126 
 127 // Format 64-bit quantities.
 128 #define INT64_FORMAT             "%"          PRId64
 129 #define INT64_PLUS_FORMAT        "%+"         PRId64
 130 #define INT64_FORMAT_X           "0x%"        PRIx64
 131 #define INT64_FORMAT_X_0         "0x%016"     PRIx64
 132 #define INT64_FORMAT_W(width)    "%"   #width PRId64
 133 #define UINT64_FORMAT            "%"          PRIu64
 134 #define UINT64_FORMAT_X          "0x%"        PRIx64
 135 #define UINT64_FORMAT_X_0        "0x%016"     PRIx64
 136 #define UINT64_FORMAT_W(width)   "%"   #width PRIu64
 137 #define UINT64_FORMAT_0          "%016"       PRIx64
 138 
 139 // Format jlong, if necessary
 140 #ifndef JLONG_FORMAT
 141 #define JLONG_FORMAT             INT64_FORMAT
 142 #endif
 143 #ifndef JLONG_FORMAT_W
 144 #define JLONG_FORMAT_W(width)    INT64_FORMAT_W(width)
 145 #endif
 146 #ifndef JULONG_FORMAT
 147 #define JULONG_FORMAT            UINT64_FORMAT
 148 #endif
 149 #ifndef JULONG_FORMAT_X
 150 #define JULONG_FORMAT_X          UINT64_FORMAT_X
 151 #endif
 152 #ifndef JULONG_FORMAT_W
 153 #define JULONG_FORMAT_W(width)   UINT64_FORMAT_W(width)
 154 #endif
 155 
 156 // Format pointers and padded integral values which change size between 32- and 64-bit.
 157 #ifdef  _LP64
 158 #define INTPTR_FORMAT            "0x%016"     PRIxPTR
 159 #define PTR_FORMAT               "0x%016"     PRIxPTR
 160 #define UINTX_FORMAT_X_0         "0x%016"     PRIxPTR
 161 #define SIZE_FORMAT_X_0          "0x%016"     PRIxPTR
 162 #else   // !_LP64
 163 #define INTPTR_FORMAT            "0x%08"      PRIxPTR
 164 #define PTR_FORMAT               "0x%08"      PRIxPTR
 165 #define UINTX_FORMAT_X_0         "0x%08"      PRIxPTR
 166 #define SIZE_FORMAT_X_0          "0x%08"      PRIxPTR
 167 #endif  // _LP64
 168 
 169 // Convert pointer to intptr_t, for use in printing pointers.
 170 inline intptr_t p2i(const volatile void* p) {
 171   return (intptr_t) p;
 172 }
 173 
 174 // Convert pointer to uintptr_t
 175 inline uintptr_t p2u(const volatile void* p) {
 176   return (uintptr_t) p;
 177 }
 178 
 179 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
 180 
 181 //----------------------------------------------------------------------------------------------------
 182 // Constants
 183 
 184 const int LogBytesPerShort   = 1;
 185 const int LogBytesPerInt     = 2;
 186 #ifdef _LP64
 187 constexpr int LogBytesPerWord    = 3;
 188 #else
 189 constexpr int LogBytesPerWord    = 2;
 190 #endif
 191 const int LogBytesPerLong    = 3;
 192 
 193 const int BytesPerShort      = 1 << LogBytesPerShort;
 194 const int BytesPerInt        = 1 << LogBytesPerInt;
 195 const int BytesPerWord       = 1 << LogBytesPerWord;
 196 const int BytesPerLong       = 1 << LogBytesPerLong;
 197 
 198 constexpr int LogBitsPerByte     = 3;
 199 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 200 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 201 constexpr int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 202 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 203 
 204 const int BitsPerByte        = 1 << LogBitsPerByte;
 205 const int BitsPerShort       = 1 << LogBitsPerShort;
 206 const int BitsPerInt         = 1 << LogBitsPerInt;
 207 constexpr int BitsPerWord        = 1 << LogBitsPerWord;
 208 const int BitsPerLong        = 1 << LogBitsPerLong;
 209 
 210 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 211 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 212 
 213 const int oopSize            = sizeof(char*); // Full-width oop
 214 extern int heapOopSize;                       // Oop within a java object
 215 const int wordSize           = sizeof(char*);
 216 const int longSize           = sizeof(jlong);
 217 const int jintSize           = sizeof(jint);
 218 const int size_tSize         = sizeof(size_t);
 219 
 220 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 221 
 222 extern int LogBytesPerHeapOop;                // Oop within a java object
 223 extern int LogBitsPerHeapOop;
 224 extern int BytesPerHeapOop;
 225 extern int BitsPerHeapOop;
 226 
 227 const int BitsPerJavaInteger = 32;
 228 const int BitsPerJavaLong    = 64;
 229 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 230 
 231 // Size of a char[] needed to represent a jint as a string in decimal.
 232 const int jintAsStringSize = 12;
 233 
 234 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 235 // We require that object sizes be measured in units of heap words (e.g.
 236 // pointer-sized values), so that given HeapWord* hw,
 237 //   hw += oop(hw)->foo();
 238 // works, where foo is a method (like size or scavenge) that returns the
 239 // object size.
 240 class HeapWordImpl;             // Opaque, never defined.
 241 typedef HeapWordImpl* HeapWord;
 242 
 243 // Analogous opaque struct for metadata allocated from metaspaces.
 244 class MetaWordImpl;             // Opaque, never defined.
 245 typedef MetaWordImpl* MetaWord;
 246 
 247 // HeapWordSize must be 2^LogHeapWordSize.
 248 const int HeapWordSize        = sizeof(HeapWord);
 249 #ifdef _LP64
 250 const int LogHeapWordSize     = 3;
 251 #else
 252 const int LogHeapWordSize     = 2;
 253 #endif
 254 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 255 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 256 
 257 // The minimum number of native machine words necessary to contain "byte_size"
 258 // bytes.
 259 inline size_t heap_word_size(size_t byte_size) {
 260   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 261 }
 262 
 263 inline jfloat jfloat_cast(jint x);
 264 inline jdouble jdouble_cast(jlong x);
 265 
 266 //-------------------------------------------
 267 // Constant for jlong (standardized by C++11)
 268 
 269 // Build a 64bit integer constant
 270 #define CONST64(x)  (x ## LL)
 271 #define UCONST64(x) (x ## ULL)
 272 
 273 const jlong min_jlong = CONST64(0x8000000000000000);
 274 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 275 
 276 // for timer info max values which include all bits, 0xffffffffffffffff
 277 const jlong all_bits_jlong = ~jlong(0);
 278 
 279 //-------------------------------------------
 280 // Constant for jdouble
 281 const jlong min_jlongDouble = CONST64(0x0000000000000001);
 282 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
 283 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
 284 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
 285 
 286 const size_t K                  = 1024;
 287 const size_t M                  = K*K;
 288 const size_t G                  = M*K;
 289 
 290 // Constants for converting from a base unit to milli-base units.  For
 291 // example from seconds to milliseconds and microseconds
 292 
 293 const int MILLIUNITS    = 1000;         // milli units per base unit
 294 const int MICROUNITS    = 1000000;      // micro units per base unit
 295 const int NANOUNITS     = 1000000000;   // nano units per base unit
 296 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 297 
 298 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 299 const jint  NANOSECS_PER_MILLISEC = 1000000;
 300 
 301 
 302 // Unit conversion functions
 303 // The caller is responsible for considering overflow.
 304 
 305 inline int64_t nanos_to_millis(int64_t nanos) {
 306   return nanos / NANOUNITS_PER_MILLIUNIT;
 307 }
 308 inline int64_t millis_to_nanos(int64_t millis) {
 309   return millis * NANOUNITS_PER_MILLIUNIT;
 310 }
 311 
 312 // Proper units routines try to maintain at least three significant digits.
 313 // In worst case, it would print five significant digits with lower prefix.
 314 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 315 // and therefore we need to be careful.
 316 
 317 inline const char* proper_unit_for_byte_size(size_t s) {
 318 #ifdef _LP64
 319   if (s >= 100*G) {
 320     return "G";
 321   }
 322 #endif
 323   if (s >= 100*M) {
 324     return "M";
 325   } else if (s >= 100*K) {
 326     return "K";
 327   } else {
 328     return "B";
 329   }
 330 }
 331 
 332 template <class T>
 333 inline T byte_size_in_proper_unit(T s) {
 334 #ifdef _LP64
 335   if (s >= 100*G) {
 336     return (T)(s/G);
 337   }
 338 #endif
 339   if (s >= 100*M) {
 340     return (T)(s/M);
 341   } else if (s >= 100*K) {
 342     return (T)(s/K);
 343   } else {
 344     return s;
 345   }
 346 }
 347 
 348 #define PROPERFMT             "%zu%s"
 349 #define PROPERFMTARGS(s)      byte_size_in_proper_unit<size_t>(s), proper_unit_for_byte_size(s)
 350 
 351 // Printing a range, with start and bytes given
 352 #define RANGEFMT              "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 353 #define RANGEFMTARGS(p1, size) p2i(p1), p2i(p1 + size), size
 354 
 355 // Printing a range, with start and end given
 356 #define RANGE2FMT             "[" PTR_FORMAT " - " PTR_FORMAT "), (%zu bytes)"
 357 #define RANGE2FMTARGS(p1, p2) p2i(p1), p2i(p2), ((uintptr_t)p2 - (uintptr_t)p1)
 358 
 359 inline const char* exact_unit_for_byte_size(size_t s) {
 360 #ifdef _LP64
 361   if (s >= G && (s % G) == 0) {
 362     return "G";
 363   }
 364 #endif
 365   if (s >= M && (s % M) == 0) {
 366     return "M";
 367   }
 368   if (s >= K && (s % K) == 0) {
 369     return "K";
 370   }
 371   return "B";
 372 }
 373 
 374 inline size_t byte_size_in_exact_unit(size_t s) {
 375 #ifdef _LP64
 376   if (s >= G && (s % G) == 0) {
 377     return s / G;
 378   }
 379 #endif
 380   if (s >= M && (s % M) == 0) {
 381     return s / M;
 382   }
 383   if (s >= K && (s % K) == 0) {
 384     return s / K;
 385   }
 386   return s;
 387 }
 388 
 389 #define EXACTFMT            "%zu%s"
 390 #define EXACTFMTARGS(s)     byte_size_in_exact_unit(s), exact_unit_for_byte_size(s)
 391 
 392 // Memory size transition formatting.
 393 
 394 #define HEAP_CHANGE_FORMAT "%s: %zuK(%zuK)->%zuK(%zuK)"
 395 
 396 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 397   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 398 
 399 //----------------------------------------------------------------------------------------------------
 400 // VM type definitions
 401 
 402 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 403 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 404 
 405 typedef intptr_t  intx;
 406 typedef uintptr_t uintx;
 407 
 408 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 409 const intx  max_intx  = (uintx)min_intx - 1;
 410 const uintx max_uintx = (uintx)-1;
 411 
 412 // Table of values:
 413 //      sizeof intx         4               8
 414 // min_intx             0x80000000      0x8000000000000000
 415 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 416 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 417 
 418 typedef unsigned int uint;   NEEDS_CLEANUP
 419 
 420 //----------------------------------------------------------------------------------------------------
 421 // Java type definitions
 422 
 423 // All kinds of 'plain' byte addresses
 424 typedef   signed char s_char;
 425 typedef unsigned char u_char;
 426 typedef u_char*       address;
 427 typedef const u_char* const_address;
 428 
 429 // Pointer subtraction.
 430 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 431 // the range we might need to find differences from one end of the heap
 432 // to the other.
 433 // A typical use might be:
 434 //     if (pointer_delta(end(), top()) >= size) {
 435 //       // enough room for an object of size
 436 //       ...
 437 // and then additions like
 438 //       ... top() + size ...
 439 // are safe because we know that top() is at least size below end().
 440 inline size_t pointer_delta(const volatile void* left,
 441                             const volatile void* right,
 442                             size_t element_size) {
 443   assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
 444   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 445 }
 446 
 447 // A version specialized for HeapWord*'s.
 448 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 449   return pointer_delta(left, right, sizeof(HeapWord));
 450 }
 451 // A version specialized for MetaWord*'s.
 452 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 453   return pointer_delta(left, right, sizeof(MetaWord));
 454 }
 455 
 456 // pointer_delta_as_int is called to do pointer subtraction for nearby pointers that
 457 // returns a non-negative int, usually used as a size of a code buffer range.
 458 // This scales to sizeof(T).
 459 template <typename T>
 460 inline int pointer_delta_as_int(const volatile T* left, const volatile T* right) {
 461   size_t delta = pointer_delta(left, right, sizeof(T));
 462   assert(delta <= size_t(INT_MAX), "pointer delta out of range: %zu", delta);
 463   return static_cast<int>(delta);
 464 }
 465 
 466 //
 467 // ANSI C++ does not allow casting from one pointer type to a function pointer
 468 // directly without at best a warning. This macro accomplishes it silently
 469 // In every case that is present at this point the value be cast is a pointer
 470 // to a C linkage function. In some case the type used for the cast reflects
 471 // that linkage and a picky compiler would not complain. In other cases because
 472 // there is no convenient place to place a typedef with extern C linkage (i.e
 473 // a platform dependent header file) it doesn't. At this point no compiler seems
 474 // picky enough to catch these instances (which are few). It is possible that
 475 // using templates could fix these for all cases. This use of templates is likely
 476 // so far from the middle of the road that it is likely to be problematic in
 477 // many C++ compilers.
 478 //
 479 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 480 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((uintptr_t)(func_ptr)))
 481 
 482 // Need the correct linkage to call qsort without warnings
 483 extern "C" {
 484   typedef int (*_sort_Fn)(const void *, const void *);
 485 }
 486 
 487 // Additional Java basic types
 488 
 489 typedef uint8_t  jubyte;
 490 typedef uint16_t jushort;
 491 typedef uint32_t juint;
 492 typedef uint64_t julong;
 493 
 494 // Unsigned byte types for os and stream.hpp
 495 
 496 // Unsigned one, two, four and eight byte quantities used for describing
 497 // the .class file format. See JVM book chapter 4.
 498 
 499 typedef jubyte  u1;
 500 typedef jushort u2;
 501 typedef juint   u4;
 502 typedef julong  u8;
 503 
 504 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 505 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 506 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 507 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 508 
 509 typedef jbyte  s1;
 510 typedef jshort s2;
 511 typedef jint   s4;
 512 typedef jlong  s8;
 513 
 514 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 515 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 516 const jshort min_jshort = -(1 << 15);    // smallest jshort
 517 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 518 
 519 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 520 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 521 
 522 const jint min_jintFloat = (jint)(0x00000001);
 523 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
 524 const jint max_jintFloat = (jint)(0x7f7fffff);
 525 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
 526 
 527 const jshort max_jfloat16 = 31743;
 528 const jshort min_jfloat16 = 1;
 529 const jshort one_jfloat16 = 15360;
 530 const jshort pos_inf_jfloat16 = 31744;
 531 const jshort neg_inf_jfloat16 = -1024;
 532 // A named constant for the integral representation of a Java null.
 533 const intptr_t NULL_WORD = 0;
 534 
 535 //----------------------------------------------------------------------------------------------------
 536 // JVM spec restrictions
 537 
 538 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 539 
 540 //----------------------------------------------------------------------------------------------------
 541 // old CDS options
 542 extern bool RequireSharedSpaces;
 543 extern "C" {
 544 // Make sure UseSharedSpaces is accessible to the serviceability agent.
 545 extern JNIEXPORT jboolean UseSharedSpaces;
 546 }
 547 
 548 //----------------------------------------------------------------------------------------------------
 549 // Object alignment, in units of HeapWords.
 550 //
 551 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 552 // reference fields can be naturally aligned.
 553 
 554 extern int MinObjAlignment;
 555 extern int MinObjAlignmentInBytes;
 556 extern int MinObjAlignmentInBytesMask;
 557 
 558 extern int LogMinObjAlignment;
 559 extern int LogMinObjAlignmentInBytes;
 560 
 561 // Maximal size of heap where unscaled compression can be used. Also upper bound
 562 // for heap placement: 4GB.
 563 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 564 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 565 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 566 extern uint64_t OopEncodingHeapMax;
 567 
 568 // Machine dependent stuff
 569 
 570 #include CPU_HEADER(globalDefinitions)
 571 
 572 // The maximum size of the code cache.  Can be overridden by targets.
 573 #ifndef CODE_CACHE_SIZE_LIMIT
 574 #define CODE_CACHE_SIZE_LIMIT (2*G)
 575 #endif
 576 
 577 // Allow targets to reduce the default size of the code cache.
 578 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 579 
 580 // To assure the IRIW property on processors that are not multiple copy
 581 // atomic, sync instructions must be issued between volatile reads to
 582 // assure their ordering, instead of after volatile stores.
 583 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 584 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 585 #ifdef CPU_MULTI_COPY_ATOMIC
 586 // Not needed.
 587 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 588 #else
 589 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 590 // Final decision is subject to JEP 188: Java Memory Model Update.
 591 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 592 #endif
 593 
 594 // The expected size in bytes of a cache line.
 595 #ifndef DEFAULT_CACHE_LINE_SIZE
 596 #error "Platform should define DEFAULT_CACHE_LINE_SIZE"
 597 #endif
 598 
 599 // The default padding size for data structures to avoid false sharing.
 600 #ifndef DEFAULT_PADDING_SIZE
 601 #error "Platform should define DEFAULT_PADDING_SIZE"
 602 #endif
 603 
 604 
 605 //----------------------------------------------------------------------------------------------------
 606 // Prototyping
 607 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break
 608 // compilation on purpose (i.e. "forget me not")
 609 #define PROTOTYPE
 610 #ifdef PROTOTYPE
 611 #define CMH(m)
 612 #endif
 613 
 614 //----------------------------------------------------------------------------------------------------
 615 // Miscellaneous
 616 
 617 // 6302670 Eliminate Hotspot __fabsf dependency
 618 // All fabs() callers should call this function instead, which will implicitly
 619 // convert the operand to double, avoiding a dependency on __fabsf which
 620 // doesn't exist in early versions of Solaris 8.
 621 inline double fabsd(double value) {
 622   return fabs(value);
 623 }
 624 
 625 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 626 // is zero, return 0.0.
 627 template<typename T>
 628 inline double percent_of(T numerator, T denominator) {
 629   return denominator != 0 ? (double)numerator / (double)denominator * 100.0 : 0.0;
 630 }
 631 
 632 //----------------------------------------------------------------------------------------------------
 633 // Special casts
 634 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 635 typedef union {
 636   jfloat f;
 637   jint i;
 638 } FloatIntConv;
 639 
 640 typedef union {
 641   jdouble d;
 642   jlong l;
 643   julong ul;
 644 } DoubleLongConv;
 645 
 646 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 647 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 648 
 649 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 650 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 651 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 652 
 653 inline jint low (jlong value)                    { return jint(value); }
 654 inline jint high(jlong value)                    { return jint(value >> 32); }
 655 
 656 inline jlong jlong_from(jint h, jint l) {
 657   // First cast jint values to juint, so cast to julong will zero-extend.
 658   julong high = (julong)(juint)h << 32;
 659   julong low = (julong)(juint)l;
 660   return (jlong)(high | low);
 661 }
 662 
 663 union jlong_accessor {
 664   jint  words[2];
 665   jlong long_value;
 666 };
 667 
 668 void basic_types_init(); // cannot define here; uses assert
 669 
 670 
 671 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 672 enum BasicType : u1 {
 673 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 674   T_BOOLEAN     = JVM_T_BOOLEAN,
 675   T_CHAR        = JVM_T_CHAR,
 676   T_FLOAT       = JVM_T_FLOAT,
 677   T_DOUBLE      = JVM_T_DOUBLE,
 678   T_BYTE        = JVM_T_BYTE,
 679   T_SHORT       = JVM_T_SHORT,
 680   T_INT         = JVM_T_INT,
 681   T_LONG        = JVM_T_LONG,
 682   // The remaining values are not part of any standard.
 683   // T_OBJECT and T_VOID denote two more semantic choices
 684   // for method return values.
 685   // T_OBJECT and T_ARRAY describe signature syntax.
 686   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 687   // internal references within the JVM as if they were Java
 688   // types in their own right.
 689   T_OBJECT      = 12,
 690   T_ARRAY       = 13,
 691   T_VOID        = 14,
 692   T_FLAT_ELEMENT = 15, // Not a true BasicType, only used in layout helpers of flat arrays
 693   T_ADDRESS     = 16,
 694   T_NARROWOOP   = 17,
 695   T_METADATA    = 18,
 696   T_NARROWKLASS = 19,
 697   T_CONFLICT    = 20, // for stack value type with conflicting contents
 698   T_ILLEGAL     = 99
 699 };
 700 
 701 #define SIGNATURE_TYPES_DO(F, N)                \
 702     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 703     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 704     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 705     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 706     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 707     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 708     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 709     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 710     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 711     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 712     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 713     /*end*/
 714 
 715 inline bool is_java_type(BasicType t) {
 716   return T_BOOLEAN <= t && t <= T_VOID;
 717 }
 718 
 719 inline bool is_java_primitive(BasicType t) {
 720   return T_BOOLEAN <= t && t <= T_LONG;
 721 }
 722 
 723 inline bool is_subword_type(BasicType t) {
 724   // these guys are processed exactly like T_INT in calling sequences:
 725   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 726 }
 727 
 728 inline bool is_signed_subword_type(BasicType t) {
 729   return (t == T_BYTE || t == T_SHORT);
 730 }
 731 
 732 inline bool is_unsigned_subword_type(BasicType t) {
 733   return (t == T_BOOLEAN || t == T_CHAR);
 734 }
 735 
 736 inline bool is_double_word_type(BasicType t) {
 737   return (t == T_DOUBLE || t == T_LONG);
 738 }
 739 
 740 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) {
 741   assert(t != T_FLAT_ELEMENT, "");  // Strong assert to detect misuses of T_FLAT_ELEMENT
 742   return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP));
 743 }
 744 
 745 inline bool is_integral_type(BasicType t) {
 746   return is_subword_type(t) || t == T_INT || t == T_LONG;
 747 }
 748 
 749 inline bool is_non_subword_integral_type(BasicType t) {
 750   return t == T_INT || t == T_LONG;
 751 }
 752 
 753 inline bool is_floating_point_type(BasicType t) {
 754   return (t == T_FLOAT || t == T_DOUBLE);
 755 }
 756 
 757 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 758 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 759 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 760 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a char*
 761 extern BasicType name2type(const char* name);
 762 
 763 const char* type2name(BasicType t);
 764 
 765 inline jlong max_signed_integer(BasicType bt) {
 766   if (bt == T_INT) {
 767     return max_jint;
 768   }
 769   assert(bt == T_LONG, "unsupported");
 770   return max_jlong;
 771 }
 772 
 773 inline jlong min_signed_integer(BasicType bt) {
 774   if (bt == T_INT) {
 775     return min_jint;
 776   }
 777   assert(bt == T_LONG, "unsupported");
 778   return min_jlong;
 779 }
 780 
 781 inline julong max_unsigned_integer(BasicType bt) {
 782   if (bt == T_INT) {
 783     return max_juint;
 784   }
 785   assert(bt == T_LONG, "unsupported");
 786   return max_julong;
 787 }
 788 
 789 inline uint bits_per_java_integer(BasicType bt) {
 790   if (bt == T_INT) {
 791     return BitsPerJavaInteger;
 792   }
 793   assert(bt == T_LONG, "int or long only");
 794   return BitsPerJavaLong;
 795 }
 796 
 797 // Auxiliary math routines
 798 // least common multiple
 799 extern size_t lcm(size_t a, size_t b);
 800 
 801 
 802 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 803 enum BasicTypeSize {
 804   T_BOOLEAN_size     = 1,
 805   T_CHAR_size        = 1,
 806   T_FLOAT_size       = 1,
 807   T_DOUBLE_size      = 2,
 808   T_BYTE_size        = 1,
 809   T_SHORT_size       = 1,
 810   T_INT_size         = 1,
 811   T_LONG_size        = 2,
 812   T_OBJECT_size      = 1,
 813   T_ARRAY_size       = 1,
 814   T_NARROWOOP_size   = 1,
 815   T_NARROWKLASS_size = 1,
 816   T_VOID_size        = 0,
 817   T_FLAT_ELEMENT_size = 0
 818 };
 819 
 820 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 821 inline int parameter_type_word_count(BasicType t) {
 822   if (is_double_word_type(t))  return 2;
 823   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 824   assert(type2size[t] == 1, "must be");
 825   return 1;
 826 }
 827 
 828 // maps a BasicType to its instance field storage type:
 829 // all sub-word integral types are widened to T_INT
 830 extern BasicType type2field[T_CONFLICT+1];
 831 extern BasicType type2wfield[T_CONFLICT+1];
 832 
 833 
 834 // size in bytes
 835 enum ArrayElementSize {
 836   T_BOOLEAN_aelem_bytes     = 1,
 837   T_CHAR_aelem_bytes        = 2,
 838   T_FLOAT_aelem_bytes       = 4,
 839   T_DOUBLE_aelem_bytes      = 8,
 840   T_BYTE_aelem_bytes        = 1,
 841   T_SHORT_aelem_bytes       = 2,
 842   T_INT_aelem_bytes         = 4,
 843   T_LONG_aelem_bytes        = 8,
 844 #ifdef _LP64
 845   T_OBJECT_aelem_bytes      = 8,
 846   T_ARRAY_aelem_bytes       = 8,
 847 #else
 848   T_OBJECT_aelem_bytes      = 4,
 849   T_ARRAY_aelem_bytes       = 4,
 850 #endif
 851   T_NARROWOOP_aelem_bytes   = 4,
 852   T_NARROWKLASS_aelem_bytes = 4,
 853   T_VOID_aelem_bytes        = 0,
 854   T_FLAT_ELEMENT_aelem_bytes = 0
 855 };
 856 
 857 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 858 #ifdef ASSERT
 859 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 860 #else
 861 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 862 #endif
 863 
 864 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) {
 865   return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2));
 866 }
 867 
 868 // JavaValue serves as a container for arbitrary Java values.
 869 
 870 class JavaValue {
 871 
 872  public:
 873   typedef union JavaCallValue {
 874     jfloat   f;
 875     jdouble  d;
 876     jint     i;
 877     jlong    l;
 878     jobject  h;
 879     oopDesc* o;
 880   } JavaCallValue;
 881 
 882  private:
 883   BasicType _type;
 884   JavaCallValue _value;
 885 
 886  public:
 887   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 888 
 889   JavaValue(jfloat value) {
 890     _type    = T_FLOAT;
 891     _value.f = value;
 892   }
 893 
 894   JavaValue(jdouble value) {
 895     _type    = T_DOUBLE;
 896     _value.d = value;
 897   }
 898 
 899  jfloat get_jfloat() const { return _value.f; }
 900  jdouble get_jdouble() const { return _value.d; }
 901  jint get_jint() const { return _value.i; }
 902  jlong get_jlong() const { return _value.l; }
 903  jobject get_jobject() const { return _value.h; }
 904  oopDesc* get_oop() const { return _value.o; }
 905  JavaCallValue* get_value_addr() { return &_value; }
 906  BasicType get_type() const { return _type; }
 907 
 908  void set_jfloat(jfloat f) { _value.f = f;}
 909  void set_jdouble(jdouble d) { _value.d = d;}
 910  void set_jint(jint i) { _value.i = i;}
 911  void set_jshort(jshort i) { _value.i = i;}
 912  void set_jlong(jlong l) { _value.l = l;}
 913  void set_jobject(jobject h) { _value.h = h;}
 914  void set_oop(oopDesc* o) { _value.o = o;}
 915  void set_type(BasicType t) { _type = t; }
 916 
 917  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 918  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 919  jchar get_jchar() const { return (jchar) (_value.i);}
 920  jshort get_jshort() const { return (jshort) (_value.i);}
 921 
 922 };
 923 
 924 
 925 // TosState describes the top-of-stack state before and after the execution of
 926 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 927 // registers. The TosState corresponds to the 'machine representation' of this cached
 928 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 929 // as well as a 5th state in case the top-of-stack value is actually on the top
 930 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 931 // state when it comes to machine representation but is used separately for (oop)
 932 // type specific operations (e.g. verification code).
 933 
 934 enum TosState {         // describes the tos cache contents
 935   btos = 0,             // byte, bool tos cached
 936   ztos = 1,             // byte, bool tos cached
 937   ctos = 2,             // char tos cached
 938   stos = 3,             // short tos cached
 939   itos = 4,             // int tos cached
 940   ltos = 5,             // long tos cached
 941   ftos = 6,             // float tos cached
 942   dtos = 7,             // double tos cached
 943   atos = 8,             // object cached
 944   vtos = 9,             // tos not cached,
 945   number_of_states,
 946   ilgl                  // illegal state: should not occur
 947 };
 948 
 949 
 950 inline TosState as_TosState(BasicType type) {
 951   switch (type) {
 952     case T_BYTE   : return btos;
 953     case T_BOOLEAN: return ztos;
 954     case T_CHAR   : return ctos;
 955     case T_SHORT  : return stos;
 956     case T_INT    : return itos;
 957     case T_LONG   : return ltos;
 958     case T_FLOAT  : return ftos;
 959     case T_DOUBLE : return dtos;
 960     case T_VOID   : return vtos;
 961     case T_ARRAY  :   // fall through
 962     case T_OBJECT : return atos;
 963     default       : return ilgl;
 964   }
 965 }
 966 
 967 inline BasicType as_BasicType(TosState state) {
 968   switch (state) {
 969     case btos : return T_BYTE;
 970     case ztos : return T_BOOLEAN;
 971     case ctos : return T_CHAR;
 972     case stos : return T_SHORT;
 973     case itos : return T_INT;
 974     case ltos : return T_LONG;
 975     case ftos : return T_FLOAT;
 976     case dtos : return T_DOUBLE;
 977     case atos : return T_OBJECT;
 978     case vtos : return T_VOID;
 979     default   : return T_ILLEGAL;
 980   }
 981 }
 982 
 983 
 984 // Helper function to convert BasicType info into TosState
 985 // Note: Cannot define here as it uses global constant at the time being.
 986 TosState as_TosState(BasicType type);
 987 
 988 
 989 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 990 // information is needed by the safepoint code.
 991 //
 992 // There are 4 essential states:
 993 //
 994 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 995 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 996 //  _thread_in_vm       : Executing in the vm
 997 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 998 //
 999 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
1000 // a transition from one state to another. These extra states makes it possible for the safepoint code to
1001 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
1002 //
1003 // Given a state, the xxxx_trans state can always be found by adding 1.
1004 //
1005 enum JavaThreadState {
1006   _thread_uninitialized     =  0, // should never happen (missing initialization)
1007   _thread_new               =  2, // just starting up, i.e., in process of being initialized
1008   _thread_new_trans         =  3, // corresponding transition state (not used, included for completeness)
1009   _thread_in_native         =  4, // running in native code
1010   _thread_in_native_trans   =  5, // corresponding transition state
1011   _thread_in_vm             =  6, // running in VM
1012   _thread_in_vm_trans       =  7, // corresponding transition state
1013   _thread_in_Java           =  8, // running in Java or in stub code
1014   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completeness)
1015   _thread_blocked           = 10, // blocked in vm
1016   _thread_blocked_trans     = 11, // corresponding transition state
1017   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
1018 };
1019 
1020 //----------------------------------------------------------------------------------------------------
1021 // Special constants for debugging
1022 
1023 const jint     badInt             = -3;                     // generic "bad int" value
1024 const intptr_t badAddressVal      = -2;                     // generic "bad address" value
1025 const intptr_t badOopVal          = -1;                     // generic "bad oop" value
1026 const intptr_t badHeapOopVal      = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1027 const int      badStackSegVal     = 0xCA;                   // value used to zap stack segments
1028 const int      badHandleValue     = 0xBC;                   // value used to zap vm handle area
1029 const int      badResourceValue   = 0xAB;                   // value used to zap resource area
1030 const int      freeBlockPad       = 0xBA;                   // value used to pad freed blocks.
1031 const int      uninitBlockPad     = 0xF1;                   // value used to zap newly malloc'd blocks.
1032 const juint    uninitMetaWordVal  = 0xf7f7f7f7;             // value used to zap newly allocated metachunk
1033 const jubyte   heapPaddingByteVal = 0xBD;                   // value used to zap object padding in the heap
1034 const juint    badHeapWordVal     = 0xBAADBABE;             // value used to zap heap after GC
1035 const int      badCodeHeapNewVal  = 0xCC;                   // value used to zap Code heap at allocation
1036 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1037 const intptr_t badDispHeaderDeopt = 0xDE0BD000;             // value to fill unused displaced header during deoptimization
1038 const intptr_t badDispHeaderOSR   = 0xDEAD05A0;             // value to fill unused displaced header during OSR
1039 
1040 // (These must be implemented as #defines because C++ compilers are
1041 // not obligated to inline non-integral constants!)
1042 #define       badAddress        ((address)::badAddressVal)
1043 #define       badHeapWord       (::badHeapWordVal)
1044 
1045 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1046 const uint TASKQUEUE_SIZE = (NOT_LP64(1<<14) LP64_ONLY(1<<17));
1047 
1048 //----------------------------------------------------------------------------------------------------
1049 // Utility functions for bitfield manipulations
1050 
1051 const intptr_t AllBits    = ~0; // all bits set in a word
1052 const intptr_t NoBits     =  0; // no bits set in a word
1053 const jlong    NoLongBits =  0; // no bits set in a long
1054 const intptr_t OneBit     =  1; // only right_most bit set in a word
1055 
1056 // get a word with the n.th or the right-most or left-most n bits set
1057 // (note: #define used only so that they can be used in enum constant definitions)
1058 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1059 #define right_n_bits(n)   (nth_bit(n) - 1)
1060 
1061 // same as nth_bit(n), but allows handing in a type as template parameter. Allows
1062 // us to use nth_bit with 64-bit types on 32-bit platforms
1063 template<class T> inline T nth_bit_typed(int n) {
1064   return ((T)1) << n;
1065 }
1066 template<class T> inline T right_n_bits_typed(int n) {
1067   return nth_bit_typed<T>(n) - 1;
1068 }
1069 
1070 // bit-operations using a mask m
1071 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1072 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1073 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1074 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1075 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1076 
1077 // bit-operations using the n.th bit
1078 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1079 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1080 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1081 
1082 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1083 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1084   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1085 }
1086 
1087 
1088 //----------------------------------------------------------------------------------------------------
1089 // Utility functions for integers
1090 
1091 // Avoid use of global min/max macros which may cause unwanted double
1092 // evaluation of arguments.
1093 #ifdef max
1094 #undef max
1095 #endif
1096 
1097 #ifdef min
1098 #undef min
1099 #endif
1100 
1101 // It is necessary to use templates here. Having normal overloaded
1102 // functions does not work because it is necessary to provide both 32-
1103 // and 64-bit overloaded functions, which does not work, and having
1104 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1105 // will be even more error-prone than macros.
1106 template<class T> constexpr T MAX2(T a, T b)           { return (a > b) ? a : b; }
1107 template<class T> constexpr T MIN2(T a, T b)           { return (a < b) ? a : b; }
1108 template<class T> constexpr T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1109 template<class T> constexpr T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1110 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1111 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1112 
1113 #define ABS(x) asserted_abs(x, __FILE__, __LINE__)
1114 
1115 template<class T> inline T asserted_abs(T x, const char* file, int line) {
1116   bool valid_arg = !(std::is_integral<T>::value && x == std::numeric_limits<T>::min());
1117 #ifdef ASSERT
1118   if (!valid_arg) {
1119     report_vm_error(file, line, "ABS: argument should not allow overflow");
1120   }
1121 #endif
1122   // Prevent exposure to UB by checking valid_arg here as well.
1123   return (x < 0 && valid_arg) ? -x : x;
1124 }
1125 
1126 // Return the given value clamped to the range [min ... max]
1127 template<typename T>
1128 inline T clamp(T value, T min, T max) {
1129   assert(min <= max, "must be");
1130   return MIN2(MAX2(value, min), max);
1131 }
1132 
1133 inline bool is_odd (intx x) { return x & 1;      }
1134 inline bool is_even(intx x) { return !is_odd(x); }
1135 
1136 // abs methods which cannot overflow and so are well-defined across
1137 // the entire domain of integer types.
1138 static inline unsigned int g_uabs(unsigned int n) {
1139   union {
1140     unsigned int result;
1141     int value;
1142   };
1143   result = n;
1144   if (value < 0) result = 0-result;
1145   return result;
1146 }
1147 static inline julong g_uabs(julong n) {
1148   union {
1149     julong result;
1150     jlong value;
1151   };
1152   result = n;
1153   if (value < 0) result = 0-result;
1154   return result;
1155 }
1156 static inline julong g_uabs(jlong n) { return g_uabs((julong)n); }
1157 static inline unsigned int g_uabs(int n) { return g_uabs((unsigned int)n); }
1158 
1159 // "to" should be greater than "from."
1160 inline size_t byte_size(void* from, void* to) {
1161   return pointer_delta(to, from, sizeof(char));
1162 }
1163 
1164 // Pack and extract shorts to/from ints:
1165 
1166 inline u2 extract_low_short_from_int(u4 x) {
1167   return u2(x & 0xffff);
1168 }
1169 
1170 inline u2 extract_high_short_from_int(u4 x) {
1171   return u2((x >> 16) & 0xffff);
1172 }
1173 
1174 inline int build_int_from_shorts( u2 low, u2 high ) {
1175   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1176 }
1177 
1178 // swap a & b
1179 template<class T> static void swap(T& a, T& b) {
1180   T tmp = a;
1181   a = b;
1182   b = tmp;
1183 }
1184 
1185 // array_size_impl is a function that takes a reference to T[N] and
1186 // returns a reference to char[N].  It is not ODR-used, so not defined.
1187 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1188 
1189 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1190 
1191 //----------------------------------------------------------------------------------------------------
1192 // Sum and product which can never overflow: they wrap, just like the
1193 // Java operations.  Note that we don't intend these to be used for
1194 // general-purpose arithmetic: their purpose is to emulate Java
1195 // operations.
1196 
1197 // The goal of this code to avoid undefined or implementation-defined
1198 // behavior.  The use of an lvalue to reference cast is explicitly
1199 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1200 // 15 in C++03]
1201 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1202 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1203   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1204   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1205   return reinterpret_cast<TYPE&>(ures);                 \
1206 }
1207 
1208 JAVA_INTEGER_OP(+, java_add, jint, juint)
1209 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1210 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1211 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1212 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1213 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1214 
1215 inline jint  java_negate(jint  v) { return java_subtract((jint) 0, v); }
1216 inline jlong java_negate(jlong v) { return java_subtract((jlong)0, v); }
1217 
1218 #undef JAVA_INTEGER_OP
1219 
1220 // Provide integer shift operations with Java semantics.  No overflow
1221 // issues - left shifts simply discard shifted out bits.  No undefined
1222 // behavior for large or negative shift quantities; instead the actual
1223 // shift distance is the argument modulo the lhs value's size in bits.
1224 // No undefined or implementation defined behavior for shifting negative
1225 // values; left shift discards bits, right shift sign extends.  We use
1226 // the same safe conversion technique as above for java_add and friends.
1227 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1228 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1229   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1230   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1231   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1232   xres OP ## = (rhs & rhs_mask);                        \
1233   return reinterpret_cast<TYPE&>(xres);                 \
1234 }
1235 
1236 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1237 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1238 
1239 // For signed shift right, assume C++ implementation >> sign extends.
1240 //
1241 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type
1242 // and a negative value, the resulting value is implementation-defined."
1243 //
1244 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of
1245 // requiring two's-complement behavior.
1246 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html
1247 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html
1248 // The corresponding C++20 text is "Right-shift on signed integral types is an
1249 // arithmetic right shift, which performs sign-extension."
1250 //
1251 // As discussed in the two's complement proposal, all known modern C++ compilers
1252 // already behave that way. And it is unlikely any would go off and do something
1253 // different now, with C++20 tightening things up.
1254 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1255 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1256 // For >>> use C++ unsigned >>.
1257 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1258 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1259 
1260 #undef JAVA_INTEGER_SHIFT_OP
1261 
1262 //----------------------------------------------------------------------------------------------------
1263 // The goal of this code is to provide saturating operations for int/uint.
1264 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1265 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1266 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1267   jlong res = static_cast<jlong>(in1);               \
1268   res OP ## = static_cast<jlong>(in2);               \
1269   if (res > max_jint) {                              \
1270     res = max_jint;                                  \
1271   } else if (res < min_jint) {                       \
1272     res = min_jint;                                  \
1273   }                                                  \
1274   return static_cast<int>(res);                      \
1275 }
1276 
1277 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1278 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1279 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1280 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1281 
1282 #undef SATURATED_INTEGER_OP
1283 
1284 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1285 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) {
1286   const uint64_t x1 = x >> 32u;
1287   const uint64_t x2 = x & 0xFFFFFFFF;
1288   const uint64_t y1 = y >> 32u;
1289   const uint64_t y2 = y & 0xFFFFFFFF;
1290   const uint64_t z2 = x2 * y2;
1291   const uint64_t t = x1 * y2 + (z2 >> 32u);
1292   uint64_t z1 = t & 0xFFFFFFFF;
1293   const uint64_t z0 = t >> 32u;
1294   z1 += x2 * y1;
1295 
1296   return x1 * y1 + z0 + (z1 >> 32u);
1297 }
1298 
1299 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr.,
1300 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs.
1301 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) {
1302   const jlong x1 = java_shift_right((jlong)x, 32);
1303   const jlong x2 = x & 0xFFFFFFFF;
1304   const jlong y1 = java_shift_right((jlong)y, 32);
1305   const jlong y2 = y & 0xFFFFFFFF;
1306 
1307   const uint64_t z2 = (uint64_t)x2 * y2;
1308   const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift
1309   int64_t z1 = t & 0xFFFFFFFF;
1310   const int64_t z0 = java_shift_right((jlong)t, 32);
1311   z1 += x2 * y1;
1312 
1313   return x1 * y1 + z0 + java_shift_right((jlong)z1, 32);
1314 }
1315 
1316 // Dereference vptr
1317 // All C++ compilers that we know of have the vtbl pointer in the first
1318 // word.  If there are exceptions, this function needs to be made compiler
1319 // specific.
1320 static inline void* dereference_vptr(const void* addr) {
1321   return *(void**)addr;
1322 }
1323 
1324 //----------------------------------------------------------------------------------------------------
1325 // String type aliases used by command line flag declarations and
1326 // processing utilities.
1327 
1328 typedef const char* ccstr;
1329 typedef const char* ccstrlist;   // represents string arguments which accumulate
1330 
1331 //----------------------------------------------------------------------------------------------------
1332 // Default hash/equals functions used by HashTable
1333 
1334 template<typename K> unsigned primitive_hash(const K& k) {
1335   unsigned hash = (unsigned)((uintptr_t)k);
1336   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1337 }
1338 
1339 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1340   return k0 == k1;
1341 }
1342 
1343 template<typename K> int primitive_compare(const K& k0, const K& k1) {
1344   return ((k0 < k1) ? -1 : (k0 == k1) ? 0 : 1);
1345 }
1346 
1347 //----------------------------------------------------------------------------------------------------
1348 
1349 // Allow use of C++ thread_local when approved - see JDK-8282469.
1350 #define APPROVED_CPP_THREAD_LOCAL thread_local
1351 
1352 // Converts any type T to a reference type.
1353 template<typename T>
1354 std::add_rvalue_reference_t<T> declval() noexcept;
1355 
1356 // Quickly test to make sure IEEE-754 subnormal numbers are correctly
1357 // handled.
1358 bool IEEE_subnormal_handling_OK();
1359 
1360 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
--- EOF ---