1 /* 2 * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.annotation.Annotation; 29 import java.lang.constant.ClassDesc; 30 import java.lang.constant.ConstantDescs; 31 import java.lang.invoke.TypeDescriptor; 32 import java.lang.invoke.MethodHandles; 33 import java.lang.ref.SoftReference; 34 import java.io.IOException; 35 import java.io.InputStream; 36 import java.io.ObjectStreamField; 37 import java.lang.reflect.AnnotatedElement; 38 import java.lang.reflect.AnnotatedType; 39 import java.lang.reflect.AccessFlag; 40 import java.lang.reflect.Array; 41 import java.lang.reflect.ClassFileFormatVersion; 42 import java.lang.reflect.Constructor; 43 import java.lang.reflect.Executable; 44 import java.lang.reflect.Field; 45 import java.lang.reflect.GenericArrayType; 46 import java.lang.reflect.GenericDeclaration; 47 import java.lang.reflect.InvocationTargetException; 48 import java.lang.reflect.Member; 49 import java.lang.reflect.Method; 50 import java.lang.reflect.Modifier; 51 import java.lang.reflect.Proxy; 52 import java.lang.reflect.RecordComponent; 53 import java.lang.reflect.Type; 54 import java.lang.reflect.TypeVariable; 55 import java.lang.constant.Constable; 56 import java.net.URL; 57 import java.security.AllPermission; 58 import java.security.Permissions; 59 import java.security.ProtectionDomain; 60 import java.util.ArrayList; 61 import java.util.Arrays; 62 import java.util.Collection; 63 import java.util.HashMap; 64 import java.util.LinkedHashMap; 65 import java.util.LinkedHashSet; 66 import java.util.List; 67 import java.util.Map; 68 import java.util.Objects; 69 import java.util.Optional; 70 import java.util.Set; 71 import java.util.stream.Collectors; 72 73 import jdk.internal.constant.ConstantUtils; 74 import jdk.internal.javac.PreviewFeature; 75 import jdk.internal.loader.BootLoader; 76 import jdk.internal.loader.BuiltinClassLoader; 77 import jdk.internal.misc.PreviewFeatures; 78 import jdk.internal.misc.Unsafe; 79 import jdk.internal.module.Resources; 80 import jdk.internal.reflect.CallerSensitive; 81 import jdk.internal.reflect.CallerSensitiveAdapter; 82 import jdk.internal.reflect.ConstantPool; 83 import jdk.internal.reflect.Reflection; 84 import jdk.internal.reflect.ReflectionFactory; 85 import jdk.internal.vm.annotation.IntrinsicCandidate; 86 import jdk.internal.vm.annotation.Stable; 87 88 import sun.invoke.util.Wrapper; 89 import sun.reflect.generics.factory.CoreReflectionFactory; 90 import sun.reflect.generics.factory.GenericsFactory; 91 import sun.reflect.generics.repository.ClassRepository; 92 import sun.reflect.generics.repository.MethodRepository; 93 import sun.reflect.generics.repository.ConstructorRepository; 94 import sun.reflect.generics.scope.ClassScope; 95 import sun.reflect.annotation.*; 96 97 /** 98 * Instances of the class {@code Class} represent classes and 99 * interfaces in a running Java application. An enum class and a record 100 * class are kinds of class; an annotation interface is a kind of 101 * interface. Every array also belongs to a class that is reflected as 102 * a {@code Class} object that is shared by all arrays with the same 103 * element type and number of dimensions. The primitive Java types 104 * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code 105 * int}, {@code long}, {@code float}, and {@code double}), and the 106 * keyword {@code void} are also represented as {@code Class} objects. 107 * 108 * <p> {@code Class} has no public constructor. Instead a {@code Class} 109 * object is constructed automatically by the Java Virtual Machine when 110 * a class is derived from the bytes of a {@code class} file through 111 * the invocation of one of the following methods: 112 * <ul> 113 * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass} 114 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[]) 115 * java.lang.invoke.MethodHandles.Lookup::defineClass} 116 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 117 * java.lang.invoke.MethodHandles.Lookup::defineHiddenClass} 118 * </ul> 119 * 120 * <p> The methods of class {@code Class} expose many characteristics of a 121 * class or interface. Most characteristics are derived from the {@code class} 122 * file that the class loader passed to the Java Virtual Machine or 123 * from the {@code class} file passed to {@code Lookup::defineClass} 124 * or {@code Lookup::defineHiddenClass}. 125 * A few characteristics are determined by the class loading environment 126 * at run time, such as the module returned by {@link #getModule() getModule()}. 127 * 128 * <p> The following example uses a {@code Class} object to print the 129 * class name of an object: 130 * 131 * {@snippet lang="java" : 132 * void printClassName(Object obj) { 133 * System.out.println("The class of " + obj + 134 * " is " + obj.getClass().getName()); 135 * }} 136 * 137 * It is also possible to get the {@code Class} object for a named 138 * class or interface (or for {@code void}) using a <dfn>class literal</dfn> 139 * (JLS {@jls 15.8.2}). 140 * For example: 141 * 142 * {@snippet lang="java" : 143 * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class" 144 * } 145 * 146 * <p> Some methods of class {@code Class} expose whether the declaration of 147 * a class or interface in Java source code was <em>enclosed</em> within 148 * another declaration. Other methods describe how a class or interface 149 * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of 150 * classes and interfaces, in the same run-time package, that 151 * allow mutual access to their {@code private} members. 152 * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn> 153 * (JVMS {@jvms 4.7.29}). 154 * One nestmate acts as the 155 * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which 156 * belong to the nest; each of them in turn records it as the nest host. 157 * The classes and interfaces which belong to a nest, including its host, are 158 * determined when 159 * {@code class} files are generated, for example, a Java compiler 160 * will typically record a top-level class as the host of a nest where the 161 * other members are the classes and interfaces whose declarations are 162 * enclosed within the top-level class declaration. 163 * 164 * <h2><a id=hiddenClasses>Hidden Classes</a></h2> 165 * A class or interface created by the invocation of 166 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 167 * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>} 168 * class or interface. 169 * All kinds of class, including enum classes and record classes, may be 170 * hidden classes; all kinds of interface, including annotation interfaces, 171 * may be hidden interfaces. 172 * 173 * The {@linkplain #getName() name of a hidden class or interface} is 174 * not a {@linkplain ClassLoader##binary-name binary name}, 175 * which means the following: 176 * <ul> 177 * <li>A hidden class or interface cannot be referenced by the constant pools 178 * of other classes and interfaces. 179 * <li>A hidden class or interface cannot be described in 180 * {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by 181 * {@link #describeConstable() Class::describeConstable}, 182 * {@link ClassDesc#of(String) ClassDesc::of}, or 183 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}. 184 * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName} 185 * or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}. 186 * </ul> 187 * 188 * A hidden class or interface is never an array class, but may be 189 * the element type of an array. In all other respects, the fact that 190 * a class or interface is hidden has no bearing on the characteristics 191 * exposed by the methods of class {@code Class}. 192 * 193 * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2> 194 * 195 * Conventionally, a Java compiler, starting from a source file for an 196 * implicitly declared class, say {@code HelloWorld.java}, creates a 197 * similarly-named {@code class} file, {@code HelloWorld.class}, where 198 * the class stored in that {@code class} file is named {@code 199 * "HelloWorld"}, matching the base names of the source and {@code 200 * class} files. 201 * 202 * For the {@code Class} object of an implicitly declared class {@code 203 * HelloWorld}, the methods to get the {@linkplain #getName name} and 204 * {@linkplain #getTypeName type name} return results 205 * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName 206 * simple name} of such an implicitly declared class is {@code "HelloWorld"} and 207 * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}. 208 * 209 * @param <T> the type of the class modeled by this {@code Class} 210 * object. For example, the type of {@code String.class} is {@code 211 * Class<String>}. Use {@code Class<?>} if the class being modeled is 212 * unknown. 213 * 214 * @see java.lang.ClassLoader#defineClass(byte[], int, int) 215 * @since 1.0 216 */ 217 public final class Class<T> implements java.io.Serializable, 218 GenericDeclaration, 219 Type, 220 AnnotatedElement, 221 TypeDescriptor.OfField<Class<?>>, 222 Constable { 223 private static final int ANNOTATION = 0x00002000; 224 private static final int ENUM = 0x00004000; 225 private static final int SYNTHETIC = 0x00001000; 226 227 private static native void registerNatives(); 228 static { 229 runtimeSetup(); 230 } 231 232 // Called from JVM when loading an AOT cache 233 private static void runtimeSetup() { 234 registerNatives(); 235 } 236 237 /* 238 * Private constructor. Only the Java Virtual Machine creates Class objects. 239 * This constructor is not used and prevents the default constructor being 240 * generated. 241 */ 242 private Class(ClassLoader loader, Class<?> arrayComponentType, char mods, ProtectionDomain pd, boolean isPrim) { 243 // Initialize final field for classLoader. The initialization value of non-null 244 // prevents future JIT optimizations from assuming this final field is null. 245 // The following assignments are done directly by the VM without calling this constructor. 246 classLoader = loader; 247 componentType = arrayComponentType; 248 modifiers = mods; 249 protectionDomain = pd; 250 primitive = isPrim; 251 } 252 253 /** 254 * Converts the object to a string. The string representation is the 255 * string "class" or "interface", followed by a space, and then by the 256 * name of the class in the format returned by {@code getName}. 257 * If this {@code Class} object represents a primitive type, 258 * this method returns the name of the primitive type. If 259 * this {@code Class} object represents void this method returns 260 * "void". If this {@code Class} object represents an array type, 261 * this method returns "class " followed by {@code getName}. 262 * 263 * @return a string representation of this {@code Class} object. 264 */ 265 public String toString() { 266 String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class "; 267 return kind.concat(getName()); 268 } 269 270 /** 271 * Returns a string describing this {@code Class}, including 272 * information about modifiers, {@link #isSealed() sealed}/{@code 273 * non-sealed} status, and type parameters. 274 * 275 * The string is formatted as a list of type modifiers, if any, 276 * followed by the kind of type (empty string for primitive types 277 * and {@code class}, {@code enum}, {@code interface}, 278 * {@code @interface}, or {@code record} as appropriate), followed 279 * by the type's name, followed by an angle-bracketed 280 * comma-separated list of the type's type parameters, if any, 281 * including informative bounds on the type parameters, if any. 282 * 283 * A space is used to separate modifiers from one another and to 284 * separate any modifiers from the kind of type. The modifiers 285 * occur in canonical order. If there are no type parameters, the 286 * type parameter list is elided. 287 * 288 * For an array type, the string starts with the type name, 289 * followed by an angle-bracketed comma-separated list of the 290 * type's type parameters, if any, followed by a sequence of 291 * {@code []} characters, one set of brackets per dimension of 292 * the array. 293 * 294 * <p>Note that since information about the runtime representation 295 * of a type is being generated, modifiers not present on the 296 * originating source code or illegal on the originating source 297 * code may be present. 298 * 299 * @return a string describing this {@code Class}, including 300 * information about modifiers and type parameters 301 * 302 * @since 1.8 303 */ 304 public String toGenericString() { 305 if (isPrimitive()) { 306 return toString(); 307 } else { 308 StringBuilder sb = new StringBuilder(); 309 Class<?> component = this; 310 int arrayDepth = 0; 311 312 if (isArray()) { 313 do { 314 arrayDepth++; 315 component = component.getComponentType(); 316 } while (component.isArray()); 317 sb.append(component.getName()); 318 } else { 319 // Class modifiers are a superset of interface modifiers 320 int modifiers = getModifiers() & Modifier.classModifiers(); 321 // Modifier.toString() below mis-interprets SYNCHRONIZED, STRICT, and VOLATILE bits 322 modifiers &= ~(Modifier.SYNCHRONIZED | Modifier.STRICT | Modifier.VOLATILE); 323 if (modifiers != 0) { 324 sb.append(Modifier.toString(modifiers)); 325 sb.append(' '); 326 } 327 328 // A class cannot be strictfp and sealed/non-sealed so 329 // it is sufficient to check for sealed-ness after all 330 // modifiers are printed. 331 addSealingInfo(modifiers, sb); 332 333 if (isAnnotation()) { 334 sb.append('@'); 335 } 336 if (isInterface()) { // Note: all annotation interfaces are interfaces 337 sb.append("interface"); 338 } else { 339 if (isEnum()) 340 sb.append("enum"); 341 else { 342 if (isValue()) { 343 sb.append("value "); 344 } 345 if (isRecord()) 346 sb.append("record"); 347 else 348 sb.append("class"); 349 } 350 } 351 sb.append(' '); 352 sb.append(getName()); 353 } 354 355 TypeVariable<?>[] typeparms = component.getTypeParameters(); 356 if (typeparms.length > 0) { 357 sb.append(Arrays.stream(typeparms) 358 .map(Class::typeVarBounds) 359 .collect(Collectors.joining(",", "<", ">"))); 360 } 361 362 if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth)); 363 364 return sb.toString(); 365 } 366 } 367 368 private void addSealingInfo(int modifiers, StringBuilder sb) { 369 // A class can be final XOR sealed XOR non-sealed. 370 if (Modifier.isFinal(modifiers)) { 371 return; // no-op 372 } else { 373 if (isSealed()) { 374 sb.append("sealed "); 375 return; 376 } else { 377 // Check for sealed ancestor, which implies this class 378 // is non-sealed. 379 if (hasSealedAncestor(this)) { 380 sb.append("non-sealed "); 381 } 382 } 383 } 384 } 385 386 private boolean hasSealedAncestor(Class<?> clazz) { 387 // From JLS 8.1.1.2: 388 // "It is a compile-time error if a class has a sealed direct 389 // superclass or a sealed direct superinterface, and is not 390 // declared final, sealed, or non-sealed either explicitly or 391 // implicitly. 392 // Thus, an effect of the sealed keyword is to force all 393 // direct subclasses to explicitly declare whether they are 394 // final, sealed, or non-sealed. This avoids accidentally 395 // exposing a sealed class hierarchy to unwanted subclassing." 396 397 // Therefore, will just check direct superclass and 398 // superinterfaces. 399 var superclass = clazz.getSuperclass(); 400 if (superclass != null && superclass.isSealed()) { 401 return true; 402 } 403 for (var superinterface : clazz.getInterfaces()) { 404 if (superinterface.isSealed()) { 405 return true; 406 } 407 } 408 return false; 409 } 410 411 static String typeVarBounds(TypeVariable<?> typeVar) { 412 Type[] bounds = typeVar.getBounds(); 413 if (bounds.length == 1 && bounds[0].equals(Object.class)) { 414 return typeVar.getName(); 415 } else { 416 return typeVar.getName() + " extends " + 417 Arrays.stream(bounds) 418 .map(Type::getTypeName) 419 .collect(Collectors.joining(" & ")); 420 } 421 } 422 423 /** 424 * Returns the {@code Class} object associated with the class or 425 * interface with the given string name. Invoking this method is 426 * equivalent to: 427 * 428 * {@snippet lang="java" : 429 * Class.forName(className, true, currentLoader) 430 * } 431 * 432 * where {@code currentLoader} denotes the defining class loader of 433 * the current class. 434 * 435 * <p> For example, the following code fragment returns the 436 * runtime {@code Class} object for the class named 437 * {@code java.lang.Thread}: 438 * 439 * {@snippet lang="java" : 440 * Class<?> t = Class.forName("java.lang.Thread"); 441 * } 442 * <p> 443 * A call to {@code forName("X")} causes the class named 444 * {@code X} to be initialized. 445 * 446 * <p> 447 * In cases where this method is called from a context where there is no 448 * caller frame on the stack (e.g. when called directly from a JNI 449 * attached thread), the system class loader is used. 450 * 451 * @param className the {@linkplain ClassLoader##binary-name binary name} 452 * of the class or the string representing an array type 453 * @return the {@code Class} object for the class with the 454 * specified name. 455 * @throws LinkageError if the linkage fails 456 * @throws ExceptionInInitializerError if the initialization provoked 457 * by this method fails 458 * @throws ClassNotFoundException if the class cannot be located 459 * 460 * @jls 12.2 Loading of Classes and Interfaces 461 * @jls 12.3 Linking of Classes and Interfaces 462 * @jls 12.4 Initialization of Classes and Interfaces 463 */ 464 @CallerSensitive 465 public static Class<?> forName(String className) 466 throws ClassNotFoundException { 467 Class<?> caller = Reflection.getCallerClass(); 468 return forName(className, caller); 469 } 470 471 // Caller-sensitive adapter method for reflective invocation 472 @CallerSensitiveAdapter 473 private static Class<?> forName(String className, Class<?> caller) 474 throws ClassNotFoundException { 475 ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader() 476 : ClassLoader.getClassLoader(caller); 477 return forName0(className, true, loader, caller); 478 } 479 480 /** 481 * Returns the {@code Class} object associated with the class or 482 * interface with the given string name, using the given class loader. 483 * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface, 484 * this method attempts to locate and load the class or interface. The specified 485 * class loader is used to load the class or interface. If the parameter 486 * {@code loader} is {@code null}, the class is loaded through the bootstrap 487 * class loader. The class is initialized only if the 488 * {@code initialize} parameter is {@code true} and if it has 489 * not been initialized earlier. 490 * 491 * <p> This method cannot be used to obtain any of the {@code Class} objects 492 * representing primitive types or void, hidden classes or interfaces, 493 * or array classes whose element type is a hidden class or interface. 494 * If {@code name} denotes a primitive type or void, for example {@code I}, 495 * an attempt will be made to locate a user-defined class in the unnamed package 496 * whose name is {@code I} instead. 497 * To obtain a {@code Class} object for a named primitive type 498 * such as {@code int} or {@code long} use {@link 499 * #forPrimitiveName(String)}. 500 * 501 * <p> To obtain the {@code Class} object associated with an array class, 502 * the name consists of one or more {@code '['} representing the depth 503 * of the array nesting, followed by the element type as encoded in 504 * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}. 505 * 506 * <p> Examples: 507 * {@snippet lang="java" : 508 * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader); 509 * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader); 510 * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader); // Class of int[][][] 511 * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader); 512 * Class<?> fooClass = Class.forName("Foo", true, currentLoader); 513 * } 514 * 515 * <p> A call to {@code getName()} on the {@code Class} object returned 516 * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>. 517 * 518 * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type 519 * named <i>N</i> to be loaded but not initialized regardless of the value 520 * of the {@code initialize} parameter. 521 * 522 * @apiNote 523 * This method throws errors related to loading, linking or initializing 524 * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of 525 * <cite>The Java Language Specification</cite>. 526 * In addition, this method does not check whether the requested class 527 * is accessible to its caller. 528 * 529 * @param name the {@linkplain ClassLoader##binary-name binary name} 530 * of the class or the string representing an array class 531 * 532 * @param initialize if {@code true} the class will be initialized 533 * (which implies linking). See Section {@jls 534 * 12.4} of <cite>The Java Language 535 * Specification</cite>. 536 * @param loader class loader from which the class must be loaded 537 * @return class object representing the desired class 538 * 539 * @throws LinkageError if the linkage fails 540 * @throws ExceptionInInitializerError if the initialization provoked 541 * by this method fails 542 * @throws ClassNotFoundException if the class cannot be located by 543 * the specified class loader 544 * 545 * @see java.lang.Class#forName(String) 546 * @see java.lang.ClassLoader 547 * 548 * @jls 12.2 Loading of Classes and Interfaces 549 * @jls 12.3 Linking of Classes and Interfaces 550 * @jls 12.4 Initialization of Classes and Interfaces 551 * @jls 13.1 The Form of a Binary 552 * @since 1.2 553 */ 554 public static Class<?> forName(String name, boolean initialize, ClassLoader loader) 555 throws ClassNotFoundException 556 { 557 return forName0(name, initialize, loader, null); 558 } 559 560 /** Called after security check for system loader access checks have been made. */ 561 private static native Class<?> forName0(String name, boolean initialize, 562 ClassLoader loader, 563 Class<?> caller) 564 throws ClassNotFoundException; 565 566 567 /** 568 * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name 569 * binary name} in the given module. 570 * 571 * <p> This method attempts to locate and load the class or interface. 572 * It does not link the class, and does not run the class initializer. 573 * If the class is not found, this method returns {@code null}. </p> 574 * 575 * <p> If the class loader of the given module defines other modules and 576 * the given name is a class defined in a different module, this method 577 * returns {@code null} after the class is loaded. </p> 578 * 579 * <p> This method does not check whether the requested class is 580 * accessible to its caller. </p> 581 * 582 * @apiNote 583 * This method does not support loading of array types, unlike 584 * {@link #forName(String, boolean, ClassLoader)}. The class name must be 585 * a binary name. This method returns {@code null} on failure rather than 586 * throwing a {@link ClassNotFoundException}, as is done by 587 * the {@link #forName(String, boolean, ClassLoader)} method. 588 * 589 * @param module A module 590 * @param name The {@linkplain ClassLoader##binary-name binary name} 591 * of the class 592 * @return {@code Class} object of the given name defined in the given module; 593 * {@code null} if not found. 594 * 595 * @throws NullPointerException if the given module or name is {@code null} 596 * 597 * @throws LinkageError if the linkage fails 598 * 599 * @jls 12.2 Loading of Classes and Interfaces 600 * @jls 12.3 Linking of Classes and Interfaces 601 * @since 9 602 */ 603 public static Class<?> forName(Module module, String name) { 604 Objects.requireNonNull(module); 605 Objects.requireNonNull(name); 606 607 ClassLoader cl = module.getClassLoader(); 608 if (cl != null) { 609 return cl.loadClass(module, name); 610 } else { 611 return BootLoader.loadClass(module, name); 612 } 613 } 614 615 /** 616 * {@return {@code true} if this {@code Class} object represents an identity class, 617 * otherwise {@code false}} 618 * 619 * <ul> 620 * <li> 621 * If this {@code Class} object represents an array type this method returns {@code true}. 622 * <li> 623 * If this {@code Class} object represents an interface, a primitive type, 624 * or {@code void} this method returns {@code false}. 625 * <li> 626 * For all other {@code Class} objects, this method returns {@code true} if either 627 * preview features are disabled or {@linkplain Modifier#IDENTITY} is set in the 628 * {@linkplain #getModifiers() class modifiers}. 629 * </ul> 630 * @see AccessFlag#IDENTITY 631 * @since Valhalla 632 */ 633 @PreviewFeature(feature = PreviewFeature.Feature.VALUE_OBJECTS, reflective=true) 634 public boolean isIdentity() { 635 if (isPrimitive()) { 636 return false; 637 } else if (PreviewFeatures.isEnabled()) { 638 return isArray() || Modifier.isIdentity(modifiers); 639 } else { 640 return !isInterface(); 641 } 642 } 643 644 /** 645 * {@return {@code true} if this {@code Class} object represents a value class, 646 * otherwise {@code false}} 647 * <ul> 648 * <li> 649 * If this {@code Class} object represents an array type this method returns {@code false}. 650 * <li> 651 * If this {@code Class} object represents an interface, a primitive type, 652 * or {@code void} this method returns {@code true} only if preview features are enabled. 653 * <li> 654 * For all other {@code Class} objects, this method returns {@code true} only if 655 * preview features are enabled and {@linkplain Modifier#IDENTITY} is not set in the 656 * {@linkplain #getModifiers() class modifiers}. 657 * </ul> 658 * @see AccessFlag#IDENTITY 659 * @since Valhalla 660 */ 661 @PreviewFeature(feature = PreviewFeature.Feature.VALUE_OBJECTS, reflective=true) 662 public boolean isValue() { 663 if (!PreviewFeatures.isEnabled()) { 664 return false; 665 } 666 return !isIdentity(); 667 } 668 669 /** 670 * {@return the {@code Class} object associated with the 671 * {@linkplain #isPrimitive() primitive type} of the given name} 672 * If the argument is not the name of a primitive type, {@code 673 * null} is returned. 674 * 675 * @param primitiveName the name of the primitive type to find 676 * 677 * @throws NullPointerException if the argument is {@code null} 678 * 679 * @jls 4.2 Primitive Types and Values 680 * @jls 15.8.2 Class Literals 681 * @since 22 682 */ 683 public static Class<?> forPrimitiveName(String primitiveName) { 684 return switch(primitiveName) { 685 // Integral types 686 case "int" -> int.class; 687 case "long" -> long.class; 688 case "short" -> short.class; 689 case "char" -> char.class; 690 case "byte" -> byte.class; 691 692 // Floating-point types 693 case "float" -> float.class; 694 case "double" -> double.class; 695 696 // Other types 697 case "boolean" -> boolean.class; 698 case "void" -> void.class; 699 700 default -> null; 701 }; 702 } 703 704 /** 705 * Creates a new instance of the class represented by this {@code Class} 706 * object. The class is instantiated as if by a {@code new} 707 * expression with an empty argument list. The class is initialized if it 708 * has not already been initialized. 709 * 710 * @deprecated This method propagates any exception thrown by the 711 * nullary constructor, including a checked exception. Use of 712 * this method effectively bypasses the compile-time exception 713 * checking that would otherwise be performed by the compiler. 714 * The {@link 715 * java.lang.reflect.Constructor#newInstance(java.lang.Object...) 716 * Constructor.newInstance} method avoids this problem by wrapping 717 * any exception thrown by the constructor in a (checked) {@link 718 * java.lang.reflect.InvocationTargetException}. 719 * 720 * <p>The call 721 * 722 * {@snippet lang="java" : 723 * clazz.newInstance() 724 * } 725 * 726 * can be replaced by 727 * 728 * {@snippet lang="java" : 729 * clazz.getDeclaredConstructor().newInstance() 730 * } 731 * 732 * The latter sequence of calls is inferred to be able to throw 733 * the additional exception types {@link 734 * InvocationTargetException} and {@link 735 * NoSuchMethodException}. Both of these exception types are 736 * subclasses of {@link ReflectiveOperationException}. 737 * 738 * @return a newly allocated instance of the class represented by this 739 * object. 740 * @throws IllegalAccessException if the class or its nullary 741 * constructor is not accessible. 742 * @throws InstantiationException 743 * if this {@code Class} represents an abstract class, 744 * an interface, an array class, a primitive type, or void; 745 * or if the class has no nullary constructor; 746 * or if the instantiation fails for some other reason. 747 * @throws ExceptionInInitializerError if the initialization 748 * provoked by this method fails. 749 */ 750 @CallerSensitive 751 @Deprecated(since="9") 752 public T newInstance() 753 throws InstantiationException, IllegalAccessException 754 { 755 // Constructor lookup 756 Constructor<T> tmpConstructor = cachedConstructor; 757 if (tmpConstructor == null) { 758 if (this == Class.class) { 759 throw new IllegalAccessException( 760 "Can not call newInstance() on the Class for java.lang.Class" 761 ); 762 } 763 try { 764 Class<?>[] empty = {}; 765 final Constructor<T> c = getReflectionFactory().copyConstructor( 766 getConstructor0(empty, Member.DECLARED)); 767 // Disable accessibility checks on the constructor 768 // access check is done with the true caller 769 c.setAccessible(true); 770 cachedConstructor = tmpConstructor = c; 771 } catch (NoSuchMethodException e) { 772 throw (InstantiationException) 773 new InstantiationException(getName()).initCause(e); 774 } 775 } 776 777 try { 778 Class<?> caller = Reflection.getCallerClass(); 779 return getReflectionFactory().newInstance(tmpConstructor, null, caller); 780 } catch (InvocationTargetException e) { 781 Unsafe.getUnsafe().throwException(e.getTargetException()); 782 // Not reached 783 return null; 784 } 785 } 786 787 private transient volatile Constructor<T> cachedConstructor; 788 789 /** 790 * Determines if the specified {@code Object} is assignment-compatible 791 * with the object represented by this {@code Class}. This method is 792 * the dynamic equivalent of the Java language {@code instanceof} 793 * operator. The method returns {@code true} if the specified 794 * {@code Object} argument is non-null and can be cast to the 795 * reference type represented by this {@code Class} object without 796 * raising a {@code ClassCastException.} It returns {@code false} 797 * otherwise. 798 * 799 * <p> Specifically, if this {@code Class} object represents a 800 * declared class, this method returns {@code true} if the specified 801 * {@code Object} argument is an instance of the represented class (or 802 * of any of its subclasses); it returns {@code false} otherwise. If 803 * this {@code Class} object represents an array class, this method 804 * returns {@code true} if the specified {@code Object} argument 805 * can be converted to an object of the array class by an identity 806 * conversion or by a widening reference conversion; it returns 807 * {@code false} otherwise. If this {@code Class} object 808 * represents an interface, this method returns {@code true} if the 809 * class or any superclass of the specified {@code Object} argument 810 * implements this interface; it returns {@code false} otherwise. If 811 * this {@code Class} object represents a primitive type, this method 812 * returns {@code false}. 813 * 814 * @param obj the object to check 815 * @return true if {@code obj} is an instance of this class 816 * 817 * @since 1.1 818 */ 819 @IntrinsicCandidate 820 public native boolean isInstance(Object obj); 821 822 823 /** 824 * Determines if the class or interface represented by this 825 * {@code Class} object is either the same as, or is a superclass or 826 * superinterface of, the class or interface represented by the specified 827 * {@code Class} parameter. It returns {@code true} if so; 828 * otherwise it returns {@code false}. If this {@code Class} 829 * object represents a primitive type, this method returns 830 * {@code true} if the specified {@code Class} parameter is 831 * exactly this {@code Class} object; otherwise it returns 832 * {@code false}. 833 * 834 * <p> Specifically, this method tests whether the type represented by the 835 * specified {@code Class} parameter can be converted to the type 836 * represented by this {@code Class} object via an identity conversion 837 * or via a widening reference conversion. See <cite>The Java Language 838 * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4}, 839 * for details. 840 * 841 * @param cls the {@code Class} object to be checked 842 * @return the {@code boolean} value indicating whether objects of the 843 * type {@code cls} can be assigned to objects of this class 844 * @throws NullPointerException if the specified Class parameter is 845 * null. 846 * @since 1.1 847 */ 848 @IntrinsicCandidate 849 public native boolean isAssignableFrom(Class<?> cls); 850 851 852 /** 853 * Determines if this {@code Class} object represents an 854 * interface type. 855 * 856 * @return {@code true} if this {@code Class} object represents an interface; 857 * {@code false} otherwise. 858 */ 859 public boolean isInterface() { 860 return Modifier.isInterface(modifiers); 861 } 862 863 864 /** 865 * Determines if this {@code Class} object represents an array class. 866 * 867 * @return {@code true} if this {@code Class} object represents an array class; 868 * {@code false} otherwise. 869 * @since 1.1 870 */ 871 public boolean isArray() { 872 return componentType != null; 873 } 874 875 876 /** 877 * Determines if this {@code Class} object represents a primitive 878 * type or void. 879 * 880 * <p> There are nine predefined {@code Class} objects to 881 * represent the eight primitive types and void. These are 882 * created by the Java Virtual Machine, and have the same 883 * {@linkplain #getName() names} as the primitive types that they 884 * represent, namely {@code boolean}, {@code byte}, {@code char}, 885 * {@code short}, {@code int}, {@code long}, {@code float}, and 886 * {@code double}. 887 * 888 * <p>No other class objects are considered primitive. 889 * 890 * @apiNote 891 * A {@code Class} object represented by a primitive type can be 892 * accessed via the {@code TYPE} public static final variables 893 * defined in the primitive wrapper classes such as {@link 894 * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming 895 * language, the objects may be referred to by a class literal 896 * expression such as {@code int.class}. The {@code Class} object 897 * for void can be expressed as {@code void.class} or {@link 898 * java.lang.Void#TYPE Void.TYPE}. 899 * 900 * @return true if and only if this class represents a primitive type 901 * 902 * @see java.lang.Boolean#TYPE 903 * @see java.lang.Character#TYPE 904 * @see java.lang.Byte#TYPE 905 * @see java.lang.Short#TYPE 906 * @see java.lang.Integer#TYPE 907 * @see java.lang.Long#TYPE 908 * @see java.lang.Float#TYPE 909 * @see java.lang.Double#TYPE 910 * @see java.lang.Void#TYPE 911 * @since 1.1 912 * @jls 15.8.2 Class Literals 913 */ 914 public boolean isPrimitive() { 915 return primitive; 916 } 917 918 /** 919 * Returns true if this {@code Class} object represents an annotation 920 * interface. Note that if this method returns true, {@link #isInterface()} 921 * would also return true, as all annotation interfaces are also interfaces. 922 * 923 * @return {@code true} if this {@code Class} object represents an annotation 924 * interface; {@code false} otherwise 925 * @since 1.5 926 */ 927 public boolean isAnnotation() { 928 return (getModifiers() & ANNOTATION) != 0; 929 } 930 931 /** 932 *{@return {@code true} if and only if this class has the synthetic modifier 933 * bit set} 934 * 935 * @jls 13.1 The Form of a Binary 936 * @jvms 4.1 The {@code ClassFile} Structure 937 * @see <a 938 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 939 * programming language and JVM modeling in core reflection</a> 940 * @since 1.5 941 */ 942 public boolean isSynthetic() { 943 return (getModifiers() & SYNTHETIC) != 0; 944 } 945 946 /** 947 * Returns the name of the entity (class, interface, array class, 948 * primitive type, or void) represented by this {@code Class} object. 949 * 950 * <p> If this {@code Class} object represents a class or interface, 951 * not an array class, then: 952 * <ul> 953 * <li> If the class or interface is not {@linkplain #isHidden() hidden}, 954 * then the {@linkplain ClassLoader##binary-name binary name} 955 * of the class or interface is returned. 956 * <li> If the class or interface is hidden, then the result is a string 957 * of the form: {@code N + '/' + <suffix>} 958 * where {@code N} is the {@linkplain ClassLoader##binary-name binary name} 959 * indicated by the {@code class} file passed to 960 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 961 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 962 * </ul> 963 * 964 * <p> If this {@code Class} object represents an array class, then 965 * the result is a string consisting of one or more '{@code [}' characters 966 * representing the depth of the array nesting, followed by the element 967 * type as encoded using the following table: 968 * 969 * <blockquote><table class="striped" id="nameFormat"> 970 * <caption style="display:none">Element types and encodings</caption> 971 * <thead> 972 * <tr><th scope="col"> Element Type <th scope="col"> Encoding 973 * </thead> 974 * <tbody style="text-align:left"> 975 * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z} 976 * <tr><th scope="row"> {@code byte} <td style="text-align:center"> {@code B} 977 * <tr><th scope="row"> {@code char} <td style="text-align:center"> {@code C} 978 * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i> 979 * <td style="text-align:center"> {@code L}<em>N</em>{@code ;} 980 * <tr><th scope="row"> {@code double} <td style="text-align:center"> {@code D} 981 * <tr><th scope="row"> {@code float} <td style="text-align:center"> {@code F} 982 * <tr><th scope="row"> {@code int} <td style="text-align:center"> {@code I} 983 * <tr><th scope="row"> {@code long} <td style="text-align:center"> {@code J} 984 * <tr><th scope="row"> {@code short} <td style="text-align:center"> {@code S} 985 * </tbody> 986 * </table></blockquote> 987 * 988 * <p> If this {@code Class} object represents a primitive type or {@code void}, 989 * then the result is a string with the same spelling as the Java language 990 * keyword which corresponds to the primitive type or {@code void}. 991 * 992 * <p> Examples: 993 * <blockquote><pre> 994 * String.class.getName() 995 * returns "java.lang.String" 996 * Character.UnicodeBlock.class.getName() 997 * returns "java.lang.Character$UnicodeBlock" 998 * byte.class.getName() 999 * returns "byte" 1000 * (new Object[3]).getClass().getName() 1001 * returns "[Ljava.lang.Object;" 1002 * (new int[3][4][5][6][7][8][9]).getClass().getName() 1003 * returns "[[[[[[[I" 1004 * </pre></blockquote> 1005 * 1006 * @apiNote 1007 * Distinct class objects can have the same name but different class loaders. 1008 * 1009 * @return the name of the class, interface, or other entity 1010 * represented by this {@code Class} object. 1011 * @jls 13.1 The Form of a Binary 1012 */ 1013 public String getName() { 1014 String name = this.name; 1015 return name != null ? name : initClassName(); 1016 } 1017 1018 // Cache the name to reduce the number of calls into the VM. 1019 // This field would be set by VM itself during initClassName call. 1020 private transient String name; 1021 private native String initClassName(); 1022 1023 /** 1024 * Returns the class loader for the class. Some implementations may use 1025 * null to represent the bootstrap class loader. This method will return 1026 * null in such implementations if this class was loaded by the bootstrap 1027 * class loader. 1028 * 1029 * <p>If this {@code Class} object 1030 * represents a primitive type or void, null is returned. 1031 * 1032 * @return the class loader that loaded the class or interface 1033 * represented by this {@code Class} object. 1034 * @see java.lang.ClassLoader 1035 */ 1036 public ClassLoader getClassLoader() { 1037 return classLoader; 1038 } 1039 1040 // Package-private to allow ClassLoader access 1041 ClassLoader getClassLoader0() { return classLoader; } 1042 1043 /** 1044 * Returns the module that this class or interface is a member of. 1045 * 1046 * If this class represents an array type then this method returns the 1047 * {@code Module} for the element type. If this class represents a 1048 * primitive type or void, then the {@code Module} object for the 1049 * {@code java.base} module is returned. 1050 * 1051 * If this class is in an unnamed module then the {@linkplain 1052 * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class 1053 * loader for this class is returned. 1054 * 1055 * @return the module that this class or interface is a member of 1056 * 1057 * @since 9 1058 */ 1059 public Module getModule() { 1060 return module; 1061 } 1062 1063 // set by VM 1064 @Stable 1065 private transient Module module; 1066 1067 // Initialized in JVM not by private constructor 1068 // This field is filtered from reflection access, i.e. getDeclaredField 1069 // will throw NoSuchFieldException 1070 private final ClassLoader classLoader; 1071 1072 private transient Object classData; // Set by VM 1073 private transient Object[] signers; // Read by VM, mutable 1074 private final transient char modifiers; // Set by the VM 1075 private final transient boolean primitive; // Set by the VM if the Class is a primitive type. 1076 1077 // package-private 1078 Object getClassData() { 1079 return classData; 1080 } 1081 1082 /** 1083 * Returns an array of {@code TypeVariable} objects that represent the 1084 * type variables declared by the generic declaration represented by this 1085 * {@code GenericDeclaration} object, in declaration order. Returns an 1086 * array of length 0 if the underlying generic declaration declares no type 1087 * variables. 1088 * 1089 * @return an array of {@code TypeVariable} objects that represent 1090 * the type variables declared by this generic declaration 1091 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1092 * signature of this generic declaration does not conform to 1093 * the format specified in section {@jvms 4.7.9} of 1094 * <cite>The Java Virtual Machine Specification</cite> 1095 * @since 1.5 1096 */ 1097 @SuppressWarnings("unchecked") 1098 public TypeVariable<Class<T>>[] getTypeParameters() { 1099 ClassRepository info = getGenericInfo(); 1100 if (info != null) 1101 return (TypeVariable<Class<T>>[])info.getTypeParameters(); 1102 else 1103 return (TypeVariable<Class<T>>[])new TypeVariable<?>[0]; 1104 } 1105 1106 1107 /** 1108 * Returns the {@code Class} representing the direct superclass of the 1109 * entity (class, interface, primitive type or void) represented by 1110 * this {@code Class}. If this {@code Class} represents either the 1111 * {@code Object} class, an interface, a primitive type, or void, then 1112 * null is returned. If this {@code Class} object represents an array class 1113 * then the {@code Class} object representing the {@code Object} class is 1114 * returned. 1115 * 1116 * @return the direct superclass of the class represented by this {@code Class} object 1117 */ 1118 @IntrinsicCandidate 1119 public native Class<? super T> getSuperclass(); 1120 1121 1122 /** 1123 * Returns the {@code Type} representing the direct superclass of 1124 * the entity (class, interface, primitive type or void) represented by 1125 * this {@code Class} object. 1126 * 1127 * <p>If the superclass is a parameterized type, the {@code Type} 1128 * object returned must accurately reflect the actual type 1129 * arguments used in the source code. The parameterized type 1130 * representing the superclass is created if it had not been 1131 * created before. See the declaration of {@link 1132 * java.lang.reflect.ParameterizedType ParameterizedType} for the 1133 * semantics of the creation process for parameterized types. If 1134 * this {@code Class} object represents either the {@code Object} 1135 * class, an interface, a primitive type, or void, then null is 1136 * returned. If this {@code Class} object represents an array class 1137 * then the {@code Class} object representing the {@code Object} class is 1138 * returned. 1139 * 1140 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1141 * class signature does not conform to the format specified in 1142 * section {@jvms 4.7.9} of <cite>The Java Virtual 1143 * Machine Specification</cite> 1144 * @throws TypeNotPresentException if the generic superclass 1145 * refers to a non-existent type declaration 1146 * @throws java.lang.reflect.MalformedParameterizedTypeException if the 1147 * generic superclass refers to a parameterized type that cannot be 1148 * instantiated for any reason 1149 * @return the direct superclass of the class represented by this {@code Class} object 1150 * @since 1.5 1151 */ 1152 public Type getGenericSuperclass() { 1153 ClassRepository info = getGenericInfo(); 1154 if (info == null) { 1155 return getSuperclass(); 1156 } 1157 1158 // Historical irregularity: 1159 // Generic signature marks interfaces with superclass = Object 1160 // but this API returns null for interfaces 1161 if (isInterface()) { 1162 return null; 1163 } 1164 1165 return info.getSuperclass(); 1166 } 1167 1168 /** 1169 * Gets the package of this class. 1170 * 1171 * <p>If this class represents an array type, a primitive type or void, 1172 * this method returns {@code null}. 1173 * 1174 * @return the package of this class. 1175 */ 1176 public Package getPackage() { 1177 if (isPrimitive() || isArray()) { 1178 return null; 1179 } 1180 ClassLoader cl = classLoader; 1181 return cl != null ? cl.definePackage(this) 1182 : BootLoader.definePackage(this); 1183 } 1184 1185 /** 1186 * Returns the fully qualified package name. 1187 * 1188 * <p> If this class is a top level class, then this method returns the fully 1189 * qualified name of the package that the class is a member of, or the 1190 * empty string if the class is in an unnamed package. 1191 * 1192 * <p> If this class is a member class, then this method is equivalent to 1193 * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass 1194 * enclosing class}. 1195 * 1196 * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain 1197 * #isAnonymousClass() anonymous class}, then this method is equivalent to 1198 * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass 1199 * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or 1200 * {@linkplain #getEnclosingConstructor enclosing constructor}. 1201 * 1202 * <p> If this class represents an array type then this method returns the 1203 * package name of the element type. If this class represents a primitive 1204 * type or void then the package name "{@code java.lang}" is returned. 1205 * 1206 * @return the fully qualified package name 1207 * 1208 * @since 9 1209 * @jls 6.7 Fully Qualified Names and Canonical Names 1210 */ 1211 public String getPackageName() { 1212 String pn = this.packageName; 1213 if (pn == null) { 1214 Class<?> c = isArray() ? elementType() : this; 1215 if (c.isPrimitive()) { 1216 pn = "java.lang"; 1217 } else { 1218 String cn = c.getName(); 1219 int dot = cn.lastIndexOf('.'); 1220 pn = (dot != -1) ? cn.substring(0, dot).intern() : ""; 1221 } 1222 this.packageName = pn; 1223 } 1224 return pn; 1225 } 1226 1227 // cached package name 1228 private transient String packageName; 1229 1230 /** 1231 * Returns the interfaces directly implemented by the class or interface 1232 * represented by this {@code Class} object. 1233 * 1234 * <p>If this {@code Class} object represents a class, the return value is an array 1235 * containing objects representing all interfaces directly implemented by 1236 * the class. The order of the interface objects in the array corresponds 1237 * to the order of the interface names in the {@code implements} clause of 1238 * the declaration of the class represented by this {@code Class} object. For example, 1239 * given the declaration: 1240 * <blockquote> 1241 * {@code class Shimmer implements FloorWax, DessertTopping { ... }} 1242 * </blockquote> 1243 * suppose the value of {@code s} is an instance of 1244 * {@code Shimmer}; the value of the expression: 1245 * <blockquote> 1246 * {@code s.getClass().getInterfaces()[0]} 1247 * </blockquote> 1248 * is the {@code Class} object that represents interface 1249 * {@code FloorWax}; and the value of: 1250 * <blockquote> 1251 * {@code s.getClass().getInterfaces()[1]} 1252 * </blockquote> 1253 * is the {@code Class} object that represents interface 1254 * {@code DessertTopping}. 1255 * 1256 * <p>If this {@code Class} object represents an interface, the array contains objects 1257 * representing all interfaces directly extended by the interface. The 1258 * order of the interface objects in the array corresponds to the order of 1259 * the interface names in the {@code extends} clause of the declaration of 1260 * the interface represented by this {@code Class} object. 1261 * 1262 * <p>If this {@code Class} object represents a class or interface that implements no 1263 * interfaces, the method returns an array of length 0. 1264 * 1265 * <p>If this {@code Class} object represents a primitive type or void, the method 1266 * returns an array of length 0. 1267 * 1268 * <p>If this {@code Class} object represents an array type, the 1269 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1270 * returned in that order. 1271 * 1272 * @return an array of interfaces directly implemented by this class 1273 */ 1274 public Class<?>[] getInterfaces() { 1275 // defensively copy before handing over to user code 1276 return getInterfaces(true); 1277 } 1278 1279 private Class<?>[] getInterfaces(boolean cloneArray) { 1280 ReflectionData<T> rd = reflectionData(); 1281 Class<?>[] interfaces = rd.interfaces; 1282 if (interfaces == null) { 1283 interfaces = getInterfaces0(); 1284 rd.interfaces = interfaces; 1285 } 1286 // defensively copy if requested 1287 return cloneArray ? interfaces.clone() : interfaces; 1288 } 1289 1290 private native Class<?>[] getInterfaces0(); 1291 1292 /** 1293 * Returns the {@code Type}s representing the interfaces 1294 * directly implemented by the class or interface represented by 1295 * this {@code Class} object. 1296 * 1297 * <p>If a superinterface is a parameterized type, the 1298 * {@code Type} object returned for it must accurately reflect 1299 * the actual type arguments used in the source code. The 1300 * parameterized type representing each superinterface is created 1301 * if it had not been created before. See the declaration of 1302 * {@link java.lang.reflect.ParameterizedType ParameterizedType} 1303 * for the semantics of the creation process for parameterized 1304 * types. 1305 * 1306 * <p>If this {@code Class} object represents a class, the return value is an array 1307 * containing objects representing all interfaces directly implemented by 1308 * the class. The order of the interface objects in the array corresponds 1309 * to the order of the interface names in the {@code implements} clause of 1310 * the declaration of the class represented by this {@code Class} object. 1311 * 1312 * <p>If this {@code Class} object represents an interface, the array contains objects 1313 * representing all interfaces directly extended by the interface. The 1314 * order of the interface objects in the array corresponds to the order of 1315 * the interface names in the {@code extends} clause of the declaration of 1316 * the interface represented by this {@code Class} object. 1317 * 1318 * <p>If this {@code Class} object represents a class or interface that implements no 1319 * interfaces, the method returns an array of length 0. 1320 * 1321 * <p>If this {@code Class} object represents a primitive type or void, the method 1322 * returns an array of length 0. 1323 * 1324 * <p>If this {@code Class} object represents an array type, the 1325 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1326 * returned in that order. 1327 * 1328 * @throws java.lang.reflect.GenericSignatureFormatError 1329 * if the generic class signature does not conform to the 1330 * format specified in section {@jvms 4.7.9} of <cite>The 1331 * Java Virtual Machine Specification</cite> 1332 * @throws TypeNotPresentException if any of the generic 1333 * superinterfaces refers to a non-existent type declaration 1334 * @throws java.lang.reflect.MalformedParameterizedTypeException 1335 * if any of the generic superinterfaces refer to a parameterized 1336 * type that cannot be instantiated for any reason 1337 * @return an array of interfaces directly implemented by this class 1338 * @since 1.5 1339 */ 1340 public Type[] getGenericInterfaces() { 1341 ClassRepository info = getGenericInfo(); 1342 return (info == null) ? getInterfaces() : info.getSuperInterfaces(); 1343 } 1344 1345 1346 /** 1347 * Returns the {@code Class} representing the component type of an 1348 * array. If this class does not represent an array class this method 1349 * returns null. 1350 * 1351 * @return the {@code Class} representing the component type of this 1352 * class if this class is an array 1353 * @see java.lang.reflect.Array 1354 * @since 1.1 1355 */ 1356 public Class<?> getComponentType() { 1357 return componentType; 1358 } 1359 1360 // The componentType field's null value is the sole indication that the class 1361 // is an array - see isArray(). 1362 private transient final Class<?> componentType; 1363 1364 /* 1365 * Returns the {@code Class} representing the element type of an array class. 1366 * If this class does not represent an array class, then this method returns 1367 * {@code null}. 1368 */ 1369 private Class<?> elementType() { 1370 if (!isArray()) return null; 1371 1372 Class<?> c = this; 1373 while (c.isArray()) { 1374 c = c.getComponentType(); 1375 } 1376 return c; 1377 } 1378 1379 /** 1380 * Returns the Java language modifiers for this class or interface, encoded 1381 * in an integer. The modifiers consist of the Java Virtual Machine's 1382 * constants for {@code public}, {@code protected}, 1383 * {@code private}, {@code final}, {@code static}, 1384 * {@code abstract} and {@code interface}; they should be decoded 1385 * using the methods of class {@code Modifier}. 1386 * 1387 * <p> If the underlying class is an array class: 1388 * <ul> 1389 * <li> its {@code public}, {@code private} and {@code protected} 1390 * modifiers are the same as those of its component type 1391 * <li> its {@code abstract} and {@code final} modifiers are always 1392 * {@code true} 1393 * <li> its interface modifier is always {@code false}, even when 1394 * the component type is an interface 1395 * <li> its {@code identity} modifier is always true 1396 * </ul> 1397 * If this {@code Class} object represents a primitive type or 1398 * void, its {@code public}, {@code abstract}, and {@code final} 1399 * modifiers are always {@code true}. 1400 * For {@code Class} objects representing void, primitive types, and 1401 * arrays, the values of other modifiers are {@code false} other 1402 * than as specified above. 1403 * 1404 * <p> The modifier encodings are defined in section {@jvms 4.1} 1405 * of <cite>The Java Virtual Machine Specification</cite>. 1406 * 1407 * @return the {@code int} representing the modifiers for this class 1408 * @see java.lang.reflect.Modifier 1409 * @see #accessFlags() 1410 * @see <a 1411 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 1412 * programming language and JVM modeling in core reflection</a> 1413 * @since 1.1 1414 * @jls 8.1.1 Class Modifiers 1415 * @jls 9.1.1 Interface Modifiers 1416 * @jvms 4.1 The {@code ClassFile} Structure 1417 */ 1418 public int getModifiers() { return modifiers; } 1419 1420 /** 1421 * {@return an unmodifiable set of the {@linkplain AccessFlag access 1422 * flags} for this class, possibly empty} 1423 * The {@code AccessFlags} may depend on the class file format version of the class. 1424 * 1425 * <p> If the underlying class is an array class: 1426 * <ul> 1427 * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED} 1428 * access flags are the same as those of its component type 1429 * <li> its {@code ABSTRACT} and {@code FINAL} flags are present 1430 * <li> its {@code INTERFACE} flag is absent, even when the 1431 * component type is an interface 1432 * <li> its {@code identity} modifier is always true 1433 * </ul> 1434 * If this {@code Class} object represents a primitive type or 1435 * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and 1436 * {@code FINAL}. 1437 * For {@code Class} objects representing void, primitive types, and 1438 * arrays, access flags are absent other than as specified above. 1439 * 1440 * @see #getModifiers() 1441 * @jvms 4.1 The ClassFile Structure 1442 * @jvms 4.7.6 The InnerClasses Attribute 1443 * @since 20 1444 */ 1445 public Set<AccessFlag> accessFlags() { 1446 // Location.CLASS allows SUPER and AccessFlag.MODULE which 1447 // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED, 1448 // and STATIC, which are not allowed on Location.CLASS. 1449 // Use getClassAccessFlagsRaw to expose SUPER status. 1450 var location = (isMemberClass() || isLocalClass() || 1451 isAnonymousClass() || isArray()) ? 1452 AccessFlag.Location.INNER_CLASS : 1453 AccessFlag.Location.CLASS; 1454 int accessFlags = (location == AccessFlag.Location.CLASS) ? 1455 getClassAccessFlagsRaw() : getModifiers(); 1456 if (isArray() && PreviewFeatures.isEnabled()) { 1457 accessFlags |= Modifier.IDENTITY; 1458 } 1459 var cffv = ClassFileFormatVersion.fromMajor(getClassFileVersion() & 0xffff); 1460 if (cffv.compareTo(ClassFileFormatVersion.latest()) >= 0) { 1461 // Ignore unspecified (0x0800) access flag for current version 1462 accessFlags &= ~0x0800; 1463 } 1464 return AccessFlag.maskToAccessFlags(accessFlags, location, cffv); 1465 } 1466 1467 /** 1468 * Gets the signers of this class. 1469 * 1470 * @return the signers of this class, or null if there are no signers. In 1471 * particular, this method returns null if this {@code Class} object represents 1472 * a primitive type or void. 1473 * @since 1.1 1474 */ 1475 1476 public Object[] getSigners() { 1477 var signers = this.signers; 1478 return signers == null ? null : signers.clone(); 1479 } 1480 1481 /** 1482 * Set the signers of this class. 1483 */ 1484 void setSigners(Object[] signers) { 1485 if (!isPrimitive() && !isArray()) { 1486 this.signers = signers; 1487 } 1488 } 1489 1490 /** 1491 * If this {@code Class} object represents a local or anonymous 1492 * class within a method, returns a {@link 1493 * java.lang.reflect.Method Method} object representing the 1494 * immediately enclosing method of the underlying class. Returns 1495 * {@code null} otherwise. 1496 * 1497 * In particular, this method returns {@code null} if the underlying 1498 * class is a local or anonymous class immediately enclosed by a class or 1499 * interface declaration, instance initializer or static initializer. 1500 * 1501 * @return the immediately enclosing method of the underlying class, if 1502 * that class is a local or anonymous class; otherwise {@code null}. 1503 * 1504 * @since 1.5 1505 */ 1506 public Method getEnclosingMethod() { 1507 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1508 1509 if (enclosingInfo == null) 1510 return null; 1511 else { 1512 if (!enclosingInfo.isMethod()) 1513 return null; 1514 1515 MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(), 1516 getFactory()); 1517 Class<?> returnType = toClass(typeInfo.getReturnType()); 1518 Type [] parameterTypes = typeInfo.getParameterTypes(); 1519 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1520 1521 // Convert Types to Classes; returned types *should* 1522 // be class objects since the methodDescriptor's used 1523 // don't have generics information 1524 for(int i = 0; i < parameterClasses.length; i++) 1525 parameterClasses[i] = toClass(parameterTypes[i]); 1526 1527 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1528 Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false); 1529 1530 /* 1531 * Loop over all declared methods; match method name, 1532 * number of and type of parameters, *and* return 1533 * type. Matching return type is also necessary 1534 * because of covariant returns, etc. 1535 */ 1536 ReflectionFactory fact = getReflectionFactory(); 1537 for (Method m : candidates) { 1538 if (m.getName().equals(enclosingInfo.getName()) && 1539 arrayContentsEq(parameterClasses, 1540 fact.getExecutableSharedParameterTypes(m))) { 1541 // finally, check return type 1542 if (m.getReturnType().equals(returnType)) { 1543 return fact.copyMethod(m); 1544 } 1545 } 1546 } 1547 1548 throw new InternalError("Enclosing method not found"); 1549 } 1550 } 1551 1552 private native Object[] getEnclosingMethod0(); 1553 1554 private EnclosingMethodInfo getEnclosingMethodInfo() { 1555 Object[] enclosingInfo = getEnclosingMethod0(); 1556 if (enclosingInfo == null) 1557 return null; 1558 else { 1559 return new EnclosingMethodInfo(enclosingInfo); 1560 } 1561 } 1562 1563 private static final class EnclosingMethodInfo { 1564 private final Class<?> enclosingClass; 1565 private final String name; 1566 private final String descriptor; 1567 1568 static void validate(Object[] enclosingInfo) { 1569 if (enclosingInfo.length != 3) 1570 throw new InternalError("Malformed enclosing method information"); 1571 try { 1572 // The array is expected to have three elements: 1573 1574 // the immediately enclosing class 1575 Class<?> enclosingClass = (Class<?>)enclosingInfo[0]; 1576 assert(enclosingClass != null); 1577 1578 // the immediately enclosing method or constructor's 1579 // name (can be null). 1580 String name = (String)enclosingInfo[1]; 1581 1582 // the immediately enclosing method or constructor's 1583 // descriptor (null iff name is). 1584 String descriptor = (String)enclosingInfo[2]; 1585 assert((name != null && descriptor != null) || name == descriptor); 1586 } catch (ClassCastException cce) { 1587 throw new InternalError("Invalid type in enclosing method information", cce); 1588 } 1589 } 1590 1591 EnclosingMethodInfo(Object[] enclosingInfo) { 1592 validate(enclosingInfo); 1593 this.enclosingClass = (Class<?>)enclosingInfo[0]; 1594 this.name = (String)enclosingInfo[1]; 1595 this.descriptor = (String)enclosingInfo[2]; 1596 } 1597 1598 boolean isPartial() { 1599 return enclosingClass == null || name == null || descriptor == null; 1600 } 1601 1602 boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); } 1603 1604 boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); } 1605 1606 Class<?> getEnclosingClass() { return enclosingClass; } 1607 1608 String getName() { return name; } 1609 1610 String getDescriptor() { return descriptor; } 1611 1612 } 1613 1614 private static Class<?> toClass(Type o) { 1615 if (o instanceof GenericArrayType gat) 1616 return toClass(gat.getGenericComponentType()).arrayType(); 1617 return (Class<?>)o; 1618 } 1619 1620 /** 1621 * If this {@code Class} object represents a local or anonymous 1622 * class within a constructor, returns a {@link 1623 * java.lang.reflect.Constructor Constructor} object representing 1624 * the immediately enclosing constructor of the underlying 1625 * class. Returns {@code null} otherwise. In particular, this 1626 * method returns {@code null} if the underlying class is a local 1627 * or anonymous class immediately enclosed by a class or 1628 * interface declaration, instance initializer or static initializer. 1629 * 1630 * @return the immediately enclosing constructor of the underlying class, if 1631 * that class is a local or anonymous class; otherwise {@code null}. 1632 * 1633 * @since 1.5 1634 */ 1635 public Constructor<?> getEnclosingConstructor() { 1636 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1637 1638 if (enclosingInfo == null) 1639 return null; 1640 else { 1641 if (!enclosingInfo.isConstructor()) 1642 return null; 1643 1644 ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(), 1645 getFactory()); 1646 Type [] parameterTypes = typeInfo.getParameterTypes(); 1647 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1648 1649 // Convert Types to Classes; returned types *should* 1650 // be class objects since the methodDescriptor's used 1651 // don't have generics information 1652 for (int i = 0; i < parameterClasses.length; i++) 1653 parameterClasses[i] = toClass(parameterTypes[i]); 1654 1655 1656 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1657 Constructor<?>[] candidates = enclosingCandidate 1658 .privateGetDeclaredConstructors(false); 1659 /* 1660 * Loop over all declared constructors; match number 1661 * of and type of parameters. 1662 */ 1663 ReflectionFactory fact = getReflectionFactory(); 1664 for (Constructor<?> c : candidates) { 1665 if (arrayContentsEq(parameterClasses, 1666 fact.getExecutableSharedParameterTypes(c))) { 1667 return fact.copyConstructor(c); 1668 } 1669 } 1670 1671 throw new InternalError("Enclosing constructor not found"); 1672 } 1673 } 1674 1675 1676 /** 1677 * If the class or interface represented by this {@code Class} object 1678 * is a member of another class, returns the {@code Class} object 1679 * representing the class in which it was declared. This method returns 1680 * null if this class or interface is not a member of any other class. If 1681 * this {@code Class} object represents an array class, a primitive 1682 * type, or void, then this method returns null. 1683 * 1684 * @return the declaring class for this class 1685 * @since 1.1 1686 */ 1687 public Class<?> getDeclaringClass() { 1688 return getDeclaringClass0(); 1689 } 1690 1691 private native Class<?> getDeclaringClass0(); 1692 1693 1694 /** 1695 * Returns the immediately enclosing class of the underlying 1696 * class. If the underlying class is a top level class this 1697 * method returns {@code null}. 1698 * @return the immediately enclosing class of the underlying class 1699 * @since 1.5 1700 */ 1701 public Class<?> getEnclosingClass() { 1702 // There are five kinds of classes (or interfaces): 1703 // a) Top level classes 1704 // b) Nested classes (static member classes) 1705 // c) Inner classes (non-static member classes) 1706 // d) Local classes (named classes declared within a method) 1707 // e) Anonymous classes 1708 1709 1710 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1711 // attribute if and only if it is a local class or an 1712 // anonymous class. 1713 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1714 Class<?> enclosingCandidate; 1715 1716 if (enclosingInfo == null) { 1717 // This is a top level or a nested class or an inner class (a, b, or c) 1718 enclosingCandidate = getDeclaringClass0(); 1719 } else { 1720 Class<?> enclosingClass = enclosingInfo.getEnclosingClass(); 1721 // This is a local class or an anonymous class (d or e) 1722 if (enclosingClass == this || enclosingClass == null) 1723 throw new InternalError("Malformed enclosing method information"); 1724 else 1725 enclosingCandidate = enclosingClass; 1726 } 1727 return enclosingCandidate; 1728 } 1729 1730 /** 1731 * Returns the simple name of the underlying class as given in the 1732 * source code. An empty string is returned if the underlying class is 1733 * {@linkplain #isAnonymousClass() anonymous}. 1734 * A {@linkplain #isSynthetic() synthetic class}, one not present 1735 * in source code, can have a non-empty name including special 1736 * characters, such as "{@code $}". 1737 * 1738 * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the 1739 * component type with "[]" appended. In particular the simple 1740 * name of an array class whose component type is anonymous is "[]". 1741 * 1742 * @return the simple name of the underlying class 1743 * @since 1.5 1744 */ 1745 public String getSimpleName() { 1746 ReflectionData<T> rd = reflectionData(); 1747 String simpleName = rd.simpleName; 1748 if (simpleName == null) { 1749 rd.simpleName = simpleName = getSimpleName0(); 1750 } 1751 return simpleName; 1752 } 1753 1754 private String getSimpleName0() { 1755 if (isArray()) { 1756 return getComponentType().getSimpleName().concat("[]"); 1757 } 1758 String simpleName = getSimpleBinaryName(); 1759 if (simpleName == null) { // top level class 1760 simpleName = getName(); 1761 simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name 1762 } 1763 return simpleName; 1764 } 1765 1766 /** 1767 * Return an informative string for the name of this class or interface. 1768 * 1769 * @return an informative string for the name of this class or interface 1770 * @since 1.8 1771 */ 1772 public String getTypeName() { 1773 if (isArray()) { 1774 try { 1775 Class<?> cl = this; 1776 int dimensions = 0; 1777 do { 1778 dimensions++; 1779 cl = cl.getComponentType(); 1780 } while (cl.isArray()); 1781 return cl.getName().concat("[]".repeat(dimensions)); 1782 } catch (Throwable e) { /*FALLTHRU*/ } 1783 } 1784 return getName(); 1785 } 1786 1787 /** 1788 * Returns the canonical name of the underlying class as 1789 * defined by <cite>The Java Language Specification</cite>. 1790 * Returns {@code null} if the underlying class does not have a canonical 1791 * name. Classes without canonical names include: 1792 * <ul> 1793 * <li>a {@linkplain #isLocalClass() local class} 1794 * <li>a {@linkplain #isAnonymousClass() anonymous class} 1795 * <li>a {@linkplain #isHidden() hidden class} 1796 * <li>an array whose component type does not have a canonical name</li> 1797 * </ul> 1798 * 1799 * The canonical name for a primitive class is the keyword for the 1800 * corresponding primitive type ({@code byte}, {@code short}, 1801 * {@code char}, {@code int}, and so on). 1802 * 1803 * <p>An array type has a canonical name if and only if its 1804 * component type has a canonical name. When an array type has a 1805 * canonical name, it is equal to the canonical name of the 1806 * component type followed by "{@code []}". 1807 * 1808 * @return the canonical name of the underlying class if it exists, and 1809 * {@code null} otherwise. 1810 * @jls 6.7 Fully Qualified Names and Canonical Names 1811 * @since 1.5 1812 */ 1813 public String getCanonicalName() { 1814 ReflectionData<T> rd = reflectionData(); 1815 String canonicalName = rd.canonicalName; 1816 if (canonicalName == null) { 1817 rd.canonicalName = canonicalName = getCanonicalName0(); 1818 } 1819 return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName; 1820 } 1821 1822 private String getCanonicalName0() { 1823 if (isArray()) { 1824 String canonicalName = getComponentType().getCanonicalName(); 1825 if (canonicalName != null) 1826 return canonicalName.concat("[]"); 1827 else 1828 return ReflectionData.NULL_SENTINEL; 1829 } 1830 if (isHidden() || isLocalOrAnonymousClass()) 1831 return ReflectionData.NULL_SENTINEL; 1832 Class<?> enclosingClass = getEnclosingClass(); 1833 if (enclosingClass == null) { // top level class 1834 return getName(); 1835 } else { 1836 String enclosingName = enclosingClass.getCanonicalName(); 1837 if (enclosingName == null) 1838 return ReflectionData.NULL_SENTINEL; 1839 String simpleName = getSimpleName(); 1840 return new StringBuilder(enclosingName.length() + simpleName.length() + 1) 1841 .append(enclosingName) 1842 .append('.') 1843 .append(simpleName) 1844 .toString(); 1845 } 1846 } 1847 1848 /** 1849 * Returns {@code true} if and only if the underlying class 1850 * is an anonymous class. 1851 * 1852 * @apiNote 1853 * An anonymous class is not a {@linkplain #isHidden() hidden class}. 1854 * 1855 * @return {@code true} if and only if this class is an anonymous class. 1856 * @since 1.5 1857 * @jls 15.9.5 Anonymous Class Declarations 1858 */ 1859 public boolean isAnonymousClass() { 1860 return !isArray() && isLocalOrAnonymousClass() && 1861 getSimpleBinaryName0() == null; 1862 } 1863 1864 /** 1865 * Returns {@code true} if and only if the underlying class 1866 * is a local class. 1867 * 1868 * @return {@code true} if and only if this class is a local class. 1869 * @since 1.5 1870 * @jls 14.3 Local Class and Interface Declarations 1871 */ 1872 public boolean isLocalClass() { 1873 return isLocalOrAnonymousClass() && 1874 (isArray() || getSimpleBinaryName0() != null); 1875 } 1876 1877 /** 1878 * Returns {@code true} if and only if the underlying class 1879 * is a member class. 1880 * 1881 * @return {@code true} if and only if this class is a member class. 1882 * @since 1.5 1883 * @jls 8.5 Member Class and Interface Declarations 1884 */ 1885 public boolean isMemberClass() { 1886 return !isLocalOrAnonymousClass() && getDeclaringClass0() != null; 1887 } 1888 1889 /** 1890 * Returns the "simple binary name" of the underlying class, i.e., 1891 * the binary name without the leading enclosing class name. 1892 * Returns {@code null} if the underlying class is a top level 1893 * class. 1894 */ 1895 private String getSimpleBinaryName() { 1896 if (isTopLevelClass()) 1897 return null; 1898 String name = getSimpleBinaryName0(); 1899 if (name == null) // anonymous class 1900 return ""; 1901 return name; 1902 } 1903 1904 private native String getSimpleBinaryName0(); 1905 1906 /** 1907 * Returns {@code true} if this is a top level class. Returns {@code false} 1908 * otherwise. 1909 */ 1910 private boolean isTopLevelClass() { 1911 return !isLocalOrAnonymousClass() && getDeclaringClass0() == null; 1912 } 1913 1914 /** 1915 * Returns {@code true} if this is a local class or an anonymous 1916 * class. Returns {@code false} otherwise. 1917 */ 1918 private boolean isLocalOrAnonymousClass() { 1919 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1920 // attribute if and only if it is a local class or an 1921 // anonymous class. 1922 return hasEnclosingMethodInfo(); 1923 } 1924 1925 private boolean hasEnclosingMethodInfo() { 1926 Object[] enclosingInfo = getEnclosingMethod0(); 1927 if (enclosingInfo != null) { 1928 EnclosingMethodInfo.validate(enclosingInfo); 1929 return true; 1930 } 1931 return false; 1932 } 1933 1934 /** 1935 * Returns an array containing {@code Class} objects representing all 1936 * the public classes and interfaces that are members of the class 1937 * represented by this {@code Class} object. This includes public 1938 * class and interface members inherited from superclasses and public class 1939 * and interface members declared by the class. This method returns an 1940 * array of length 0 if this {@code Class} object has no public member 1941 * classes or interfaces. This method also returns an array of length 0 if 1942 * this {@code Class} object represents a primitive type, an array 1943 * class, or void. 1944 * 1945 * @return the array of {@code Class} objects representing the public 1946 * members of this class 1947 * @since 1.1 1948 */ 1949 public Class<?>[] getClasses() { 1950 List<Class<?>> list = new ArrayList<>(); 1951 Class<?> currentClass = Class.this; 1952 while (currentClass != null) { 1953 for (Class<?> m : currentClass.getDeclaredClasses()) { 1954 if (Modifier.isPublic(m.getModifiers())) { 1955 list.add(m); 1956 } 1957 } 1958 currentClass = currentClass.getSuperclass(); 1959 } 1960 return list.toArray(new Class<?>[0]); 1961 } 1962 1963 1964 /** 1965 * Returns an array containing {@code Field} objects reflecting all 1966 * the accessible public fields of the class or interface represented by 1967 * this {@code Class} object. 1968 * 1969 * <p> If this {@code Class} object represents a class or interface with 1970 * no accessible public fields, then this method returns an array of length 1971 * 0. 1972 * 1973 * <p> If this {@code Class} object represents a class, then this method 1974 * returns the public fields of the class and of all its superclasses and 1975 * superinterfaces. 1976 * 1977 * <p> If this {@code Class} object represents an interface, then this 1978 * method returns the fields of the interface and of all its 1979 * superinterfaces. 1980 * 1981 * <p> If this {@code Class} object represents an array type, a primitive 1982 * type, or void, then this method returns an array of length 0. 1983 * 1984 * <p> The elements in the returned array are not sorted and are not in any 1985 * particular order. 1986 * 1987 * @return the array of {@code Field} objects representing the 1988 * public fields 1989 * 1990 * @since 1.1 1991 * @jls 8.2 Class Members 1992 * @jls 8.3 Field Declarations 1993 */ 1994 public Field[] getFields() { 1995 return copyFields(privateGetPublicFields()); 1996 } 1997 1998 1999 /** 2000 * Returns an array containing {@code Method} objects reflecting all the 2001 * public methods of the class or interface represented by this {@code 2002 * Class} object, including those declared by the class or interface and 2003 * those inherited from superclasses and superinterfaces. 2004 * 2005 * <p> If this {@code Class} object represents an array type, then the 2006 * returned array has a {@code Method} object for each of the public 2007 * methods inherited by the array type from {@code Object}. It does not 2008 * contain a {@code Method} object for {@code clone()}. 2009 * 2010 * <p> If this {@code Class} object represents an interface then the 2011 * returned array does not contain any implicitly declared methods from 2012 * {@code Object}. Therefore, if no methods are explicitly declared in 2013 * this interface or any of its superinterfaces then the returned array 2014 * has length 0. (Note that a {@code Class} object which represents a class 2015 * always has public methods, inherited from {@code Object}.) 2016 * 2017 * <p> The returned array never contains methods with names {@value 2018 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 2019 * 2020 * <p> The elements in the returned array are not sorted and are not in any 2021 * particular order. 2022 * 2023 * <p> Generally, the result is computed as with the following 4 step algorithm. 2024 * Let C be the class or interface represented by this {@code Class} object: 2025 * <ol> 2026 * <li> A union of methods is composed of: 2027 * <ol type="a"> 2028 * <li> C's declared public instance and static methods as returned by 2029 * {@link #getDeclaredMethods()} and filtered to include only public 2030 * methods.</li> 2031 * <li> If C is a class other than {@code Object}, then include the result 2032 * of invoking this algorithm recursively on the superclass of C.</li> 2033 * <li> Include the results of invoking this algorithm recursively on all 2034 * direct superinterfaces of C, but include only instance methods.</li> 2035 * </ol></li> 2036 * <li> Union from step 1 is partitioned into subsets of methods with same 2037 * signature (name, parameter types) and return type.</li> 2038 * <li> Within each such subset only the most specific methods are selected. 2039 * Let method M be a method from a set of methods with same signature 2040 * and return type. M is most specific if there is no such method 2041 * N != M from the same set, such that N is more specific than M. 2042 * N is more specific than M if: 2043 * <ol type="a"> 2044 * <li> N is declared by a class and M is declared by an interface; or</li> 2045 * <li> N and M are both declared by classes or both by interfaces and 2046 * N's declaring type is the same as or a subtype of M's declaring type 2047 * (clearly, if M's and N's declaring types are the same type, then 2048 * M and N are the same method).</li> 2049 * </ol></li> 2050 * <li> The result of this algorithm is the union of all selected methods from 2051 * step 3.</li> 2052 * </ol> 2053 * 2054 * @apiNote There may be more than one method with a particular name 2055 * and parameter types in a class because while the Java language forbids a 2056 * class to declare multiple methods with the same signature but different 2057 * return types, the Java virtual machine does not. This 2058 * increased flexibility in the virtual machine can be used to 2059 * implement various language features. For example, covariant 2060 * returns can be implemented with {@linkplain 2061 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2062 * method and the overriding method would have the same 2063 * signature but different return types. 2064 * 2065 * @return the array of {@code Method} objects representing the 2066 * public methods of this class 2067 * 2068 * @jls 8.2 Class Members 2069 * @jls 8.4 Method Declarations 2070 * @since 1.1 2071 */ 2072 public Method[] getMethods() { 2073 return copyMethods(privateGetPublicMethods()); 2074 } 2075 2076 2077 /** 2078 * Returns an array containing {@code Constructor} objects reflecting 2079 * all the public constructors of the class represented by this 2080 * {@code Class} object. An array of length 0 is returned if the 2081 * class has no public constructors, or if the class is an array class, or 2082 * if the class reflects a primitive type or void. 2083 * 2084 * @apiNote 2085 * While this method returns an array of {@code 2086 * Constructor<T>} objects (that is an array of constructors from 2087 * this class), the return type of this method is {@code 2088 * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as 2089 * might be expected. This less informative return type is 2090 * necessary since after being returned from this method, the 2091 * array could be modified to hold {@code Constructor} objects for 2092 * different classes, which would violate the type guarantees of 2093 * {@code Constructor<T>[]}. 2094 * 2095 * @return the array of {@code Constructor} objects representing the 2096 * public constructors of this class 2097 * 2098 * @see #getDeclaredConstructors() 2099 * @since 1.1 2100 */ 2101 public Constructor<?>[] getConstructors() { 2102 return copyConstructors(privateGetDeclaredConstructors(true)); 2103 } 2104 2105 2106 /** 2107 * Returns a {@code Field} object that reflects the specified public member 2108 * field of the class or interface represented by this {@code Class} 2109 * object. The {@code name} parameter is a {@code String} specifying the 2110 * simple name of the desired field. 2111 * 2112 * <p> The field to be reflected is determined by the algorithm that 2113 * follows. Let C be the class or interface represented by this {@code Class} object: 2114 * 2115 * <OL> 2116 * <LI> If C declares a public field with the name specified, that is the 2117 * field to be reflected.</LI> 2118 * <LI> If no field was found in step 1 above, this algorithm is applied 2119 * recursively to each direct superinterface of C. The direct 2120 * superinterfaces are searched in the order they were declared.</LI> 2121 * <LI> If no field was found in steps 1 and 2 above, and C has a 2122 * superclass S, then this algorithm is invoked recursively upon S. 2123 * If C has no superclass, then a {@code NoSuchFieldException} 2124 * is thrown.</LI> 2125 * </OL> 2126 * 2127 * <p> If this {@code Class} object represents an array type, then this 2128 * method does not find the {@code length} field of the array type. 2129 * 2130 * @param name the field name 2131 * @return the {@code Field} object of this class specified by 2132 * {@code name} 2133 * @throws NoSuchFieldException if a field with the specified name is 2134 * not found. 2135 * @throws NullPointerException if {@code name} is {@code null} 2136 * 2137 * @since 1.1 2138 * @jls 8.2 Class Members 2139 * @jls 8.3 Field Declarations 2140 */ 2141 public Field getField(String name) throws NoSuchFieldException { 2142 Objects.requireNonNull(name); 2143 Field field = getField0(name); 2144 if (field == null) { 2145 throw new NoSuchFieldException(name); 2146 } 2147 return getReflectionFactory().copyField(field); 2148 } 2149 2150 2151 /** 2152 * Returns a {@code Method} object that reflects the specified public 2153 * member method of the class or interface represented by this 2154 * {@code Class} object. The {@code name} parameter is a 2155 * {@code String} specifying the simple name of the desired method. The 2156 * {@code parameterTypes} parameter is an array of {@code Class} 2157 * objects that identify the method's formal parameter types, in declared 2158 * order. If {@code parameterTypes} is {@code null}, it is 2159 * treated as if it were an empty array. 2160 * 2161 * <p> If this {@code Class} object represents an array type, then this 2162 * method finds any public method inherited by the array type from 2163 * {@code Object} except method {@code clone()}. 2164 * 2165 * <p> If this {@code Class} object represents an interface then this 2166 * method does not find any implicitly declared method from 2167 * {@code Object}. Therefore, if no methods are explicitly declared in 2168 * this interface or any of its superinterfaces, then this method does not 2169 * find any method. 2170 * 2171 * <p> This method does not find any method with name {@value 2172 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 2173 * 2174 * <p> Generally, the method to be reflected is determined by the 4 step 2175 * algorithm that follows. 2176 * Let C be the class or interface represented by this {@code Class} object: 2177 * <ol> 2178 * <li> A union of methods is composed of: 2179 * <ol type="a"> 2180 * <li> C's declared public instance and static methods as returned by 2181 * {@link #getDeclaredMethods()} and filtered to include only public 2182 * methods that match given {@code name} and {@code parameterTypes}</li> 2183 * <li> If C is a class other than {@code Object}, then include the result 2184 * of invoking this algorithm recursively on the superclass of C.</li> 2185 * <li> Include the results of invoking this algorithm recursively on all 2186 * direct superinterfaces of C, but include only instance methods.</li> 2187 * </ol></li> 2188 * <li> This union is partitioned into subsets of methods with same 2189 * return type (the selection of methods from step 1 also guarantees that 2190 * they have the same method name and parameter types).</li> 2191 * <li> Within each such subset only the most specific methods are selected. 2192 * Let method M be a method from a set of methods with same VM 2193 * signature (return type, name, parameter types). 2194 * M is most specific if there is no such method N != M from the same 2195 * set, such that N is more specific than M. N is more specific than M 2196 * if: 2197 * <ol type="a"> 2198 * <li> N is declared by a class and M is declared by an interface; or</li> 2199 * <li> N and M are both declared by classes or both by interfaces and 2200 * N's declaring type is the same as or a subtype of M's declaring type 2201 * (clearly, if M's and N's declaring types are the same type, then 2202 * M and N are the same method).</li> 2203 * </ol></li> 2204 * <li> The result of this algorithm is chosen arbitrarily from the methods 2205 * with most specific return type among all selected methods from step 3. 2206 * Let R be a return type of a method M from the set of all selected methods 2207 * from step 3. M is a method with most specific return type if there is 2208 * no such method N != M from the same set, having return type S != R, 2209 * such that S is a subtype of R as determined by 2210 * R.class.{@link #isAssignableFrom}(S.class). 2211 * </ol> 2212 * 2213 * @apiNote There may be more than one method with matching name and 2214 * parameter types in a class because while the Java language forbids a 2215 * class to declare multiple methods with the same signature but different 2216 * return types, the Java virtual machine does not. This 2217 * increased flexibility in the virtual machine can be used to 2218 * implement various language features. For example, covariant 2219 * returns can be implemented with {@linkplain 2220 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2221 * method and the overriding method would have the same 2222 * signature but different return types. This method would return the 2223 * overriding method as it would have a more specific return type. 2224 * 2225 * @param name the name of the method 2226 * @param parameterTypes the list of parameters 2227 * @return the {@code Method} object that matches the specified 2228 * {@code name} and {@code parameterTypes} 2229 * @throws NoSuchMethodException if a matching method is not found 2230 * or if the name is {@value ConstantDescs#INIT_NAME} or 2231 * {@value ConstantDescs#CLASS_INIT_NAME}. 2232 * @throws NullPointerException if {@code name} is {@code null} 2233 * 2234 * @jls 8.2 Class Members 2235 * @jls 8.4 Method Declarations 2236 * @since 1.1 2237 */ 2238 public Method getMethod(String name, Class<?>... parameterTypes) 2239 throws NoSuchMethodException { 2240 Objects.requireNonNull(name); 2241 Method method = getMethod0(name, parameterTypes); 2242 if (method == null) { 2243 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2244 } 2245 return getReflectionFactory().copyMethod(method); 2246 } 2247 2248 /** 2249 * Returns a {@code Constructor} object that reflects the specified 2250 * public constructor of the class represented by this {@code Class} 2251 * object. The {@code parameterTypes} parameter is an array of 2252 * {@code Class} objects that identify the constructor's formal 2253 * parameter types, in declared order. 2254 * 2255 * If this {@code Class} object represents an inner class 2256 * declared in a non-static context, the formal parameter types 2257 * include the explicit enclosing instance as the first parameter. 2258 * 2259 * <p> The constructor to reflect is the public constructor of the class 2260 * represented by this {@code Class} object whose formal parameter 2261 * types match those specified by {@code parameterTypes}. 2262 * 2263 * @param parameterTypes the parameter array 2264 * @return the {@code Constructor} object of the public constructor that 2265 * matches the specified {@code parameterTypes} 2266 * @throws NoSuchMethodException if a matching constructor is not found, 2267 * including when this {@code Class} object represents 2268 * an interface, a primitive type, an array class, or void. 2269 * 2270 * @see #getDeclaredConstructor(Class[]) 2271 * @since 1.1 2272 */ 2273 public Constructor<T> getConstructor(Class<?>... parameterTypes) 2274 throws NoSuchMethodException { 2275 return getReflectionFactory().copyConstructor( 2276 getConstructor0(parameterTypes, Member.PUBLIC)); 2277 } 2278 2279 2280 /** 2281 * Returns an array of {@code Class} objects reflecting all the 2282 * classes and interfaces declared as members of the class represented by 2283 * this {@code Class} object. This includes public, protected, default 2284 * (package) access, and private classes and interfaces declared by the 2285 * class, but excludes inherited classes and interfaces. This method 2286 * returns an array of length 0 if the class declares no classes or 2287 * interfaces as members, or if this {@code Class} object represents a 2288 * primitive type, an array class, or void. 2289 * 2290 * @return the array of {@code Class} objects representing all the 2291 * declared members of this class 2292 * 2293 * @since 1.1 2294 * @jls 8.5 Member Class and Interface Declarations 2295 */ 2296 public Class<?>[] getDeclaredClasses() { 2297 return getDeclaredClasses0(); 2298 } 2299 2300 2301 /** 2302 * Returns an array of {@code Field} objects reflecting all the fields 2303 * declared by the class or interface represented by this 2304 * {@code Class} object. This includes public, protected, default 2305 * (package) access, and private fields, but excludes inherited fields. 2306 * 2307 * <p> If this {@code Class} object represents a class or interface with no 2308 * declared fields, then this method returns an array of length 0. 2309 * 2310 * <p> If this {@code Class} object represents an array type, a primitive 2311 * type, or void, then this method returns an array of length 0. 2312 * 2313 * <p> The elements in the returned array are not sorted and are not in any 2314 * particular order. 2315 * 2316 * @return the array of {@code Field} objects representing all the 2317 * declared fields of this class 2318 * 2319 * @since 1.1 2320 * @jls 8.2 Class Members 2321 * @jls 8.3 Field Declarations 2322 */ 2323 public Field[] getDeclaredFields() { 2324 return copyFields(privateGetDeclaredFields(false)); 2325 } 2326 2327 /** 2328 * Returns an array of {@code RecordComponent} objects representing all the 2329 * record components of this record class, or {@code null} if this class is 2330 * not a record class. 2331 * 2332 * <p> The components are returned in the same order that they are declared 2333 * in the record header. The array is empty if this record class has no 2334 * components. If the class is not a record class, that is {@link 2335 * #isRecord()} returns {@code false}, then this method returns {@code null}. 2336 * Conversely, if {@link #isRecord()} returns {@code true}, then this method 2337 * returns a non-null value. 2338 * 2339 * @apiNote 2340 * <p> The following method can be used to find the record canonical constructor: 2341 * 2342 * {@snippet lang="java" : 2343 * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls) 2344 * throws NoSuchMethodException { 2345 * Class<?>[] paramTypes = 2346 * Arrays.stream(cls.getRecordComponents()) 2347 * .map(RecordComponent::getType) 2348 * .toArray(Class<?>[]::new); 2349 * return cls.getDeclaredConstructor(paramTypes); 2350 * }} 2351 * 2352 * @return An array of {@code RecordComponent} objects representing all the 2353 * record components of this record class, or {@code null} if this 2354 * class is not a record class 2355 * 2356 * @jls 8.10 Record Classes 2357 * @since 16 2358 */ 2359 public RecordComponent[] getRecordComponents() { 2360 if (!isRecord()) { 2361 return null; 2362 } 2363 return getRecordComponents0(); 2364 } 2365 2366 /** 2367 * Returns an array containing {@code Method} objects reflecting all the 2368 * declared methods of the class or interface represented by this {@code 2369 * Class} object, including public, protected, default (package) 2370 * access, and private methods, but excluding inherited methods. 2371 * The declared methods may include methods <em>not</em> in the 2372 * source of the class or interface, including {@linkplain 2373 * Method#isBridge bridge methods} and other {@linkplain 2374 * Executable#isSynthetic synthetic} methods added by compilers. 2375 * 2376 * <p> If this {@code Class} object represents a class or interface that 2377 * has multiple declared methods with the same name and parameter types, 2378 * but different return types, then the returned array has a {@code Method} 2379 * object for each such method. 2380 * 2381 * <p> If this {@code Class} object represents a class or interface that 2382 * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME}, 2383 * then the returned array does <em>not</em> have a corresponding {@code 2384 * Method} object. 2385 * 2386 * <p> If this {@code Class} object represents a class or interface with no 2387 * declared methods, then the returned array has length 0. 2388 * 2389 * <p> If this {@code Class} object represents an array type, a primitive 2390 * type, or void, then the returned array has length 0. 2391 * 2392 * <p> The elements in the returned array are not sorted and are not in any 2393 * particular order. 2394 * 2395 * @return the array of {@code Method} objects representing all the 2396 * declared methods of this class 2397 * 2398 * @jls 8.2 Class Members 2399 * @jls 8.4 Method Declarations 2400 * @see <a 2401 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 2402 * programming language and JVM modeling in core reflection</a> 2403 * @since 1.1 2404 */ 2405 public Method[] getDeclaredMethods() { 2406 return copyMethods(privateGetDeclaredMethods(false)); 2407 } 2408 2409 /** 2410 * Returns an array of {@code Constructor} objects reflecting all the 2411 * constructors implicitly or explicitly declared by the class represented by this 2412 * {@code Class} object. These are public, protected, default 2413 * (package) access, and private constructors. The elements in the array 2414 * returned are not sorted and are not in any particular order. If the 2415 * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array. 2416 * If a record class has a canonical constructor (JLS {@jls 2417 * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array. 2418 * 2419 * This method returns an array of length 0 if this {@code Class} 2420 * object represents an interface, a primitive type, an array class, or 2421 * void. 2422 * 2423 * @return the array of {@code Constructor} objects representing all the 2424 * declared constructors of this class 2425 * 2426 * @since 1.1 2427 * @see #getConstructors() 2428 * @jls 8.8 Constructor Declarations 2429 */ 2430 public Constructor<?>[] getDeclaredConstructors() { 2431 return copyConstructors(privateGetDeclaredConstructors(false)); 2432 } 2433 2434 2435 /** 2436 * Returns a {@code Field} object that reflects the specified declared 2437 * field of the class or interface represented by this {@code Class} 2438 * object. The {@code name} parameter is a {@code String} that specifies 2439 * the simple name of the desired field. 2440 * 2441 * <p> If this {@code Class} object represents an array type, then this 2442 * method does not find the {@code length} field of the array type. 2443 * 2444 * @param name the name of the field 2445 * @return the {@code Field} object for the specified field in this 2446 * class 2447 * @throws NoSuchFieldException if a field with the specified name is 2448 * not found. 2449 * @throws NullPointerException if {@code name} is {@code null} 2450 * 2451 * @since 1.1 2452 * @jls 8.2 Class Members 2453 * @jls 8.3 Field Declarations 2454 */ 2455 public Field getDeclaredField(String name) throws NoSuchFieldException { 2456 Objects.requireNonNull(name); 2457 Field field = searchFields(privateGetDeclaredFields(false), name); 2458 if (field == null) { 2459 throw new NoSuchFieldException(name); 2460 } 2461 return getReflectionFactory().copyField(field); 2462 } 2463 2464 2465 /** 2466 * Returns a {@code Method} object that reflects the specified 2467 * declared method of the class or interface represented by this 2468 * {@code Class} object. The {@code name} parameter is a 2469 * {@code String} that specifies the simple name of the desired 2470 * method, and the {@code parameterTypes} parameter is an array of 2471 * {@code Class} objects that identify the method's formal parameter 2472 * types, in declared order. If more than one method with the same 2473 * parameter types is declared in a class, and one of these methods has a 2474 * return type that is more specific than any of the others, that method is 2475 * returned; otherwise one of the methods is chosen arbitrarily. If the 2476 * name is {@value ConstantDescs#INIT_NAME} or {@value 2477 * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException} 2478 * is raised. 2479 * 2480 * <p> If this {@code Class} object represents an array type, then this 2481 * method does not find the {@code clone()} method. 2482 * 2483 * @param name the name of the method 2484 * @param parameterTypes the parameter array 2485 * @return the {@code Method} object for the method of this class 2486 * matching the specified name and parameters 2487 * @throws NoSuchMethodException if a matching method is not found. 2488 * @throws NullPointerException if {@code name} is {@code null} 2489 * 2490 * @jls 8.2 Class Members 2491 * @jls 8.4 Method Declarations 2492 * @since 1.1 2493 */ 2494 public Method getDeclaredMethod(String name, Class<?>... parameterTypes) 2495 throws NoSuchMethodException { 2496 Objects.requireNonNull(name); 2497 Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes); 2498 if (method == null) { 2499 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2500 } 2501 return getReflectionFactory().copyMethod(method); 2502 } 2503 2504 /** 2505 * Returns the list of {@code Method} objects for the declared public 2506 * methods of this class or interface that have the specified method name 2507 * and parameter types. 2508 * 2509 * @param name the name of the method 2510 * @param parameterTypes the parameter array 2511 * @return the list of {@code Method} objects for the public methods of 2512 * this class matching the specified name and parameters 2513 */ 2514 List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) { 2515 Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true); 2516 ReflectionFactory factory = getReflectionFactory(); 2517 List<Method> result = new ArrayList<>(); 2518 for (Method method : methods) { 2519 if (method.getName().equals(name) 2520 && Arrays.equals( 2521 factory.getExecutableSharedParameterTypes(method), 2522 parameterTypes)) { 2523 result.add(factory.copyMethod(method)); 2524 } 2525 } 2526 return result; 2527 } 2528 2529 /** 2530 * Returns the most specific {@code Method} object of this class, super class or 2531 * interface that have the specified method name and parameter types. 2532 * 2533 * @param publicOnly true if only public methods are examined, otherwise all methods 2534 * @param name the name of the method 2535 * @param parameterTypes the parameter array 2536 * @return the {@code Method} object for the method found from this class matching 2537 * the specified name and parameters, or null if not found 2538 */ 2539 Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) { 2540 PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly); 2541 return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific()); 2542 } 2543 2544 /** 2545 * Returns a {@code Constructor} object that reflects the specified 2546 * constructor of the class represented by this 2547 * {@code Class} object. The {@code parameterTypes} parameter is 2548 * an array of {@code Class} objects that identify the constructor's 2549 * formal parameter types, in declared order. 2550 * 2551 * If this {@code Class} object represents an inner class 2552 * declared in a non-static context, the formal parameter types 2553 * include the explicit enclosing instance as the first parameter. 2554 * 2555 * @param parameterTypes the parameter array 2556 * @return The {@code Constructor} object for the constructor with the 2557 * specified parameter list 2558 * @throws NoSuchMethodException if a matching constructor is not found, 2559 * including when this {@code Class} object represents 2560 * an interface, a primitive type, an array class, or void. 2561 * 2562 * @see #getConstructor(Class[]) 2563 * @since 1.1 2564 */ 2565 public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes) 2566 throws NoSuchMethodException { 2567 return getReflectionFactory().copyConstructor( 2568 getConstructor0(parameterTypes, Member.DECLARED)); 2569 } 2570 2571 /** 2572 * Finds a resource with a given name. 2573 * 2574 * <p> If this class is in a named {@link Module Module} then this method 2575 * will attempt to find the resource in the module. This is done by 2576 * delegating to the module's class loader {@link 2577 * ClassLoader#findResource(String,String) findResource(String,String)} 2578 * method, invoking it with the module name and the absolute name of the 2579 * resource. Resources in named modules are subject to the rules for 2580 * encapsulation specified in the {@code Module} {@link 2581 * Module#getResourceAsStream getResourceAsStream} method and so this 2582 * method returns {@code null} when the resource is a 2583 * non-"{@code .class}" resource in a package that is not open to the 2584 * caller's module. 2585 * 2586 * <p> Otherwise, if this class is not in a named module then the rules for 2587 * searching resources associated with a given class are implemented by the 2588 * defining {@linkplain ClassLoader class loader} of the class. This method 2589 * delegates to this {@code Class} object's class loader. 2590 * If this {@code Class} object was loaded by the bootstrap class loader, 2591 * the method delegates to {@link ClassLoader#getSystemResourceAsStream}. 2592 * 2593 * <p> Before delegation, an absolute resource name is constructed from the 2594 * given resource name using this algorithm: 2595 * 2596 * <ul> 2597 * 2598 * <li> If the {@code name} begins with a {@code '/'} 2599 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2600 * portion of the {@code name} following the {@code '/'}. 2601 * 2602 * <li> Otherwise, the absolute name is of the following form: 2603 * 2604 * <blockquote> 2605 * {@code modified_package_name/name} 2606 * </blockquote> 2607 * 2608 * <p> Where the {@code modified_package_name} is the package name of this 2609 * object with {@code '/'} substituted for {@code '.'} 2610 * (<code>'\u002e'</code>). 2611 * 2612 * </ul> 2613 * 2614 * @param name name of the desired resource 2615 * @return A {@link java.io.InputStream} object; {@code null} if no 2616 * resource with this name is found, or the resource is in a package 2617 * that is not {@linkplain Module#isOpen(String, Module) open} to at 2618 * least the caller module. 2619 * @throws NullPointerException If {@code name} is {@code null} 2620 * 2621 * @see Module#getResourceAsStream(String) 2622 * @since 1.1 2623 */ 2624 @CallerSensitive 2625 public InputStream getResourceAsStream(String name) { 2626 name = resolveName(name); 2627 2628 Module thisModule = getModule(); 2629 if (thisModule.isNamed()) { 2630 // check if resource can be located by caller 2631 if (Resources.canEncapsulate(name) 2632 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2633 return null; 2634 } 2635 2636 // resource not encapsulated or in package open to caller 2637 String mn = thisModule.getName(); 2638 ClassLoader cl = classLoader; 2639 try { 2640 2641 // special-case built-in class loaders to avoid the 2642 // need for a URL connection 2643 if (cl == null) { 2644 return BootLoader.findResourceAsStream(mn, name); 2645 } else if (cl instanceof BuiltinClassLoader bcl) { 2646 return bcl.findResourceAsStream(mn, name); 2647 } else { 2648 URL url = cl.findResource(mn, name); 2649 return (url != null) ? url.openStream() : null; 2650 } 2651 2652 } catch (IOException | SecurityException e) { 2653 return null; 2654 } 2655 } 2656 2657 // unnamed module 2658 ClassLoader cl = classLoader; 2659 if (cl == null) { 2660 return ClassLoader.getSystemResourceAsStream(name); 2661 } else { 2662 return cl.getResourceAsStream(name); 2663 } 2664 } 2665 2666 /** 2667 * Finds a resource with a given name. 2668 * 2669 * <p> If this class is in a named {@link Module Module} then this method 2670 * will attempt to find the resource in the module. This is done by 2671 * delegating to the module's class loader {@link 2672 * ClassLoader#findResource(String,String) findResource(String,String)} 2673 * method, invoking it with the module name and the absolute name of the 2674 * resource. Resources in named modules are subject to the rules for 2675 * encapsulation specified in the {@code Module} {@link 2676 * Module#getResourceAsStream getResourceAsStream} method and so this 2677 * method returns {@code null} when the resource is a 2678 * non-"{@code .class}" resource in a package that is not open to the 2679 * caller's module. 2680 * 2681 * <p> Otherwise, if this class is not in a named module then the rules for 2682 * searching resources associated with a given class are implemented by the 2683 * defining {@linkplain ClassLoader class loader} of the class. This method 2684 * delegates to this {@code Class} object's class loader. 2685 * If this {@code Class} object was loaded by the bootstrap class loader, 2686 * the method delegates to {@link ClassLoader#getSystemResource}. 2687 * 2688 * <p> Before delegation, an absolute resource name is constructed from the 2689 * given resource name using this algorithm: 2690 * 2691 * <ul> 2692 * 2693 * <li> If the {@code name} begins with a {@code '/'} 2694 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2695 * portion of the {@code name} following the {@code '/'}. 2696 * 2697 * <li> Otherwise, the absolute name is of the following form: 2698 * 2699 * <blockquote> 2700 * {@code modified_package_name/name} 2701 * </blockquote> 2702 * 2703 * <p> Where the {@code modified_package_name} is the package name of this 2704 * object with {@code '/'} substituted for {@code '.'} 2705 * (<code>'\u002e'</code>). 2706 * 2707 * </ul> 2708 * 2709 * @param name name of the desired resource 2710 * @return A {@link java.net.URL} object; {@code null} if no resource with 2711 * this name is found, the resource cannot be located by a URL, or the 2712 * resource is in a package that is not 2713 * {@linkplain Module#isOpen(String, Module) open} to at least the caller 2714 * module. 2715 * @throws NullPointerException If {@code name} is {@code null} 2716 * @since 1.1 2717 */ 2718 @CallerSensitive 2719 public URL getResource(String name) { 2720 name = resolveName(name); 2721 2722 Module thisModule = getModule(); 2723 if (thisModule.isNamed()) { 2724 // check if resource can be located by caller 2725 if (Resources.canEncapsulate(name) 2726 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2727 return null; 2728 } 2729 2730 // resource not encapsulated or in package open to caller 2731 String mn = thisModule.getName(); 2732 ClassLoader cl = classLoader; 2733 try { 2734 if (cl == null) { 2735 return BootLoader.findResource(mn, name); 2736 } else { 2737 return cl.findResource(mn, name); 2738 } 2739 } catch (IOException ioe) { 2740 return null; 2741 } 2742 } 2743 2744 // unnamed module 2745 ClassLoader cl = classLoader; 2746 if (cl == null) { 2747 return ClassLoader.getSystemResource(name); 2748 } else { 2749 return cl.getResource(name); 2750 } 2751 } 2752 2753 /** 2754 * Returns true if a resource with the given name can be located by the 2755 * given caller. All resources in a module can be located by code in 2756 * the module. For other callers, then the package needs to be open to 2757 * the caller. 2758 */ 2759 private boolean isOpenToCaller(String name, Class<?> caller) { 2760 // assert getModule().isNamed(); 2761 Module thisModule = getModule(); 2762 Module callerModule = (caller != null) ? caller.getModule() : null; 2763 if (callerModule != thisModule) { 2764 String pn = Resources.toPackageName(name); 2765 if (thisModule.getDescriptor().packages().contains(pn)) { 2766 if (callerModule == null) { 2767 // no caller, return true if the package is open to all modules 2768 return thisModule.isOpen(pn); 2769 } 2770 if (!thisModule.isOpen(pn, callerModule)) { 2771 // package not open to caller 2772 return false; 2773 } 2774 } 2775 } 2776 return true; 2777 } 2778 2779 private transient final ProtectionDomain protectionDomain; 2780 2781 /** Holder for the protection domain returned when the internal domain is null */ 2782 private static class Holder { 2783 private static final ProtectionDomain allPermDomain; 2784 static { 2785 Permissions perms = new Permissions(); 2786 perms.add(new AllPermission()); 2787 allPermDomain = new ProtectionDomain(null, perms); 2788 } 2789 } 2790 2791 /** 2792 * Returns the {@code ProtectionDomain} of this class. 2793 * 2794 * @return the ProtectionDomain of this class 2795 * 2796 * @see java.security.ProtectionDomain 2797 * @since 1.2 2798 */ 2799 public ProtectionDomain getProtectionDomain() { 2800 if (protectionDomain == null) { 2801 return Holder.allPermDomain; 2802 } else { 2803 return protectionDomain; 2804 } 2805 } 2806 2807 /* 2808 * Returns the Class object for the named primitive type. Type parameter T 2809 * avoids redundant casts for trusted code. 2810 */ 2811 static native <T> Class<T> getPrimitiveClass(String name); 2812 2813 /** 2814 * Add a package name prefix if the name is not absolute. Remove leading "/" 2815 * if name is absolute 2816 */ 2817 private String resolveName(String name) { 2818 if (!name.startsWith("/")) { 2819 String baseName = getPackageName(); 2820 if (!baseName.isEmpty()) { 2821 int len = baseName.length() + 1 + name.length(); 2822 StringBuilder sb = new StringBuilder(len); 2823 name = sb.append(baseName.replace('.', '/')) 2824 .append('/') 2825 .append(name) 2826 .toString(); 2827 } 2828 } else { 2829 name = name.substring(1); 2830 } 2831 return name; 2832 } 2833 2834 /** 2835 * Atomic operations support. 2836 */ 2837 private static class Atomic { 2838 // initialize Unsafe machinery here, since we need to call Class.class instance method 2839 // and have to avoid calling it in the static initializer of the Class class... 2840 private static final Unsafe unsafe = Unsafe.getUnsafe(); 2841 // offset of Class.reflectionData instance field 2842 private static final long reflectionDataOffset 2843 = unsafe.objectFieldOffset(Class.class, "reflectionData"); 2844 // offset of Class.annotationType instance field 2845 private static final long annotationTypeOffset 2846 = unsafe.objectFieldOffset(Class.class, "annotationType"); 2847 // offset of Class.annotationData instance field 2848 private static final long annotationDataOffset 2849 = unsafe.objectFieldOffset(Class.class, "annotationData"); 2850 2851 static <T> boolean casReflectionData(Class<?> clazz, 2852 SoftReference<ReflectionData<T>> oldData, 2853 SoftReference<ReflectionData<T>> newData) { 2854 return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData); 2855 } 2856 2857 static boolean casAnnotationType(Class<?> clazz, 2858 AnnotationType oldType, 2859 AnnotationType newType) { 2860 return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType); 2861 } 2862 2863 static boolean casAnnotationData(Class<?> clazz, 2864 AnnotationData oldData, 2865 AnnotationData newData) { 2866 return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData); 2867 } 2868 } 2869 2870 /** 2871 * Reflection support. 2872 */ 2873 2874 // Reflection data caches various derived names and reflective members. Cached 2875 // values may be invalidated when JVM TI RedefineClasses() is called 2876 private static class ReflectionData<T> { 2877 volatile Field[] declaredFields; 2878 volatile Field[] publicFields; 2879 volatile Method[] declaredMethods; 2880 volatile Method[] publicMethods; 2881 volatile Constructor<T>[] declaredConstructors; 2882 volatile Constructor<T>[] publicConstructors; 2883 // Intermediate results for getFields and getMethods 2884 volatile Field[] declaredPublicFields; 2885 volatile Method[] declaredPublicMethods; 2886 volatile Class<?>[] interfaces; 2887 2888 // Cached names 2889 String simpleName; 2890 String canonicalName; 2891 static final String NULL_SENTINEL = new String(); 2892 2893 // Value of classRedefinedCount when we created this ReflectionData instance 2894 final int redefinedCount; 2895 2896 ReflectionData(int redefinedCount) { 2897 this.redefinedCount = redefinedCount; 2898 } 2899 } 2900 2901 private transient volatile SoftReference<ReflectionData<T>> reflectionData; 2902 2903 // Incremented by the VM on each call to JVM TI RedefineClasses() 2904 // that redefines this class or a superclass. 2905 private transient volatile int classRedefinedCount; 2906 2907 // Lazily create and cache ReflectionData 2908 private ReflectionData<T> reflectionData() { 2909 SoftReference<ReflectionData<T>> reflectionData = this.reflectionData; 2910 int classRedefinedCount = this.classRedefinedCount; 2911 ReflectionData<T> rd; 2912 if (reflectionData != null && 2913 (rd = reflectionData.get()) != null && 2914 rd.redefinedCount == classRedefinedCount) { 2915 return rd; 2916 } 2917 // else no SoftReference or cleared SoftReference or stale ReflectionData 2918 // -> create and replace new instance 2919 return newReflectionData(reflectionData, classRedefinedCount); 2920 } 2921 2922 private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData, 2923 int classRedefinedCount) { 2924 while (true) { 2925 ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount); 2926 // try to CAS it... 2927 if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) { 2928 return rd; 2929 } 2930 // else retry 2931 oldReflectionData = this.reflectionData; 2932 classRedefinedCount = this.classRedefinedCount; 2933 if (oldReflectionData != null && 2934 (rd = oldReflectionData.get()) != null && 2935 rd.redefinedCount == classRedefinedCount) { 2936 return rd; 2937 } 2938 } 2939 } 2940 2941 // Generic signature handling 2942 private native String getGenericSignature0(); 2943 2944 // Generic info repository; lazily initialized 2945 private transient volatile ClassRepository genericInfo; 2946 2947 // accessor for factory 2948 private GenericsFactory getFactory() { 2949 // create scope and factory 2950 return CoreReflectionFactory.make(this, ClassScope.make(this)); 2951 } 2952 2953 // accessor for generic info repository; 2954 // generic info is lazily initialized 2955 private ClassRepository getGenericInfo() { 2956 ClassRepository genericInfo = this.genericInfo; 2957 if (genericInfo == null) { 2958 String signature = getGenericSignature0(); 2959 if (signature == null) { 2960 genericInfo = ClassRepository.NONE; 2961 } else { 2962 genericInfo = ClassRepository.make(signature, getFactory()); 2963 } 2964 this.genericInfo = genericInfo; 2965 } 2966 return (genericInfo != ClassRepository.NONE) ? genericInfo : null; 2967 } 2968 2969 // Annotations handling 2970 native byte[] getRawAnnotations(); 2971 // Since 1.8 2972 native byte[] getRawTypeAnnotations(); 2973 static byte[] getExecutableTypeAnnotationBytes(Executable ex) { 2974 return getReflectionFactory().getExecutableTypeAnnotationBytes(ex); 2975 } 2976 2977 native ConstantPool getConstantPool(); 2978 2979 // 2980 // 2981 // java.lang.reflect.Field handling 2982 // 2983 // 2984 2985 // Returns an array of "root" fields. These Field objects must NOT 2986 // be propagated to the outside world, but must instead be copied 2987 // via ReflectionFactory.copyField. 2988 private Field[] privateGetDeclaredFields(boolean publicOnly) { 2989 Field[] res; 2990 ReflectionData<T> rd = reflectionData(); 2991 res = publicOnly ? rd.declaredPublicFields : rd.declaredFields; 2992 if (res != null) return res; 2993 // No cached value available; request value from VM 2994 res = Reflection.filterFields(this, getDeclaredFields0(publicOnly)); 2995 if (publicOnly) { 2996 rd.declaredPublicFields = res; 2997 } else { 2998 rd.declaredFields = res; 2999 } 3000 return res; 3001 } 3002 3003 // Returns an array of "root" fields. These Field objects must NOT 3004 // be propagated to the outside world, but must instead be copied 3005 // via ReflectionFactory.copyField. 3006 private Field[] privateGetPublicFields() { 3007 Field[] res; 3008 ReflectionData<T> rd = reflectionData(); 3009 res = rd.publicFields; 3010 if (res != null) return res; 3011 3012 // Use a linked hash set to ensure order is preserved and 3013 // fields from common super interfaces are not duplicated 3014 LinkedHashSet<Field> fields = new LinkedHashSet<>(); 3015 3016 // Local fields 3017 addAll(fields, privateGetDeclaredFields(true)); 3018 3019 // Direct superinterfaces, recursively 3020 for (Class<?> si : getInterfaces(/* cloneArray */ false)) { 3021 addAll(fields, si.privateGetPublicFields()); 3022 } 3023 3024 // Direct superclass, recursively 3025 Class<?> sc = getSuperclass(); 3026 if (sc != null) { 3027 addAll(fields, sc.privateGetPublicFields()); 3028 } 3029 3030 res = fields.toArray(new Field[0]); 3031 rd.publicFields = res; 3032 return res; 3033 } 3034 3035 private static void addAll(Collection<Field> c, Field[] o) { 3036 for (Field f : o) { 3037 c.add(f); 3038 } 3039 } 3040 3041 3042 // 3043 // 3044 // java.lang.reflect.Constructor handling 3045 // 3046 // 3047 3048 // Returns an array of "root" constructors. These Constructor 3049 // objects must NOT be propagated to the outside world, but must 3050 // instead be copied via ReflectionFactory.copyConstructor. 3051 private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) { 3052 Constructor<T>[] res; 3053 ReflectionData<T> rd = reflectionData(); 3054 res = publicOnly ? rd.publicConstructors : rd.declaredConstructors; 3055 if (res != null) return res; 3056 // No cached value available; request value from VM 3057 if (isInterface()) { 3058 @SuppressWarnings("unchecked") 3059 Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0]; 3060 res = temporaryRes; 3061 } else { 3062 res = getDeclaredConstructors0(publicOnly); 3063 } 3064 if (publicOnly) { 3065 rd.publicConstructors = res; 3066 } else { 3067 rd.declaredConstructors = res; 3068 } 3069 return res; 3070 } 3071 3072 // 3073 // 3074 // java.lang.reflect.Method handling 3075 // 3076 // 3077 3078 // Returns an array of "root" methods. These Method objects must NOT 3079 // be propagated to the outside world, but must instead be copied 3080 // via ReflectionFactory.copyMethod. 3081 private Method[] privateGetDeclaredMethods(boolean publicOnly) { 3082 Method[] res; 3083 ReflectionData<T> rd = reflectionData(); 3084 res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods; 3085 if (res != null) return res; 3086 // No cached value available; request value from VM 3087 res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly)); 3088 if (publicOnly) { 3089 rd.declaredPublicMethods = res; 3090 } else { 3091 rd.declaredMethods = res; 3092 } 3093 return res; 3094 } 3095 3096 // Returns an array of "root" methods. These Method objects must NOT 3097 // be propagated to the outside world, but must instead be copied 3098 // via ReflectionFactory.copyMethod. 3099 private Method[] privateGetPublicMethods() { 3100 Method[] res; 3101 ReflectionData<T> rd = reflectionData(); 3102 res = rd.publicMethods; 3103 if (res != null) return res; 3104 3105 // No cached value available; compute value recursively. 3106 // Start by fetching public declared methods... 3107 PublicMethods pms = new PublicMethods(); 3108 for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) { 3109 pms.merge(m); 3110 } 3111 // ...then recur over superclass methods... 3112 Class<?> sc = getSuperclass(); 3113 if (sc != null) { 3114 for (Method m : sc.privateGetPublicMethods()) { 3115 pms.merge(m); 3116 } 3117 } 3118 // ...and finally over direct superinterfaces. 3119 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3120 for (Method m : intf.privateGetPublicMethods()) { 3121 // static interface methods are not inherited 3122 if (!Modifier.isStatic(m.getModifiers())) { 3123 pms.merge(m); 3124 } 3125 } 3126 } 3127 3128 res = pms.toArray(); 3129 rd.publicMethods = res; 3130 return res; 3131 } 3132 3133 3134 // 3135 // Helpers for fetchers of one field, method, or constructor 3136 // 3137 3138 // This method does not copy the returned Field object! 3139 private static Field searchFields(Field[] fields, String name) { 3140 for (Field field : fields) { 3141 if (field.getName().equals(name)) { 3142 return field; 3143 } 3144 } 3145 return null; 3146 } 3147 3148 // Returns a "root" Field object. This Field object must NOT 3149 // be propagated to the outside world, but must instead be copied 3150 // via ReflectionFactory.copyField. 3151 private Field getField0(String name) { 3152 // Note: the intent is that the search algorithm this routine 3153 // uses be equivalent to the ordering imposed by 3154 // privateGetPublicFields(). It fetches only the declared 3155 // public fields for each class, however, to reduce the number 3156 // of Field objects which have to be created for the common 3157 // case where the field being requested is declared in the 3158 // class which is being queried. 3159 Field res; 3160 // Search declared public fields 3161 if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) { 3162 return res; 3163 } 3164 // Direct superinterfaces, recursively 3165 Class<?>[] interfaces = getInterfaces(/* cloneArray */ false); 3166 for (Class<?> c : interfaces) { 3167 if ((res = c.getField0(name)) != null) { 3168 return res; 3169 } 3170 } 3171 // Direct superclass, recursively 3172 if (!isInterface()) { 3173 Class<?> c = getSuperclass(); 3174 if (c != null) { 3175 if ((res = c.getField0(name)) != null) { 3176 return res; 3177 } 3178 } 3179 } 3180 return null; 3181 } 3182 3183 // This method does not copy the returned Method object! 3184 private static Method searchMethods(Method[] methods, 3185 String name, 3186 Class<?>[] parameterTypes) 3187 { 3188 ReflectionFactory fact = getReflectionFactory(); 3189 Method res = null; 3190 for (Method m : methods) { 3191 if (m.getName().equals(name) 3192 && arrayContentsEq(parameterTypes, 3193 fact.getExecutableSharedParameterTypes(m)) 3194 && (res == null 3195 || (res.getReturnType() != m.getReturnType() 3196 && res.getReturnType().isAssignableFrom(m.getReturnType())))) 3197 res = m; 3198 } 3199 return res; 3200 } 3201 3202 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 3203 3204 // Returns a "root" Method object. This Method object must NOT 3205 // be propagated to the outside world, but must instead be copied 3206 // via ReflectionFactory.copyMethod. 3207 private Method getMethod0(String name, Class<?>[] parameterTypes) { 3208 PublicMethods.MethodList res = getMethodsRecursive( 3209 name, 3210 parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes, 3211 /* includeStatic */ true, /* publicOnly */ true); 3212 return res == null ? null : res.getMostSpecific(); 3213 } 3214 3215 // Returns a list of "root" Method objects. These Method objects must NOT 3216 // be propagated to the outside world, but must instead be copied 3217 // via ReflectionFactory.copyMethod. 3218 private PublicMethods.MethodList getMethodsRecursive(String name, 3219 Class<?>[] parameterTypes, 3220 boolean includeStatic, 3221 boolean publicOnly) { 3222 // 1st check declared methods 3223 Method[] methods = privateGetDeclaredMethods(publicOnly); 3224 PublicMethods.MethodList res = PublicMethods.MethodList 3225 .filter(methods, name, parameterTypes, includeStatic); 3226 // if there is at least one match among declared methods, we need not 3227 // search any further as such match surely overrides matching methods 3228 // declared in superclass(es) or interface(s). 3229 if (res != null) { 3230 return res; 3231 } 3232 3233 // if there was no match among declared methods, 3234 // we must consult the superclass (if any) recursively... 3235 Class<?> sc = getSuperclass(); 3236 if (sc != null) { 3237 res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly); 3238 } 3239 3240 // ...and coalesce the superclass methods with methods obtained 3241 // from directly implemented interfaces excluding static methods... 3242 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3243 res = PublicMethods.MethodList.merge( 3244 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly)); 3245 } 3246 3247 return res; 3248 } 3249 3250 // Returns a "root" Constructor object. This Constructor object must NOT 3251 // be propagated to the outside world, but must instead be copied 3252 // via ReflectionFactory.copyConstructor. 3253 private Constructor<T> getConstructor0(Class<?>[] parameterTypes, 3254 int which) throws NoSuchMethodException 3255 { 3256 ReflectionFactory fact = getReflectionFactory(); 3257 Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC)); 3258 for (Constructor<T> constructor : constructors) { 3259 if (arrayContentsEq(parameterTypes, 3260 fact.getExecutableSharedParameterTypes(constructor))) { 3261 return constructor; 3262 } 3263 } 3264 throw new NoSuchMethodException(methodToString("<init>", parameterTypes)); 3265 } 3266 3267 // 3268 // Other helpers and base implementation 3269 // 3270 3271 private static boolean arrayContentsEq(Object[] a1, Object[] a2) { 3272 if (a1 == null) { 3273 return a2 == null || a2.length == 0; 3274 } 3275 3276 if (a2 == null) { 3277 return a1.length == 0; 3278 } 3279 3280 if (a1.length != a2.length) { 3281 return false; 3282 } 3283 3284 for (int i = 0; i < a1.length; i++) { 3285 if (a1[i] != a2[i]) { 3286 return false; 3287 } 3288 } 3289 3290 return true; 3291 } 3292 3293 private static Field[] copyFields(Field[] arg) { 3294 Field[] out = new Field[arg.length]; 3295 ReflectionFactory fact = getReflectionFactory(); 3296 for (int i = 0; i < arg.length; i++) { 3297 out[i] = fact.copyField(arg[i]); 3298 } 3299 return out; 3300 } 3301 3302 private static Method[] copyMethods(Method[] arg) { 3303 Method[] out = new Method[arg.length]; 3304 ReflectionFactory fact = getReflectionFactory(); 3305 for (int i = 0; i < arg.length; i++) { 3306 out[i] = fact.copyMethod(arg[i]); 3307 } 3308 return out; 3309 } 3310 3311 private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) { 3312 Constructor<U>[] out = arg.clone(); 3313 ReflectionFactory fact = getReflectionFactory(); 3314 for (int i = 0; i < out.length; i++) { 3315 out[i] = fact.copyConstructor(out[i]); 3316 } 3317 return out; 3318 } 3319 3320 private native Field[] getDeclaredFields0(boolean publicOnly); 3321 private native Method[] getDeclaredMethods0(boolean publicOnly); 3322 private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly); 3323 private native Class<?>[] getDeclaredClasses0(); 3324 3325 /* 3326 * Returns an array containing the components of the Record attribute, 3327 * or null if the attribute is not present. 3328 * 3329 * Note that this method returns non-null array on a class with 3330 * the Record attribute even if this class is not a record. 3331 */ 3332 private native RecordComponent[] getRecordComponents0(); 3333 private native boolean isRecord0(); 3334 3335 /** 3336 * Helper method to get the method name from arguments. 3337 */ 3338 private String methodToString(String name, Class<?>[] argTypes) { 3339 return getName() + '.' + name + 3340 ((argTypes == null || argTypes.length == 0) ? 3341 "()" : 3342 Arrays.stream(argTypes) 3343 .map(c -> c == null ? "null" : c.getName()) 3344 .collect(Collectors.joining(",", "(", ")"))); 3345 } 3346 3347 /** use serialVersionUID from JDK 1.1 for interoperability */ 3348 @java.io.Serial 3349 private static final long serialVersionUID = 3206093459760846163L; 3350 3351 3352 /** 3353 * Class Class is special cased within the Serialization Stream Protocol. 3354 * 3355 * A Class instance is written initially into an ObjectOutputStream in the 3356 * following format: 3357 * <pre> 3358 * {@code TC_CLASS} ClassDescriptor 3359 * A ClassDescriptor is a special cased serialization of 3360 * a {@code java.io.ObjectStreamClass} instance. 3361 * </pre> 3362 * A new handle is generated for the initial time the class descriptor 3363 * is written into the stream. Future references to the class descriptor 3364 * are written as references to the initial class descriptor instance. 3365 * 3366 * @see java.io.ObjectStreamClass 3367 */ 3368 @java.io.Serial 3369 private static final ObjectStreamField[] serialPersistentFields = 3370 new ObjectStreamField[0]; 3371 3372 3373 /** 3374 * Returns the assertion status that would be assigned to this 3375 * class if it were to be initialized at the time this method is invoked. 3376 * If this class has had its assertion status set, the most recent 3377 * setting will be returned; otherwise, if any package default assertion 3378 * status pertains to this class, the most recent setting for the most 3379 * specific pertinent package default assertion status is returned; 3380 * otherwise, if this class is not a system class (i.e., it has a 3381 * class loader) its class loader's default assertion status is returned; 3382 * otherwise, the system class default assertion status is returned. 3383 * 3384 * @apiNote 3385 * Few programmers will have any need for this method; it is provided 3386 * for the benefit of the JDK itself. (It allows a class to determine at 3387 * the time that it is initialized whether assertions should be enabled.) 3388 * Note that this method is not guaranteed to return the actual 3389 * assertion status that was (or will be) associated with the specified 3390 * class when it was (or will be) initialized. 3391 * 3392 * @return the desired assertion status of the specified class. 3393 * @see java.lang.ClassLoader#setClassAssertionStatus 3394 * @see java.lang.ClassLoader#setPackageAssertionStatus 3395 * @see java.lang.ClassLoader#setDefaultAssertionStatus 3396 * @since 1.4 3397 */ 3398 public boolean desiredAssertionStatus() { 3399 ClassLoader loader = classLoader; 3400 // If the loader is null this is a system class, so ask the VM 3401 if (loader == null) 3402 return desiredAssertionStatus0(this); 3403 3404 // If the classloader has been initialized with the assertion 3405 // directives, ask it. Otherwise, ask the VM. 3406 synchronized(loader.assertionLock) { 3407 if (loader.classAssertionStatus != null) { 3408 return loader.desiredAssertionStatus(getName()); 3409 } 3410 } 3411 return desiredAssertionStatus0(this); 3412 } 3413 3414 // Retrieves the desired assertion status of this class from the VM 3415 private static native boolean desiredAssertionStatus0(Class<?> clazz); 3416 3417 /** 3418 * Returns true if and only if this class was declared as an enum in the 3419 * source code. 3420 * 3421 * Note that {@link java.lang.Enum} is not itself an enum class. 3422 * 3423 * Also note that if an enum constant is declared with a class body, 3424 * the class of that enum constant object is an anonymous class 3425 * and <em>not</em> the class of the declaring enum class. The 3426 * {@link Enum#getDeclaringClass} method of an enum constant can 3427 * be used to get the class of the enum class declaring the 3428 * constant. 3429 * 3430 * @return true if and only if this class was declared as an enum in the 3431 * source code 3432 * @since 1.5 3433 * @jls 8.9.1 Enum Constants 3434 */ 3435 public boolean isEnum() { 3436 // An enum must both directly extend java.lang.Enum and have 3437 // the ENUM bit set; classes for specialized enum constants 3438 // don't do the former. 3439 return (this.getModifiers() & ENUM) != 0 && 3440 this.getSuperclass() == java.lang.Enum.class; 3441 } 3442 3443 /** 3444 * Returns {@code true} if and only if this class is a record class. 3445 * 3446 * <p> The {@linkplain #getSuperclass() direct superclass} of a record 3447 * class is {@code java.lang.Record}. A record class is {@linkplain 3448 * Modifier#FINAL final}. A record class has (possibly zero) record 3449 * components; {@link #getRecordComponents()} returns a non-null but 3450 * possibly empty value for a record. 3451 * 3452 * <p> Note that class {@link Record} is not a record class and thus 3453 * invoking this method on class {@code Record} returns {@code false}. 3454 * 3455 * @return true if and only if this class is a record class, otherwise false 3456 * @jls 8.10 Record Classes 3457 * @since 16 3458 */ 3459 public boolean isRecord() { 3460 // this superclass and final modifier check is not strictly necessary 3461 // they are intrinsified and serve as a fast-path check 3462 return getSuperclass() == java.lang.Record.class && 3463 (this.getModifiers() & Modifier.FINAL) != 0 && 3464 isRecord0(); 3465 } 3466 3467 // Fetches the factory for reflective objects 3468 private static ReflectionFactory getReflectionFactory() { 3469 var factory = reflectionFactory; 3470 if (factory != null) { 3471 return factory; 3472 } 3473 return reflectionFactory = ReflectionFactory.getReflectionFactory(); 3474 } 3475 private static ReflectionFactory reflectionFactory; 3476 3477 /** 3478 * When CDS is enabled, the Class class may be aot-initialized. However, 3479 * we can't archive reflectionFactory, so we reset it to null, so it 3480 * will be allocated again at runtime. 3481 */ 3482 private static void resetArchivedStates() { 3483 reflectionFactory = null; 3484 } 3485 3486 /** 3487 * Returns the elements of this enum class or null if this 3488 * Class object does not represent an enum class. 3489 * 3490 * @return an array containing the values comprising the enum class 3491 * represented by this {@code Class} object in the order they're 3492 * declared, or null if this {@code Class} object does not 3493 * represent an enum class 3494 * @since 1.5 3495 * @jls 8.9.1 Enum Constants 3496 */ 3497 public T[] getEnumConstants() { 3498 T[] values = getEnumConstantsShared(); 3499 return (values != null) ? values.clone() : null; 3500 } 3501 3502 /** 3503 * Returns the elements of this enum class or null if this 3504 * Class object does not represent an enum class; 3505 * identical to getEnumConstants except that the result is 3506 * uncloned, cached, and shared by all callers. 3507 */ 3508 T[] getEnumConstantsShared() { 3509 T[] constants = enumConstants; 3510 if (constants == null) { 3511 if (!isEnum()) return null; 3512 try { 3513 final Method values = getMethod("values"); 3514 values.setAccessible(true); 3515 @SuppressWarnings("unchecked") 3516 T[] temporaryConstants = (T[])values.invoke(null); 3517 enumConstants = constants = temporaryConstants; 3518 } 3519 // These can happen when users concoct enum-like classes 3520 // that don't comply with the enum spec. 3521 catch (InvocationTargetException | NoSuchMethodException | 3522 IllegalAccessException | NullPointerException | 3523 ClassCastException ex) { return null; } 3524 } 3525 return constants; 3526 } 3527 private transient volatile T[] enumConstants; 3528 3529 /** 3530 * Returns a map from simple name to enum constant. This package-private 3531 * method is used internally by Enum to implement 3532 * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)} 3533 * efficiently. Note that the map is returned by this method is 3534 * created lazily on first use. Typically it won't ever get created. 3535 */ 3536 Map<String, T> enumConstantDirectory() { 3537 Map<String, T> directory = enumConstantDirectory; 3538 if (directory == null) { 3539 T[] universe = getEnumConstantsShared(); 3540 if (universe == null) 3541 throw new IllegalArgumentException( 3542 getName() + " is not an enum class"); 3543 directory = HashMap.newHashMap(universe.length); 3544 for (T constant : universe) { 3545 directory.put(((Enum<?>)constant).name(), constant); 3546 } 3547 enumConstantDirectory = directory; 3548 } 3549 return directory; 3550 } 3551 private transient volatile Map<String, T> enumConstantDirectory; 3552 3553 /** 3554 * Casts an object to the class or interface represented 3555 * by this {@code Class} object. 3556 * 3557 * @param obj the object to be cast 3558 * @return the object after casting, or null if obj is null 3559 * 3560 * @throws ClassCastException if the object is not 3561 * null and is not assignable to the type T. 3562 * 3563 * @since 1.5 3564 */ 3565 @SuppressWarnings("unchecked") 3566 @IntrinsicCandidate 3567 public T cast(Object obj) { 3568 if (obj != null && !isInstance(obj)) 3569 throw new ClassCastException(cannotCastMsg(obj)); 3570 return (T) obj; 3571 } 3572 3573 private String cannotCastMsg(Object obj) { 3574 return "Cannot cast " + obj.getClass().getName() + " to " + getName(); 3575 } 3576 3577 /** 3578 * Casts this {@code Class} object to represent a subclass of the class 3579 * represented by the specified class object. Checks that the cast 3580 * is valid, and throws a {@code ClassCastException} if it is not. If 3581 * this method succeeds, it always returns a reference to this {@code Class} object. 3582 * 3583 * <p>This method is useful when a client needs to "narrow" the type of 3584 * a {@code Class} object to pass it to an API that restricts the 3585 * {@code Class} objects that it is willing to accept. A cast would 3586 * generate a compile-time warning, as the correctness of the cast 3587 * could not be checked at runtime (because generic types are implemented 3588 * by erasure). 3589 * 3590 * @param <U> the type to cast this {@code Class} object to 3591 * @param clazz the class of the type to cast this {@code Class} object to 3592 * @return this {@code Class} object, cast to represent a subclass of 3593 * the specified class object. 3594 * @throws ClassCastException if this {@code Class} object does not 3595 * represent a subclass of the specified class (here "subclass" includes 3596 * the class itself). 3597 * @since 1.5 3598 */ 3599 @SuppressWarnings("unchecked") 3600 public <U> Class<? extends U> asSubclass(Class<U> clazz) { 3601 if (clazz.isAssignableFrom(this)) 3602 return (Class<? extends U>) this; 3603 else 3604 throw new ClassCastException(this.toString()); 3605 } 3606 3607 /** 3608 * {@inheritDoc} 3609 * <p>Note that any annotation returned by this method is a 3610 * declaration annotation. 3611 * 3612 * @throws NullPointerException {@inheritDoc} 3613 * @since 1.5 3614 */ 3615 @Override 3616 @SuppressWarnings("unchecked") 3617 public <A extends Annotation> A getAnnotation(Class<A> annotationClass) { 3618 Objects.requireNonNull(annotationClass); 3619 3620 return (A) annotationData().annotations.get(annotationClass); 3621 } 3622 3623 /** 3624 * {@inheritDoc} 3625 * @throws NullPointerException {@inheritDoc} 3626 * @since 1.5 3627 */ 3628 @Override 3629 public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) { 3630 return GenericDeclaration.super.isAnnotationPresent(annotationClass); 3631 } 3632 3633 /** 3634 * {@inheritDoc} 3635 * <p>Note that any annotations returned by this method are 3636 * declaration annotations. 3637 * 3638 * @throws NullPointerException {@inheritDoc} 3639 * @since 1.8 3640 */ 3641 @Override 3642 public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) { 3643 Objects.requireNonNull(annotationClass); 3644 3645 AnnotationData annotationData = annotationData(); 3646 return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations, 3647 this, 3648 annotationClass); 3649 } 3650 3651 /** 3652 * {@inheritDoc} 3653 * <p>Note that any annotations returned by this method are 3654 * declaration annotations. 3655 * 3656 * @since 1.5 3657 */ 3658 @Override 3659 public Annotation[] getAnnotations() { 3660 return AnnotationParser.toArray(annotationData().annotations); 3661 } 3662 3663 /** 3664 * {@inheritDoc} 3665 * <p>Note that any annotation returned by this method is a 3666 * declaration annotation. 3667 * 3668 * @throws NullPointerException {@inheritDoc} 3669 * @since 1.8 3670 */ 3671 @Override 3672 @SuppressWarnings("unchecked") 3673 public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) { 3674 Objects.requireNonNull(annotationClass); 3675 3676 return (A) annotationData().declaredAnnotations.get(annotationClass); 3677 } 3678 3679 /** 3680 * {@inheritDoc} 3681 * <p>Note that any annotations returned by this method are 3682 * declaration annotations. 3683 * 3684 * @throws NullPointerException {@inheritDoc} 3685 * @since 1.8 3686 */ 3687 @Override 3688 public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) { 3689 Objects.requireNonNull(annotationClass); 3690 3691 return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations, 3692 annotationClass); 3693 } 3694 3695 /** 3696 * {@inheritDoc} 3697 * <p>Note that any annotations returned by this method are 3698 * declaration annotations. 3699 * 3700 * @since 1.5 3701 */ 3702 @Override 3703 public Annotation[] getDeclaredAnnotations() { 3704 return AnnotationParser.toArray(annotationData().declaredAnnotations); 3705 } 3706 3707 // annotation data that might get invalidated when JVM TI RedefineClasses() is called 3708 private static class AnnotationData { 3709 final Map<Class<? extends Annotation>, Annotation> annotations; 3710 final Map<Class<? extends Annotation>, Annotation> declaredAnnotations; 3711 3712 // Value of classRedefinedCount when we created this AnnotationData instance 3713 final int redefinedCount; 3714 3715 AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations, 3716 Map<Class<? extends Annotation>, Annotation> declaredAnnotations, 3717 int redefinedCount) { 3718 this.annotations = annotations; 3719 this.declaredAnnotations = declaredAnnotations; 3720 this.redefinedCount = redefinedCount; 3721 } 3722 } 3723 3724 // Annotations cache 3725 @SuppressWarnings("UnusedDeclaration") 3726 private transient volatile AnnotationData annotationData; 3727 3728 private AnnotationData annotationData() { 3729 while (true) { // retry loop 3730 AnnotationData annotationData = this.annotationData; 3731 int classRedefinedCount = this.classRedefinedCount; 3732 if (annotationData != null && 3733 annotationData.redefinedCount == classRedefinedCount) { 3734 return annotationData; 3735 } 3736 // null or stale annotationData -> optimistically create new instance 3737 AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount); 3738 // try to install it 3739 if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) { 3740 // successfully installed new AnnotationData 3741 return newAnnotationData; 3742 } 3743 } 3744 } 3745 3746 private AnnotationData createAnnotationData(int classRedefinedCount) { 3747 Map<Class<? extends Annotation>, Annotation> declaredAnnotations = 3748 AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this); 3749 Class<?> superClass = getSuperclass(); 3750 Map<Class<? extends Annotation>, Annotation> annotations = null; 3751 if (superClass != null) { 3752 Map<Class<? extends Annotation>, Annotation> superAnnotations = 3753 superClass.annotationData().annotations; 3754 for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) { 3755 Class<? extends Annotation> annotationClass = e.getKey(); 3756 if (AnnotationType.getInstance(annotationClass).isInherited()) { 3757 if (annotations == null) { // lazy construction 3758 annotations = LinkedHashMap.newLinkedHashMap(Math.max( 3759 declaredAnnotations.size(), 3760 Math.min(12, declaredAnnotations.size() + superAnnotations.size()) 3761 ) 3762 ); 3763 } 3764 annotations.put(annotationClass, e.getValue()); 3765 } 3766 } 3767 } 3768 if (annotations == null) { 3769 // no inherited annotations -> share the Map with declaredAnnotations 3770 annotations = declaredAnnotations; 3771 } else { 3772 // at least one inherited annotation -> declared may override inherited 3773 annotations.putAll(declaredAnnotations); 3774 } 3775 return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount); 3776 } 3777 3778 // Annotation interfaces cache their internal (AnnotationType) form 3779 3780 @SuppressWarnings("UnusedDeclaration") 3781 private transient volatile AnnotationType annotationType; 3782 3783 boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) { 3784 return Atomic.casAnnotationType(this, oldType, newType); 3785 } 3786 3787 AnnotationType getAnnotationType() { 3788 return annotationType; 3789 } 3790 3791 Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() { 3792 return annotationData().declaredAnnotations; 3793 } 3794 3795 /* Backing store of user-defined values pertaining to this class. 3796 * Maintained by the ClassValue class. 3797 */ 3798 transient ClassValue.ClassValueMap classValueMap; 3799 3800 /** 3801 * Returns an {@code AnnotatedType} object that represents the use of a 3802 * type to specify the superclass of the entity represented by this {@code 3803 * Class} object. (The <em>use</em> of type Foo to specify the superclass 3804 * in '... extends Foo' is distinct from the <em>declaration</em> of class 3805 * Foo.) 3806 * 3807 * <p> If this {@code Class} object represents a class whose declaration 3808 * does not explicitly indicate an annotated superclass, then the return 3809 * value is an {@code AnnotatedType} object representing an element with no 3810 * annotations. 3811 * 3812 * <p> If this {@code Class} represents either the {@code Object} class, an 3813 * interface type, an array type, a primitive type, or void, the return 3814 * value is {@code null}. 3815 * 3816 * @return an object representing the superclass 3817 * @since 1.8 3818 */ 3819 public AnnotatedType getAnnotatedSuperclass() { 3820 if (this == Object.class || 3821 isInterface() || 3822 isArray() || 3823 isPrimitive() || 3824 this == Void.TYPE) { 3825 return null; 3826 } 3827 3828 return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this); 3829 } 3830 3831 /** 3832 * Returns an array of {@code AnnotatedType} objects that represent the use 3833 * of types to specify superinterfaces of the entity represented by this 3834 * {@code Class} object. (The <em>use</em> of type Foo to specify a 3835 * superinterface in '... implements Foo' is distinct from the 3836 * <em>declaration</em> of interface Foo.) 3837 * 3838 * <p> If this {@code Class} object represents a class, the return value is 3839 * an array containing objects representing the uses of interface types to 3840 * specify interfaces implemented by the class. The order of the objects in 3841 * the array corresponds to the order of the interface types used in the 3842 * 'implements' clause of the declaration of this {@code Class} object. 3843 * 3844 * <p> If this {@code Class} object represents an interface, the return 3845 * value is an array containing objects representing the uses of interface 3846 * types to specify interfaces directly extended by the interface. The 3847 * order of the objects in the array corresponds to the order of the 3848 * interface types used in the 'extends' clause of the declaration of this 3849 * {@code Class} object. 3850 * 3851 * <p> If this {@code Class} object represents a class or interface whose 3852 * declaration does not explicitly indicate any annotated superinterfaces, 3853 * the return value is an array of length 0. 3854 * 3855 * <p> If this {@code Class} object represents either the {@code Object} 3856 * class, an array type, a primitive type, or void, the return value is an 3857 * array of length 0. 3858 * 3859 * @return an array representing the superinterfaces 3860 * @since 1.8 3861 */ 3862 public AnnotatedType[] getAnnotatedInterfaces() { 3863 return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this); 3864 } 3865 3866 private native Class<?> getNestHost0(); 3867 3868 /** 3869 * Returns the nest host of the <a href=#nest>nest</a> to which the class 3870 * or interface represented by this {@code Class} object belongs. 3871 * Every class and interface belongs to exactly one nest. 3872 * 3873 * If the nest host of this class or interface has previously 3874 * been determined, then this method returns the nest host. 3875 * If the nest host of this class or interface has 3876 * not previously been determined, then this method determines the nest 3877 * host using the algorithm of JVMS 5.4.4, and returns it. 3878 * 3879 * Often, a class or interface belongs to a nest consisting only of itself, 3880 * in which case this method returns {@code this} to indicate that the class 3881 * or interface is the nest host. 3882 * 3883 * <p>If this {@code Class} object represents a primitive type, an array type, 3884 * or {@code void}, then this method returns {@code this}, 3885 * indicating that the represented entity belongs to the nest consisting only of 3886 * itself, and is the nest host. 3887 * 3888 * @return the nest host of this class or interface 3889 * 3890 * @since 11 3891 * @jvms 4.7.28 The {@code NestHost} Attribute 3892 * @jvms 4.7.29 The {@code NestMembers} Attribute 3893 * @jvms 5.4.4 Access Control 3894 */ 3895 public Class<?> getNestHost() { 3896 if (isPrimitive() || isArray()) { 3897 return this; 3898 } 3899 return getNestHost0(); 3900 } 3901 3902 /** 3903 * Determines if the given {@code Class} is a nestmate of the 3904 * class or interface represented by this {@code Class} object. 3905 * Two classes or interfaces are nestmates 3906 * if they have the same {@linkplain #getNestHost() nest host}. 3907 * 3908 * @param c the class to check 3909 * @return {@code true} if this class and {@code c} are members of 3910 * the same nest; and {@code false} otherwise. 3911 * 3912 * @since 11 3913 */ 3914 public boolean isNestmateOf(Class<?> c) { 3915 if (this == c) { 3916 return true; 3917 } 3918 if (isPrimitive() || isArray() || 3919 c.isPrimitive() || c.isArray()) { 3920 return false; 3921 } 3922 3923 return getNestHost() == c.getNestHost(); 3924 } 3925 3926 private native Class<?>[] getNestMembers0(); 3927 3928 /** 3929 * Returns an array containing {@code Class} objects representing all the 3930 * classes and interfaces that are members of the nest to which the class 3931 * or interface represented by this {@code Class} object belongs. 3932 * 3933 * First, this method obtains the {@linkplain #getNestHost() nest host}, 3934 * {@code H}, of the nest to which the class or interface represented by 3935 * this {@code Class} object belongs. The zeroth element of the returned 3936 * array is {@code H}. 3937 * 3938 * Then, for each class or interface {@code C} which is recorded by {@code H} 3939 * as being a member of its nest, this method attempts to obtain the {@code Class} 3940 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 3941 * loader} of the current {@code Class} object), and then obtains the 3942 * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs. 3943 * The classes and interfaces which are recorded by {@code H} as being members 3944 * of its nest, and for which {@code H} can be determined as their nest host, 3945 * are indicated by subsequent elements of the returned array. The order of 3946 * such elements is unspecified. Duplicates are permitted. 3947 * 3948 * <p>If this {@code Class} object represents a primitive type, an array type, 3949 * or {@code void}, then this method returns a single-element array containing 3950 * {@code this}. 3951 * 3952 * @apiNote 3953 * The returned array includes only the nest members recorded in the {@code NestMembers} 3954 * attribute, and not any hidden classes that were added to the nest via 3955 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3956 * Lookup::defineHiddenClass}. 3957 * 3958 * @return an array of all classes and interfaces in the same nest as 3959 * this class or interface 3960 * 3961 * @since 11 3962 * @see #getNestHost() 3963 * @jvms 4.7.28 The {@code NestHost} Attribute 3964 * @jvms 4.7.29 The {@code NestMembers} Attribute 3965 */ 3966 public Class<?>[] getNestMembers() { 3967 if (isPrimitive() || isArray()) { 3968 return new Class<?>[] { this }; 3969 } 3970 Class<?>[] members = getNestMembers0(); 3971 // Can't actually enable this due to bootstrapping issues 3972 // assert(members.length != 1 || members[0] == this); // expected invariant from VM 3973 return members; 3974 } 3975 3976 /** 3977 * Returns the descriptor string of the entity (class, interface, array class, 3978 * primitive type, or {@code void}) represented by this {@code Class} object. 3979 * 3980 * <p> If this {@code Class} object represents a class or interface, 3981 * not an array class, then: 3982 * <ul> 3983 * <li> If the class or interface is not {@linkplain Class#isHidden() hidden}, 3984 * then the result is a field descriptor (JVMS {@jvms 4.3.2}) 3985 * for the class or interface. Calling 3986 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3987 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3988 * describing this class or interface. 3989 * <li> If the class or interface is {@linkplain Class#isHidden() hidden}, 3990 * then the result is a string of the form: 3991 * <blockquote> 3992 * {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"} 3993 * </blockquote> 3994 * where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name} 3995 * encoded in internal form indicated by the {@code class} file passed to 3996 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3997 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 3998 * A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}. 3999 * The result string is not a type descriptor. 4000 * </ul> 4001 * 4002 * <p> If this {@code Class} object represents an array class, then 4003 * the result is a string consisting of one or more '{@code [}' characters 4004 * representing the depth of the array nesting, followed by the 4005 * descriptor string of the element type. 4006 * <ul> 4007 * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class 4008 * or interface, then this array class can be described nominally. 4009 * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 4010 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 4011 * describing this array class. 4012 * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or 4013 * interface, then this array class cannot be described nominally. 4014 * The result string is not a type descriptor. 4015 * </ul> 4016 * 4017 * <p> If this {@code Class} object represents a primitive type or 4018 * {@code void}, then the result is a field descriptor string which 4019 * is a one-letter code corresponding to a primitive type or {@code void} 4020 * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}). 4021 * 4022 * @return the descriptor string for this {@code Class} object 4023 * @jvms 4.3.2 Field Descriptors 4024 * @since 12 4025 */ 4026 @Override 4027 public String descriptorString() { 4028 if (isPrimitive()) 4029 return Wrapper.forPrimitiveType(this).basicTypeString(); 4030 4031 if (isArray()) { 4032 return "[".concat(componentType.descriptorString()); 4033 } else if (isHidden()) { 4034 String name = getName(); 4035 int index = name.indexOf('/'); 4036 return new StringBuilder(name.length() + 2) 4037 .append('L') 4038 .append(name.substring(0, index).replace('.', '/')) 4039 .append('.') 4040 .append(name, index + 1, name.length()) 4041 .append(';') 4042 .toString(); 4043 } else { 4044 String name = getName().replace('.', '/'); 4045 return StringConcatHelper.concat("L", name, ";"); 4046 } 4047 } 4048 4049 /** 4050 * Returns the component type of this {@code Class}, if it describes 4051 * an array type, or {@code null} otherwise. 4052 * 4053 * @implSpec 4054 * Equivalent to {@link Class#getComponentType()}. 4055 * 4056 * @return a {@code Class} describing the component type, or {@code null} 4057 * if this {@code Class} does not describe an array type 4058 * @since 12 4059 */ 4060 @Override 4061 public Class<?> componentType() { 4062 return isArray() ? componentType : null; 4063 } 4064 4065 /** 4066 * Returns a {@code Class} for an array type whose component type 4067 * is described by this {@linkplain Class}. 4068 * 4069 * @throws UnsupportedOperationException if this component type is {@linkplain 4070 * Void#TYPE void} or if the number of dimensions of the resulting array 4071 * type would exceed 255. 4072 * @return a {@code Class} describing the array type 4073 * @jvms 4.3.2 Field Descriptors 4074 * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure 4075 * @since 12 4076 */ 4077 @Override 4078 public Class<?> arrayType() { 4079 try { 4080 return Array.newInstance(this, 0).getClass(); 4081 } catch (IllegalArgumentException iae) { 4082 throw new UnsupportedOperationException(iae); 4083 } 4084 } 4085 4086 /** 4087 * Returns a nominal descriptor for this instance, if one can be 4088 * constructed, or an empty {@link Optional} if one cannot be. 4089 * 4090 * @return An {@link Optional} containing the resulting nominal descriptor, 4091 * or an empty {@link Optional} if one cannot be constructed. 4092 * @since 12 4093 */ 4094 @Override 4095 public Optional<ClassDesc> describeConstable() { 4096 Class<?> c = isArray() ? elementType() : this; 4097 return c.isHidden() ? Optional.empty() 4098 : Optional.of(ConstantUtils.classDesc(this)); 4099 } 4100 4101 /** 4102 * Returns {@code true} if and only if the underlying class is a hidden class. 4103 * 4104 * @return {@code true} if and only if this class is a hidden class. 4105 * 4106 * @since 15 4107 * @see MethodHandles.Lookup#defineHiddenClass 4108 * @see Class##hiddenClasses Hidden Classes 4109 */ 4110 @IntrinsicCandidate 4111 public native boolean isHidden(); 4112 4113 /** 4114 * Returns an array containing {@code Class} objects representing the 4115 * direct subinterfaces or subclasses permitted to extend or 4116 * implement this class or interface if it is sealed. The order of such elements 4117 * is unspecified. The array is empty if this sealed class or interface has no 4118 * permitted subclass. If this {@code Class} object represents a primitive type, 4119 * {@code void}, an array type, or a class or interface that is not sealed, 4120 * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}. 4121 * Conversely, if {@link #isSealed()} returns {@code true}, then this method 4122 * returns a non-null value. 4123 * 4124 * For each class or interface {@code C} which is recorded as a permitted 4125 * direct subinterface or subclass of this class or interface, 4126 * this method attempts to obtain the {@code Class} 4127 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 4128 * loader} of the current {@code Class} object). 4129 * The {@code Class} objects which can be obtained and which are direct 4130 * subinterfaces or subclasses of this class or interface, 4131 * are indicated by elements of the returned array. If a {@code Class} object 4132 * cannot be obtained, it is silently ignored, and not included in the result 4133 * array. 4134 * 4135 * @return an array of {@code Class} objects of the permitted subclasses of this class 4136 * or interface, or {@code null} if this class or interface is not sealed. 4137 * 4138 * @jls 8.1 Class Declarations 4139 * @jls 9.1 Interface Declarations 4140 * @since 17 4141 */ 4142 public Class<?>[] getPermittedSubclasses() { 4143 Class<?>[] subClasses; 4144 if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) { 4145 return null; 4146 } 4147 if (subClasses.length > 0) { 4148 if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) { 4149 subClasses = Arrays.stream(subClasses) 4150 .filter(this::isDirectSubType) 4151 .toArray(s -> new Class<?>[s]); 4152 } 4153 } 4154 return subClasses; 4155 } 4156 4157 private boolean isDirectSubType(Class<?> c) { 4158 if (isInterface()) { 4159 for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) { 4160 if (i == this) { 4161 return true; 4162 } 4163 } 4164 } else { 4165 return c.getSuperclass() == this; 4166 } 4167 return false; 4168 } 4169 4170 /** 4171 * Returns {@code true} if and only if this {@code Class} object represents 4172 * a sealed class or interface. If this {@code Class} object represents a 4173 * primitive type, {@code void}, or an array type, this method returns 4174 * {@code false}. A sealed class or interface has (possibly zero) permitted 4175 * subclasses; {@link #getPermittedSubclasses()} returns a non-null but 4176 * possibly empty value for a sealed class or interface. 4177 * 4178 * @return {@code true} if and only if this {@code Class} object represents 4179 * a sealed class or interface. 4180 * 4181 * @jls 8.1 Class Declarations 4182 * @jls 9.1 Interface Declarations 4183 * @since 17 4184 */ 4185 public boolean isSealed() { 4186 if (isArray() || isPrimitive()) { 4187 return false; 4188 } 4189 return getPermittedSubclasses() != null; 4190 } 4191 4192 private native Class<?>[] getPermittedSubclasses0(); 4193 4194 /* 4195 * Return the class's major and minor class file version packed into an int. 4196 * The high order 16 bits contain the class's minor version. The low order 4197 * 16 bits contain the class's major version. 4198 * 4199 * If the class is an array type then the class file version of its element 4200 * type is returned. If the class is a primitive type then the latest class 4201 * file major version is returned and zero is returned for the minor version. 4202 */ 4203 /* package-private */ 4204 int getClassFileVersion() { 4205 Class<?> c = isArray() ? elementType() : this; 4206 return c.getClassFileVersion0(); 4207 } 4208 4209 private native int getClassFileVersion0(); 4210 4211 /* 4212 * Return the access flags as they were in the class's bytecode, including 4213 * the original setting of ACC_SUPER. 4214 * 4215 * If the class is an array type then the access flags of the element type is 4216 * returned. If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC. 4217 */ 4218 private int getClassAccessFlagsRaw() { 4219 Class<?> c = isArray() ? elementType() : this; 4220 return c.getClassAccessFlagsRaw0(); 4221 } 4222 4223 private native int getClassAccessFlagsRaw0(); 4224 }