1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2025, Alibaba Group Holding Limited. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.  Oracle designates this
   9  * particular file as subject to the "Classpath" exception as provided
  10  * by Oracle in the LICENSE file that accompanied this code.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  23  * or visit www.oracle.com if you need additional information or have any
  24  * questions.
  25  */
  26 
  27 package java.lang;
  28 
  29 import java.lang.invoke.MethodHandles;
  30 import java.lang.constant.Constable;
  31 import java.lang.constant.ConstantDesc;
  32 import java.util.Optional;
  33 
  34 import jdk.internal.math.FloatingDecimal;
  35 import jdk.internal.math.DoubleConsts;
  36 import jdk.internal.math.DoubleToDecimal;
  37 import jdk.internal.util.DecimalDigits;
  38 import jdk.internal.vm.annotation.IntrinsicCandidate;
  39 
  40 /**
  41  * The {@code Double} class is the {@linkplain
  42  * java.lang##wrapperClass wrapper class} for values of the primitive
  43  * type {@code double}. An object of type {@code Double} contains a
  44  * single field whose type is {@code double}.
  45  *
  46  * <p>In addition, this class provides several methods for converting a
  47  * {@code double} to a {@code String} and a
  48  * {@code String} to a {@code double}, as well as other
  49  * constants and methods useful when dealing with a
  50  * {@code double}.
  51  *
  52  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  53  * class; programmers should treat instances that are
  54  * {@linkplain #equals(Object) equal} as interchangeable and should not
  55  * use instances for synchronization, or unpredictable behavior may
  56  * occur. For example, in a future release, synchronization may fail.
  57  *
  58  * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence,
  59  * and Comparison</a></h2>
  60  *
  61  * IEEE 754 floating-point values include finite nonzero values,
  62  * signed zeros ({@code +0.0} and {@code -0.0}), signed infinities
  63  * ({@linkplain Double#POSITIVE_INFINITY positive infinity} and
  64  * {@linkplain Double#NEGATIVE_INFINITY negative infinity}), and
  65  * {@linkplain Double#NaN NaN} (not-a-number).
  66  *
  67  * <p>An <em>equivalence relation</em> on a set of values is a boolean
  68  * relation on pairs of values that is reflexive, symmetric, and
  69  * transitive. For more discussion of equivalence relations and object
  70  * equality, see the {@link Object#equals Object.equals}
  71  * specification. An equivalence relation partitions the values it
  72  * operates over into sets called <i>equivalence classes</i>.  All the
  73  * members of the equivalence class are equal to each other under the
  74  * relation. An equivalence class may contain only a single member. At
  75  * least for some purposes, all the members of an equivalence class
  76  * are substitutable for each other.  In particular, in a numeric
  77  * expression equivalent values can be <em>substituted</em> for one
  78  * another without changing the result of the expression, meaning
  79  * changing the equivalence class of the result of the expression.
  80  *
  81  * <p>Notably, the built-in {@code ==} operation on floating-point
  82  * values is <em>not</em> an equivalence relation. Despite not
  83  * defining an equivalence relation, the semantics of the IEEE 754
  84  * {@code ==} operator were deliberately designed to meet other needs
  85  * of numerical computation. There are two exceptions where the
  86  * properties of an equivalence relation are not satisfied by {@code
  87  * ==} on floating-point values:
  88  *
  89  * <ul>
  90  *
  91  * <li>If {@code v1} and {@code v2} are both NaN, then {@code v1
  92  * == v2} has the value {@code false}. Therefore, for two NaN
  93  * arguments the <em>reflexive</em> property of an equivalence
  94  * relation is <em>not</em> satisfied by the {@code ==} operator.
  95  *
  96  * <li>If {@code v1} represents {@code +0.0} while {@code v2}
  97  * represents {@code -0.0}, or vice versa, then {@code v1 == v2} has
  98  * the value {@code true} even though {@code +0.0} and {@code -0.0}
  99  * are distinguishable under various floating-point operations. For
 100  * example, {@code 1.0/+0.0} evaluates to positive infinity while
 101  * {@code 1.0/-0.0} evaluates to <em>negative</em> infinity and
 102  * positive infinity and negative infinity are neither equal to each
 103  * other nor equivalent to each other. Thus, while a signed zero input
 104  * most commonly determines the sign of a zero result, because of
 105  * dividing by zero, {@code +0.0} and {@code -0.0} may not be
 106  * substituted for each other in general. The sign of a zero input
 107  * also has a non-substitutable effect on the result of some math
 108  * library methods.
 109  *
 110  * </ul>
 111  *
 112  * <p>For ordered comparisons using the built-in comparison operators
 113  * ({@code <}, {@code <=}, etc.), NaN values have another anomalous
 114  * situation: a NaN is neither less than, nor greater than, nor equal
 115  * to any value, including itself. This means the <i>trichotomy of
 116  * comparison</i> does <em>not</em> hold.
 117  *
 118  * <p>To provide the appropriate semantics for {@code equals} and
 119  * {@code compareTo} methods, those methods cannot simply be wrappers
 120  * around {@code ==} or ordered comparison operations. Instead, {@link
 121  * Double#equals equals} uses {@linkplain ##repEquivalence representation
 122  * equivalence}, defining NaN arguments to be equal to each other,
 123  * restoring reflexivity, and defining {@code +0.0} to <em>not</em> be
 124  * equal to {@code -0.0}. For comparisons, {@link Double#compareTo
 125  * compareTo} defines a total order where {@code -0.0} is less than
 126  * {@code +0.0} and where a NaN is equal to itself and considered
 127  * greater than positive infinity.
 128  *
 129  * <p>The operational semantics of {@code equals} and {@code
 130  * compareTo} are expressed in terms of {@linkplain #doubleToLongBits
 131  * bit-wise converting} the floating-point values to integral values.
 132  *
 133  * <p>The <em>natural ordering</em> implemented by {@link #compareTo
 134  * compareTo} is {@linkplain Comparable consistent with equals}. That
 135  * is, two objects are reported as equal by {@code equals} if and only
 136  * if {@code compareTo} on those objects returns zero.
 137  *
 138  * <p>The adjusted behaviors defined for {@code equals} and {@code
 139  * compareTo} allow instances of wrapper classes to work properly with
 140  * conventional data structures. For example, defining NaN
 141  * values to be {@code equals} to one another allows NaN to be used as
 142  * an element of a {@link java.util.HashSet HashSet} or as the key of
 143  * a {@link java.util.HashMap HashMap}. Similarly, defining {@code
 144  * compareTo} as a total ordering, including {@code +0.0}, {@code
 145  * -0.0}, and NaN, allows instances of wrapper classes to be used as
 146  * elements of a {@link java.util.SortedSet SortedSet} or as keys of a
 147  * {@link java.util.SortedMap SortedMap}.
 148  *
 149  * <p>Comparing numerical equality to various useful equivalence
 150  * relations that can be defined over floating-point values:
 151  *
 152  * <dl>
 153  * <dt><a id=fpNumericalEq></a><dfn>{@index "numerical equality"}</dfn> ({@code ==}
 154  * operator): (<em>Not</em> an equivalence relation)</dt>
 155  * <dd>Two floating-point values represent the same extended real
 156  * number. The extended real numbers are the real numbers augmented
 157  * with positive infinity and negative infinity. Under numerical
 158  * equality, {@code +0.0} and {@code -0.0} are equal since they both
 159  * map to the same real value, 0. A NaN does not map to any real
 160  * number and is not equal to any value, including itself.
 161  * </dd>
 162  *
 163  * <dt><dfn>{@index "bit-wise equivalence"}</dfn>:</dt>
 164  * <dd>The bits of the two floating-point values are the same. This
 165  * equivalence relation for {@code double} values {@code a} and {@code
 166  * b} is implemented by the expression
 167  * <br>{@code Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(a) == Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(b)}<br>
 168  * Under this relation, {@code +0.0} and {@code -0.0} are
 169  * distinguished from each other and every bit pattern encoding a NaN
 170  * is distinguished from every other bit pattern encoding a NaN.
 171  * </dd>
 172  *
 173  * <dt><dfn><a id=repEquivalence></a>{@index "representation equivalence"}</dfn>:</dt>
 174  * <dd>The two floating-point values represent the same IEEE 754
 175  * <i>datum</i>. In particular, for {@linkplain #isFinite(double)
 176  * finite} values, the sign, {@linkplain Math#getExponent(double)
 177  * exponent}, and significand components of the floating-point values
 178  * are the same. Under this relation:
 179  * <ul>
 180  * <li> {@code +0.0} and {@code -0.0} are distinguished from each other.
 181  * <li> every bit pattern encoding a NaN is considered equivalent to each other
 182  * <li> positive infinity is equivalent to positive infinity; negative
 183  *      infinity is equivalent to negative infinity.
 184  * </ul>
 185  * Expressions implementing this equivalence relation include:
 186  * <ul>
 187  * <li>{@code Double.doubleToLongBits(a) == Double.doubleToLongBits(b)}
 188  * <li>{@code Double.valueOf(a).equals(Double.valueOf(b))}
 189  * <li>{@code Double.compare(a, b) == 0}
 190  * </ul>
 191  * Note that representation equivalence is often an appropriate notion
 192  * of equivalence to test the behavior of {@linkplain StrictMath math
 193  * libraries}.
 194  * </dd>
 195  * </dl>
 196  *
 197  * For two binary floating-point values {@code a} and {@code b}, if
 198  * neither of {@code a} and {@code b} is zero or NaN, then the three
 199  * relations numerical equality, bit-wise equivalence, and
 200  * representation equivalence of {@code a} and {@code b} have the same
 201  * {@code true}/{@code false} value. In other words, for binary
 202  * floating-point values, the three relations only differ if at least
 203  * one argument is zero or NaN.
 204  *
 205  * <h2><a id=decimalToBinaryConversion>Decimal &harr; Binary Conversion Issues</a></h2>
 206  *
 207  * Many surprising results of binary floating-point arithmetic trace
 208  * back to aspects of decimal to binary conversion and binary to
 209  * decimal conversion. While integer values can be exactly represented
 210  * in any base, which fractional values can be exactly represented in
 211  * a base is a function of the base. For example, in base 10, 1/3 is a
 212  * repeating fraction (0.33333....); but in base 3, 1/3 is exactly
 213  * 0.1<sub>(3)</sub>, that is 1&nbsp;&times;&nbsp;3<sup>-1</sup>.
 214  * Similarly, in base 10, 1/10 is exactly representable as 0.1
 215  * (1&nbsp;&times;&nbsp;10<sup>-1</sup>), but in base 2, it is a
 216  * repeating fraction (0.0001100110011...<sub>(2)</sub>).
 217  *
 218  * <p>Values of the {@code float} type have {@value Float#PRECISION}
 219  * bits of precision and values of the {@code double} type have
 220  * {@value Double#PRECISION} bits of precision. Therefore, since 0.1
 221  * is a repeating fraction in base 2 with a four-bit repeat, {@code
 222  * 0.1f} != {@code 0.1d}. In more detail, including hexadecimal
 223  * floating-point literals:
 224  *
 225  * <ul>
 226  * <li>The exact numerical value of {@code 0.1f} ({@code 0x1.99999a0000000p-4f}) is
 227  *     0.100000001490116119384765625.
 228  * <li>The exact numerical value of {@code 0.1d} ({@code 0x1.999999999999ap-4d}) is
 229  *     0.1000000000000000055511151231257827021181583404541015625.
 230  * </ul>
 231  *
 232  * These are the closest {@code float} and {@code double} values,
 233  * respectively, to the numerical value of 0.1.  These results are
 234  * consistent with a {@code float} value having the equivalent of 6 to
 235  * 9 digits of decimal precision and a {@code double} value having the
 236  * equivalent of 15 to 17 digits of decimal precision. (The
 237  * equivalent precision varies according to the different relative
 238  * densities of binary and decimal values at different points along the
 239  * real number line.)
 240  *
 241  * <p>This representation hazard of decimal fractions is one reason to
 242  * use caution when storing monetary values as {@code float} or {@code
 243  * double}. Alternatives include:
 244  * <ul>
 245  * <li>using {@link java.math.BigDecimal BigDecimal} to store decimal
 246  * fractional values exactly
 247  *
 248  * <li>scaling up so the monetary value is an integer &mdash; for
 249  * example, multiplying by 100 if the value is denominated in cents or
 250  * multiplying by 1000 if the value is denominated in mills &mdash;
 251  * and then storing that scaled value in an integer type
 252  *
 253  *</ul>
 254  *
 255  * <p>For each finite floating-point value and a given floating-point
 256  * type, there is a contiguous region of the real number line which
 257  * maps to that value. Under the default round to nearest rounding
 258  * policy (JLS {@jls 15.4}), this contiguous region for a value is
 259  * typically one {@linkplain Math#ulp ulp} (unit in the last place)
 260  * wide and centered around the exactly representable value. (At
 261  * exponent boundaries, the region is asymmetrical and larger on the
 262  * side with the larger exponent.) For example, for {@code 0.1f}, the
 263  * region can be computed as follows:
 264  *
 265  * <br>// Numeric values listed are exact values
 266  * <br>oneTenthApproxAsFloat = 0.100000001490116119384765625;
 267  * <br>ulpOfoneTenthApproxAsFloat = Math.ulp(0.1f) = 7.450580596923828125E-9;
 268  * <br>// Numeric range that is converted to the float closest to 0.1, _excludes_ endpoints
 269  * <br>(oneTenthApproxAsFloat - &frac12;ulpOfoneTenthApproxAsFloat, oneTenthApproxAsFloat + &frac12;ulpOfoneTenthApproxAsFloat) =
 270  * <br>(0.0999999977648258209228515625, 0.1000000052154064178466796875)
 271  *
 272  * <p>In particular, a correctly rounded decimal to binary conversion
 273  * of any string representing a number in this range, say by {@link
 274  * Float#parseFloat(String)}, will be converted to the same value:
 275  *
 276  * {@snippet lang="java" :
 277  * Float.parseFloat("0.0999999977648258209228515625000001"); // rounds up to oneTenthApproxAsFloat
 278  * Float.parseFloat("0.099999998");                          // rounds up to oneTenthApproxAsFloat
 279  * Float.parseFloat("0.1");                                  // rounds up to oneTenthApproxAsFloat
 280  * Float.parseFloat("0.100000001490116119384765625");        // exact conversion
 281  * Float.parseFloat("0.100000005215406417846679687");        // rounds down to oneTenthApproxAsFloat
 282  * Float.parseFloat("0.100000005215406417846679687499999");  // rounds down to oneTenthApproxAsFloat
 283  * }
 284  *
 285  * <p>Similarly, an analogous range can be constructed  for the {@code
 286  * double} type based on the exact value of {@code double}
 287  * approximation to {@code 0.1d} and the numerical value of {@code
 288  * Math.ulp(0.1d)} and likewise for other particular numerical values
 289  * in the {@code float} and {@code double} types.
 290  *
 291  * <p>As seen in the above conversions, compared to the exact
 292  * numerical value the operation would have without rounding, the same
 293  * floating-point value as a result can be:
 294  * <ul>
 295  * <li>greater than the exact result
 296  * <li>equal to the exact result
 297  * <li>less than the exact result
 298  * </ul>
 299  *
 300  * A floating-point value doesn't "know" whether it was the result of
 301  * rounding up, or rounding down, or an exact operation; it contains
 302  * no history of how it was computed. Consequently, the sum of
 303  * {@snippet lang="java" :
 304  * 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f;
 305  * // Numerical value of computed sum: 1.00000011920928955078125,
 306  * // the next floating-point value larger than 1.0f, equal to Math.nextUp(1.0f).
 307  * }
 308  * or
 309  * {@snippet lang="java" :
 310  * 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d;
 311  * // Numerical value of computed sum: 0.99999999999999988897769753748434595763683319091796875,
 312  * // the next floating-point value smaller than 1.0d, equal to Math.nextDown(1.0d).
 313  * }
 314  *
 315  * should <em>not</em> be expected to be exactly equal to 1.0, but
 316  * only to be close to 1.0. Consequently, the following code is an
 317  * infinite loop:
 318  *
 319  * {@snippet lang="java" :
 320  * double d = 0.0;
 321  * while (d != 1.0) { // Surprising infinite loop
 322  *   d += 0.1; // Sum never _exactly_ equals 1.0
 323  * }
 324  * }
 325  *
 326  * Instead, use an integer loop count for counted loops:
 327  *
 328  * {@snippet lang="java" :
 329  * double d = 0.0;
 330  * for (int i = 0; i < 10; i++) {
 331  *   d += 0.1;
 332  * } // Value of d is equal to Math.nextDown(1.0).
 333  * }
 334  *
 335  * or test against a floating-point limit using ordered comparisons
 336  * ({@code <}, {@code <=}, {@code >}, {@code >=}):
 337  *
 338  * {@snippet lang="java" :
 339  *  double d = 0.0;
 340  *  while (d <= 1.0) {
 341  *    d += 0.1;
 342  *  } // Value of d approximately 1.0999999999999999
 343  *  }
 344  *
 345  * While floating-point arithmetic may have surprising results, IEEE
 346  * 754 floating-point arithmetic follows a principled design and its
 347  * behavior is predictable on the Java platform.
 348  *
 349  * @jls 4.2.3 Floating-Point Types and Values
 350  * @jls 4.2.4 Floating-Point Operations
 351  * @jls 15.21.1 Numerical Equality Operators == and !=
 352  * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
 353  *
 354  * @spec https://standards.ieee.org/ieee/754/6210/
 355  *       IEEE Standard for Floating-Point Arithmetic
 356  *
 357  * @since 1.0
 358  */
 359 @jdk.internal.ValueBased
 360 public final class Double extends Number
 361         implements Comparable<Double>, Constable, ConstantDesc {
 362     /**
 363      * A constant holding the positive infinity of type
 364      * {@code double}. It is equal to the value returned by
 365      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
 366      */
 367     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
 368 
 369     /**
 370      * A constant holding the negative infinity of type
 371      * {@code double}. It is equal to the value returned by
 372      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
 373      */
 374     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
 375 
 376     /**
 377      * A constant holding a Not-a-Number (NaN) value of type {@code double}.
 378      * It is {@linkplain Double##equivalenceRelation equivalent} to the
 379      * value returned by {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
 380      */
 381     public static final double NaN = 0.0d / 0.0;
 382 
 383     /**
 384      * A constant holding the largest positive finite value of type
 385      * {@code double},
 386      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
 387      * the hexadecimal floating-point literal
 388      * {@code 0x1.fffffffffffffP+1023} and also equal to
 389      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
 390      */
 391     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
 392 
 393     /**
 394      * A constant holding the smallest positive normal value of type
 395      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
 396      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
 397      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
 398      *
 399      * @since 1.6
 400      */
 401     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
 402 
 403     /**
 404      * A constant holding the smallest positive nonzero value of type
 405      * {@code double}, 2<sup>-1074</sup>. It is equal to the
 406      * hexadecimal floating-point literal
 407      * {@code 0x0.0000000000001P-1022} and also equal to
 408      * {@code Double.longBitsToDouble(0x1L)}.
 409      */
 410     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
 411 
 412     /**
 413      * The number of bits used to represent a {@code double} value,
 414      * {@value}.
 415      *
 416      * @since 1.5
 417      */
 418     public static final int SIZE = 64;
 419 
 420     /**
 421      * The number of bits in the significand of a {@code double}
 422      * value, {@value}.  This is the parameter N in section {@jls
 423      * 4.2.3} of <cite>The Java Language Specification</cite>.
 424      *
 425      * @since 19
 426      */
 427     public static final int PRECISION = 53;
 428 
 429     /**
 430      * Maximum exponent a finite {@code double} variable may have,
 431      * {@value}.  It is equal to the value returned by {@code
 432      * Math.getExponent(Double.MAX_VALUE)}.
 433      *
 434      * @since 1.6
 435      */
 436     public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 1023
 437 
 438     /**
 439      * Minimum exponent a normalized {@code double} variable may have,
 440      * {@value}.  It is equal to the value returned by {@code
 441      * Math.getExponent(Double.MIN_NORMAL)}.
 442      *
 443      * @since 1.6
 444      */
 445     public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -1022
 446 
 447     /**
 448      * The number of bytes used to represent a {@code double} value,
 449      * {@value}.
 450      *
 451      * @since 1.8
 452      */
 453     public static final int BYTES = SIZE / Byte.SIZE;
 454 
 455     /**
 456      * The {@code Class} instance representing the primitive type
 457      * {@code double}.
 458      *
 459      * @since 1.1
 460      */
 461     public static final Class<Double> TYPE = Class.getPrimitiveClass("double");
 462 
 463     /**
 464      * Returns a string representation of the {@code double}
 465      * argument. All characters mentioned below are ASCII characters.
 466      * <ul>
 467      * <li>If the argument is NaN, the result is the string
 468      *     "{@code NaN}".
 469      * <li>Otherwise, the result is a string that represents the sign and
 470      * magnitude (absolute value) of the argument. If the sign is negative,
 471      * the first character of the result is '{@code -}'
 472      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 473      * appears in the result. As for the magnitude <i>m</i>:
 474      * <ul>
 475      * <li>If <i>m</i> is infinity, it is represented by the characters
 476      * {@code "Infinity"}; thus, positive infinity produces the result
 477      * {@code "Infinity"} and negative infinity produces the result
 478      * {@code "-Infinity"}.
 479      *
 480      * <li>If <i>m</i> is zero, it is represented by the characters
 481      * {@code "0.0"}; thus, negative zero produces the result
 482      * {@code "-0.0"} and positive zero produces the result
 483      * {@code "0.0"}.
 484      *
 485      * <li> Otherwise <i>m</i> is positive and finite.
 486      * It is converted to a string in two stages:
 487      * <ul>
 488      * <li> <em>Selection of a decimal</em>:
 489      * A well-defined decimal <i>d</i><sub><i>m</i></sub>
 490      * is selected to represent <i>m</i>.
 491      * This decimal is (almost always) the <em>shortest</em> one that
 492      * rounds to <i>m</i> according to the round to nearest
 493      * rounding policy of IEEE 754 floating-point arithmetic.
 494      * <li> <em>Formatting as a string</em>:
 495      * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
 496      * either in plain or in computerized scientific notation,
 497      * depending on its value.
 498      * </ul>
 499      * </ul>
 500      * </ul>
 501      *
 502      * <p>A <em>decimal</em> is a number of the form
 503      * <i>s</i>&times;10<sup><i>i</i></sup>
 504      * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
 505      * <i>s</i> is not a multiple of 10.
 506      * These integers are the <em>significand</em> and
 507      * the <em>exponent</em>, respectively, of the decimal.
 508      * The <em>length</em> of the decimal is the (unique)
 509      * positive integer <i>n</i> meeting
 510      * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
 511      *
 512      * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
 513      * is defined as follows:
 514      * <ul>
 515      * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
 516      * according to the usual <em>round to nearest</em> rounding policy of
 517      * IEEE 754 floating-point arithmetic.
 518      * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
 519      * <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
 520      * in <i>R</i> with length <i>p</i>.
 521      * Otherwise, let <i>T</i> be the set of all decimals
 522      * in <i>R</i> with length 1 or 2.
 523      * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
 524      * that is closest to <i>m</i>.
 525      * Or if there are two such decimals in <i>T</i>,
 526      * select the one with the even significand.
 527      * </ul>
 528      *
 529      * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
 530      * is then formatted.
 531      * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
 532      * length of <i>d</i><sub><i>m</i></sub>, respectively.
 533      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
 534      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
 535      * be the usual decimal expansion of <i>s</i>.
 536      * Note that <i>s</i><sub>1</sub> &ne; 0
 537      * and <i>s</i><sub><i>n</i></sub> &ne; 0.
 538      * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
 539      * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
 540      * <ul>
 541      * <li>Case -3 &le; <i>e</i> &lt; 0:
 542      * <i>d</i><sub><i>m</i></sub> is formatted as
 543      * <code>0.0</code>&hellip;<code>0</code><!--
 544      * --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
 545      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
 546      * the decimal point and <i>s</i><sub>1</sub>.
 547      * For example, 123 &times; 10<sup>-4</sup> is formatted as
 548      * {@code 0.0123}.
 549      * <li>Case 0 &le; <i>e</i> &lt; 7:
 550      * <ul>
 551      * <li>Subcase <i>i</i> &ge; 0:
 552      * <i>d</i><sub><i>m</i></sub> is formatted as
 553      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
 554      * --><code>0</code>&hellip;<code>0.0</code>,
 555      * where there are exactly <i>i</i> zeroes
 556      * between <i>s</i><sub><i>n</i></sub> and the decimal point.
 557      * For example, 123 &times; 10<sup>2</sup> is formatted as
 558      * {@code 12300.0}.
 559      * <li>Subcase <i>i</i> &lt; 0:
 560      * <i>d</i><sub><i>m</i></sub> is formatted as
 561      * <i>s</i><sub>1</sub>&hellip;<!--
 562      * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
 563      * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
 564      * --><i>s</i><sub><i>n</i></sub>,
 565      * where there are exactly -<i>i</i> digits to the right of
 566      * the decimal point.
 567      * For example, 123 &times; 10<sup>-1</sup> is formatted as
 568      * {@code 12.3}.
 569      * </ul>
 570      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
 571      * computerized scientific notation is used to format
 572      * <i>d</i><sub><i>m</i></sub>.
 573      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
 574      * <ul>
 575      * <li>Subcase <i>n</i> = 1:
 576      * <i>d</i><sub><i>m</i></sub> is formatted as
 577      * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
 578      * For example, 1 &times; 10<sup>23</sup> is formatted as
 579      * {@code 1.0E23}.
 580      * <li>Subcase <i>n</i> &gt; 1:
 581      * <i>d</i><sub><i>m</i></sub> is formatted as
 582      * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
 583      * -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
 584      * For example, 123 &times; 10<sup>-21</sup> is formatted as
 585      * {@code 1.23E-19}.
 586      * </ul>
 587      * </ul>
 588      *
 589      * <p>To create localized string representations of a floating-point
 590      * value, use subclasses of {@link java.text.NumberFormat}.
 591      *
 592      * @apiNote
 593      * This method corresponds to the general functionality of the
 594      * convertToDecimalCharacter operation defined in IEEE 754;
 595      * however, that operation is defined in terms of specifying the
 596      * number of significand digits used in the conversion.
 597      * Code to do such a conversion in the Java platform includes
 598      * converting the {@code double} to a {@link java.math.BigDecimal
 599      * BigDecimal} exactly and then rounding the {@code BigDecimal} to
 600      * the desired number of digits; sample code:
 601      * {@snippet lang=java :
 602      * double d = 0.1;
 603      * int digits = 25;
 604      * BigDecimal bd = new BigDecimal(d);
 605      * String result = bd.round(new MathContext(digits,  RoundingMode.HALF_UP));
 606      * // 0.1000000000000000055511151
 607      * }
 608      *
 609      * @param   d   the {@code double} to be converted.
 610      * @return a string representation of the argument.
 611      */
 612     public static String toString(double d) {
 613         return DoubleToDecimal.toString(d);
 614     }
 615 
 616     /**
 617      * Returns a hexadecimal string representation of the
 618      * {@code double} argument. All characters mentioned below
 619      * are ASCII characters.
 620      *
 621      * <ul>
 622      * <li>If the argument is NaN, the result is the string
 623      *     "{@code NaN}".
 624      * <li>Otherwise, the result is a string that represents the sign
 625      * and magnitude of the argument. If the sign is negative, the
 626      * first character of the result is '{@code -}'
 627      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
 628      * character appears in the result. As for the magnitude <i>m</i>:
 629      *
 630      * <ul>
 631      * <li>If <i>m</i> is infinity, it is represented by the string
 632      * {@code "Infinity"}; thus, positive infinity produces the
 633      * result {@code "Infinity"} and negative infinity produces
 634      * the result {@code "-Infinity"}.
 635      *
 636      * <li>If <i>m</i> is zero, it is represented by the string
 637      * {@code "0x0.0p0"}; thus, negative zero produces the result
 638      * {@code "-0x0.0p0"} and positive zero produces the result
 639      * {@code "0x0.0p0"}.
 640      *
 641      * <li>If <i>m</i> is a {@code double} value with a
 642      * normalized representation, substrings are used to represent the
 643      * significand and exponent fields.  The significand is
 644      * represented by the characters {@code "0x1."}
 645      * followed by a lowercase hexadecimal representation of the rest
 646      * of the significand as a fraction.  Trailing zeros in the
 647      * hexadecimal representation are removed unless all the digits
 648      * are zero, in which case a single zero is used. Next, the
 649      * exponent is represented by {@code "p"} followed
 650      * by a decimal string of the unbiased exponent as if produced by
 651      * a call to {@link Integer#toString(int) Integer.toString} on the
 652      * exponent value.
 653      *
 654      * <li>If <i>m</i> is a {@code double} value with a subnormal
 655      * representation, the significand is represented by the
 656      * characters {@code "0x0."} followed by a
 657      * hexadecimal representation of the rest of the significand as a
 658      * fraction.  Trailing zeros in the hexadecimal representation are
 659      * removed. Next, the exponent is represented by
 660      * {@code "p-1022"}.  Note that there must be at
 661      * least one nonzero digit in a subnormal significand.
 662      *
 663      * </ul>
 664      *
 665      * </ul>
 666      *
 667      * <table class="striped">
 668      * <caption>Examples</caption>
 669      * <thead>
 670      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
 671      * </thead>
 672      * <tbody style="text-align:right">
 673      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
 674      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
 675      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
 676      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
 677      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
 678      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
 679      * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
 680      *     <td>{@code 0x1.fffffffffffffp1023}</td>
 681      * <tr><th scope="row">{@code Minimum Normal Value}</th>
 682      *     <td>{@code 0x1.0p-1022}</td>
 683      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
 684      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
 685      * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
 686      *     <td>{@code 0x0.0000000000001p-1022}</td>
 687      * </tbody>
 688      * </table>
 689      *
 690      * @apiNote
 691      * This method corresponds to the convertToHexCharacter operation
 692      * defined in IEEE 754.
 693      *
 694      * @param   d   the {@code double} to be converted.
 695      * @return a hex string representation of the argument.
 696      * @since 1.5
 697      */
 698     public static String toHexString(double d) {
 699         /*
 700          * Modeled after the "a" conversion specifier in C99, section
 701          * 7.19.6.1; however, the output of this method is more
 702          * tightly specified.
 703          */
 704         if (!isFinite(d)) {
 705             // For infinity and NaN, use the decimal output.
 706             return Double.toString(d);
 707         }
 708 
 709         long doubleToLongBits = Double.doubleToLongBits(d);
 710         boolean negative = doubleToLongBits < 0;
 711 
 712         if (d == 0.0) {
 713             return negative ? "-0x0.0p0" : "0x0.0p0";
 714         }
 715         d = Math.abs(d);
 716         // Check if the value is subnormal (less than the smallest normal value)
 717         boolean subnormal = d < Double.MIN_NORMAL;
 718 
 719         // Isolate significand bits and OR in a high-order bit
 720         // so that the string representation has a known length.
 721         // This ensures we always have 13 hex digits to work with (52 bits / 4 bits per hex digit)
 722         long signifBits = doubleToLongBits & DoubleConsts.SIGNIF_BIT_MASK;
 723 
 724         // Calculate the number of trailing zeros in the significand (in groups of 4 bits)
 725         // This is used to remove trailing zeros from the hex representation
 726         // We limit to 12 because we want to keep at least 1 hex digit (13 total - 12 = 1)
 727         // assert 0 <= trailingZeros && trailingZeros <= 12
 728         int trailingZeros = Long.numberOfTrailingZeros(signifBits | 1L << 4 * 12) >> 2;
 729 
 730         // Determine the exponent value based on whether the number is subnormal or normal
 731         // Subnormal numbers use the minimum exponent, normal numbers use the actual exponent
 732         int exp = subnormal ? Double.MIN_EXPONENT : Math.getExponent(d);
 733 
 734         // Calculate the total length of the resulting string:
 735         // Sign (optional) + prefix "0x" + implicit bit + "." + hex digits + "p" + exponent
 736         int charlen = (negative ? 1 : 0) // sign character
 737                 + 4 // "0x1." or "0x0."
 738                 + 13 - trailingZeros // hex digits (13 max, minus trailing zeros)
 739                 + 1 // "p"
 740                 + DecimalDigits.stringSize(exp) // exponent
 741                 ;
 742 
 743         // Create a byte array to hold the result characters
 744         byte[] chars = new byte[charlen];
 745         int index = 0;
 746 
 747         // Add the sign character if the number is negative
 748         if (negative) {  // value is negative
 749             chars[index++] = '-';
 750         }
 751 
 752         // Add the prefix and the implicit bit ('1' for normal, '0' for subnormal)
 753         // Subnormal values have a 0 implicit bit; normal values have a 1 implicit bit.
 754         chars[index    ] = '0';      // Hex prefix
 755         chars[index + 1] = 'x';  // Hex prefix
 756         chars[index + 2] = (byte) (subnormal ? '0' : '1');  // Implicit bit
 757         chars[index + 3] = '.';  // Decimal point
 758         index += 4;
 759 
 760         // Convert significand to hex digits manually to avoid creating temporary strings
 761         // Extract the 13 hex digits (52 bits) from signifBits
 762         // We need to extract bits 48-51, 44-47, ..., 0-3 (13 groups of 4 bits)
 763         for (int sh = 4 * 12, end = 4 * trailingZeros; sh >= end; sh -= 4) {
 764             // Extract 4 bits at a time from left to right
 765             // Shift right by sh positions and mask with 0xF
 766             // Integer.digits maps values 0-15 to '0'-'f' characters
 767             chars[index++] = Integer.digits[((int)(signifBits >> sh)) & 0xF];
 768         }
 769 
 770         // Add the exponent indicator
 771         chars[index] = 'p';
 772 
 773         // Append the exponent value to the character array
 774         // This method writes the decimal representation of exp directly into the byte array
 775         DecimalDigits.uncheckedGetCharsLatin1(exp, charlen, chars);
 776 
 777         return String.newStringWithLatin1Bytes(chars);
 778     }
 779 
 780     /**
 781      * Returns a {@code Double} object holding the
 782      * {@code double} value represented by the argument string
 783      * {@code s}.
 784      *
 785      * <p>If {@code s} is {@code null}, then a
 786      * {@code NullPointerException} is thrown.
 787      *
 788      * <p>Leading and trailing whitespace characters in {@code s}
 789      * are ignored.  Whitespace is removed as if by the {@link
 790      * String#trim} method; that is, both ASCII space and control
 791      * characters are removed. The rest of {@code s} should
 792      * constitute a <i>FloatValue</i> as described by the lexical
 793      * syntax rules:
 794      *
 795      * <blockquote>
 796      * <dl>
 797      * <dt><i>FloatValue:</i>
 798      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 799      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 800      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 801      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 802      * <dd><i>SignedInteger</i>
 803      * </dl>
 804      *
 805      * <dl>
 806      * <dt><i>HexFloatingPointLiteral</i>:
 807      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 808      * </dl>
 809      *
 810      * <dl>
 811      * <dt><i>HexSignificand:</i>
 812      * <dd><i>HexNumeral</i>
 813      * <dd><i>HexNumeral</i> {@code .}
 814      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 815      *     </i>{@code .}<i> HexDigits</i>
 816      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 817      *     </i>{@code .} <i>HexDigits</i>
 818      * </dl>
 819      *
 820      * <dl>
 821      * <dt><i>BinaryExponent:</i>
 822      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 823      * </dl>
 824      *
 825      * <dl>
 826      * <dt><i>BinaryExponentIndicator:</i>
 827      * <dd>{@code p}
 828      * <dd>{@code P}
 829      * </dl>
 830      *
 831      * </blockquote>
 832      *
 833      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 834      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 835      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 836      * sections of
 837      * <cite>The Java Language Specification</cite>,
 838      * except that underscores are not accepted between digits.
 839      * If {@code s} does not have the form of
 840      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 841      * is thrown. Otherwise, {@code s} is regarded as
 842      * representing an exact decimal value in the usual
 843      * "computerized scientific notation" or as an exact
 844      * hexadecimal value; this exact numerical value is then
 845      * conceptually converted to an "infinitely precise"
 846      * binary value that is then rounded to type {@code double}
 847      * by the usual round-to-nearest rule of IEEE 754 floating-point
 848      * arithmetic, which includes preserving the sign of a zero
 849      * value.
 850      *
 851      * Note that the round-to-nearest rule also implies overflow and
 852      * underflow behaviour; if the exact value of {@code s} is large
 853      * enough in magnitude (greater than or equal to ({@link
 854      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
 855      * rounding to {@code double} will result in an infinity and if the
 856      * exact value of {@code s} is small enough in magnitude (less
 857      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 858      * result in a zero.
 859      *
 860      * Finally, after rounding a {@code Double} object representing
 861      * this {@code double} value is returned.
 862      *
 863      * <p>Note that trailing format specifiers, specifiers that
 864      * determine the type of a floating-point literal
 865      * ({@code 1.0f} is a {@code float} value;
 866      * {@code 1.0d} is a {@code double} value), do
 867      * <em>not</em> influence the results of this method.  In other
 868      * words, the numerical value of the input string is converted
 869      * directly to the target floating-point type.  The two-step
 870      * sequence of conversions, string to {@code float} followed
 871      * by {@code float} to {@code double}, is <em>not</em>
 872      * equivalent to converting a string directly to
 873      * {@code double}. For example, the {@code float}
 874      * literal {@code 0.1f} is equal to the {@code double}
 875      * value {@code 0.10000000149011612}; the {@code float}
 876      * literal {@code 0.1f} represents a different numerical
 877      * value than the {@code double} literal
 878      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
 879      * represented in a binary floating-point number.)
 880      *
 881      * <p>To avoid calling this method on an invalid string and having
 882      * a {@code NumberFormatException} be thrown, the regular
 883      * expression below can be used to screen the input string:
 884      *
 885      * {@snippet lang="java" :
 886      *  final String Digits     = "(\\p{Digit}+)";
 887      *  final String HexDigits  = "(\\p{XDigit}+)";
 888      *  // an exponent is 'e' or 'E' followed by an optionally
 889      *  // signed decimal integer.
 890      *  final String Exp        = "[eE][+-]?"+Digits;
 891      *  final String fpRegex    =
 892      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
 893      *       "[+-]?(" + // Optional sign character
 894      *       "NaN|" +           // "NaN" string
 895      *       "Infinity|" +      // "Infinity" string
 896      *
 897      *       // A decimal floating-point string representing a finite positive
 898      *       // number without a leading sign has at most five basic pieces:
 899      *       // Digits . Digits ExponentPart FloatTypeSuffix
 900      *       //
 901      *       // Since this method allows integer-only strings as input
 902      *       // in addition to strings of floating-point literals, the
 903      *       // two sub-patterns below are simplifications of the grammar
 904      *       // productions from section 3.10.2 of
 905      *       // The Java Language Specification.
 906      *
 907      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
 908      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
 909      *
 910      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
 911      *       "(\\.("+Digits+")("+Exp+")?)|"+
 912      *
 913      *       // Hexadecimal strings
 914      *       "((" +
 915      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
 916      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
 917      *
 918      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
 919      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
 920      *
 921      *        ")[pP][+-]?" + Digits + "))" +
 922      *       "[fFdD]?))" +
 923      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
 924      *  // @link region substring="Pattern.matches" target ="java.util.regex.Pattern#matches"
 925      *  if (Pattern.matches(fpRegex, myString))
 926      *      Double.valueOf(myString); // Will not throw NumberFormatException
 927      * // @end
 928      *  else {
 929      *      // Perform suitable alternative action
 930      *  }
 931      * }
 932      *
 933      * @apiNote To interpret localized string representations of a
 934      * floating-point value, or string representations that have
 935      * non-ASCII digits, use {@link java.text.NumberFormat}. For
 936      * example,
 937      * {@snippet lang="java" :
 938      *     NumberFormat.getInstance(l).parse(s).doubleValue();
 939      * }
 940      * where {@code l} is the desired locale, or
 941      * {@link java.util.Locale#ROOT} if locale insensitive.
 942      *
 943      * @apiNote
 944      * This method corresponds to the convertFromDecimalCharacter and
 945      * convertFromHexCharacter operations defined in IEEE 754.
 946      *
 947      * @param      s   the string to be parsed.
 948      * @return     a {@code Double} object holding the value
 949      *             represented by the {@code String} argument.
 950      * @throws     NumberFormatException  if the string does not contain a
 951      *             parsable number.
 952      * @see Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 953      */
 954     public static Double valueOf(String s) throws NumberFormatException {
 955         return new Double(parseDouble(s));
 956     }
 957 
 958     /**
 959      * Returns a {@code Double} instance representing the specified
 960      * {@code double} value.
 961      * If a new {@code Double} instance is not required, this method
 962      * should generally be used in preference to the constructor
 963      * {@link #Double(double)}, as this method is likely to yield
 964      * significantly better space and time performance by caching
 965      * frequently requested values.
 966      *
 967      * @param  d a double value.
 968      * @return a {@code Double} instance representing {@code d}.
 969      * @since  1.5
 970      */
 971     @IntrinsicCandidate
 972     public static Double valueOf(double d) {
 973         return new Double(d);
 974     }
 975 
 976     /**
 977      * Returns a new {@code double} initialized to the value
 978      * represented by the specified {@code String}, as performed
 979      * by the {@code valueOf} method of class
 980      * {@code Double}.
 981      *
 982      * @param  s   the string to be parsed.
 983      * @return the {@code double} value represented by the string
 984      *         argument.
 985      * @throws NullPointerException  if the string is null
 986      * @throws NumberFormatException if the string does not contain
 987      *         a parsable {@code double}.
 988      * @see    java.lang.Double#valueOf(String)
 989      * @see    Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 990      * @since 1.2
 991      */
 992     public static double parseDouble(String s) throws NumberFormatException {
 993         return FloatingDecimal.parseDouble(s);
 994     }
 995 
 996     /**
 997      * Returns {@code true} if the specified number is a
 998      * Not-a-Number (NaN) value, {@code false} otherwise.
 999      *
1000      * @apiNote
1001      * This method corresponds to the isNaN operation defined in IEEE
1002      * 754.
1003      *
1004      * @param   v   the value to be tested.
1005      * @return  {@code true} if the value of the argument is NaN;
1006      *          {@code false} otherwise.
1007      */
1008     public static boolean isNaN(double v) {
1009         return (v != v);
1010     }
1011 
1012     /**
1013      * Returns {@code true} if the specified number is infinitely
1014      * large in magnitude, {@code false} otherwise.
1015      *
1016      * @apiNote
1017      * This method corresponds to the isInfinite operation defined in
1018      * IEEE 754.
1019      *
1020      * @param   v   the value to be tested.
1021      * @return  {@code true} if the value of the argument is positive
1022      *          infinity or negative infinity; {@code false} otherwise.
1023      */
1024     @IntrinsicCandidate
1025     public static boolean isInfinite(double v) {
1026         return Math.abs(v) > MAX_VALUE;
1027     }
1028 
1029     /**
1030      * Returns {@code true} if the argument is a finite floating-point
1031      * value; returns {@code false} otherwise (for NaN and infinity
1032      * arguments).
1033      *
1034      * @apiNote
1035      * This method corresponds to the isFinite operation defined in
1036      * IEEE 754.
1037      *
1038      * @param d the {@code double} value to be tested
1039      * @return {@code true} if the argument is a finite
1040      * floating-point value, {@code false} otherwise.
1041      * @since 1.8
1042      */
1043     @IntrinsicCandidate
1044     public static boolean isFinite(double d) {
1045         return Math.abs(d) <= Double.MAX_VALUE;
1046     }
1047 
1048     /**
1049      * The value of the Double.
1050      *
1051      * @serial
1052      */
1053     private final double value;
1054 
1055     /**
1056      * Constructs a newly allocated {@code Double} object that
1057      * represents the primitive {@code double} argument.
1058      *
1059      * @param   value   the value to be represented by the {@code Double}.
1060      *
1061      * @deprecated
1062      * It is rarely appropriate to use this constructor. The static factory
1063      * {@link #valueOf(double)} is generally a better choice, as it is
1064      * likely to yield significantly better space and time performance.
1065      */
1066     @Deprecated(since="9")
1067     public Double(double value) {
1068         this.value = value;
1069     }
1070 
1071     /**
1072      * Constructs a newly allocated {@code Double} object that
1073      * represents the floating-point value of type {@code double}
1074      * represented by the string. The string is converted to a
1075      * {@code double} value as if by the {@code valueOf} method.
1076      *
1077      * @param  s  a string to be converted to a {@code Double}.
1078      * @throws    NumberFormatException if the string does not contain a
1079      *            parsable number.
1080      *
1081      * @deprecated
1082      * It is rarely appropriate to use this constructor.
1083      * Use {@link #parseDouble(String)} to convert a string to a
1084      * {@code double} primitive, or use {@link #valueOf(String)}
1085      * to convert a string to a {@code Double} object.
1086      */
1087     @Deprecated(since="9")
1088     public Double(String s) throws NumberFormatException {
1089         value = parseDouble(s);
1090     }
1091 
1092     /**
1093      * Returns {@code true} if this {@code Double} value is
1094      * a Not-a-Number (NaN), {@code false} otherwise.
1095      *
1096      * @return  {@code true} if the value represented by this object is
1097      *          NaN; {@code false} otherwise.
1098      */
1099     public boolean isNaN() {
1100         return isNaN(value);
1101     }
1102 
1103     /**
1104      * Returns {@code true} if this {@code Double} value is
1105      * infinitely large in magnitude, {@code false} otherwise.
1106      *
1107      * @return  {@code true} if the value represented by this object is
1108      *          positive infinity or negative infinity;
1109      *          {@code false} otherwise.
1110      */
1111     public boolean isInfinite() {
1112         return isInfinite(value);
1113     }
1114 
1115     /**
1116      * Returns a string representation of this {@code Double} object.
1117      * The primitive {@code double} value represented by this
1118      * object is converted to a string exactly as if by the method
1119      * {@code toString} of one argument.
1120      *
1121      * @return  a {@code String} representation of this object.
1122      * @see java.lang.Double#toString(double)
1123      */
1124     public String toString() {
1125         return toString(value);
1126     }
1127 
1128     /**
1129      * Returns the value of this {@code Double} as a {@code byte}
1130      * after a narrowing primitive conversion.
1131      *
1132      * @return  the {@code double} value represented by this object
1133      *          converted to type {@code byte}
1134      * @jls 5.1.3 Narrowing Primitive Conversion
1135      * @since 1.1
1136      */
1137     @Override
1138     public byte byteValue() {
1139         return (byte)value;
1140     }
1141 
1142     /**
1143      * Returns the value of this {@code Double} as a {@code short}
1144      * after a narrowing primitive conversion.
1145      *
1146      * @return  the {@code double} value represented by this object
1147      *          converted to type {@code short}
1148      * @jls 5.1.3 Narrowing Primitive Conversion
1149      * @since 1.1
1150      */
1151     @Override
1152     public short shortValue() {
1153         return (short)value;
1154     }
1155 
1156     /**
1157      * Returns the value of this {@code Double} as an {@code int}
1158      * after a narrowing primitive conversion.
1159      * @jls 5.1.3 Narrowing Primitive Conversion
1160      *
1161      * @apiNote
1162      * This method corresponds to the convertToIntegerTowardZero
1163      * operation defined in IEEE 754.
1164      *
1165      * @return  the {@code double} value represented by this object
1166      *          converted to type {@code int}
1167      */
1168     @Override
1169     public int intValue() {
1170         return (int)value;
1171     }
1172 
1173     /**
1174      * Returns the value of this {@code Double} as a {@code long}
1175      * after a narrowing primitive conversion.
1176      *
1177      * @apiNote
1178      * This method corresponds to the convertToIntegerTowardZero
1179      * operation defined in IEEE 754.
1180      *
1181      * @return  the {@code double} value represented by this object
1182      *          converted to type {@code long}
1183      * @jls 5.1.3 Narrowing Primitive Conversion
1184      */
1185     @Override
1186     public long longValue() {
1187         return (long)value;
1188     }
1189 
1190     /**
1191      * Returns the value of this {@code Double} as a {@code float}
1192      * after a narrowing primitive conversion.
1193      *
1194      * @apiNote
1195      * This method corresponds to the convertFormat operation defined
1196      * in IEEE 754.
1197      *
1198      * @return  the {@code double} value represented by this object
1199      *          converted to type {@code float}
1200      * @jls 5.1.3 Narrowing Primitive Conversion
1201      * @since 1.0
1202      */
1203     @Override
1204     public float floatValue() {
1205         return (float)value;
1206     }
1207 
1208     /**
1209      * Returns the {@code double} value of this {@code Double} object.
1210      *
1211      * @return the {@code double} value represented by this object
1212      */
1213     @Override
1214     @IntrinsicCandidate
1215     public double doubleValue() {
1216         return value;
1217     }
1218 
1219     /**
1220      * Returns a hash code for this {@code Double} object. The
1221      * result is the exclusive OR of the two halves of the
1222      * {@code long} integer bit representation, exactly as
1223      * produced by the method {@link #doubleToLongBits(double)}, of
1224      * the primitive {@code double} value represented by this
1225      * {@code Double} object. That is, the hash code is the value
1226      * of the expression:
1227      *
1228      * <blockquote>
1229      *  {@code (int)(v^(v>>>32))}
1230      * </blockquote>
1231      *
1232      * where {@code v} is defined by:
1233      *
1234      * <blockquote>
1235      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
1236      * </blockquote>
1237      *
1238      * @return  a {@code hash code} value for this object.
1239      */
1240     @Override
1241     public int hashCode() {
1242         return Double.hashCode(value);
1243     }
1244 
1245     /**
1246      * Returns a hash code for a {@code double} value; compatible with
1247      * {@code Double.hashCode()}.
1248      *
1249      * @param value the value to hash
1250      * @return a hash code value for a {@code double} value.
1251      * @since 1.8
1252      */
1253     public static int hashCode(double value) {
1254         return Long.hashCode(doubleToLongBits(value));
1255     }
1256 
1257     /**
1258      * Compares this object against the specified object.  The result
1259      * is {@code true} if and only if the argument is not
1260      * {@code null} and is a {@code Double} object that
1261      * represents a {@code double} that has the same value as the
1262      * {@code double} represented by this object. For this
1263      * purpose, two {@code double} values are considered to be
1264      * the same if and only if the method {@link
1265      * #doubleToLongBits(double)} returns the identical
1266      * {@code long} value when applied to each.
1267      * In other words, {@linkplain ##repEquivalence representation
1268      * equivalence} is used to compare the {@code double} values.
1269      *
1270      * @apiNote
1271      * This method is defined in terms of {@link
1272      * #doubleToLongBits(double)} rather than the {@code ==} operator
1273      * on {@code double} values since the {@code ==} operator does
1274      * <em>not</em> define an equivalence relation and to satisfy the
1275      * {@linkplain Object#equals equals contract} an equivalence
1276      * relation must be implemented; see {@linkplain ##equivalenceRelation
1277      * this discussion for details of floating-point equality and equivalence}.
1278      *
1279      * @see java.lang.Double#doubleToLongBits(double)
1280      * @jls 15.21.1 Numerical Equality Operators == and !=
1281      */
1282     public boolean equals(Object obj) {
1283         return (obj instanceof Double d) &&
1284             (doubleToLongBits(d.value) == doubleToLongBits(value));
1285     }
1286 
1287     /**
1288      * Returns a representation of the specified floating-point value
1289      * according to the IEEE 754 floating-point "double
1290      * format" bit layout.
1291      *
1292      * <p>Bit 63 (the bit that is selected by the mask
1293      * {@code 0x8000000000000000L}) represents the sign of the
1294      * floating-point number. Bits
1295      * 62-52 (the bits that are selected by the mask
1296      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
1297      * (the bits that are selected by the mask
1298      * {@code 0x000fffffffffffffL}) represent the significand
1299      * (sometimes called the mantissa) of the floating-point number.
1300      *
1301      * <p>If the argument is positive infinity, the result is
1302      * {@code 0x7ff0000000000000L}.
1303      *
1304      * <p>If the argument is negative infinity, the result is
1305      * {@code 0xfff0000000000000L}.
1306      *
1307      * <p>If the argument is NaN, the result is
1308      * {@code 0x7ff8000000000000L}.
1309      *
1310      * <p>In all cases, the result is a {@code long} integer that, when
1311      * given to the {@link #longBitsToDouble(long)} method, will produce a
1312      * floating-point value the same as the argument to
1313      * {@code doubleToLongBits} (except all NaN values are
1314      * collapsed to a single "canonical" NaN value).
1315      *
1316      * @param   value   a {@code double} precision floating-point number.
1317      * @return the bits that represent the floating-point number.
1318      */
1319     @IntrinsicCandidate
1320     public static long doubleToLongBits(double value) {
1321         if (!isNaN(value)) {
1322             return doubleToRawLongBits(value);
1323         }
1324         return 0x7ff8000000000000L;
1325     }
1326 
1327     /**
1328      * Returns a representation of the specified floating-point value
1329      * according to the IEEE 754 floating-point "double
1330      * format" bit layout, preserving Not-a-Number (NaN) values.
1331      *
1332      * <p>Bit 63 (the bit that is selected by the mask
1333      * {@code 0x8000000000000000L}) represents the sign of the
1334      * floating-point number. Bits
1335      * 62-52 (the bits that are selected by the mask
1336      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
1337      * (the bits that are selected by the mask
1338      * {@code 0x000fffffffffffffL}) represent the significand
1339      * (sometimes called the mantissa) of the floating-point number.
1340      *
1341      * <p>If the argument is positive infinity, the result is
1342      * {@code 0x7ff0000000000000L}.
1343      *
1344      * <p>If the argument is negative infinity, the result is
1345      * {@code 0xfff0000000000000L}.
1346      *
1347      * <p>If the argument is NaN, the result is the {@code long}
1348      * integer representing the actual NaN value.  Unlike the
1349      * {@code doubleToLongBits} method,
1350      * {@code doubleToRawLongBits} does not collapse all the bit
1351      * patterns encoding a NaN to a single "canonical" NaN
1352      * value.
1353      *
1354      * <p>In all cases, the result is a {@code long} integer that,
1355      * when given to the {@link #longBitsToDouble(long)} method, will
1356      * produce a floating-point value the same as the argument to
1357      * {@code doubleToRawLongBits}.
1358      *
1359      * @param   value   a {@code double} precision floating-point number.
1360      * @return the bits that represent the floating-point number.
1361      * @since 1.3
1362      */
1363     @IntrinsicCandidate
1364     public static native long doubleToRawLongBits(double value);
1365 
1366     /**
1367      * Returns the {@code double} value corresponding to a given
1368      * bit representation.
1369      * The argument is considered to be a representation of a
1370      * floating-point value according to the IEEE 754 floating-point
1371      * "double format" bit layout.
1372      *
1373      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
1374      * is positive infinity.
1375      *
1376      * <p>If the argument is {@code 0xfff0000000000000L}, the result
1377      * is negative infinity.
1378      *
1379      * <p>If the argument is any value in the range
1380      * {@code 0x7ff0000000000001L} through
1381      * {@code 0x7fffffffffffffffL} or in the range
1382      * {@code 0xfff0000000000001L} through
1383      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
1384      * 754 floating-point operation provided by Java can distinguish
1385      * between two NaN values of the same type with different bit
1386      * patterns.  Distinct values of NaN are only distinguishable by
1387      * use of the {@code Double.doubleToRawLongBits} method.
1388      *
1389      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
1390      * values that can be computed from the argument:
1391      *
1392      * {@snippet lang="java" :
1393      * int s = ((bits >> 63) == 0) ? 1 : -1;
1394      * int e = (int)((bits >> 52) & 0x7ffL);
1395      * long m = (e == 0) ?
1396      *                 (bits & 0xfffffffffffffL) << 1 :
1397      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
1398      * }
1399      *
1400      * Then the floating-point result equals the value of the mathematical
1401      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
1402      *
1403      * <p>Note that this method may not be able to return a
1404      * {@code double} NaN with exactly same bit pattern as the
1405      * {@code long} argument.  IEEE 754 distinguishes between two
1406      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
1407      * differences between the two kinds of NaN are generally not
1408      * visible in Java.  Arithmetic operations on signaling NaNs turn
1409      * them into quiet NaNs with a different, but often similar, bit
1410      * pattern.  However, on some processors merely copying a
1411      * signaling NaN also performs that conversion.  In particular,
1412      * copying a signaling NaN to return it to the calling method
1413      * may perform this conversion.  So {@code longBitsToDouble}
1414      * may not be able to return a {@code double} with a
1415      * signaling NaN bit pattern.  Consequently, for some
1416      * {@code long} values,
1417      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
1418      * <i>not</i> equal {@code start}.  Moreover, which
1419      * particular bit patterns represent signaling NaNs is platform
1420      * dependent; although all NaN bit patterns, quiet or signaling,
1421      * must be in the NaN range identified above.
1422      *
1423      * @param   bits   any {@code long} integer.
1424      * @return  the {@code double} floating-point value with the same
1425      *          bit pattern.
1426      */
1427     @IntrinsicCandidate
1428     public static native double longBitsToDouble(long bits);
1429 
1430     /**
1431      * Compares two {@code Double} objects numerically.
1432      *
1433      * This method imposes a total order on {@code Double} objects
1434      * with two differences compared to the incomplete order defined by
1435      * the Java language numerical comparison operators ({@code <, <=,
1436      * ==, >=, >}) on {@code double} values.
1437      *
1438      * <ul><li> A NaN is <em>unordered</em> with respect to other
1439      *          values and unequal to itself under the comparison
1440      *          operators.  This method chooses to define {@code
1441      *          Double.NaN} to be equal to itself and greater than all
1442      *          other {@code double} values (including {@code
1443      *          Double.POSITIVE_INFINITY}).
1444      *
1445      *      <li> Positive zero and negative zero compare equal
1446      *      numerically, but are distinct and distinguishable values.
1447      *      This method chooses to define positive zero ({@code +0.0d}),
1448      *      to be greater than negative zero ({@code -0.0d}).
1449      * </ul>
1450      *
1451      * This ensures that the <i>natural ordering</i> of {@code Double}
1452      * objects imposed by this method is <i>consistent with
1453      * equals</i>; see {@linkplain ##equivalenceRelation this
1454      * discussion for details of floating-point comparison and
1455      * ordering}.
1456      *
1457      * @apiNote
1458      * The inclusion of a total order idiom in the Java SE API
1459      * predates the inclusion of that functionality in the IEEE 754
1460      * standard. The ordering of the totalOrder predicate chosen by
1461      * IEEE 754 differs from the total order chosen by this method.
1462      * While this method treats all NaN representations as being in
1463      * the same equivalence class, the IEEE 754 total order defines an
1464      * ordering based on the bit patterns of the NaN among the
1465      * different NaN representations. The IEEE 754 order regards
1466      * "negative" NaN representations, that is NaN representations
1467      * whose sign bit is set, to be less than any finite or infinite
1468      * value and less than any "positive" NaN. In addition, the IEEE
1469      * order regards all positive NaN values as greater than positive
1470      * infinity. See the IEEE 754 standard for full details of its
1471      * total ordering.
1472      *
1473      * @param   anotherDouble   the {@code Double} to be compared.
1474      * @return  the value {@code 0} if {@code anotherDouble} is
1475      *          numerically equal to this {@code Double}; a value
1476      *          less than {@code 0} if this {@code Double}
1477      *          is numerically less than {@code anotherDouble};
1478      *          and a value greater than {@code 0} if this
1479      *          {@code Double} is numerically greater than
1480      *          {@code anotherDouble}.
1481      *
1482      * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
1483      * @since   1.2
1484      */
1485     @Override
1486     public int compareTo(Double anotherDouble) {
1487         return Double.compare(value, anotherDouble.value);
1488     }
1489 
1490     /**
1491      * Compares the two specified {@code double} values. The sign
1492      * of the integer value returned is the same as that of the
1493      * integer that would be returned by the call:
1494      * <pre>
1495      *    Double.valueOf(d1).compareTo(Double.valueOf(d2))
1496      * </pre>
1497      *
1498      * @apiNote
1499      * One idiom to implement {@linkplain ##repEquivalence
1500      * representation equivalence} on {@code double} values is
1501      * {@snippet lang="java" :
1502      * Double.compare(a, b) == 0
1503      * }
1504      * @param   d1        the first {@code double} to compare
1505      * @param   d2        the second {@code double} to compare
1506      * @return  the value {@code 0} if {@code d1} is
1507      *          numerically equal to {@code d2}; a value less than
1508      *          {@code 0} if {@code d1} is numerically less than
1509      *          {@code d2}; and a value greater than {@code 0}
1510      *          if {@code d1} is numerically greater than
1511      *          {@code d2}.
1512      * @since 1.4
1513      */
1514     public static int compare(double d1, double d2) {
1515         if (d1 < d2)
1516             return -1;           // Neither val is NaN, thisVal is smaller
1517         if (d1 > d2)
1518             return 1;            // Neither val is NaN, thisVal is larger
1519 
1520         // Cannot use doubleToRawLongBits because of possibility of NaNs.
1521         long thisBits    = Double.doubleToLongBits(d1);
1522         long anotherBits = Double.doubleToLongBits(d2);
1523 
1524         return (thisBits == anotherBits ?  0 : // Values are equal
1525                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1526                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1527     }
1528 
1529     /**
1530      * Adds two {@code double} values together as per the + operator.
1531      *
1532      * @apiNote This method corresponds to the addition operation
1533      * defined in IEEE 754.
1534      *
1535      * @param a the first operand
1536      * @param b the second operand
1537      * @return the sum of {@code a} and {@code b}
1538      * @jls 4.2.4 Floating-Point Operations
1539      * @see java.util.function.BinaryOperator
1540      * @since 1.8
1541      */
1542     public static double sum(double a, double b) {
1543         return a + b;
1544     }
1545 
1546     /**
1547      * Returns the greater of two {@code double} values
1548      * as if by calling {@link Math#max(double, double) Math.max}.
1549      *
1550      * @apiNote
1551      * This method corresponds to the maximum operation defined in
1552      * IEEE 754.
1553      *
1554      * @param a the first operand
1555      * @param b the second operand
1556      * @return the greater of {@code a} and {@code b}
1557      * @see java.util.function.BinaryOperator
1558      * @since 1.8
1559      */
1560     public static double max(double a, double b) {
1561         return Math.max(a, b);
1562     }
1563 
1564     /**
1565      * Returns the smaller of two {@code double} values
1566      * as if by calling {@link Math#min(double, double) Math.min}.
1567      *
1568      * @apiNote
1569      * This method corresponds to the minimum operation defined in
1570      * IEEE 754.
1571      *
1572      * @param a the first operand
1573      * @param b the second operand
1574      * @return the smaller of {@code a} and {@code b}.
1575      * @see java.util.function.BinaryOperator
1576      * @since 1.8
1577      */
1578     public static double min(double a, double b) {
1579         return Math.min(a, b);
1580     }
1581 
1582     /**
1583      * Returns an {@link Optional} containing the nominal descriptor for this
1584      * instance, which is the instance itself.
1585      *
1586      * @return an {@link Optional} describing the {@linkplain Double} instance
1587      * @since 12
1588      */
1589     @Override
1590     public Optional<Double> describeConstable() {
1591         return Optional.of(this);
1592     }
1593 
1594     /**
1595      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1596      * the instance itself.
1597      *
1598      * @param lookup ignored
1599      * @return the {@linkplain Double} instance
1600      * @since 12
1601      */
1602     @Override
1603     public Double resolveConstantDesc(MethodHandles.Lookup lookup) {
1604         return this;
1605     }
1606 
1607     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1608     @java.io.Serial
1609     private static final long serialVersionUID = -9172774392245257468L;
1610 }