1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatingDecimal; 34 import jdk.internal.math.DoubleConsts; 35 import jdk.internal.math.DoubleToDecimal; 36 import jdk.internal.value.DeserializeConstructor; 37 import jdk.internal.vm.annotation.IntrinsicCandidate; 38 39 /** 40 * The {@code Double} class is the {@linkplain 41 * java.lang##wrapperClass wrapper class} for values of the primitive 42 * type {@code double}. An object of type {@code Double} contains a 43 * single field whose type is {@code double}. 44 * 45 * <p>In addition, this class provides several methods for converting a 46 * {@code double} to a {@code String} and a 47 * {@code String} to a {@code double}, as well as other 48 * constants and methods useful when dealing with a 49 * {@code double}. 50 * 51 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 52 * class; programmers should treat instances that are {@linkplain #equals(Object) equal} 53 * as interchangeable and should not use instances for synchronization, mutexes, or 54 * with {@linkplain java.lang.ref.Reference object references}. 55 * 56 * <div class="preview-block"> 57 * <div class="preview-comment"> 58 * When preview features are enabled, {@code Double} is a {@linkplain Class#isValue value class}. 59 * Use of value class instances for synchronization, mutexes, or with 60 * {@linkplain java.lang.ref.Reference object references} result in 61 * {@link IdentityException}. 62 * </div> 63 * </div> 64 * 65 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 66 * and Comparison</a></h2> 67 * 68 * IEEE 754 floating-point values include finite nonzero values, 69 * signed zeros ({@code +0.0} and {@code -0.0}), signed infinities 70 * ({@linkplain Double#POSITIVE_INFINITY positive infinity} and 71 * {@linkplain Double#NEGATIVE_INFINITY negative infinity}), and 72 * {@linkplain Double#NaN NaN} (not-a-number). 73 * 74 * <p>An <em>equivalence relation</em> on a set of values is a boolean 75 * relation on pairs of values that is reflexive, symmetric, and 76 * transitive. For more discussion of equivalence relations and object 77 * equality, see the {@link Object#equals Object.equals} 78 * specification. An equivalence relation partitions the values it 79 * operates over into sets called <i>equivalence classes</i>. All the 80 * members of the equivalence class are equal to each other under the 81 * relation. An equivalence class may contain only a single member. At 82 * least for some purposes, all the members of an equivalence class 83 * are substitutable for each other. In particular, in a numeric 84 * expression equivalent values can be <em>substituted</em> for one 85 * another without changing the result of the expression, meaning 86 * changing the equivalence class of the result of the expression. 87 * 88 * <p>Notably, the built-in {@code ==} operation on floating-point 89 * values is <em>not</em> an equivalence relation. Despite not 90 * defining an equivalence relation, the semantics of the IEEE 754 91 * {@code ==} operator were deliberately designed to meet other needs 92 * of numerical computation. There are two exceptions where the 93 * properties of an equivalence relation are not satisfied by {@code 94 * ==} on floating-point values: 95 * 96 * <ul> 97 * 98 * <li>If {@code v1} and {@code v2} are both NaN, then {@code v1 99 * == v2} has the value {@code false}. Therefore, for two NaN 100 * arguments the <em>reflexive</em> property of an equivalence 101 * relation is <em>not</em> satisfied by the {@code ==} operator. 102 * 103 * <li>If {@code v1} represents {@code +0.0} while {@code v2} 104 * represents {@code -0.0}, or vice versa, then {@code v1 == v2} has 105 * the value {@code true} even though {@code +0.0} and {@code -0.0} 106 * are distinguishable under various floating-point operations. For 107 * example, {@code 1.0/+0.0} evaluates to positive infinity while 108 * {@code 1.0/-0.0} evaluates to <em>negative</em> infinity and 109 * positive infinity and negative infinity are neither equal to each 110 * other nor equivalent to each other. Thus, while a signed zero input 111 * most commonly determines the sign of a zero result, because of 112 * dividing by zero, {@code +0.0} and {@code -0.0} may not be 113 * substituted for each other in general. The sign of a zero input 114 * also has a non-substitutable effect on the result of some math 115 * library methods. 116 * 117 * </ul> 118 * 119 * <p>For ordered comparisons using the built-in comparison operators 120 * ({@code <}, {@code <=}, etc.), NaN values have another anomalous 121 * situation: a NaN is neither less than, nor greater than, nor equal 122 * to any value, including itself. This means the <i>trichotomy of 123 * comparison</i> does <em>not</em> hold. 124 * 125 * <p>To provide the appropriate semantics for {@code equals} and 126 * {@code compareTo} methods, those methods cannot simply be wrappers 127 * around {@code ==} or ordered comparison operations. Instead, {@link 128 * Double#equals equals} uses {@linkplain ##repEquivalence representation 129 * equivalence}, defining NaN arguments to be equal to each other, 130 * restoring reflexivity, and defining {@code +0.0} to <em>not</em> be 131 * equal to {@code -0.0}. For comparisons, {@link Double#compareTo 132 * compareTo} defines a total order where {@code -0.0} is less than 133 * {@code +0.0} and where a NaN is equal to itself and considered 134 * greater than positive infinity. 135 * 136 * <p>The operational semantics of {@code equals} and {@code 137 * compareTo} are expressed in terms of {@linkplain #doubleToLongBits 138 * bit-wise converting} the floating-point values to integral values. 139 * 140 * <p>The <em>natural ordering</em> implemented by {@link #compareTo 141 * compareTo} is {@linkplain Comparable consistent with equals}. That 142 * is, two objects are reported as equal by {@code equals} if and only 143 * if {@code compareTo} on those objects returns zero. 144 * 145 * <p>The adjusted behaviors defined for {@code equals} and {@code 146 * compareTo} allow instances of wrapper classes to work properly with 147 * conventional data structures. For example, defining NaN 148 * values to be {@code equals} to one another allows NaN to be used as 149 * an element of a {@link java.util.HashSet HashSet} or as the key of 150 * a {@link java.util.HashMap HashMap}. Similarly, defining {@code 151 * compareTo} as a total ordering, including {@code +0.0}, {@code 152 * -0.0}, and NaN, allows instances of wrapper classes to be used as 153 * elements of a {@link java.util.SortedSet SortedSet} or as keys of a 154 * {@link java.util.SortedMap SortedMap}. 155 * 156 * <p>Comparing numerical equality to various useful equivalence 157 * relations that can be defined over floating-point values: 158 * 159 * <dl> 160 * <dt><a id=fpNumericalEq></a><dfn>{@index "numerical equality"}</dfn> ({@code ==} 161 * operator): (<em>Not</em> an equivalence relation)</dt> 162 * <dd>Two floating-point values represent the same extended real 163 * number. The extended real numbers are the real numbers augmented 164 * with positive infinity and negative infinity. Under numerical 165 * equality, {@code +0.0} and {@code -0.0} are equal since they both 166 * map to the same real value, 0. A NaN does not map to any real 167 * number and is not equal to any value, including itself. 168 * </dd> 169 * 170 * <dt><dfn>{@index "bit-wise equivalence"}</dfn>:</dt> 171 * <dd>The bits of the two floating-point values are the same. This 172 * equivalence relation for {@code double} values {@code a} and {@code 173 * b} is implemented by the expression 174 * <br>{@code Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(a) == Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(b)}<br> 175 * Under this relation, {@code +0.0} and {@code -0.0} are 176 * distinguished from each other and every bit pattern encoding a NaN 177 * is distinguished from every other bit pattern encoding a NaN. 178 * </dd> 179 * 180 * <dt><dfn><a id=repEquivalence></a>{@index "representation equivalence"}</dfn>:</dt> 181 * <dd>The two floating-point values represent the same IEEE 754 182 * <i>datum</i>. In particular, for {@linkplain #isFinite(double) 183 * finite} values, the sign, {@linkplain Math#getExponent(double) 184 * exponent}, and significand components of the floating-point values 185 * are the same. Under this relation: 186 * <ul> 187 * <li> {@code +0.0} and {@code -0.0} are distinguished from each other. 188 * <li> every bit pattern encoding a NaN is considered equivalent to each other 189 * <li> positive infinity is equivalent to positive infinity; negative 190 * infinity is equivalent to negative infinity. 191 * </ul> 192 * Expressions implementing this equivalence relation include: 193 * <ul> 194 * <li>{@code Double.doubleToLongBits(a) == Double.doubleToLongBits(b)} 195 * <li>{@code Double.valueOf(a).equals(Double.valueOf(b))} 196 * <li>{@code Double.compare(a, b) == 0} 197 * </ul> 198 * Note that representation equivalence is often an appropriate notion 199 * of equivalence to test the behavior of {@linkplain StrictMath math 200 * libraries}. 201 * </dd> 202 * </dl> 203 * 204 * For two binary floating-point values {@code a} and {@code b}, if 205 * neither of {@code a} and {@code b} is zero or NaN, then the three 206 * relations numerical equality, bit-wise equivalence, and 207 * representation equivalence of {@code a} and {@code b} have the same 208 * {@code true}/{@code false} value. In other words, for binary 209 * floating-point values, the three relations only differ if at least 210 * one argument is zero or NaN. 211 * 212 * <h2><a id=decimalToBinaryConversion>Decimal ↔ Binary Conversion Issues</a></h2> 213 * 214 * Many surprising results of binary floating-point arithmetic trace 215 * back to aspects of decimal to binary conversion and binary to 216 * decimal conversion. While integer values can be exactly represented 217 * in any base, which fractional values can be exactly represented in 218 * a base is a function of the base. For example, in base 10, 1/3 is a 219 * repeating fraction (0.33333....); but in base 3, 1/3 is exactly 220 * 0.1<sub>(3)</sub>, that is 1 × 3<sup>-1</sup>. 221 * Similarly, in base 10, 1/10 is exactly representable as 0.1 222 * (1 × 10<sup>-1</sup>), but in base 2, it is a 223 * repeating fraction (0.0001100110011...<sub>(2)</sub>). 224 * 225 * <p>Values of the {@code float} type have {@value Float#PRECISION} 226 * bits of precision and values of the {@code double} type have 227 * {@value Double#PRECISION} bits of precision. Therefore, since 0.1 228 * is a repeating fraction in base 2 with a four-bit repeat, {@code 229 * 0.1f} != {@code 0.1d}. In more detail, including hexadecimal 230 * floating-point literals: 231 * 232 * <ul> 233 * <li>The exact numerical value of {@code 0.1f} ({@code 0x1.99999a0000000p-4f}) is 234 * 0.100000001490116119384765625. 235 * <li>The exact numerical value of {@code 0.1d} ({@code 0x1.999999999999ap-4d}) is 236 * 0.1000000000000000055511151231257827021181583404541015625. 237 * </ul> 238 * 239 * These are the closest {@code float} and {@code double} values, 240 * respectively, to the numerical value of 0.1. These results are 241 * consistent with a {@code float} value having the equivalent of 6 to 242 * 9 digits of decimal precision and a {@code double} value having the 243 * equivalent of 15 to 17 digits of decimal precision. (The 244 * equivalent precision varies according to the different relative 245 * densities of binary and decimal values at different points along the 246 * real number line.) 247 * 248 * <p>This representation hazard of decimal fractions is one reason to 249 * use caution when storing monetary values as {@code float} or {@code 250 * double}. Alternatives include: 251 * <ul> 252 * <li>using {@link java.math.BigDecimal BigDecimal} to store decimal 253 * fractional values exactly 254 * 255 * <li>scaling up so the monetary value is an integer — for 256 * example, multiplying by 100 if the value is denominated in cents or 257 * multiplying by 1000 if the value is denominated in mills — 258 * and then storing that scaled value in an integer type 259 * 260 *</ul> 261 * 262 * <p>For each finite floating-point value and a given floating-point 263 * type, there is a contiguous region of the real number line which 264 * maps to that value. Under the default round to nearest rounding 265 * policy (JLS {@jls 15.4}), this contiguous region for a value is 266 * typically one {@linkplain Math#ulp ulp} (unit in the last place) 267 * wide and centered around the exactly representable value. (At 268 * exponent boundaries, the region is asymmetrical and larger on the 269 * side with the larger exponent.) For example, for {@code 0.1f}, the 270 * region can be computed as follows: 271 * 272 * <br>// Numeric values listed are exact values 273 * <br>oneTenthApproxAsFloat = 0.100000001490116119384765625; 274 * <br>ulpOfoneTenthApproxAsFloat = Math.ulp(0.1f) = 7.450580596923828125E-9; 275 * <br>// Numeric range that is converted to the float closest to 0.1, _excludes_ endpoints 276 * <br>(oneTenthApproxAsFloat - ½ulpOfoneTenthApproxAsFloat, oneTenthApproxAsFloat + ½ulpOfoneTenthApproxAsFloat) = 277 * <br>(0.0999999977648258209228515625, 0.1000000052154064178466796875) 278 * 279 * <p>In particular, a correctly rounded decimal to binary conversion 280 * of any string representing a number in this range, say by {@link 281 * Float#parseFloat(String)}, will be converted to the same value: 282 * 283 * {@snippet lang="java" : 284 * Float.parseFloat("0.0999999977648258209228515625000001"); // rounds up to oneTenthApproxAsFloat 285 * Float.parseFloat("0.099999998"); // rounds up to oneTenthApproxAsFloat 286 * Float.parseFloat("0.1"); // rounds up to oneTenthApproxAsFloat 287 * Float.parseFloat("0.100000001490116119384765625"); // exact conversion 288 * Float.parseFloat("0.100000005215406417846679687"); // rounds down to oneTenthApproxAsFloat 289 * Float.parseFloat("0.100000005215406417846679687499999"); // rounds down to oneTenthApproxAsFloat 290 * } 291 * 292 * <p>Similarly, an analogous range can be constructed for the {@code 293 * double} type based on the exact value of {@code double} 294 * approximation to {@code 0.1d} and the numerical value of {@code 295 * Math.ulp(0.1d)} and likewise for other particular numerical values 296 * in the {@code float} and {@code double} types. 297 * 298 * <p>As seen in the above conversions, compared to the exact 299 * numerical value the operation would have without rounding, the same 300 * floating-point value as a result can be: 301 * <ul> 302 * <li>greater than the exact result 303 * <li>equal to the exact result 304 * <li>less than the exact result 305 * </ul> 306 * 307 * A floating-point value doesn't "know" whether it was the result of 308 * rounding up, or rounding down, or an exact operation; it contains 309 * no history of how it was computed. Consequently, the sum of 310 * {@snippet lang="java" : 311 * 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f; 312 * // Numerical value of computed sum: 1.00000011920928955078125, 313 * // the next floating-point value larger than 1.0f, equal to Math.nextUp(1.0f). 314 * } 315 * or 316 * {@snippet lang="java" : 317 * 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d; 318 * // Numerical value of computed sum: 0.99999999999999988897769753748434595763683319091796875, 319 * // the next floating-point value smaller than 1.0d, equal to Math.nextDown(1.0d). 320 * } 321 * 322 * should <em>not</em> be expected to be exactly equal to 1.0, but 323 * only to be close to 1.0. Consequently, the following code is an 324 * infinite loop: 325 * 326 * {@snippet lang="java" : 327 * double d = 0.0; 328 * while (d != 1.0) { // Surprising infinite loop 329 * d += 0.1; // Sum never _exactly_ equals 1.0 330 * } 331 * } 332 * 333 * Instead, use an integer loop count for counted loops: 334 * 335 * {@snippet lang="java" : 336 * double d = 0.0; 337 * for (int i = 0; i < 10; i++) { 338 * d += 0.1; 339 * } // Value of d is equal to Math.nextDown(1.0). 340 * } 341 * 342 * or test against a floating-point limit using ordered comparisons 343 * ({@code <}, {@code <=}, {@code >}, {@code >=}): 344 * 345 * {@snippet lang="java" : 346 * double d = 0.0; 347 * while (d <= 1.0) { 348 * d += 0.1; 349 * } // Value of d approximately 1.0999999999999999 350 * } 351 * 352 * While floating-point arithmetic may have surprising results, IEEE 353 * 754 floating-point arithmetic follows a principled design and its 354 * behavior is predictable on the Java platform. 355 * 356 * @jls 4.2.3 Floating-Point Types and Values 357 * @jls 4.2.4 Floating-Point Operations 358 * @jls 15.21.1 Numerical Equality Operators == and != 359 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 360 * 361 * @see <a href="https://standards.ieee.org/ieee/754/6210/"> 362 * <cite>IEEE Standard for Floating-Point Arithmetic</cite></a> 363 * 364 * @author Lee Boynton 365 * @author Arthur van Hoff 366 * @author Joseph D. Darcy 367 * @since 1.0 368 */ 369 @jdk.internal.MigratedValueClass 370 @jdk.internal.ValueBased 371 public final class Double extends Number 372 implements Comparable<Double>, Constable, ConstantDesc { 373 /** 374 * A constant holding the positive infinity of type 375 * {@code double}. It is equal to the value returned by 376 * {@code Double.longBitsToDouble(0x7ff0000000000000L)}. 377 */ 378 public static final double POSITIVE_INFINITY = 1.0 / 0.0; 379 380 /** 381 * A constant holding the negative infinity of type 382 * {@code double}. It is equal to the value returned by 383 * {@code Double.longBitsToDouble(0xfff0000000000000L)}. 384 */ 385 public static final double NEGATIVE_INFINITY = -1.0 / 0.0; 386 387 /** 388 * A constant holding a Not-a-Number (NaN) value of type 389 * {@code double}. It is equivalent to the value returned by 390 * {@code Double.longBitsToDouble(0x7ff8000000000000L)}. 391 */ 392 public static final double NaN = 0.0d / 0.0; 393 394 /** 395 * A constant holding the largest positive finite value of type 396 * {@code double}, 397 * (2-2<sup>-52</sup>)·2<sup>1023</sup>. It is equal to 398 * the hexadecimal floating-point literal 399 * {@code 0x1.fffffffffffffP+1023} and also equal to 400 * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}. 401 */ 402 public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308 403 404 /** 405 * A constant holding the smallest positive normal value of type 406 * {@code double}, 2<sup>-1022</sup>. It is equal to the 407 * hexadecimal floating-point literal {@code 0x1.0p-1022} and also 408 * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}. 409 * 410 * @since 1.6 411 */ 412 public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308 413 414 /** 415 * A constant holding the smallest positive nonzero value of type 416 * {@code double}, 2<sup>-1074</sup>. It is equal to the 417 * hexadecimal floating-point literal 418 * {@code 0x0.0000000000001P-1022} and also equal to 419 * {@code Double.longBitsToDouble(0x1L)}. 420 */ 421 public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324 422 423 /** 424 * The number of bits used to represent a {@code double} value, 425 * {@value}. 426 * 427 * @since 1.5 428 */ 429 public static final int SIZE = 64; 430 431 /** 432 * The number of bits in the significand of a {@code double} 433 * value, {@value}. This is the parameter N in section {@jls 434 * 4.2.3} of <cite>The Java Language Specification</cite>. 435 * 436 * @since 19 437 */ 438 public static final int PRECISION = 53; 439 440 /** 441 * Maximum exponent a finite {@code double} variable may have, 442 * {@value}. It is equal to the value returned by {@code 443 * Math.getExponent(Double.MAX_VALUE)}. 444 * 445 * @since 1.6 446 */ 447 public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 1023 448 449 /** 450 * Minimum exponent a normalized {@code double} variable may have, 451 * {@value}. It is equal to the value returned by {@code 452 * Math.getExponent(Double.MIN_NORMAL)}. 453 * 454 * @since 1.6 455 */ 456 public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -1022 457 458 /** 459 * The number of bytes used to represent a {@code double} value, 460 * {@value}. 461 * 462 * @since 1.8 463 */ 464 public static final int BYTES = SIZE / Byte.SIZE; 465 466 /** 467 * The {@code Class} instance representing the primitive type 468 * {@code double}. 469 * 470 * @since 1.1 471 */ 472 public static final Class<Double> TYPE = Class.getPrimitiveClass("double"); 473 474 /** 475 * Returns a string representation of the {@code double} 476 * argument. All characters mentioned below are ASCII characters. 477 * <ul> 478 * <li>If the argument is NaN, the result is the string 479 * "{@code NaN}". 480 * <li>Otherwise, the result is a string that represents the sign and 481 * magnitude (absolute value) of the argument. If the sign is negative, 482 * the first character of the result is '{@code -}' 483 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 484 * appears in the result. As for the magnitude <i>m</i>: 485 * <ul> 486 * <li>If <i>m</i> is infinity, it is represented by the characters 487 * {@code "Infinity"}; thus, positive infinity produces the result 488 * {@code "Infinity"} and negative infinity produces the result 489 * {@code "-Infinity"}. 490 * 491 * <li>If <i>m</i> is zero, it is represented by the characters 492 * {@code "0.0"}; thus, negative zero produces the result 493 * {@code "-0.0"} and positive zero produces the result 494 * {@code "0.0"}. 495 * 496 * <li> Otherwise <i>m</i> is positive and finite. 497 * It is converted to a string in two stages: 498 * <ul> 499 * <li> <em>Selection of a decimal</em>: 500 * A well-defined decimal <i>d</i><sub><i>m</i></sub> 501 * is selected to represent <i>m</i>. 502 * This decimal is (almost always) the <em>shortest</em> one that 503 * rounds to <i>m</i> according to the round to nearest 504 * rounding policy of IEEE 754 floating-point arithmetic. 505 * <li> <em>Formatting as a string</em>: 506 * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string, 507 * either in plain or in computerized scientific notation, 508 * depending on its value. 509 * </ul> 510 * </ul> 511 * </ul> 512 * 513 * <p>A <em>decimal</em> is a number of the form 514 * <i>s</i>×10<sup><i>i</i></sup> 515 * for some (unique) integers <i>s</i> > 0 and <i>i</i> such that 516 * <i>s</i> is not a multiple of 10. 517 * These integers are the <em>significand</em> and 518 * the <em>exponent</em>, respectively, of the decimal. 519 * The <em>length</em> of the decimal is the (unique) 520 * positive integer <i>n</i> meeting 521 * 10<sup><i>n</i>-1</sup> ≤ <i>s</i> < 10<sup><i>n</i></sup>. 522 * 523 * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i> 524 * is defined as follows: 525 * <ul> 526 * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i> 527 * according to the usual <em>round to nearest</em> rounding policy of 528 * IEEE 754 floating-point arithmetic. 529 * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>. 530 * <li>When <i>p</i> ≥ 2, let <i>T</i> be the set of all decimals 531 * in <i>R</i> with length <i>p</i>. 532 * Otherwise, let <i>T</i> be the set of all decimals 533 * in <i>R</i> with length 1 or 2. 534 * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i> 535 * that is closest to <i>m</i>. 536 * Or if there are two such decimals in <i>T</i>, 537 * select the one with the even significand. 538 * </ul> 539 * 540 * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub> 541 * is then formatted. 542 * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and 543 * length of <i>d</i><sub><i>m</i></sub>, respectively. 544 * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let 545 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub> 546 * be the usual decimal expansion of <i>s</i>. 547 * Note that <i>s</i><sub>1</sub> ≠ 0 548 * and <i>s</i><sub><i>n</i></sub> ≠ 0. 549 * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'} 550 * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}. 551 * <ul> 552 * <li>Case -3 ≤ <i>e</i> < 0: 553 * <i>d</i><sub><i>m</i></sub> is formatted as 554 * <code>0.0</code>…<code>0</code><!-- 555 * --><i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub>, 556 * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between 557 * the decimal point and <i>s</i><sub>1</sub>. 558 * For example, 123 × 10<sup>-4</sup> is formatted as 559 * {@code 0.0123}. 560 * <li>Case 0 ≤ <i>e</i> < 7: 561 * <ul> 562 * <li>Subcase <i>i</i> ≥ 0: 563 * <i>d</i><sub><i>m</i></sub> is formatted as 564 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub><!-- 565 * --><code>0</code>…<code>0.0</code>, 566 * where there are exactly <i>i</i> zeroes 567 * between <i>s</i><sub><i>n</i></sub> and the decimal point. 568 * For example, 123 × 10<sup>2</sup> is formatted as 569 * {@code 12300.0}. 570 * <li>Subcase <i>i</i> < 0: 571 * <i>d</i><sub><i>m</i></sub> is formatted as 572 * <i>s</i><sub>1</sub>…<!-- 573 * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!-- 574 * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>…<!-- 575 * --><i>s</i><sub><i>n</i></sub>, 576 * where there are exactly -<i>i</i> digits to the right of 577 * the decimal point. 578 * For example, 123 × 10<sup>-1</sup> is formatted as 579 * {@code 12.3}. 580 * </ul> 581 * <li>Case <i>e</i> < -3 or <i>e</i> ≥ 7: 582 * computerized scientific notation is used to format 583 * <i>d</i><sub><i>m</i></sub>. 584 * Here <i>e</i> is formatted as by {@link Integer#toString(int)}. 585 * <ul> 586 * <li>Subcase <i>n</i> = 1: 587 * <i>d</i><sub><i>m</i></sub> is formatted as 588 * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>. 589 * For example, 1 × 10<sup>23</sup> is formatted as 590 * {@code 1.0E23}. 591 * <li>Subcase <i>n</i> > 1: 592 * <i>d</i><sub><i>m</i></sub> is formatted as 593 * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!-- 594 * -->…<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>. 595 * For example, 123 × 10<sup>-21</sup> is formatted as 596 * {@code 1.23E-19}. 597 * </ul> 598 * </ul> 599 * 600 * <p>To create localized string representations of a floating-point 601 * value, use subclasses of {@link java.text.NumberFormat}. 602 * 603 * @apiNote 604 * This method corresponds to the general functionality of the 605 * convertToDecimalCharacter operation defined in IEEE 754; 606 * however, that operation is defined in terms of specifying the 607 * number of significand digits used in the conversion. 608 * Code to do such a conversion in the Java platform includes 609 * converting the {@code double} to a {@link java.math.BigDecimal 610 * BigDecimal} exactly and then rounding the {@code BigDecimal} to 611 * the desired number of digits; sample code: 612 * {@snippet lang=java : 613 * double d = 0.1; 614 * int digits = 25; 615 * BigDecimal bd = new BigDecimal(d); 616 * String result = bd.round(new MathContext(digits, RoundingMode.HALF_UP)); 617 * // 0.1000000000000000055511151 618 * } 619 * 620 * @param d the {@code double} to be converted. 621 * @return a string representation of the argument. 622 */ 623 public static String toString(double d) { 624 return DoubleToDecimal.toString(d); 625 } 626 627 /** 628 * Returns a hexadecimal string representation of the 629 * {@code double} argument. All characters mentioned below 630 * are ASCII characters. 631 * 632 * <ul> 633 * <li>If the argument is NaN, the result is the string 634 * "{@code NaN}". 635 * <li>Otherwise, the result is a string that represents the sign 636 * and magnitude of the argument. If the sign is negative, the 637 * first character of the result is '{@code -}' 638 * ({@code '\u005Cu002D'}); if the sign is positive, no sign 639 * character appears in the result. As for the magnitude <i>m</i>: 640 * 641 * <ul> 642 * <li>If <i>m</i> is infinity, it is represented by the string 643 * {@code "Infinity"}; thus, positive infinity produces the 644 * result {@code "Infinity"} and negative infinity produces 645 * the result {@code "-Infinity"}. 646 * 647 * <li>If <i>m</i> is zero, it is represented by the string 648 * {@code "0x0.0p0"}; thus, negative zero produces the result 649 * {@code "-0x0.0p0"} and positive zero produces the result 650 * {@code "0x0.0p0"}. 651 * 652 * <li>If <i>m</i> is a {@code double} value with a 653 * normalized representation, substrings are used to represent the 654 * significand and exponent fields. The significand is 655 * represented by the characters {@code "0x1."} 656 * followed by a lowercase hexadecimal representation of the rest 657 * of the significand as a fraction. Trailing zeros in the 658 * hexadecimal representation are removed unless all the digits 659 * are zero, in which case a single zero is used. Next, the 660 * exponent is represented by {@code "p"} followed 661 * by a decimal string of the unbiased exponent as if produced by 662 * a call to {@link Integer#toString(int) Integer.toString} on the 663 * exponent value. 664 * 665 * <li>If <i>m</i> is a {@code double} value with a subnormal 666 * representation, the significand is represented by the 667 * characters {@code "0x0."} followed by a 668 * hexadecimal representation of the rest of the significand as a 669 * fraction. Trailing zeros in the hexadecimal representation are 670 * removed. Next, the exponent is represented by 671 * {@code "p-1022"}. Note that there must be at 672 * least one nonzero digit in a subnormal significand. 673 * 674 * </ul> 675 * 676 * </ul> 677 * 678 * <table class="striped"> 679 * <caption>Examples</caption> 680 * <thead> 681 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 682 * </thead> 683 * <tbody style="text-align:right"> 684 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 685 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 686 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 687 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 688 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 689 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 690 * <tr><th scope="row">{@code Double.MAX_VALUE}</th> 691 * <td>{@code 0x1.fffffffffffffp1023}</td> 692 * <tr><th scope="row">{@code Minimum Normal Value}</th> 693 * <td>{@code 0x1.0p-1022}</td> 694 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 695 * <td>{@code 0x0.fffffffffffffp-1022}</td> 696 * <tr><th scope="row">{@code Double.MIN_VALUE}</th> 697 * <td>{@code 0x0.0000000000001p-1022}</td> 698 * </tbody> 699 * </table> 700 * 701 * @apiNote 702 * This method corresponds to the convertToHexCharacter operation 703 * defined in IEEE 754. 704 * 705 * @param d the {@code double} to be converted. 706 * @return a hex string representation of the argument. 707 * @since 1.5 708 * @author Joseph D. Darcy 709 */ 710 public static String toHexString(double d) { 711 /* 712 * Modeled after the "a" conversion specifier in C99, section 713 * 7.19.6.1; however, the output of this method is more 714 * tightly specified. 715 */ 716 if (!isFinite(d) ) 717 // For infinity and NaN, use the decimal output. 718 return Double.toString(d); 719 else { 720 // Initialized to maximum size of output. 721 StringBuilder answer = new StringBuilder(24); 722 723 if (Math.copySign(1.0, d) == -1.0) // value is negative, 724 answer.append("-"); // so append sign info 725 726 answer.append("0x"); 727 728 d = Math.abs(d); 729 730 if(d == 0.0) { 731 answer.append("0.0p0"); 732 } else { 733 boolean subnormal = (d < Double.MIN_NORMAL); 734 735 // Isolate significand bits and OR in a high-order bit 736 // so that the string representation has a known 737 // length. 738 long signifBits = (Double.doubleToLongBits(d) 739 & DoubleConsts.SIGNIF_BIT_MASK) | 740 0x1000000000000000L; 741 742 // Subnormal values have a 0 implicit bit; normal 743 // values have a 1 implicit bit. 744 answer.append(subnormal ? "0." : "1."); 745 746 // Isolate the low-order 13 digits of the hex 747 // representation. If all the digits are zero, 748 // replace with a single 0; otherwise, remove all 749 // trailing zeros. 750 String signif = Long.toHexString(signifBits).substring(3,16); 751 answer.append(signif.equals("0000000000000") ? // 13 zeros 752 "0": 753 signif.replaceFirst("0{1,12}$", "")); 754 755 answer.append('p'); 756 // If the value is subnormal, use the E_min exponent 757 // value for double; otherwise, extract and report d's 758 // exponent (the representation of a subnormal uses 759 // E_min -1). 760 answer.append(subnormal ? 761 Double.MIN_EXPONENT: 762 Math.getExponent(d)); 763 } 764 return answer.toString(); 765 } 766 } 767 768 /** 769 * Returns a {@code Double} object holding the 770 * {@code double} value represented by the argument string 771 * {@code s}. 772 * 773 * <p>If {@code s} is {@code null}, then a 774 * {@code NullPointerException} is thrown. 775 * 776 * <p>Leading and trailing whitespace characters in {@code s} 777 * are ignored. Whitespace is removed as if by the {@link 778 * String#trim} method; that is, both ASCII space and control 779 * characters are removed. The rest of {@code s} should 780 * constitute a <i>FloatValue</i> as described by the lexical 781 * syntax rules: 782 * 783 * <blockquote> 784 * <dl> 785 * <dt><i>FloatValue:</i> 786 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 787 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 788 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 789 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 790 * <dd><i>SignedInteger</i> 791 * </dl> 792 * 793 * <dl> 794 * <dt><i>HexFloatingPointLiteral</i>: 795 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 796 * </dl> 797 * 798 * <dl> 799 * <dt><i>HexSignificand:</i> 800 * <dd><i>HexNumeral</i> 801 * <dd><i>HexNumeral</i> {@code .} 802 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 803 * </i>{@code .}<i> HexDigits</i> 804 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 805 * </i>{@code .} <i>HexDigits</i> 806 * </dl> 807 * 808 * <dl> 809 * <dt><i>BinaryExponent:</i> 810 * <dd><i>BinaryExponentIndicator SignedInteger</i> 811 * </dl> 812 * 813 * <dl> 814 * <dt><i>BinaryExponentIndicator:</i> 815 * <dd>{@code p} 816 * <dd>{@code P} 817 * </dl> 818 * 819 * </blockquote> 820 * 821 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 822 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 823 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 824 * sections of 825 * <cite>The Java Language Specification</cite>, 826 * except that underscores are not accepted between digits. 827 * If {@code s} does not have the form of 828 * a <i>FloatValue</i>, then a {@code NumberFormatException} 829 * is thrown. Otherwise, {@code s} is regarded as 830 * representing an exact decimal value in the usual 831 * "computerized scientific notation" or as an exact 832 * hexadecimal value; this exact numerical value is then 833 * conceptually converted to an "infinitely precise" 834 * binary value that is then rounded to type {@code double} 835 * by the usual round-to-nearest rule of IEEE 754 floating-point 836 * arithmetic, which includes preserving the sign of a zero 837 * value. 838 * 839 * Note that the round-to-nearest rule also implies overflow and 840 * underflow behaviour; if the exact value of {@code s} is large 841 * enough in magnitude (greater than or equal to ({@link 842 * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2), 843 * rounding to {@code double} will result in an infinity and if the 844 * exact value of {@code s} is small enough in magnitude (less 845 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 846 * result in a zero. 847 * 848 * Finally, after rounding a {@code Double} object representing 849 * this {@code double} value is returned. 850 * 851 * <p>Note that trailing format specifiers, specifiers that 852 * determine the type of a floating-point literal 853 * ({@code 1.0f} is a {@code float} value; 854 * {@code 1.0d} is a {@code double} value), do 855 * <em>not</em> influence the results of this method. In other 856 * words, the numerical value of the input string is converted 857 * directly to the target floating-point type. The two-step 858 * sequence of conversions, string to {@code float} followed 859 * by {@code float} to {@code double}, is <em>not</em> 860 * equivalent to converting a string directly to 861 * {@code double}. For example, the {@code float} 862 * literal {@code 0.1f} is equal to the {@code double} 863 * value {@code 0.10000000149011612}; the {@code float} 864 * literal {@code 0.1f} represents a different numerical 865 * value than the {@code double} literal 866 * {@code 0.1}. (The numerical value 0.1 cannot be exactly 867 * represented in a binary floating-point number.) 868 * 869 * <p>To avoid calling this method on an invalid string and having 870 * a {@code NumberFormatException} be thrown, the regular 871 * expression below can be used to screen the input string: 872 * 873 * {@snippet lang="java" : 874 * final String Digits = "(\\p{Digit}+)"; 875 * final String HexDigits = "(\\p{XDigit}+)"; 876 * // an exponent is 'e' or 'E' followed by an optionally 877 * // signed decimal integer. 878 * final String Exp = "[eE][+-]?"+Digits; 879 * final String fpRegex = 880 * ("[\\x00-\\x20]*"+ // Optional leading "whitespace" 881 * "[+-]?(" + // Optional sign character 882 * "NaN|" + // "NaN" string 883 * "Infinity|" + // "Infinity" string 884 * 885 * // A decimal floating-point string representing a finite positive 886 * // number without a leading sign has at most five basic pieces: 887 * // Digits . Digits ExponentPart FloatTypeSuffix 888 * // 889 * // Since this method allows integer-only strings as input 890 * // in addition to strings of floating-point literals, the 891 * // two sub-patterns below are simplifications of the grammar 892 * // productions from section 3.10.2 of 893 * // The Java Language Specification. 894 * 895 * // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt 896 * "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+ 897 * 898 * // . Digits ExponentPart_opt FloatTypeSuffix_opt 899 * "(\\.("+Digits+")("+Exp+")?)|"+ 900 * 901 * // Hexadecimal strings 902 * "((" + 903 * // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt 904 * "(0[xX]" + HexDigits + "(\\.)?)|" + 905 * 906 * // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt 907 * "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" + 908 * 909 * ")[pP][+-]?" + Digits + "))" + 910 * "[fFdD]?))" + 911 * "[\\x00-\\x20]*");// Optional trailing "whitespace" 912 * // @link region substring="Pattern.matches" target ="java.util.regex.Pattern#matches" 913 * if (Pattern.matches(fpRegex, myString)) 914 * Double.valueOf(myString); // Will not throw NumberFormatException 915 * // @end 916 * else { 917 * // Perform suitable alternative action 918 * } 919 * } 920 * 921 * @apiNote To interpret localized string representations of a 922 * floating-point value, or string representations that have 923 * non-ASCII digits, use {@link java.text.NumberFormat}. For 924 * example, 925 * {@snippet lang="java" : 926 * NumberFormat.getInstance(l).parse(s).doubleValue(); 927 * } 928 * where {@code l} is the desired locale, or 929 * {@link java.util.Locale#ROOT} if locale insensitive. 930 * 931 * @apiNote 932 * This method corresponds to the convertFromDecimalCharacter and 933 * convertFromHexCharacter operations defined in IEEE 754. 934 * 935 * @param s the string to be parsed. 936 * @return a {@code Double} object holding the value 937 * represented by the {@code String} argument. 938 * @throws NumberFormatException if the string does not contain a 939 * parsable number. 940 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 941 */ 942 public static Double valueOf(String s) throws NumberFormatException { 943 return new Double(parseDouble(s)); 944 } 945 946 /** 947 * Returns a {@code Double} instance representing the specified 948 * {@code double} value. 949 * If a new {@code Double} instance is not required, this method 950 * should generally be used in preference to the constructor 951 * {@link #Double(double)}, as this method is likely to yield 952 * significantly better space and time performance by caching 953 * frequently requested values. 954 * 955 * @param d a double value. 956 * @return a {@code Double} instance representing {@code d}. 957 * @since 1.5 958 */ 959 @IntrinsicCandidate 960 @DeserializeConstructor 961 public static Double valueOf(double d) { 962 return new Double(d); 963 } 964 965 /** 966 * Returns a new {@code double} initialized to the value 967 * represented by the specified {@code String}, as performed 968 * by the {@code valueOf} method of class 969 * {@code Double}. 970 * 971 * @param s the string to be parsed. 972 * @return the {@code double} value represented by the string 973 * argument. 974 * @throws NullPointerException if the string is null 975 * @throws NumberFormatException if the string does not contain 976 * a parsable {@code double}. 977 * @see java.lang.Double#valueOf(String) 978 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 979 * @since 1.2 980 */ 981 public static double parseDouble(String s) throws NumberFormatException { 982 return FloatingDecimal.parseDouble(s); 983 } 984 985 /** 986 * Returns {@code true} if the specified number is a 987 * Not-a-Number (NaN) value, {@code false} otherwise. 988 * 989 * @apiNote 990 * This method corresponds to the isNaN operation defined in IEEE 991 * 754. 992 * 993 * @param v the value to be tested. 994 * @return {@code true} if the value of the argument is NaN; 995 * {@code false} otherwise. 996 */ 997 public static boolean isNaN(double v) { 998 return (v != v); 999 } 1000 1001 /** 1002 * Returns {@code true} if the specified number is infinitely 1003 * large in magnitude, {@code false} otherwise. 1004 * 1005 * @apiNote 1006 * This method corresponds to the isInfinite operation defined in 1007 * IEEE 754. 1008 * 1009 * @param v the value to be tested. 1010 * @return {@code true} if the value of the argument is positive 1011 * infinity or negative infinity; {@code false} otherwise. 1012 */ 1013 @IntrinsicCandidate 1014 public static boolean isInfinite(double v) { 1015 return Math.abs(v) > MAX_VALUE; 1016 } 1017 1018 /** 1019 * Returns {@code true} if the argument is a finite floating-point 1020 * value; returns {@code false} otherwise (for NaN and infinity 1021 * arguments). 1022 * 1023 * @apiNote 1024 * This method corresponds to the isFinite operation defined in 1025 * IEEE 754. 1026 * 1027 * @param d the {@code double} value to be tested 1028 * @return {@code true} if the argument is a finite 1029 * floating-point value, {@code false} otherwise. 1030 * @since 1.8 1031 */ 1032 @IntrinsicCandidate 1033 public static boolean isFinite(double d) { 1034 return Math.abs(d) <= Double.MAX_VALUE; 1035 } 1036 1037 /** 1038 * The value of the Double. 1039 * 1040 * @serial 1041 */ 1042 private final double value; 1043 1044 /** 1045 * Constructs a newly allocated {@code Double} object that 1046 * represents the primitive {@code double} argument. 1047 * 1048 * @param value the value to be represented by the {@code Double}. 1049 * 1050 * @deprecated 1051 * It is rarely appropriate to use this constructor. The static factory 1052 * {@link #valueOf(double)} is generally a better choice, as it is 1053 * likely to yield significantly better space and time performance. 1054 */ 1055 @Deprecated(since="9", forRemoval = true) 1056 public Double(double value) { 1057 this.value = value; 1058 } 1059 1060 /** 1061 * Constructs a newly allocated {@code Double} object that 1062 * represents the floating-point value of type {@code double} 1063 * represented by the string. The string is converted to a 1064 * {@code double} value as if by the {@code valueOf} method. 1065 * 1066 * @param s a string to be converted to a {@code Double}. 1067 * @throws NumberFormatException if the string does not contain a 1068 * parsable number. 1069 * 1070 * @deprecated 1071 * It is rarely appropriate to use this constructor. 1072 * Use {@link #parseDouble(String)} to convert a string to a 1073 * {@code double} primitive, or use {@link #valueOf(String)} 1074 * to convert a string to a {@code Double} object. 1075 */ 1076 @Deprecated(since="9", forRemoval = true) 1077 public Double(String s) throws NumberFormatException { 1078 value = parseDouble(s); 1079 } 1080 1081 /** 1082 * Returns {@code true} if this {@code Double} value is 1083 * a Not-a-Number (NaN), {@code false} otherwise. 1084 * 1085 * @return {@code true} if the value represented by this object is 1086 * NaN; {@code false} otherwise. 1087 */ 1088 public boolean isNaN() { 1089 return isNaN(value); 1090 } 1091 1092 /** 1093 * Returns {@code true} if this {@code Double} value is 1094 * infinitely large in magnitude, {@code false} otherwise. 1095 * 1096 * @return {@code true} if the value represented by this object is 1097 * positive infinity or negative infinity; 1098 * {@code false} otherwise. 1099 */ 1100 public boolean isInfinite() { 1101 return isInfinite(value); 1102 } 1103 1104 /** 1105 * Returns a string representation of this {@code Double} object. 1106 * The primitive {@code double} value represented by this 1107 * object is converted to a string exactly as if by the method 1108 * {@code toString} of one argument. 1109 * 1110 * @return a {@code String} representation of this object. 1111 * @see java.lang.Double#toString(double) 1112 */ 1113 public String toString() { 1114 return toString(value); 1115 } 1116 1117 /** 1118 * Returns the value of this {@code Double} as a {@code byte} 1119 * after a narrowing primitive conversion. 1120 * 1121 * @return the {@code double} value represented by this object 1122 * converted to type {@code byte} 1123 * @jls 5.1.3 Narrowing Primitive Conversion 1124 * @since 1.1 1125 */ 1126 @Override 1127 public byte byteValue() { 1128 return (byte)value; 1129 } 1130 1131 /** 1132 * Returns the value of this {@code Double} as a {@code short} 1133 * after a narrowing primitive conversion. 1134 * 1135 * @return the {@code double} value represented by this object 1136 * converted to type {@code short} 1137 * @jls 5.1.3 Narrowing Primitive Conversion 1138 * @since 1.1 1139 */ 1140 @Override 1141 public short shortValue() { 1142 return (short)value; 1143 } 1144 1145 /** 1146 * Returns the value of this {@code Double} as an {@code int} 1147 * after a narrowing primitive conversion. 1148 * @jls 5.1.3 Narrowing Primitive Conversion 1149 * 1150 * @apiNote 1151 * This method corresponds to the convertToIntegerTowardZero 1152 * operation defined in IEEE 754. 1153 * 1154 * @return the {@code double} value represented by this object 1155 * converted to type {@code int} 1156 */ 1157 @Override 1158 public int intValue() { 1159 return (int)value; 1160 } 1161 1162 /** 1163 * Returns the value of this {@code Double} as a {@code long} 1164 * after a narrowing primitive conversion. 1165 * 1166 * @apiNote 1167 * This method corresponds to the convertToIntegerTowardZero 1168 * operation defined in IEEE 754. 1169 * 1170 * @return the {@code double} value represented by this object 1171 * converted to type {@code long} 1172 * @jls 5.1.3 Narrowing Primitive Conversion 1173 */ 1174 @Override 1175 public long longValue() { 1176 return (long)value; 1177 } 1178 1179 /** 1180 * Returns the value of this {@code Double} as a {@code float} 1181 * after a narrowing primitive conversion. 1182 * 1183 * @apiNote 1184 * This method corresponds to the convertFormat operation defined 1185 * in IEEE 754. 1186 * 1187 * @return the {@code double} value represented by this object 1188 * converted to type {@code float} 1189 * @jls 5.1.3 Narrowing Primitive Conversion 1190 * @since 1.0 1191 */ 1192 @Override 1193 public float floatValue() { 1194 return (float)value; 1195 } 1196 1197 /** 1198 * Returns the {@code double} value of this {@code Double} object. 1199 * 1200 * @return the {@code double} value represented by this object 1201 */ 1202 @Override 1203 @IntrinsicCandidate 1204 public double doubleValue() { 1205 return value; 1206 } 1207 1208 /** 1209 * Returns a hash code for this {@code Double} object. The 1210 * result is the exclusive OR of the two halves of the 1211 * {@code long} integer bit representation, exactly as 1212 * produced by the method {@link #doubleToLongBits(double)}, of 1213 * the primitive {@code double} value represented by this 1214 * {@code Double} object. That is, the hash code is the value 1215 * of the expression: 1216 * 1217 * <blockquote> 1218 * {@code (int)(v^(v>>>32))} 1219 * </blockquote> 1220 * 1221 * where {@code v} is defined by: 1222 * 1223 * <blockquote> 1224 * {@code long v = Double.doubleToLongBits(this.doubleValue());} 1225 * </blockquote> 1226 * 1227 * @return a {@code hash code} value for this object. 1228 */ 1229 @Override 1230 public int hashCode() { 1231 return Double.hashCode(value); 1232 } 1233 1234 /** 1235 * Returns a hash code for a {@code double} value; compatible with 1236 * {@code Double.hashCode()}. 1237 * 1238 * @param value the value to hash 1239 * @return a hash code value for a {@code double} value. 1240 * @since 1.8 1241 */ 1242 public static int hashCode(double value) { 1243 return Long.hashCode(doubleToLongBits(value)); 1244 } 1245 1246 /** 1247 * Compares this object against the specified object. The result 1248 * is {@code true} if and only if the argument is not 1249 * {@code null} and is a {@code Double} object that 1250 * represents a {@code double} that has the same value as the 1251 * {@code double} represented by this object. For this 1252 * purpose, two {@code double} values are considered to be 1253 * the same if and only if the method {@link 1254 * #doubleToLongBits(double)} returns the identical 1255 * {@code long} value when applied to each. 1256 * 1257 * @apiNote 1258 * This method is defined in terms of {@link 1259 * #doubleToLongBits(double)} rather than the {@code ==} operator 1260 * on {@code double} values since the {@code ==} operator does 1261 * <em>not</em> define an equivalence relation and to satisfy the 1262 * {@linkplain Object#equals equals contract} an equivalence 1263 * relation must be implemented; see {@linkplain ##equivalenceRelation 1264 * this discussion for details of floating-point equality and equivalence}. 1265 * 1266 * @see java.lang.Double#doubleToLongBits(double) 1267 * @jls 15.21.1 Numerical Equality Operators == and != 1268 */ 1269 public boolean equals(Object obj) { 1270 return (obj instanceof Double d) && 1271 (doubleToLongBits(d.value) == doubleToLongBits(value)); 1272 } 1273 1274 /** 1275 * Returns a representation of the specified floating-point value 1276 * according to the IEEE 754 floating-point "double 1277 * format" bit layout. 1278 * 1279 * <p>Bit 63 (the bit that is selected by the mask 1280 * {@code 0x8000000000000000L}) represents the sign of the 1281 * floating-point number. Bits 1282 * 62-52 (the bits that are selected by the mask 1283 * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 1284 * (the bits that are selected by the mask 1285 * {@code 0x000fffffffffffffL}) represent the significand 1286 * (sometimes called the mantissa) of the floating-point number. 1287 * 1288 * <p>If the argument is positive infinity, the result is 1289 * {@code 0x7ff0000000000000L}. 1290 * 1291 * <p>If the argument is negative infinity, the result is 1292 * {@code 0xfff0000000000000L}. 1293 * 1294 * <p>If the argument is NaN, the result is 1295 * {@code 0x7ff8000000000000L}. 1296 * 1297 * <p>In all cases, the result is a {@code long} integer that, when 1298 * given to the {@link #longBitsToDouble(long)} method, will produce a 1299 * floating-point value the same as the argument to 1300 * {@code doubleToLongBits} (except all NaN values are 1301 * collapsed to a single "canonical" NaN value). 1302 * 1303 * @param value a {@code double} precision floating-point number. 1304 * @return the bits that represent the floating-point number. 1305 */ 1306 @IntrinsicCandidate 1307 public static long doubleToLongBits(double value) { 1308 if (!isNaN(value)) { 1309 return doubleToRawLongBits(value); 1310 } 1311 return 0x7ff8000000000000L; 1312 } 1313 1314 /** 1315 * Returns a representation of the specified floating-point value 1316 * according to the IEEE 754 floating-point "double 1317 * format" bit layout, preserving Not-a-Number (NaN) values. 1318 * 1319 * <p>Bit 63 (the bit that is selected by the mask 1320 * {@code 0x8000000000000000L}) represents the sign of the 1321 * floating-point number. Bits 1322 * 62-52 (the bits that are selected by the mask 1323 * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 1324 * (the bits that are selected by the mask 1325 * {@code 0x000fffffffffffffL}) represent the significand 1326 * (sometimes called the mantissa) of the floating-point number. 1327 * 1328 * <p>If the argument is positive infinity, the result is 1329 * {@code 0x7ff0000000000000L}. 1330 * 1331 * <p>If the argument is negative infinity, the result is 1332 * {@code 0xfff0000000000000L}. 1333 * 1334 * <p>If the argument is NaN, the result is the {@code long} 1335 * integer representing the actual NaN value. Unlike the 1336 * {@code doubleToLongBits} method, 1337 * {@code doubleToRawLongBits} does not collapse all the bit 1338 * patterns encoding a NaN to a single "canonical" NaN 1339 * value. 1340 * 1341 * <p>In all cases, the result is a {@code long} integer that, 1342 * when given to the {@link #longBitsToDouble(long)} method, will 1343 * produce a floating-point value the same as the argument to 1344 * {@code doubleToRawLongBits}. 1345 * 1346 * @param value a {@code double} precision floating-point number. 1347 * @return the bits that represent the floating-point number. 1348 * @since 1.3 1349 */ 1350 @IntrinsicCandidate 1351 public static native long doubleToRawLongBits(double value); 1352 1353 /** 1354 * Returns the {@code double} value corresponding to a given 1355 * bit representation. 1356 * The argument is considered to be a representation of a 1357 * floating-point value according to the IEEE 754 floating-point 1358 * "double format" bit layout. 1359 * 1360 * <p>If the argument is {@code 0x7ff0000000000000L}, the result 1361 * is positive infinity. 1362 * 1363 * <p>If the argument is {@code 0xfff0000000000000L}, the result 1364 * is negative infinity. 1365 * 1366 * <p>If the argument is any value in the range 1367 * {@code 0x7ff0000000000001L} through 1368 * {@code 0x7fffffffffffffffL} or in the range 1369 * {@code 0xfff0000000000001L} through 1370 * {@code 0xffffffffffffffffL}, the result is a NaN. No IEEE 1371 * 754 floating-point operation provided by Java can distinguish 1372 * between two NaN values of the same type with different bit 1373 * patterns. Distinct values of NaN are only distinguishable by 1374 * use of the {@code Double.doubleToRawLongBits} method. 1375 * 1376 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 1377 * values that can be computed from the argument: 1378 * 1379 * {@snippet lang="java" : 1380 * int s = ((bits >> 63) == 0) ? 1 : -1; 1381 * int e = (int)((bits >> 52) & 0x7ffL); 1382 * long m = (e == 0) ? 1383 * (bits & 0xfffffffffffffL) << 1 : 1384 * (bits & 0xfffffffffffffL) | 0x10000000000000L; 1385 * } 1386 * 1387 * Then the floating-point result equals the value of the mathematical 1388 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>. 1389 * 1390 * <p>Note that this method may not be able to return a 1391 * {@code double} NaN with exactly same bit pattern as the 1392 * {@code long} argument. IEEE 754 distinguishes between two 1393 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 1394 * differences between the two kinds of NaN are generally not 1395 * visible in Java. Arithmetic operations on signaling NaNs turn 1396 * them into quiet NaNs with a different, but often similar, bit 1397 * pattern. However, on some processors merely copying a 1398 * signaling NaN also performs that conversion. In particular, 1399 * copying a signaling NaN to return it to the calling method 1400 * may perform this conversion. So {@code longBitsToDouble} 1401 * may not be able to return a {@code double} with a 1402 * signaling NaN bit pattern. Consequently, for some 1403 * {@code long} values, 1404 * {@code doubleToRawLongBits(longBitsToDouble(start))} may 1405 * <i>not</i> equal {@code start}. Moreover, which 1406 * particular bit patterns represent signaling NaNs is platform 1407 * dependent; although all NaN bit patterns, quiet or signaling, 1408 * must be in the NaN range identified above. 1409 * 1410 * @param bits any {@code long} integer. 1411 * @return the {@code double} floating-point value with the same 1412 * bit pattern. 1413 */ 1414 @IntrinsicCandidate 1415 public static native double longBitsToDouble(long bits); 1416 1417 /** 1418 * Compares two {@code Double} objects numerically. 1419 * 1420 * This method imposes a total order on {@code Double} objects 1421 * with two differences compared to the incomplete order defined by 1422 * the Java language numerical comparison operators ({@code <, <=, 1423 * ==, >=, >}) on {@code double} values. 1424 * 1425 * <ul><li> A NaN is <em>unordered</em> with respect to other 1426 * values and unequal to itself under the comparison 1427 * operators. This method chooses to define {@code 1428 * Double.NaN} to be equal to itself and greater than all 1429 * other {@code double} values (including {@code 1430 * Double.POSITIVE_INFINITY}). 1431 * 1432 * <li> Positive zero and negative zero compare equal 1433 * numerically, but are distinct and distinguishable values. 1434 * This method chooses to define positive zero ({@code +0.0d}), 1435 * to be greater than negative zero ({@code -0.0d}). 1436 * </ul> 1437 1438 * This ensures that the <i>natural ordering</i> of {@code Double} 1439 * objects imposed by this method is <i>consistent with 1440 * equals</i>; see {@linkplain ##equivalenceRelation this 1441 * discussion for details of floating-point comparison and 1442 * ordering}. 1443 * 1444 * @param anotherDouble the {@code Double} to be compared. 1445 * @return the value {@code 0} if {@code anotherDouble} is 1446 * numerically equal to this {@code Double}; a value 1447 * less than {@code 0} if this {@code Double} 1448 * is numerically less than {@code anotherDouble}; 1449 * and a value greater than {@code 0} if this 1450 * {@code Double} is numerically greater than 1451 * {@code anotherDouble}. 1452 * 1453 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 1454 * @since 1.2 1455 */ 1456 @Override 1457 public int compareTo(Double anotherDouble) { 1458 return Double.compare(value, anotherDouble.value); 1459 } 1460 1461 /** 1462 * Compares the two specified {@code double} values. The sign 1463 * of the integer value returned is the same as that of the 1464 * integer that would be returned by the call: 1465 * <pre> 1466 * Double.valueOf(d1).compareTo(Double.valueOf(d2)) 1467 * </pre> 1468 * 1469 * @param d1 the first {@code double} to compare 1470 * @param d2 the second {@code double} to compare 1471 * @return the value {@code 0} if {@code d1} is 1472 * numerically equal to {@code d2}; a value less than 1473 * {@code 0} if {@code d1} is numerically less than 1474 * {@code d2}; and a value greater than {@code 0} 1475 * if {@code d1} is numerically greater than 1476 * {@code d2}. 1477 * @since 1.4 1478 */ 1479 public static int compare(double d1, double d2) { 1480 if (d1 < d2) 1481 return -1; // Neither val is NaN, thisVal is smaller 1482 if (d1 > d2) 1483 return 1; // Neither val is NaN, thisVal is larger 1484 1485 // Cannot use doubleToRawLongBits because of possibility of NaNs. 1486 long thisBits = Double.doubleToLongBits(d1); 1487 long anotherBits = Double.doubleToLongBits(d2); 1488 1489 return (thisBits == anotherBits ? 0 : // Values are equal 1490 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1491 1)); // (0.0, -0.0) or (NaN, !NaN) 1492 } 1493 1494 /** 1495 * Adds two {@code double} values together as per the + operator. 1496 * 1497 * @apiNote This method corresponds to the addition operation 1498 * defined in IEEE 754. 1499 * 1500 * @param a the first operand 1501 * @param b the second operand 1502 * @return the sum of {@code a} and {@code b} 1503 * @jls 4.2.4 Floating-Point Operations 1504 * @see java.util.function.BinaryOperator 1505 * @since 1.8 1506 */ 1507 public static double sum(double a, double b) { 1508 return a + b; 1509 } 1510 1511 /** 1512 * Returns the greater of two {@code double} values 1513 * as if by calling {@link Math#max(double, double) Math.max}. 1514 * 1515 * @apiNote 1516 * This method corresponds to the maximum operation defined in 1517 * IEEE 754. 1518 * 1519 * @param a the first operand 1520 * @param b the second operand 1521 * @return the greater of {@code a} and {@code b} 1522 * @see java.util.function.BinaryOperator 1523 * @since 1.8 1524 */ 1525 public static double max(double a, double b) { 1526 return Math.max(a, b); 1527 } 1528 1529 /** 1530 * Returns the smaller of two {@code double} values 1531 * as if by calling {@link Math#min(double, double) Math.min}. 1532 * 1533 * @apiNote 1534 * This method corresponds to the minimum operation defined in 1535 * IEEE 754. 1536 * 1537 * @param a the first operand 1538 * @param b the second operand 1539 * @return the smaller of {@code a} and {@code b}. 1540 * @see java.util.function.BinaryOperator 1541 * @since 1.8 1542 */ 1543 public static double min(double a, double b) { 1544 return Math.min(a, b); 1545 } 1546 1547 /** 1548 * Returns an {@link Optional} containing the nominal descriptor for this 1549 * instance, which is the instance itself. 1550 * 1551 * @return an {@link Optional} describing the {@linkplain Double} instance 1552 * @since 12 1553 */ 1554 @Override 1555 public Optional<Double> describeConstable() { 1556 return Optional.of(this); 1557 } 1558 1559 /** 1560 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1561 * the instance itself. 1562 * 1563 * @param lookup ignored 1564 * @return the {@linkplain Double} instance 1565 * @since 12 1566 */ 1567 @Override 1568 public Double resolveConstantDesc(MethodHandles.Lookup lookup) { 1569 return this; 1570 } 1571 1572 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1573 @java.io.Serial 1574 private static final long serialVersionUID = -9172774392245257468L; 1575 }