1 /*
   2  * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.invoke.MethodHandles;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.util.Optional;
  32 
  33 import jdk.internal.math.FloatingDecimal;
  34 import jdk.internal.math.DoubleConsts;
  35 import jdk.internal.math.DoubleToDecimal;
  36 import jdk.internal.value.DeserializeConstructor;
  37 import jdk.internal.vm.annotation.IntrinsicCandidate;
  38 
  39 /**
  40  * The {@code Double} class is the {@linkplain
  41  * java.lang##wrapperClass wrapper class} for values of the primitive
  42  * type {@code double}. An object of type {@code Double} contains a
  43  * single field whose type is {@code double}.
  44  *
  45  * <p>In addition, this class provides several methods for converting a
  46  * {@code double} to a {@code String} and a
  47  * {@code String} to a {@code double}, as well as other
  48  * constants and methods useful when dealing with a
  49  * {@code double}.
  50  *
  51  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  52  * class; programmers should treat instances that are {@linkplain #equals(Object) equal}
  53  * as interchangeable and should not use instances for synchronization, mutexes, or
  54  * with {@linkplain java.lang.ref.Reference object references}.
  55  *
  56  * <div class="preview-block">
  57  *      <div class="preview-comment">
  58  *          When preview features are enabled, {@code Double} is a {@linkplain Class#isValue value class}.
  59  *          Use of value class instances for synchronization, mutexes, or with
  60  *          {@linkplain java.lang.ref.Reference object references} result in
  61  *          {@link IdentityException}.
  62  *      </div>
  63  * </div>
  64  *
  65  * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence,
  66  * and Comparison</a></h2>
  67  *
  68  * IEEE 754 floating-point values include finite nonzero values,
  69  * signed zeros ({@code +0.0} and {@code -0.0}), signed infinities
  70  * ({@linkplain Double#POSITIVE_INFINITY positive infinity} and
  71  * {@linkplain Double#NEGATIVE_INFINITY negative infinity}), and
  72  * {@linkplain Double#NaN NaN} (not-a-number).
  73  *
  74  * <p>An <em>equivalence relation</em> on a set of values is a boolean
  75  * relation on pairs of values that is reflexive, symmetric, and
  76  * transitive. For more discussion of equivalence relations and object
  77  * equality, see the {@link Object#equals Object.equals}
  78  * specification. An equivalence relation partitions the values it
  79  * operates over into sets called <i>equivalence classes</i>.  All the
  80  * members of the equivalence class are equal to each other under the
  81  * relation. An equivalence class may contain only a single member. At
  82  * least for some purposes, all the members of an equivalence class
  83  * are substitutable for each other.  In particular, in a numeric
  84  * expression equivalent values can be <em>substituted</em> for one
  85  * another without changing the result of the expression, meaning
  86  * changing the equivalence class of the result of the expression.
  87  *
  88  * <p>Notably, the built-in {@code ==} operation on floating-point
  89  * values is <em>not</em> an equivalence relation. Despite not
  90  * defining an equivalence relation, the semantics of the IEEE 754
  91  * {@code ==} operator were deliberately designed to meet other needs
  92  * of numerical computation. There are two exceptions where the
  93  * properties of an equivalence relation are not satisfied by {@code
  94  * ==} on floating-point values:
  95  *
  96  * <ul>
  97  *
  98  * <li>If {@code v1} and {@code v2} are both NaN, then {@code v1
  99  * == v2} has the value {@code false}. Therefore, for two NaN
 100  * arguments the <em>reflexive</em> property of an equivalence
 101  * relation is <em>not</em> satisfied by the {@code ==} operator.
 102  *
 103  * <li>If {@code v1} represents {@code +0.0} while {@code v2}
 104  * represents {@code -0.0}, or vice versa, then {@code v1 == v2} has
 105  * the value {@code true} even though {@code +0.0} and {@code -0.0}
 106  * are distinguishable under various floating-point operations. For
 107  * example, {@code 1.0/+0.0} evaluates to positive infinity while
 108  * {@code 1.0/-0.0} evaluates to <em>negative</em> infinity and
 109  * positive infinity and negative infinity are neither equal to each
 110  * other nor equivalent to each other. Thus, while a signed zero input
 111  * most commonly determines the sign of a zero result, because of
 112  * dividing by zero, {@code +0.0} and {@code -0.0} may not be
 113  * substituted for each other in general. The sign of a zero input
 114  * also has a non-substitutable effect on the result of some math
 115  * library methods.
 116  *
 117  * </ul>
 118  *
 119  * <p>For ordered comparisons using the built-in comparison operators
 120  * ({@code <}, {@code <=}, etc.), NaN values have another anomalous
 121  * situation: a NaN is neither less than, nor greater than, nor equal
 122  * to any value, including itself. This means the <i>trichotomy of
 123  * comparison</i> does <em>not</em> hold.
 124  *
 125  * <p>To provide the appropriate semantics for {@code equals} and
 126  * {@code compareTo} methods, those methods cannot simply be wrappers
 127  * around {@code ==} or ordered comparison operations. Instead, {@link
 128  * Double#equals equals} uses {@linkplain ##repEquivalence representation
 129  * equivalence}, defining NaN arguments to be equal to each other,
 130  * restoring reflexivity, and defining {@code +0.0} to <em>not</em> be
 131  * equal to {@code -0.0}. For comparisons, {@link Double#compareTo
 132  * compareTo} defines a total order where {@code -0.0} is less than
 133  * {@code +0.0} and where a NaN is equal to itself and considered
 134  * greater than positive infinity.
 135  *
 136  * <p>The operational semantics of {@code equals} and {@code
 137  * compareTo} are expressed in terms of {@linkplain #doubleToLongBits
 138  * bit-wise converting} the floating-point values to integral values.
 139  *
 140  * <p>The <em>natural ordering</em> implemented by {@link #compareTo
 141  * compareTo} is {@linkplain Comparable consistent with equals}. That
 142  * is, two objects are reported as equal by {@code equals} if and only
 143  * if {@code compareTo} on those objects returns zero.
 144  *
 145  * <p>The adjusted behaviors defined for {@code equals} and {@code
 146  * compareTo} allow instances of wrapper classes to work properly with
 147  * conventional data structures. For example, defining NaN
 148  * values to be {@code equals} to one another allows NaN to be used as
 149  * an element of a {@link java.util.HashSet HashSet} or as the key of
 150  * a {@link java.util.HashMap HashMap}. Similarly, defining {@code
 151  * compareTo} as a total ordering, including {@code +0.0}, {@code
 152  * -0.0}, and NaN, allows instances of wrapper classes to be used as
 153  * elements of a {@link java.util.SortedSet SortedSet} or as keys of a
 154  * {@link java.util.SortedMap SortedMap}.
 155  *
 156  * <p>Comparing numerical equality to various useful equivalence
 157  * relations that can be defined over floating-point values:
 158  *
 159  * <dl>
 160  * <dt><a id=fpNumericalEq></a><dfn>{@index "numerical equality"}</dfn> ({@code ==}
 161  * operator): (<em>Not</em> an equivalence relation)</dt>
 162  * <dd>Two floating-point values represent the same extended real
 163  * number. The extended real numbers are the real numbers augmented
 164  * with positive infinity and negative infinity. Under numerical
 165  * equality, {@code +0.0} and {@code -0.0} are equal since they both
 166  * map to the same real value, 0. A NaN does not map to any real
 167  * number and is not equal to any value, including itself.
 168  * </dd>
 169  *
 170  * <dt><dfn>{@index "bit-wise equivalence"}</dfn>:</dt>
 171  * <dd>The bits of the two floating-point values are the same. This
 172  * equivalence relation for {@code double} values {@code a} and {@code
 173  * b} is implemented by the expression
 174  * <br>{@code Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(a) == Double.doubleTo}<code><b>Raw</b></code>{@code LongBits(b)}<br>
 175  * Under this relation, {@code +0.0} and {@code -0.0} are
 176  * distinguished from each other and every bit pattern encoding a NaN
 177  * is distinguished from every other bit pattern encoding a NaN.
 178  * </dd>
 179  *
 180  * <dt><dfn><a id=repEquivalence></a>{@index "representation equivalence"}</dfn>:</dt>
 181  * <dd>The two floating-point values represent the same IEEE 754
 182  * <i>datum</i>. In particular, for {@linkplain #isFinite(double)
 183  * finite} values, the sign, {@linkplain Math#getExponent(double)
 184  * exponent}, and significand components of the floating-point values
 185  * are the same. Under this relation:
 186  * <ul>
 187  * <li> {@code +0.0} and {@code -0.0} are distinguished from each other.
 188  * <li> every bit pattern encoding a NaN is considered equivalent to each other
 189  * <li> positive infinity is equivalent to positive infinity; negative
 190  *      infinity is equivalent to negative infinity.
 191  * </ul>
 192  * Expressions implementing this equivalence relation include:
 193  * <ul>
 194  * <li>{@code Double.doubleToLongBits(a) == Double.doubleToLongBits(b)}
 195  * <li>{@code Double.valueOf(a).equals(Double.valueOf(b))}
 196  * <li>{@code Double.compare(a, b) == 0}
 197  * </ul>
 198  * Note that representation equivalence is often an appropriate notion
 199  * of equivalence to test the behavior of {@linkplain StrictMath math
 200  * libraries}.
 201  * </dd>
 202  * </dl>
 203  *
 204  * For two binary floating-point values {@code a} and {@code b}, if
 205  * neither of {@code a} and {@code b} is zero or NaN, then the three
 206  * relations numerical equality, bit-wise equivalence, and
 207  * representation equivalence of {@code a} and {@code b} have the same
 208  * {@code true}/{@code false} value. In other words, for binary
 209  * floating-point values, the three relations only differ if at least
 210  * one argument is zero or NaN.
 211  *
 212  * <h2><a id=decimalToBinaryConversion>Decimal &harr; Binary Conversion Issues</a></h2>
 213  *
 214  * Many surprising results of binary floating-point arithmetic trace
 215  * back to aspects of decimal to binary conversion and binary to
 216  * decimal conversion. While integer values can be exactly represented
 217  * in any base, which fractional values can be exactly represented in
 218  * a base is a function of the base. For example, in base 10, 1/3 is a
 219  * repeating fraction (0.33333....); but in base 3, 1/3 is exactly
 220  * 0.1<sub>(3)</sub>, that is 1&nbsp;&times;&nbsp;3<sup>-1</sup>.
 221  * Similarly, in base 10, 1/10 is exactly representable as 0.1
 222  * (1&nbsp;&times;&nbsp;10<sup>-1</sup>), but in base 2, it is a
 223  * repeating fraction (0.0001100110011...<sub>(2)</sub>).
 224  *
 225  * <p>Values of the {@code float} type have {@value Float#PRECISION}
 226  * bits of precision and values of the {@code double} type have
 227  * {@value Double#PRECISION} bits of precision. Therefore, since 0.1
 228  * is a repeating fraction in base 2 with a four-bit repeat, {@code
 229  * 0.1f} != {@code 0.1d}. In more detail, including hexadecimal
 230  * floating-point literals:
 231  *
 232  * <ul>
 233  * <li>The exact numerical value of {@code 0.1f} ({@code 0x1.99999a0000000p-4f}) is
 234  *     0.100000001490116119384765625.
 235  * <li>The exact numerical value of {@code 0.1d} ({@code 0x1.999999999999ap-4d}) is
 236  *     0.1000000000000000055511151231257827021181583404541015625.
 237  * </ul>
 238  *
 239  * These are the closest {@code float} and {@code double} values,
 240  * respectively, to the numerical value of 0.1.  These results are
 241  * consistent with a {@code float} value having the equivalent of 6 to
 242  * 9 digits of decimal precision and a {@code double} value having the
 243  * equivalent of 15 to 17 digits of decimal precision. (The
 244  * equivalent precision varies according to the different relative
 245  * densities of binary and decimal values at different points along the
 246  * real number line.)
 247  *
 248  * <p>This representation hazard of decimal fractions is one reason to
 249  * use caution when storing monetary values as {@code float} or {@code
 250  * double}. Alternatives include:
 251  * <ul>
 252  * <li>using {@link java.math.BigDecimal BigDecimal} to store decimal
 253  * fractional values exactly
 254  *
 255  * <li>scaling up so the monetary value is an integer &mdash; for
 256  * example, multiplying by 100 if the value is denominated in cents or
 257  * multiplying by 1000 if the value is denominated in mills &mdash;
 258  * and then storing that scaled value in an integer type
 259  *
 260  *</ul>
 261  *
 262  * <p>For each finite floating-point value and a given floating-point
 263  * type, there is a contiguous region of the real number line which
 264  * maps to that value. Under the default round to nearest rounding
 265  * policy (JLS {@jls 15.4}), this contiguous region for a value is
 266  * typically one {@linkplain Math#ulp ulp} (unit in the last place)
 267  * wide and centered around the exactly representable value. (At
 268  * exponent boundaries, the region is asymmetrical and larger on the
 269  * side with the larger exponent.) For example, for {@code 0.1f}, the
 270  * region can be computed as follows:
 271  *
 272  * <br>// Numeric values listed are exact values
 273  * <br>oneTenthApproxAsFloat = 0.100000001490116119384765625;
 274  * <br>ulpOfoneTenthApproxAsFloat = Math.ulp(0.1f) = 7.450580596923828125E-9;
 275  * <br>// Numeric range that is converted to the float closest to 0.1, _excludes_ endpoints
 276  * <br>(oneTenthApproxAsFloat - &frac12;ulpOfoneTenthApproxAsFloat, oneTenthApproxAsFloat + &frac12;ulpOfoneTenthApproxAsFloat) =
 277  * <br>(0.0999999977648258209228515625, 0.1000000052154064178466796875)
 278  *
 279  * <p>In particular, a correctly rounded decimal to binary conversion
 280  * of any string representing a number in this range, say by {@link
 281  * Float#parseFloat(String)}, will be converted to the same value:
 282  *
 283  * {@snippet lang="java" :
 284  * Float.parseFloat("0.0999999977648258209228515625000001"); // rounds up to oneTenthApproxAsFloat
 285  * Float.parseFloat("0.099999998");                          // rounds up to oneTenthApproxAsFloat
 286  * Float.parseFloat("0.1");                                  // rounds up to oneTenthApproxAsFloat
 287  * Float.parseFloat("0.100000001490116119384765625");        // exact conversion
 288  * Float.parseFloat("0.100000005215406417846679687");        // rounds down to oneTenthApproxAsFloat
 289  * Float.parseFloat("0.100000005215406417846679687499999");  // rounds down to oneTenthApproxAsFloat
 290  * }
 291  *
 292  * <p>Similarly, an analogous range can be constructed  for the {@code
 293  * double} type based on the exact value of {@code double}
 294  * approximation to {@code 0.1d} and the numerical value of {@code
 295  * Math.ulp(0.1d)} and likewise for other particular numerical values
 296  * in the {@code float} and {@code double} types.
 297  *
 298  * <p>As seen in the above conversions, compared to the exact
 299  * numerical value the operation would have without rounding, the same
 300  * floating-point value as a result can be:
 301  * <ul>
 302  * <li>greater than the exact result
 303  * <li>equal to the exact result
 304  * <li>less than the exact result
 305  * </ul>
 306  *
 307  * A floating-point value doesn't "know" whether it was the result of
 308  * rounding up, or rounding down, or an exact operation; it contains
 309  * no history of how it was computed. Consequently, the sum of
 310  * {@snippet lang="java" :
 311  * 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f + 0.1f;
 312  * // Numerical value of computed sum: 1.00000011920928955078125,
 313  * // the next floating-point value larger than 1.0f, equal to Math.nextUp(1.0f).
 314  * }
 315  * or
 316  * {@snippet lang="java" :
 317  * 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d + 0.1d;
 318  * // Numerical value of computed sum: 0.99999999999999988897769753748434595763683319091796875,
 319  * // the next floating-point value smaller than 1.0d, equal to Math.nextDown(1.0d).
 320  * }
 321  *
 322  * should <em>not</em> be expected to be exactly equal to 1.0, but
 323  * only to be close to 1.0. Consequently, the following code is an
 324  * infinite loop:
 325  *
 326  * {@snippet lang="java" :
 327  * double d = 0.0;
 328  * while (d != 1.0) { // Surprising infinite loop
 329  *   d += 0.1; // Sum never _exactly_ equals 1.0
 330  * }
 331  * }
 332  *
 333  * Instead, use an integer loop count for counted loops:
 334  *
 335  * {@snippet lang="java" :
 336  * double d = 0.0;
 337  * for (int i = 0; i < 10; i++) {
 338  *   d += 0.1;
 339  * } // Value of d is equal to Math.nextDown(1.0).
 340  * }
 341  *
 342  * or test against a floating-point limit using ordered comparisons
 343  * ({@code <}, {@code <=}, {@code >}, {@code >=}):
 344  *
 345  * {@snippet lang="java" :
 346  *  double d = 0.0;
 347  *  while (d <= 1.0) {
 348  *    d += 0.1;
 349  *  } // Value of d approximately 1.0999999999999999
 350  *  }
 351  *
 352  * While floating-point arithmetic may have surprising results, IEEE
 353  * 754 floating-point arithmetic follows a principled design and its
 354  * behavior is predictable on the Java platform.
 355  *
 356  * @jls 4.2.3 Floating-Point Types and Values
 357  * @jls 4.2.4 Floating-Point Operations
 358  * @jls 15.21.1 Numerical Equality Operators == and !=
 359  * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
 360  *
 361  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
 362  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
 363  *
 364  * @author  Lee Boynton
 365  * @author  Arthur van Hoff
 366  * @author  Joseph D. Darcy
 367  * @since 1.0
 368  */
 369 @jdk.internal.MigratedValueClass
 370 @jdk.internal.ValueBased
 371 public final class Double extends Number
 372         implements Comparable<Double>, Constable, ConstantDesc {
 373     /**
 374      * A constant holding the positive infinity of type
 375      * {@code double}. It is equal to the value returned by
 376      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
 377      */
 378     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
 379 
 380     /**
 381      * A constant holding the negative infinity of type
 382      * {@code double}. It is equal to the value returned by
 383      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
 384      */
 385     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
 386 
 387     /**
 388      * A constant holding a Not-a-Number (NaN) value of type
 389      * {@code double}. It is equivalent to the value returned by
 390      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
 391      */
 392     public static final double NaN = 0.0d / 0.0;
 393 
 394     /**
 395      * A constant holding the largest positive finite value of type
 396      * {@code double},
 397      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
 398      * the hexadecimal floating-point literal
 399      * {@code 0x1.fffffffffffffP+1023} and also equal to
 400      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
 401      */
 402     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
 403 
 404     /**
 405      * A constant holding the smallest positive normal value of type
 406      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
 407      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
 408      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
 409      *
 410      * @since 1.6
 411      */
 412     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
 413 
 414     /**
 415      * A constant holding the smallest positive nonzero value of type
 416      * {@code double}, 2<sup>-1074</sup>. It is equal to the
 417      * hexadecimal floating-point literal
 418      * {@code 0x0.0000000000001P-1022} and also equal to
 419      * {@code Double.longBitsToDouble(0x1L)}.
 420      */
 421     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
 422 
 423     /**
 424      * The number of bits used to represent a {@code double} value,
 425      * {@value}.
 426      *
 427      * @since 1.5
 428      */
 429     public static final int SIZE = 64;
 430 
 431     /**
 432      * The number of bits in the significand of a {@code double}
 433      * value, {@value}.  This is the parameter N in section {@jls
 434      * 4.2.3} of <cite>The Java Language Specification</cite>.
 435      *
 436      * @since 19
 437      */
 438     public static final int PRECISION = 53;
 439 
 440     /**
 441      * Maximum exponent a finite {@code double} variable may have,
 442      * {@value}.  It is equal to the value returned by {@code
 443      * Math.getExponent(Double.MAX_VALUE)}.
 444      *
 445      * @since 1.6
 446      */
 447     public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 1023
 448 
 449     /**
 450      * Minimum exponent a normalized {@code double} variable may have,
 451      * {@value}.  It is equal to the value returned by {@code
 452      * Math.getExponent(Double.MIN_NORMAL)}.
 453      *
 454      * @since 1.6
 455      */
 456     public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -1022
 457 
 458     /**
 459      * The number of bytes used to represent a {@code double} value,
 460      * {@value}.
 461      *
 462      * @since 1.8
 463      */
 464     public static final int BYTES = SIZE / Byte.SIZE;
 465 
 466     /**
 467      * The {@code Class} instance representing the primitive type
 468      * {@code double}.
 469      *
 470      * @since 1.1
 471      */
 472     public static final Class<Double> TYPE = Class.getPrimitiveClass("double");
 473 
 474     /**
 475      * Returns a string representation of the {@code double}
 476      * argument. All characters mentioned below are ASCII characters.
 477      * <ul>
 478      * <li>If the argument is NaN, the result is the string
 479      *     "{@code NaN}".
 480      * <li>Otherwise, the result is a string that represents the sign and
 481      * magnitude (absolute value) of the argument. If the sign is negative,
 482      * the first character of the result is '{@code -}'
 483      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 484      * appears in the result. As for the magnitude <i>m</i>:
 485      * <ul>
 486      * <li>If <i>m</i> is infinity, it is represented by the characters
 487      * {@code "Infinity"}; thus, positive infinity produces the result
 488      * {@code "Infinity"} and negative infinity produces the result
 489      * {@code "-Infinity"}.
 490      *
 491      * <li>If <i>m</i> is zero, it is represented by the characters
 492      * {@code "0.0"}; thus, negative zero produces the result
 493      * {@code "-0.0"} and positive zero produces the result
 494      * {@code "0.0"}.
 495      *
 496      * <li> Otherwise <i>m</i> is positive and finite.
 497      * It is converted to a string in two stages:
 498      * <ul>
 499      * <li> <em>Selection of a decimal</em>:
 500      * A well-defined decimal <i>d</i><sub><i>m</i></sub>
 501      * is selected to represent <i>m</i>.
 502      * This decimal is (almost always) the <em>shortest</em> one that
 503      * rounds to <i>m</i> according to the round to nearest
 504      * rounding policy of IEEE 754 floating-point arithmetic.
 505      * <li> <em>Formatting as a string</em>:
 506      * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
 507      * either in plain or in computerized scientific notation,
 508      * depending on its value.
 509      * </ul>
 510      * </ul>
 511      * </ul>
 512      *
 513      * <p>A <em>decimal</em> is a number of the form
 514      * <i>s</i>&times;10<sup><i>i</i></sup>
 515      * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
 516      * <i>s</i> is not a multiple of 10.
 517      * These integers are the <em>significand</em> and
 518      * the <em>exponent</em>, respectively, of the decimal.
 519      * The <em>length</em> of the decimal is the (unique)
 520      * positive integer <i>n</i> meeting
 521      * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
 522      *
 523      * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
 524      * is defined as follows:
 525      * <ul>
 526      * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
 527      * according to the usual <em>round to nearest</em> rounding policy of
 528      * IEEE 754 floating-point arithmetic.
 529      * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
 530      * <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
 531      * in <i>R</i> with length <i>p</i>.
 532      * Otherwise, let <i>T</i> be the set of all decimals
 533      * in <i>R</i> with length 1 or 2.
 534      * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
 535      * that is closest to <i>m</i>.
 536      * Or if there are two such decimals in <i>T</i>,
 537      * select the one with the even significand.
 538      * </ul>
 539      *
 540      * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
 541      * is then formatted.
 542      * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
 543      * length of <i>d</i><sub><i>m</i></sub>, respectively.
 544      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
 545      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
 546      * be the usual decimal expansion of <i>s</i>.
 547      * Note that <i>s</i><sub>1</sub> &ne; 0
 548      * and <i>s</i><sub><i>n</i></sub> &ne; 0.
 549      * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
 550      * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
 551      * <ul>
 552      * <li>Case -3 &le; <i>e</i> &lt; 0:
 553      * <i>d</i><sub><i>m</i></sub> is formatted as
 554      * <code>0.0</code>&hellip;<code>0</code><!--
 555      * --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
 556      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
 557      * the decimal point and <i>s</i><sub>1</sub>.
 558      * For example, 123 &times; 10<sup>-4</sup> is formatted as
 559      * {@code 0.0123}.
 560      * <li>Case 0 &le; <i>e</i> &lt; 7:
 561      * <ul>
 562      * <li>Subcase <i>i</i> &ge; 0:
 563      * <i>d</i><sub><i>m</i></sub> is formatted as
 564      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
 565      * --><code>0</code>&hellip;<code>0.0</code>,
 566      * where there are exactly <i>i</i> zeroes
 567      * between <i>s</i><sub><i>n</i></sub> and the decimal point.
 568      * For example, 123 &times; 10<sup>2</sup> is formatted as
 569      * {@code 12300.0}.
 570      * <li>Subcase <i>i</i> &lt; 0:
 571      * <i>d</i><sub><i>m</i></sub> is formatted as
 572      * <i>s</i><sub>1</sub>&hellip;<!--
 573      * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
 574      * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
 575      * --><i>s</i><sub><i>n</i></sub>,
 576      * where there are exactly -<i>i</i> digits to the right of
 577      * the decimal point.
 578      * For example, 123 &times; 10<sup>-1</sup> is formatted as
 579      * {@code 12.3}.
 580      * </ul>
 581      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
 582      * computerized scientific notation is used to format
 583      * <i>d</i><sub><i>m</i></sub>.
 584      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
 585      * <ul>
 586      * <li>Subcase <i>n</i> = 1:
 587      * <i>d</i><sub><i>m</i></sub> is formatted as
 588      * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
 589      * For example, 1 &times; 10<sup>23</sup> is formatted as
 590      * {@code 1.0E23}.
 591      * <li>Subcase <i>n</i> &gt; 1:
 592      * <i>d</i><sub><i>m</i></sub> is formatted as
 593      * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
 594      * -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
 595      * For example, 123 &times; 10<sup>-21</sup> is formatted as
 596      * {@code 1.23E-19}.
 597      * </ul>
 598      * </ul>
 599      *
 600      * <p>To create localized string representations of a floating-point
 601      * value, use subclasses of {@link java.text.NumberFormat}.
 602      *
 603      * @apiNote
 604      * This method corresponds to the general functionality of the
 605      * convertToDecimalCharacter operation defined in IEEE 754;
 606      * however, that operation is defined in terms of specifying the
 607      * number of significand digits used in the conversion.
 608      * Code to do such a conversion in the Java platform includes
 609      * converting the {@code double} to a {@link java.math.BigDecimal
 610      * BigDecimal} exactly and then rounding the {@code BigDecimal} to
 611      * the desired number of digits; sample code:
 612      * {@snippet lang=java :
 613      * double d = 0.1;
 614      * int digits = 25;
 615      * BigDecimal bd = new BigDecimal(d);
 616      * String result = bd.round(new MathContext(digits,  RoundingMode.HALF_UP));
 617      * // 0.1000000000000000055511151
 618      * }
 619      *
 620      * @param   d   the {@code double} to be converted.
 621      * @return a string representation of the argument.
 622      */
 623     public static String toString(double d) {
 624         return DoubleToDecimal.toString(d);
 625     }
 626 
 627     /**
 628      * Returns a hexadecimal string representation of the
 629      * {@code double} argument. All characters mentioned below
 630      * are ASCII characters.
 631      *
 632      * <ul>
 633      * <li>If the argument is NaN, the result is the string
 634      *     "{@code NaN}".
 635      * <li>Otherwise, the result is a string that represents the sign
 636      * and magnitude of the argument. If the sign is negative, the
 637      * first character of the result is '{@code -}'
 638      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
 639      * character appears in the result. As for the magnitude <i>m</i>:
 640      *
 641      * <ul>
 642      * <li>If <i>m</i> is infinity, it is represented by the string
 643      * {@code "Infinity"}; thus, positive infinity produces the
 644      * result {@code "Infinity"} and negative infinity produces
 645      * the result {@code "-Infinity"}.
 646      *
 647      * <li>If <i>m</i> is zero, it is represented by the string
 648      * {@code "0x0.0p0"}; thus, negative zero produces the result
 649      * {@code "-0x0.0p0"} and positive zero produces the result
 650      * {@code "0x0.0p0"}.
 651      *
 652      * <li>If <i>m</i> is a {@code double} value with a
 653      * normalized representation, substrings are used to represent the
 654      * significand and exponent fields.  The significand is
 655      * represented by the characters {@code "0x1."}
 656      * followed by a lowercase hexadecimal representation of the rest
 657      * of the significand as a fraction.  Trailing zeros in the
 658      * hexadecimal representation are removed unless all the digits
 659      * are zero, in which case a single zero is used. Next, the
 660      * exponent is represented by {@code "p"} followed
 661      * by a decimal string of the unbiased exponent as if produced by
 662      * a call to {@link Integer#toString(int) Integer.toString} on the
 663      * exponent value.
 664      *
 665      * <li>If <i>m</i> is a {@code double} value with a subnormal
 666      * representation, the significand is represented by the
 667      * characters {@code "0x0."} followed by a
 668      * hexadecimal representation of the rest of the significand as a
 669      * fraction.  Trailing zeros in the hexadecimal representation are
 670      * removed. Next, the exponent is represented by
 671      * {@code "p-1022"}.  Note that there must be at
 672      * least one nonzero digit in a subnormal significand.
 673      *
 674      * </ul>
 675      *
 676      * </ul>
 677      *
 678      * <table class="striped">
 679      * <caption>Examples</caption>
 680      * <thead>
 681      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
 682      * </thead>
 683      * <tbody style="text-align:right">
 684      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
 685      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
 686      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
 687      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
 688      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
 689      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
 690      * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
 691      *     <td>{@code 0x1.fffffffffffffp1023}</td>
 692      * <tr><th scope="row">{@code Minimum Normal Value}</th>
 693      *     <td>{@code 0x1.0p-1022}</td>
 694      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
 695      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
 696      * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
 697      *     <td>{@code 0x0.0000000000001p-1022}</td>
 698      * </tbody>
 699      * </table>
 700      *
 701      * @apiNote
 702      * This method corresponds to the convertToHexCharacter operation
 703      * defined in IEEE 754.
 704      *
 705      * @param   d   the {@code double} to be converted.
 706      * @return a hex string representation of the argument.
 707      * @since 1.5
 708      * @author Joseph D. Darcy
 709      */
 710     public static String toHexString(double d) {
 711         /*
 712          * Modeled after the "a" conversion specifier in C99, section
 713          * 7.19.6.1; however, the output of this method is more
 714          * tightly specified.
 715          */
 716         if (!isFinite(d) )
 717             // For infinity and NaN, use the decimal output.
 718             return Double.toString(d);
 719         else {
 720             // Initialized to maximum size of output.
 721             StringBuilder answer = new StringBuilder(24);
 722 
 723             if (Math.copySign(1.0, d) == -1.0)    // value is negative,
 724                 answer.append("-");                  // so append sign info
 725 
 726             answer.append("0x");
 727 
 728             d = Math.abs(d);
 729 
 730             if(d == 0.0) {
 731                 answer.append("0.0p0");
 732             } else {
 733                 boolean subnormal = (d < Double.MIN_NORMAL);
 734 
 735                 // Isolate significand bits and OR in a high-order bit
 736                 // so that the string representation has a known
 737                 // length.
 738                 long signifBits = (Double.doubleToLongBits(d)
 739                                    & DoubleConsts.SIGNIF_BIT_MASK) |
 740                     0x1000000000000000L;
 741 
 742                 // Subnormal values have a 0 implicit bit; normal
 743                 // values have a 1 implicit bit.
 744                 answer.append(subnormal ? "0." : "1.");
 745 
 746                 // Isolate the low-order 13 digits of the hex
 747                 // representation.  If all the digits are zero,
 748                 // replace with a single 0; otherwise, remove all
 749                 // trailing zeros.
 750                 String signif = Long.toHexString(signifBits).substring(3,16);
 751                 answer.append(signif.equals("0000000000000") ? // 13 zeros
 752                               "0":
 753                               signif.replaceFirst("0{1,12}$", ""));
 754 
 755                 answer.append('p');
 756                 // If the value is subnormal, use the E_min exponent
 757                 // value for double; otherwise, extract and report d's
 758                 // exponent (the representation of a subnormal uses
 759                 // E_min -1).
 760                 answer.append(subnormal ?
 761                               Double.MIN_EXPONENT:
 762                               Math.getExponent(d));
 763             }
 764             return answer.toString();
 765         }
 766     }
 767 
 768     /**
 769      * Returns a {@code Double} object holding the
 770      * {@code double} value represented by the argument string
 771      * {@code s}.
 772      *
 773      * <p>If {@code s} is {@code null}, then a
 774      * {@code NullPointerException} is thrown.
 775      *
 776      * <p>Leading and trailing whitespace characters in {@code s}
 777      * are ignored.  Whitespace is removed as if by the {@link
 778      * String#trim} method; that is, both ASCII space and control
 779      * characters are removed. The rest of {@code s} should
 780      * constitute a <i>FloatValue</i> as described by the lexical
 781      * syntax rules:
 782      *
 783      * <blockquote>
 784      * <dl>
 785      * <dt><i>FloatValue:</i>
 786      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 787      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 788      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 789      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 790      * <dd><i>SignedInteger</i>
 791      * </dl>
 792      *
 793      * <dl>
 794      * <dt><i>HexFloatingPointLiteral</i>:
 795      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 796      * </dl>
 797      *
 798      * <dl>
 799      * <dt><i>HexSignificand:</i>
 800      * <dd><i>HexNumeral</i>
 801      * <dd><i>HexNumeral</i> {@code .}
 802      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 803      *     </i>{@code .}<i> HexDigits</i>
 804      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 805      *     </i>{@code .} <i>HexDigits</i>
 806      * </dl>
 807      *
 808      * <dl>
 809      * <dt><i>BinaryExponent:</i>
 810      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 811      * </dl>
 812      *
 813      * <dl>
 814      * <dt><i>BinaryExponentIndicator:</i>
 815      * <dd>{@code p}
 816      * <dd>{@code P}
 817      * </dl>
 818      *
 819      * </blockquote>
 820      *
 821      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 822      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 823      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 824      * sections of
 825      * <cite>The Java Language Specification</cite>,
 826      * except that underscores are not accepted between digits.
 827      * If {@code s} does not have the form of
 828      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 829      * is thrown. Otherwise, {@code s} is regarded as
 830      * representing an exact decimal value in the usual
 831      * "computerized scientific notation" or as an exact
 832      * hexadecimal value; this exact numerical value is then
 833      * conceptually converted to an "infinitely precise"
 834      * binary value that is then rounded to type {@code double}
 835      * by the usual round-to-nearest rule of IEEE 754 floating-point
 836      * arithmetic, which includes preserving the sign of a zero
 837      * value.
 838      *
 839      * Note that the round-to-nearest rule also implies overflow and
 840      * underflow behaviour; if the exact value of {@code s} is large
 841      * enough in magnitude (greater than or equal to ({@link
 842      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
 843      * rounding to {@code double} will result in an infinity and if the
 844      * exact value of {@code s} is small enough in magnitude (less
 845      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 846      * result in a zero.
 847      *
 848      * Finally, after rounding a {@code Double} object representing
 849      * this {@code double} value is returned.
 850      *
 851      * <p>Note that trailing format specifiers, specifiers that
 852      * determine the type of a floating-point literal
 853      * ({@code 1.0f} is a {@code float} value;
 854      * {@code 1.0d} is a {@code double} value), do
 855      * <em>not</em> influence the results of this method.  In other
 856      * words, the numerical value of the input string is converted
 857      * directly to the target floating-point type.  The two-step
 858      * sequence of conversions, string to {@code float} followed
 859      * by {@code float} to {@code double}, is <em>not</em>
 860      * equivalent to converting a string directly to
 861      * {@code double}. For example, the {@code float}
 862      * literal {@code 0.1f} is equal to the {@code double}
 863      * value {@code 0.10000000149011612}; the {@code float}
 864      * literal {@code 0.1f} represents a different numerical
 865      * value than the {@code double} literal
 866      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
 867      * represented in a binary floating-point number.)
 868      *
 869      * <p>To avoid calling this method on an invalid string and having
 870      * a {@code NumberFormatException} be thrown, the regular
 871      * expression below can be used to screen the input string:
 872      *
 873      * {@snippet lang="java" :
 874      *  final String Digits     = "(\\p{Digit}+)";
 875      *  final String HexDigits  = "(\\p{XDigit}+)";
 876      *  // an exponent is 'e' or 'E' followed by an optionally
 877      *  // signed decimal integer.
 878      *  final String Exp        = "[eE][+-]?"+Digits;
 879      *  final String fpRegex    =
 880      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
 881      *       "[+-]?(" + // Optional sign character
 882      *       "NaN|" +           // "NaN" string
 883      *       "Infinity|" +      // "Infinity" string
 884      *
 885      *       // A decimal floating-point string representing a finite positive
 886      *       // number without a leading sign has at most five basic pieces:
 887      *       // Digits . Digits ExponentPart FloatTypeSuffix
 888      *       //
 889      *       // Since this method allows integer-only strings as input
 890      *       // in addition to strings of floating-point literals, the
 891      *       // two sub-patterns below are simplifications of the grammar
 892      *       // productions from section 3.10.2 of
 893      *       // The Java Language Specification.
 894      *
 895      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
 896      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
 897      *
 898      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
 899      *       "(\\.("+Digits+")("+Exp+")?)|"+
 900      *
 901      *       // Hexadecimal strings
 902      *       "((" +
 903      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
 904      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
 905      *
 906      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
 907      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
 908      *
 909      *        ")[pP][+-]?" + Digits + "))" +
 910      *       "[fFdD]?))" +
 911      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
 912      *  // @link region substring="Pattern.matches" target ="java.util.regex.Pattern#matches"
 913      *  if (Pattern.matches(fpRegex, myString))
 914      *      Double.valueOf(myString); // Will not throw NumberFormatException
 915      * // @end
 916      *  else {
 917      *      // Perform suitable alternative action
 918      *  }
 919      * }
 920      *
 921      * @apiNote To interpret localized string representations of a
 922      * floating-point value, or string representations that have
 923      * non-ASCII digits, use {@link java.text.NumberFormat}. For
 924      * example,
 925      * {@snippet lang="java" :
 926      *     NumberFormat.getInstance(l).parse(s).doubleValue();
 927      * }
 928      * where {@code l} is the desired locale, or
 929      * {@link java.util.Locale#ROOT} if locale insensitive.
 930      *
 931      * @apiNote
 932      * This method corresponds to the convertFromDecimalCharacter and
 933      * convertFromHexCharacter operations defined in IEEE 754.
 934      *
 935      * @param      s   the string to be parsed.
 936      * @return     a {@code Double} object holding the value
 937      *             represented by the {@code String} argument.
 938      * @throws     NumberFormatException  if the string does not contain a
 939      *             parsable number.
 940      * @see Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 941      */
 942     public static Double valueOf(String s) throws NumberFormatException {
 943         return new Double(parseDouble(s));
 944     }
 945 
 946     /**
 947      * Returns a {@code Double} instance representing the specified
 948      * {@code double} value.
 949      * If a new {@code Double} instance is not required, this method
 950      * should generally be used in preference to the constructor
 951      * {@link #Double(double)}, as this method is likely to yield
 952      * significantly better space and time performance by caching
 953      * frequently requested values.
 954      *
 955      * @param  d a double value.
 956      * @return a {@code Double} instance representing {@code d}.
 957      * @since  1.5
 958      */
 959     @IntrinsicCandidate
 960     @DeserializeConstructor
 961     public static Double valueOf(double d) {
 962         return new Double(d);
 963     }
 964 
 965     /**
 966      * Returns a new {@code double} initialized to the value
 967      * represented by the specified {@code String}, as performed
 968      * by the {@code valueOf} method of class
 969      * {@code Double}.
 970      *
 971      * @param  s   the string to be parsed.
 972      * @return the {@code double} value represented by the string
 973      *         argument.
 974      * @throws NullPointerException  if the string is null
 975      * @throws NumberFormatException if the string does not contain
 976      *         a parsable {@code double}.
 977      * @see    java.lang.Double#valueOf(String)
 978      * @see    Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 979      * @since 1.2
 980      */
 981     public static double parseDouble(String s) throws NumberFormatException {
 982         return FloatingDecimal.parseDouble(s);
 983     }
 984 
 985     /**
 986      * Returns {@code true} if the specified number is a
 987      * Not-a-Number (NaN) value, {@code false} otherwise.
 988      *
 989      * @apiNote
 990      * This method corresponds to the isNaN operation defined in IEEE
 991      * 754.
 992      *
 993      * @param   v   the value to be tested.
 994      * @return  {@code true} if the value of the argument is NaN;
 995      *          {@code false} otherwise.
 996      */
 997     public static boolean isNaN(double v) {
 998         return (v != v);
 999     }
1000 
1001     /**
1002      * Returns {@code true} if the specified number is infinitely
1003      * large in magnitude, {@code false} otherwise.
1004      *
1005      * @apiNote
1006      * This method corresponds to the isInfinite operation defined in
1007      * IEEE 754.
1008      *
1009      * @param   v   the value to be tested.
1010      * @return  {@code true} if the value of the argument is positive
1011      *          infinity or negative infinity; {@code false} otherwise.
1012      */
1013     @IntrinsicCandidate
1014     public static boolean isInfinite(double v) {
1015         return Math.abs(v) > MAX_VALUE;
1016     }
1017 
1018     /**
1019      * Returns {@code true} if the argument is a finite floating-point
1020      * value; returns {@code false} otherwise (for NaN and infinity
1021      * arguments).
1022      *
1023      * @apiNote
1024      * This method corresponds to the isFinite operation defined in
1025      * IEEE 754.
1026      *
1027      * @param d the {@code double} value to be tested
1028      * @return {@code true} if the argument is a finite
1029      * floating-point value, {@code false} otherwise.
1030      * @since 1.8
1031      */
1032     @IntrinsicCandidate
1033     public static boolean isFinite(double d) {
1034         return Math.abs(d) <= Double.MAX_VALUE;
1035     }
1036 
1037     /**
1038      * The value of the Double.
1039      *
1040      * @serial
1041      */
1042     private final double value;
1043 
1044     /**
1045      * Constructs a newly allocated {@code Double} object that
1046      * represents the primitive {@code double} argument.
1047      *
1048      * @param   value   the value to be represented by the {@code Double}.
1049      *
1050      * @deprecated
1051      * It is rarely appropriate to use this constructor. The static factory
1052      * {@link #valueOf(double)} is generally a better choice, as it is
1053      * likely to yield significantly better space and time performance.
1054      */
1055     @Deprecated(since="9", forRemoval = true)
1056     public Double(double value) {
1057         this.value = value;
1058     }
1059 
1060     /**
1061      * Constructs a newly allocated {@code Double} object that
1062      * represents the floating-point value of type {@code double}
1063      * represented by the string. The string is converted to a
1064      * {@code double} value as if by the {@code valueOf} method.
1065      *
1066      * @param  s  a string to be converted to a {@code Double}.
1067      * @throws    NumberFormatException if the string does not contain a
1068      *            parsable number.
1069      *
1070      * @deprecated
1071      * It is rarely appropriate to use this constructor.
1072      * Use {@link #parseDouble(String)} to convert a string to a
1073      * {@code double} primitive, or use {@link #valueOf(String)}
1074      * to convert a string to a {@code Double} object.
1075      */
1076     @Deprecated(since="9", forRemoval = true)
1077     public Double(String s) throws NumberFormatException {
1078         value = parseDouble(s);
1079     }
1080 
1081     /**
1082      * Returns {@code true} if this {@code Double} value is
1083      * a Not-a-Number (NaN), {@code false} otherwise.
1084      *
1085      * @return  {@code true} if the value represented by this object is
1086      *          NaN; {@code false} otherwise.
1087      */
1088     public boolean isNaN() {
1089         return isNaN(value);
1090     }
1091 
1092     /**
1093      * Returns {@code true} if this {@code Double} value is
1094      * infinitely large in magnitude, {@code false} otherwise.
1095      *
1096      * @return  {@code true} if the value represented by this object is
1097      *          positive infinity or negative infinity;
1098      *          {@code false} otherwise.
1099      */
1100     public boolean isInfinite() {
1101         return isInfinite(value);
1102     }
1103 
1104     /**
1105      * Returns a string representation of this {@code Double} object.
1106      * The primitive {@code double} value represented by this
1107      * object is converted to a string exactly as if by the method
1108      * {@code toString} of one argument.
1109      *
1110      * @return  a {@code String} representation of this object.
1111      * @see java.lang.Double#toString(double)
1112      */
1113     public String toString() {
1114         return toString(value);
1115     }
1116 
1117     /**
1118      * Returns the value of this {@code Double} as a {@code byte}
1119      * after a narrowing primitive conversion.
1120      *
1121      * @return  the {@code double} value represented by this object
1122      *          converted to type {@code byte}
1123      * @jls 5.1.3 Narrowing Primitive Conversion
1124      * @since 1.1
1125      */
1126     @Override
1127     public byte byteValue() {
1128         return (byte)value;
1129     }
1130 
1131     /**
1132      * Returns the value of this {@code Double} as a {@code short}
1133      * after a narrowing primitive conversion.
1134      *
1135      * @return  the {@code double} value represented by this object
1136      *          converted to type {@code short}
1137      * @jls 5.1.3 Narrowing Primitive Conversion
1138      * @since 1.1
1139      */
1140     @Override
1141     public short shortValue() {
1142         return (short)value;
1143     }
1144 
1145     /**
1146      * Returns the value of this {@code Double} as an {@code int}
1147      * after a narrowing primitive conversion.
1148      * @jls 5.1.3 Narrowing Primitive Conversion
1149      *
1150      * @apiNote
1151      * This method corresponds to the convertToIntegerTowardZero
1152      * operation defined in IEEE 754.
1153      *
1154      * @return  the {@code double} value represented by this object
1155      *          converted to type {@code int}
1156      */
1157     @Override
1158     public int intValue() {
1159         return (int)value;
1160     }
1161 
1162     /**
1163      * Returns the value of this {@code Double} as a {@code long}
1164      * after a narrowing primitive conversion.
1165      *
1166      * @apiNote
1167      * This method corresponds to the convertToIntegerTowardZero
1168      * operation defined in IEEE 754.
1169      *
1170      * @return  the {@code double} value represented by this object
1171      *          converted to type {@code long}
1172      * @jls 5.1.3 Narrowing Primitive Conversion
1173      */
1174     @Override
1175     public long longValue() {
1176         return (long)value;
1177     }
1178 
1179     /**
1180      * Returns the value of this {@code Double} as a {@code float}
1181      * after a narrowing primitive conversion.
1182      *
1183      * @apiNote
1184      * This method corresponds to the convertFormat operation defined
1185      * in IEEE 754.
1186      *
1187      * @return  the {@code double} value represented by this object
1188      *          converted to type {@code float}
1189      * @jls 5.1.3 Narrowing Primitive Conversion
1190      * @since 1.0
1191      */
1192     @Override
1193     public float floatValue() {
1194         return (float)value;
1195     }
1196 
1197     /**
1198      * Returns the {@code double} value of this {@code Double} object.
1199      *
1200      * @return the {@code double} value represented by this object
1201      */
1202     @Override
1203     @IntrinsicCandidate
1204     public double doubleValue() {
1205         return value;
1206     }
1207 
1208     /**
1209      * Returns a hash code for this {@code Double} object. The
1210      * result is the exclusive OR of the two halves of the
1211      * {@code long} integer bit representation, exactly as
1212      * produced by the method {@link #doubleToLongBits(double)}, of
1213      * the primitive {@code double} value represented by this
1214      * {@code Double} object. That is, the hash code is the value
1215      * of the expression:
1216      *
1217      * <blockquote>
1218      *  {@code (int)(v^(v>>>32))}
1219      * </blockquote>
1220      *
1221      * where {@code v} is defined by:
1222      *
1223      * <blockquote>
1224      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
1225      * </blockquote>
1226      *
1227      * @return  a {@code hash code} value for this object.
1228      */
1229     @Override
1230     public int hashCode() {
1231         return Double.hashCode(value);
1232     }
1233 
1234     /**
1235      * Returns a hash code for a {@code double} value; compatible with
1236      * {@code Double.hashCode()}.
1237      *
1238      * @param value the value to hash
1239      * @return a hash code value for a {@code double} value.
1240      * @since 1.8
1241      */
1242     public static int hashCode(double value) {
1243         return Long.hashCode(doubleToLongBits(value));
1244     }
1245 
1246     /**
1247      * Compares this object against the specified object.  The result
1248      * is {@code true} if and only if the argument is not
1249      * {@code null} and is a {@code Double} object that
1250      * represents a {@code double} that has the same value as the
1251      * {@code double} represented by this object. For this
1252      * purpose, two {@code double} values are considered to be
1253      * the same if and only if the method {@link
1254      * #doubleToLongBits(double)} returns the identical
1255      * {@code long} value when applied to each.
1256      *
1257      * @apiNote
1258      * This method is defined in terms of {@link
1259      * #doubleToLongBits(double)} rather than the {@code ==} operator
1260      * on {@code double} values since the {@code ==} operator does
1261      * <em>not</em> define an equivalence relation and to satisfy the
1262      * {@linkplain Object#equals equals contract} an equivalence
1263      * relation must be implemented; see {@linkplain ##equivalenceRelation
1264      * this discussion for details of floating-point equality and equivalence}.
1265      *
1266      * @see java.lang.Double#doubleToLongBits(double)
1267      * @jls 15.21.1 Numerical Equality Operators == and !=
1268      */
1269     public boolean equals(Object obj) {
1270         return (obj instanceof Double d) &&
1271             (doubleToLongBits(d.value) == doubleToLongBits(value));
1272     }
1273 
1274     /**
1275      * Returns a representation of the specified floating-point value
1276      * according to the IEEE 754 floating-point "double
1277      * format" bit layout.
1278      *
1279      * <p>Bit 63 (the bit that is selected by the mask
1280      * {@code 0x8000000000000000L}) represents the sign of the
1281      * floating-point number. Bits
1282      * 62-52 (the bits that are selected by the mask
1283      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
1284      * (the bits that are selected by the mask
1285      * {@code 0x000fffffffffffffL}) represent the significand
1286      * (sometimes called the mantissa) of the floating-point number.
1287      *
1288      * <p>If the argument is positive infinity, the result is
1289      * {@code 0x7ff0000000000000L}.
1290      *
1291      * <p>If the argument is negative infinity, the result is
1292      * {@code 0xfff0000000000000L}.
1293      *
1294      * <p>If the argument is NaN, the result is
1295      * {@code 0x7ff8000000000000L}.
1296      *
1297      * <p>In all cases, the result is a {@code long} integer that, when
1298      * given to the {@link #longBitsToDouble(long)} method, will produce a
1299      * floating-point value the same as the argument to
1300      * {@code doubleToLongBits} (except all NaN values are
1301      * collapsed to a single "canonical" NaN value).
1302      *
1303      * @param   value   a {@code double} precision floating-point number.
1304      * @return the bits that represent the floating-point number.
1305      */
1306     @IntrinsicCandidate
1307     public static long doubleToLongBits(double value) {
1308         if (!isNaN(value)) {
1309             return doubleToRawLongBits(value);
1310         }
1311         return 0x7ff8000000000000L;
1312     }
1313 
1314     /**
1315      * Returns a representation of the specified floating-point value
1316      * according to the IEEE 754 floating-point "double
1317      * format" bit layout, preserving Not-a-Number (NaN) values.
1318      *
1319      * <p>Bit 63 (the bit that is selected by the mask
1320      * {@code 0x8000000000000000L}) represents the sign of the
1321      * floating-point number. Bits
1322      * 62-52 (the bits that are selected by the mask
1323      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
1324      * (the bits that are selected by the mask
1325      * {@code 0x000fffffffffffffL}) represent the significand
1326      * (sometimes called the mantissa) of the floating-point number.
1327      *
1328      * <p>If the argument is positive infinity, the result is
1329      * {@code 0x7ff0000000000000L}.
1330      *
1331      * <p>If the argument is negative infinity, the result is
1332      * {@code 0xfff0000000000000L}.
1333      *
1334      * <p>If the argument is NaN, the result is the {@code long}
1335      * integer representing the actual NaN value.  Unlike the
1336      * {@code doubleToLongBits} method,
1337      * {@code doubleToRawLongBits} does not collapse all the bit
1338      * patterns encoding a NaN to a single "canonical" NaN
1339      * value.
1340      *
1341      * <p>In all cases, the result is a {@code long} integer that,
1342      * when given to the {@link #longBitsToDouble(long)} method, will
1343      * produce a floating-point value the same as the argument to
1344      * {@code doubleToRawLongBits}.
1345      *
1346      * @param   value   a {@code double} precision floating-point number.
1347      * @return the bits that represent the floating-point number.
1348      * @since 1.3
1349      */
1350     @IntrinsicCandidate
1351     public static native long doubleToRawLongBits(double value);
1352 
1353     /**
1354      * Returns the {@code double} value corresponding to a given
1355      * bit representation.
1356      * The argument is considered to be a representation of a
1357      * floating-point value according to the IEEE 754 floating-point
1358      * "double format" bit layout.
1359      *
1360      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
1361      * is positive infinity.
1362      *
1363      * <p>If the argument is {@code 0xfff0000000000000L}, the result
1364      * is negative infinity.
1365      *
1366      * <p>If the argument is any value in the range
1367      * {@code 0x7ff0000000000001L} through
1368      * {@code 0x7fffffffffffffffL} or in the range
1369      * {@code 0xfff0000000000001L} through
1370      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
1371      * 754 floating-point operation provided by Java can distinguish
1372      * between two NaN values of the same type with different bit
1373      * patterns.  Distinct values of NaN are only distinguishable by
1374      * use of the {@code Double.doubleToRawLongBits} method.
1375      *
1376      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
1377      * values that can be computed from the argument:
1378      *
1379      * {@snippet lang="java" :
1380      * int s = ((bits >> 63) == 0) ? 1 : -1;
1381      * int e = (int)((bits >> 52) & 0x7ffL);
1382      * long m = (e == 0) ?
1383      *                 (bits & 0xfffffffffffffL) << 1 :
1384      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
1385      * }
1386      *
1387      * Then the floating-point result equals the value of the mathematical
1388      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
1389      *
1390      * <p>Note that this method may not be able to return a
1391      * {@code double} NaN with exactly same bit pattern as the
1392      * {@code long} argument.  IEEE 754 distinguishes between two
1393      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
1394      * differences between the two kinds of NaN are generally not
1395      * visible in Java.  Arithmetic operations on signaling NaNs turn
1396      * them into quiet NaNs with a different, but often similar, bit
1397      * pattern.  However, on some processors merely copying a
1398      * signaling NaN also performs that conversion.  In particular,
1399      * copying a signaling NaN to return it to the calling method
1400      * may perform this conversion.  So {@code longBitsToDouble}
1401      * may not be able to return a {@code double} with a
1402      * signaling NaN bit pattern.  Consequently, for some
1403      * {@code long} values,
1404      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
1405      * <i>not</i> equal {@code start}.  Moreover, which
1406      * particular bit patterns represent signaling NaNs is platform
1407      * dependent; although all NaN bit patterns, quiet or signaling,
1408      * must be in the NaN range identified above.
1409      *
1410      * @param   bits   any {@code long} integer.
1411      * @return  the {@code double} floating-point value with the same
1412      *          bit pattern.
1413      */
1414     @IntrinsicCandidate
1415     public static native double longBitsToDouble(long bits);
1416 
1417     /**
1418      * Compares two {@code Double} objects numerically.
1419      *
1420      * This method imposes a total order on {@code Double} objects
1421      * with two differences compared to the incomplete order defined by
1422      * the Java language numerical comparison operators ({@code <, <=,
1423      * ==, >=, >}) on {@code double} values.
1424      *
1425      * <ul><li> A NaN is <em>unordered</em> with respect to other
1426      *          values and unequal to itself under the comparison
1427      *          operators.  This method chooses to define {@code
1428      *          Double.NaN} to be equal to itself and greater than all
1429      *          other {@code double} values (including {@code
1430      *          Double.POSITIVE_INFINITY}).
1431      *
1432      *      <li> Positive zero and negative zero compare equal
1433      *      numerically, but are distinct and distinguishable values.
1434      *      This method chooses to define positive zero ({@code +0.0d}),
1435      *      to be greater than negative zero ({@code -0.0d}).
1436      * </ul>
1437 
1438      * This ensures that the <i>natural ordering</i> of {@code Double}
1439      * objects imposed by this method is <i>consistent with
1440      * equals</i>; see {@linkplain ##equivalenceRelation this
1441      * discussion for details of floating-point comparison and
1442      * ordering}.
1443      *
1444      * @param   anotherDouble   the {@code Double} to be compared.
1445      * @return  the value {@code 0} if {@code anotherDouble} is
1446      *          numerically equal to this {@code Double}; a value
1447      *          less than {@code 0} if this {@code Double}
1448      *          is numerically less than {@code anotherDouble};
1449      *          and a value greater than {@code 0} if this
1450      *          {@code Double} is numerically greater than
1451      *          {@code anotherDouble}.
1452      *
1453      * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
1454      * @since   1.2
1455      */
1456     @Override
1457     public int compareTo(Double anotherDouble) {
1458         return Double.compare(value, anotherDouble.value);
1459     }
1460 
1461     /**
1462      * Compares the two specified {@code double} values. The sign
1463      * of the integer value returned is the same as that of the
1464      * integer that would be returned by the call:
1465      * <pre>
1466      *    Double.valueOf(d1).compareTo(Double.valueOf(d2))
1467      * </pre>
1468      *
1469      * @param   d1        the first {@code double} to compare
1470      * @param   d2        the second {@code double} to compare
1471      * @return  the value {@code 0} if {@code d1} is
1472      *          numerically equal to {@code d2}; a value less than
1473      *          {@code 0} if {@code d1} is numerically less than
1474      *          {@code d2}; and a value greater than {@code 0}
1475      *          if {@code d1} is numerically greater than
1476      *          {@code d2}.
1477      * @since 1.4
1478      */
1479     public static int compare(double d1, double d2) {
1480         if (d1 < d2)
1481             return -1;           // Neither val is NaN, thisVal is smaller
1482         if (d1 > d2)
1483             return 1;            // Neither val is NaN, thisVal is larger
1484 
1485         // Cannot use doubleToRawLongBits because of possibility of NaNs.
1486         long thisBits    = Double.doubleToLongBits(d1);
1487         long anotherBits = Double.doubleToLongBits(d2);
1488 
1489         return (thisBits == anotherBits ?  0 : // Values are equal
1490                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1491                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1492     }
1493 
1494     /**
1495      * Adds two {@code double} values together as per the + operator.
1496      *
1497      * @apiNote This method corresponds to the addition operation
1498      * defined in IEEE 754.
1499      *
1500      * @param a the first operand
1501      * @param b the second operand
1502      * @return the sum of {@code a} and {@code b}
1503      * @jls 4.2.4 Floating-Point Operations
1504      * @see java.util.function.BinaryOperator
1505      * @since 1.8
1506      */
1507     public static double sum(double a, double b) {
1508         return a + b;
1509     }
1510 
1511     /**
1512      * Returns the greater of two {@code double} values
1513      * as if by calling {@link Math#max(double, double) Math.max}.
1514      *
1515      * @apiNote
1516      * This method corresponds to the maximum operation defined in
1517      * IEEE 754.
1518      *
1519      * @param a the first operand
1520      * @param b the second operand
1521      * @return the greater of {@code a} and {@code b}
1522      * @see java.util.function.BinaryOperator
1523      * @since 1.8
1524      */
1525     public static double max(double a, double b) {
1526         return Math.max(a, b);
1527     }
1528 
1529     /**
1530      * Returns the smaller of two {@code double} values
1531      * as if by calling {@link Math#min(double, double) Math.min}.
1532      *
1533      * @apiNote
1534      * This method corresponds to the minimum operation defined in
1535      * IEEE 754.
1536      *
1537      * @param a the first operand
1538      * @param b the second operand
1539      * @return the smaller of {@code a} and {@code b}.
1540      * @see java.util.function.BinaryOperator
1541      * @since 1.8
1542      */
1543     public static double min(double a, double b) {
1544         return Math.min(a, b);
1545     }
1546 
1547     /**
1548      * Returns an {@link Optional} containing the nominal descriptor for this
1549      * instance, which is the instance itself.
1550      *
1551      * @return an {@link Optional} describing the {@linkplain Double} instance
1552      * @since 12
1553      */
1554     @Override
1555     public Optional<Double> describeConstable() {
1556         return Optional.of(this);
1557     }
1558 
1559     /**
1560      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1561      * the instance itself.
1562      *
1563      * @param lookup ignored
1564      * @return the {@linkplain Double} instance
1565      * @since 12
1566      */
1567     @Override
1568     public Double resolveConstantDesc(MethodHandles.Lookup lookup) {
1569         return this;
1570     }
1571 
1572     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1573     @java.io.Serial
1574     private static final long serialVersionUID = -9172774392245257468L;
1575 }