1 /*
   2  * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.invoke.MethodHandles;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.util.Optional;
  32 
  33 import jdk.internal.math.FloatConsts;
  34 import jdk.internal.math.FloatingDecimal;
  35 import jdk.internal.math.FloatToDecimal;
  36 import jdk.internal.vm.annotation.IntrinsicCandidate;
  37 
  38 /**
  39  * The {@code Float} class wraps a value of primitive type
  40  * {@code float} in an object. An object of type
  41  * {@code Float} contains a single field whose type is
  42  * {@code float}.
  43  *
  44  * <p>In addition, this class provides several methods for converting a
  45  * {@code float} to a {@code String} and a
  46  * {@code String} to a {@code float}, as well as other
  47  * constants and methods useful when dealing with a
  48  * {@code float}.
  49  *
  50  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  51  * class; programmers should treat instances that are
  52  * {@linkplain #equals(Object) equal} as interchangeable and should not
  53  * use instances for synchronization, or unpredictable behavior may
  54  * occur. For example, in a future release, synchronization may fail.
  55  *
  56  * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence,
  57  * and Comparison</a></h2>
  58  *
  59  * The class {@code java.lang.Double} has a {@linkplain
  60  * Double##equivalenceRelation discussion of equality,
  61  * equivalence, and comparison of floating-point values} that is
  62  * equally applicable to {@code float} values.
  63  *
  64  * <h2><a id=decimalToBinaryConversion>Decimal &harr; Binary Conversion Issues</a></h2>
  65  *
  66  * The {@linkplain Double##decimalToBinaryConversion discussion of binary to
  67  * decimal conversion issues} in {@code java.lang.Double} is also
  68  * applicable to {@code float} values.
  69  *
  70  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
  71  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
  72  *
  73  * @author  Lee Boynton
  74  * @author  Arthur van Hoff
  75  * @author  Joseph D. Darcy
  76  * @since 1.0
  77  */
  78 @jdk.internal.ValueBased
  79 public final class Float extends Number
  80         implements Comparable<Float>, Constable, ConstantDesc {
  81     /**
  82      * A constant holding the positive infinity of type
  83      * {@code float}. It is equal to the value returned by
  84      * {@code Float.intBitsToFloat(0x7f800000)}.
  85      */
  86     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
  87 
  88     /**
  89      * A constant holding the negative infinity of type
  90      * {@code float}. It is equal to the value returned by
  91      * {@code Float.intBitsToFloat(0xff800000)}.
  92      */
  93     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
  94 
  95     /**
  96      * A constant holding a Not-a-Number (NaN) value of type
  97      * {@code float}.  It is equivalent to the value returned by
  98      * {@code Float.intBitsToFloat(0x7fc00000)}.
  99      */
 100     public static final float NaN = 0.0f / 0.0f;
 101 
 102     /**
 103      * A constant holding the largest positive finite value of type
 104      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
 105      * It is equal to the hexadecimal floating-point literal
 106      * {@code 0x1.fffffeP+127f} and also equal to
 107      * {@code Float.intBitsToFloat(0x7f7fffff)}.
 108      */
 109     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
 110 
 111     /**
 112      * A constant holding the smallest positive normal value of type
 113      * {@code float}, 2<sup>-126</sup>.  It is equal to the
 114      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
 115      * equal to {@code Float.intBitsToFloat(0x00800000)}.
 116      *
 117      * @since 1.6
 118      */
 119     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
 120 
 121     /**
 122      * A constant holding the smallest positive nonzero value of type
 123      * {@code float}, 2<sup>-149</sup>. It is equal to the
 124      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
 125      * and also equal to {@code Float.intBitsToFloat(0x1)}.
 126      */
 127     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
 128 
 129     /**
 130      * The number of bits used to represent a {@code float} value.
 131      *
 132      * @since 1.5
 133      */
 134     public static final int SIZE = 32;
 135 
 136     /**
 137      * The number of bits in the significand of a {@code float} value.
 138      * This is the parameter N in section {@jls 4.2.3} of
 139      * <cite>The Java Language Specification</cite>.
 140      *
 141      * @since 19
 142      */
 143     public static final int PRECISION = 24;
 144 
 145     /**
 146      * Maximum exponent a finite {@code float} variable may have.  It
 147      * is equal to the value returned by {@code
 148      * Math.getExponent(Float.MAX_VALUE)}.
 149      *
 150      * @since 1.6
 151      */
 152     public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127
 153 
 154     /**
 155      * Minimum exponent a normalized {@code float} variable may have.
 156      * It is equal to the value returned by {@code
 157      * Math.getExponent(Float.MIN_NORMAL)}.
 158      *
 159      * @since 1.6
 160      */
 161     public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126
 162 
 163     /**
 164      * The number of bytes used to represent a {@code float} value.
 165      *
 166      * @since 1.8
 167      */
 168     public static final int BYTES = SIZE / Byte.SIZE;
 169 
 170     /**
 171      * The {@code Class} instance representing the primitive type
 172      * {@code float}.
 173      *
 174      * @since 1.1
 175      */
 176     @SuppressWarnings("unchecked")
 177     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
 178 
 179     /**
 180      * Returns a string representation of the {@code float}
 181      * argument. All characters mentioned below are ASCII characters.
 182      * <ul>
 183      * <li>If the argument is NaN, the result is the string
 184      * "{@code NaN}".
 185      * <li>Otherwise, the result is a string that represents the sign and
 186      *     magnitude (absolute value) of the argument. If the sign is
 187      *     negative, the first character of the result is
 188      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
 189      *     positive, no sign character appears in the result. As for
 190      *     the magnitude <i>m</i>:
 191      * <ul>
 192      * <li>If <i>m</i> is infinity, it is represented by the characters
 193      *     {@code "Infinity"}; thus, positive infinity produces
 194      *     the result {@code "Infinity"} and negative infinity
 195      *     produces the result {@code "-Infinity"}.
 196      * <li>If <i>m</i> is zero, it is represented by the characters
 197      *     {@code "0.0"}; thus, negative zero produces the result
 198      *     {@code "-0.0"} and positive zero produces the result
 199      *     {@code "0.0"}.
 200      *
 201      * <li> Otherwise <i>m</i> is positive and finite.
 202      * It is converted to a string in two stages:
 203      * <ul>
 204      * <li> <em>Selection of a decimal</em>:
 205      * A well-defined decimal <i>d</i><sub><i>m</i></sub>
 206      * is selected to represent <i>m</i>.
 207      * This decimal is (almost always) the <em>shortest</em> one that
 208      * rounds to <i>m</i> according to the round to nearest
 209      * rounding policy of IEEE 754 floating-point arithmetic.
 210      * <li> <em>Formatting as a string</em>:
 211      * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
 212      * either in plain or in computerized scientific notation,
 213      * depending on its value.
 214      * </ul>
 215      * </ul>
 216      * </ul>
 217      *
 218      * <p>A <em>decimal</em> is a number of the form
 219      * <i>s</i>&times;10<sup><i>i</i></sup>
 220      * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
 221      * <i>s</i> is not a multiple of 10.
 222      * These integers are the <em>significand</em> and
 223      * the <em>exponent</em>, respectively, of the decimal.
 224      * The <em>length</em> of the decimal is the (unique)
 225      * positive integer <i>n</i> meeting
 226      * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
 227      *
 228      * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
 229      * is defined as follows:
 230      * <ul>
 231      * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
 232      * according to the usual <em>round to nearest</em> rounding policy of
 233      * IEEE 754 floating-point arithmetic.
 234      * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
 235      * <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
 236      * in <i>R</i> with length <i>p</i>.
 237      * Otherwise, let <i>T</i> be the set of all decimals
 238      * in <i>R</i> with length 1 or 2.
 239      * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
 240      * that is closest to <i>m</i>.
 241      * Or if there are two such decimals in <i>T</i>,
 242      * select the one with the even significand.
 243      * </ul>
 244      *
 245      * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
 246      * is then formatted.
 247      * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
 248      * length of <i>d</i><sub><i>m</i></sub>, respectively.
 249      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
 250      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
 251      * be the usual decimal expansion of <i>s</i>.
 252      * Note that <i>s</i><sub>1</sub> &ne; 0
 253      * and <i>s</i><sub><i>n</i></sub> &ne; 0.
 254      * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
 255      * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
 256      * <ul>
 257      * <li>Case -3 &le; <i>e</i> &lt; 0:
 258      * <i>d</i><sub><i>m</i></sub> is formatted as
 259      * <code>0.0</code>&hellip;<code>0</code><!--
 260      * --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
 261      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
 262      * the decimal point and <i>s</i><sub>1</sub>.
 263      * For example, 123 &times; 10<sup>-4</sup> is formatted as
 264      * {@code 0.0123}.
 265      * <li>Case 0 &le; <i>e</i> &lt; 7:
 266      * <ul>
 267      * <li>Subcase <i>i</i> &ge; 0:
 268      * <i>d</i><sub><i>m</i></sub> is formatted as
 269      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
 270      * --><code>0</code>&hellip;<code>0.0</code>,
 271      * where there are exactly <i>i</i> zeroes
 272      * between <i>s</i><sub><i>n</i></sub> and the decimal point.
 273      * For example, 123 &times; 10<sup>2</sup> is formatted as
 274      * {@code 12300.0}.
 275      * <li>Subcase <i>i</i> &lt; 0:
 276      * <i>d</i><sub><i>m</i></sub> is formatted as
 277      * <i>s</i><sub>1</sub>&hellip;<!--
 278      * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
 279      * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
 280      * --><i>s</i><sub><i>n</i></sub>,
 281      * where there are exactly -<i>i</i> digits to the right of
 282      * the decimal point.
 283      * For example, 123 &times; 10<sup>-1</sup> is formatted as
 284      * {@code 12.3}.
 285      * </ul>
 286      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
 287      * computerized scientific notation is used to format
 288      * <i>d</i><sub><i>m</i></sub>.
 289      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
 290      * <ul>
 291      * <li>Subcase <i>n</i> = 1:
 292      * <i>d</i><sub><i>m</i></sub> is formatted as
 293      * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
 294      * For example, 1 &times; 10<sup>23</sup> is formatted as
 295      * {@code 1.0E23}.
 296      * <li>Subcase <i>n</i> &gt; 1:
 297      * <i>d</i><sub><i>m</i></sub> is formatted as
 298      * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
 299      * -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
 300      * For example, 123 &times; 10<sup>-21</sup> is formatted as
 301      * {@code 1.23E-19}.
 302      * </ul>
 303      * </ul>
 304      *
 305      * <p>To create localized string representations of a floating-point
 306      * value, use subclasses of {@link java.text.NumberFormat}.
 307      *
 308      * @param   f   the {@code float} to be converted.
 309      * @return a string representation of the argument.
 310      */
 311     public static String toString(float f) {
 312         return FloatToDecimal.toString(f);
 313     }
 314 
 315     /**
 316      * Returns a hexadecimal string representation of the
 317      * {@code float} argument. All characters mentioned below are
 318      * ASCII characters.
 319      *
 320      * <ul>
 321      * <li>If the argument is NaN, the result is the string
 322      *     "{@code NaN}".
 323      * <li>Otherwise, the result is a string that represents the sign and
 324      * magnitude (absolute value) of the argument. If the sign is negative,
 325      * the first character of the result is '{@code -}'
 326      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 327      * appears in the result. As for the magnitude <i>m</i>:
 328      *
 329      * <ul>
 330      * <li>If <i>m</i> is infinity, it is represented by the string
 331      * {@code "Infinity"}; thus, positive infinity produces the
 332      * result {@code "Infinity"} and negative infinity produces
 333      * the result {@code "-Infinity"}.
 334      *
 335      * <li>If <i>m</i> is zero, it is represented by the string
 336      * {@code "0x0.0p0"}; thus, negative zero produces the result
 337      * {@code "-0x0.0p0"} and positive zero produces the result
 338      * {@code "0x0.0p0"}.
 339      *
 340      * <li>If <i>m</i> is a {@code float} value with a
 341      * normalized representation, substrings are used to represent the
 342      * significand and exponent fields.  The significand is
 343      * represented by the characters {@code "0x1."}
 344      * followed by a lowercase hexadecimal representation of the rest
 345      * of the significand as a fraction.  Trailing zeros in the
 346      * hexadecimal representation are removed unless all the digits
 347      * are zero, in which case a single zero is used. Next, the
 348      * exponent is represented by {@code "p"} followed
 349      * by a decimal string of the unbiased exponent as if produced by
 350      * a call to {@link Integer#toString(int) Integer.toString} on the
 351      * exponent value.
 352      *
 353      * <li>If <i>m</i> is a {@code float} value with a subnormal
 354      * representation, the significand is represented by the
 355      * characters {@code "0x0."} followed by a
 356      * hexadecimal representation of the rest of the significand as a
 357      * fraction.  Trailing zeros in the hexadecimal representation are
 358      * removed. Next, the exponent is represented by
 359      * {@code "p-126"}.  Note that there must be at
 360      * least one nonzero digit in a subnormal significand.
 361      *
 362      * </ul>
 363      *
 364      * </ul>
 365      *
 366      * <table class="striped">
 367      * <caption>Examples</caption>
 368      * <thead>
 369      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
 370      * </thead>
 371      * <tbody>
 372      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
 373      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
 374      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
 375      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
 376      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
 377      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
 378      * <tr><th scope="row">{@code Float.MAX_VALUE}</th>
 379      *     <td>{@code 0x1.fffffep127}</td>
 380      * <tr><th scope="row">{@code Minimum Normal Value}</th>
 381      *     <td>{@code 0x1.0p-126}</td>
 382      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
 383      *     <td>{@code 0x0.fffffep-126}</td>
 384      * <tr><th scope="row">{@code Float.MIN_VALUE}</th>
 385      *     <td>{@code 0x0.000002p-126}</td>
 386      * </tbody>
 387      * </table>
 388      * @param   f   the {@code float} to be converted.
 389      * @return a hex string representation of the argument.
 390      * @since 1.5
 391      * @author Joseph D. Darcy
 392      */
 393     public static String toHexString(float f) {
 394         if (Math.abs(f) < Float.MIN_NORMAL
 395             &&  f != 0.0f ) {// float subnormal
 396             // Adjust exponent to create subnormal double, then
 397             // replace subnormal double exponent with subnormal float
 398             // exponent
 399             String s = Double.toHexString(Math.scalb((double)f,
 400                                                      /* -1022+126 */
 401                                                      Double.MIN_EXPONENT-
 402                                                      Float.MIN_EXPONENT));
 403             return s.replaceFirst("p-1022$", "p-126");
 404         }
 405         else // double string will be the same as float string
 406             return Double.toHexString(f);
 407     }
 408 
 409     /**
 410      * Returns a {@code Float} object holding the
 411      * {@code float} value represented by the argument string
 412      * {@code s}.
 413      *
 414      * <p>If {@code s} is {@code null}, then a
 415      * {@code NullPointerException} is thrown.
 416      *
 417      * <p>Leading and trailing whitespace characters in {@code s}
 418      * are ignored.  Whitespace is removed as if by the {@link
 419      * String#trim} method; that is, both ASCII space and control
 420      * characters are removed. The rest of {@code s} should
 421      * constitute a <i>FloatValue</i> as described by the lexical
 422      * syntax rules:
 423      *
 424      * <blockquote>
 425      * <dl>
 426      * <dt><i>FloatValue:</i>
 427      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 428      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 429      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 430      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 431      * <dd><i>SignedInteger</i>
 432      * </dl>
 433      *
 434      * <dl>
 435      * <dt><i>HexFloatingPointLiteral</i>:
 436      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 437      * </dl>
 438      *
 439      * <dl>
 440      * <dt><i>HexSignificand:</i>
 441      * <dd><i>HexNumeral</i>
 442      * <dd><i>HexNumeral</i> {@code .}
 443      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 444      *     </i>{@code .}<i> HexDigits</i>
 445      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 446      *     </i>{@code .} <i>HexDigits</i>
 447      * </dl>
 448      *
 449      * <dl>
 450      * <dt><i>BinaryExponent:</i>
 451      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 452      * </dl>
 453      *
 454      * <dl>
 455      * <dt><i>BinaryExponentIndicator:</i>
 456      * <dd>{@code p}
 457      * <dd>{@code P}
 458      * </dl>
 459      *
 460      * </blockquote>
 461      *
 462      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 463      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 464      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 465      * sections of
 466      * <cite>The Java Language Specification</cite>,
 467      * except that underscores are not accepted between digits.
 468      * If {@code s} does not have the form of
 469      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 470      * is thrown. Otherwise, {@code s} is regarded as
 471      * representing an exact decimal value in the usual
 472      * "computerized scientific notation" or as an exact
 473      * hexadecimal value; this exact numerical value is then
 474      * conceptually converted to an "infinitely precise"
 475      * binary value that is then rounded to type {@code float}
 476      * by the usual round-to-nearest rule of IEEE 754 floating-point
 477      * arithmetic, which includes preserving the sign of a zero
 478      * value.
 479      *
 480      * Note that the round-to-nearest rule also implies overflow and
 481      * underflow behaviour; if the exact value of {@code s} is large
 482      * enough in magnitude (greater than or equal to ({@link
 483      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
 484      * rounding to {@code float} will result in an infinity and if the
 485      * exact value of {@code s} is small enough in magnitude (less
 486      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 487      * result in a zero.
 488      *
 489      * Finally, after rounding a {@code Float} object representing
 490      * this {@code float} value is returned.
 491      *
 492      * <p>Note that trailing format specifiers, specifiers that
 493      * determine the type of a floating-point literal
 494      * ({@code 1.0f} is a {@code float} value;
 495      * {@code 1.0d} is a {@code double} value), do
 496      * <em>not</em> influence the results of this method.  In other
 497      * words, the numerical value of the input string is converted
 498      * directly to the target floating-point type.  In general, the
 499      * two-step sequence of conversions, string to {@code double}
 500      * followed by {@code double} to {@code float}, is
 501      * <em>not</em> equivalent to converting a string directly to
 502      * {@code float}.  For example, if first converted to an
 503      * intermediate {@code double} and then to
 504      * {@code float}, the string<br>
 505      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
 506      * results in the {@code float} value
 507      * {@code 1.0000002f}; if the string is converted directly to
 508      * {@code float}, <code>1.000000<b>1</b>f</code> results.
 509      *
 510      * <p>To avoid calling this method on an invalid string and having
 511      * a {@code NumberFormatException} be thrown, the documentation
 512      * for {@link Double#valueOf Double.valueOf} lists a regular
 513      * expression which can be used to screen the input.
 514      *
 515      * @apiNote To interpret localized string representations of a
 516      * floating-point value, or string representations that have
 517      * non-ASCII digits, use {@link java.text.NumberFormat}. For
 518      * example,
 519      * {@snippet lang="java" :
 520      *     NumberFormat.getInstance(l).parse(s).floatValue();
 521      * }
 522      * where {@code l} is the desired locale, or
 523      * {@link java.util.Locale#ROOT} if locale insensitive.
 524      *
 525      * @param   s   the string to be parsed.
 526      * @return  a {@code Float} object holding the value
 527      *          represented by the {@code String} argument.
 528      * @throws  NumberFormatException  if the string does not contain a
 529      *          parsable number.
 530      * @see Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 531      */
 532     public static Float valueOf(String s) throws NumberFormatException {
 533         return new Float(parseFloat(s));
 534     }
 535 
 536     /**
 537      * Returns a {@code Float} instance representing the specified
 538      * {@code float} value.
 539      * If a new {@code Float} instance is not required, this method
 540      * should generally be used in preference to the constructor
 541      * {@link #Float(float)}, as this method is likely to yield
 542      * significantly better space and time performance by caching
 543      * frequently requested values.
 544      *
 545      * @param  f a float value.
 546      * @return a {@code Float} instance representing {@code f}.
 547      * @since  1.5
 548      */
 549     @IntrinsicCandidate
 550     public static Float valueOf(float f) {
 551         return new Float(f);
 552     }
 553 
 554     /**
 555      * Returns a new {@code float} initialized to the value
 556      * represented by the specified {@code String}, as performed
 557      * by the {@code valueOf} method of class {@code Float}.
 558      *
 559      * @param  s the string to be parsed.
 560      * @return the {@code float} value represented by the string
 561      *         argument.
 562      * @throws NullPointerException  if the string is null
 563      * @throws NumberFormatException if the string does not contain a
 564      *               parsable {@code float}.
 565      * @see    java.lang.Float#valueOf(String)
 566      * @see    Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 567      * @since 1.2
 568      */
 569     public static float parseFloat(String s) throws NumberFormatException {
 570         return FloatingDecimal.parseFloat(s);
 571     }
 572 
 573     /**
 574      * Returns {@code true} if the specified number is a
 575      * Not-a-Number (NaN) value, {@code false} otherwise.
 576      *
 577      * @apiNote
 578      * This method corresponds to the isNaN operation defined in IEEE
 579      * 754.
 580      *
 581      * @param   v   the value to be tested.
 582      * @return  {@code true} if the argument is NaN;
 583      *          {@code false} otherwise.
 584      */
 585     public static boolean isNaN(float v) {
 586         return (v != v);
 587     }
 588 
 589     /**
 590      * Returns {@code true} if the specified number is infinitely
 591      * large in magnitude, {@code false} otherwise.
 592      *
 593      * @apiNote
 594      * This method corresponds to the isInfinite operation defined in
 595      * IEEE 754.
 596      *
 597      * @param   v   the value to be tested.
 598      * @return  {@code true} if the argument is positive infinity or
 599      *          negative infinity; {@code false} otherwise.
 600      */
 601     @IntrinsicCandidate
 602     public static boolean isInfinite(float v) {
 603         return Math.abs(v) > MAX_VALUE;
 604     }
 605 
 606 
 607     /**
 608      * Returns {@code true} if the argument is a finite floating-point
 609      * value; returns {@code false} otherwise (for NaN and infinity
 610      * arguments).
 611      *
 612      * @apiNote
 613      * This method corresponds to the isFinite operation defined in
 614      * IEEE 754.
 615      *
 616      * @param f the {@code float} value to be tested
 617      * @return {@code true} if the argument is a finite
 618      * floating-point value, {@code false} otherwise.
 619      * @since 1.8
 620      */
 621      @IntrinsicCandidate
 622      public static boolean isFinite(float f) {
 623         return Math.abs(f) <= Float.MAX_VALUE;
 624     }
 625 
 626     /**
 627      * The value of the Float.
 628      *
 629      * @serial
 630      */
 631     private final float value;
 632 
 633     /**
 634      * Constructs a newly allocated {@code Float} object that
 635      * represents the primitive {@code float} argument.
 636      *
 637      * @param   value   the value to be represented by the {@code Float}.
 638      *
 639      * @deprecated
 640      * It is rarely appropriate to use this constructor. The static factory
 641      * {@link #valueOf(float)} is generally a better choice, as it is
 642      * likely to yield significantly better space and time performance.
 643      */
 644     @Deprecated(since="9", forRemoval = true)
 645     public Float(float value) {
 646         this.value = value;
 647     }
 648 
 649     /**
 650      * Constructs a newly allocated {@code Float} object that
 651      * represents the argument converted to type {@code float}.
 652      *
 653      * @param   value   the value to be represented by the {@code Float}.
 654      *
 655      * @deprecated
 656      * It is rarely appropriate to use this constructor. Instead, use the
 657      * static factory method {@link #valueOf(float)} method as follows:
 658      * {@code Float.valueOf((float)value)}.
 659      */
 660     @Deprecated(since="9", forRemoval = true)
 661     public Float(double value) {
 662         this.value = (float)value;
 663     }
 664 
 665     /**
 666      * Constructs a newly allocated {@code Float} object that
 667      * represents the floating-point value of type {@code float}
 668      * represented by the string. The string is converted to a
 669      * {@code float} value as if by the {@code valueOf} method.
 670      *
 671      * @param   s   a string to be converted to a {@code Float}.
 672      * @throws      NumberFormatException if the string does not contain a
 673      *              parsable number.
 674      *
 675      * @deprecated
 676      * It is rarely appropriate to use this constructor.
 677      * Use {@link #parseFloat(String)} to convert a string to a
 678      * {@code float} primitive, or use {@link #valueOf(String)}
 679      * to convert a string to a {@code Float} object.
 680      */
 681     @Deprecated(since="9", forRemoval = true)
 682     public Float(String s) throws NumberFormatException {
 683         value = parseFloat(s);
 684     }
 685 
 686     /**
 687      * Returns {@code true} if this {@code Float} value is a
 688      * Not-a-Number (NaN), {@code false} otherwise.
 689      *
 690      * @return  {@code true} if the value represented by this object is
 691      *          NaN; {@code false} otherwise.
 692      */
 693     public boolean isNaN() {
 694         return isNaN(value);
 695     }
 696 
 697     /**
 698      * Returns {@code true} if this {@code Float} value is
 699      * infinitely large in magnitude, {@code false} otherwise.
 700      *
 701      * @return  {@code true} if the value represented by this object is
 702      *          positive infinity or negative infinity;
 703      *          {@code false} otherwise.
 704      */
 705     public boolean isInfinite() {
 706         return isInfinite(value);
 707     }
 708 
 709     /**
 710      * Returns a string representation of this {@code Float} object.
 711      * The primitive {@code float} value represented by this object
 712      * is converted to a {@code String} exactly as if by the method
 713      * {@code toString} of one argument.
 714      *
 715      * @return  a {@code String} representation of this object.
 716      * @see java.lang.Float#toString(float)
 717      */
 718     public String toString() {
 719         return Float.toString(value);
 720     }
 721 
 722     /**
 723      * Returns the value of this {@code Float} as a {@code byte} after
 724      * a narrowing primitive conversion.
 725      *
 726      * @return  the {@code float} value represented by this object
 727      *          converted to type {@code byte}
 728      * @jls 5.1.3 Narrowing Primitive Conversion
 729      */
 730     public byte byteValue() {
 731         return (byte)value;
 732     }
 733 
 734     /**
 735      * Returns the value of this {@code Float} as a {@code short}
 736      * after a narrowing primitive conversion.
 737      *
 738      * @return  the {@code float} value represented by this object
 739      *          converted to type {@code short}
 740      * @jls 5.1.3 Narrowing Primitive Conversion
 741      * @since 1.1
 742      */
 743     public short shortValue() {
 744         return (short)value;
 745     }
 746 
 747     /**
 748      * Returns the value of this {@code Float} as an {@code int} after
 749      * a narrowing primitive conversion.
 750      *
 751      * @return  the {@code float} value represented by this object
 752      *          converted to type {@code int}
 753      * @jls 5.1.3 Narrowing Primitive Conversion
 754      */
 755     public int intValue() {
 756         return (int)value;
 757     }
 758 
 759     /**
 760      * Returns value of this {@code Float} as a {@code long} after a
 761      * narrowing primitive conversion.
 762      *
 763      * @return  the {@code float} value represented by this object
 764      *          converted to type {@code long}
 765      * @jls 5.1.3 Narrowing Primitive Conversion
 766      */
 767     public long longValue() {
 768         return (long)value;
 769     }
 770 
 771     /**
 772      * Returns the {@code float} value of this {@code Float} object.
 773      *
 774      * @return the {@code float} value represented by this object
 775      */
 776     @IntrinsicCandidate
 777     public float floatValue() {
 778         return value;
 779     }
 780 
 781     /**
 782      * Returns the value of this {@code Float} as a {@code double}
 783      * after a widening primitive conversion.
 784      *
 785      * @apiNote
 786      * This method corresponds to the convertFormat operation defined
 787      * in IEEE 754.
 788      *
 789      * @return the {@code float} value represented by this
 790      *         object converted to type {@code double}
 791      * @jls 5.1.2 Widening Primitive Conversion
 792      */
 793     public double doubleValue() {
 794         return (double)value;
 795     }
 796 
 797     /**
 798      * Returns a hash code for this {@code Float} object. The
 799      * result is the integer bit representation, exactly as produced
 800      * by the method {@link #floatToIntBits(float)}, of the primitive
 801      * {@code float} value represented by this {@code Float}
 802      * object.
 803      *
 804      * @return a hash code value for this object.
 805      */
 806     @Override
 807     public int hashCode() {
 808         return Float.hashCode(value);
 809     }
 810 
 811     /**
 812      * Returns a hash code for a {@code float} value; compatible with
 813      * {@code Float.hashCode()}.
 814      *
 815      * @param value the value to hash
 816      * @return a hash code value for a {@code float} value.
 817      * @since 1.8
 818      */
 819     public static int hashCode(float value) {
 820         return floatToIntBits(value);
 821     }
 822 
 823     /**
 824      * Compares this object against the specified object.  The result
 825      * is {@code true} if and only if the argument is not
 826      * {@code null} and is a {@code Float} object that
 827      * represents a {@code float} with the same value as the
 828      * {@code float} represented by this object. For this
 829      * purpose, two {@code float} values are considered to be the
 830      * same if and only if the method {@link #floatToIntBits(float)}
 831      * returns the identical {@code int} value when applied to
 832      * each.
 833      *
 834      * @apiNote
 835      * This method is defined in terms of {@link
 836      * #floatToIntBits(float)} rather than the {@code ==} operator on
 837      * {@code float} values since the {@code ==} operator does
 838      * <em>not</em> define an equivalence relation and to satisfy the
 839      * {@linkplain Object#equals equals contract} an equivalence
 840      * relation must be implemented; see <a
 841      * href="Double.html#equivalenceRelation">this discussion</a> for
 842      * details of floating-point equality and equivalence.
 843      *
 844      * @param obj the object to be compared
 845      * @return  {@code true} if the objects are the same;
 846      *          {@code false} otherwise.
 847      * @see java.lang.Float#floatToIntBits(float)
 848      * @jls 15.21.1 Numerical Equality Operators == and !=
 849      */
 850     public boolean equals(Object obj) {
 851         return (obj instanceof Float)
 852                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
 853     }
 854 
 855     /**
 856      * Returns a representation of the specified floating-point value
 857      * according to the IEEE 754 floating-point "single format" bit
 858      * layout.
 859      *
 860      * <p>Bit 31 (the bit that is selected by the mask
 861      * {@code 0x80000000}) represents the sign of the floating-point
 862      * number.
 863      * Bits 30-23 (the bits that are selected by the mask
 864      * {@code 0x7f800000}) represent the exponent.
 865      * Bits 22-0 (the bits that are selected by the mask
 866      * {@code 0x007fffff}) represent the significand (sometimes called
 867      * the mantissa) of the floating-point number.
 868      *
 869      * <p>If the argument is positive infinity, the result is
 870      * {@code 0x7f800000}.
 871      *
 872      * <p>If the argument is negative infinity, the result is
 873      * {@code 0xff800000}.
 874      *
 875      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
 876      *
 877      * <p>In all cases, the result is an integer that, when given to the
 878      * {@link #intBitsToFloat(int)} method, will produce a floating-point
 879      * value the same as the argument to {@code floatToIntBits}
 880      * (except all NaN values are collapsed to a single
 881      * "canonical" NaN value).
 882      *
 883      * @param   value   a floating-point number.
 884      * @return the bits that represent the floating-point number.
 885      */
 886     @IntrinsicCandidate
 887     public static int floatToIntBits(float value) {
 888         if (!isNaN(value)) {
 889             return floatToRawIntBits(value);
 890         }
 891         return 0x7fc00000;
 892     }
 893 
 894     /**
 895      * Returns a representation of the specified floating-point value
 896      * according to the IEEE 754 floating-point "single format" bit
 897      * layout, preserving Not-a-Number (NaN) values.
 898      *
 899      * <p>Bit 31 (the bit that is selected by the mask
 900      * {@code 0x80000000}) represents the sign of the floating-point
 901      * number.
 902      * Bits 30-23 (the bits that are selected by the mask
 903      * {@code 0x7f800000}) represent the exponent.
 904      * Bits 22-0 (the bits that are selected by the mask
 905      * {@code 0x007fffff}) represent the significand (sometimes called
 906      * the mantissa) of the floating-point number.
 907      *
 908      * <p>If the argument is positive infinity, the result is
 909      * {@code 0x7f800000}.
 910      *
 911      * <p>If the argument is negative infinity, the result is
 912      * {@code 0xff800000}.
 913      *
 914      * <p>If the argument is NaN, the result is the integer representing
 915      * the actual NaN value.  Unlike the {@code floatToIntBits}
 916      * method, {@code floatToRawIntBits} does not collapse all the
 917      * bit patterns encoding a NaN to a single "canonical"
 918      * NaN value.
 919      *
 920      * <p>In all cases, the result is an integer that, when given to the
 921      * {@link #intBitsToFloat(int)} method, will produce a
 922      * floating-point value the same as the argument to
 923      * {@code floatToRawIntBits}.
 924      *
 925      * @param   value   a floating-point number.
 926      * @return the bits that represent the floating-point number.
 927      * @since 1.3
 928      */
 929     @IntrinsicCandidate
 930     public static native int floatToRawIntBits(float value);
 931 
 932     /**
 933      * Returns the {@code float} value corresponding to a given
 934      * bit representation.
 935      * The argument is considered to be a representation of a
 936      * floating-point value according to the IEEE 754 floating-point
 937      * "single format" bit layout.
 938      *
 939      * <p>If the argument is {@code 0x7f800000}, the result is positive
 940      * infinity.
 941      *
 942      * <p>If the argument is {@code 0xff800000}, the result is negative
 943      * infinity.
 944      *
 945      * <p>If the argument is any value in the range
 946      * {@code 0x7f800001} through {@code 0x7fffffff} or in
 947      * the range {@code 0xff800001} through
 948      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
 949      * floating-point operation provided by Java can distinguish
 950      * between two NaN values of the same type with different bit
 951      * patterns.  Distinct values of NaN are only distinguishable by
 952      * use of the {@code Float.floatToRawIntBits} method.
 953      *
 954      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
 955      * values that can be computed from the argument:
 956      *
 957      * {@snippet lang="java" :
 958      * int s = ((bits >> 31) == 0) ? 1 : -1;
 959      * int e = ((bits >> 23) & 0xff);
 960      * int m = (e == 0) ?
 961      *                 (bits & 0x7fffff) << 1 :
 962      *                 (bits & 0x7fffff) | 0x800000;
 963      * }
 964      *
 965      * Then the floating-point result equals the value of the mathematical
 966      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
 967      *
 968      * <p>Note that this method may not be able to return a
 969      * {@code float} NaN with exactly same bit pattern as the
 970      * {@code int} argument.  IEEE 754 distinguishes between two
 971      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
 972      * differences between the two kinds of NaN are generally not
 973      * visible in Java.  Arithmetic operations on signaling NaNs turn
 974      * them into quiet NaNs with a different, but often similar, bit
 975      * pattern.  However, on some processors merely copying a
 976      * signaling NaN also performs that conversion.  In particular,
 977      * copying a signaling NaN to return it to the calling method may
 978      * perform this conversion.  So {@code intBitsToFloat} may
 979      * not be able to return a {@code float} with a signaling NaN
 980      * bit pattern.  Consequently, for some {@code int} values,
 981      * {@code floatToRawIntBits(intBitsToFloat(start))} may
 982      * <i>not</i> equal {@code start}.  Moreover, which
 983      * particular bit patterns represent signaling NaNs is platform
 984      * dependent; although all NaN bit patterns, quiet or signaling,
 985      * must be in the NaN range identified above.
 986      *
 987      * @param   bits   an integer.
 988      * @return  the {@code float} floating-point value with the same bit
 989      *          pattern.
 990      */
 991     @IntrinsicCandidate
 992     public static native float intBitsToFloat(int bits);
 993 
 994     /**
 995      * {@return the {@code float} value closest to the numerical value
 996      * of the argument, a floating-point binary16 value encoded in a
 997      * {@code short}} The conversion is exact; all binary16 values can
 998      * be exactly represented in {@code float}.
 999      *
1000      * Special cases:
1001      * <ul>
1002      * <li> If the argument is zero, the result is a zero with the
1003      * same sign as the argument.
1004      * <li> If the argument is infinite, the result is an infinity
1005      * with the same sign as the argument.
1006      * <li> If the argument is a NaN, the result is a NaN.
1007      * </ul>
1008      *
1009      * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4>
1010      * The IEEE 754 standard defines binary16 as a 16-bit format, along
1011      * with the 32-bit binary32 format (corresponding to the {@code
1012      * float} type) and the 64-bit binary64 format (corresponding to
1013      * the {@code double} type). The binary16 format is similar to the
1014      * other IEEE 754 formats, except smaller, having all the usual
1015      * IEEE 754 values such as NaN, signed infinities, signed zeros,
1016      * and subnormals. The parameters (JLS {@jls 4.2.3}) for the
1017      * binary16 format are N = 11 precision bits, K = 5 exponent bits,
1018      * <i>E</i><sub><i>max</i></sub> = 15, and
1019      * <i>E</i><sub><i>min</i></sub> = -14.
1020      *
1021      * @apiNote
1022      * This method corresponds to the convertFormat operation defined
1023      * in IEEE 754 from the binary16 format to the binary32 format.
1024      * The operation of this method is analogous to a primitive
1025      * widening conversion (JLS {@jls 5.1.2}).
1026      *
1027      * @param floatBinary16 the binary16 value to convert to {@code float}
1028      * @since 20
1029      */
1030     @IntrinsicCandidate
1031     public static float float16ToFloat(short floatBinary16) {
1032         /*
1033          * The binary16 format has 1 sign bit, 5 exponent bits, and 10
1034          * significand bits. The exponent bias is 15.
1035          */
1036         int bin16arg = (int)floatBinary16;
1037         int bin16SignBit     = 0x8000 & bin16arg;
1038         int bin16ExpBits     = 0x7c00 & bin16arg;
1039         int bin16SignifBits  = 0x03FF & bin16arg;
1040 
1041         // Shift left difference in the number of significand bits in
1042         // the float and binary16 formats
1043         final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
1044 
1045         float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
1046 
1047         // Extract binary16 exponent, remove its bias, add in the bias
1048         // of a float exponent and shift to correct bit location
1049         // (significand width includes the implicit bit so shift one
1050         // less).
1051         int bin16Exp = (bin16ExpBits >> 10) - 15;
1052         if (bin16Exp == -15) {
1053             // For subnormal binary16 values and 0, the numerical
1054             // value is 2^24 * the significand as an integer (no
1055             // implicit bit).
1056             return sign * (0x1p-24f * bin16SignifBits);
1057         } else if (bin16Exp == 16) {
1058             return (bin16SignifBits == 0) ?
1059                 sign * Float.POSITIVE_INFINITY :
1060                 Float.intBitsToFloat((bin16SignBit << 16) |
1061                                      0x7f80_0000 |
1062                                      // Preserve NaN signif bits
1063                                      ( bin16SignifBits << SIGNIF_SHIFT ));
1064         }
1065 
1066         assert -15 < bin16Exp  && bin16Exp < 16;
1067 
1068         int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
1069             << (FloatConsts.SIGNIFICAND_WIDTH - 1);
1070 
1071         // Compute and combine result sign, exponent, and significand bits.
1072         return Float.intBitsToFloat((bin16SignBit << 16) |
1073                                     floatExpBits |
1074                                     (bin16SignifBits << SIGNIF_SHIFT));
1075     }
1076 
1077     /**
1078      * {@return the floating-point binary16 value, encoded in a {@code
1079      * short}, closest in value to the argument}
1080      * The conversion is computed under the {@linkplain
1081      * java.math.RoundingMode#HALF_EVEN round to nearest even rounding
1082      * mode}.
1083      *
1084      * Special cases:
1085      * <ul>
1086      * <li> If the argument is zero, the result is a zero with the
1087      * same sign as the argument.
1088      * <li> If the argument is infinite, the result is an infinity
1089      * with the same sign as the argument.
1090      * <li> If the argument is a NaN, the result is a NaN.
1091      * </ul>
1092      *
1093      * The <a href="#binary16Format">binary16 format</a> is discussed in
1094      * more detail in the {@link #float16ToFloat} method.
1095      *
1096      * @apiNote
1097      * This method corresponds to the convertFormat operation defined
1098      * in IEEE 754 from the binary32 format to the binary16 format.
1099      * The operation of this method is analogous to a primitive
1100      * narrowing conversion (JLS {@jls 5.1.3}).
1101      *
1102      * @param f the {@code float} value to convert to binary16
1103      * @since 20
1104      */
1105     @IntrinsicCandidate
1106     public static short floatToFloat16(float f) {
1107         int doppel = Float.floatToRawIntBits(f);
1108         short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
1109 
1110         if (Float.isNaN(f)) {
1111             // Preserve sign and attempt to preserve significand bits
1112             return (short)(sign_bit
1113                     | 0x7c00 // max exponent + 1
1114                     // Preserve high order bit of float NaN in the
1115                     // binary16 result NaN (tenth bit); OR in remaining
1116                     // bits into lower 9 bits of binary 16 significand.
1117                     | (doppel & 0x007f_e000) >> 13 // 10 bits
1118                     | (doppel & 0x0000_1ff0) >> 4  //  9 bits
1119                     | (doppel & 0x0000_000f));     //  4 bits
1120         }
1121 
1122         float abs_f = Math.abs(f);
1123 
1124         // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
1125         if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
1126             return (short)(sign_bit | 0x7c00); // Positive or negative infinity
1127         }
1128 
1129         // Smallest magnitude nonzero representable binary16 value
1130         // is equal to 0x1.0p-24; half-way and smaller rounds to zero.
1131         if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
1132             return sign_bit; // Positive or negative zero
1133         }
1134 
1135         // Dealing with finite values in exponent range of binary16
1136         // (when rounding is done, could still round up)
1137         int exp = Math.getExponent(f);
1138         assert -25 <= exp && exp <= 15;
1139 
1140         // For binary16 subnormals, beside forcing exp to -15, retain
1141         // the difference expdelta = E_min - exp.  This is the excess
1142         // shift value, in addition to 13, to be used in the
1143         // computations below.  Further the (hidden) msb with value 1
1144         // in f must be involved as well.
1145         int expdelta = 0;
1146         int msb = 0x0000_0000;
1147         if (exp < -14) {
1148             expdelta = -14 - exp;
1149             exp = -15;
1150             msb = 0x0080_0000;
1151         }
1152         int f_signif_bits = doppel & 0x007f_ffff | msb;
1153 
1154         // Significand bits as if using rounding to zero (truncation).
1155         short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
1156 
1157         // For round to nearest even, determining whether or not to
1158         // round up (in magnitude) is a function of the least
1159         // significant bit (LSB), the next bit position (the round
1160         // position), and the sticky bit (whether there are any
1161         // nonzero bits in the exact result to the right of the round
1162         // digit). An increment occurs in three cases:
1163         //
1164         // LSB  Round Sticky
1165         // 0    1     1
1166         // 1    1     0
1167         // 1    1     1
1168         // See "Computer Arithmetic Algorithms," Koren, Table 4.9
1169 
1170         int lsb    = f_signif_bits & (1 << 13 + expdelta);
1171         int round  = f_signif_bits & (1 << 12 + expdelta);
1172         int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
1173 
1174         if (round != 0 && ((lsb | sticky) != 0 )) {
1175             signif_bits++;
1176         }
1177 
1178         // No bits set in significand beyond the *first* exponent bit,
1179         // not just the significand; quantity is added to the exponent
1180         // to implement a carry out from rounding the significand.
1181         assert (0xf800 & signif_bits) == 0x0;
1182 
1183         return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
1184     }
1185 
1186     /**
1187      * Compares two {@code Float} objects numerically.
1188      *
1189      * This method imposes a total order on {@code Float} objects
1190      * with two differences compared to the incomplete order defined by
1191      * the Java language numerical comparison operators ({@code <, <=,
1192      * ==, >=, >}) on {@code float} values.
1193      *
1194      * <ul><li> A NaN is <em>unordered</em> with respect to other
1195      *          values and unequal to itself under the comparison
1196      *          operators.  This method chooses to define {@code
1197      *          Float.NaN} to be equal to itself and greater than all
1198      *          other {@code double} values (including {@code
1199      *          Float.POSITIVE_INFINITY}).
1200      *
1201      *      <li> Positive zero and negative zero compare equal
1202      *      numerically, but are distinct and distinguishable values.
1203      *      This method chooses to define positive zero ({@code +0.0f}),
1204      *      to be greater than negative zero ({@code -0.0f}).
1205      * </ul>
1206      *
1207      * This ensures that the <i>natural ordering</i> of {@code Float}
1208      * objects imposed by this method is <i>consistent with
1209      * equals</i>; see <a href="Double.html#equivalenceRelation">this
1210      * discussion</a> for details of floating-point comparison and
1211      * ordering.
1212      *
1213      *
1214      * @param   anotherFloat   the {@code Float} to be compared.
1215      * @return  the value {@code 0} if {@code anotherFloat} is
1216      *          numerically equal to this {@code Float}; a value
1217      *          less than {@code 0} if this {@code Float}
1218      *          is numerically less than {@code anotherFloat};
1219      *          and a value greater than {@code 0} if this
1220      *          {@code Float} is numerically greater than
1221      *          {@code anotherFloat}.
1222      *
1223      * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
1224      * @since   1.2
1225      */
1226     public int compareTo(Float anotherFloat) {
1227         return Float.compare(value, anotherFloat.value);
1228     }
1229 
1230     /**
1231      * Compares the two specified {@code float} values. The sign
1232      * of the integer value returned is the same as that of the
1233      * integer that would be returned by the call:
1234      * <pre>
1235      *    Float.valueOf(f1).compareTo(Float.valueOf(f2))
1236      * </pre>
1237      *
1238      * @param   f1        the first {@code float} to compare.
1239      * @param   f2        the second {@code float} to compare.
1240      * @return  the value {@code 0} if {@code f1} is
1241      *          numerically equal to {@code f2}; a value less than
1242      *          {@code 0} if {@code f1} is numerically less than
1243      *          {@code f2}; and a value greater than {@code 0}
1244      *          if {@code f1} is numerically greater than
1245      *          {@code f2}.
1246      * @since 1.4
1247      */
1248     public static int compare(float f1, float f2) {
1249         if (f1 < f2)
1250             return -1;           // Neither val is NaN, thisVal is smaller
1251         if (f1 > f2)
1252             return 1;            // Neither val is NaN, thisVal is larger
1253 
1254         // Cannot use floatToRawIntBits because of possibility of NaNs.
1255         int thisBits    = Float.floatToIntBits(f1);
1256         int anotherBits = Float.floatToIntBits(f2);
1257 
1258         return (thisBits == anotherBits ?  0 : // Values are equal
1259                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1260                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1261     }
1262 
1263     /**
1264      * Adds two {@code float} values together as per the + operator.
1265      *
1266      * @apiNote This method corresponds to the addition operation
1267      * defined in IEEE 754.
1268      *
1269      * @param a the first operand
1270      * @param b the second operand
1271      * @return the sum of {@code a} and {@code b}
1272      * @jls 4.2.4 Floating-Point Operations
1273      * @see java.util.function.BinaryOperator
1274      * @since 1.8
1275      */
1276     public static float sum(float a, float b) {
1277         return a + b;
1278     }
1279 
1280     /**
1281      * Returns the greater of two {@code float} values
1282      * as if by calling {@link Math#max(float, float) Math.max}.
1283      *
1284      * @apiNote
1285      * This method corresponds to the maximum operation defined in
1286      * IEEE 754.
1287      *
1288      * @param a the first operand
1289      * @param b the second operand
1290      * @return the greater of {@code a} and {@code b}
1291      * @see java.util.function.BinaryOperator
1292      * @since 1.8
1293      */
1294     public static float max(float a, float b) {
1295         return Math.max(a, b);
1296     }
1297 
1298     /**
1299      * Returns the smaller of two {@code float} values
1300      * as if by calling {@link Math#min(float, float) Math.min}.
1301      *
1302      * @apiNote
1303      * This method corresponds to the minimum operation defined in
1304      * IEEE 754.
1305      *
1306      * @param a the first operand
1307      * @param b the second operand
1308      * @return the smaller of {@code a} and {@code b}
1309      * @see java.util.function.BinaryOperator
1310      * @since 1.8
1311      */
1312     public static float min(float a, float b) {
1313         return Math.min(a, b);
1314     }
1315 
1316     /**
1317      * Returns an {@link Optional} containing the nominal descriptor for this
1318      * instance, which is the instance itself.
1319      *
1320      * @return an {@link Optional} describing the {@linkplain Float} instance
1321      * @since 12
1322      */
1323     @Override
1324     public Optional<Float> describeConstable() {
1325         return Optional.of(this);
1326     }
1327 
1328     /**
1329      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1330      * the instance itself.
1331      *
1332      * @param lookup ignored
1333      * @return the {@linkplain Float} instance
1334      * @since 12
1335      */
1336     @Override
1337     public Float resolveConstantDesc(MethodHandles.Lookup lookup) {
1338         return this;
1339     }
1340 
1341     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1342     @java.io.Serial
1343     private static final long serialVersionUID = -2671257302660747028L;
1344 }