1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatConsts; 34 import jdk.internal.math.FloatingDecimal; 35 import jdk.internal.math.FloatToDecimal; 36 import jdk.internal.vm.annotation.IntrinsicCandidate; 37 38 /** 39 * The {@code Float} class is the {@linkplain 40 * java.lang##wrapperClass wrapper class} for values of the primitive 41 * type {@code float}. An object of type {@code Float} contains a 42 * single field whose type is {@code float}. 43 * 44 * <p>In addition, this class provides several methods for converting a 45 * {@code float} to a {@code String} and a 46 * {@code String} to a {@code float}, as well as other 47 * constants and methods useful when dealing with a 48 * {@code float}. 49 * 50 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 51 * class; programmers should treat instances that are 52 * {@linkplain #equals(Object) equal} as interchangeable and should not 53 * use instances for synchronization, or unpredictable behavior may 54 * occur. For example, in a future release, synchronization may fail. 55 * 56 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 57 * and Comparison</a></h2> 58 * 59 * The class {@code java.lang.Double} has a {@linkplain 60 * Double##equivalenceRelation discussion of equality, 61 * equivalence, and comparison of floating-point values} that is 62 * equally applicable to {@code float} values. 63 * 64 * <h2><a id=decimalToBinaryConversion>Decimal ↔ Binary Conversion Issues</a></h2> 65 * 66 * The {@linkplain Double##decimalToBinaryConversion discussion of binary to 67 * decimal conversion issues} in {@code java.lang.Double} is also 68 * applicable to {@code float} values. 69 * 70 * @see <a href="https://standards.ieee.org/ieee/754/6210/"> 71 * <cite>IEEE Standard for Floating-Point Arithmetic</cite></a> 72 * 73 * @author Lee Boynton 74 * @author Arthur van Hoff 75 * @author Joseph D. Darcy 76 * @since 1.0 77 */ 78 @jdk.internal.ValueBased 79 public final class Float extends Number 80 implements Comparable<Float>, Constable, ConstantDesc { 81 /** 82 * A constant holding the positive infinity of type 83 * {@code float}. It is equal to the value returned by 84 * {@code Float.intBitsToFloat(0x7f800000)}. 85 */ 86 public static final float POSITIVE_INFINITY = 1.0f / 0.0f; 87 88 /** 89 * A constant holding the negative infinity of type 90 * {@code float}. It is equal to the value returned by 91 * {@code Float.intBitsToFloat(0xff800000)}. 92 */ 93 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; 94 95 /** 96 * A constant holding a Not-a-Number (NaN) value of type 97 * {@code float}. It is equivalent to the value returned by 98 * {@code Float.intBitsToFloat(0x7fc00000)}. 99 */ 100 public static final float NaN = 0.0f / 0.0f; 101 102 /** 103 * A constant holding the largest positive finite value of type 104 * {@code float}, (2-2<sup>-23</sup>)·2<sup>127</sup>. 105 * It is equal to the hexadecimal floating-point literal 106 * {@code 0x1.fffffeP+127f} and also equal to 107 * {@code Float.intBitsToFloat(0x7f7fffff)}. 108 */ 109 public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f 110 111 /** 112 * A constant holding the smallest positive normal value of type 113 * {@code float}, 2<sup>-126</sup>. It is equal to the 114 * hexadecimal floating-point literal {@code 0x1.0p-126f} and also 115 * equal to {@code Float.intBitsToFloat(0x00800000)}. 116 * 117 * @since 1.6 118 */ 119 public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f 120 121 /** 122 * A constant holding the smallest positive nonzero value of type 123 * {@code float}, 2<sup>-149</sup>. It is equal to the 124 * hexadecimal floating-point literal {@code 0x0.000002P-126f} 125 * and also equal to {@code Float.intBitsToFloat(0x1)}. 126 */ 127 public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f 128 129 /** 130 * The number of bits used to represent a {@code float} value, 131 * {@value}. 132 * 133 * @since 1.5 134 */ 135 public static final int SIZE = 32; 136 137 /** 138 * The number of bits in the significand of a {@code float} value, 139 * {@value}. This is the parameter N in section {@jls 4.2.3} of 140 * <cite>The Java Language Specification</cite>. 141 * 142 * @since 19 143 */ 144 public static final int PRECISION = 24; 145 146 /** 147 * Maximum exponent a finite {@code float} variable may have, 148 * {@value}. It is equal to the value returned by {@code 149 * Math.getExponent(Float.MAX_VALUE)}. 150 * 151 * @since 1.6 152 */ 153 public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127 154 155 /** 156 * Minimum exponent a normalized {@code float} variable may have, 157 * {@value}. It is equal to the value returned by {@code 158 * Math.getExponent(Float.MIN_NORMAL)}. 159 * 160 * @since 1.6 161 */ 162 public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126 163 164 /** 165 * The number of bytes used to represent a {@code float} value, 166 * {@value}. 167 * 168 * @since 1.8 169 */ 170 public static final int BYTES = SIZE / Byte.SIZE; 171 172 /** 173 * The {@code Class} instance representing the primitive type 174 * {@code float}. 175 * 176 * @since 1.1 177 */ 178 @SuppressWarnings("unchecked") 179 public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float"); 180 181 /** 182 * Returns a string representation of the {@code float} 183 * argument. All characters mentioned below are ASCII characters. 184 * <ul> 185 * <li>If the argument is NaN, the result is the string 186 * "{@code NaN}". 187 * <li>Otherwise, the result is a string that represents the sign and 188 * magnitude (absolute value) of the argument. If the sign is 189 * negative, the first character of the result is 190 * '{@code -}' ({@code '\u005Cu002D'}); if the sign is 191 * positive, no sign character appears in the result. As for 192 * the magnitude <i>m</i>: 193 * <ul> 194 * <li>If <i>m</i> is infinity, it is represented by the characters 195 * {@code "Infinity"}; thus, positive infinity produces 196 * the result {@code "Infinity"} and negative infinity 197 * produces the result {@code "-Infinity"}. 198 * <li>If <i>m</i> is zero, it is represented by the characters 199 * {@code "0.0"}; thus, negative zero produces the result 200 * {@code "-0.0"} and positive zero produces the result 201 * {@code "0.0"}. 202 * 203 * <li> Otherwise <i>m</i> is positive and finite. 204 * It is converted to a string in two stages: 205 * <ul> 206 * <li> <em>Selection of a decimal</em>: 207 * A well-defined decimal <i>d</i><sub><i>m</i></sub> 208 * is selected to represent <i>m</i>. 209 * This decimal is (almost always) the <em>shortest</em> one that 210 * rounds to <i>m</i> according to the round to nearest 211 * rounding policy of IEEE 754 floating-point arithmetic. 212 * <li> <em>Formatting as a string</em>: 213 * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string, 214 * either in plain or in computerized scientific notation, 215 * depending on its value. 216 * </ul> 217 * </ul> 218 * </ul> 219 * 220 * <p>A <em>decimal</em> is a number of the form 221 * <i>s</i>×10<sup><i>i</i></sup> 222 * for some (unique) integers <i>s</i> > 0 and <i>i</i> such that 223 * <i>s</i> is not a multiple of 10. 224 * These integers are the <em>significand</em> and 225 * the <em>exponent</em>, respectively, of the decimal. 226 * The <em>length</em> of the decimal is the (unique) 227 * positive integer <i>n</i> meeting 228 * 10<sup><i>n</i>-1</sup> ≤ <i>s</i> < 10<sup><i>n</i></sup>. 229 * 230 * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i> 231 * is defined as follows: 232 * <ul> 233 * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i> 234 * according to the usual <em>round to nearest</em> rounding policy of 235 * IEEE 754 floating-point arithmetic. 236 * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>. 237 * <li>When <i>p</i> ≥ 2, let <i>T</i> be the set of all decimals 238 * in <i>R</i> with length <i>p</i>. 239 * Otherwise, let <i>T</i> be the set of all decimals 240 * in <i>R</i> with length 1 or 2. 241 * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i> 242 * that is closest to <i>m</i>. 243 * Or if there are two such decimals in <i>T</i>, 244 * select the one with the even significand. 245 * </ul> 246 * 247 * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub> 248 * is then formatted. 249 * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and 250 * length of <i>d</i><sub><i>m</i></sub>, respectively. 251 * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let 252 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub> 253 * be the usual decimal expansion of <i>s</i>. 254 * Note that <i>s</i><sub>1</sub> ≠ 0 255 * and <i>s</i><sub><i>n</i></sub> ≠ 0. 256 * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'} 257 * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}. 258 * <ul> 259 * <li>Case -3 ≤ <i>e</i> < 0: 260 * <i>d</i><sub><i>m</i></sub> is formatted as 261 * <code>0.0</code>…<code>0</code><!-- 262 * --><i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub>, 263 * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between 264 * the decimal point and <i>s</i><sub>1</sub>. 265 * For example, 123 × 10<sup>-4</sup> is formatted as 266 * {@code 0.0123}. 267 * <li>Case 0 ≤ <i>e</i> < 7: 268 * <ul> 269 * <li>Subcase <i>i</i> ≥ 0: 270 * <i>d</i><sub><i>m</i></sub> is formatted as 271 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub><!-- 272 * --><code>0</code>…<code>0.0</code>, 273 * where there are exactly <i>i</i> zeroes 274 * between <i>s</i><sub><i>n</i></sub> and the decimal point. 275 * For example, 123 × 10<sup>2</sup> is formatted as 276 * {@code 12300.0}. 277 * <li>Subcase <i>i</i> < 0: 278 * <i>d</i><sub><i>m</i></sub> is formatted as 279 * <i>s</i><sub>1</sub>…<!-- 280 * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!-- 281 * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>…<!-- 282 * --><i>s</i><sub><i>n</i></sub>, 283 * where there are exactly -<i>i</i> digits to the right of 284 * the decimal point. 285 * For example, 123 × 10<sup>-1</sup> is formatted as 286 * {@code 12.3}. 287 * </ul> 288 * <li>Case <i>e</i> < -3 or <i>e</i> ≥ 7: 289 * computerized scientific notation is used to format 290 * <i>d</i><sub><i>m</i></sub>. 291 * Here <i>e</i> is formatted as by {@link Integer#toString(int)}. 292 * <ul> 293 * <li>Subcase <i>n</i> = 1: 294 * <i>d</i><sub><i>m</i></sub> is formatted as 295 * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>. 296 * For example, 1 × 10<sup>23</sup> is formatted as 297 * {@code 1.0E23}. 298 * <li>Subcase <i>n</i> > 1: 299 * <i>d</i><sub><i>m</i></sub> is formatted as 300 * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!-- 301 * -->…<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>. 302 * For example, 123 × 10<sup>-21</sup> is formatted as 303 * {@code 1.23E-19}. 304 * </ul> 305 * </ul> 306 * 307 * <p>To create localized string representations of a floating-point 308 * value, use subclasses of {@link java.text.NumberFormat}. 309 * 310 * @apiNote 311 * This method corresponds to the general functionality of the 312 * convertToDecimalCharacter operation defined in IEEE 754; 313 * however, that operation is defined in terms of specifying the 314 * number of significand digits used in the conversion. 315 * Code to do such a conversion in the Java platform includes 316 * converting the {@code float} to a {@link java.math.BigDecimal 317 * BigDecimal} exactly and then rounding the {@code BigDecimal} to 318 * the desired number of digits; sample code: 319 * {@snippet lang=java : 320 * floatf = 0.1f; 321 * int digits = 15; 322 * BigDecimal bd = new BigDecimal(f); 323 * String result = bd.round(new MathContext(digits, RoundingMode.HALF_UP)); 324 * // 0.100000001490116 325 * } 326 * 327 * @param f the {@code float} to be converted. 328 * @return a string representation of the argument. 329 */ 330 public static String toString(float f) { 331 return FloatToDecimal.toString(f); 332 } 333 334 /** 335 * Returns a hexadecimal string representation of the 336 * {@code float} argument. All characters mentioned below are 337 * ASCII characters. 338 * 339 * <ul> 340 * <li>If the argument is NaN, the result is the string 341 * "{@code NaN}". 342 * <li>Otherwise, the result is a string that represents the sign and 343 * magnitude (absolute value) of the argument. If the sign is negative, 344 * the first character of the result is '{@code -}' 345 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 346 * appears in the result. As for the magnitude <i>m</i>: 347 * 348 * <ul> 349 * <li>If <i>m</i> is infinity, it is represented by the string 350 * {@code "Infinity"}; thus, positive infinity produces the 351 * result {@code "Infinity"} and negative infinity produces 352 * the result {@code "-Infinity"}. 353 * 354 * <li>If <i>m</i> is zero, it is represented by the string 355 * {@code "0x0.0p0"}; thus, negative zero produces the result 356 * {@code "-0x0.0p0"} and positive zero produces the result 357 * {@code "0x0.0p0"}. 358 * 359 * <li>If <i>m</i> is a {@code float} value with a 360 * normalized representation, substrings are used to represent the 361 * significand and exponent fields. The significand is 362 * represented by the characters {@code "0x1."} 363 * followed by a lowercase hexadecimal representation of the rest 364 * of the significand as a fraction. Trailing zeros in the 365 * hexadecimal representation are removed unless all the digits 366 * are zero, in which case a single zero is used. Next, the 367 * exponent is represented by {@code "p"} followed 368 * by a decimal string of the unbiased exponent as if produced by 369 * a call to {@link Integer#toString(int) Integer.toString} on the 370 * exponent value. 371 * 372 * <li>If <i>m</i> is a {@code float} value with a subnormal 373 * representation, the significand is represented by the 374 * characters {@code "0x0."} followed by a 375 * hexadecimal representation of the rest of the significand as a 376 * fraction. Trailing zeros in the hexadecimal representation are 377 * removed. Next, the exponent is represented by 378 * {@code "p-126"}. Note that there must be at 379 * least one nonzero digit in a subnormal significand. 380 * 381 * </ul> 382 * 383 * </ul> 384 * 385 * <table class="striped"> 386 * <caption>Examples</caption> 387 * <thead> 388 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 389 * </thead> 390 * <tbody> 391 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 392 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 393 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 394 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 395 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 396 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 397 * <tr><th scope="row">{@code Float.MAX_VALUE}</th> 398 * <td>{@code 0x1.fffffep127}</td> 399 * <tr><th scope="row">{@code Minimum Normal Value}</th> 400 * <td>{@code 0x1.0p-126}</td> 401 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 402 * <td>{@code 0x0.fffffep-126}</td> 403 * <tr><th scope="row">{@code Float.MIN_VALUE}</th> 404 * <td>{@code 0x0.000002p-126}</td> 405 * </tbody> 406 * </table> 407 * 408 * @apiNote 409 * This method corresponds to the convertToHexCharacter operation 410 * defined in IEEE 754. 411 * 412 * @param f the {@code float} to be converted. 413 * @return a hex string representation of the argument. 414 * @since 1.5 415 * @author Joseph D. Darcy 416 */ 417 public static String toHexString(float f) { 418 if (Math.abs(f) < Float.MIN_NORMAL 419 && f != 0.0f ) {// float subnormal 420 // Adjust exponent to create subnormal double, then 421 // replace subnormal double exponent with subnormal float 422 // exponent 423 String s = Double.toHexString(Math.scalb((double)f, 424 /* -1022+126 */ 425 Double.MIN_EXPONENT- 426 Float.MIN_EXPONENT)); 427 return s.replaceFirst("p-1022$", "p-126"); 428 } 429 else // double string will be the same as float string 430 return Double.toHexString(f); 431 } 432 433 /** 434 * Returns a {@code Float} object holding the 435 * {@code float} value represented by the argument string 436 * {@code s}. 437 * 438 * <p>If {@code s} is {@code null}, then a 439 * {@code NullPointerException} is thrown. 440 * 441 * <p>Leading and trailing whitespace characters in {@code s} 442 * are ignored. Whitespace is removed as if by the {@link 443 * String#trim} method; that is, both ASCII space and control 444 * characters are removed. The rest of {@code s} should 445 * constitute a <i>FloatValue</i> as described by the lexical 446 * syntax rules: 447 * 448 * <blockquote> 449 * <dl> 450 * <dt><i>FloatValue:</i> 451 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 452 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 453 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 454 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 455 * <dd><i>SignedInteger</i> 456 * </dl> 457 * 458 * <dl> 459 * <dt><i>HexFloatingPointLiteral</i>: 460 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 461 * </dl> 462 * 463 * <dl> 464 * <dt><i>HexSignificand:</i> 465 * <dd><i>HexNumeral</i> 466 * <dd><i>HexNumeral</i> {@code .} 467 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 468 * </i>{@code .}<i> HexDigits</i> 469 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 470 * </i>{@code .} <i>HexDigits</i> 471 * </dl> 472 * 473 * <dl> 474 * <dt><i>BinaryExponent:</i> 475 * <dd><i>BinaryExponentIndicator SignedInteger</i> 476 * </dl> 477 * 478 * <dl> 479 * <dt><i>BinaryExponentIndicator:</i> 480 * <dd>{@code p} 481 * <dd>{@code P} 482 * </dl> 483 * 484 * </blockquote> 485 * 486 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 487 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 488 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 489 * sections of 490 * <cite>The Java Language Specification</cite>, 491 * except that underscores are not accepted between digits. 492 * If {@code s} does not have the form of 493 * a <i>FloatValue</i>, then a {@code NumberFormatException} 494 * is thrown. Otherwise, {@code s} is regarded as 495 * representing an exact decimal value in the usual 496 * "computerized scientific notation" or as an exact 497 * hexadecimal value; this exact numerical value is then 498 * conceptually converted to an "infinitely precise" 499 * binary value that is then rounded to type {@code float} 500 * by the usual round-to-nearest rule of IEEE 754 floating-point 501 * arithmetic, which includes preserving the sign of a zero 502 * value. 503 * 504 * Note that the round-to-nearest rule also implies overflow and 505 * underflow behaviour; if the exact value of {@code s} is large 506 * enough in magnitude (greater than or equal to ({@link 507 * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), 508 * rounding to {@code float} will result in an infinity and if the 509 * exact value of {@code s} is small enough in magnitude (less 510 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 511 * result in a zero. 512 * 513 * Finally, after rounding a {@code Float} object representing 514 * this {@code float} value is returned. 515 * 516 * <p>Note that trailing format specifiers, specifiers that 517 * determine the type of a floating-point literal 518 * ({@code 1.0f} is a {@code float} value; 519 * {@code 1.0d} is a {@code double} value), do 520 * <em>not</em> influence the results of this method. In other 521 * words, the numerical value of the input string is converted 522 * directly to the target floating-point type. In general, the 523 * two-step sequence of conversions, string to {@code double} 524 * followed by {@code double} to {@code float}, is 525 * <em>not</em> equivalent to converting a string directly to 526 * {@code float}. For example, if first converted to an 527 * intermediate {@code double} and then to 528 * {@code float}, the string<br> 529 * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br> 530 * results in the {@code float} value 531 * {@code 1.0000002f}; if the string is converted directly to 532 * {@code float}, <code>1.000000<b>1</b>f</code> results. 533 * 534 * <p>To avoid calling this method on an invalid string and having 535 * a {@code NumberFormatException} be thrown, the documentation 536 * for {@link Double#valueOf Double.valueOf} lists a regular 537 * expression which can be used to screen the input. 538 * 539 * @apiNote To interpret localized string representations of a 540 * floating-point value, or string representations that have 541 * non-ASCII digits, use {@link java.text.NumberFormat}. For 542 * example, 543 * {@snippet lang="java" : 544 * NumberFormat.getInstance(l).parse(s).floatValue(); 545 * } 546 * where {@code l} is the desired locale, or 547 * {@link java.util.Locale#ROOT} if locale insensitive. 548 * 549 * @apiNote 550 * This method corresponds to the convertFromDecimalCharacter and 551 * convertFromHexCharacter operations defined in IEEE 754. 552 * 553 * @param s the string to be parsed. 554 * @return a {@code Float} object holding the value 555 * represented by the {@code String} argument. 556 * @throws NumberFormatException if the string does not contain a 557 * parsable number. 558 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 559 */ 560 public static Float valueOf(String s) throws NumberFormatException { 561 return new Float(parseFloat(s)); 562 } 563 564 /** 565 * Returns a {@code Float} instance representing the specified 566 * {@code float} value. 567 * If a new {@code Float} instance is not required, this method 568 * should generally be used in preference to the constructor 569 * {@link #Float(float)}, as this method is likely to yield 570 * significantly better space and time performance by caching 571 * frequently requested values. 572 * 573 * @param f a float value. 574 * @return a {@code Float} instance representing {@code f}. 575 * @since 1.5 576 */ 577 @IntrinsicCandidate 578 public static Float valueOf(float f) { 579 return new Float(f); 580 } 581 582 /** 583 * Returns a new {@code float} initialized to the value 584 * represented by the specified {@code String}, as performed 585 * by the {@code valueOf} method of class {@code Float}. 586 * 587 * @param s the string to be parsed. 588 * @return the {@code float} value represented by the string 589 * argument. 590 * @throws NullPointerException if the string is null 591 * @throws NumberFormatException if the string does not contain a 592 * parsable {@code float}. 593 * @see java.lang.Float#valueOf(String) 594 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 595 * @since 1.2 596 */ 597 public static float parseFloat(String s) throws NumberFormatException { 598 return FloatingDecimal.parseFloat(s); 599 } 600 601 /** 602 * Returns {@code true} if the specified number is a 603 * Not-a-Number (NaN) value, {@code false} otherwise. 604 * 605 * @apiNote 606 * This method corresponds to the isNaN operation defined in IEEE 607 * 754. 608 * 609 * @param v the value to be tested. 610 * @return {@code true} if the argument is NaN; 611 * {@code false} otherwise. 612 */ 613 public static boolean isNaN(float v) { 614 return (v != v); 615 } 616 617 /** 618 * Returns {@code true} if the specified number is infinitely 619 * large in magnitude, {@code false} otherwise. 620 * 621 * @apiNote 622 * This method corresponds to the isInfinite operation defined in 623 * IEEE 754. 624 * 625 * @param v the value to be tested. 626 * @return {@code true} if the argument is positive infinity or 627 * negative infinity; {@code false} otherwise. 628 */ 629 @IntrinsicCandidate 630 public static boolean isInfinite(float v) { 631 return Math.abs(v) > MAX_VALUE; 632 } 633 634 635 /** 636 * Returns {@code true} if the argument is a finite floating-point 637 * value; returns {@code false} otherwise (for NaN and infinity 638 * arguments). 639 * 640 * @apiNote 641 * This method corresponds to the isFinite operation defined in 642 * IEEE 754. 643 * 644 * @param f the {@code float} value to be tested 645 * @return {@code true} if the argument is a finite 646 * floating-point value, {@code false} otherwise. 647 * @since 1.8 648 */ 649 @IntrinsicCandidate 650 public static boolean isFinite(float f) { 651 return Math.abs(f) <= Float.MAX_VALUE; 652 } 653 654 /** 655 * The value of the Float. 656 * 657 * @serial 658 */ 659 private final float value; 660 661 /** 662 * Constructs a newly allocated {@code Float} object that 663 * represents the primitive {@code float} argument. 664 * 665 * @param value the value to be represented by the {@code Float}. 666 * 667 * @deprecated 668 * It is rarely appropriate to use this constructor. The static factory 669 * {@link #valueOf(float)} is generally a better choice, as it is 670 * likely to yield significantly better space and time performance. 671 */ 672 @Deprecated(since="9", forRemoval = true) 673 public Float(float value) { 674 this.value = value; 675 } 676 677 /** 678 * Constructs a newly allocated {@code Float} object that 679 * represents the argument converted to type {@code float}. 680 * 681 * @param value the value to be represented by the {@code Float}. 682 * 683 * @deprecated 684 * It is rarely appropriate to use this constructor. Instead, use the 685 * static factory method {@link #valueOf(float)} method as follows: 686 * {@code Float.valueOf((float)value)}. 687 */ 688 @Deprecated(since="9", forRemoval = true) 689 public Float(double value) { 690 this.value = (float)value; 691 } 692 693 /** 694 * Constructs a newly allocated {@code Float} object that 695 * represents the floating-point value of type {@code float} 696 * represented by the string. The string is converted to a 697 * {@code float} value as if by the {@code valueOf} method. 698 * 699 * @param s a string to be converted to a {@code Float}. 700 * @throws NumberFormatException if the string does not contain a 701 * parsable number. 702 * 703 * @deprecated 704 * It is rarely appropriate to use this constructor. 705 * Use {@link #parseFloat(String)} to convert a string to a 706 * {@code float} primitive, or use {@link #valueOf(String)} 707 * to convert a string to a {@code Float} object. 708 */ 709 @Deprecated(since="9", forRemoval = true) 710 public Float(String s) throws NumberFormatException { 711 value = parseFloat(s); 712 } 713 714 /** 715 * Returns {@code true} if this {@code Float} value is a 716 * Not-a-Number (NaN), {@code false} otherwise. 717 * 718 * @return {@code true} if the value represented by this object is 719 * NaN; {@code false} otherwise. 720 */ 721 public boolean isNaN() { 722 return isNaN(value); 723 } 724 725 /** 726 * Returns {@code true} if this {@code Float} value is 727 * infinitely large in magnitude, {@code false} otherwise. 728 * 729 * @return {@code true} if the value represented by this object is 730 * positive infinity or negative infinity; 731 * {@code false} otherwise. 732 */ 733 public boolean isInfinite() { 734 return isInfinite(value); 735 } 736 737 /** 738 * Returns a string representation of this {@code Float} object. 739 * The primitive {@code float} value represented by this object 740 * is converted to a {@code String} exactly as if by the method 741 * {@code toString} of one argument. 742 * 743 * @return a {@code String} representation of this object. 744 * @see java.lang.Float#toString(float) 745 */ 746 public String toString() { 747 return Float.toString(value); 748 } 749 750 /** 751 * Returns the value of this {@code Float} as a {@code byte} after 752 * a narrowing primitive conversion. 753 * 754 * @return the {@code float} value represented by this object 755 * converted to type {@code byte} 756 * @jls 5.1.3 Narrowing Primitive Conversion 757 */ 758 @Override 759 public byte byteValue() { 760 return (byte)value; 761 } 762 763 /** 764 * Returns the value of this {@code Float} as a {@code short} 765 * after a narrowing primitive conversion. 766 * 767 * @return the {@code float} value represented by this object 768 * converted to type {@code short} 769 * @jls 5.1.3 Narrowing Primitive Conversion 770 * @since 1.1 771 */ 772 @Override 773 public short shortValue() { 774 return (short)value; 775 } 776 777 /** 778 * Returns the value of this {@code Float} as an {@code int} after 779 * a narrowing primitive conversion. 780 * 781 * @apiNote 782 * This method corresponds to the convertToIntegerTowardZero 783 * operation defined in IEEE 754. 784 * 785 * @return the {@code float} value represented by this object 786 * converted to type {@code int} 787 * @jls 5.1.3 Narrowing Primitive Conversion 788 */ 789 @Override 790 public int intValue() { 791 return (int)value; 792 } 793 794 /** 795 * Returns value of this {@code Float} as a {@code long} after a 796 * narrowing primitive conversion. 797 * 798 * @apiNote 799 * This method corresponds to the convertToIntegerTowardZero 800 * operation defined in IEEE 754. 801 * 802 * @return the {@code float} value represented by this object 803 * converted to type {@code long} 804 * @jls 5.1.3 Narrowing Primitive Conversion 805 */ 806 @Override 807 public long longValue() { 808 return (long)value; 809 } 810 811 /** 812 * Returns the {@code float} value of this {@code Float} object. 813 * 814 * @return the {@code float} value represented by this object 815 */ 816 @Override 817 @IntrinsicCandidate 818 public float floatValue() { 819 return value; 820 } 821 822 /** 823 * Returns the value of this {@code Float} as a {@code double} 824 * after a widening primitive conversion. 825 * 826 * @apiNote 827 * This method corresponds to the convertFormat operation defined 828 * in IEEE 754. 829 * 830 * @return the {@code float} value represented by this 831 * object converted to type {@code double} 832 * @jls 5.1.2 Widening Primitive Conversion 833 */ 834 @Override 835 public double doubleValue() { 836 return (double)value; 837 } 838 839 /** 840 * Returns a hash code for this {@code Float} object. The 841 * result is the integer bit representation, exactly as produced 842 * by the method {@link #floatToIntBits(float)}, of the primitive 843 * {@code float} value represented by this {@code Float} 844 * object. 845 * 846 * @return a hash code value for this object. 847 */ 848 @Override 849 public int hashCode() { 850 return Float.hashCode(value); 851 } 852 853 /** 854 * Returns a hash code for a {@code float} value; compatible with 855 * {@code Float.hashCode()}. 856 * 857 * @param value the value to hash 858 * @return a hash code value for a {@code float} value. 859 * @since 1.8 860 */ 861 public static int hashCode(float value) { 862 return floatToIntBits(value); 863 } 864 865 /** 866 * Compares this object against the specified object. The result 867 * is {@code true} if and only if the argument is not 868 * {@code null} and is a {@code Float} object that 869 * represents a {@code float} with the same value as the 870 * {@code float} represented by this object. For this 871 * purpose, two {@code float} values are considered to be the 872 * same if and only if the method {@link #floatToIntBits(float)} 873 * returns the identical {@code int} value when applied to 874 * each. 875 * 876 * @apiNote 877 * This method is defined in terms of {@link 878 * #floatToIntBits(float)} rather than the {@code ==} operator on 879 * {@code float} values since the {@code ==} operator does 880 * <em>not</em> define an equivalence relation and to satisfy the 881 * {@linkplain Object#equals equals contract} an equivalence 882 * relation must be implemented; see {@linkplain Double##equivalenceRelation 883 * this discussion for details of floating-point equality and equivalence}. 884 * 885 * @param obj the object to be compared 886 * @return {@code true} if the objects are the same; 887 * {@code false} otherwise. 888 * @see java.lang.Float#floatToIntBits(float) 889 * @jls 15.21.1 Numerical Equality Operators == and != 890 */ 891 public boolean equals(Object obj) { 892 return (obj instanceof Float) 893 && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); 894 } 895 896 /** 897 * Returns a representation of the specified floating-point value 898 * according to the IEEE 754 floating-point "single format" bit 899 * layout. 900 * 901 * <p>Bit 31 (the bit that is selected by the mask 902 * {@code 0x80000000}) represents the sign of the floating-point 903 * number. 904 * Bits 30-23 (the bits that are selected by the mask 905 * {@code 0x7f800000}) represent the exponent. 906 * Bits 22-0 (the bits that are selected by the mask 907 * {@code 0x007fffff}) represent the significand (sometimes called 908 * the mantissa) of the floating-point number. 909 * 910 * <p>If the argument is positive infinity, the result is 911 * {@code 0x7f800000}. 912 * 913 * <p>If the argument is negative infinity, the result is 914 * {@code 0xff800000}. 915 * 916 * <p>If the argument is NaN, the result is {@code 0x7fc00000}. 917 * 918 * <p>In all cases, the result is an integer that, when given to the 919 * {@link #intBitsToFloat(int)} method, will produce a floating-point 920 * value the same as the argument to {@code floatToIntBits} 921 * (except all NaN values are collapsed to a single 922 * "canonical" NaN value). 923 * 924 * @param value a floating-point number. 925 * @return the bits that represent the floating-point number. 926 */ 927 @IntrinsicCandidate 928 public static int floatToIntBits(float value) { 929 if (!isNaN(value)) { 930 return floatToRawIntBits(value); 931 } 932 return 0x7fc00000; 933 } 934 935 /** 936 * Returns a representation of the specified floating-point value 937 * according to the IEEE 754 floating-point "single format" bit 938 * layout, preserving Not-a-Number (NaN) values. 939 * 940 * <p>Bit 31 (the bit that is selected by the mask 941 * {@code 0x80000000}) represents the sign of the floating-point 942 * number. 943 * Bits 30-23 (the bits that are selected by the mask 944 * {@code 0x7f800000}) represent the exponent. 945 * Bits 22-0 (the bits that are selected by the mask 946 * {@code 0x007fffff}) represent the significand (sometimes called 947 * the mantissa) of the floating-point number. 948 * 949 * <p>If the argument is positive infinity, the result is 950 * {@code 0x7f800000}. 951 * 952 * <p>If the argument is negative infinity, the result is 953 * {@code 0xff800000}. 954 * 955 * <p>If the argument is NaN, the result is the integer representing 956 * the actual NaN value. Unlike the {@code floatToIntBits} 957 * method, {@code floatToRawIntBits} does not collapse all the 958 * bit patterns encoding a NaN to a single "canonical" 959 * NaN value. 960 * 961 * <p>In all cases, the result is an integer that, when given to the 962 * {@link #intBitsToFloat(int)} method, will produce a 963 * floating-point value the same as the argument to 964 * {@code floatToRawIntBits}. 965 * 966 * @param value a floating-point number. 967 * @return the bits that represent the floating-point number. 968 * @since 1.3 969 */ 970 @IntrinsicCandidate 971 public static native int floatToRawIntBits(float value); 972 973 /** 974 * Returns the {@code float} value corresponding to a given 975 * bit representation. 976 * The argument is considered to be a representation of a 977 * floating-point value according to the IEEE 754 floating-point 978 * "single format" bit layout. 979 * 980 * <p>If the argument is {@code 0x7f800000}, the result is positive 981 * infinity. 982 * 983 * <p>If the argument is {@code 0xff800000}, the result is negative 984 * infinity. 985 * 986 * <p>If the argument is any value in the range 987 * {@code 0x7f800001} through {@code 0x7fffffff} or in 988 * the range {@code 0xff800001} through 989 * {@code 0xffffffff}, the result is a NaN. No IEEE 754 990 * floating-point operation provided by Java can distinguish 991 * between two NaN values of the same type with different bit 992 * patterns. Distinct values of NaN are only distinguishable by 993 * use of the {@code Float.floatToRawIntBits} method. 994 * 995 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 996 * values that can be computed from the argument: 997 * 998 * {@snippet lang="java" : 999 * int s = ((bits >> 31) == 0) ? 1 : -1; 1000 * int e = ((bits >> 23) & 0xff); 1001 * int m = (e == 0) ? 1002 * (bits & 0x7fffff) << 1 : 1003 * (bits & 0x7fffff) | 0x800000; 1004 * } 1005 * 1006 * Then the floating-point result equals the value of the mathematical 1007 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>. 1008 * 1009 * <p>Note that this method may not be able to return a 1010 * {@code float} NaN with exactly same bit pattern as the 1011 * {@code int} argument. IEEE 754 distinguishes between two 1012 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 1013 * differences between the two kinds of NaN are generally not 1014 * visible in Java. Arithmetic operations on signaling NaNs turn 1015 * them into quiet NaNs with a different, but often similar, bit 1016 * pattern. However, on some processors merely copying a 1017 * signaling NaN also performs that conversion. In particular, 1018 * copying a signaling NaN to return it to the calling method may 1019 * perform this conversion. So {@code intBitsToFloat} may 1020 * not be able to return a {@code float} with a signaling NaN 1021 * bit pattern. Consequently, for some {@code int} values, 1022 * {@code floatToRawIntBits(intBitsToFloat(start))} may 1023 * <i>not</i> equal {@code start}. Moreover, which 1024 * particular bit patterns represent signaling NaNs is platform 1025 * dependent; although all NaN bit patterns, quiet or signaling, 1026 * must be in the NaN range identified above. 1027 * 1028 * @param bits an integer. 1029 * @return the {@code float} floating-point value with the same bit 1030 * pattern. 1031 */ 1032 @IntrinsicCandidate 1033 public static native float intBitsToFloat(int bits); 1034 1035 /** 1036 * {@return the {@code float} value closest to the numerical value 1037 * of the argument, a floating-point binary16 value encoded in a 1038 * {@code short}} The conversion is exact; all binary16 values can 1039 * be exactly represented in {@code float}. 1040 * 1041 * Special cases: 1042 * <ul> 1043 * <li> If the argument is zero, the result is a zero with the 1044 * same sign as the argument. 1045 * <li> If the argument is infinite, the result is an infinity 1046 * with the same sign as the argument. 1047 * <li> If the argument is a NaN, the result is a NaN. 1048 * </ul> 1049 * 1050 * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4> 1051 * The IEEE 754 standard defines binary16 as a 16-bit format, along 1052 * with the 32-bit binary32 format (corresponding to the {@code 1053 * float} type) and the 64-bit binary64 format (corresponding to 1054 * the {@code double} type). The binary16 format is similar to the 1055 * other IEEE 754 formats, except smaller, having all the usual 1056 * IEEE 754 values such as NaN, signed infinities, signed zeros, 1057 * and subnormals. The parameters (JLS {@jls 4.2.3}) for the 1058 * binary16 format are N = 11 precision bits, K = 5 exponent bits, 1059 * <i>E</i><sub><i>max</i></sub> = 15, and 1060 * <i>E</i><sub><i>min</i></sub> = -14. 1061 * 1062 * @apiNote 1063 * This method corresponds to the convertFormat operation defined 1064 * in IEEE 754 from the binary16 format to the binary32 format. 1065 * The operation of this method is analogous to a primitive 1066 * widening conversion (JLS {@jls 5.1.2}). 1067 * 1068 * @param floatBinary16 the binary16 value to convert to {@code float} 1069 * @since 20 1070 */ 1071 @IntrinsicCandidate 1072 public static float float16ToFloat(short floatBinary16) { 1073 /* 1074 * The binary16 format has 1 sign bit, 5 exponent bits, and 10 1075 * significand bits. The exponent bias is 15. 1076 */ 1077 int bin16arg = (int)floatBinary16; 1078 int bin16SignBit = 0x8000 & bin16arg; 1079 int bin16ExpBits = 0x7c00 & bin16arg; 1080 int bin16SignifBits = 0x03FF & bin16arg; 1081 1082 // Shift left difference in the number of significand bits in 1083 // the float and binary16 formats 1084 final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11); 1085 1086 float sign = (bin16SignBit != 0) ? -1.0f : 1.0f; 1087 1088 // Extract binary16 exponent, remove its bias, add in the bias 1089 // of a float exponent and shift to correct bit location 1090 // (significand width includes the implicit bit so shift one 1091 // less). 1092 int bin16Exp = (bin16ExpBits >> 10) - 15; 1093 if (bin16Exp == -15) { 1094 // For subnormal binary16 values and 0, the numerical 1095 // value is 2^24 * the significand as an integer (no 1096 // implicit bit). 1097 return sign * (0x1p-24f * bin16SignifBits); 1098 } else if (bin16Exp == 16) { 1099 return (bin16SignifBits == 0) ? 1100 sign * Float.POSITIVE_INFINITY : 1101 Float.intBitsToFloat((bin16SignBit << 16) | 1102 0x7f80_0000 | 1103 // Preserve NaN signif bits 1104 ( bin16SignifBits << SIGNIF_SHIFT )); 1105 } 1106 1107 assert -15 < bin16Exp && bin16Exp < 16; 1108 1109 int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS) 1110 << (FloatConsts.SIGNIFICAND_WIDTH - 1); 1111 1112 // Compute and combine result sign, exponent, and significand bits. 1113 return Float.intBitsToFloat((bin16SignBit << 16) | 1114 floatExpBits | 1115 (bin16SignifBits << SIGNIF_SHIFT)); 1116 } 1117 1118 /** 1119 * {@return the floating-point binary16 value, encoded in a {@code 1120 * short}, closest in value to the argument} 1121 * The conversion is computed under the {@linkplain 1122 * java.math.RoundingMode#HALF_EVEN round to nearest even rounding 1123 * mode}. 1124 * 1125 * Special cases: 1126 * <ul> 1127 * <li> If the argument is zero, the result is a zero with the 1128 * same sign as the argument. 1129 * <li> If the argument is infinite, the result is an infinity 1130 * with the same sign as the argument. 1131 * <li> If the argument is a NaN, the result is a NaN. 1132 * </ul> 1133 * 1134 * The {@linkplain ##binary16Format binary16 format} is discussed in 1135 * more detail in the {@link #float16ToFloat} method. 1136 * 1137 * @apiNote 1138 * This method corresponds to the convertFormat operation defined 1139 * in IEEE 754 from the binary32 format to the binary16 format. 1140 * The operation of this method is analogous to a primitive 1141 * narrowing conversion (JLS {@jls 5.1.3}). 1142 * 1143 * @param f the {@code float} value to convert to binary16 1144 * @since 20 1145 */ 1146 @IntrinsicCandidate 1147 public static short floatToFloat16(float f) { 1148 int doppel = Float.floatToRawIntBits(f); 1149 short sign_bit = (short)((doppel & 0x8000_0000) >> 16); 1150 1151 if (Float.isNaN(f)) { 1152 // Preserve sign and attempt to preserve significand bits 1153 return (short)(sign_bit 1154 | 0x7c00 // max exponent + 1 1155 // Preserve high order bit of float NaN in the 1156 // binary16 result NaN (tenth bit); OR in remaining 1157 // bits into lower 9 bits of binary 16 significand. 1158 | (doppel & 0x007f_e000) >> 13 // 10 bits 1159 | (doppel & 0x0000_1ff0) >> 4 // 9 bits 1160 | (doppel & 0x0000_000f)); // 4 bits 1161 } 1162 1163 float abs_f = Math.abs(f); 1164 1165 // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp 1166 if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) { 1167 return (short)(sign_bit | 0x7c00); // Positive or negative infinity 1168 } 1169 1170 // Smallest magnitude nonzero representable binary16 value 1171 // is equal to 0x1.0p-24; half-way and smaller rounds to zero. 1172 if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals. 1173 return sign_bit; // Positive or negative zero 1174 } 1175 1176 // Dealing with finite values in exponent range of binary16 1177 // (when rounding is done, could still round up) 1178 int exp = Math.getExponent(f); 1179 assert -25 <= exp && exp <= 15; 1180 1181 // For binary16 subnormals, beside forcing exp to -15, retain 1182 // the difference expdelta = E_min - exp. This is the excess 1183 // shift value, in addition to 13, to be used in the 1184 // computations below. Further the (hidden) msb with value 1 1185 // in f must be involved as well. 1186 int expdelta = 0; 1187 int msb = 0x0000_0000; 1188 if (exp < -14) { 1189 expdelta = -14 - exp; 1190 exp = -15; 1191 msb = 0x0080_0000; 1192 } 1193 int f_signif_bits = doppel & 0x007f_ffff | msb; 1194 1195 // Significand bits as if using rounding to zero (truncation). 1196 short signif_bits = (short)(f_signif_bits >> (13 + expdelta)); 1197 1198 // For round to nearest even, determining whether or not to 1199 // round up (in magnitude) is a function of the least 1200 // significant bit (LSB), the next bit position (the round 1201 // position), and the sticky bit (whether there are any 1202 // nonzero bits in the exact result to the right of the round 1203 // digit). An increment occurs in three cases: 1204 // 1205 // LSB Round Sticky 1206 // 0 1 1 1207 // 1 1 0 1208 // 1 1 1 1209 // See "Computer Arithmetic Algorithms," Koren, Table 4.9 1210 1211 int lsb = f_signif_bits & (1 << 13 + expdelta); 1212 int round = f_signif_bits & (1 << 12 + expdelta); 1213 int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1); 1214 1215 if (round != 0 && ((lsb | sticky) != 0 )) { 1216 signif_bits++; 1217 } 1218 1219 // No bits set in significand beyond the *first* exponent bit, 1220 // not just the significand; quantity is added to the exponent 1221 // to implement a carry out from rounding the significand. 1222 assert (0xf800 & signif_bits) == 0x0; 1223 1224 return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) ); 1225 } 1226 1227 /** 1228 * Compares two {@code Float} objects numerically. 1229 * 1230 * This method imposes a total order on {@code Float} objects 1231 * with two differences compared to the incomplete order defined by 1232 * the Java language numerical comparison operators ({@code <, <=, 1233 * ==, >=, >}) on {@code float} values. 1234 * 1235 * <ul><li> A NaN is <em>unordered</em> with respect to other 1236 * values and unequal to itself under the comparison 1237 * operators. This method chooses to define {@code 1238 * Float.NaN} to be equal to itself and greater than all 1239 * other {@code double} values (including {@code 1240 * Float.POSITIVE_INFINITY}). 1241 * 1242 * <li> Positive zero and negative zero compare equal 1243 * numerically, but are distinct and distinguishable values. 1244 * This method chooses to define positive zero ({@code +0.0f}), 1245 * to be greater than negative zero ({@code -0.0f}). 1246 * </ul> 1247 * 1248 * This ensures that the <i>natural ordering</i> of {@code Float} 1249 * objects imposed by this method is <i>consistent with 1250 * equals</i>; see {@linkplain Double##equivalenceRelation this 1251 * discussion for details of floating-point comparison and 1252 * ordering}. 1253 * 1254 * 1255 * @param anotherFloat the {@code Float} to be compared. 1256 * @return the value {@code 0} if {@code anotherFloat} is 1257 * numerically equal to this {@code Float}; a value 1258 * less than {@code 0} if this {@code Float} 1259 * is numerically less than {@code anotherFloat}; 1260 * and a value greater than {@code 0} if this 1261 * {@code Float} is numerically greater than 1262 * {@code anotherFloat}. 1263 * 1264 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 1265 * @since 1.2 1266 */ 1267 @Override 1268 public int compareTo(Float anotherFloat) { 1269 return Float.compare(value, anotherFloat.value); 1270 } 1271 1272 /** 1273 * Compares the two specified {@code float} values. The sign 1274 * of the integer value returned is the same as that of the 1275 * integer that would be returned by the call: 1276 * <pre> 1277 * Float.valueOf(f1).compareTo(Float.valueOf(f2)) 1278 * </pre> 1279 * 1280 * @param f1 the first {@code float} to compare. 1281 * @param f2 the second {@code float} to compare. 1282 * @return the value {@code 0} if {@code f1} is 1283 * numerically equal to {@code f2}; a value less than 1284 * {@code 0} if {@code f1} is numerically less than 1285 * {@code f2}; and a value greater than {@code 0} 1286 * if {@code f1} is numerically greater than 1287 * {@code f2}. 1288 * @since 1.4 1289 */ 1290 public static int compare(float f1, float f2) { 1291 if (f1 < f2) 1292 return -1; // Neither val is NaN, thisVal is smaller 1293 if (f1 > f2) 1294 return 1; // Neither val is NaN, thisVal is larger 1295 1296 // Cannot use floatToRawIntBits because of possibility of NaNs. 1297 int thisBits = Float.floatToIntBits(f1); 1298 int anotherBits = Float.floatToIntBits(f2); 1299 1300 return (thisBits == anotherBits ? 0 : // Values are equal 1301 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1302 1)); // (0.0, -0.0) or (NaN, !NaN) 1303 } 1304 1305 /** 1306 * Adds two {@code float} values together as per the + operator. 1307 * 1308 * @apiNote This method corresponds to the addition operation 1309 * defined in IEEE 754. 1310 * 1311 * @param a the first operand 1312 * @param b the second operand 1313 * @return the sum of {@code a} and {@code b} 1314 * @jls 4.2.4 Floating-Point Operations 1315 * @see java.util.function.BinaryOperator 1316 * @since 1.8 1317 */ 1318 public static float sum(float a, float b) { 1319 return a + b; 1320 } 1321 1322 /** 1323 * Returns the greater of two {@code float} values 1324 * as if by calling {@link Math#max(float, float) Math.max}. 1325 * 1326 * @apiNote 1327 * This method corresponds to the maximum operation defined in 1328 * IEEE 754. 1329 * 1330 * @param a the first operand 1331 * @param b the second operand 1332 * @return the greater of {@code a} and {@code b} 1333 * @see java.util.function.BinaryOperator 1334 * @since 1.8 1335 */ 1336 public static float max(float a, float b) { 1337 return Math.max(a, b); 1338 } 1339 1340 /** 1341 * Returns the smaller of two {@code float} values 1342 * as if by calling {@link Math#min(float, float) Math.min}. 1343 * 1344 * @apiNote 1345 * This method corresponds to the minimum operation defined in 1346 * IEEE 754. 1347 * 1348 * @param a the first operand 1349 * @param b the second operand 1350 * @return the smaller of {@code a} and {@code b} 1351 * @see java.util.function.BinaryOperator 1352 * @since 1.8 1353 */ 1354 public static float min(float a, float b) { 1355 return Math.min(a, b); 1356 } 1357 1358 /** 1359 * Returns an {@link Optional} containing the nominal descriptor for this 1360 * instance, which is the instance itself. 1361 * 1362 * @return an {@link Optional} describing the {@linkplain Float} instance 1363 * @since 12 1364 */ 1365 @Override 1366 public Optional<Float> describeConstable() { 1367 return Optional.of(this); 1368 } 1369 1370 /** 1371 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1372 * the instance itself. 1373 * 1374 * @param lookup ignored 1375 * @return the {@linkplain Float} instance 1376 * @since 12 1377 */ 1378 @Override 1379 public Float resolveConstantDesc(MethodHandles.Lookup lookup) { 1380 return this; 1381 } 1382 1383 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1384 @java.io.Serial 1385 private static final long serialVersionUID = -2671257302660747028L; 1386 }