1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatConsts; 34 import jdk.internal.math.FloatingDecimal; 35 import jdk.internal.math.FloatToDecimal; 36 import jdk.internal.value.DeserializeConstructor; 37 import jdk.internal.vm.annotation.IntrinsicCandidate; 38 39 /** 40 * The {@code Float} class is the {@linkplain 41 * java.lang##wrapperClass wrapper class} for values of the primitive 42 * type {@code float}. An object of type {@code Float} contains a 43 * single field whose type is {@code float}. 44 * 45 * <p>In addition, this class provides several methods for converting a 46 * {@code float} to a {@code String} and a 47 * {@code String} to a {@code float}, as well as other 48 * constants and methods useful when dealing with a 49 * {@code float}. 50 * 51 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 52 * class; programmers should treat instances that are {@linkplain #equals(Object) equal} 53 * as interchangeable and should not use instances for synchronization, mutexes, or 54 * with {@linkplain java.lang.ref.Reference object references}. 55 * 56 * <div class="preview-block"> 57 * <div class="preview-comment"> 58 * When preview features are enabled, {@code Float} is a {@linkplain Class#isValue value class}. 59 * Use of value class instances for synchronization, mutexes, or with 60 * {@linkplain java.lang.ref.Reference object references} result in 61 * {@link IdentityException}. 62 * </div> 63 * </div> 64 * 65 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 66 * and Comparison</a></h2> 67 * 68 * The class {@code java.lang.Double} has a {@linkplain 69 * Double##equivalenceRelation discussion of equality, 70 * equivalence, and comparison of floating-point values} that is 71 * equally applicable to {@code float} values. 72 * 73 * <h2><a id=decimalToBinaryConversion>Decimal ↔ Binary Conversion Issues</a></h2> 74 * 75 * The {@linkplain Double##decimalToBinaryConversion discussion of binary to 76 * decimal conversion issues} in {@code java.lang.Double} is also 77 * applicable to {@code float} values. 78 * 79 * @see <a href="https://standards.ieee.org/ieee/754/6210/"> 80 * <cite>IEEE Standard for Floating-Point Arithmetic</cite></a> 81 * 82 * @author Lee Boynton 83 * @author Arthur van Hoff 84 * @author Joseph D. Darcy 85 * @since 1.0 86 */ 87 @jdk.internal.MigratedValueClass 88 @jdk.internal.ValueBased 89 public final class Float extends Number 90 implements Comparable<Float>, Constable, ConstantDesc { 91 /** 92 * A constant holding the positive infinity of type 93 * {@code float}. It is equal to the value returned by 94 * {@code Float.intBitsToFloat(0x7f800000)}. 95 */ 96 public static final float POSITIVE_INFINITY = 1.0f / 0.0f; 97 98 /** 99 * A constant holding the negative infinity of type 100 * {@code float}. It is equal to the value returned by 101 * {@code Float.intBitsToFloat(0xff800000)}. 102 */ 103 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; 104 105 /** 106 * A constant holding a Not-a-Number (NaN) value of type 107 * {@code float}. It is equivalent to the value returned by 108 * {@code Float.intBitsToFloat(0x7fc00000)}. 109 */ 110 public static final float NaN = 0.0f / 0.0f; 111 112 /** 113 * A constant holding the largest positive finite value of type 114 * {@code float}, (2-2<sup>-23</sup>)·2<sup>127</sup>. 115 * It is equal to the hexadecimal floating-point literal 116 * {@code 0x1.fffffeP+127f} and also equal to 117 * {@code Float.intBitsToFloat(0x7f7fffff)}. 118 */ 119 public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f 120 121 /** 122 * A constant holding the smallest positive normal value of type 123 * {@code float}, 2<sup>-126</sup>. It is equal to the 124 * hexadecimal floating-point literal {@code 0x1.0p-126f} and also 125 * equal to {@code Float.intBitsToFloat(0x00800000)}. 126 * 127 * @since 1.6 128 */ 129 public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f 130 131 /** 132 * A constant holding the smallest positive nonzero value of type 133 * {@code float}, 2<sup>-149</sup>. It is equal to the 134 * hexadecimal floating-point literal {@code 0x0.000002P-126f} 135 * and also equal to {@code Float.intBitsToFloat(0x1)}. 136 */ 137 public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f 138 139 /** 140 * The number of bits used to represent a {@code float} value, 141 * {@value}. 142 * 143 * @since 1.5 144 */ 145 public static final int SIZE = 32; 146 147 /** 148 * The number of bits in the significand of a {@code float} value, 149 * {@value}. This is the parameter N in section {@jls 4.2.3} of 150 * <cite>The Java Language Specification</cite>. 151 * 152 * @since 19 153 */ 154 public static final int PRECISION = 24; 155 156 /** 157 * Maximum exponent a finite {@code float} variable may have, 158 * {@value}. It is equal to the value returned by {@code 159 * Math.getExponent(Float.MAX_VALUE)}. 160 * 161 * @since 1.6 162 */ 163 public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127 164 165 /** 166 * Minimum exponent a normalized {@code float} variable may have, 167 * {@value}. It is equal to the value returned by {@code 168 * Math.getExponent(Float.MIN_NORMAL)}. 169 * 170 * @since 1.6 171 */ 172 public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126 173 174 /** 175 * The number of bytes used to represent a {@code float} value, 176 * {@value}. 177 * 178 * @since 1.8 179 */ 180 public static final int BYTES = SIZE / Byte.SIZE; 181 182 /** 183 * The {@code Class} instance representing the primitive type 184 * {@code float}. 185 * 186 * @since 1.1 187 */ 188 public static final Class<Float> TYPE = Class.getPrimitiveClass("float"); 189 190 /** 191 * Returns a string representation of the {@code float} 192 * argument. All characters mentioned below are ASCII characters. 193 * <ul> 194 * <li>If the argument is NaN, the result is the string 195 * "{@code NaN}". 196 * <li>Otherwise, the result is a string that represents the sign and 197 * magnitude (absolute value) of the argument. If the sign is 198 * negative, the first character of the result is 199 * '{@code -}' ({@code '\u005Cu002D'}); if the sign is 200 * positive, no sign character appears in the result. As for 201 * the magnitude <i>m</i>: 202 * <ul> 203 * <li>If <i>m</i> is infinity, it is represented by the characters 204 * {@code "Infinity"}; thus, positive infinity produces 205 * the result {@code "Infinity"} and negative infinity 206 * produces the result {@code "-Infinity"}. 207 * <li>If <i>m</i> is zero, it is represented by the characters 208 * {@code "0.0"}; thus, negative zero produces the result 209 * {@code "-0.0"} and positive zero produces the result 210 * {@code "0.0"}. 211 * 212 * <li> Otherwise <i>m</i> is positive and finite. 213 * It is converted to a string in two stages: 214 * <ul> 215 * <li> <em>Selection of a decimal</em>: 216 * A well-defined decimal <i>d</i><sub><i>m</i></sub> 217 * is selected to represent <i>m</i>. 218 * This decimal is (almost always) the <em>shortest</em> one that 219 * rounds to <i>m</i> according to the round to nearest 220 * rounding policy of IEEE 754 floating-point arithmetic. 221 * <li> <em>Formatting as a string</em>: 222 * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string, 223 * either in plain or in computerized scientific notation, 224 * depending on its value. 225 * </ul> 226 * </ul> 227 * </ul> 228 * 229 * <p>A <em>decimal</em> is a number of the form 230 * <i>s</i>×10<sup><i>i</i></sup> 231 * for some (unique) integers <i>s</i> > 0 and <i>i</i> such that 232 * <i>s</i> is not a multiple of 10. 233 * These integers are the <em>significand</em> and 234 * the <em>exponent</em>, respectively, of the decimal. 235 * The <em>length</em> of the decimal is the (unique) 236 * positive integer <i>n</i> meeting 237 * 10<sup><i>n</i>-1</sup> ≤ <i>s</i> < 10<sup><i>n</i></sup>. 238 * 239 * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i> 240 * is defined as follows: 241 * <ul> 242 * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i> 243 * according to the usual <em>round to nearest</em> rounding policy of 244 * IEEE 754 floating-point arithmetic. 245 * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>. 246 * <li>When <i>p</i> ≥ 2, let <i>T</i> be the set of all decimals 247 * in <i>R</i> with length <i>p</i>. 248 * Otherwise, let <i>T</i> be the set of all decimals 249 * in <i>R</i> with length 1 or 2. 250 * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i> 251 * that is closest to <i>m</i>. 252 * Or if there are two such decimals in <i>T</i>, 253 * select the one with the even significand. 254 * </ul> 255 * 256 * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub> 257 * is then formatted. 258 * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and 259 * length of <i>d</i><sub><i>m</i></sub>, respectively. 260 * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let 261 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub> 262 * be the usual decimal expansion of <i>s</i>. 263 * Note that <i>s</i><sub>1</sub> ≠ 0 264 * and <i>s</i><sub><i>n</i></sub> ≠ 0. 265 * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'} 266 * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}. 267 * <ul> 268 * <li>Case -3 ≤ <i>e</i> < 0: 269 * <i>d</i><sub><i>m</i></sub> is formatted as 270 * <code>0.0</code>…<code>0</code><!-- 271 * --><i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub>, 272 * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between 273 * the decimal point and <i>s</i><sub>1</sub>. 274 * For example, 123 × 10<sup>-4</sup> is formatted as 275 * {@code 0.0123}. 276 * <li>Case 0 ≤ <i>e</i> < 7: 277 * <ul> 278 * <li>Subcase <i>i</i> ≥ 0: 279 * <i>d</i><sub><i>m</i></sub> is formatted as 280 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub><!-- 281 * --><code>0</code>…<code>0.0</code>, 282 * where there are exactly <i>i</i> zeroes 283 * between <i>s</i><sub><i>n</i></sub> and the decimal point. 284 * For example, 123 × 10<sup>2</sup> is formatted as 285 * {@code 12300.0}. 286 * <li>Subcase <i>i</i> < 0: 287 * <i>d</i><sub><i>m</i></sub> is formatted as 288 * <i>s</i><sub>1</sub>…<!-- 289 * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!-- 290 * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>…<!-- 291 * --><i>s</i><sub><i>n</i></sub>, 292 * where there are exactly -<i>i</i> digits to the right of 293 * the decimal point. 294 * For example, 123 × 10<sup>-1</sup> is formatted as 295 * {@code 12.3}. 296 * </ul> 297 * <li>Case <i>e</i> < -3 or <i>e</i> ≥ 7: 298 * computerized scientific notation is used to format 299 * <i>d</i><sub><i>m</i></sub>. 300 * Here <i>e</i> is formatted as by {@link Integer#toString(int)}. 301 * <ul> 302 * <li>Subcase <i>n</i> = 1: 303 * <i>d</i><sub><i>m</i></sub> is formatted as 304 * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>. 305 * For example, 1 × 10<sup>23</sup> is formatted as 306 * {@code 1.0E23}. 307 * <li>Subcase <i>n</i> > 1: 308 * <i>d</i><sub><i>m</i></sub> is formatted as 309 * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!-- 310 * -->…<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>. 311 * For example, 123 × 10<sup>-21</sup> is formatted as 312 * {@code 1.23E-19}. 313 * </ul> 314 * </ul> 315 * 316 * <p>To create localized string representations of a floating-point 317 * value, use subclasses of {@link java.text.NumberFormat}. 318 * 319 * @apiNote 320 * This method corresponds to the general functionality of the 321 * convertToDecimalCharacter operation defined in IEEE 754; 322 * however, that operation is defined in terms of specifying the 323 * number of significand digits used in the conversion. 324 * Code to do such a conversion in the Java platform includes 325 * converting the {@code float} to a {@link java.math.BigDecimal 326 * BigDecimal} exactly and then rounding the {@code BigDecimal} to 327 * the desired number of digits; sample code: 328 * {@snippet lang=java : 329 * floatf = 0.1f; 330 * int digits = 15; 331 * BigDecimal bd = new BigDecimal(f); 332 * String result = bd.round(new MathContext(digits, RoundingMode.HALF_UP)); 333 * // 0.100000001490116 334 * } 335 * 336 * @param f the {@code float} to be converted. 337 * @return a string representation of the argument. 338 */ 339 public static String toString(float f) { 340 return FloatToDecimal.toString(f); 341 } 342 343 /** 344 * Returns a hexadecimal string representation of the 345 * {@code float} argument. All characters mentioned below are 346 * ASCII characters. 347 * 348 * <ul> 349 * <li>If the argument is NaN, the result is the string 350 * "{@code NaN}". 351 * <li>Otherwise, the result is a string that represents the sign and 352 * magnitude (absolute value) of the argument. If the sign is negative, 353 * the first character of the result is '{@code -}' 354 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 355 * appears in the result. As for the magnitude <i>m</i>: 356 * 357 * <ul> 358 * <li>If <i>m</i> is infinity, it is represented by the string 359 * {@code "Infinity"}; thus, positive infinity produces the 360 * result {@code "Infinity"} and negative infinity produces 361 * the result {@code "-Infinity"}. 362 * 363 * <li>If <i>m</i> is zero, it is represented by the string 364 * {@code "0x0.0p0"}; thus, negative zero produces the result 365 * {@code "-0x0.0p0"} and positive zero produces the result 366 * {@code "0x0.0p0"}. 367 * 368 * <li>If <i>m</i> is a {@code float} value with a 369 * normalized representation, substrings are used to represent the 370 * significand and exponent fields. The significand is 371 * represented by the characters {@code "0x1."} 372 * followed by a lowercase hexadecimal representation of the rest 373 * of the significand as a fraction. Trailing zeros in the 374 * hexadecimal representation are removed unless all the digits 375 * are zero, in which case a single zero is used. Next, the 376 * exponent is represented by {@code "p"} followed 377 * by a decimal string of the unbiased exponent as if produced by 378 * a call to {@link Integer#toString(int) Integer.toString} on the 379 * exponent value. 380 * 381 * <li>If <i>m</i> is a {@code float} value with a subnormal 382 * representation, the significand is represented by the 383 * characters {@code "0x0."} followed by a 384 * hexadecimal representation of the rest of the significand as a 385 * fraction. Trailing zeros in the hexadecimal representation are 386 * removed. Next, the exponent is represented by 387 * {@code "p-126"}. Note that there must be at 388 * least one nonzero digit in a subnormal significand. 389 * 390 * </ul> 391 * 392 * </ul> 393 * 394 * <table class="striped"> 395 * <caption>Examples</caption> 396 * <thead> 397 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 398 * </thead> 399 * <tbody> 400 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 401 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 402 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 403 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 404 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 405 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 406 * <tr><th scope="row">{@code Float.MAX_VALUE}</th> 407 * <td>{@code 0x1.fffffep127}</td> 408 * <tr><th scope="row">{@code Minimum Normal Value}</th> 409 * <td>{@code 0x1.0p-126}</td> 410 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 411 * <td>{@code 0x0.fffffep-126}</td> 412 * <tr><th scope="row">{@code Float.MIN_VALUE}</th> 413 * <td>{@code 0x0.000002p-126}</td> 414 * </tbody> 415 * </table> 416 * 417 * @apiNote 418 * This method corresponds to the convertToHexCharacter operation 419 * defined in IEEE 754. 420 * 421 * @param f the {@code float} to be converted. 422 * @return a hex string representation of the argument. 423 * @since 1.5 424 * @author Joseph D. Darcy 425 */ 426 public static String toHexString(float f) { 427 if (Math.abs(f) < Float.MIN_NORMAL 428 && f != 0.0f ) {// float subnormal 429 // Adjust exponent to create subnormal double, then 430 // replace subnormal double exponent with subnormal float 431 // exponent 432 String s = Double.toHexString(Math.scalb((double)f, 433 /* -1022+126 */ 434 Double.MIN_EXPONENT- 435 Float.MIN_EXPONENT)); 436 return s.replaceFirst("p-1022$", "p-126"); 437 } 438 else // double string will be the same as float string 439 return Double.toHexString(f); 440 } 441 442 /** 443 * Returns a {@code Float} object holding the 444 * {@code float} value represented by the argument string 445 * {@code s}. 446 * 447 * <p>If {@code s} is {@code null}, then a 448 * {@code NullPointerException} is thrown. 449 * 450 * <p>Leading and trailing whitespace characters in {@code s} 451 * are ignored. Whitespace is removed as if by the {@link 452 * String#trim} method; that is, both ASCII space and control 453 * characters are removed. The rest of {@code s} should 454 * constitute a <i>FloatValue</i> as described by the lexical 455 * syntax rules: 456 * 457 * <blockquote> 458 * <dl> 459 * <dt><i>FloatValue:</i> 460 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 461 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 462 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 463 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 464 * <dd><i>SignedInteger</i> 465 * </dl> 466 * 467 * <dl> 468 * <dt><i>HexFloatingPointLiteral</i>: 469 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 470 * </dl> 471 * 472 * <dl> 473 * <dt><i>HexSignificand:</i> 474 * <dd><i>HexNumeral</i> 475 * <dd><i>HexNumeral</i> {@code .} 476 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 477 * </i>{@code .}<i> HexDigits</i> 478 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 479 * </i>{@code .} <i>HexDigits</i> 480 * </dl> 481 * 482 * <dl> 483 * <dt><i>BinaryExponent:</i> 484 * <dd><i>BinaryExponentIndicator SignedInteger</i> 485 * </dl> 486 * 487 * <dl> 488 * <dt><i>BinaryExponentIndicator:</i> 489 * <dd>{@code p} 490 * <dd>{@code P} 491 * </dl> 492 * 493 * </blockquote> 494 * 495 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 496 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 497 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 498 * sections of 499 * <cite>The Java Language Specification</cite>, 500 * except that underscores are not accepted between digits. 501 * If {@code s} does not have the form of 502 * a <i>FloatValue</i>, then a {@code NumberFormatException} 503 * is thrown. Otherwise, {@code s} is regarded as 504 * representing an exact decimal value in the usual 505 * "computerized scientific notation" or as an exact 506 * hexadecimal value; this exact numerical value is then 507 * conceptually converted to an "infinitely precise" 508 * binary value that is then rounded to type {@code float} 509 * by the usual round-to-nearest rule of IEEE 754 floating-point 510 * arithmetic, which includes preserving the sign of a zero 511 * value. 512 * 513 * Note that the round-to-nearest rule also implies overflow and 514 * underflow behaviour; if the exact value of {@code s} is large 515 * enough in magnitude (greater than or equal to ({@link 516 * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), 517 * rounding to {@code float} will result in an infinity and if the 518 * exact value of {@code s} is small enough in magnitude (less 519 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 520 * result in a zero. 521 * 522 * Finally, after rounding a {@code Float} object representing 523 * this {@code float} value is returned. 524 * 525 * <p>Note that trailing format specifiers, specifiers that 526 * determine the type of a floating-point literal 527 * ({@code 1.0f} is a {@code float} value; 528 * {@code 1.0d} is a {@code double} value), do 529 * <em>not</em> influence the results of this method. In other 530 * words, the numerical value of the input string is converted 531 * directly to the target floating-point type. In general, the 532 * two-step sequence of conversions, string to {@code double} 533 * followed by {@code double} to {@code float}, is 534 * <em>not</em> equivalent to converting a string directly to 535 * {@code float}. For example, if first converted to an 536 * intermediate {@code double} and then to 537 * {@code float}, the string<br> 538 * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br> 539 * results in the {@code float} value 540 * {@code 1.0000002f}; if the string is converted directly to 541 * {@code float}, <code>1.000000<b>1</b>f</code> results. 542 * 543 * <p>To avoid calling this method on an invalid string and having 544 * a {@code NumberFormatException} be thrown, the documentation 545 * for {@link Double#valueOf Double.valueOf} lists a regular 546 * expression which can be used to screen the input. 547 * 548 * @apiNote To interpret localized string representations of a 549 * floating-point value, or string representations that have 550 * non-ASCII digits, use {@link java.text.NumberFormat}. For 551 * example, 552 * {@snippet lang="java" : 553 * NumberFormat.getInstance(l).parse(s).floatValue(); 554 * } 555 * where {@code l} is the desired locale, or 556 * {@link java.util.Locale#ROOT} if locale insensitive. 557 * 558 * @apiNote 559 * This method corresponds to the convertFromDecimalCharacter and 560 * convertFromHexCharacter operations defined in IEEE 754. 561 * 562 * @param s the string to be parsed. 563 * @return a {@code Float} object holding the value 564 * represented by the {@code String} argument. 565 * @throws NumberFormatException if the string does not contain a 566 * parsable number. 567 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 568 */ 569 public static Float valueOf(String s) throws NumberFormatException { 570 return new Float(parseFloat(s)); 571 } 572 573 /** 574 * Returns a {@code Float} instance representing the specified 575 * {@code float} value. 576 * If a new {@code Float} instance is not required, this method 577 * should generally be used in preference to the constructor 578 * {@link #Float(float)}, as this method is likely to yield 579 * significantly better space and time performance by caching 580 * frequently requested values. 581 * 582 * @param f a float value. 583 * @return a {@code Float} instance representing {@code f}. 584 * @since 1.5 585 */ 586 @IntrinsicCandidate 587 @DeserializeConstructor 588 public static Float valueOf(float f) { 589 return new Float(f); 590 } 591 592 /** 593 * Returns a new {@code float} initialized to the value 594 * represented by the specified {@code String}, as performed 595 * by the {@code valueOf} method of class {@code Float}. 596 * 597 * @param s the string to be parsed. 598 * @return the {@code float} value represented by the string 599 * argument. 600 * @throws NullPointerException if the string is null 601 * @throws NumberFormatException if the string does not contain a 602 * parsable {@code float}. 603 * @see java.lang.Float#valueOf(String) 604 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 605 * @since 1.2 606 */ 607 public static float parseFloat(String s) throws NumberFormatException { 608 return FloatingDecimal.parseFloat(s); 609 } 610 611 /** 612 * Returns {@code true} if the specified number is a 613 * Not-a-Number (NaN) value, {@code false} otherwise. 614 * 615 * @apiNote 616 * This method corresponds to the isNaN operation defined in IEEE 617 * 754. 618 * 619 * @param v the value to be tested. 620 * @return {@code true} if the argument is NaN; 621 * {@code false} otherwise. 622 */ 623 public static boolean isNaN(float v) { 624 return (v != v); 625 } 626 627 /** 628 * Returns {@code true} if the specified number is infinitely 629 * large in magnitude, {@code false} otherwise. 630 * 631 * @apiNote 632 * This method corresponds to the isInfinite operation defined in 633 * IEEE 754. 634 * 635 * @param v the value to be tested. 636 * @return {@code true} if the argument is positive infinity or 637 * negative infinity; {@code false} otherwise. 638 */ 639 @IntrinsicCandidate 640 public static boolean isInfinite(float v) { 641 return Math.abs(v) > MAX_VALUE; 642 } 643 644 645 /** 646 * Returns {@code true} if the argument is a finite floating-point 647 * value; returns {@code false} otherwise (for NaN and infinity 648 * arguments). 649 * 650 * @apiNote 651 * This method corresponds to the isFinite operation defined in 652 * IEEE 754. 653 * 654 * @param f the {@code float} value to be tested 655 * @return {@code true} if the argument is a finite 656 * floating-point value, {@code false} otherwise. 657 * @since 1.8 658 */ 659 @IntrinsicCandidate 660 public static boolean isFinite(float f) { 661 return Math.abs(f) <= Float.MAX_VALUE; 662 } 663 664 /** 665 * The value of the Float. 666 * 667 * @serial 668 */ 669 private final float value; 670 671 /** 672 * Constructs a newly allocated {@code Float} object that 673 * represents the primitive {@code float} argument. 674 * 675 * @param value the value to be represented by the {@code Float}. 676 * 677 * @deprecated 678 * It is rarely appropriate to use this constructor. The static factory 679 * {@link #valueOf(float)} is generally a better choice, as it is 680 * likely to yield significantly better space and time performance. 681 */ 682 @Deprecated(since="9", forRemoval = true) 683 public Float(float value) { 684 this.value = value; 685 } 686 687 /** 688 * Constructs a newly allocated {@code Float} object that 689 * represents the argument converted to type {@code float}. 690 * 691 * @param value the value to be represented by the {@code Float}. 692 * 693 * @deprecated 694 * It is rarely appropriate to use this constructor. Instead, use the 695 * static factory method {@link #valueOf(float)} method as follows: 696 * {@code Float.valueOf((float)value)}. 697 */ 698 @Deprecated(since="9", forRemoval = true) 699 public Float(double value) { 700 this.value = (float)value; 701 } 702 703 /** 704 * Constructs a newly allocated {@code Float} object that 705 * represents the floating-point value of type {@code float} 706 * represented by the string. The string is converted to a 707 * {@code float} value as if by the {@code valueOf} method. 708 * 709 * @param s a string to be converted to a {@code Float}. 710 * @throws NumberFormatException if the string does not contain a 711 * parsable number. 712 * 713 * @deprecated 714 * It is rarely appropriate to use this constructor. 715 * Use {@link #parseFloat(String)} to convert a string to a 716 * {@code float} primitive, or use {@link #valueOf(String)} 717 * to convert a string to a {@code Float} object. 718 */ 719 @Deprecated(since="9", forRemoval = true) 720 public Float(String s) throws NumberFormatException { 721 value = parseFloat(s); 722 } 723 724 /** 725 * Returns {@code true} if this {@code Float} value is a 726 * Not-a-Number (NaN), {@code false} otherwise. 727 * 728 * @return {@code true} if the value represented by this object is 729 * NaN; {@code false} otherwise. 730 */ 731 public boolean isNaN() { 732 return isNaN(value); 733 } 734 735 /** 736 * Returns {@code true} if this {@code Float} value is 737 * infinitely large in magnitude, {@code false} otherwise. 738 * 739 * @return {@code true} if the value represented by this object is 740 * positive infinity or negative infinity; 741 * {@code false} otherwise. 742 */ 743 public boolean isInfinite() { 744 return isInfinite(value); 745 } 746 747 /** 748 * Returns a string representation of this {@code Float} object. 749 * The primitive {@code float} value represented by this object 750 * is converted to a {@code String} exactly as if by the method 751 * {@code toString} of one argument. 752 * 753 * @return a {@code String} representation of this object. 754 * @see java.lang.Float#toString(float) 755 */ 756 public String toString() { 757 return Float.toString(value); 758 } 759 760 /** 761 * Returns the value of this {@code Float} as a {@code byte} after 762 * a narrowing primitive conversion. 763 * 764 * @return the {@code float} value represented by this object 765 * converted to type {@code byte} 766 * @jls 5.1.3 Narrowing Primitive Conversion 767 */ 768 @Override 769 public byte byteValue() { 770 return (byte)value; 771 } 772 773 /** 774 * Returns the value of this {@code Float} as a {@code short} 775 * after a narrowing primitive conversion. 776 * 777 * @return the {@code float} value represented by this object 778 * converted to type {@code short} 779 * @jls 5.1.3 Narrowing Primitive Conversion 780 * @since 1.1 781 */ 782 @Override 783 public short shortValue() { 784 return (short)value; 785 } 786 787 /** 788 * Returns the value of this {@code Float} as an {@code int} after 789 * a narrowing primitive conversion. 790 * 791 * @apiNote 792 * This method corresponds to the convertToIntegerTowardZero 793 * operation defined in IEEE 754. 794 * 795 * @return the {@code float} value represented by this object 796 * converted to type {@code int} 797 * @jls 5.1.3 Narrowing Primitive Conversion 798 */ 799 @Override 800 public int intValue() { 801 return (int)value; 802 } 803 804 /** 805 * Returns value of this {@code Float} as a {@code long} after a 806 * narrowing primitive conversion. 807 * 808 * @apiNote 809 * This method corresponds to the convertToIntegerTowardZero 810 * operation defined in IEEE 754. 811 * 812 * @return the {@code float} value represented by this object 813 * converted to type {@code long} 814 * @jls 5.1.3 Narrowing Primitive Conversion 815 */ 816 @Override 817 public long longValue() { 818 return (long)value; 819 } 820 821 /** 822 * Returns the {@code float} value of this {@code Float} object. 823 * 824 * @return the {@code float} value represented by this object 825 */ 826 @Override 827 @IntrinsicCandidate 828 public float floatValue() { 829 return value; 830 } 831 832 /** 833 * Returns the value of this {@code Float} as a {@code double} 834 * after a widening primitive conversion. 835 * 836 * @apiNote 837 * This method corresponds to the convertFormat operation defined 838 * in IEEE 754. 839 * 840 * @return the {@code float} value represented by this 841 * object converted to type {@code double} 842 * @jls 5.1.2 Widening Primitive Conversion 843 */ 844 @Override 845 public double doubleValue() { 846 return (double)value; 847 } 848 849 /** 850 * Returns a hash code for this {@code Float} object. The 851 * result is the integer bit representation, exactly as produced 852 * by the method {@link #floatToIntBits(float)}, of the primitive 853 * {@code float} value represented by this {@code Float} 854 * object. 855 * 856 * @return a hash code value for this object. 857 */ 858 @Override 859 public int hashCode() { 860 return Float.hashCode(value); 861 } 862 863 /** 864 * Returns a hash code for a {@code float} value; compatible with 865 * {@code Float.hashCode()}. 866 * 867 * @param value the value to hash 868 * @return a hash code value for a {@code float} value. 869 * @since 1.8 870 */ 871 public static int hashCode(float value) { 872 return floatToIntBits(value); 873 } 874 875 /** 876 * Compares this object against the specified object. The result 877 * is {@code true} if and only if the argument is not 878 * {@code null} and is a {@code Float} object that 879 * represents a {@code float} with the same value as the 880 * {@code float} represented by this object. For this 881 * purpose, two {@code float} values are considered to be the 882 * same if and only if the method {@link #floatToIntBits(float)} 883 * returns the identical {@code int} value when applied to 884 * each. 885 * 886 * @apiNote 887 * This method is defined in terms of {@link 888 * #floatToIntBits(float)} rather than the {@code ==} operator on 889 * {@code float} values since the {@code ==} operator does 890 * <em>not</em> define an equivalence relation and to satisfy the 891 * {@linkplain Object#equals equals contract} an equivalence 892 * relation must be implemented; see {@linkplain Double##equivalenceRelation 893 * this discussion for details of floating-point equality and equivalence}. 894 * 895 * @param obj the object to be compared 896 * @return {@code true} if the objects are the same; 897 * {@code false} otherwise. 898 * @see java.lang.Float#floatToIntBits(float) 899 * @jls 15.21.1 Numerical Equality Operators == and != 900 */ 901 public boolean equals(Object obj) { 902 return (obj instanceof Float f) && 903 (floatToIntBits(f.value) == floatToIntBits(value)); 904 } 905 906 /** 907 * Returns a representation of the specified floating-point value 908 * according to the IEEE 754 floating-point "single format" bit 909 * layout. 910 * 911 * <p>Bit 31 (the bit that is selected by the mask 912 * {@code 0x80000000}) represents the sign of the floating-point 913 * number. 914 * Bits 30-23 (the bits that are selected by the mask 915 * {@code 0x7f800000}) represent the exponent. 916 * Bits 22-0 (the bits that are selected by the mask 917 * {@code 0x007fffff}) represent the significand (sometimes called 918 * the mantissa) of the floating-point number. 919 * 920 * <p>If the argument is positive infinity, the result is 921 * {@code 0x7f800000}. 922 * 923 * <p>If the argument is negative infinity, the result is 924 * {@code 0xff800000}. 925 * 926 * <p>If the argument is NaN, the result is {@code 0x7fc00000}. 927 * 928 * <p>In all cases, the result is an integer that, when given to the 929 * {@link #intBitsToFloat(int)} method, will produce a floating-point 930 * value the same as the argument to {@code floatToIntBits} 931 * (except all NaN values are collapsed to a single 932 * "canonical" NaN value). 933 * 934 * @param value a floating-point number. 935 * @return the bits that represent the floating-point number. 936 */ 937 @IntrinsicCandidate 938 public static int floatToIntBits(float value) { 939 if (!isNaN(value)) { 940 return floatToRawIntBits(value); 941 } 942 return 0x7fc00000; 943 } 944 945 /** 946 * Returns a representation of the specified floating-point value 947 * according to the IEEE 754 floating-point "single format" bit 948 * layout, preserving Not-a-Number (NaN) values. 949 * 950 * <p>Bit 31 (the bit that is selected by the mask 951 * {@code 0x80000000}) represents the sign of the floating-point 952 * number. 953 * Bits 30-23 (the bits that are selected by the mask 954 * {@code 0x7f800000}) represent the exponent. 955 * Bits 22-0 (the bits that are selected by the mask 956 * {@code 0x007fffff}) represent the significand (sometimes called 957 * the mantissa) of the floating-point number. 958 * 959 * <p>If the argument is positive infinity, the result is 960 * {@code 0x7f800000}. 961 * 962 * <p>If the argument is negative infinity, the result is 963 * {@code 0xff800000}. 964 * 965 * <p>If the argument is NaN, the result is the integer representing 966 * the actual NaN value. Unlike the {@code floatToIntBits} 967 * method, {@code floatToRawIntBits} does not collapse all the 968 * bit patterns encoding a NaN to a single "canonical" 969 * NaN value. 970 * 971 * <p>In all cases, the result is an integer that, when given to the 972 * {@link #intBitsToFloat(int)} method, will produce a 973 * floating-point value the same as the argument to 974 * {@code floatToRawIntBits}. 975 * 976 * @param value a floating-point number. 977 * @return the bits that represent the floating-point number. 978 * @since 1.3 979 */ 980 @IntrinsicCandidate 981 public static native int floatToRawIntBits(float value); 982 983 /** 984 * Returns the {@code float} value corresponding to a given 985 * bit representation. 986 * The argument is considered to be a representation of a 987 * floating-point value according to the IEEE 754 floating-point 988 * "single format" bit layout. 989 * 990 * <p>If the argument is {@code 0x7f800000}, the result is positive 991 * infinity. 992 * 993 * <p>If the argument is {@code 0xff800000}, the result is negative 994 * infinity. 995 * 996 * <p>If the argument is any value in the range 997 * {@code 0x7f800001} through {@code 0x7fffffff} or in 998 * the range {@code 0xff800001} through 999 * {@code 0xffffffff}, the result is a NaN. No IEEE 754 1000 * floating-point operation provided by Java can distinguish 1001 * between two NaN values of the same type with different bit 1002 * patterns. Distinct values of NaN are only distinguishable by 1003 * use of the {@code Float.floatToRawIntBits} method. 1004 * 1005 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 1006 * values that can be computed from the argument: 1007 * 1008 * {@snippet lang="java" : 1009 * int s = ((bits >> 31) == 0) ? 1 : -1; 1010 * int e = ((bits >> 23) & 0xff); 1011 * int m = (e == 0) ? 1012 * (bits & 0x7fffff) << 1 : 1013 * (bits & 0x7fffff) | 0x800000; 1014 * } 1015 * 1016 * Then the floating-point result equals the value of the mathematical 1017 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>. 1018 * 1019 * <p>Note that this method may not be able to return a 1020 * {@code float} NaN with exactly same bit pattern as the 1021 * {@code int} argument. IEEE 754 distinguishes between two 1022 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 1023 * differences between the two kinds of NaN are generally not 1024 * visible in Java. Arithmetic operations on signaling NaNs turn 1025 * them into quiet NaNs with a different, but often similar, bit 1026 * pattern. However, on some processors merely copying a 1027 * signaling NaN also performs that conversion. In particular, 1028 * copying a signaling NaN to return it to the calling method may 1029 * perform this conversion. So {@code intBitsToFloat} may 1030 * not be able to return a {@code float} with a signaling NaN 1031 * bit pattern. Consequently, for some {@code int} values, 1032 * {@code floatToRawIntBits(intBitsToFloat(start))} may 1033 * <i>not</i> equal {@code start}. Moreover, which 1034 * particular bit patterns represent signaling NaNs is platform 1035 * dependent; although all NaN bit patterns, quiet or signaling, 1036 * must be in the NaN range identified above. 1037 * 1038 * @param bits an integer. 1039 * @return the {@code float} floating-point value with the same bit 1040 * pattern. 1041 */ 1042 @IntrinsicCandidate 1043 public static native float intBitsToFloat(int bits); 1044 1045 /** 1046 * {@return the {@code float} value closest to the numerical value 1047 * of the argument, a floating-point binary16 value encoded in a 1048 * {@code short}} The conversion is exact; all binary16 values can 1049 * be exactly represented in {@code float}. 1050 * 1051 * Special cases: 1052 * <ul> 1053 * <li> If the argument is zero, the result is a zero with the 1054 * same sign as the argument. 1055 * <li> If the argument is infinite, the result is an infinity 1056 * with the same sign as the argument. 1057 * <li> If the argument is a NaN, the result is a NaN. 1058 * </ul> 1059 * 1060 * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4> 1061 * The IEEE 754 standard defines binary16 as a 16-bit format, along 1062 * with the 32-bit binary32 format (corresponding to the {@code 1063 * float} type) and the 64-bit binary64 format (corresponding to 1064 * the {@code double} type). The binary16 format is similar to the 1065 * other IEEE 754 formats, except smaller, having all the usual 1066 * IEEE 754 values such as NaN, signed infinities, signed zeros, 1067 * and subnormals. The parameters (JLS {@jls 4.2.3}) for the 1068 * binary16 format are N = 11 precision bits, K = 5 exponent bits, 1069 * <i>E</i><sub><i>max</i></sub> = 15, and 1070 * <i>E</i><sub><i>min</i></sub> = -14. 1071 * 1072 * @apiNote 1073 * This method corresponds to the convertFormat operation defined 1074 * in IEEE 754 from the binary16 format to the binary32 format. 1075 * The operation of this method is analogous to a primitive 1076 * widening conversion (JLS {@jls 5.1.2}). 1077 * 1078 * @param floatBinary16 the binary16 value to convert to {@code float} 1079 * @since 20 1080 */ 1081 @IntrinsicCandidate 1082 public static float float16ToFloat(short floatBinary16) { 1083 /* 1084 * The binary16 format has 1 sign bit, 5 exponent bits, and 10 1085 * significand bits. The exponent bias is 15. 1086 */ 1087 int bin16arg = (int)floatBinary16; 1088 int bin16SignBit = 0x8000 & bin16arg; 1089 int bin16ExpBits = 0x7c00 & bin16arg; 1090 int bin16SignifBits = 0x03FF & bin16arg; 1091 1092 // Shift left difference in the number of significand bits in 1093 // the float and binary16 formats 1094 final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11); 1095 1096 float sign = (bin16SignBit != 0) ? -1.0f : 1.0f; 1097 1098 // Extract binary16 exponent, remove its bias, add in the bias 1099 // of a float exponent and shift to correct bit location 1100 // (significand width includes the implicit bit so shift one 1101 // less). 1102 int bin16Exp = (bin16ExpBits >> 10) - 15; 1103 if (bin16Exp == -15) { 1104 // For subnormal binary16 values and 0, the numerical 1105 // value is 2^24 * the significand as an integer (no 1106 // implicit bit). 1107 return sign * (0x1p-24f * bin16SignifBits); 1108 } else if (bin16Exp == 16) { 1109 return (bin16SignifBits == 0) ? 1110 sign * Float.POSITIVE_INFINITY : 1111 Float.intBitsToFloat((bin16SignBit << 16) | 1112 0x7f80_0000 | 1113 // Preserve NaN signif bits 1114 ( bin16SignifBits << SIGNIF_SHIFT )); 1115 } 1116 1117 assert -15 < bin16Exp && bin16Exp < 16; 1118 1119 int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS) 1120 << (FloatConsts.SIGNIFICAND_WIDTH - 1); 1121 1122 // Compute and combine result sign, exponent, and significand bits. 1123 return Float.intBitsToFloat((bin16SignBit << 16) | 1124 floatExpBits | 1125 (bin16SignifBits << SIGNIF_SHIFT)); 1126 } 1127 1128 /** 1129 * {@return the floating-point binary16 value, encoded in a {@code 1130 * short}, closest in value to the argument} 1131 * The conversion is computed under the {@linkplain 1132 * java.math.RoundingMode#HALF_EVEN round to nearest even rounding 1133 * mode}. 1134 * 1135 * Special cases: 1136 * <ul> 1137 * <li> If the argument is zero, the result is a zero with the 1138 * same sign as the argument. 1139 * <li> If the argument is infinite, the result is an infinity 1140 * with the same sign as the argument. 1141 * <li> If the argument is a NaN, the result is a NaN. 1142 * </ul> 1143 * 1144 * The {@linkplain ##binary16Format binary16 format} is discussed in 1145 * more detail in the {@link #float16ToFloat} method. 1146 * 1147 * @apiNote 1148 * This method corresponds to the convertFormat operation defined 1149 * in IEEE 754 from the binary32 format to the binary16 format. 1150 * The operation of this method is analogous to a primitive 1151 * narrowing conversion (JLS {@jls 5.1.3}). 1152 * 1153 * @param f the {@code float} value to convert to binary16 1154 * @since 20 1155 */ 1156 @IntrinsicCandidate 1157 public static short floatToFloat16(float f) { 1158 int doppel = Float.floatToRawIntBits(f); 1159 short sign_bit = (short)((doppel & 0x8000_0000) >> 16); 1160 1161 if (Float.isNaN(f)) { 1162 // Preserve sign and attempt to preserve significand bits 1163 return (short)(sign_bit 1164 | 0x7c00 // max exponent + 1 1165 // Preserve high order bit of float NaN in the 1166 // binary16 result NaN (tenth bit); OR in remaining 1167 // bits into lower 9 bits of binary 16 significand. 1168 | (doppel & 0x007f_e000) >> 13 // 10 bits 1169 | (doppel & 0x0000_1ff0) >> 4 // 9 bits 1170 | (doppel & 0x0000_000f)); // 4 bits 1171 } 1172 1173 float abs_f = Math.abs(f); 1174 1175 // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp 1176 if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) { 1177 return (short)(sign_bit | 0x7c00); // Positive or negative infinity 1178 } 1179 1180 // Smallest magnitude nonzero representable binary16 value 1181 // is equal to 0x1.0p-24; half-way and smaller rounds to zero. 1182 if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals. 1183 return sign_bit; // Positive or negative zero 1184 } 1185 1186 // Dealing with finite values in exponent range of binary16 1187 // (when rounding is done, could still round up) 1188 int exp = Math.getExponent(f); 1189 assert -25 <= exp && exp <= 15; 1190 1191 // For binary16 subnormals, beside forcing exp to -15, retain 1192 // the difference expdelta = E_min - exp. This is the excess 1193 // shift value, in addition to 13, to be used in the 1194 // computations below. Further the (hidden) msb with value 1 1195 // in f must be involved as well. 1196 int expdelta = 0; 1197 int msb = 0x0000_0000; 1198 if (exp < -14) { 1199 expdelta = -14 - exp; 1200 exp = -15; 1201 msb = 0x0080_0000; 1202 } 1203 int f_signif_bits = doppel & 0x007f_ffff | msb; 1204 1205 // Significand bits as if using rounding to zero (truncation). 1206 short signif_bits = (short)(f_signif_bits >> (13 + expdelta)); 1207 1208 // For round to nearest even, determining whether or not to 1209 // round up (in magnitude) is a function of the least 1210 // significant bit (LSB), the next bit position (the round 1211 // position), and the sticky bit (whether there are any 1212 // nonzero bits in the exact result to the right of the round 1213 // digit). An increment occurs in three cases: 1214 // 1215 // LSB Round Sticky 1216 // 0 1 1 1217 // 1 1 0 1218 // 1 1 1 1219 // See "Computer Arithmetic Algorithms," Koren, Table 4.9 1220 1221 int lsb = f_signif_bits & (1 << 13 + expdelta); 1222 int round = f_signif_bits & (1 << 12 + expdelta); 1223 int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1); 1224 1225 if (round != 0 && ((lsb | sticky) != 0 )) { 1226 signif_bits++; 1227 } 1228 1229 // No bits set in significand beyond the *first* exponent bit, 1230 // not just the significand; quantity is added to the exponent 1231 // to implement a carry out from rounding the significand. 1232 assert (0xf800 & signif_bits) == 0x0; 1233 1234 return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) ); 1235 } 1236 1237 /** 1238 * Compares two {@code Float} objects numerically. 1239 * 1240 * This method imposes a total order on {@code Float} objects 1241 * with two differences compared to the incomplete order defined by 1242 * the Java language numerical comparison operators ({@code <, <=, 1243 * ==, >=, >}) on {@code float} values. 1244 * 1245 * <ul><li> A NaN is <em>unordered</em> with respect to other 1246 * values and unequal to itself under the comparison 1247 * operators. This method chooses to define {@code 1248 * Float.NaN} to be equal to itself and greater than all 1249 * other {@code double} values (including {@code 1250 * Float.POSITIVE_INFINITY}). 1251 * 1252 * <li> Positive zero and negative zero compare equal 1253 * numerically, but are distinct and distinguishable values. 1254 * This method chooses to define positive zero ({@code +0.0f}), 1255 * to be greater than negative zero ({@code -0.0f}). 1256 * </ul> 1257 * 1258 * This ensures that the <i>natural ordering</i> of {@code Float} 1259 * objects imposed by this method is <i>consistent with 1260 * equals</i>; see {@linkplain Double##equivalenceRelation this 1261 * discussion for details of floating-point comparison and 1262 * ordering}. 1263 * 1264 * 1265 * @param anotherFloat the {@code Float} to be compared. 1266 * @return the value {@code 0} if {@code anotherFloat} is 1267 * numerically equal to this {@code Float}; a value 1268 * less than {@code 0} if this {@code Float} 1269 * is numerically less than {@code anotherFloat}; 1270 * and a value greater than {@code 0} if this 1271 * {@code Float} is numerically greater than 1272 * {@code anotherFloat}. 1273 * 1274 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 1275 * @since 1.2 1276 */ 1277 @Override 1278 public int compareTo(Float anotherFloat) { 1279 return Float.compare(value, anotherFloat.value); 1280 } 1281 1282 /** 1283 * Compares the two specified {@code float} values. The sign 1284 * of the integer value returned is the same as that of the 1285 * integer that would be returned by the call: 1286 * <pre> 1287 * Float.valueOf(f1).compareTo(Float.valueOf(f2)) 1288 * </pre> 1289 * 1290 * @param f1 the first {@code float} to compare. 1291 * @param f2 the second {@code float} to compare. 1292 * @return the value {@code 0} if {@code f1} is 1293 * numerically equal to {@code f2}; a value less than 1294 * {@code 0} if {@code f1} is numerically less than 1295 * {@code f2}; and a value greater than {@code 0} 1296 * if {@code f1} is numerically greater than 1297 * {@code f2}. 1298 * @since 1.4 1299 */ 1300 public static int compare(float f1, float f2) { 1301 if (f1 < f2) 1302 return -1; // Neither val is NaN, thisVal is smaller 1303 if (f1 > f2) 1304 return 1; // Neither val is NaN, thisVal is larger 1305 1306 // Cannot use floatToRawIntBits because of possibility of NaNs. 1307 int thisBits = Float.floatToIntBits(f1); 1308 int anotherBits = Float.floatToIntBits(f2); 1309 1310 return (thisBits == anotherBits ? 0 : // Values are equal 1311 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1312 1)); // (0.0, -0.0) or (NaN, !NaN) 1313 } 1314 1315 /** 1316 * Adds two {@code float} values together as per the + operator. 1317 * 1318 * @apiNote This method corresponds to the addition operation 1319 * defined in IEEE 754. 1320 * 1321 * @param a the first operand 1322 * @param b the second operand 1323 * @return the sum of {@code a} and {@code b} 1324 * @jls 4.2.4 Floating-Point Operations 1325 * @see java.util.function.BinaryOperator 1326 * @since 1.8 1327 */ 1328 public static float sum(float a, float b) { 1329 return a + b; 1330 } 1331 1332 /** 1333 * Returns the greater of two {@code float} values 1334 * as if by calling {@link Math#max(float, float) Math.max}. 1335 * 1336 * @apiNote 1337 * This method corresponds to the maximum operation defined in 1338 * IEEE 754. 1339 * 1340 * @param a the first operand 1341 * @param b the second operand 1342 * @return the greater of {@code a} and {@code b} 1343 * @see java.util.function.BinaryOperator 1344 * @since 1.8 1345 */ 1346 public static float max(float a, float b) { 1347 return Math.max(a, b); 1348 } 1349 1350 /** 1351 * Returns the smaller of two {@code float} values 1352 * as if by calling {@link Math#min(float, float) Math.min}. 1353 * 1354 * @apiNote 1355 * This method corresponds to the minimum operation defined in 1356 * IEEE 754. 1357 * 1358 * @param a the first operand 1359 * @param b the second operand 1360 * @return the smaller of {@code a} and {@code b} 1361 * @see java.util.function.BinaryOperator 1362 * @since 1.8 1363 */ 1364 public static float min(float a, float b) { 1365 return Math.min(a, b); 1366 } 1367 1368 /** 1369 * Returns an {@link Optional} containing the nominal descriptor for this 1370 * instance, which is the instance itself. 1371 * 1372 * @return an {@link Optional} describing the {@linkplain Float} instance 1373 * @since 12 1374 */ 1375 @Override 1376 public Optional<Float> describeConstable() { 1377 return Optional.of(this); 1378 } 1379 1380 /** 1381 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1382 * the instance itself. 1383 * 1384 * @param lookup ignored 1385 * @return the {@linkplain Float} instance 1386 * @since 12 1387 */ 1388 @Override 1389 public Float resolveConstantDesc(MethodHandles.Lookup lookup) { 1390 return this; 1391 } 1392 1393 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1394 @java.io.Serial 1395 private static final long serialVersionUID = -2671257302660747028L; 1396 }