1 /*
   2  * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.invoke.MethodHandles;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.util.Optional;
  32 
  33 import jdk.internal.math.FloatConsts;
  34 import jdk.internal.math.FloatingDecimal;
  35 import jdk.internal.math.FloatToDecimal;
  36 import jdk.internal.value.DeserializeConstructor;
  37 import jdk.internal.vm.annotation.IntrinsicCandidate;
  38 
  39 /**
  40  * The {@code Float} class is the {@linkplain
  41  * java.lang##wrapperClass wrapper class} for values of the primitive
  42  * type {@code float}. An object of type {@code Float} contains a
  43  * single field whose type is {@code float}.
  44  *
  45  * <p>In addition, this class provides several methods for converting a
  46  * {@code float} to a {@code String} and a
  47  * {@code String} to a {@code float}, as well as other
  48  * constants and methods useful when dealing with a
  49  * {@code float}.
  50  *
  51  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  52  * class; programmers should treat instances that are
  53  * {@linkplain #equals(Object) equal} as interchangeable and should not
  54  * use instances for synchronization, or unpredictable behavior may
  55  * occur. For example, in a future release, synchronization may fail.
  56  *
  57  * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence,
  58  * and Comparison</a></h2>
  59  *
  60  * The class {@code java.lang.Double} has a {@linkplain
  61  * Double##equivalenceRelation discussion of equality,
  62  * equivalence, and comparison of floating-point values} that is
  63  * equally applicable to {@code float} values.
  64  *
  65  * <h2><a id=decimalToBinaryConversion>Decimal &harr; Binary Conversion Issues</a></h2>
  66  *
  67  * The {@linkplain Double##decimalToBinaryConversion discussion of binary to
  68  * decimal conversion issues} in {@code java.lang.Double} is also
  69  * applicable to {@code float} values.
  70  *
  71  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
  72  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
  73  *
  74  * @author  Lee Boynton
  75  * @author  Arthur van Hoff
  76  * @author  Joseph D. Darcy
  77  * @since 1.0
  78  */
  79 @jdk.internal.MigratedValueClass
  80 @jdk.internal.ValueBased
  81 public final class Float extends Number
  82         implements Comparable<Float>, Constable, ConstantDesc {
  83     /**
  84      * A constant holding the positive infinity of type
  85      * {@code float}. It is equal to the value returned by
  86      * {@code Float.intBitsToFloat(0x7f800000)}.
  87      */
  88     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
  89 
  90     /**
  91      * A constant holding the negative infinity of type
  92      * {@code float}. It is equal to the value returned by
  93      * {@code Float.intBitsToFloat(0xff800000)}.
  94      */
  95     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
  96 
  97     /**
  98      * A constant holding a Not-a-Number (NaN) value of type
  99      * {@code float}.  It is equivalent to the value returned by
 100      * {@code Float.intBitsToFloat(0x7fc00000)}.
 101      */
 102     public static final float NaN = 0.0f / 0.0f;
 103 
 104     /**
 105      * A constant holding the largest positive finite value of type
 106      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
 107      * It is equal to the hexadecimal floating-point literal
 108      * {@code 0x1.fffffeP+127f} and also equal to
 109      * {@code Float.intBitsToFloat(0x7f7fffff)}.
 110      */
 111     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
 112 
 113     /**
 114      * A constant holding the smallest positive normal value of type
 115      * {@code float}, 2<sup>-126</sup>.  It is equal to the
 116      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
 117      * equal to {@code Float.intBitsToFloat(0x00800000)}.
 118      *
 119      * @since 1.6
 120      */
 121     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
 122 
 123     /**
 124      * A constant holding the smallest positive nonzero value of type
 125      * {@code float}, 2<sup>-149</sup>. It is equal to the
 126      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
 127      * and also equal to {@code Float.intBitsToFloat(0x1)}.
 128      */
 129     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
 130 
 131     /**
 132      * The number of bits used to represent a {@code float} value,
 133      * {@value}.
 134      *
 135      * @since 1.5
 136      */
 137     public static final int SIZE = 32;
 138 
 139     /**
 140      * The number of bits in the significand of a {@code float} value,
 141      * {@value}.  This is the parameter N in section {@jls 4.2.3} of
 142      * <cite>The Java Language Specification</cite>.
 143      *
 144      * @since 19
 145      */
 146     public static final int PRECISION = 24;
 147 
 148     /**
 149      * Maximum exponent a finite {@code float} variable may have,
 150      * {@value}.  It is equal to the value returned by {@code
 151      * Math.getExponent(Float.MAX_VALUE)}.
 152      *
 153      * @since 1.6
 154      */
 155     public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127
 156 
 157     /**
 158      * Minimum exponent a normalized {@code float} variable may have,
 159      * {@value}.  It is equal to the value returned by {@code
 160      * Math.getExponent(Float.MIN_NORMAL)}.
 161      *
 162      * @since 1.6
 163      */
 164     public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126
 165 
 166     /**
 167      * The number of bytes used to represent a {@code float} value,
 168      * {@value}.
 169      *
 170      * @since 1.8
 171      */
 172     public static final int BYTES = SIZE / Byte.SIZE;
 173 
 174     /**
 175      * The {@code Class} instance representing the primitive type
 176      * {@code float}.
 177      *
 178      * @since 1.1
 179      */
 180     public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
 181 
 182     /**
 183      * Returns a string representation of the {@code float}
 184      * argument. All characters mentioned below are ASCII characters.
 185      * <ul>
 186      * <li>If the argument is NaN, the result is the string
 187      * "{@code NaN}".
 188      * <li>Otherwise, the result is a string that represents the sign and
 189      *     magnitude (absolute value) of the argument. If the sign is
 190      *     negative, the first character of the result is
 191      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
 192      *     positive, no sign character appears in the result. As for
 193      *     the magnitude <i>m</i>:
 194      * <ul>
 195      * <li>If <i>m</i> is infinity, it is represented by the characters
 196      *     {@code "Infinity"}; thus, positive infinity produces
 197      *     the result {@code "Infinity"} and negative infinity
 198      *     produces the result {@code "-Infinity"}.
 199      * <li>If <i>m</i> is zero, it is represented by the characters
 200      *     {@code "0.0"}; thus, negative zero produces the result
 201      *     {@code "-0.0"} and positive zero produces the result
 202      *     {@code "0.0"}.
 203      *
 204      * <li> Otherwise <i>m</i> is positive and finite.
 205      * It is converted to a string in two stages:
 206      * <ul>
 207      * <li> <em>Selection of a decimal</em>:
 208      * A well-defined decimal <i>d</i><sub><i>m</i></sub>
 209      * is selected to represent <i>m</i>.
 210      * This decimal is (almost always) the <em>shortest</em> one that
 211      * rounds to <i>m</i> according to the round to nearest
 212      * rounding policy of IEEE 754 floating-point arithmetic.
 213      * <li> <em>Formatting as a string</em>:
 214      * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
 215      * either in plain or in computerized scientific notation,
 216      * depending on its value.
 217      * </ul>
 218      * </ul>
 219      * </ul>
 220      *
 221      * <p>A <em>decimal</em> is a number of the form
 222      * <i>s</i>&times;10<sup><i>i</i></sup>
 223      * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
 224      * <i>s</i> is not a multiple of 10.
 225      * These integers are the <em>significand</em> and
 226      * the <em>exponent</em>, respectively, of the decimal.
 227      * The <em>length</em> of the decimal is the (unique)
 228      * positive integer <i>n</i> meeting
 229      * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
 230      *
 231      * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
 232      * is defined as follows:
 233      * <ul>
 234      * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
 235      * according to the usual <em>round to nearest</em> rounding policy of
 236      * IEEE 754 floating-point arithmetic.
 237      * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
 238      * <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
 239      * in <i>R</i> with length <i>p</i>.
 240      * Otherwise, let <i>T</i> be the set of all decimals
 241      * in <i>R</i> with length 1 or 2.
 242      * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
 243      * that is closest to <i>m</i>.
 244      * Or if there are two such decimals in <i>T</i>,
 245      * select the one with the even significand.
 246      * </ul>
 247      *
 248      * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
 249      * is then formatted.
 250      * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
 251      * length of <i>d</i><sub><i>m</i></sub>, respectively.
 252      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
 253      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
 254      * be the usual decimal expansion of <i>s</i>.
 255      * Note that <i>s</i><sub>1</sub> &ne; 0
 256      * and <i>s</i><sub><i>n</i></sub> &ne; 0.
 257      * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
 258      * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
 259      * <ul>
 260      * <li>Case -3 &le; <i>e</i> &lt; 0:
 261      * <i>d</i><sub><i>m</i></sub> is formatted as
 262      * <code>0.0</code>&hellip;<code>0</code><!--
 263      * --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
 264      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
 265      * the decimal point and <i>s</i><sub>1</sub>.
 266      * For example, 123 &times; 10<sup>-4</sup> is formatted as
 267      * {@code 0.0123}.
 268      * <li>Case 0 &le; <i>e</i> &lt; 7:
 269      * <ul>
 270      * <li>Subcase <i>i</i> &ge; 0:
 271      * <i>d</i><sub><i>m</i></sub> is formatted as
 272      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
 273      * --><code>0</code>&hellip;<code>0.0</code>,
 274      * where there are exactly <i>i</i> zeroes
 275      * between <i>s</i><sub><i>n</i></sub> and the decimal point.
 276      * For example, 123 &times; 10<sup>2</sup> is formatted as
 277      * {@code 12300.0}.
 278      * <li>Subcase <i>i</i> &lt; 0:
 279      * <i>d</i><sub><i>m</i></sub> is formatted as
 280      * <i>s</i><sub>1</sub>&hellip;<!--
 281      * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
 282      * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
 283      * --><i>s</i><sub><i>n</i></sub>,
 284      * where there are exactly -<i>i</i> digits to the right of
 285      * the decimal point.
 286      * For example, 123 &times; 10<sup>-1</sup> is formatted as
 287      * {@code 12.3}.
 288      * </ul>
 289      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
 290      * computerized scientific notation is used to format
 291      * <i>d</i><sub><i>m</i></sub>.
 292      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
 293      * <ul>
 294      * <li>Subcase <i>n</i> = 1:
 295      * <i>d</i><sub><i>m</i></sub> is formatted as
 296      * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
 297      * For example, 1 &times; 10<sup>23</sup> is formatted as
 298      * {@code 1.0E23}.
 299      * <li>Subcase <i>n</i> &gt; 1:
 300      * <i>d</i><sub><i>m</i></sub> is formatted as
 301      * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
 302      * -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
 303      * For example, 123 &times; 10<sup>-21</sup> is formatted as
 304      * {@code 1.23E-19}.
 305      * </ul>
 306      * </ul>
 307      *
 308      * <p>To create localized string representations of a floating-point
 309      * value, use subclasses of {@link java.text.NumberFormat}.
 310      *
 311      * @apiNote
 312      * This method corresponds to the general functionality of the
 313      * convertToDecimalCharacter operation defined in IEEE 754;
 314      * however, that operation is defined in terms of specifying the
 315      * number of significand digits used in the conversion.
 316      * Code to do such a conversion in the Java platform includes
 317      * converting the {@code float} to a {@link java.math.BigDecimal
 318      * BigDecimal} exactly and then rounding the {@code BigDecimal} to
 319      * the desired number of digits; sample code:
 320      * {@snippet lang=java :
 321      * floatf = 0.1f;
 322      * int digits = 15;
 323      * BigDecimal bd = new BigDecimal(f);
 324      * String result = bd.round(new MathContext(digits,  RoundingMode.HALF_UP));
 325      * // 0.100000001490116
 326      * }
 327      *
 328      * @param   f   the {@code float} to be converted.
 329      * @return a string representation of the argument.
 330      */
 331     public static String toString(float f) {
 332         return FloatToDecimal.toString(f);
 333     }
 334 
 335     /**
 336      * Returns a hexadecimal string representation of the
 337      * {@code float} argument. All characters mentioned below are
 338      * ASCII characters.
 339      *
 340      * <ul>
 341      * <li>If the argument is NaN, the result is the string
 342      *     "{@code NaN}".
 343      * <li>Otherwise, the result is a string that represents the sign and
 344      * magnitude (absolute value) of the argument. If the sign is negative,
 345      * the first character of the result is '{@code -}'
 346      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 347      * appears in the result. As for the magnitude <i>m</i>:
 348      *
 349      * <ul>
 350      * <li>If <i>m</i> is infinity, it is represented by the string
 351      * {@code "Infinity"}; thus, positive infinity produces the
 352      * result {@code "Infinity"} and negative infinity produces
 353      * the result {@code "-Infinity"}.
 354      *
 355      * <li>If <i>m</i> is zero, it is represented by the string
 356      * {@code "0x0.0p0"}; thus, negative zero produces the result
 357      * {@code "-0x0.0p0"} and positive zero produces the result
 358      * {@code "0x0.0p0"}.
 359      *
 360      * <li>If <i>m</i> is a {@code float} value with a
 361      * normalized representation, substrings are used to represent the
 362      * significand and exponent fields.  The significand is
 363      * represented by the characters {@code "0x1."}
 364      * followed by a lowercase hexadecimal representation of the rest
 365      * of the significand as a fraction.  Trailing zeros in the
 366      * hexadecimal representation are removed unless all the digits
 367      * are zero, in which case a single zero is used. Next, the
 368      * exponent is represented by {@code "p"} followed
 369      * by a decimal string of the unbiased exponent as if produced by
 370      * a call to {@link Integer#toString(int) Integer.toString} on the
 371      * exponent value.
 372      *
 373      * <li>If <i>m</i> is a {@code float} value with a subnormal
 374      * representation, the significand is represented by the
 375      * characters {@code "0x0."} followed by a
 376      * hexadecimal representation of the rest of the significand as a
 377      * fraction.  Trailing zeros in the hexadecimal representation are
 378      * removed. Next, the exponent is represented by
 379      * {@code "p-126"}.  Note that there must be at
 380      * least one nonzero digit in a subnormal significand.
 381      *
 382      * </ul>
 383      *
 384      * </ul>
 385      *
 386      * <table class="striped">
 387      * <caption>Examples</caption>
 388      * <thead>
 389      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
 390      * </thead>
 391      * <tbody>
 392      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
 393      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
 394      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
 395      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
 396      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
 397      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
 398      * <tr><th scope="row">{@code Float.MAX_VALUE}</th>
 399      *     <td>{@code 0x1.fffffep127}</td>
 400      * <tr><th scope="row">{@code Minimum Normal Value}</th>
 401      *     <td>{@code 0x1.0p-126}</td>
 402      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
 403      *     <td>{@code 0x0.fffffep-126}</td>
 404      * <tr><th scope="row">{@code Float.MIN_VALUE}</th>
 405      *     <td>{@code 0x0.000002p-126}</td>
 406      * </tbody>
 407      * </table>
 408      *
 409      * @apiNote
 410      * This method corresponds to the convertToHexCharacter operation
 411      * defined in IEEE 754.
 412      *
 413      * @param   f   the {@code float} to be converted.
 414      * @return a hex string representation of the argument.
 415      * @since 1.5
 416      * @author Joseph D. Darcy
 417      */
 418     public static String toHexString(float f) {
 419         if (Math.abs(f) < Float.MIN_NORMAL
 420             &&  f != 0.0f ) {// float subnormal
 421             // Adjust exponent to create subnormal double, then
 422             // replace subnormal double exponent with subnormal float
 423             // exponent
 424             String s = Double.toHexString(Math.scalb((double)f,
 425                                                      /* -1022+126 */
 426                                                      Double.MIN_EXPONENT-
 427                                                      Float.MIN_EXPONENT));
 428             return s.replaceFirst("p-1022$", "p-126");
 429         }
 430         else // double string will be the same as float string
 431             return Double.toHexString(f);
 432     }
 433 
 434     /**
 435      * Returns a {@code Float} object holding the
 436      * {@code float} value represented by the argument string
 437      * {@code s}.
 438      *
 439      * <p>If {@code s} is {@code null}, then a
 440      * {@code NullPointerException} is thrown.
 441      *
 442      * <p>Leading and trailing whitespace characters in {@code s}
 443      * are ignored.  Whitespace is removed as if by the {@link
 444      * String#trim} method; that is, both ASCII space and control
 445      * characters are removed. The rest of {@code s} should
 446      * constitute a <i>FloatValue</i> as described by the lexical
 447      * syntax rules:
 448      *
 449      * <blockquote>
 450      * <dl>
 451      * <dt><i>FloatValue:</i>
 452      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 453      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 454      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 455      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 456      * <dd><i>SignedInteger</i>
 457      * </dl>
 458      *
 459      * <dl>
 460      * <dt><i>HexFloatingPointLiteral</i>:
 461      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 462      * </dl>
 463      *
 464      * <dl>
 465      * <dt><i>HexSignificand:</i>
 466      * <dd><i>HexNumeral</i>
 467      * <dd><i>HexNumeral</i> {@code .}
 468      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 469      *     </i>{@code .}<i> HexDigits</i>
 470      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 471      *     </i>{@code .} <i>HexDigits</i>
 472      * </dl>
 473      *
 474      * <dl>
 475      * <dt><i>BinaryExponent:</i>
 476      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 477      * </dl>
 478      *
 479      * <dl>
 480      * <dt><i>BinaryExponentIndicator:</i>
 481      * <dd>{@code p}
 482      * <dd>{@code P}
 483      * </dl>
 484      *
 485      * </blockquote>
 486      *
 487      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 488      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 489      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 490      * sections of
 491      * <cite>The Java Language Specification</cite>,
 492      * except that underscores are not accepted between digits.
 493      * If {@code s} does not have the form of
 494      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 495      * is thrown. Otherwise, {@code s} is regarded as
 496      * representing an exact decimal value in the usual
 497      * "computerized scientific notation" or as an exact
 498      * hexadecimal value; this exact numerical value is then
 499      * conceptually converted to an "infinitely precise"
 500      * binary value that is then rounded to type {@code float}
 501      * by the usual round-to-nearest rule of IEEE 754 floating-point
 502      * arithmetic, which includes preserving the sign of a zero
 503      * value.
 504      *
 505      * Note that the round-to-nearest rule also implies overflow and
 506      * underflow behaviour; if the exact value of {@code s} is large
 507      * enough in magnitude (greater than or equal to ({@link
 508      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
 509      * rounding to {@code float} will result in an infinity and if the
 510      * exact value of {@code s} is small enough in magnitude (less
 511      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 512      * result in a zero.
 513      *
 514      * Finally, after rounding a {@code Float} object representing
 515      * this {@code float} value is returned.
 516      *
 517      * <p>Note that trailing format specifiers, specifiers that
 518      * determine the type of a floating-point literal
 519      * ({@code 1.0f} is a {@code float} value;
 520      * {@code 1.0d} is a {@code double} value), do
 521      * <em>not</em> influence the results of this method.  In other
 522      * words, the numerical value of the input string is converted
 523      * directly to the target floating-point type.  In general, the
 524      * two-step sequence of conversions, string to {@code double}
 525      * followed by {@code double} to {@code float}, is
 526      * <em>not</em> equivalent to converting a string directly to
 527      * {@code float}.  For example, if first converted to an
 528      * intermediate {@code double} and then to
 529      * {@code float}, the string<br>
 530      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
 531      * results in the {@code float} value
 532      * {@code 1.0000002f}; if the string is converted directly to
 533      * {@code float}, <code>1.000000<b>1</b>f</code> results.
 534      *
 535      * <p>To avoid calling this method on an invalid string and having
 536      * a {@code NumberFormatException} be thrown, the documentation
 537      * for {@link Double#valueOf Double.valueOf} lists a regular
 538      * expression which can be used to screen the input.
 539      *
 540      * @apiNote To interpret localized string representations of a
 541      * floating-point value, or string representations that have
 542      * non-ASCII digits, use {@link java.text.NumberFormat}. For
 543      * example,
 544      * {@snippet lang="java" :
 545      *     NumberFormat.getInstance(l).parse(s).floatValue();
 546      * }
 547      * where {@code l} is the desired locale, or
 548      * {@link java.util.Locale#ROOT} if locale insensitive.
 549      *
 550      * @apiNote
 551      * This method corresponds to the convertFromDecimalCharacter and
 552      * convertFromHexCharacter operations defined in IEEE 754.
 553      *
 554      * @param   s   the string to be parsed.
 555      * @return  a {@code Float} object holding the value
 556      *          represented by the {@code String} argument.
 557      * @throws  NumberFormatException  if the string does not contain a
 558      *          parsable number.
 559      * @see Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 560      */
 561     public static Float valueOf(String s) throws NumberFormatException {
 562         return new Float(parseFloat(s));
 563     }
 564 
 565     /**
 566      * Returns a {@code Float} instance representing the specified
 567      * {@code float} value.
 568      * If a new {@code Float} instance is not required, this method
 569      * should generally be used in preference to the constructor
 570      * {@link #Float(float)}, as this method is likely to yield
 571      * significantly better space and time performance by caching
 572      * frequently requested values.
 573      *
 574      * @param  f a float value.
 575      * @return a {@code Float} instance representing {@code f}.
 576      * @since  1.5
 577      */
 578     @IntrinsicCandidate
 579     @DeserializeConstructor
 580     public static Float valueOf(float f) {
 581         return new Float(f);
 582     }
 583 
 584     /**
 585      * Returns a new {@code float} initialized to the value
 586      * represented by the specified {@code String}, as performed
 587      * by the {@code valueOf} method of class {@code Float}.
 588      *
 589      * @param  s the string to be parsed.
 590      * @return the {@code float} value represented by the string
 591      *         argument.
 592      * @throws NullPointerException  if the string is null
 593      * @throws NumberFormatException if the string does not contain a
 594      *               parsable {@code float}.
 595      * @see    java.lang.Float#valueOf(String)
 596      * @see    Double##decimalToBinaryConversion Decimal &harr; Binary Conversion Issues
 597      * @since 1.2
 598      */
 599     public static float parseFloat(String s) throws NumberFormatException {
 600         return FloatingDecimal.parseFloat(s);
 601     }
 602 
 603     /**
 604      * Returns {@code true} if the specified number is a
 605      * Not-a-Number (NaN) value, {@code false} otherwise.
 606      *
 607      * @apiNote
 608      * This method corresponds to the isNaN operation defined in IEEE
 609      * 754.
 610      *
 611      * @param   v   the value to be tested.
 612      * @return  {@code true} if the argument is NaN;
 613      *          {@code false} otherwise.
 614      */
 615     public static boolean isNaN(float v) {
 616         return (v != v);
 617     }
 618 
 619     /**
 620      * Returns {@code true} if the specified number is infinitely
 621      * large in magnitude, {@code false} otherwise.
 622      *
 623      * @apiNote
 624      * This method corresponds to the isInfinite operation defined in
 625      * IEEE 754.
 626      *
 627      * @param   v   the value to be tested.
 628      * @return  {@code true} if the argument is positive infinity or
 629      *          negative infinity; {@code false} otherwise.
 630      */
 631     @IntrinsicCandidate
 632     public static boolean isInfinite(float v) {
 633         return Math.abs(v) > MAX_VALUE;
 634     }
 635 
 636 
 637     /**
 638      * Returns {@code true} if the argument is a finite floating-point
 639      * value; returns {@code false} otherwise (for NaN and infinity
 640      * arguments).
 641      *
 642      * @apiNote
 643      * This method corresponds to the isFinite operation defined in
 644      * IEEE 754.
 645      *
 646      * @param f the {@code float} value to be tested
 647      * @return {@code true} if the argument is a finite
 648      * floating-point value, {@code false} otherwise.
 649      * @since 1.8
 650      */
 651      @IntrinsicCandidate
 652      public static boolean isFinite(float f) {
 653         return Math.abs(f) <= Float.MAX_VALUE;
 654     }
 655 
 656     /**
 657      * The value of the Float.
 658      *
 659      * @serial
 660      */
 661     private final float value;
 662 
 663     /**
 664      * Constructs a newly allocated {@code Float} object that
 665      * represents the primitive {@code float} argument.
 666      *
 667      * @param   value   the value to be represented by the {@code Float}.
 668      *
 669      * @deprecated
 670      * It is rarely appropriate to use this constructor. The static factory
 671      * {@link #valueOf(float)} is generally a better choice, as it is
 672      * likely to yield significantly better space and time performance.
 673      */
 674     @Deprecated(since="9", forRemoval = true)
 675     public Float(float value) {
 676         this.value = value;
 677     }
 678 
 679     /**
 680      * Constructs a newly allocated {@code Float} object that
 681      * represents the argument converted to type {@code float}.
 682      *
 683      * @param   value   the value to be represented by the {@code Float}.
 684      *
 685      * @deprecated
 686      * It is rarely appropriate to use this constructor. Instead, use the
 687      * static factory method {@link #valueOf(float)} method as follows:
 688      * {@code Float.valueOf((float)value)}.
 689      */
 690     @Deprecated(since="9", forRemoval = true)
 691     public Float(double value) {
 692         this.value = (float)value;
 693     }
 694 
 695     /**
 696      * Constructs a newly allocated {@code Float} object that
 697      * represents the floating-point value of type {@code float}
 698      * represented by the string. The string is converted to a
 699      * {@code float} value as if by the {@code valueOf} method.
 700      *
 701      * @param   s   a string to be converted to a {@code Float}.
 702      * @throws      NumberFormatException if the string does not contain a
 703      *              parsable number.
 704      *
 705      * @deprecated
 706      * It is rarely appropriate to use this constructor.
 707      * Use {@link #parseFloat(String)} to convert a string to a
 708      * {@code float} primitive, or use {@link #valueOf(String)}
 709      * to convert a string to a {@code Float} object.
 710      */
 711     @Deprecated(since="9", forRemoval = true)
 712     public Float(String s) throws NumberFormatException {
 713         value = parseFloat(s);
 714     }
 715 
 716     /**
 717      * Returns {@code true} if this {@code Float} value is a
 718      * Not-a-Number (NaN), {@code false} otherwise.
 719      *
 720      * @return  {@code true} if the value represented by this object is
 721      *          NaN; {@code false} otherwise.
 722      */
 723     public boolean isNaN() {
 724         return isNaN(value);
 725     }
 726 
 727     /**
 728      * Returns {@code true} if this {@code Float} value is
 729      * infinitely large in magnitude, {@code false} otherwise.
 730      *
 731      * @return  {@code true} if the value represented by this object is
 732      *          positive infinity or negative infinity;
 733      *          {@code false} otherwise.
 734      */
 735     public boolean isInfinite() {
 736         return isInfinite(value);
 737     }
 738 
 739     /**
 740      * Returns a string representation of this {@code Float} object.
 741      * The primitive {@code float} value represented by this object
 742      * is converted to a {@code String} exactly as if by the method
 743      * {@code toString} of one argument.
 744      *
 745      * @return  a {@code String} representation of this object.
 746      * @see java.lang.Float#toString(float)
 747      */
 748     public String toString() {
 749         return Float.toString(value);
 750     }
 751 
 752     /**
 753      * Returns the value of this {@code Float} as a {@code byte} after
 754      * a narrowing primitive conversion.
 755      *
 756      * @return  the {@code float} value represented by this object
 757      *          converted to type {@code byte}
 758      * @jls 5.1.3 Narrowing Primitive Conversion
 759      */
 760     @Override
 761     public byte byteValue() {
 762         return (byte)value;
 763     }
 764 
 765     /**
 766      * Returns the value of this {@code Float} as a {@code short}
 767      * after a narrowing primitive conversion.
 768      *
 769      * @return  the {@code float} value represented by this object
 770      *          converted to type {@code short}
 771      * @jls 5.1.3 Narrowing Primitive Conversion
 772      * @since 1.1
 773      */
 774     @Override
 775     public short shortValue() {
 776         return (short)value;
 777     }
 778 
 779     /**
 780      * Returns the value of this {@code Float} as an {@code int} after
 781      * a narrowing primitive conversion.
 782      *
 783      * @apiNote
 784      * This method corresponds to the convertToIntegerTowardZero
 785      * operation defined in IEEE 754.
 786      *
 787      * @return  the {@code float} value represented by this object
 788      *          converted to type {@code int}
 789      * @jls 5.1.3 Narrowing Primitive Conversion
 790      */
 791     @Override
 792     public int intValue() {
 793         return (int)value;
 794     }
 795 
 796     /**
 797      * Returns value of this {@code Float} as a {@code long} after a
 798      * narrowing primitive conversion.
 799      *
 800      * @apiNote
 801      * This method corresponds to the convertToIntegerTowardZero
 802      * operation defined in IEEE 754.
 803      *
 804      * @return  the {@code float} value represented by this object
 805      *          converted to type {@code long}
 806      * @jls 5.1.3 Narrowing Primitive Conversion
 807      */
 808     @Override
 809     public long longValue() {
 810         return (long)value;
 811     }
 812 
 813     /**
 814      * Returns the {@code float} value of this {@code Float} object.
 815      *
 816      * @return the {@code float} value represented by this object
 817      */
 818     @Override
 819     @IntrinsicCandidate
 820     public float floatValue() {
 821         return value;
 822     }
 823 
 824     /**
 825      * Returns the value of this {@code Float} as a {@code double}
 826      * after a widening primitive conversion.
 827      *
 828      * @apiNote
 829      * This method corresponds to the convertFormat operation defined
 830      * in IEEE 754.
 831      *
 832      * @return the {@code float} value represented by this
 833      *         object converted to type {@code double}
 834      * @jls 5.1.2 Widening Primitive Conversion
 835      */
 836     @Override
 837     public double doubleValue() {
 838         return (double)value;
 839     }
 840 
 841     /**
 842      * Returns a hash code for this {@code Float} object. The
 843      * result is the integer bit representation, exactly as produced
 844      * by the method {@link #floatToIntBits(float)}, of the primitive
 845      * {@code float} value represented by this {@code Float}
 846      * object.
 847      *
 848      * @return a hash code value for this object.
 849      */
 850     @Override
 851     public int hashCode() {
 852         return Float.hashCode(value);
 853     }
 854 
 855     /**
 856      * Returns a hash code for a {@code float} value; compatible with
 857      * {@code Float.hashCode()}.
 858      *
 859      * @param value the value to hash
 860      * @return a hash code value for a {@code float} value.
 861      * @since 1.8
 862      */
 863     public static int hashCode(float value) {
 864         return floatToIntBits(value);
 865     }
 866 
 867     /**
 868      * Compares this object against the specified object.  The result
 869      * is {@code true} if and only if the argument is not
 870      * {@code null} and is a {@code Float} object that
 871      * represents a {@code float} with the same value as the
 872      * {@code float} represented by this object. For this
 873      * purpose, two {@code float} values are considered to be the
 874      * same if and only if the method {@link #floatToIntBits(float)}
 875      * returns the identical {@code int} value when applied to
 876      * each.
 877      *
 878      * @apiNote
 879      * This method is defined in terms of {@link
 880      * #floatToIntBits(float)} rather than the {@code ==} operator on
 881      * {@code float} values since the {@code ==} operator does
 882      * <em>not</em> define an equivalence relation and to satisfy the
 883      * {@linkplain Object#equals equals contract} an equivalence
 884      * relation must be implemented; see {@linkplain Double##equivalenceRelation
 885      * this discussion for details of floating-point equality and equivalence}.
 886      *
 887      * @param obj the object to be compared
 888      * @return  {@code true} if the objects are the same;
 889      *          {@code false} otherwise.
 890      * @see java.lang.Float#floatToIntBits(float)
 891      * @jls 15.21.1 Numerical Equality Operators == and !=
 892      */
 893     public boolean equals(Object obj) {
 894         return (obj instanceof Float f) &&
 895             (floatToIntBits(f.value) == floatToIntBits(value));
 896     }
 897 
 898     /**
 899      * Returns a representation of the specified floating-point value
 900      * according to the IEEE 754 floating-point "single format" bit
 901      * layout.
 902      *
 903      * <p>Bit 31 (the bit that is selected by the mask
 904      * {@code 0x80000000}) represents the sign of the floating-point
 905      * number.
 906      * Bits 30-23 (the bits that are selected by the mask
 907      * {@code 0x7f800000}) represent the exponent.
 908      * Bits 22-0 (the bits that are selected by the mask
 909      * {@code 0x007fffff}) represent the significand (sometimes called
 910      * the mantissa) of the floating-point number.
 911      *
 912      * <p>If the argument is positive infinity, the result is
 913      * {@code 0x7f800000}.
 914      *
 915      * <p>If the argument is negative infinity, the result is
 916      * {@code 0xff800000}.
 917      *
 918      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
 919      *
 920      * <p>In all cases, the result is an integer that, when given to the
 921      * {@link #intBitsToFloat(int)} method, will produce a floating-point
 922      * value the same as the argument to {@code floatToIntBits}
 923      * (except all NaN values are collapsed to a single
 924      * "canonical" NaN value).
 925      *
 926      * @param   value   a floating-point number.
 927      * @return the bits that represent the floating-point number.
 928      */
 929     @IntrinsicCandidate
 930     public static int floatToIntBits(float value) {
 931         if (!isNaN(value)) {
 932             return floatToRawIntBits(value);
 933         }
 934         return 0x7fc00000;
 935     }
 936 
 937     /**
 938      * Returns a representation of the specified floating-point value
 939      * according to the IEEE 754 floating-point "single format" bit
 940      * layout, preserving Not-a-Number (NaN) values.
 941      *
 942      * <p>Bit 31 (the bit that is selected by the mask
 943      * {@code 0x80000000}) represents the sign of the floating-point
 944      * number.
 945      * Bits 30-23 (the bits that are selected by the mask
 946      * {@code 0x7f800000}) represent the exponent.
 947      * Bits 22-0 (the bits that are selected by the mask
 948      * {@code 0x007fffff}) represent the significand (sometimes called
 949      * the mantissa) of the floating-point number.
 950      *
 951      * <p>If the argument is positive infinity, the result is
 952      * {@code 0x7f800000}.
 953      *
 954      * <p>If the argument is negative infinity, the result is
 955      * {@code 0xff800000}.
 956      *
 957      * <p>If the argument is NaN, the result is the integer representing
 958      * the actual NaN value.  Unlike the {@code floatToIntBits}
 959      * method, {@code floatToRawIntBits} does not collapse all the
 960      * bit patterns encoding a NaN to a single "canonical"
 961      * NaN value.
 962      *
 963      * <p>In all cases, the result is an integer that, when given to the
 964      * {@link #intBitsToFloat(int)} method, will produce a
 965      * floating-point value the same as the argument to
 966      * {@code floatToRawIntBits}.
 967      *
 968      * @param   value   a floating-point number.
 969      * @return the bits that represent the floating-point number.
 970      * @since 1.3
 971      */
 972     @IntrinsicCandidate
 973     public static native int floatToRawIntBits(float value);
 974 
 975     /**
 976      * Returns the {@code float} value corresponding to a given
 977      * bit representation.
 978      * The argument is considered to be a representation of a
 979      * floating-point value according to the IEEE 754 floating-point
 980      * "single format" bit layout.
 981      *
 982      * <p>If the argument is {@code 0x7f800000}, the result is positive
 983      * infinity.
 984      *
 985      * <p>If the argument is {@code 0xff800000}, the result is negative
 986      * infinity.
 987      *
 988      * <p>If the argument is any value in the range
 989      * {@code 0x7f800001} through {@code 0x7fffffff} or in
 990      * the range {@code 0xff800001} through
 991      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
 992      * floating-point operation provided by Java can distinguish
 993      * between two NaN values of the same type with different bit
 994      * patterns.  Distinct values of NaN are only distinguishable by
 995      * use of the {@code Float.floatToRawIntBits} method.
 996      *
 997      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
 998      * values that can be computed from the argument:
 999      *
1000      * {@snippet lang="java" :
1001      * int s = ((bits >> 31) == 0) ? 1 : -1;
1002      * int e = ((bits >> 23) & 0xff);
1003      * int m = (e == 0) ?
1004      *                 (bits & 0x7fffff) << 1 :
1005      *                 (bits & 0x7fffff) | 0x800000;
1006      * }
1007      *
1008      * Then the floating-point result equals the value of the mathematical
1009      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
1010      *
1011      * <p>Note that this method may not be able to return a
1012      * {@code float} NaN with exactly same bit pattern as the
1013      * {@code int} argument.  IEEE 754 distinguishes between two
1014      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
1015      * differences between the two kinds of NaN are generally not
1016      * visible in Java.  Arithmetic operations on signaling NaNs turn
1017      * them into quiet NaNs with a different, but often similar, bit
1018      * pattern.  However, on some processors merely copying a
1019      * signaling NaN also performs that conversion.  In particular,
1020      * copying a signaling NaN to return it to the calling method may
1021      * perform this conversion.  So {@code intBitsToFloat} may
1022      * not be able to return a {@code float} with a signaling NaN
1023      * bit pattern.  Consequently, for some {@code int} values,
1024      * {@code floatToRawIntBits(intBitsToFloat(start))} may
1025      * <i>not</i> equal {@code start}.  Moreover, which
1026      * particular bit patterns represent signaling NaNs is platform
1027      * dependent; although all NaN bit patterns, quiet or signaling,
1028      * must be in the NaN range identified above.
1029      *
1030      * @param   bits   an integer.
1031      * @return  the {@code float} floating-point value with the same bit
1032      *          pattern.
1033      */
1034     @IntrinsicCandidate
1035     public static native float intBitsToFloat(int bits);
1036 
1037     /**
1038      * {@return the {@code float} value closest to the numerical value
1039      * of the argument, a floating-point binary16 value encoded in a
1040      * {@code short}} The conversion is exact; all binary16 values can
1041      * be exactly represented in {@code float}.
1042      *
1043      * Special cases:
1044      * <ul>
1045      * <li> If the argument is zero, the result is a zero with the
1046      * same sign as the argument.
1047      * <li> If the argument is infinite, the result is an infinity
1048      * with the same sign as the argument.
1049      * <li> If the argument is a NaN, the result is a NaN.
1050      * </ul>
1051      *
1052      * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4>
1053      * The IEEE 754 standard defines binary16 as a 16-bit format, along
1054      * with the 32-bit binary32 format (corresponding to the {@code
1055      * float} type) and the 64-bit binary64 format (corresponding to
1056      * the {@code double} type). The binary16 format is similar to the
1057      * other IEEE 754 formats, except smaller, having all the usual
1058      * IEEE 754 values such as NaN, signed infinities, signed zeros,
1059      * and subnormals. The parameters (JLS {@jls 4.2.3}) for the
1060      * binary16 format are N = 11 precision bits, K = 5 exponent bits,
1061      * <i>E</i><sub><i>max</i></sub> = 15, and
1062      * <i>E</i><sub><i>min</i></sub> = -14.
1063      *
1064      * @apiNote
1065      * This method corresponds to the convertFormat operation defined
1066      * in IEEE 754 from the binary16 format to the binary32 format.
1067      * The operation of this method is analogous to a primitive
1068      * widening conversion (JLS {@jls 5.1.2}).
1069      *
1070      * @param floatBinary16 the binary16 value to convert to {@code float}
1071      * @since 20
1072      */
1073     @IntrinsicCandidate
1074     public static float float16ToFloat(short floatBinary16) {
1075         /*
1076          * The binary16 format has 1 sign bit, 5 exponent bits, and 10
1077          * significand bits. The exponent bias is 15.
1078          */
1079         int bin16arg = (int)floatBinary16;
1080         int bin16SignBit     = 0x8000 & bin16arg;
1081         int bin16ExpBits     = 0x7c00 & bin16arg;
1082         int bin16SignifBits  = 0x03FF & bin16arg;
1083 
1084         // Shift left difference in the number of significand bits in
1085         // the float and binary16 formats
1086         final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
1087 
1088         float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
1089 
1090         // Extract binary16 exponent, remove its bias, add in the bias
1091         // of a float exponent and shift to correct bit location
1092         // (significand width includes the implicit bit so shift one
1093         // less).
1094         int bin16Exp = (bin16ExpBits >> 10) - 15;
1095         if (bin16Exp == -15) {
1096             // For subnormal binary16 values and 0, the numerical
1097             // value is 2^24 * the significand as an integer (no
1098             // implicit bit).
1099             return sign * (0x1p-24f * bin16SignifBits);
1100         } else if (bin16Exp == 16) {
1101             return (bin16SignifBits == 0) ?
1102                 sign * Float.POSITIVE_INFINITY :
1103                 Float.intBitsToFloat((bin16SignBit << 16) |
1104                                      0x7f80_0000 |
1105                                      // Preserve NaN signif bits
1106                                      ( bin16SignifBits << SIGNIF_SHIFT ));
1107         }
1108 
1109         assert -15 < bin16Exp  && bin16Exp < 16;
1110 
1111         int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
1112             << (FloatConsts.SIGNIFICAND_WIDTH - 1);
1113 
1114         // Compute and combine result sign, exponent, and significand bits.
1115         return Float.intBitsToFloat((bin16SignBit << 16) |
1116                                     floatExpBits |
1117                                     (bin16SignifBits << SIGNIF_SHIFT));
1118     }
1119 
1120     /**
1121      * {@return the floating-point binary16 value, encoded in a {@code
1122      * short}, closest in value to the argument}
1123      * The conversion is computed under the {@linkplain
1124      * java.math.RoundingMode#HALF_EVEN round to nearest even rounding
1125      * mode}.
1126      *
1127      * Special cases:
1128      * <ul>
1129      * <li> If the argument is zero, the result is a zero with the
1130      * same sign as the argument.
1131      * <li> If the argument is infinite, the result is an infinity
1132      * with the same sign as the argument.
1133      * <li> If the argument is a NaN, the result is a NaN.
1134      * </ul>
1135      *
1136      * The {@linkplain ##binary16Format binary16 format} is discussed in
1137      * more detail in the {@link #float16ToFloat} method.
1138      *
1139      * @apiNote
1140      * This method corresponds to the convertFormat operation defined
1141      * in IEEE 754 from the binary32 format to the binary16 format.
1142      * The operation of this method is analogous to a primitive
1143      * narrowing conversion (JLS {@jls 5.1.3}).
1144      *
1145      * @param f the {@code float} value to convert to binary16
1146      * @since 20
1147      */
1148     @IntrinsicCandidate
1149     public static short floatToFloat16(float f) {
1150         int doppel = Float.floatToRawIntBits(f);
1151         short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
1152 
1153         if (Float.isNaN(f)) {
1154             // Preserve sign and attempt to preserve significand bits
1155             return (short)(sign_bit
1156                     | 0x7c00 // max exponent + 1
1157                     // Preserve high order bit of float NaN in the
1158                     // binary16 result NaN (tenth bit); OR in remaining
1159                     // bits into lower 9 bits of binary 16 significand.
1160                     | (doppel & 0x007f_e000) >> 13 // 10 bits
1161                     | (doppel & 0x0000_1ff0) >> 4  //  9 bits
1162                     | (doppel & 0x0000_000f));     //  4 bits
1163         }
1164 
1165         float abs_f = Math.abs(f);
1166 
1167         // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
1168         if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
1169             return (short)(sign_bit | 0x7c00); // Positive or negative infinity
1170         }
1171 
1172         // Smallest magnitude nonzero representable binary16 value
1173         // is equal to 0x1.0p-24; half-way and smaller rounds to zero.
1174         if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
1175             return sign_bit; // Positive or negative zero
1176         }
1177 
1178         // Dealing with finite values in exponent range of binary16
1179         // (when rounding is done, could still round up)
1180         int exp = Math.getExponent(f);
1181         assert -25 <= exp && exp <= 15;
1182 
1183         // For binary16 subnormals, beside forcing exp to -15, retain
1184         // the difference expdelta = E_min - exp.  This is the excess
1185         // shift value, in addition to 13, to be used in the
1186         // computations below.  Further the (hidden) msb with value 1
1187         // in f must be involved as well.
1188         int expdelta = 0;
1189         int msb = 0x0000_0000;
1190         if (exp < -14) {
1191             expdelta = -14 - exp;
1192             exp = -15;
1193             msb = 0x0080_0000;
1194         }
1195         int f_signif_bits = doppel & 0x007f_ffff | msb;
1196 
1197         // Significand bits as if using rounding to zero (truncation).
1198         short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
1199 
1200         // For round to nearest even, determining whether or not to
1201         // round up (in magnitude) is a function of the least
1202         // significant bit (LSB), the next bit position (the round
1203         // position), and the sticky bit (whether there are any
1204         // nonzero bits in the exact result to the right of the round
1205         // digit). An increment occurs in three cases:
1206         //
1207         // LSB  Round Sticky
1208         // 0    1     1
1209         // 1    1     0
1210         // 1    1     1
1211         // See "Computer Arithmetic Algorithms," Koren, Table 4.9
1212 
1213         int lsb    = f_signif_bits & (1 << 13 + expdelta);
1214         int round  = f_signif_bits & (1 << 12 + expdelta);
1215         int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
1216 
1217         if (round != 0 && ((lsb | sticky) != 0 )) {
1218             signif_bits++;
1219         }
1220 
1221         // No bits set in significand beyond the *first* exponent bit,
1222         // not just the significand; quantity is added to the exponent
1223         // to implement a carry out from rounding the significand.
1224         assert (0xf800 & signif_bits) == 0x0;
1225 
1226         return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
1227     }
1228 
1229     /**
1230      * Compares two {@code Float} objects numerically.
1231      *
1232      * This method imposes a total order on {@code Float} objects
1233      * with two differences compared to the incomplete order defined by
1234      * the Java language numerical comparison operators ({@code <, <=,
1235      * ==, >=, >}) on {@code float} values.
1236      *
1237      * <ul><li> A NaN is <em>unordered</em> with respect to other
1238      *          values and unequal to itself under the comparison
1239      *          operators.  This method chooses to define {@code
1240      *          Float.NaN} to be equal to itself and greater than all
1241      *          other {@code double} values (including {@code
1242      *          Float.POSITIVE_INFINITY}).
1243      *
1244      *      <li> Positive zero and negative zero compare equal
1245      *      numerically, but are distinct and distinguishable values.
1246      *      This method chooses to define positive zero ({@code +0.0f}),
1247      *      to be greater than negative zero ({@code -0.0f}).
1248      * </ul>
1249      *
1250      * This ensures that the <i>natural ordering</i> of {@code Float}
1251      * objects imposed by this method is <i>consistent with
1252      * equals</i>; see {@linkplain Double##equivalenceRelation this
1253      * discussion for details of floating-point comparison and
1254      * ordering}.
1255      *
1256      *
1257      * @param   anotherFloat   the {@code Float} to be compared.
1258      * @return  the value {@code 0} if {@code anotherFloat} is
1259      *          numerically equal to this {@code Float}; a value
1260      *          less than {@code 0} if this {@code Float}
1261      *          is numerically less than {@code anotherFloat};
1262      *          and a value greater than {@code 0} if this
1263      *          {@code Float} is numerically greater than
1264      *          {@code anotherFloat}.
1265      *
1266      * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
1267      * @since   1.2
1268      */
1269     @Override
1270     public int compareTo(Float anotherFloat) {
1271         return Float.compare(value, anotherFloat.value);
1272     }
1273 
1274     /**
1275      * Compares the two specified {@code float} values. The sign
1276      * of the integer value returned is the same as that of the
1277      * integer that would be returned by the call:
1278      * <pre>
1279      *    Float.valueOf(f1).compareTo(Float.valueOf(f2))
1280      * </pre>
1281      *
1282      * @param   f1        the first {@code float} to compare.
1283      * @param   f2        the second {@code float} to compare.
1284      * @return  the value {@code 0} if {@code f1} is
1285      *          numerically equal to {@code f2}; a value less than
1286      *          {@code 0} if {@code f1} is numerically less than
1287      *          {@code f2}; and a value greater than {@code 0}
1288      *          if {@code f1} is numerically greater than
1289      *          {@code f2}.
1290      * @since 1.4
1291      */
1292     public static int compare(float f1, float f2) {
1293         if (f1 < f2)
1294             return -1;           // Neither val is NaN, thisVal is smaller
1295         if (f1 > f2)
1296             return 1;            // Neither val is NaN, thisVal is larger
1297 
1298         // Cannot use floatToRawIntBits because of possibility of NaNs.
1299         int thisBits    = Float.floatToIntBits(f1);
1300         int anotherBits = Float.floatToIntBits(f2);
1301 
1302         return (thisBits == anotherBits ?  0 : // Values are equal
1303                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1304                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1305     }
1306 
1307     /**
1308      * Adds two {@code float} values together as per the + operator.
1309      *
1310      * @apiNote This method corresponds to the addition operation
1311      * defined in IEEE 754.
1312      *
1313      * @param a the first operand
1314      * @param b the second operand
1315      * @return the sum of {@code a} and {@code b}
1316      * @jls 4.2.4 Floating-Point Operations
1317      * @see java.util.function.BinaryOperator
1318      * @since 1.8
1319      */
1320     public static float sum(float a, float b) {
1321         return a + b;
1322     }
1323 
1324     /**
1325      * Returns the greater of two {@code float} values
1326      * as if by calling {@link Math#max(float, float) Math.max}.
1327      *
1328      * @apiNote
1329      * This method corresponds to the maximum operation defined in
1330      * IEEE 754.
1331      *
1332      * @param a the first operand
1333      * @param b the second operand
1334      * @return the greater of {@code a} and {@code b}
1335      * @see java.util.function.BinaryOperator
1336      * @since 1.8
1337      */
1338     public static float max(float a, float b) {
1339         return Math.max(a, b);
1340     }
1341 
1342     /**
1343      * Returns the smaller of two {@code float} values
1344      * as if by calling {@link Math#min(float, float) Math.min}.
1345      *
1346      * @apiNote
1347      * This method corresponds to the minimum operation defined in
1348      * IEEE 754.
1349      *
1350      * @param a the first operand
1351      * @param b the second operand
1352      * @return the smaller of {@code a} and {@code b}
1353      * @see java.util.function.BinaryOperator
1354      * @since 1.8
1355      */
1356     public static float min(float a, float b) {
1357         return Math.min(a, b);
1358     }
1359 
1360     /**
1361      * Returns an {@link Optional} containing the nominal descriptor for this
1362      * instance, which is the instance itself.
1363      *
1364      * @return an {@link Optional} describing the {@linkplain Float} instance
1365      * @since 12
1366      */
1367     @Override
1368     public Optional<Float> describeConstable() {
1369         return Optional.of(this);
1370     }
1371 
1372     /**
1373      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1374      * the instance itself.
1375      *
1376      * @param lookup ignored
1377      * @return the {@linkplain Float} instance
1378      * @since 12
1379      */
1380     @Override
1381     public Float resolveConstantDesc(MethodHandles.Lookup lookup) {
1382         return this;
1383     }
1384 
1385     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1386     @java.io.Serial
1387     private static final long serialVersionUID = -2671257302660747028L;
1388 }