1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatConsts; 34 import jdk.internal.math.FloatingDecimal; 35 import jdk.internal.math.FloatToDecimal; 36 import jdk.internal.vm.annotation.IntrinsicCandidate; 37 38 /** 39 * The {@code Float} class wraps a value of primitive type 40 * {@code float} in an object. An object of type 41 * {@code Float} contains a single field whose type is 42 * {@code float}. 43 * 44 * <p>In addition, this class provides several methods for converting a 45 * {@code float} to a {@code String} and a 46 * {@code String} to a {@code float}, as well as other 47 * constants and methods useful when dealing with a 48 * {@code float}. 49 * 50 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 51 * class; programmers should treat instances that are 52 * {@linkplain #equals(Object) equal} as interchangeable and should not 53 * use instances for synchronization, or unpredictable behavior may 54 * occur. For example, in a future release, synchronization may fail. 55 * 56 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 57 * and Comparison</a></h2> 58 * 59 * The class {@code java.lang.Double} has a {@linkplain 60 * Double##equivalenceRelation discussion of equality, 61 * equivalence, and comparison of floating-point values} that is 62 * equally applicable to {@code float} values. 63 * 64 * <h2><a id=decimalToBinaryConversion>Decimal ↔ Binary Conversion Issues</a></h2> 65 * 66 * The {@linkplain Double##decimalToBinaryConversion discussion of binary to 67 * decimal conversion issues} in {@code java.lang.Double} is also 68 * applicable to {@code float} values. 69 * 70 * @see <a href="https://standards.ieee.org/ieee/754/6210/"> 71 * <cite>IEEE Standard for Floating-Point Arithmetic</cite></a> 72 * 73 * @author Lee Boynton 74 * @author Arthur van Hoff 75 * @author Joseph D. Darcy 76 * @since 1.0 77 */ 78 @jdk.internal.MigratedValueClass 79 @jdk.internal.ValueBased 80 public final class Float extends Number 81 implements Comparable<Float>, Constable, ConstantDesc { 82 /** 83 * A constant holding the positive infinity of type 84 * {@code float}. It is equal to the value returned by 85 * {@code Float.intBitsToFloat(0x7f800000)}. 86 */ 87 public static final float POSITIVE_INFINITY = 1.0f / 0.0f; 88 89 /** 90 * A constant holding the negative infinity of type 91 * {@code float}. It is equal to the value returned by 92 * {@code Float.intBitsToFloat(0xff800000)}. 93 */ 94 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; 95 96 /** 97 * A constant holding a Not-a-Number (NaN) value of type 98 * {@code float}. It is equivalent to the value returned by 99 * {@code Float.intBitsToFloat(0x7fc00000)}. 100 */ 101 public static final float NaN = 0.0f / 0.0f; 102 103 /** 104 * A constant holding the largest positive finite value of type 105 * {@code float}, (2-2<sup>-23</sup>)·2<sup>127</sup>. 106 * It is equal to the hexadecimal floating-point literal 107 * {@code 0x1.fffffeP+127f} and also equal to 108 * {@code Float.intBitsToFloat(0x7f7fffff)}. 109 */ 110 public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f 111 112 /** 113 * A constant holding the smallest positive normal value of type 114 * {@code float}, 2<sup>-126</sup>. It is equal to the 115 * hexadecimal floating-point literal {@code 0x1.0p-126f} and also 116 * equal to {@code Float.intBitsToFloat(0x00800000)}. 117 * 118 * @since 1.6 119 */ 120 public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f 121 122 /** 123 * A constant holding the smallest positive nonzero value of type 124 * {@code float}, 2<sup>-149</sup>. It is equal to the 125 * hexadecimal floating-point literal {@code 0x0.000002P-126f} 126 * and also equal to {@code Float.intBitsToFloat(0x1)}. 127 */ 128 public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f 129 130 /** 131 * The number of bits used to represent a {@code float} value. 132 * 133 * @since 1.5 134 */ 135 public static final int SIZE = 32; 136 137 /** 138 * The number of bits in the significand of a {@code float} value. 139 * This is the parameter N in section {@jls 4.2.3} of 140 * <cite>The Java Language Specification</cite>. 141 * 142 * @since 19 143 */ 144 public static final int PRECISION = 24; 145 146 /** 147 * Maximum exponent a finite {@code float} variable may have. It 148 * is equal to the value returned by {@code 149 * Math.getExponent(Float.MAX_VALUE)}. 150 * 151 * @since 1.6 152 */ 153 public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127 154 155 /** 156 * Minimum exponent a normalized {@code float} variable may have. 157 * It is equal to the value returned by {@code 158 * Math.getExponent(Float.MIN_NORMAL)}. 159 * 160 * @since 1.6 161 */ 162 public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126 163 164 /** 165 * The number of bytes used to represent a {@code float} value. 166 * 167 * @since 1.8 168 */ 169 public static final int BYTES = SIZE / Byte.SIZE; 170 171 /** 172 * The {@code Class} instance representing the primitive type 173 * {@code float}. 174 * 175 * @since 1.1 176 */ 177 @SuppressWarnings("unchecked") 178 public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float"); 179 180 /** 181 * Returns a string representation of the {@code float} 182 * argument. All characters mentioned below are ASCII characters. 183 * <ul> 184 * <li>If the argument is NaN, the result is the string 185 * "{@code NaN}". 186 * <li>Otherwise, the result is a string that represents the sign and 187 * magnitude (absolute value) of the argument. If the sign is 188 * negative, the first character of the result is 189 * '{@code -}' ({@code '\u005Cu002D'}); if the sign is 190 * positive, no sign character appears in the result. As for 191 * the magnitude <i>m</i>: 192 * <ul> 193 * <li>If <i>m</i> is infinity, it is represented by the characters 194 * {@code "Infinity"}; thus, positive infinity produces 195 * the result {@code "Infinity"} and negative infinity 196 * produces the result {@code "-Infinity"}. 197 * <li>If <i>m</i> is zero, it is represented by the characters 198 * {@code "0.0"}; thus, negative zero produces the result 199 * {@code "-0.0"} and positive zero produces the result 200 * {@code "0.0"}. 201 * 202 * <li> Otherwise <i>m</i> is positive and finite. 203 * It is converted to a string in two stages: 204 * <ul> 205 * <li> <em>Selection of a decimal</em>: 206 * A well-defined decimal <i>d</i><sub><i>m</i></sub> 207 * is selected to represent <i>m</i>. 208 * This decimal is (almost always) the <em>shortest</em> one that 209 * rounds to <i>m</i> according to the round to nearest 210 * rounding policy of IEEE 754 floating-point arithmetic. 211 * <li> <em>Formatting as a string</em>: 212 * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string, 213 * either in plain or in computerized scientific notation, 214 * depending on its value. 215 * </ul> 216 * </ul> 217 * </ul> 218 * 219 * <p>A <em>decimal</em> is a number of the form 220 * <i>s</i>×10<sup><i>i</i></sup> 221 * for some (unique) integers <i>s</i> > 0 and <i>i</i> such that 222 * <i>s</i> is not a multiple of 10. 223 * These integers are the <em>significand</em> and 224 * the <em>exponent</em>, respectively, of the decimal. 225 * The <em>length</em> of the decimal is the (unique) 226 * positive integer <i>n</i> meeting 227 * 10<sup><i>n</i>-1</sup> ≤ <i>s</i> < 10<sup><i>n</i></sup>. 228 * 229 * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i> 230 * is defined as follows: 231 * <ul> 232 * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i> 233 * according to the usual <em>round to nearest</em> rounding policy of 234 * IEEE 754 floating-point arithmetic. 235 * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>. 236 * <li>When <i>p</i> ≥ 2, let <i>T</i> be the set of all decimals 237 * in <i>R</i> with length <i>p</i>. 238 * Otherwise, let <i>T</i> be the set of all decimals 239 * in <i>R</i> with length 1 or 2. 240 * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i> 241 * that is closest to <i>m</i>. 242 * Or if there are two such decimals in <i>T</i>, 243 * select the one with the even significand. 244 * </ul> 245 * 246 * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub> 247 * is then formatted. 248 * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and 249 * length of <i>d</i><sub><i>m</i></sub>, respectively. 250 * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let 251 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub> 252 * be the usual decimal expansion of <i>s</i>. 253 * Note that <i>s</i><sub>1</sub> ≠ 0 254 * and <i>s</i><sub><i>n</i></sub> ≠ 0. 255 * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'} 256 * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}. 257 * <ul> 258 * <li>Case -3 ≤ <i>e</i> < 0: 259 * <i>d</i><sub><i>m</i></sub> is formatted as 260 * <code>0.0</code>…<code>0</code><!-- 261 * --><i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub>, 262 * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between 263 * the decimal point and <i>s</i><sub>1</sub>. 264 * For example, 123 × 10<sup>-4</sup> is formatted as 265 * {@code 0.0123}. 266 * <li>Case 0 ≤ <i>e</i> < 7: 267 * <ul> 268 * <li>Subcase <i>i</i> ≥ 0: 269 * <i>d</i><sub><i>m</i></sub> is formatted as 270 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub><!-- 271 * --><code>0</code>…<code>0.0</code>, 272 * where there are exactly <i>i</i> zeroes 273 * between <i>s</i><sub><i>n</i></sub> and the decimal point. 274 * For example, 123 × 10<sup>2</sup> is formatted as 275 * {@code 12300.0}. 276 * <li>Subcase <i>i</i> < 0: 277 * <i>d</i><sub><i>m</i></sub> is formatted as 278 * <i>s</i><sub>1</sub>…<!-- 279 * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!-- 280 * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>…<!-- 281 * --><i>s</i><sub><i>n</i></sub>, 282 * where there are exactly -<i>i</i> digits to the right of 283 * the decimal point. 284 * For example, 123 × 10<sup>-1</sup> is formatted as 285 * {@code 12.3}. 286 * </ul> 287 * <li>Case <i>e</i> < -3 or <i>e</i> ≥ 7: 288 * computerized scientific notation is used to format 289 * <i>d</i><sub><i>m</i></sub>. 290 * Here <i>e</i> is formatted as by {@link Integer#toString(int)}. 291 * <ul> 292 * <li>Subcase <i>n</i> = 1: 293 * <i>d</i><sub><i>m</i></sub> is formatted as 294 * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>. 295 * For example, 1 × 10<sup>23</sup> is formatted as 296 * {@code 1.0E23}. 297 * <li>Subcase <i>n</i> > 1: 298 * <i>d</i><sub><i>m</i></sub> is formatted as 299 * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!-- 300 * -->…<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>. 301 * For example, 123 × 10<sup>-21</sup> is formatted as 302 * {@code 1.23E-19}. 303 * </ul> 304 * </ul> 305 * 306 * <p>To create localized string representations of a floating-point 307 * value, use subclasses of {@link java.text.NumberFormat}. 308 * 309 * @param f the {@code float} to be converted. 310 * @return a string representation of the argument. 311 */ 312 public static String toString(float f) { 313 return FloatToDecimal.toString(f); 314 } 315 316 /** 317 * Returns a hexadecimal string representation of the 318 * {@code float} argument. All characters mentioned below are 319 * ASCII characters. 320 * 321 * <ul> 322 * <li>If the argument is NaN, the result is the string 323 * "{@code NaN}". 324 * <li>Otherwise, the result is a string that represents the sign and 325 * magnitude (absolute value) of the argument. If the sign is negative, 326 * the first character of the result is '{@code -}' 327 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 328 * appears in the result. As for the magnitude <i>m</i>: 329 * 330 * <ul> 331 * <li>If <i>m</i> is infinity, it is represented by the string 332 * {@code "Infinity"}; thus, positive infinity produces the 333 * result {@code "Infinity"} and negative infinity produces 334 * the result {@code "-Infinity"}. 335 * 336 * <li>If <i>m</i> is zero, it is represented by the string 337 * {@code "0x0.0p0"}; thus, negative zero produces the result 338 * {@code "-0x0.0p0"} and positive zero produces the result 339 * {@code "0x0.0p0"}. 340 * 341 * <li>If <i>m</i> is a {@code float} value with a 342 * normalized representation, substrings are used to represent the 343 * significand and exponent fields. The significand is 344 * represented by the characters {@code "0x1."} 345 * followed by a lowercase hexadecimal representation of the rest 346 * of the significand as a fraction. Trailing zeros in the 347 * hexadecimal representation are removed unless all the digits 348 * are zero, in which case a single zero is used. Next, the 349 * exponent is represented by {@code "p"} followed 350 * by a decimal string of the unbiased exponent as if produced by 351 * a call to {@link Integer#toString(int) Integer.toString} on the 352 * exponent value. 353 * 354 * <li>If <i>m</i> is a {@code float} value with a subnormal 355 * representation, the significand is represented by the 356 * characters {@code "0x0."} followed by a 357 * hexadecimal representation of the rest of the significand as a 358 * fraction. Trailing zeros in the hexadecimal representation are 359 * removed. Next, the exponent is represented by 360 * {@code "p-126"}. Note that there must be at 361 * least one nonzero digit in a subnormal significand. 362 * 363 * </ul> 364 * 365 * </ul> 366 * 367 * <table class="striped"> 368 * <caption>Examples</caption> 369 * <thead> 370 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 371 * </thead> 372 * <tbody> 373 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 374 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 375 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 376 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 377 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 378 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 379 * <tr><th scope="row">{@code Float.MAX_VALUE}</th> 380 * <td>{@code 0x1.fffffep127}</td> 381 * <tr><th scope="row">{@code Minimum Normal Value}</th> 382 * <td>{@code 0x1.0p-126}</td> 383 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 384 * <td>{@code 0x0.fffffep-126}</td> 385 * <tr><th scope="row">{@code Float.MIN_VALUE}</th> 386 * <td>{@code 0x0.000002p-126}</td> 387 * </tbody> 388 * </table> 389 * @param f the {@code float} to be converted. 390 * @return a hex string representation of the argument. 391 * @since 1.5 392 * @author Joseph D. Darcy 393 */ 394 public static String toHexString(float f) { 395 if (Math.abs(f) < Float.MIN_NORMAL 396 && f != 0.0f ) {// float subnormal 397 // Adjust exponent to create subnormal double, then 398 // replace subnormal double exponent with subnormal float 399 // exponent 400 String s = Double.toHexString(Math.scalb((double)f, 401 /* -1022+126 */ 402 Double.MIN_EXPONENT- 403 Float.MIN_EXPONENT)); 404 return s.replaceFirst("p-1022$", "p-126"); 405 } 406 else // double string will be the same as float string 407 return Double.toHexString(f); 408 } 409 410 /** 411 * Returns a {@code Float} object holding the 412 * {@code float} value represented by the argument string 413 * {@code s}. 414 * 415 * <p>If {@code s} is {@code null}, then a 416 * {@code NullPointerException} is thrown. 417 * 418 * <p>Leading and trailing whitespace characters in {@code s} 419 * are ignored. Whitespace is removed as if by the {@link 420 * String#trim} method; that is, both ASCII space and control 421 * characters are removed. The rest of {@code s} should 422 * constitute a <i>FloatValue</i> as described by the lexical 423 * syntax rules: 424 * 425 * <blockquote> 426 * <dl> 427 * <dt><i>FloatValue:</i> 428 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 429 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 430 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 431 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 432 * <dd><i>SignedInteger</i> 433 * </dl> 434 * 435 * <dl> 436 * <dt><i>HexFloatingPointLiteral</i>: 437 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 438 * </dl> 439 * 440 * <dl> 441 * <dt><i>HexSignificand:</i> 442 * <dd><i>HexNumeral</i> 443 * <dd><i>HexNumeral</i> {@code .} 444 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 445 * </i>{@code .}<i> HexDigits</i> 446 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 447 * </i>{@code .} <i>HexDigits</i> 448 * </dl> 449 * 450 * <dl> 451 * <dt><i>BinaryExponent:</i> 452 * <dd><i>BinaryExponentIndicator SignedInteger</i> 453 * </dl> 454 * 455 * <dl> 456 * <dt><i>BinaryExponentIndicator:</i> 457 * <dd>{@code p} 458 * <dd>{@code P} 459 * </dl> 460 * 461 * </blockquote> 462 * 463 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 464 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 465 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 466 * sections of 467 * <cite>The Java Language Specification</cite>, 468 * except that underscores are not accepted between digits. 469 * If {@code s} does not have the form of 470 * a <i>FloatValue</i>, then a {@code NumberFormatException} 471 * is thrown. Otherwise, {@code s} is regarded as 472 * representing an exact decimal value in the usual 473 * "computerized scientific notation" or as an exact 474 * hexadecimal value; this exact numerical value is then 475 * conceptually converted to an "infinitely precise" 476 * binary value that is then rounded to type {@code float} 477 * by the usual round-to-nearest rule of IEEE 754 floating-point 478 * arithmetic, which includes preserving the sign of a zero 479 * value. 480 * 481 * Note that the round-to-nearest rule also implies overflow and 482 * underflow behaviour; if the exact value of {@code s} is large 483 * enough in magnitude (greater than or equal to ({@link 484 * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), 485 * rounding to {@code float} will result in an infinity and if the 486 * exact value of {@code s} is small enough in magnitude (less 487 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 488 * result in a zero. 489 * 490 * Finally, after rounding a {@code Float} object representing 491 * this {@code float} value is returned. 492 * 493 * <p>Note that trailing format specifiers, specifiers that 494 * determine the type of a floating-point literal 495 * ({@code 1.0f} is a {@code float} value; 496 * {@code 1.0d} is a {@code double} value), do 497 * <em>not</em> influence the results of this method. In other 498 * words, the numerical value of the input string is converted 499 * directly to the target floating-point type. In general, the 500 * two-step sequence of conversions, string to {@code double} 501 * followed by {@code double} to {@code float}, is 502 * <em>not</em> equivalent to converting a string directly to 503 * {@code float}. For example, if first converted to an 504 * intermediate {@code double} and then to 505 * {@code float}, the string<br> 506 * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br> 507 * results in the {@code float} value 508 * {@code 1.0000002f}; if the string is converted directly to 509 * {@code float}, <code>1.000000<b>1</b>f</code> results. 510 * 511 * <p>To avoid calling this method on an invalid string and having 512 * a {@code NumberFormatException} be thrown, the documentation 513 * for {@link Double#valueOf Double.valueOf} lists a regular 514 * expression which can be used to screen the input. 515 * 516 * @apiNote To interpret localized string representations of a 517 * floating-point value, or string representations that have 518 * non-ASCII digits, use {@link java.text.NumberFormat}. For 519 * example, 520 * {@snippet lang="java" : 521 * NumberFormat.getInstance(l).parse(s).floatValue(); 522 * } 523 * where {@code l} is the desired locale, or 524 * {@link java.util.Locale#ROOT} if locale insensitive. 525 * 526 * @param s the string to be parsed. 527 * @return a {@code Float} object holding the value 528 * represented by the {@code String} argument. 529 * @throws NumberFormatException if the string does not contain a 530 * parsable number. 531 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 532 */ 533 public static Float valueOf(String s) throws NumberFormatException { 534 return new Float(parseFloat(s)); 535 } 536 537 /** 538 * Returns a {@code Float} instance representing the specified 539 * {@code float} value. 540 * If a new {@code Float} instance is not required, this method 541 * should generally be used in preference to the constructor 542 * {@link #Float(float)}, as this method is likely to yield 543 * significantly better space and time performance by caching 544 * frequently requested values. 545 * 546 * @param f a float value. 547 * @return a {@code Float} instance representing {@code f}. 548 * @since 1.5 549 */ 550 @IntrinsicCandidate 551 public static Float valueOf(float f) { 552 return new Float(f); 553 } 554 555 /** 556 * Returns a new {@code float} initialized to the value 557 * represented by the specified {@code String}, as performed 558 * by the {@code valueOf} method of class {@code Float}. 559 * 560 * @param s the string to be parsed. 561 * @return the {@code float} value represented by the string 562 * argument. 563 * @throws NullPointerException if the string is null 564 * @throws NumberFormatException if the string does not contain a 565 * parsable {@code float}. 566 * @see java.lang.Float#valueOf(String) 567 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 568 * @since 1.2 569 */ 570 public static float parseFloat(String s) throws NumberFormatException { 571 return FloatingDecimal.parseFloat(s); 572 } 573 574 /** 575 * Returns {@code true} if the specified number is a 576 * Not-a-Number (NaN) value, {@code false} otherwise. 577 * 578 * @apiNote 579 * This method corresponds to the isNaN operation defined in IEEE 580 * 754. 581 * 582 * @param v the value to be tested. 583 * @return {@code true} if the argument is NaN; 584 * {@code false} otherwise. 585 */ 586 public static boolean isNaN(float v) { 587 return (v != v); 588 } 589 590 /** 591 * Returns {@code true} if the specified number is infinitely 592 * large in magnitude, {@code false} otherwise. 593 * 594 * @apiNote 595 * This method corresponds to the isInfinite operation defined in 596 * IEEE 754. 597 * 598 * @param v the value to be tested. 599 * @return {@code true} if the argument is positive infinity or 600 * negative infinity; {@code false} otherwise. 601 */ 602 @IntrinsicCandidate 603 public static boolean isInfinite(float v) { 604 return Math.abs(v) > MAX_VALUE; 605 } 606 607 608 /** 609 * Returns {@code true} if the argument is a finite floating-point 610 * value; returns {@code false} otherwise (for NaN and infinity 611 * arguments). 612 * 613 * @apiNote 614 * This method corresponds to the isFinite operation defined in 615 * IEEE 754. 616 * 617 * @param f the {@code float} value to be tested 618 * @return {@code true} if the argument is a finite 619 * floating-point value, {@code false} otherwise. 620 * @since 1.8 621 */ 622 @IntrinsicCandidate 623 public static boolean isFinite(float f) { 624 return Math.abs(f) <= Float.MAX_VALUE; 625 } 626 627 /** 628 * The value of the Float. 629 * 630 * @serial 631 */ 632 private final float value; 633 634 /** 635 * Constructs a newly allocated {@code Float} object that 636 * represents the primitive {@code float} argument. 637 * 638 * @param value the value to be represented by the {@code Float}. 639 * 640 * @deprecated 641 * It is rarely appropriate to use this constructor. The static factory 642 * {@link #valueOf(float)} is generally a better choice, as it is 643 * likely to yield significantly better space and time performance. 644 */ 645 @Deprecated(since="9", forRemoval = true) 646 public Float(float value) { 647 this.value = value; 648 } 649 650 /** 651 * Constructs a newly allocated {@code Float} object that 652 * represents the argument converted to type {@code float}. 653 * 654 * @param value the value to be represented by the {@code Float}. 655 * 656 * @deprecated 657 * It is rarely appropriate to use this constructor. Instead, use the 658 * static factory method {@link #valueOf(float)} method as follows: 659 * {@code Float.valueOf((float)value)}. 660 */ 661 @Deprecated(since="9", forRemoval = true) 662 public Float(double value) { 663 this.value = (float)value; 664 } 665 666 /** 667 * Constructs a newly allocated {@code Float} object that 668 * represents the floating-point value of type {@code float} 669 * represented by the string. The string is converted to a 670 * {@code float} value as if by the {@code valueOf} method. 671 * 672 * @param s a string to be converted to a {@code Float}. 673 * @throws NumberFormatException if the string does not contain a 674 * parsable number. 675 * 676 * @deprecated 677 * It is rarely appropriate to use this constructor. 678 * Use {@link #parseFloat(String)} to convert a string to a 679 * {@code float} primitive, or use {@link #valueOf(String)} 680 * to convert a string to a {@code Float} object. 681 */ 682 @Deprecated(since="9", forRemoval = true) 683 public Float(String s) throws NumberFormatException { 684 value = parseFloat(s); 685 } 686 687 /** 688 * Returns {@code true} if this {@code Float} value is a 689 * Not-a-Number (NaN), {@code false} otherwise. 690 * 691 * @return {@code true} if the value represented by this object is 692 * NaN; {@code false} otherwise. 693 */ 694 public boolean isNaN() { 695 return isNaN(value); 696 } 697 698 /** 699 * Returns {@code true} if this {@code Float} value is 700 * infinitely large in magnitude, {@code false} otherwise. 701 * 702 * @return {@code true} if the value represented by this object is 703 * positive infinity or negative infinity; 704 * {@code false} otherwise. 705 */ 706 public boolean isInfinite() { 707 return isInfinite(value); 708 } 709 710 /** 711 * Returns a string representation of this {@code Float} object. 712 * The primitive {@code float} value represented by this object 713 * is converted to a {@code String} exactly as if by the method 714 * {@code toString} of one argument. 715 * 716 * @return a {@code String} representation of this object. 717 * @see java.lang.Float#toString(float) 718 */ 719 public String toString() { 720 return Float.toString(value); 721 } 722 723 /** 724 * Returns the value of this {@code Float} as a {@code byte} after 725 * a narrowing primitive conversion. 726 * 727 * @return the {@code float} value represented by this object 728 * converted to type {@code byte} 729 * @jls 5.1.3 Narrowing Primitive Conversion 730 */ 731 public byte byteValue() { 732 return (byte)value; 733 } 734 735 /** 736 * Returns the value of this {@code Float} as a {@code short} 737 * after a narrowing primitive conversion. 738 * 739 * @return the {@code float} value represented by this object 740 * converted to type {@code short} 741 * @jls 5.1.3 Narrowing Primitive Conversion 742 * @since 1.1 743 */ 744 public short shortValue() { 745 return (short)value; 746 } 747 748 /** 749 * Returns the value of this {@code Float} as an {@code int} after 750 * a narrowing primitive conversion. 751 * 752 * @return the {@code float} value represented by this object 753 * converted to type {@code int} 754 * @jls 5.1.3 Narrowing Primitive Conversion 755 */ 756 public int intValue() { 757 return (int)value; 758 } 759 760 /** 761 * Returns value of this {@code Float} as a {@code long} after a 762 * narrowing primitive conversion. 763 * 764 * @return the {@code float} value represented by this object 765 * converted to type {@code long} 766 * @jls 5.1.3 Narrowing Primitive Conversion 767 */ 768 public long longValue() { 769 return (long)value; 770 } 771 772 /** 773 * Returns the {@code float} value of this {@code Float} object. 774 * 775 * @return the {@code float} value represented by this object 776 */ 777 @IntrinsicCandidate 778 public float floatValue() { 779 return value; 780 } 781 782 /** 783 * Returns the value of this {@code Float} as a {@code double} 784 * after a widening primitive conversion. 785 * 786 * @apiNote 787 * This method corresponds to the convertFormat operation defined 788 * in IEEE 754. 789 * 790 * @return the {@code float} value represented by this 791 * object converted to type {@code double} 792 * @jls 5.1.2 Widening Primitive Conversion 793 */ 794 public double doubleValue() { 795 return (double)value; 796 } 797 798 /** 799 * Returns a hash code for this {@code Float} object. The 800 * result is the integer bit representation, exactly as produced 801 * by the method {@link #floatToIntBits(float)}, of the primitive 802 * {@code float} value represented by this {@code Float} 803 * object. 804 * 805 * @return a hash code value for this object. 806 */ 807 @Override 808 public int hashCode() { 809 return Float.hashCode(value); 810 } 811 812 /** 813 * Returns a hash code for a {@code float} value; compatible with 814 * {@code Float.hashCode()}. 815 * 816 * @param value the value to hash 817 * @return a hash code value for a {@code float} value. 818 * @since 1.8 819 */ 820 public static int hashCode(float value) { 821 return floatToIntBits(value); 822 } 823 824 /** 825 * Compares this object against the specified object. The result 826 * is {@code true} if and only if the argument is not 827 * {@code null} and is a {@code Float} object that 828 * represents a {@code float} with the same value as the 829 * {@code float} represented by this object. For this 830 * purpose, two {@code float} values are considered to be the 831 * same if and only if the method {@link #floatToIntBits(float)} 832 * returns the identical {@code int} value when applied to 833 * each. 834 * 835 * @apiNote 836 * This method is defined in terms of {@link 837 * #floatToIntBits(float)} rather than the {@code ==} operator on 838 * {@code float} values since the {@code ==} operator does 839 * <em>not</em> define an equivalence relation and to satisfy the 840 * {@linkplain Object#equals equals contract} an equivalence 841 * relation must be implemented; see <a 842 * href="Double.html#equivalenceRelation">this discussion</a> for 843 * details of floating-point equality and equivalence. 844 * 845 * @param obj the object to be compared 846 * @return {@code true} if the objects are the same; 847 * {@code false} otherwise. 848 * @see java.lang.Float#floatToIntBits(float) 849 * @jls 15.21.1 Numerical Equality Operators == and != 850 */ 851 public boolean equals(Object obj) { 852 return (obj instanceof Float) 853 && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); 854 } 855 856 /** 857 * Returns a representation of the specified floating-point value 858 * according to the IEEE 754 floating-point "single format" bit 859 * layout. 860 * 861 * <p>Bit 31 (the bit that is selected by the mask 862 * {@code 0x80000000}) represents the sign of the floating-point 863 * number. 864 * Bits 30-23 (the bits that are selected by the mask 865 * {@code 0x7f800000}) represent the exponent. 866 * Bits 22-0 (the bits that are selected by the mask 867 * {@code 0x007fffff}) represent the significand (sometimes called 868 * the mantissa) of the floating-point number. 869 * 870 * <p>If the argument is positive infinity, the result is 871 * {@code 0x7f800000}. 872 * 873 * <p>If the argument is negative infinity, the result is 874 * {@code 0xff800000}. 875 * 876 * <p>If the argument is NaN, the result is {@code 0x7fc00000}. 877 * 878 * <p>In all cases, the result is an integer that, when given to the 879 * {@link #intBitsToFloat(int)} method, will produce a floating-point 880 * value the same as the argument to {@code floatToIntBits} 881 * (except all NaN values are collapsed to a single 882 * "canonical" NaN value). 883 * 884 * @param value a floating-point number. 885 * @return the bits that represent the floating-point number. 886 */ 887 @IntrinsicCandidate 888 public static int floatToIntBits(float value) { 889 if (!isNaN(value)) { 890 return floatToRawIntBits(value); 891 } 892 return 0x7fc00000; 893 } 894 895 /** 896 * Returns a representation of the specified floating-point value 897 * according to the IEEE 754 floating-point "single format" bit 898 * layout, preserving Not-a-Number (NaN) values. 899 * 900 * <p>Bit 31 (the bit that is selected by the mask 901 * {@code 0x80000000}) represents the sign of the floating-point 902 * number. 903 * Bits 30-23 (the bits that are selected by the mask 904 * {@code 0x7f800000}) represent the exponent. 905 * Bits 22-0 (the bits that are selected by the mask 906 * {@code 0x007fffff}) represent the significand (sometimes called 907 * the mantissa) of the floating-point number. 908 * 909 * <p>If the argument is positive infinity, the result is 910 * {@code 0x7f800000}. 911 * 912 * <p>If the argument is negative infinity, the result is 913 * {@code 0xff800000}. 914 * 915 * <p>If the argument is NaN, the result is the integer representing 916 * the actual NaN value. Unlike the {@code floatToIntBits} 917 * method, {@code floatToRawIntBits} does not collapse all the 918 * bit patterns encoding a NaN to a single "canonical" 919 * NaN value. 920 * 921 * <p>In all cases, the result is an integer that, when given to the 922 * {@link #intBitsToFloat(int)} method, will produce a 923 * floating-point value the same as the argument to 924 * {@code floatToRawIntBits}. 925 * 926 * @param value a floating-point number. 927 * @return the bits that represent the floating-point number. 928 * @since 1.3 929 */ 930 @IntrinsicCandidate 931 public static native int floatToRawIntBits(float value); 932 933 /** 934 * Returns the {@code float} value corresponding to a given 935 * bit representation. 936 * The argument is considered to be a representation of a 937 * floating-point value according to the IEEE 754 floating-point 938 * "single format" bit layout. 939 * 940 * <p>If the argument is {@code 0x7f800000}, the result is positive 941 * infinity. 942 * 943 * <p>If the argument is {@code 0xff800000}, the result is negative 944 * infinity. 945 * 946 * <p>If the argument is any value in the range 947 * {@code 0x7f800001} through {@code 0x7fffffff} or in 948 * the range {@code 0xff800001} through 949 * {@code 0xffffffff}, the result is a NaN. No IEEE 754 950 * floating-point operation provided by Java can distinguish 951 * between two NaN values of the same type with different bit 952 * patterns. Distinct values of NaN are only distinguishable by 953 * use of the {@code Float.floatToRawIntBits} method. 954 * 955 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 956 * values that can be computed from the argument: 957 * 958 * {@snippet lang="java" : 959 * int s = ((bits >> 31) == 0) ? 1 : -1; 960 * int e = ((bits >> 23) & 0xff); 961 * int m = (e == 0) ? 962 * (bits & 0x7fffff) << 1 : 963 * (bits & 0x7fffff) | 0x800000; 964 * } 965 * 966 * Then the floating-point result equals the value of the mathematical 967 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>. 968 * 969 * <p>Note that this method may not be able to return a 970 * {@code float} NaN with exactly same bit pattern as the 971 * {@code int} argument. IEEE 754 distinguishes between two 972 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 973 * differences between the two kinds of NaN are generally not 974 * visible in Java. Arithmetic operations on signaling NaNs turn 975 * them into quiet NaNs with a different, but often similar, bit 976 * pattern. However, on some processors merely copying a 977 * signaling NaN also performs that conversion. In particular, 978 * copying a signaling NaN to return it to the calling method may 979 * perform this conversion. So {@code intBitsToFloat} may 980 * not be able to return a {@code float} with a signaling NaN 981 * bit pattern. Consequently, for some {@code int} values, 982 * {@code floatToRawIntBits(intBitsToFloat(start))} may 983 * <i>not</i> equal {@code start}. Moreover, which 984 * particular bit patterns represent signaling NaNs is platform 985 * dependent; although all NaN bit patterns, quiet or signaling, 986 * must be in the NaN range identified above. 987 * 988 * @param bits an integer. 989 * @return the {@code float} floating-point value with the same bit 990 * pattern. 991 */ 992 @IntrinsicCandidate 993 public static native float intBitsToFloat(int bits); 994 995 /** 996 * {@return the {@code float} value closest to the numerical value 997 * of the argument, a floating-point binary16 value encoded in a 998 * {@code short}} The conversion is exact; all binary16 values can 999 * be exactly represented in {@code float}. 1000 * 1001 * Special cases: 1002 * <ul> 1003 * <li> If the argument is zero, the result is a zero with the 1004 * same sign as the argument. 1005 * <li> If the argument is infinite, the result is an infinity 1006 * with the same sign as the argument. 1007 * <li> If the argument is a NaN, the result is a NaN. 1008 * </ul> 1009 * 1010 * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4> 1011 * The IEEE 754 standard defines binary16 as a 16-bit format, along 1012 * with the 32-bit binary32 format (corresponding to the {@code 1013 * float} type) and the 64-bit binary64 format (corresponding to 1014 * the {@code double} type). The binary16 format is similar to the 1015 * other IEEE 754 formats, except smaller, having all the usual 1016 * IEEE 754 values such as NaN, signed infinities, signed zeros, 1017 * and subnormals. The parameters (JLS {@jls 4.2.3}) for the 1018 * binary16 format are N = 11 precision bits, K = 5 exponent bits, 1019 * <i>E</i><sub><i>max</i></sub> = 15, and 1020 * <i>E</i><sub><i>min</i></sub> = -14. 1021 * 1022 * @apiNote 1023 * This method corresponds to the convertFormat operation defined 1024 * in IEEE 754 from the binary16 format to the binary32 format. 1025 * The operation of this method is analogous to a primitive 1026 * widening conversion (JLS {@jls 5.1.2}). 1027 * 1028 * @param floatBinary16 the binary16 value to convert to {@code float} 1029 * @since 20 1030 */ 1031 @IntrinsicCandidate 1032 public static float float16ToFloat(short floatBinary16) { 1033 /* 1034 * The binary16 format has 1 sign bit, 5 exponent bits, and 10 1035 * significand bits. The exponent bias is 15. 1036 */ 1037 int bin16arg = (int)floatBinary16; 1038 int bin16SignBit = 0x8000 & bin16arg; 1039 int bin16ExpBits = 0x7c00 & bin16arg; 1040 int bin16SignifBits = 0x03FF & bin16arg; 1041 1042 // Shift left difference in the number of significand bits in 1043 // the float and binary16 formats 1044 final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11); 1045 1046 float sign = (bin16SignBit != 0) ? -1.0f : 1.0f; 1047 1048 // Extract binary16 exponent, remove its bias, add in the bias 1049 // of a float exponent and shift to correct bit location 1050 // (significand width includes the implicit bit so shift one 1051 // less). 1052 int bin16Exp = (bin16ExpBits >> 10) - 15; 1053 if (bin16Exp == -15) { 1054 // For subnormal binary16 values and 0, the numerical 1055 // value is 2^24 * the significand as an integer (no 1056 // implicit bit). 1057 return sign * (0x1p-24f * bin16SignifBits); 1058 } else if (bin16Exp == 16) { 1059 return (bin16SignifBits == 0) ? 1060 sign * Float.POSITIVE_INFINITY : 1061 Float.intBitsToFloat((bin16SignBit << 16) | 1062 0x7f80_0000 | 1063 // Preserve NaN signif bits 1064 ( bin16SignifBits << SIGNIF_SHIFT )); 1065 } 1066 1067 assert -15 < bin16Exp && bin16Exp < 16; 1068 1069 int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS) 1070 << (FloatConsts.SIGNIFICAND_WIDTH - 1); 1071 1072 // Compute and combine result sign, exponent, and significand bits. 1073 return Float.intBitsToFloat((bin16SignBit << 16) | 1074 floatExpBits | 1075 (bin16SignifBits << SIGNIF_SHIFT)); 1076 } 1077 1078 /** 1079 * {@return the floating-point binary16 value, encoded in a {@code 1080 * short}, closest in value to the argument} 1081 * The conversion is computed under the {@linkplain 1082 * java.math.RoundingMode#HALF_EVEN round to nearest even rounding 1083 * mode}. 1084 * 1085 * Special cases: 1086 * <ul> 1087 * <li> If the argument is zero, the result is a zero with the 1088 * same sign as the argument. 1089 * <li> If the argument is infinite, the result is an infinity 1090 * with the same sign as the argument. 1091 * <li> If the argument is a NaN, the result is a NaN. 1092 * </ul> 1093 * 1094 * The <a href="#binary16Format">binary16 format</a> is discussed in 1095 * more detail in the {@link #float16ToFloat} method. 1096 * 1097 * @apiNote 1098 * This method corresponds to the convertFormat operation defined 1099 * in IEEE 754 from the binary32 format to the binary16 format. 1100 * The operation of this method is analogous to a primitive 1101 * narrowing conversion (JLS {@jls 5.1.3}). 1102 * 1103 * @param f the {@code float} value to convert to binary16 1104 * @since 20 1105 */ 1106 @IntrinsicCandidate 1107 public static short floatToFloat16(float f) { 1108 int doppel = Float.floatToRawIntBits(f); 1109 short sign_bit = (short)((doppel & 0x8000_0000) >> 16); 1110 1111 if (Float.isNaN(f)) { 1112 // Preserve sign and attempt to preserve significand bits 1113 return (short)(sign_bit 1114 | 0x7c00 // max exponent + 1 1115 // Preserve high order bit of float NaN in the 1116 // binary16 result NaN (tenth bit); OR in remaining 1117 // bits into lower 9 bits of binary 16 significand. 1118 | (doppel & 0x007f_e000) >> 13 // 10 bits 1119 | (doppel & 0x0000_1ff0) >> 4 // 9 bits 1120 | (doppel & 0x0000_000f)); // 4 bits 1121 } 1122 1123 float abs_f = Math.abs(f); 1124 1125 // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp 1126 if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) { 1127 return (short)(sign_bit | 0x7c00); // Positive or negative infinity 1128 } 1129 1130 // Smallest magnitude nonzero representable binary16 value 1131 // is equal to 0x1.0p-24; half-way and smaller rounds to zero. 1132 if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals. 1133 return sign_bit; // Positive or negative zero 1134 } 1135 1136 // Dealing with finite values in exponent range of binary16 1137 // (when rounding is done, could still round up) 1138 int exp = Math.getExponent(f); 1139 assert -25 <= exp && exp <= 15; 1140 1141 // For binary16 subnormals, beside forcing exp to -15, retain 1142 // the difference expdelta = E_min - exp. This is the excess 1143 // shift value, in addition to 13, to be used in the 1144 // computations below. Further the (hidden) msb with value 1 1145 // in f must be involved as well. 1146 int expdelta = 0; 1147 int msb = 0x0000_0000; 1148 if (exp < -14) { 1149 expdelta = -14 - exp; 1150 exp = -15; 1151 msb = 0x0080_0000; 1152 } 1153 int f_signif_bits = doppel & 0x007f_ffff | msb; 1154 1155 // Significand bits as if using rounding to zero (truncation). 1156 short signif_bits = (short)(f_signif_bits >> (13 + expdelta)); 1157 1158 // For round to nearest even, determining whether or not to 1159 // round up (in magnitude) is a function of the least 1160 // significant bit (LSB), the next bit position (the round 1161 // position), and the sticky bit (whether there are any 1162 // nonzero bits in the exact result to the right of the round 1163 // digit). An increment occurs in three cases: 1164 // 1165 // LSB Round Sticky 1166 // 0 1 1 1167 // 1 1 0 1168 // 1 1 1 1169 // See "Computer Arithmetic Algorithms," Koren, Table 4.9 1170 1171 int lsb = f_signif_bits & (1 << 13 + expdelta); 1172 int round = f_signif_bits & (1 << 12 + expdelta); 1173 int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1); 1174 1175 if (round != 0 && ((lsb | sticky) != 0 )) { 1176 signif_bits++; 1177 } 1178 1179 // No bits set in significand beyond the *first* exponent bit, 1180 // not just the significand; quantity is added to the exponent 1181 // to implement a carry out from rounding the significand. 1182 assert (0xf800 & signif_bits) == 0x0; 1183 1184 return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) ); 1185 } 1186 1187 /** 1188 * Compares two {@code Float} objects numerically. 1189 * 1190 * This method imposes a total order on {@code Float} objects 1191 * with two differences compared to the incomplete order defined by 1192 * the Java language numerical comparison operators ({@code <, <=, 1193 * ==, >=, >}) on {@code float} values. 1194 * 1195 * <ul><li> A NaN is <em>unordered</em> with respect to other 1196 * values and unequal to itself under the comparison 1197 * operators. This method chooses to define {@code 1198 * Float.NaN} to be equal to itself and greater than all 1199 * other {@code double} values (including {@code 1200 * Float.POSITIVE_INFINITY}). 1201 * 1202 * <li> Positive zero and negative zero compare equal 1203 * numerically, but are distinct and distinguishable values. 1204 * This method chooses to define positive zero ({@code +0.0f}), 1205 * to be greater than negative zero ({@code -0.0f}). 1206 * </ul> 1207 * 1208 * This ensures that the <i>natural ordering</i> of {@code Float} 1209 * objects imposed by this method is <i>consistent with 1210 * equals</i>; see <a href="Double.html#equivalenceRelation">this 1211 * discussion</a> for details of floating-point comparison and 1212 * ordering. 1213 * 1214 * 1215 * @param anotherFloat the {@code Float} to be compared. 1216 * @return the value {@code 0} if {@code anotherFloat} is 1217 * numerically equal to this {@code Float}; a value 1218 * less than {@code 0} if this {@code Float} 1219 * is numerically less than {@code anotherFloat}; 1220 * and a value greater than {@code 0} if this 1221 * {@code Float} is numerically greater than 1222 * {@code anotherFloat}. 1223 * 1224 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 1225 * @since 1.2 1226 */ 1227 public int compareTo(Float anotherFloat) { 1228 return Float.compare(value, anotherFloat.value); 1229 } 1230 1231 /** 1232 * Compares the two specified {@code float} values. The sign 1233 * of the integer value returned is the same as that of the 1234 * integer that would be returned by the call: 1235 * <pre> 1236 * Float.valueOf(f1).compareTo(Float.valueOf(f2)) 1237 * </pre> 1238 * 1239 * @param f1 the first {@code float} to compare. 1240 * @param f2 the second {@code float} to compare. 1241 * @return the value {@code 0} if {@code f1} is 1242 * numerically equal to {@code f2}; a value less than 1243 * {@code 0} if {@code f1} is numerically less than 1244 * {@code f2}; and a value greater than {@code 0} 1245 * if {@code f1} is numerically greater than 1246 * {@code f2}. 1247 * @since 1.4 1248 */ 1249 public static int compare(float f1, float f2) { 1250 if (f1 < f2) 1251 return -1; // Neither val is NaN, thisVal is smaller 1252 if (f1 > f2) 1253 return 1; // Neither val is NaN, thisVal is larger 1254 1255 // Cannot use floatToRawIntBits because of possibility of NaNs. 1256 int thisBits = Float.floatToIntBits(f1); 1257 int anotherBits = Float.floatToIntBits(f2); 1258 1259 return (thisBits == anotherBits ? 0 : // Values are equal 1260 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1261 1)); // (0.0, -0.0) or (NaN, !NaN) 1262 } 1263 1264 /** 1265 * Adds two {@code float} values together as per the + operator. 1266 * 1267 * @apiNote This method corresponds to the addition operation 1268 * defined in IEEE 754. 1269 * 1270 * @param a the first operand 1271 * @param b the second operand 1272 * @return the sum of {@code a} and {@code b} 1273 * @jls 4.2.4 Floating-Point Operations 1274 * @see java.util.function.BinaryOperator 1275 * @since 1.8 1276 */ 1277 public static float sum(float a, float b) { 1278 return a + b; 1279 } 1280 1281 /** 1282 * Returns the greater of two {@code float} values 1283 * as if by calling {@link Math#max(float, float) Math.max}. 1284 * 1285 * @apiNote 1286 * This method corresponds to the maximum operation defined in 1287 * IEEE 754. 1288 * 1289 * @param a the first operand 1290 * @param b the second operand 1291 * @return the greater of {@code a} and {@code b} 1292 * @see java.util.function.BinaryOperator 1293 * @since 1.8 1294 */ 1295 public static float max(float a, float b) { 1296 return Math.max(a, b); 1297 } 1298 1299 /** 1300 * Returns the smaller of two {@code float} values 1301 * as if by calling {@link Math#min(float, float) Math.min}. 1302 * 1303 * @apiNote 1304 * This method corresponds to the minimum operation defined in 1305 * IEEE 754. 1306 * 1307 * @param a the first operand 1308 * @param b the second operand 1309 * @return the smaller of {@code a} and {@code b} 1310 * @see java.util.function.BinaryOperator 1311 * @since 1.8 1312 */ 1313 public static float min(float a, float b) { 1314 return Math.min(a, b); 1315 } 1316 1317 /** 1318 * Returns an {@link Optional} containing the nominal descriptor for this 1319 * instance, which is the instance itself. 1320 * 1321 * @return an {@link Optional} describing the {@linkplain Float} instance 1322 * @since 12 1323 */ 1324 @Override 1325 public Optional<Float> describeConstable() { 1326 return Optional.of(this); 1327 } 1328 1329 /** 1330 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1331 * the instance itself. 1332 * 1333 * @param lookup ignored 1334 * @return the {@linkplain Float} instance 1335 * @since 12 1336 */ 1337 @Override 1338 public Float resolveConstantDesc(MethodHandles.Lookup lookup) { 1339 return this; 1340 } 1341 1342 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1343 @java.io.Serial 1344 private static final long serialVersionUID = -2671257302660747028L; 1345 }