1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatConsts; 34 import jdk.internal.math.FloatingDecimal; 35 import jdk.internal.math.FloatToDecimal; 36 import jdk.internal.value.DeserializeConstructor; 37 import jdk.internal.vm.annotation.IntrinsicCandidate; 38 39 /** 40 * The {@code Float} class is the {@linkplain 41 * java.lang##wrapperClass wrapper class} for values of the primitive 42 * type {@code float}. An object of type {@code Float} contains a 43 * single field whose type is {@code float}. 44 * 45 * <p>In addition, this class provides several methods for converting a 46 * {@code float} to a {@code String} and a 47 * {@code String} to a {@code float}, as well as other 48 * constants and methods useful when dealing with a 49 * {@code float}. 50 * 51 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 52 * class; programmers should treat instances that are 53 * {@linkplain #equals(Object) equal} as interchangeable and should not 54 * use instances for synchronization, or unpredictable behavior may 55 * occur. For example, in a future release, synchronization may fail. 56 * 57 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 58 * and Comparison</a></h2> 59 * 60 * The class {@code java.lang.Double} has a {@linkplain 61 * Double##equivalenceRelation discussion of equality, 62 * equivalence, and comparison of floating-point values} that is 63 * equally applicable to {@code float} values. 64 * 65 * <h2><a id=decimalToBinaryConversion>Decimal ↔ Binary Conversion Issues</a></h2> 66 * 67 * The {@linkplain Double##decimalToBinaryConversion discussion of binary to 68 * decimal conversion issues} in {@code java.lang.Double} is also 69 * applicable to {@code float} values. 70 * 71 * @see <a href="https://standards.ieee.org/ieee/754/6210/"> 72 * <cite>IEEE Standard for Floating-Point Arithmetic</cite></a> 73 * 74 * @author Lee Boynton 75 * @author Arthur van Hoff 76 * @author Joseph D. Darcy 77 * @since 1.0 78 */ 79 @jdk.internal.MigratedValueClass 80 @jdk.internal.ValueBased 81 public final class Float extends Number 82 implements Comparable<Float>, Constable, ConstantDesc { 83 /** 84 * A constant holding the positive infinity of type 85 * {@code float}. It is equal to the value returned by 86 * {@code Float.intBitsToFloat(0x7f800000)}. 87 */ 88 public static final float POSITIVE_INFINITY = 1.0f / 0.0f; 89 90 /** 91 * A constant holding the negative infinity of type 92 * {@code float}. It is equal to the value returned by 93 * {@code Float.intBitsToFloat(0xff800000)}. 94 */ 95 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; 96 97 /** 98 * A constant holding a Not-a-Number (NaN) value of type 99 * {@code float}. It is equivalent to the value returned by 100 * {@code Float.intBitsToFloat(0x7fc00000)}. 101 */ 102 public static final float NaN = 0.0f / 0.0f; 103 104 /** 105 * A constant holding the largest positive finite value of type 106 * {@code float}, (2-2<sup>-23</sup>)·2<sup>127</sup>. 107 * It is equal to the hexadecimal floating-point literal 108 * {@code 0x1.fffffeP+127f} and also equal to 109 * {@code Float.intBitsToFloat(0x7f7fffff)}. 110 */ 111 public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f 112 113 /** 114 * A constant holding the smallest positive normal value of type 115 * {@code float}, 2<sup>-126</sup>. It is equal to the 116 * hexadecimal floating-point literal {@code 0x1.0p-126f} and also 117 * equal to {@code Float.intBitsToFloat(0x00800000)}. 118 * 119 * @since 1.6 120 */ 121 public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f 122 123 /** 124 * A constant holding the smallest positive nonzero value of type 125 * {@code float}, 2<sup>-149</sup>. It is equal to the 126 * hexadecimal floating-point literal {@code 0x0.000002P-126f} 127 * and also equal to {@code Float.intBitsToFloat(0x1)}. 128 */ 129 public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f 130 131 /** 132 * The number of bits used to represent a {@code float} value, 133 * {@value}. 134 * 135 * @since 1.5 136 */ 137 public static final int SIZE = 32; 138 139 /** 140 * The number of bits in the significand of a {@code float} value, 141 * {@value}. This is the parameter N in section {@jls 4.2.3} of 142 * <cite>The Java Language Specification</cite>. 143 * 144 * @since 19 145 */ 146 public static final int PRECISION = 24; 147 148 /** 149 * Maximum exponent a finite {@code float} variable may have, 150 * {@value}. It is equal to the value returned by {@code 151 * Math.getExponent(Float.MAX_VALUE)}. 152 * 153 * @since 1.6 154 */ 155 public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127 156 157 /** 158 * Minimum exponent a normalized {@code float} variable may have, 159 * {@value}. It is equal to the value returned by {@code 160 * Math.getExponent(Float.MIN_NORMAL)}. 161 * 162 * @since 1.6 163 */ 164 public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126 165 166 /** 167 * The number of bytes used to represent a {@code float} value, 168 * {@value}. 169 * 170 * @since 1.8 171 */ 172 public static final int BYTES = SIZE / Byte.SIZE; 173 174 /** 175 * The {@code Class} instance representing the primitive type 176 * {@code float}. 177 * 178 * @since 1.1 179 */ 180 @SuppressWarnings("unchecked") 181 public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float"); 182 183 /** 184 * Returns a string representation of the {@code float} 185 * argument. All characters mentioned below are ASCII characters. 186 * <ul> 187 * <li>If the argument is NaN, the result is the string 188 * "{@code NaN}". 189 * <li>Otherwise, the result is a string that represents the sign and 190 * magnitude (absolute value) of the argument. If the sign is 191 * negative, the first character of the result is 192 * '{@code -}' ({@code '\u005Cu002D'}); if the sign is 193 * positive, no sign character appears in the result. As for 194 * the magnitude <i>m</i>: 195 * <ul> 196 * <li>If <i>m</i> is infinity, it is represented by the characters 197 * {@code "Infinity"}; thus, positive infinity produces 198 * the result {@code "Infinity"} and negative infinity 199 * produces the result {@code "-Infinity"}. 200 * <li>If <i>m</i> is zero, it is represented by the characters 201 * {@code "0.0"}; thus, negative zero produces the result 202 * {@code "-0.0"} and positive zero produces the result 203 * {@code "0.0"}. 204 * 205 * <li> Otherwise <i>m</i> is positive and finite. 206 * It is converted to a string in two stages: 207 * <ul> 208 * <li> <em>Selection of a decimal</em>: 209 * A well-defined decimal <i>d</i><sub><i>m</i></sub> 210 * is selected to represent <i>m</i>. 211 * This decimal is (almost always) the <em>shortest</em> one that 212 * rounds to <i>m</i> according to the round to nearest 213 * rounding policy of IEEE 754 floating-point arithmetic. 214 * <li> <em>Formatting as a string</em>: 215 * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string, 216 * either in plain or in computerized scientific notation, 217 * depending on its value. 218 * </ul> 219 * </ul> 220 * </ul> 221 * 222 * <p>A <em>decimal</em> is a number of the form 223 * <i>s</i>×10<sup><i>i</i></sup> 224 * for some (unique) integers <i>s</i> > 0 and <i>i</i> such that 225 * <i>s</i> is not a multiple of 10. 226 * These integers are the <em>significand</em> and 227 * the <em>exponent</em>, respectively, of the decimal. 228 * The <em>length</em> of the decimal is the (unique) 229 * positive integer <i>n</i> meeting 230 * 10<sup><i>n</i>-1</sup> ≤ <i>s</i> < 10<sup><i>n</i></sup>. 231 * 232 * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i> 233 * is defined as follows: 234 * <ul> 235 * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i> 236 * according to the usual <em>round to nearest</em> rounding policy of 237 * IEEE 754 floating-point arithmetic. 238 * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>. 239 * <li>When <i>p</i> ≥ 2, let <i>T</i> be the set of all decimals 240 * in <i>R</i> with length <i>p</i>. 241 * Otherwise, let <i>T</i> be the set of all decimals 242 * in <i>R</i> with length 1 or 2. 243 * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i> 244 * that is closest to <i>m</i>. 245 * Or if there are two such decimals in <i>T</i>, 246 * select the one with the even significand. 247 * </ul> 248 * 249 * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub> 250 * is then formatted. 251 * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and 252 * length of <i>d</i><sub><i>m</i></sub>, respectively. 253 * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let 254 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub> 255 * be the usual decimal expansion of <i>s</i>. 256 * Note that <i>s</i><sub>1</sub> ≠ 0 257 * and <i>s</i><sub><i>n</i></sub> ≠ 0. 258 * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'} 259 * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}. 260 * <ul> 261 * <li>Case -3 ≤ <i>e</i> < 0: 262 * <i>d</i><sub><i>m</i></sub> is formatted as 263 * <code>0.0</code>…<code>0</code><!-- 264 * --><i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub>, 265 * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between 266 * the decimal point and <i>s</i><sub>1</sub>. 267 * For example, 123 × 10<sup>-4</sup> is formatted as 268 * {@code 0.0123}. 269 * <li>Case 0 ≤ <i>e</i> < 7: 270 * <ul> 271 * <li>Subcase <i>i</i> ≥ 0: 272 * <i>d</i><sub><i>m</i></sub> is formatted as 273 * <i>s</i><sub>1</sub>…<i>s</i><sub><i>n</i></sub><!-- 274 * --><code>0</code>…<code>0.0</code>, 275 * where there are exactly <i>i</i> zeroes 276 * between <i>s</i><sub><i>n</i></sub> and the decimal point. 277 * For example, 123 × 10<sup>2</sup> is formatted as 278 * {@code 12300.0}. 279 * <li>Subcase <i>i</i> < 0: 280 * <i>d</i><sub><i>m</i></sub> is formatted as 281 * <i>s</i><sub>1</sub>…<!-- 282 * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!-- 283 * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>…<!-- 284 * --><i>s</i><sub><i>n</i></sub>, 285 * where there are exactly -<i>i</i> digits to the right of 286 * the decimal point. 287 * For example, 123 × 10<sup>-1</sup> is formatted as 288 * {@code 12.3}. 289 * </ul> 290 * <li>Case <i>e</i> < -3 or <i>e</i> ≥ 7: 291 * computerized scientific notation is used to format 292 * <i>d</i><sub><i>m</i></sub>. 293 * Here <i>e</i> is formatted as by {@link Integer#toString(int)}. 294 * <ul> 295 * <li>Subcase <i>n</i> = 1: 296 * <i>d</i><sub><i>m</i></sub> is formatted as 297 * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>. 298 * For example, 1 × 10<sup>23</sup> is formatted as 299 * {@code 1.0E23}. 300 * <li>Subcase <i>n</i> > 1: 301 * <i>d</i><sub><i>m</i></sub> is formatted as 302 * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!-- 303 * -->…<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>. 304 * For example, 123 × 10<sup>-21</sup> is formatted as 305 * {@code 1.23E-19}. 306 * </ul> 307 * </ul> 308 * 309 * <p>To create localized string representations of a floating-point 310 * value, use subclasses of {@link java.text.NumberFormat}. 311 * 312 * @apiNote 313 * This method corresponds to the general functionality of the 314 * convertToDecimalCharacter operation defined in IEEE 754; 315 * however, that operation is defined in terms of specifying the 316 * number of significand digits used in the conversion. 317 * Code to do such a conversion in the Java platform includes 318 * converting the {@code float} to a {@link java.math.BigDecimal 319 * BigDecimal} exactly and then rounding the {@code BigDecimal} to 320 * the desired number of digits; sample code: 321 * {@snippet lang=java : 322 * floatf = 0.1f; 323 * int digits = 15; 324 * BigDecimal bd = new BigDecimal(f); 325 * String result = bd.round(new MathContext(digits, RoundingMode.HALF_UP)); 326 * // 0.100000001490116 327 * } 328 * 329 * @param f the {@code float} to be converted. 330 * @return a string representation of the argument. 331 */ 332 public static String toString(float f) { 333 return FloatToDecimal.toString(f); 334 } 335 336 /** 337 * Returns a hexadecimal string representation of the 338 * {@code float} argument. All characters mentioned below are 339 * ASCII characters. 340 * 341 * <ul> 342 * <li>If the argument is NaN, the result is the string 343 * "{@code NaN}". 344 * <li>Otherwise, the result is a string that represents the sign and 345 * magnitude (absolute value) of the argument. If the sign is negative, 346 * the first character of the result is '{@code -}' 347 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 348 * appears in the result. As for the magnitude <i>m</i>: 349 * 350 * <ul> 351 * <li>If <i>m</i> is infinity, it is represented by the string 352 * {@code "Infinity"}; thus, positive infinity produces the 353 * result {@code "Infinity"} and negative infinity produces 354 * the result {@code "-Infinity"}. 355 * 356 * <li>If <i>m</i> is zero, it is represented by the string 357 * {@code "0x0.0p0"}; thus, negative zero produces the result 358 * {@code "-0x0.0p0"} and positive zero produces the result 359 * {@code "0x0.0p0"}. 360 * 361 * <li>If <i>m</i> is a {@code float} value with a 362 * normalized representation, substrings are used to represent the 363 * significand and exponent fields. The significand is 364 * represented by the characters {@code "0x1."} 365 * followed by a lowercase hexadecimal representation of the rest 366 * of the significand as a fraction. Trailing zeros in the 367 * hexadecimal representation are removed unless all the digits 368 * are zero, in which case a single zero is used. Next, the 369 * exponent is represented by {@code "p"} followed 370 * by a decimal string of the unbiased exponent as if produced by 371 * a call to {@link Integer#toString(int) Integer.toString} on the 372 * exponent value. 373 * 374 * <li>If <i>m</i> is a {@code float} value with a subnormal 375 * representation, the significand is represented by the 376 * characters {@code "0x0."} followed by a 377 * hexadecimal representation of the rest of the significand as a 378 * fraction. Trailing zeros in the hexadecimal representation are 379 * removed. Next, the exponent is represented by 380 * {@code "p-126"}. Note that there must be at 381 * least one nonzero digit in a subnormal significand. 382 * 383 * </ul> 384 * 385 * </ul> 386 * 387 * <table class="striped"> 388 * <caption>Examples</caption> 389 * <thead> 390 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 391 * </thead> 392 * <tbody> 393 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 394 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 395 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 396 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 397 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 398 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 399 * <tr><th scope="row">{@code Float.MAX_VALUE}</th> 400 * <td>{@code 0x1.fffffep127}</td> 401 * <tr><th scope="row">{@code Minimum Normal Value}</th> 402 * <td>{@code 0x1.0p-126}</td> 403 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 404 * <td>{@code 0x0.fffffep-126}</td> 405 * <tr><th scope="row">{@code Float.MIN_VALUE}</th> 406 * <td>{@code 0x0.000002p-126}</td> 407 * </tbody> 408 * </table> 409 * 410 * @apiNote 411 * This method corresponds to the convertToHexCharacter operation 412 * defined in IEEE 754. 413 * 414 * @param f the {@code float} to be converted. 415 * @return a hex string representation of the argument. 416 * @since 1.5 417 * @author Joseph D. Darcy 418 */ 419 public static String toHexString(float f) { 420 if (Math.abs(f) < Float.MIN_NORMAL 421 && f != 0.0f ) {// float subnormal 422 // Adjust exponent to create subnormal double, then 423 // replace subnormal double exponent with subnormal float 424 // exponent 425 String s = Double.toHexString(Math.scalb((double)f, 426 /* -1022+126 */ 427 Double.MIN_EXPONENT- 428 Float.MIN_EXPONENT)); 429 return s.replaceFirst("p-1022$", "p-126"); 430 } 431 else // double string will be the same as float string 432 return Double.toHexString(f); 433 } 434 435 /** 436 * Returns a {@code Float} object holding the 437 * {@code float} value represented by the argument string 438 * {@code s}. 439 * 440 * <p>If {@code s} is {@code null}, then a 441 * {@code NullPointerException} is thrown. 442 * 443 * <p>Leading and trailing whitespace characters in {@code s} 444 * are ignored. Whitespace is removed as if by the {@link 445 * String#trim} method; that is, both ASCII space and control 446 * characters are removed. The rest of {@code s} should 447 * constitute a <i>FloatValue</i> as described by the lexical 448 * syntax rules: 449 * 450 * <blockquote> 451 * <dl> 452 * <dt><i>FloatValue:</i> 453 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 454 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 455 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 456 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 457 * <dd><i>SignedInteger</i> 458 * </dl> 459 * 460 * <dl> 461 * <dt><i>HexFloatingPointLiteral</i>: 462 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 463 * </dl> 464 * 465 * <dl> 466 * <dt><i>HexSignificand:</i> 467 * <dd><i>HexNumeral</i> 468 * <dd><i>HexNumeral</i> {@code .} 469 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 470 * </i>{@code .}<i> HexDigits</i> 471 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 472 * </i>{@code .} <i>HexDigits</i> 473 * </dl> 474 * 475 * <dl> 476 * <dt><i>BinaryExponent:</i> 477 * <dd><i>BinaryExponentIndicator SignedInteger</i> 478 * </dl> 479 * 480 * <dl> 481 * <dt><i>BinaryExponentIndicator:</i> 482 * <dd>{@code p} 483 * <dd>{@code P} 484 * </dl> 485 * 486 * </blockquote> 487 * 488 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 489 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 490 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 491 * sections of 492 * <cite>The Java Language Specification</cite>, 493 * except that underscores are not accepted between digits. 494 * If {@code s} does not have the form of 495 * a <i>FloatValue</i>, then a {@code NumberFormatException} 496 * is thrown. Otherwise, {@code s} is regarded as 497 * representing an exact decimal value in the usual 498 * "computerized scientific notation" or as an exact 499 * hexadecimal value; this exact numerical value is then 500 * conceptually converted to an "infinitely precise" 501 * binary value that is then rounded to type {@code float} 502 * by the usual round-to-nearest rule of IEEE 754 floating-point 503 * arithmetic, which includes preserving the sign of a zero 504 * value. 505 * 506 * Note that the round-to-nearest rule also implies overflow and 507 * underflow behaviour; if the exact value of {@code s} is large 508 * enough in magnitude (greater than or equal to ({@link 509 * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), 510 * rounding to {@code float} will result in an infinity and if the 511 * exact value of {@code s} is small enough in magnitude (less 512 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 513 * result in a zero. 514 * 515 * Finally, after rounding a {@code Float} object representing 516 * this {@code float} value is returned. 517 * 518 * <p>Note that trailing format specifiers, specifiers that 519 * determine the type of a floating-point literal 520 * ({@code 1.0f} is a {@code float} value; 521 * {@code 1.0d} is a {@code double} value), do 522 * <em>not</em> influence the results of this method. In other 523 * words, the numerical value of the input string is converted 524 * directly to the target floating-point type. In general, the 525 * two-step sequence of conversions, string to {@code double} 526 * followed by {@code double} to {@code float}, is 527 * <em>not</em> equivalent to converting a string directly to 528 * {@code float}. For example, if first converted to an 529 * intermediate {@code double} and then to 530 * {@code float}, the string<br> 531 * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br> 532 * results in the {@code float} value 533 * {@code 1.0000002f}; if the string is converted directly to 534 * {@code float}, <code>1.000000<b>1</b>f</code> results. 535 * 536 * <p>To avoid calling this method on an invalid string and having 537 * a {@code NumberFormatException} be thrown, the documentation 538 * for {@link Double#valueOf Double.valueOf} lists a regular 539 * expression which can be used to screen the input. 540 * 541 * @apiNote To interpret localized string representations of a 542 * floating-point value, or string representations that have 543 * non-ASCII digits, use {@link java.text.NumberFormat}. For 544 * example, 545 * {@snippet lang="java" : 546 * NumberFormat.getInstance(l).parse(s).floatValue(); 547 * } 548 * where {@code l} is the desired locale, or 549 * {@link java.util.Locale#ROOT} if locale insensitive. 550 * 551 * @apiNote 552 * This method corresponds to the convertFromDecimalCharacter and 553 * convertFromHexCharacter operations defined in IEEE 754. 554 * 555 * @param s the string to be parsed. 556 * @return a {@code Float} object holding the value 557 * represented by the {@code String} argument. 558 * @throws NumberFormatException if the string does not contain a 559 * parsable number. 560 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 561 */ 562 public static Float valueOf(String s) throws NumberFormatException { 563 return new Float(parseFloat(s)); 564 } 565 566 /** 567 * Returns a {@code Float} instance representing the specified 568 * {@code float} value. 569 * If a new {@code Float} instance is not required, this method 570 * should generally be used in preference to the constructor 571 * {@link #Float(float)}, as this method is likely to yield 572 * significantly better space and time performance by caching 573 * frequently requested values. 574 * 575 * @param f a float value. 576 * @return a {@code Float} instance representing {@code f}. 577 * @since 1.5 578 */ 579 @IntrinsicCandidate 580 @DeserializeConstructor 581 public static Float valueOf(float f) { 582 return new Float(f); 583 } 584 585 /** 586 * Returns a new {@code float} initialized to the value 587 * represented by the specified {@code String}, as performed 588 * by the {@code valueOf} method of class {@code Float}. 589 * 590 * @param s the string to be parsed. 591 * @return the {@code float} value represented by the string 592 * argument. 593 * @throws NullPointerException if the string is null 594 * @throws NumberFormatException if the string does not contain a 595 * parsable {@code float}. 596 * @see java.lang.Float#valueOf(String) 597 * @see Double##decimalToBinaryConversion Decimal ↔ Binary Conversion Issues 598 * @since 1.2 599 */ 600 public static float parseFloat(String s) throws NumberFormatException { 601 return FloatingDecimal.parseFloat(s); 602 } 603 604 /** 605 * Returns {@code true} if the specified number is a 606 * Not-a-Number (NaN) value, {@code false} otherwise. 607 * 608 * @apiNote 609 * This method corresponds to the isNaN operation defined in IEEE 610 * 754. 611 * 612 * @param v the value to be tested. 613 * @return {@code true} if the argument is NaN; 614 * {@code false} otherwise. 615 */ 616 public static boolean isNaN(float v) { 617 return (v != v); 618 } 619 620 /** 621 * Returns {@code true} if the specified number is infinitely 622 * large in magnitude, {@code false} otherwise. 623 * 624 * @apiNote 625 * This method corresponds to the isInfinite operation defined in 626 * IEEE 754. 627 * 628 * @param v the value to be tested. 629 * @return {@code true} if the argument is positive infinity or 630 * negative infinity; {@code false} otherwise. 631 */ 632 @IntrinsicCandidate 633 public static boolean isInfinite(float v) { 634 return Math.abs(v) > MAX_VALUE; 635 } 636 637 638 /** 639 * Returns {@code true} if the argument is a finite floating-point 640 * value; returns {@code false} otherwise (for NaN and infinity 641 * arguments). 642 * 643 * @apiNote 644 * This method corresponds to the isFinite operation defined in 645 * IEEE 754. 646 * 647 * @param f the {@code float} value to be tested 648 * @return {@code true} if the argument is a finite 649 * floating-point value, {@code false} otherwise. 650 * @since 1.8 651 */ 652 @IntrinsicCandidate 653 public static boolean isFinite(float f) { 654 return Math.abs(f) <= Float.MAX_VALUE; 655 } 656 657 /** 658 * The value of the Float. 659 * 660 * @serial 661 */ 662 private final float value; 663 664 /** 665 * Constructs a newly allocated {@code Float} object that 666 * represents the primitive {@code float} argument. 667 * 668 * @param value the value to be represented by the {@code Float}. 669 * 670 * @deprecated 671 * It is rarely appropriate to use this constructor. The static factory 672 * {@link #valueOf(float)} is generally a better choice, as it is 673 * likely to yield significantly better space and time performance. 674 */ 675 @Deprecated(since="9", forRemoval = true) 676 public Float(float value) { 677 this.value = value; 678 } 679 680 /** 681 * Constructs a newly allocated {@code Float} object that 682 * represents the argument converted to type {@code float}. 683 * 684 * @param value the value to be represented by the {@code Float}. 685 * 686 * @deprecated 687 * It is rarely appropriate to use this constructor. Instead, use the 688 * static factory method {@link #valueOf(float)} method as follows: 689 * {@code Float.valueOf((float)value)}. 690 */ 691 @Deprecated(since="9", forRemoval = true) 692 public Float(double value) { 693 this.value = (float)value; 694 } 695 696 /** 697 * Constructs a newly allocated {@code Float} object that 698 * represents the floating-point value of type {@code float} 699 * represented by the string. The string is converted to a 700 * {@code float} value as if by the {@code valueOf} method. 701 * 702 * @param s a string to be converted to a {@code Float}. 703 * @throws NumberFormatException if the string does not contain a 704 * parsable number. 705 * 706 * @deprecated 707 * It is rarely appropriate to use this constructor. 708 * Use {@link #parseFloat(String)} to convert a string to a 709 * {@code float} primitive, or use {@link #valueOf(String)} 710 * to convert a string to a {@code Float} object. 711 */ 712 @Deprecated(since="9", forRemoval = true) 713 public Float(String s) throws NumberFormatException { 714 value = parseFloat(s); 715 } 716 717 /** 718 * Returns {@code true} if this {@code Float} value is a 719 * Not-a-Number (NaN), {@code false} otherwise. 720 * 721 * @return {@code true} if the value represented by this object is 722 * NaN; {@code false} otherwise. 723 */ 724 public boolean isNaN() { 725 return isNaN(value); 726 } 727 728 /** 729 * Returns {@code true} if this {@code Float} value is 730 * infinitely large in magnitude, {@code false} otherwise. 731 * 732 * @return {@code true} if the value represented by this object is 733 * positive infinity or negative infinity; 734 * {@code false} otherwise. 735 */ 736 public boolean isInfinite() { 737 return isInfinite(value); 738 } 739 740 /** 741 * Returns a string representation of this {@code Float} object. 742 * The primitive {@code float} value represented by this object 743 * is converted to a {@code String} exactly as if by the method 744 * {@code toString} of one argument. 745 * 746 * @return a {@code String} representation of this object. 747 * @see java.lang.Float#toString(float) 748 */ 749 public String toString() { 750 return Float.toString(value); 751 } 752 753 /** 754 * Returns the value of this {@code Float} as a {@code byte} after 755 * a narrowing primitive conversion. 756 * 757 * @return the {@code float} value represented by this object 758 * converted to type {@code byte} 759 * @jls 5.1.3 Narrowing Primitive Conversion 760 */ 761 @Override 762 public byte byteValue() { 763 return (byte)value; 764 } 765 766 /** 767 * Returns the value of this {@code Float} as a {@code short} 768 * after a narrowing primitive conversion. 769 * 770 * @return the {@code float} value represented by this object 771 * converted to type {@code short} 772 * @jls 5.1.3 Narrowing Primitive Conversion 773 * @since 1.1 774 */ 775 @Override 776 public short shortValue() { 777 return (short)value; 778 } 779 780 /** 781 * Returns the value of this {@code Float} as an {@code int} after 782 * a narrowing primitive conversion. 783 * 784 * @apiNote 785 * This method corresponds to the convertToIntegerTowardZero 786 * operation defined in IEEE 754. 787 * 788 * @return the {@code float} value represented by this object 789 * converted to type {@code int} 790 * @jls 5.1.3 Narrowing Primitive Conversion 791 */ 792 @Override 793 public int intValue() { 794 return (int)value; 795 } 796 797 /** 798 * Returns value of this {@code Float} as a {@code long} after a 799 * narrowing primitive conversion. 800 * 801 * @apiNote 802 * This method corresponds to the convertToIntegerTowardZero 803 * operation defined in IEEE 754. 804 * 805 * @return the {@code float} value represented by this object 806 * converted to type {@code long} 807 * @jls 5.1.3 Narrowing Primitive Conversion 808 */ 809 @Override 810 public long longValue() { 811 return (long)value; 812 } 813 814 /** 815 * Returns the {@code float} value of this {@code Float} object. 816 * 817 * @return the {@code float} value represented by this object 818 */ 819 @Override 820 @IntrinsicCandidate 821 public float floatValue() { 822 return value; 823 } 824 825 /** 826 * Returns the value of this {@code Float} as a {@code double} 827 * after a widening primitive conversion. 828 * 829 * @apiNote 830 * This method corresponds to the convertFormat operation defined 831 * in IEEE 754. 832 * 833 * @return the {@code float} value represented by this 834 * object converted to type {@code double} 835 * @jls 5.1.2 Widening Primitive Conversion 836 */ 837 @Override 838 public double doubleValue() { 839 return (double)value; 840 } 841 842 /** 843 * Returns a hash code for this {@code Float} object. The 844 * result is the integer bit representation, exactly as produced 845 * by the method {@link #floatToIntBits(float)}, of the primitive 846 * {@code float} value represented by this {@code Float} 847 * object. 848 * 849 * @return a hash code value for this object. 850 */ 851 @Override 852 public int hashCode() { 853 return Float.hashCode(value); 854 } 855 856 /** 857 * Returns a hash code for a {@code float} value; compatible with 858 * {@code Float.hashCode()}. 859 * 860 * @param value the value to hash 861 * @return a hash code value for a {@code float} value. 862 * @since 1.8 863 */ 864 public static int hashCode(float value) { 865 return floatToIntBits(value); 866 } 867 868 /** 869 * Compares this object against the specified object. The result 870 * is {@code true} if and only if the argument is not 871 * {@code null} and is a {@code Float} object that 872 * represents a {@code float} with the same value as the 873 * {@code float} represented by this object. For this 874 * purpose, two {@code float} values are considered to be the 875 * same if and only if the method {@link #floatToIntBits(float)} 876 * returns the identical {@code int} value when applied to 877 * each. 878 * 879 * @apiNote 880 * This method is defined in terms of {@link 881 * #floatToIntBits(float)} rather than the {@code ==} operator on 882 * {@code float} values since the {@code ==} operator does 883 * <em>not</em> define an equivalence relation and to satisfy the 884 * {@linkplain Object#equals equals contract} an equivalence 885 * relation must be implemented; see {@linkplain Double##equivalenceRelation 886 * this discussion for details of floating-point equality and equivalence}. 887 * 888 * @param obj the object to be compared 889 * @return {@code true} if the objects are the same; 890 * {@code false} otherwise. 891 * @see java.lang.Float#floatToIntBits(float) 892 * @jls 15.21.1 Numerical Equality Operators == and != 893 */ 894 public boolean equals(Object obj) { 895 return (obj instanceof Float) 896 && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); 897 } 898 899 /** 900 * Returns a representation of the specified floating-point value 901 * according to the IEEE 754 floating-point "single format" bit 902 * layout. 903 * 904 * <p>Bit 31 (the bit that is selected by the mask 905 * {@code 0x80000000}) represents the sign of the floating-point 906 * number. 907 * Bits 30-23 (the bits that are selected by the mask 908 * {@code 0x7f800000}) represent the exponent. 909 * Bits 22-0 (the bits that are selected by the mask 910 * {@code 0x007fffff}) represent the significand (sometimes called 911 * the mantissa) of the floating-point number. 912 * 913 * <p>If the argument is positive infinity, the result is 914 * {@code 0x7f800000}. 915 * 916 * <p>If the argument is negative infinity, the result is 917 * {@code 0xff800000}. 918 * 919 * <p>If the argument is NaN, the result is {@code 0x7fc00000}. 920 * 921 * <p>In all cases, the result is an integer that, when given to the 922 * {@link #intBitsToFloat(int)} method, will produce a floating-point 923 * value the same as the argument to {@code floatToIntBits} 924 * (except all NaN values are collapsed to a single 925 * "canonical" NaN value). 926 * 927 * @param value a floating-point number. 928 * @return the bits that represent the floating-point number. 929 */ 930 @IntrinsicCandidate 931 public static int floatToIntBits(float value) { 932 if (!isNaN(value)) { 933 return floatToRawIntBits(value); 934 } 935 return 0x7fc00000; 936 } 937 938 /** 939 * Returns a representation of the specified floating-point value 940 * according to the IEEE 754 floating-point "single format" bit 941 * layout, preserving Not-a-Number (NaN) values. 942 * 943 * <p>Bit 31 (the bit that is selected by the mask 944 * {@code 0x80000000}) represents the sign of the floating-point 945 * number. 946 * Bits 30-23 (the bits that are selected by the mask 947 * {@code 0x7f800000}) represent the exponent. 948 * Bits 22-0 (the bits that are selected by the mask 949 * {@code 0x007fffff}) represent the significand (sometimes called 950 * the mantissa) of the floating-point number. 951 * 952 * <p>If the argument is positive infinity, the result is 953 * {@code 0x7f800000}. 954 * 955 * <p>If the argument is negative infinity, the result is 956 * {@code 0xff800000}. 957 * 958 * <p>If the argument is NaN, the result is the integer representing 959 * the actual NaN value. Unlike the {@code floatToIntBits} 960 * method, {@code floatToRawIntBits} does not collapse all the 961 * bit patterns encoding a NaN to a single "canonical" 962 * NaN value. 963 * 964 * <p>In all cases, the result is an integer that, when given to the 965 * {@link #intBitsToFloat(int)} method, will produce a 966 * floating-point value the same as the argument to 967 * {@code floatToRawIntBits}. 968 * 969 * @param value a floating-point number. 970 * @return the bits that represent the floating-point number. 971 * @since 1.3 972 */ 973 @IntrinsicCandidate 974 public static native int floatToRawIntBits(float value); 975 976 /** 977 * Returns the {@code float} value corresponding to a given 978 * bit representation. 979 * The argument is considered to be a representation of a 980 * floating-point value according to the IEEE 754 floating-point 981 * "single format" bit layout. 982 * 983 * <p>If the argument is {@code 0x7f800000}, the result is positive 984 * infinity. 985 * 986 * <p>If the argument is {@code 0xff800000}, the result is negative 987 * infinity. 988 * 989 * <p>If the argument is any value in the range 990 * {@code 0x7f800001} through {@code 0x7fffffff} or in 991 * the range {@code 0xff800001} through 992 * {@code 0xffffffff}, the result is a NaN. No IEEE 754 993 * floating-point operation provided by Java can distinguish 994 * between two NaN values of the same type with different bit 995 * patterns. Distinct values of NaN are only distinguishable by 996 * use of the {@code Float.floatToRawIntBits} method. 997 * 998 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 999 * values that can be computed from the argument: 1000 * 1001 * {@snippet lang="java" : 1002 * int s = ((bits >> 31) == 0) ? 1 : -1; 1003 * int e = ((bits >> 23) & 0xff); 1004 * int m = (e == 0) ? 1005 * (bits & 0x7fffff) << 1 : 1006 * (bits & 0x7fffff) | 0x800000; 1007 * } 1008 * 1009 * Then the floating-point result equals the value of the mathematical 1010 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>. 1011 * 1012 * <p>Note that this method may not be able to return a 1013 * {@code float} NaN with exactly same bit pattern as the 1014 * {@code int} argument. IEEE 754 distinguishes between two 1015 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 1016 * differences between the two kinds of NaN are generally not 1017 * visible in Java. Arithmetic operations on signaling NaNs turn 1018 * them into quiet NaNs with a different, but often similar, bit 1019 * pattern. However, on some processors merely copying a 1020 * signaling NaN also performs that conversion. In particular, 1021 * copying a signaling NaN to return it to the calling method may 1022 * perform this conversion. So {@code intBitsToFloat} may 1023 * not be able to return a {@code float} with a signaling NaN 1024 * bit pattern. Consequently, for some {@code int} values, 1025 * {@code floatToRawIntBits(intBitsToFloat(start))} may 1026 * <i>not</i> equal {@code start}. Moreover, which 1027 * particular bit patterns represent signaling NaNs is platform 1028 * dependent; although all NaN bit patterns, quiet or signaling, 1029 * must be in the NaN range identified above. 1030 * 1031 * @param bits an integer. 1032 * @return the {@code float} floating-point value with the same bit 1033 * pattern. 1034 */ 1035 @IntrinsicCandidate 1036 public static native float intBitsToFloat(int bits); 1037 1038 /** 1039 * {@return the {@code float} value closest to the numerical value 1040 * of the argument, a floating-point binary16 value encoded in a 1041 * {@code short}} The conversion is exact; all binary16 values can 1042 * be exactly represented in {@code float}. 1043 * 1044 * Special cases: 1045 * <ul> 1046 * <li> If the argument is zero, the result is a zero with the 1047 * same sign as the argument. 1048 * <li> If the argument is infinite, the result is an infinity 1049 * with the same sign as the argument. 1050 * <li> If the argument is a NaN, the result is a NaN. 1051 * </ul> 1052 * 1053 * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4> 1054 * The IEEE 754 standard defines binary16 as a 16-bit format, along 1055 * with the 32-bit binary32 format (corresponding to the {@code 1056 * float} type) and the 64-bit binary64 format (corresponding to 1057 * the {@code double} type). The binary16 format is similar to the 1058 * other IEEE 754 formats, except smaller, having all the usual 1059 * IEEE 754 values such as NaN, signed infinities, signed zeros, 1060 * and subnormals. The parameters (JLS {@jls 4.2.3}) for the 1061 * binary16 format are N = 11 precision bits, K = 5 exponent bits, 1062 * <i>E</i><sub><i>max</i></sub> = 15, and 1063 * <i>E</i><sub><i>min</i></sub> = -14. 1064 * 1065 * @apiNote 1066 * This method corresponds to the convertFormat operation defined 1067 * in IEEE 754 from the binary16 format to the binary32 format. 1068 * The operation of this method is analogous to a primitive 1069 * widening conversion (JLS {@jls 5.1.2}). 1070 * 1071 * @param floatBinary16 the binary16 value to convert to {@code float} 1072 * @since 20 1073 */ 1074 @IntrinsicCandidate 1075 public static float float16ToFloat(short floatBinary16) { 1076 /* 1077 * The binary16 format has 1 sign bit, 5 exponent bits, and 10 1078 * significand bits. The exponent bias is 15. 1079 */ 1080 int bin16arg = (int)floatBinary16; 1081 int bin16SignBit = 0x8000 & bin16arg; 1082 int bin16ExpBits = 0x7c00 & bin16arg; 1083 int bin16SignifBits = 0x03FF & bin16arg; 1084 1085 // Shift left difference in the number of significand bits in 1086 // the float and binary16 formats 1087 final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11); 1088 1089 float sign = (bin16SignBit != 0) ? -1.0f : 1.0f; 1090 1091 // Extract binary16 exponent, remove its bias, add in the bias 1092 // of a float exponent and shift to correct bit location 1093 // (significand width includes the implicit bit so shift one 1094 // less). 1095 int bin16Exp = (bin16ExpBits >> 10) - 15; 1096 if (bin16Exp == -15) { 1097 // For subnormal binary16 values and 0, the numerical 1098 // value is 2^24 * the significand as an integer (no 1099 // implicit bit). 1100 return sign * (0x1p-24f * bin16SignifBits); 1101 } else if (bin16Exp == 16) { 1102 return (bin16SignifBits == 0) ? 1103 sign * Float.POSITIVE_INFINITY : 1104 Float.intBitsToFloat((bin16SignBit << 16) | 1105 0x7f80_0000 | 1106 // Preserve NaN signif bits 1107 ( bin16SignifBits << SIGNIF_SHIFT )); 1108 } 1109 1110 assert -15 < bin16Exp && bin16Exp < 16; 1111 1112 int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS) 1113 << (FloatConsts.SIGNIFICAND_WIDTH - 1); 1114 1115 // Compute and combine result sign, exponent, and significand bits. 1116 return Float.intBitsToFloat((bin16SignBit << 16) | 1117 floatExpBits | 1118 (bin16SignifBits << SIGNIF_SHIFT)); 1119 } 1120 1121 /** 1122 * {@return the floating-point binary16 value, encoded in a {@code 1123 * short}, closest in value to the argument} 1124 * The conversion is computed under the {@linkplain 1125 * java.math.RoundingMode#HALF_EVEN round to nearest even rounding 1126 * mode}. 1127 * 1128 * Special cases: 1129 * <ul> 1130 * <li> If the argument is zero, the result is a zero with the 1131 * same sign as the argument. 1132 * <li> If the argument is infinite, the result is an infinity 1133 * with the same sign as the argument. 1134 * <li> If the argument is a NaN, the result is a NaN. 1135 * </ul> 1136 * 1137 * The {@linkplain ##binary16Format binary16 format} is discussed in 1138 * more detail in the {@link #float16ToFloat} method. 1139 * 1140 * @apiNote 1141 * This method corresponds to the convertFormat operation defined 1142 * in IEEE 754 from the binary32 format to the binary16 format. 1143 * The operation of this method is analogous to a primitive 1144 * narrowing conversion (JLS {@jls 5.1.3}). 1145 * 1146 * @param f the {@code float} value to convert to binary16 1147 * @since 20 1148 */ 1149 @IntrinsicCandidate 1150 public static short floatToFloat16(float f) { 1151 int doppel = Float.floatToRawIntBits(f); 1152 short sign_bit = (short)((doppel & 0x8000_0000) >> 16); 1153 1154 if (Float.isNaN(f)) { 1155 // Preserve sign and attempt to preserve significand bits 1156 return (short)(sign_bit 1157 | 0x7c00 // max exponent + 1 1158 // Preserve high order bit of float NaN in the 1159 // binary16 result NaN (tenth bit); OR in remaining 1160 // bits into lower 9 bits of binary 16 significand. 1161 | (doppel & 0x007f_e000) >> 13 // 10 bits 1162 | (doppel & 0x0000_1ff0) >> 4 // 9 bits 1163 | (doppel & 0x0000_000f)); // 4 bits 1164 } 1165 1166 float abs_f = Math.abs(f); 1167 1168 // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp 1169 if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) { 1170 return (short)(sign_bit | 0x7c00); // Positive or negative infinity 1171 } 1172 1173 // Smallest magnitude nonzero representable binary16 value 1174 // is equal to 0x1.0p-24; half-way and smaller rounds to zero. 1175 if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals. 1176 return sign_bit; // Positive or negative zero 1177 } 1178 1179 // Dealing with finite values in exponent range of binary16 1180 // (when rounding is done, could still round up) 1181 int exp = Math.getExponent(f); 1182 assert -25 <= exp && exp <= 15; 1183 1184 // For binary16 subnormals, beside forcing exp to -15, retain 1185 // the difference expdelta = E_min - exp. This is the excess 1186 // shift value, in addition to 13, to be used in the 1187 // computations below. Further the (hidden) msb with value 1 1188 // in f must be involved as well. 1189 int expdelta = 0; 1190 int msb = 0x0000_0000; 1191 if (exp < -14) { 1192 expdelta = -14 - exp; 1193 exp = -15; 1194 msb = 0x0080_0000; 1195 } 1196 int f_signif_bits = doppel & 0x007f_ffff | msb; 1197 1198 // Significand bits as if using rounding to zero (truncation). 1199 short signif_bits = (short)(f_signif_bits >> (13 + expdelta)); 1200 1201 // For round to nearest even, determining whether or not to 1202 // round up (in magnitude) is a function of the least 1203 // significant bit (LSB), the next bit position (the round 1204 // position), and the sticky bit (whether there are any 1205 // nonzero bits in the exact result to the right of the round 1206 // digit). An increment occurs in three cases: 1207 // 1208 // LSB Round Sticky 1209 // 0 1 1 1210 // 1 1 0 1211 // 1 1 1 1212 // See "Computer Arithmetic Algorithms," Koren, Table 4.9 1213 1214 int lsb = f_signif_bits & (1 << 13 + expdelta); 1215 int round = f_signif_bits & (1 << 12 + expdelta); 1216 int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1); 1217 1218 if (round != 0 && ((lsb | sticky) != 0 )) { 1219 signif_bits++; 1220 } 1221 1222 // No bits set in significand beyond the *first* exponent bit, 1223 // not just the significand; quantity is added to the exponent 1224 // to implement a carry out from rounding the significand. 1225 assert (0xf800 & signif_bits) == 0x0; 1226 1227 return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) ); 1228 } 1229 1230 /** 1231 * Compares two {@code Float} objects numerically. 1232 * 1233 * This method imposes a total order on {@code Float} objects 1234 * with two differences compared to the incomplete order defined by 1235 * the Java language numerical comparison operators ({@code <, <=, 1236 * ==, >=, >}) on {@code float} values. 1237 * 1238 * <ul><li> A NaN is <em>unordered</em> with respect to other 1239 * values and unequal to itself under the comparison 1240 * operators. This method chooses to define {@code 1241 * Float.NaN} to be equal to itself and greater than all 1242 * other {@code double} values (including {@code 1243 * Float.POSITIVE_INFINITY}). 1244 * 1245 * <li> Positive zero and negative zero compare equal 1246 * numerically, but are distinct and distinguishable values. 1247 * This method chooses to define positive zero ({@code +0.0f}), 1248 * to be greater than negative zero ({@code -0.0f}). 1249 * </ul> 1250 * 1251 * This ensures that the <i>natural ordering</i> of {@code Float} 1252 * objects imposed by this method is <i>consistent with 1253 * equals</i>; see {@linkplain Double##equivalenceRelation this 1254 * discussion for details of floating-point comparison and 1255 * ordering}. 1256 * 1257 * 1258 * @param anotherFloat the {@code Float} to be compared. 1259 * @return the value {@code 0} if {@code anotherFloat} is 1260 * numerically equal to this {@code Float}; a value 1261 * less than {@code 0} if this {@code Float} 1262 * is numerically less than {@code anotherFloat}; 1263 * and a value greater than {@code 0} if this 1264 * {@code Float} is numerically greater than 1265 * {@code anotherFloat}. 1266 * 1267 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 1268 * @since 1.2 1269 */ 1270 @Override 1271 public int compareTo(Float anotherFloat) { 1272 return Float.compare(value, anotherFloat.value); 1273 } 1274 1275 /** 1276 * Compares the two specified {@code float} values. The sign 1277 * of the integer value returned is the same as that of the 1278 * integer that would be returned by the call: 1279 * <pre> 1280 * Float.valueOf(f1).compareTo(Float.valueOf(f2)) 1281 * </pre> 1282 * 1283 * @param f1 the first {@code float} to compare. 1284 * @param f2 the second {@code float} to compare. 1285 * @return the value {@code 0} if {@code f1} is 1286 * numerically equal to {@code f2}; a value less than 1287 * {@code 0} if {@code f1} is numerically less than 1288 * {@code f2}; and a value greater than {@code 0} 1289 * if {@code f1} is numerically greater than 1290 * {@code f2}. 1291 * @since 1.4 1292 */ 1293 public static int compare(float f1, float f2) { 1294 if (f1 < f2) 1295 return -1; // Neither val is NaN, thisVal is smaller 1296 if (f1 > f2) 1297 return 1; // Neither val is NaN, thisVal is larger 1298 1299 // Cannot use floatToRawIntBits because of possibility of NaNs. 1300 int thisBits = Float.floatToIntBits(f1); 1301 int anotherBits = Float.floatToIntBits(f2); 1302 1303 return (thisBits == anotherBits ? 0 : // Values are equal 1304 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1305 1)); // (0.0, -0.0) or (NaN, !NaN) 1306 } 1307 1308 /** 1309 * Adds two {@code float} values together as per the + operator. 1310 * 1311 * @apiNote This method corresponds to the addition operation 1312 * defined in IEEE 754. 1313 * 1314 * @param a the first operand 1315 * @param b the second operand 1316 * @return the sum of {@code a} and {@code b} 1317 * @jls 4.2.4 Floating-Point Operations 1318 * @see java.util.function.BinaryOperator 1319 * @since 1.8 1320 */ 1321 public static float sum(float a, float b) { 1322 return a + b; 1323 } 1324 1325 /** 1326 * Returns the greater of two {@code float} values 1327 * as if by calling {@link Math#max(float, float) Math.max}. 1328 * 1329 * @apiNote 1330 * This method corresponds to the maximum operation defined in 1331 * IEEE 754. 1332 * 1333 * @param a the first operand 1334 * @param b the second operand 1335 * @return the greater of {@code a} and {@code b} 1336 * @see java.util.function.BinaryOperator 1337 * @since 1.8 1338 */ 1339 public static float max(float a, float b) { 1340 return Math.max(a, b); 1341 } 1342 1343 /** 1344 * Returns the smaller of two {@code float} values 1345 * as if by calling {@link Math#min(float, float) Math.min}. 1346 * 1347 * @apiNote 1348 * This method corresponds to the minimum operation defined in 1349 * IEEE 754. 1350 * 1351 * @param a the first operand 1352 * @param b the second operand 1353 * @return the smaller of {@code a} and {@code b} 1354 * @see java.util.function.BinaryOperator 1355 * @since 1.8 1356 */ 1357 public static float min(float a, float b) { 1358 return Math.min(a, b); 1359 } 1360 1361 /** 1362 * Returns an {@link Optional} containing the nominal descriptor for this 1363 * instance, which is the instance itself. 1364 * 1365 * @return an {@link Optional} describing the {@linkplain Float} instance 1366 * @since 12 1367 */ 1368 @Override 1369 public Optional<Float> describeConstable() { 1370 return Optional.of(this); 1371 } 1372 1373 /** 1374 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1375 * the instance itself. 1376 * 1377 * @param lookup ignored 1378 * @return the {@linkplain Float} instance 1379 * @since 12 1380 */ 1381 @Override 1382 public Float resolveConstantDesc(MethodHandles.Lookup lookup) { 1383 return this; 1384 } 1385 1386 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1387 @java.io.Serial 1388 private static final long serialVersionUID = -2671257302660747028L; 1389 }