1 /*
   2  * Copyright (c) 1994, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.misc.CDS;
  29 import jdk.internal.misc.VM;
  30 import jdk.internal.util.DecimalDigits;
  31 import jdk.internal.value.DeserializeConstructor;
  32 import jdk.internal.vm.annotation.ForceInline;
  33 import jdk.internal.vm.annotation.IntrinsicCandidate;
  34 import jdk.internal.vm.annotation.Stable;
  35 
  36 import java.lang.annotation.Native;
  37 import java.lang.constant.Constable;
  38 import java.lang.constant.ConstantDesc;
  39 import java.lang.invoke.MethodHandles;
  40 import java.util.Objects;
  41 import java.util.Optional;
  42 
  43 import static java.lang.Character.digit;
  44 import static java.lang.String.COMPACT_STRINGS;
  45 import static java.lang.String.LATIN1;
  46 import static java.lang.String.UTF16;
  47 
  48 /**
  49  * The {@code Integer} class wraps a value of the primitive type
  50  * {@code int} in an object. An object of type {@code Integer}
  51  * contains a single field whose type is {@code int}.
  52  *
  53  * <p>In addition, this class provides several methods for converting
  54  * an {@code int} to a {@code String} and a {@code String} to an
  55  * {@code int}, as well as other constants and methods useful when
  56  * dealing with an {@code int}.
  57  *
  58  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  59  * class; programmers should treat instances that are
  60  * {@linkplain #equals(Object) equal} as interchangeable and should not
  61  * use instances for synchronization, or unpredictable behavior may
  62  * occur. For example, in a future release, synchronization may fail.
  63  *
  64  * <p>Implementation note: The implementations of the "bit twiddling"
  65  * methods (such as {@link #highestOneBit(int) highestOneBit} and
  66  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
  67  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  68  * Delight</i>, (Addison Wesley, 2002).
  69  *
  70  * @author  Lee Boynton
  71  * @author  Arthur van Hoff
  72  * @author  Josh Bloch
  73  * @author  Joseph D. Darcy
  74  * @since 1.0
  75  */
  76 @jdk.internal.MigratedValueClass
  77 @jdk.internal.ValueBased
  78 public final class Integer extends Number
  79         implements Comparable<Integer>, Constable, ConstantDesc {
  80     /**
  81      * A constant holding the minimum value an {@code int} can
  82      * have, -2<sup>31</sup>.
  83      */
  84     @Native public static final int   MIN_VALUE = 0x80000000;
  85 
  86     /**
  87      * A constant holding the maximum value an {@code int} can
  88      * have, 2<sup>31</sup>-1.
  89      */
  90     @Native public static final int   MAX_VALUE = 0x7fffffff;
  91 
  92     /**
  93      * The {@code Class} instance representing the primitive type
  94      * {@code int}.
  95      *
  96      * @since   1.1
  97      */
  98     @SuppressWarnings("unchecked")
  99     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
 100 
 101     /**
 102      * All possible chars for representing a number as a String
 103      */
 104     static final char[] digits = {
 105         '0' , '1' , '2' , '3' , '4' , '5' ,
 106         '6' , '7' , '8' , '9' , 'a' , 'b' ,
 107         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
 108         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
 109         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
 110         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
 111     };
 112 
 113     /**
 114      * Returns a string representation of the first argument in the
 115      * radix specified by the second argument.
 116      *
 117      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 118      * or larger than {@code Character.MAX_RADIX}, then the radix
 119      * {@code 10} is used instead.
 120      *
 121      * <p>If the first argument is negative, the first element of the
 122      * result is the ASCII minus character {@code '-'}
 123      * ({@code '\u005Cu002D'}). If the first argument is not
 124      * negative, no sign character appears in the result.
 125      *
 126      * <p>The remaining characters of the result represent the magnitude
 127      * of the first argument. If the magnitude is zero, it is
 128      * represented by a single zero character {@code '0'}
 129      * ({@code '\u005Cu0030'}); otherwise, the first character of
 130      * the representation of the magnitude will not be the zero
 131      * character.  The following ASCII characters are used as digits:
 132      *
 133      * <blockquote>
 134      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 135      * </blockquote>
 136      *
 137      * These are {@code '\u005Cu0030'} through
 138      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 139      * {@code '\u005Cu007A'}. If {@code radix} is
 140      * <var>N</var>, then the first <var>N</var> of these characters
 141      * are used as radix-<var>N</var> digits in the order shown. Thus,
 142      * the digits for hexadecimal (radix 16) are
 143      * {@code 0123456789abcdef}. If uppercase letters are
 144      * desired, the {@link java.lang.String#toUpperCase()} method may
 145      * be called on the result:
 146      *
 147      * <blockquote>
 148      *  {@code Integer.toString(n, 16).toUpperCase()}
 149      * </blockquote>
 150      *
 151      * @param   i       an integer to be converted to a string.
 152      * @param   radix   the radix to use in the string representation.
 153      * @return  a string representation of the argument in the specified radix.
 154      * @see     java.lang.Character#MAX_RADIX
 155      * @see     java.lang.Character#MIN_RADIX
 156      */
 157     public static String toString(int i, int radix) {
 158         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 159             radix = 10;
 160 
 161         /* Use the faster version */
 162         if (radix == 10) {
 163             return toString(i);
 164         }
 165 
 166         if (COMPACT_STRINGS) {
 167             byte[] buf = new byte[33];
 168             boolean negative = (i < 0);
 169             int charPos = 32;
 170 
 171             if (!negative) {
 172                 i = -i;
 173             }
 174 
 175             while (i <= -radix) {
 176                 buf[charPos--] = (byte)digits[-(i % radix)];
 177                 i = i / radix;
 178             }
 179             buf[charPos] = (byte)digits[-i];
 180 
 181             if (negative) {
 182                 buf[--charPos] = '-';
 183             }
 184 
 185             return StringLatin1.newString(buf, charPos, (33 - charPos));
 186         }
 187         return toStringUTF16(i, radix);
 188     }
 189 
 190     private static String toStringUTF16(int i, int radix) {
 191         byte[] buf = new byte[33 * 2];
 192         boolean negative = (i < 0);
 193         int charPos = 32;
 194         if (!negative) {
 195             i = -i;
 196         }
 197         while (i <= -radix) {
 198             StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]);
 199             i = i / radix;
 200         }
 201         StringUTF16.putChar(buf, charPos, digits[-i]);
 202 
 203         if (negative) {
 204             StringUTF16.putChar(buf, --charPos, '-');
 205         }
 206         return StringUTF16.newString(buf, charPos, (33 - charPos));
 207     }
 208 
 209     /**
 210      * Returns a string representation of the first argument as an
 211      * unsigned integer value in the radix specified by the second
 212      * argument.
 213      *
 214      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 215      * or larger than {@code Character.MAX_RADIX}, then the radix
 216      * {@code 10} is used instead.
 217      *
 218      * <p>Note that since the first argument is treated as an unsigned
 219      * value, no leading sign character is printed.
 220      *
 221      * <p>If the magnitude is zero, it is represented by a single zero
 222      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 223      * the first character of the representation of the magnitude will
 224      * not be the zero character.
 225      *
 226      * <p>The behavior of radixes and the characters used as digits
 227      * are the same as {@link #toString(int, int) toString}.
 228      *
 229      * @param   i       an integer to be converted to an unsigned string.
 230      * @param   radix   the radix to use in the string representation.
 231      * @return  an unsigned string representation of the argument in the specified radix.
 232      * @see     #toString(int, int)
 233      * @since 1.8
 234      */
 235     public static String toUnsignedString(int i, int radix) {
 236         return Long.toUnsignedString(toUnsignedLong(i), radix);
 237     }
 238 
 239     /**
 240      * Returns a string representation of the integer argument as an
 241      * unsigned integer in base&nbsp;16.
 242      *
 243      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 244      * if the argument is negative; otherwise, it is equal to the
 245      * argument.  This value is converted to a string of ASCII digits
 246      * in hexadecimal (base&nbsp;16) with no extra leading
 247      * {@code 0}s.
 248      *
 249      * <p>The value of the argument can be recovered from the returned
 250      * string {@code s} by calling {@link
 251      * Integer#parseUnsignedInt(String, int)
 252      * Integer.parseUnsignedInt(s, 16)}.
 253      *
 254      * <p>If the unsigned magnitude is zero, it is represented by a
 255      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 256      * otherwise, the first character of the representation of the
 257      * unsigned magnitude will not be the zero character. The
 258      * following characters are used as hexadecimal digits:
 259      *
 260      * <blockquote>
 261      *  {@code 0123456789abcdef}
 262      * </blockquote>
 263      *
 264      * These are the characters {@code '\u005Cu0030'} through
 265      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 266      * {@code '\u005Cu0066'}. If uppercase letters are
 267      * desired, the {@link java.lang.String#toUpperCase()} method may
 268      * be called on the result:
 269      *
 270      * <blockquote>
 271      *  {@code Integer.toHexString(n).toUpperCase()}
 272      * </blockquote>
 273      *
 274      * @apiNote
 275      * The {@link java.util.HexFormat} class provides formatting and parsing
 276      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 277      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 278      * with leading zeros and for byte arrays includes for each byte
 279      * a delimiter, prefix, and suffix.
 280      *
 281      * @param   i   an integer to be converted to a string.
 282      * @return  the string representation of the unsigned integer value
 283      *          represented by the argument in hexadecimal (base&nbsp;16).
 284      * @see java.util.HexFormat
 285      * @see #parseUnsignedInt(String, int)
 286      * @see #toUnsignedString(int, int)
 287      * @since   1.0.2
 288      */
 289     public static String toHexString(int i) {
 290         return toUnsignedString0(i, 4);
 291     }
 292 
 293     /**
 294      * Returns a string representation of the integer argument as an
 295      * unsigned integer in base&nbsp;8.
 296      *
 297      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 298      * if the argument is negative; otherwise, it is equal to the
 299      * argument.  This value is converted to a string of ASCII digits
 300      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
 301      *
 302      * <p>The value of the argument can be recovered from the returned
 303      * string {@code s} by calling {@link
 304      * Integer#parseUnsignedInt(String, int)
 305      * Integer.parseUnsignedInt(s, 8)}.
 306      *
 307      * <p>If the unsigned magnitude is zero, it is represented by a
 308      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 309      * otherwise, the first character of the representation of the
 310      * unsigned magnitude will not be the zero character. The
 311      * following characters are used as octal digits:
 312      *
 313      * <blockquote>
 314      * {@code 01234567}
 315      * </blockquote>
 316      *
 317      * These are the characters {@code '\u005Cu0030'} through
 318      * {@code '\u005Cu0037'}.
 319      *
 320      * @param   i   an integer to be converted to a string.
 321      * @return  the string representation of the unsigned integer value
 322      *          represented by the argument in octal (base&nbsp;8).
 323      * @see #parseUnsignedInt(String, int)
 324      * @see #toUnsignedString(int, int)
 325      * @since   1.0.2
 326      */
 327     public static String toOctalString(int i) {
 328         return toUnsignedString0(i, 3);
 329     }
 330 
 331     /**
 332      * Returns a string representation of the integer argument as an
 333      * unsigned integer in base&nbsp;2.
 334      *
 335      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 336      * if the argument is negative; otherwise it is equal to the
 337      * argument.  This value is converted to a string of ASCII digits
 338      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
 339      *
 340      * <p>The value of the argument can be recovered from the returned
 341      * string {@code s} by calling {@link
 342      * Integer#parseUnsignedInt(String, int)
 343      * Integer.parseUnsignedInt(s, 2)}.
 344      *
 345      * <p>If the unsigned magnitude is zero, it is represented by a
 346      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 347      * otherwise, the first character of the representation of the
 348      * unsigned magnitude will not be the zero character. The
 349      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 350      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 351      *
 352      * @param   i   an integer to be converted to a string.
 353      * @return  the string representation of the unsigned integer value
 354      *          represented by the argument in binary (base&nbsp;2).
 355      * @see #parseUnsignedInt(String, int)
 356      * @see #toUnsignedString(int, int)
 357      * @since   1.0.2
 358      */
 359     public static String toBinaryString(int i) {
 360         return toUnsignedString0(i, 1);
 361     }
 362 
 363     /**
 364      * Convert the integer to an unsigned number.
 365      */
 366     private static String toUnsignedString0(int val, int shift) {
 367         // assert shift > 0 && shift <=5 : "Illegal shift value";
 368         int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
 369         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 370         if (COMPACT_STRINGS) {
 371             byte[] buf = new byte[chars];
 372             formatUnsignedInt(val, shift, buf, chars);
 373             return new String(buf, LATIN1);
 374         } else {
 375             byte[] buf = new byte[chars * 2];
 376             formatUnsignedIntUTF16(val, shift, buf, chars);
 377             return new String(buf, UTF16);
 378         }
 379     }
 380 
 381     /**
 382      * Format an {@code int} (treated as unsigned) into a byte buffer (LATIN1 version). If
 383      * {@code len} exceeds the formatted ASCII representation of {@code val},
 384      * {@code buf} will be padded with leading zeroes.
 385      *
 386      * @param val the unsigned int to format
 387      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 388      * @param buf the byte buffer to write to
 389      * @param len the number of characters to write
 390      */
 391     private static void formatUnsignedInt(int val, int shift, byte[] buf, int len) {
 392         int charPos = len;
 393         int radix = 1 << shift;
 394         int mask = radix - 1;
 395         do {
 396             buf[--charPos] = (byte)Integer.digits[val & mask];
 397             val >>>= shift;
 398         } while (charPos > 0);
 399     }
 400 
 401     /**
 402      * Format an {@code int} (treated as unsigned) into a byte buffer (UTF16 version). If
 403      * {@code len} exceeds the formatted ASCII representation of {@code val},
 404      * {@code buf} will be padded with leading zeroes.
 405      *
 406      * @param val the unsigned int to format
 407      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 408      * @param buf the byte buffer to write to
 409      * @param len the number of characters to write
 410      */
 411     private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int len) {
 412         int charPos = len;
 413         int radix = 1 << shift;
 414         int mask = radix - 1;
 415         do {
 416             StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]);
 417             val >>>= shift;
 418         } while (charPos > 0);
 419     }
 420 
 421     /**
 422      * Returns a {@code String} object representing the
 423      * specified integer. The argument is converted to signed decimal
 424      * representation and returned as a string, exactly as if the
 425      * argument and radix 10 were given as arguments to the {@link
 426      * #toString(int, int)} method.
 427      *
 428      * @param   i   an integer to be converted.
 429      * @return  a string representation of the argument in base&nbsp;10.
 430      */
 431     @IntrinsicCandidate
 432     public static String toString(int i) {
 433         int size = DecimalDigits.stringSize(i);
 434         if (COMPACT_STRINGS) {
 435             byte[] buf = new byte[size];
 436             StringLatin1.getChars(i, size, buf);
 437             return new String(buf, LATIN1);
 438         } else {
 439             byte[] buf = new byte[size * 2];
 440             StringUTF16.getChars(i, size, buf);
 441             return new String(buf, UTF16);
 442         }
 443     }
 444 
 445     /**
 446      * Returns a string representation of the argument as an unsigned
 447      * decimal value.
 448      *
 449      * The argument is converted to unsigned decimal representation
 450      * and returned as a string exactly as if the argument and radix
 451      * 10 were given as arguments to the {@link #toUnsignedString(int,
 452      * int)} method.
 453      *
 454      * @param   i  an integer to be converted to an unsigned string.
 455      * @return  an unsigned string representation of the argument.
 456      * @see     #toUnsignedString(int, int)
 457      * @since 1.8
 458      */
 459     public static String toUnsignedString(int i) {
 460         return Long.toString(toUnsignedLong(i));
 461     }
 462 
 463     /**
 464      * Parses the string argument as a signed integer in the radix
 465      * specified by the second argument. The characters in the string
 466      * must all be digits of the specified radix (as determined by
 467      * whether {@link java.lang.Character#digit(char, int)} returns a
 468      * nonnegative value), except that the first character may be an
 469      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 470      * indicate a negative value or an ASCII plus sign {@code '+'}
 471      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 472      * resulting integer value is returned.
 473      *
 474      * <p>An exception of type {@code NumberFormatException} is
 475      * thrown if any of the following situations occurs:
 476      * <ul>
 477      * <li>The first argument is {@code null} or is a string of
 478      * length zero.
 479      *
 480      * <li>The radix is either smaller than
 481      * {@link java.lang.Character#MIN_RADIX} or
 482      * larger than {@link java.lang.Character#MAX_RADIX}.
 483      *
 484      * <li>Any character of the string is not a digit of the specified
 485      * radix, except that the first character may be a minus sign
 486      * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
 487      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 488      * string is longer than length 1.
 489      *
 490      * <li>The value represented by the string is not a value of type
 491      * {@code int}.
 492      * </ul>
 493      *
 494      * <p>Examples:
 495      * <blockquote><pre>
 496      * parseInt("0", 10) returns 0
 497      * parseInt("473", 10) returns 473
 498      * parseInt("+42", 10) returns 42
 499      * parseInt("-0", 10) returns 0
 500      * parseInt("-FF", 16) returns -255
 501      * parseInt("1100110", 2) returns 102
 502      * parseInt("2147483647", 10) returns 2147483647
 503      * parseInt("-2147483648", 10) returns -2147483648
 504      * parseInt("2147483648", 10) throws a NumberFormatException
 505      * parseInt("99", 8) throws a NumberFormatException
 506      * parseInt("Kona", 10) throws a NumberFormatException
 507      * parseInt("Kona", 27) returns 411787
 508      * </pre></blockquote>
 509      *
 510      * @param      s   the {@code String} containing the integer
 511      *                  representation to be parsed
 512      * @param      radix   the radix to be used while parsing {@code s}.
 513      * @return     the integer represented by the string argument in the
 514      *             specified radix.
 515      * @throws     NumberFormatException if the {@code String}
 516      *             does not contain a parsable {@code int}.
 517      */
 518     public static int parseInt(String s, int radix)
 519                 throws NumberFormatException {
 520         /*
 521          * WARNING: This method may be invoked early during VM initialization
 522          * before IntegerCache is initialized. Care must be taken to not use
 523          * the valueOf method.
 524          */
 525 
 526         if (s == null) {
 527             throw new NumberFormatException("Cannot parse null string");
 528         }
 529 
 530         if (radix < Character.MIN_RADIX) {
 531             throw new NumberFormatException(String.format(
 532                 "radix %s less than Character.MIN_RADIX", radix));
 533         }
 534 
 535         if (radix > Character.MAX_RADIX) {
 536             throw new NumberFormatException(String.format(
 537                 "radix %s greater than Character.MAX_RADIX", radix));
 538         }
 539 
 540         int len = s.length();
 541         if (len == 0) {
 542             throw NumberFormatException.forInputString("", radix);
 543         }
 544         int digit = ~0xFF;
 545         int i = 0;
 546         char firstChar = s.charAt(i++);
 547         if (firstChar != '-' && firstChar != '+') {
 548             digit = digit(firstChar, radix);
 549         }
 550         if (digit >= 0 || digit == ~0xFF && len > 1) {
 551             int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 552             int multmin = limit / radix;
 553             int result = -(digit & 0xFF);
 554             boolean inRange = true;
 555             /* Accumulating negatively avoids surprises near MAX_VALUE */
 556             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 557                     && (inRange = result > multmin
 558                         || result == multmin && digit <= radix * multmin - limit)) {
 559                 result = radix * result - digit;
 560             }
 561             if (inRange && i == len && digit >= 0) {
 562                 return firstChar != '-' ? -result : result;
 563             }
 564         }
 565         throw NumberFormatException.forInputString(s, radix);
 566     }
 567 
 568     /**
 569      * Parses the {@link CharSequence} argument as a signed {@code int} in the
 570      * specified {@code radix}, beginning at the specified {@code beginIndex}
 571      * and extending to {@code endIndex - 1}.
 572      *
 573      * <p>The method does not take steps to guard against the
 574      * {@code CharSequence} being mutated while parsing.
 575      *
 576      * @param      s   the {@code CharSequence} containing the {@code int}
 577      *                  representation to be parsed
 578      * @param      beginIndex   the beginning index, inclusive.
 579      * @param      endIndex     the ending index, exclusive.
 580      * @param      radix   the radix to be used while parsing {@code s}.
 581      * @return     the signed {@code int} represented by the subsequence in
 582      *             the specified radix.
 583      * @throws     NullPointerException  if {@code s} is null.
 584      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 585      *             negative, or if {@code beginIndex} is greater than
 586      *             {@code endIndex} or if {@code endIndex} is greater than
 587      *             {@code s.length()}.
 588      * @throws     NumberFormatException  if the {@code CharSequence} does not
 589      *             contain a parsable {@code int} in the specified
 590      *             {@code radix}, or if {@code radix} is either smaller than
 591      *             {@link java.lang.Character#MIN_RADIX} or larger than
 592      *             {@link java.lang.Character#MAX_RADIX}.
 593      * @since  9
 594      */
 595     public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
 596                 throws NumberFormatException {
 597         Objects.requireNonNull(s);
 598         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 599 
 600         if (radix < Character.MIN_RADIX) {
 601             throw new NumberFormatException(String.format(
 602                 "radix %s less than Character.MIN_RADIX", radix));
 603         }
 604 
 605         if (radix > Character.MAX_RADIX) {
 606             throw new NumberFormatException(String.format(
 607                 "radix %s greater than Character.MAX_RADIX", radix));
 608         }
 609 
 610         /*
 611          * While s can be concurrently modified, it is ensured that each
 612          * of its characters is read at most once, from lower to higher indices.
 613          * This is obtained by reading them using the pattern s.charAt(i++),
 614          * and by not updating i anywhere else.
 615          */
 616         if (beginIndex == endIndex) {
 617             throw NumberFormatException.forInputString("", radix);
 618         }
 619         int digit = ~0xFF;
 620         int i = beginIndex;
 621         char firstChar = s.charAt(i++);
 622         if (firstChar != '-' && firstChar != '+') {
 623             digit = digit(firstChar, radix);
 624         }
 625         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 626             int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 627             int multmin = limit / radix;
 628             int result = -(digit & 0xFF);
 629             boolean inRange = true;
 630             /* Accumulating negatively avoids surprises near MAX_VALUE */
 631             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 632                     && (inRange = result > multmin
 633                         || result == multmin && digit <= radix * multmin - limit)) {
 634                 result = radix * result - digit;
 635             }
 636             if (inRange && i == endIndex && digit >= 0) {
 637                 return firstChar != '-' ? -result : result;
 638             }
 639         }
 640         throw NumberFormatException.forCharSequence(s, beginIndex,
 641             endIndex, i - (digit < -1 ? 0 : 1));
 642     }
 643 
 644     /**
 645      * Parses the string argument as a signed decimal integer. The
 646      * characters in the string must all be decimal digits, except
 647      * that the first character may be an ASCII minus sign {@code '-'}
 648      * ({@code '\u005Cu002D'}) to indicate a negative value or an
 649      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 650      * indicate a positive value. The resulting integer value is
 651      * returned, exactly as if the argument and the radix 10 were
 652      * given as arguments to the {@link #parseInt(java.lang.String,
 653      * int)} method.
 654      *
 655      * @param s    a {@code String} containing the {@code int}
 656      *             representation to be parsed
 657      * @return     the integer value represented by the argument in decimal.
 658      * @throws     NumberFormatException  if the string does not contain a
 659      *               parsable integer.
 660      */
 661     public static int parseInt(String s) throws NumberFormatException {
 662         return parseInt(s, 10);
 663     }
 664 
 665     /**
 666      * Parses the string argument as an unsigned integer in the radix
 667      * specified by the second argument.  An unsigned integer maps the
 668      * values usually associated with negative numbers to positive
 669      * numbers larger than {@code MAX_VALUE}.
 670      *
 671      * The characters in the string must all be digits of the
 672      * specified radix (as determined by whether {@link
 673      * java.lang.Character#digit(char, int)} returns a nonnegative
 674      * value), except that the first character may be an ASCII plus
 675      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 676      * integer value is returned.
 677      *
 678      * <p>An exception of type {@code NumberFormatException} is
 679      * thrown if any of the following situations occurs:
 680      * <ul>
 681      * <li>The first argument is {@code null} or is a string of
 682      * length zero.
 683      *
 684      * <li>The radix is either smaller than
 685      * {@link java.lang.Character#MIN_RADIX} or
 686      * larger than {@link java.lang.Character#MAX_RADIX}.
 687      *
 688      * <li>Any character of the string is not a digit of the specified
 689      * radix, except that the first character may be a plus sign
 690      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 691      * string is longer than length 1.
 692      *
 693      * <li>The value represented by the string is larger than the
 694      * largest unsigned {@code int}, 2<sup>32</sup>-1.
 695      *
 696      * </ul>
 697      *
 698      *
 699      * @param      s   the {@code String} containing the unsigned integer
 700      *                  representation to be parsed
 701      * @param      radix   the radix to be used while parsing {@code s}.
 702      * @return     the integer represented by the string argument in the
 703      *             specified radix.
 704      * @throws     NumberFormatException if the {@code String}
 705      *             does not contain a parsable {@code int}.
 706      * @since 1.8
 707      */
 708     public static int parseUnsignedInt(String s, int radix)
 709                 throws NumberFormatException {
 710         if (s == null)  {
 711             throw new NumberFormatException("Cannot parse null string");
 712         }
 713 
 714         if (radix < Character.MIN_RADIX) {
 715             throw new NumberFormatException(String.format(
 716                 "radix %s less than Character.MIN_RADIX", radix));
 717         }
 718 
 719         if (radix > Character.MAX_RADIX) {
 720             throw new NumberFormatException(String.format(
 721                 "radix %s greater than Character.MAX_RADIX", radix));
 722         }
 723 
 724         int len = s.length();
 725         if (len == 0) {
 726             throw NumberFormatException.forInputString(s, radix);
 727         }
 728         int i = 0;
 729         char firstChar = s.charAt(i++);
 730         if (firstChar == '-') {
 731             throw new NumberFormatException(String.format(
 732                 "Illegal leading minus sign on unsigned string %s.", s));
 733         }
 734         int digit = ~0xFF;
 735         if (firstChar != '+') {
 736             digit = digit(firstChar, radix);
 737         }
 738         if (digit >= 0 || digit == ~0xFF && len > 1) {
 739             int multmax = divideUnsigned(-1, radix);  // -1 is max unsigned int
 740             int result = digit & 0xFF;
 741             boolean inRange = true;
 742             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 743                     && (inRange = compareUnsigned(result, multmax) < 0
 744                         || result == multmax && digit < -radix * multmax)) {
 745                 result = radix * result + digit;
 746             }
 747             if (inRange && i == len && digit >= 0) {
 748                 return result;
 749             }
 750         }
 751         if (digit < 0) {
 752             throw NumberFormatException.forInputString(s, radix);
 753         }
 754         throw new NumberFormatException(String.format(
 755             "String value %s exceeds range of unsigned int.", s));
 756     }
 757 
 758     /**
 759      * Parses the {@link CharSequence} argument as an unsigned {@code int} in
 760      * the specified {@code radix}, beginning at the specified
 761      * {@code beginIndex} and extending to {@code endIndex - 1}.
 762      *
 763      * <p>The method does not take steps to guard against the
 764      * {@code CharSequence} being mutated while parsing.
 765      *
 766      * @param      s   the {@code CharSequence} containing the unsigned
 767      *                 {@code int} representation to be parsed
 768      * @param      beginIndex   the beginning index, inclusive.
 769      * @param      endIndex     the ending index, exclusive.
 770      * @param      radix   the radix to be used while parsing {@code s}.
 771      * @return     the unsigned {@code int} represented by the subsequence in
 772      *             the specified radix.
 773      * @throws     NullPointerException  if {@code s} is null.
 774      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 775      *             negative, or if {@code beginIndex} is greater than
 776      *             {@code endIndex} or if {@code endIndex} is greater than
 777      *             {@code s.length()}.
 778      * @throws     NumberFormatException  if the {@code CharSequence} does not
 779      *             contain a parsable unsigned {@code int} in the specified
 780      *             {@code radix}, or if {@code radix} is either smaller than
 781      *             {@link java.lang.Character#MIN_RADIX} or larger than
 782      *             {@link java.lang.Character#MAX_RADIX}.
 783      * @since  9
 784      */
 785     public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
 786                 throws NumberFormatException {
 787         Objects.requireNonNull(s);
 788         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 789 
 790         if (radix < Character.MIN_RADIX) {
 791             throw new NumberFormatException(String.format(
 792                 "radix %s less than Character.MIN_RADIX", radix));
 793         }
 794 
 795         if (radix > Character.MAX_RADIX) {
 796             throw new NumberFormatException(String.format(
 797                 "radix %s greater than Character.MAX_RADIX", radix));
 798         }
 799 
 800         /*
 801          * While s can be concurrently modified, it is ensured that each
 802          * of its characters is read at most once, from lower to higher indices.
 803          * This is obtained by reading them using the pattern s.charAt(i++),
 804          * and by not updating i anywhere else.
 805          */
 806         if (beginIndex == endIndex) {
 807             throw NumberFormatException.forInputString("", radix);
 808         }
 809         int i = beginIndex;
 810         char firstChar = s.charAt(i++);
 811         if (firstChar == '-') {
 812             throw new NumberFormatException(
 813                 "Illegal leading minus sign on unsigned string " + s + ".");
 814         }
 815         int digit = ~0xFF;
 816         if (firstChar != '+') {
 817             digit = digit(firstChar, radix);
 818         }
 819         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 820             int multmax = divideUnsigned(-1, radix);  // -1 is max unsigned int
 821             int result = digit & 0xFF;
 822             boolean inRange = true;
 823             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 824                     && (inRange = compareUnsigned(result, multmax) < 0
 825                         || result == multmax && digit < -radix * multmax)) {
 826                 result = radix * result + digit;
 827             }
 828             if (inRange && i == endIndex && digit >= 0) {
 829                 return result;
 830             }
 831         }
 832         if (digit < 0) {
 833             throw NumberFormatException.forCharSequence(s, beginIndex,
 834                 endIndex, i - (digit < -1 ? 0 : 1));
 835         }
 836         throw new NumberFormatException(String.format(
 837             "String value %s exceeds range of unsigned int.", s));
 838     }
 839 
 840     /**
 841      * Parses the string argument as an unsigned decimal integer. The
 842      * characters in the string must all be decimal digits, except
 843      * that the first character may be an ASCII plus sign {@code
 844      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 845      * is returned, exactly as if the argument and the radix 10 were
 846      * given as arguments to the {@link
 847      * #parseUnsignedInt(java.lang.String, int)} method.
 848      *
 849      * @param s   a {@code String} containing the unsigned {@code int}
 850      *            representation to be parsed
 851      * @return    the unsigned integer value represented by the argument in decimal.
 852      * @throws    NumberFormatException  if the string does not contain a
 853      *            parsable unsigned integer.
 854      * @since 1.8
 855      */
 856     public static int parseUnsignedInt(String s) throws NumberFormatException {
 857         return parseUnsignedInt(s, 10);
 858     }
 859 
 860     /**
 861      * Returns an {@code Integer} object holding the value
 862      * extracted from the specified {@code String} when parsed
 863      * with the radix given by the second argument. The first argument
 864      * is interpreted as representing a signed integer in the radix
 865      * specified by the second argument, exactly as if the arguments
 866      * were given to the {@link #parseInt(java.lang.String, int)}
 867      * method. The result is an {@code Integer} object that
 868      * represents the integer value specified by the string.
 869      *
 870      * <p>In other words, this method returns an {@code Integer}
 871      * object equal to the value of:
 872      *
 873      * <blockquote>
 874      *  {@code Integer.valueOf(Integer.parseInt(s, radix))}
 875      * </blockquote>
 876      *
 877      * @param      s   the string to be parsed.
 878      * @param      radix the radix to be used in interpreting {@code s}
 879      * @return     an {@code Integer} object holding the value
 880      *             represented by the string argument in the specified
 881      *             radix.
 882      * @throws    NumberFormatException if the {@code String}
 883      *            does not contain a parsable {@code int}.
 884      */
 885     public static Integer valueOf(String s, int radix) throws NumberFormatException {
 886         return Integer.valueOf(parseInt(s,radix));
 887     }
 888 
 889     /**
 890      * Returns an {@code Integer} object holding the
 891      * value of the specified {@code String}. The argument is
 892      * interpreted as representing a signed decimal integer, exactly
 893      * as if the argument were given to the {@link
 894      * #parseInt(java.lang.String)} method. The result is an
 895      * {@code Integer} object that represents the integer value
 896      * specified by the string.
 897      *
 898      * <p>In other words, this method returns an {@code Integer}
 899      * object equal to the value of:
 900      *
 901      * <blockquote>
 902      *  {@code Integer.valueOf(Integer.parseInt(s))}
 903      * </blockquote>
 904      *
 905      * @param      s   the string to be parsed.
 906      * @return     an {@code Integer} object holding the value
 907      *             represented by the string argument.
 908      * @throws     NumberFormatException  if the string cannot be parsed
 909      *             as an integer.
 910      */
 911     public static Integer valueOf(String s) throws NumberFormatException {
 912         return Integer.valueOf(parseInt(s, 10));
 913     }
 914 
 915     /**
 916      * Cache to support the object identity semantics of autoboxing for values between
 917      * -128 and 127 (inclusive) as required by JLS.
 918      *
 919      * The cache is initialized on first usage.  The size of the cache
 920      * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
 921      * During VM initialization, java.lang.Integer.IntegerCache.high property
 922      * may be set and saved in the private system properties in the
 923      * jdk.internal.misc.VM class.
 924      *
 925      * WARNING: The cache is archived with CDS and reloaded from the shared
 926      * archive at runtime. The archived cache (Integer[]) and Integer objects
 927      * reside in the closed archive heap regions. Care should be taken when
 928      * changing the implementation and the cache array should not be assigned
 929      * with new Integer object(s) after initialization.
 930      */
 931 
 932     private static final class IntegerCache {
 933         static final int low = -128;
 934         static final int high;
 935 
 936         @Stable
 937         static final Integer[] cache;
 938         static Integer[] archivedCache;
 939 
 940         static {
 941             // high value may be configured by property
 942             int h = 127;
 943             String integerCacheHighPropValue =
 944                 VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
 945             if (integerCacheHighPropValue != null) {
 946                 try {
 947                     h = Math.max(parseInt(integerCacheHighPropValue), 127);
 948                     // Maximum array size is Integer.MAX_VALUE
 949                     h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
 950                 } catch( NumberFormatException nfe) {
 951                     // If the property cannot be parsed into an int, ignore it.
 952                 }
 953             }
 954             high = h;
 955 
 956             // Load IntegerCache.archivedCache from archive, if possible
 957             CDS.initializeFromArchive(IntegerCache.class);
 958             int size = (high - low) + 1;
 959 
 960             // Use the archived cache if it exists and is large enough
 961             if (archivedCache == null || size > archivedCache.length) {
 962                 Integer[] c = new Integer[size];
 963                 int j = low;
 964                 for(int i = 0; i < c.length; i++) {
 965                     c[i] = new Integer(j++);
 966                 }
 967                 archivedCache = c;
 968             }
 969             cache = archivedCache;
 970             // range [-128, 127] must be interned (JLS7 5.1.7)
 971             assert IntegerCache.high >= 127;
 972         }
 973 
 974         private IntegerCache() {}
 975     }
 976 
 977     /**
 978      * Returns an {@code Integer} instance representing the specified
 979      * {@code int} value.  If a new {@code Integer} instance is not
 980      * required, this method should generally be used in preference to
 981      * the constructor {@link #Integer(int)}, as this method is likely
 982      * to yield significantly better space and time performance by
 983      * caching frequently requested values.
 984      *
 985      * This method will always cache values in the range -128 to 127,
 986      * inclusive, and may cache other values outside of this range.
 987      *
 988      * @param  i an {@code int} value.
 989      * @return an {@code Integer} instance representing {@code i}.
 990      * @since  1.5
 991      */
 992     @IntrinsicCandidate
 993     @DeserializeConstructor
 994     public static Integer valueOf(int i) {
 995         if (i >= IntegerCache.low && i <= IntegerCache.high)
 996             return IntegerCache.cache[i + (-IntegerCache.low)];
 997         return new Integer(i);
 998     }
 999 
1000     /**
1001      * The value of the {@code Integer}.
1002      *
1003      * @serial
1004      */
1005     private final int value;
1006 
1007     /**
1008      * Constructs a newly allocated {@code Integer} object that
1009      * represents the specified {@code int} value.
1010      *
1011      * @param   value   the value to be represented by the
1012      *                  {@code Integer} object.
1013      *
1014      * @deprecated
1015      * It is rarely appropriate to use this constructor. The static factory
1016      * {@link #valueOf(int)} is generally a better choice, as it is
1017      * likely to yield significantly better space and time performance.
1018      */
1019     @Deprecated(since="9", forRemoval = true)
1020     public Integer(int value) {
1021         this.value = value;
1022     }
1023 
1024     /**
1025      * Constructs a newly allocated {@code Integer} object that
1026      * represents the {@code int} value indicated by the
1027      * {@code String} parameter. The string is converted to an
1028      * {@code int} value in exactly the manner used by the
1029      * {@code parseInt} method for radix 10.
1030      *
1031      * @param   s   the {@code String} to be converted to an {@code Integer}.
1032      * @throws      NumberFormatException if the {@code String} does not
1033      *              contain a parsable integer.
1034      *
1035      * @deprecated
1036      * It is rarely appropriate to use this constructor.
1037      * Use {@link #parseInt(String)} to convert a string to a
1038      * {@code int} primitive, or use {@link #valueOf(String)}
1039      * to convert a string to an {@code Integer} object.
1040      */
1041     @Deprecated(since="9", forRemoval = true)
1042     public Integer(String s) throws NumberFormatException {
1043         this.value = parseInt(s, 10);
1044     }
1045 
1046     /**
1047      * Returns the value of this {@code Integer} as a {@code byte}
1048      * after a narrowing primitive conversion.
1049      * @jls 5.1.3 Narrowing Primitive Conversion
1050      */
1051     public byte byteValue() {
1052         return (byte)value;
1053     }
1054 
1055     /**
1056      * Returns the value of this {@code Integer} as a {@code short}
1057      * after a narrowing primitive conversion.
1058      * @jls 5.1.3 Narrowing Primitive Conversion
1059      */
1060     public short shortValue() {
1061         return (short)value;
1062     }
1063 
1064     /**
1065      * Returns the value of this {@code Integer} as an
1066      * {@code int}.
1067      */
1068     @IntrinsicCandidate
1069     public int intValue() {
1070         return value;
1071     }
1072 
1073     /**
1074      * Returns the value of this {@code Integer} as a {@code long}
1075      * after a widening primitive conversion.
1076      * @jls 5.1.2 Widening Primitive Conversion
1077      * @see Integer#toUnsignedLong(int)
1078      */
1079     public long longValue() {
1080         return (long)value;
1081     }
1082 
1083     /**
1084      * Returns the value of this {@code Integer} as a {@code float}
1085      * after a widening primitive conversion.
1086      * @jls 5.1.2 Widening Primitive Conversion
1087      */
1088     public float floatValue() {
1089         return (float)value;
1090     }
1091 
1092     /**
1093      * Returns the value of this {@code Integer} as a {@code double}
1094      * after a widening primitive conversion.
1095      * @jls 5.1.2 Widening Primitive Conversion
1096      */
1097     public double doubleValue() {
1098         return (double)value;
1099     }
1100 
1101     /**
1102      * Returns a {@code String} object representing this
1103      * {@code Integer}'s value. The value is converted to signed
1104      * decimal representation and returned as a string, exactly as if
1105      * the integer value were given as an argument to the {@link
1106      * java.lang.Integer#toString(int)} method.
1107      *
1108      * @return  a string representation of the value of this object in
1109      *          base&nbsp;10.
1110      */
1111     public String toString() {
1112         return toString(value);
1113     }
1114 
1115     /**
1116      * Returns a hash code for this {@code Integer}.
1117      *
1118      * @return  a hash code value for this object, equal to the
1119      *          primitive {@code int} value represented by this
1120      *          {@code Integer} object.
1121      */
1122     @Override
1123     public int hashCode() {
1124         return Integer.hashCode(value);
1125     }
1126 
1127     /**
1128      * Returns a hash code for an {@code int} value; compatible with
1129      * {@code Integer.hashCode()}.
1130      *
1131      * @param value the value to hash
1132      * @since 1.8
1133      *
1134      * @return a hash code value for an {@code int} value.
1135      */
1136     public static int hashCode(int value) {
1137         return value;
1138     }
1139 
1140     /**
1141      * Compares this object to the specified object.  The result is
1142      * {@code true} if and only if the argument is not
1143      * {@code null} and is an {@code Integer} object that
1144      * contains the same {@code int} value as this object.
1145      *
1146      * @param   obj   the object to compare with.
1147      * @return  {@code true} if the objects are the same;
1148      *          {@code false} otherwise.
1149      */
1150     public boolean equals(Object obj) {
1151         if (obj instanceof Integer) {
1152             return value == ((Integer)obj).intValue();
1153         }
1154         return false;
1155     }
1156 
1157     /**
1158      * Determines the integer value of the system property with the
1159      * specified name.
1160      *
1161      * <p>The first argument is treated as the name of a system
1162      * property.  System properties are accessible through the {@link
1163      * java.lang.System#getProperty(java.lang.String)} method. The
1164      * string value of this property is then interpreted as an integer
1165      * value using the grammar supported by {@link Integer#decode decode} and
1166      * an {@code Integer} object representing this value is returned.
1167      *
1168      * <p>If there is no property with the specified name, if the
1169      * specified name is empty or {@code null}, or if the property
1170      * does not have the correct numeric format, then {@code null} is
1171      * returned.
1172      *
1173      * <p>In other words, this method returns an {@code Integer}
1174      * object equal to the value of:
1175      *
1176      * <blockquote>
1177      *  {@code getInteger(nm, null)}
1178      * </blockquote>
1179      *
1180      * @param   nm   property name.
1181      * @return  the {@code Integer} value of the property.
1182      * @throws  SecurityException for the same reasons as
1183      *          {@link System#getProperty(String) System.getProperty}
1184      * @see     java.lang.System#getProperty(java.lang.String)
1185      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1186      */
1187     public static Integer getInteger(String nm) {
1188         return getInteger(nm, null);
1189     }
1190 
1191     /**
1192      * Determines the integer value of the system property with the
1193      * specified name.
1194      *
1195      * <p>The first argument is treated as the name of a system
1196      * property.  System properties are accessible through the {@link
1197      * java.lang.System#getProperty(java.lang.String)} method. The
1198      * string value of this property is then interpreted as an integer
1199      * value using the grammar supported by {@link Integer#decode decode} and
1200      * an {@code Integer} object representing this value is returned.
1201      *
1202      * <p>The second argument is the default value. An {@code Integer} object
1203      * that represents the value of the second argument is returned if there
1204      * is no property of the specified name, if the property does not have
1205      * the correct numeric format, or if the specified name is empty or
1206      * {@code null}.
1207      *
1208      * <p>In other words, this method returns an {@code Integer} object
1209      * equal to the value of:
1210      *
1211      * <blockquote>
1212      *  {@code getInteger(nm, Integer.valueOf(val))}
1213      * </blockquote>
1214      *
1215      * but in practice it may be implemented in a manner such as:
1216      *
1217      * <blockquote><pre>
1218      * Integer result = getInteger(nm, null);
1219      * return (result == null) ? Integer.valueOf(val) : result;
1220      * </pre></blockquote>
1221      *
1222      * to avoid the unnecessary allocation of an {@code Integer}
1223      * object when the default value is not needed.
1224      *
1225      * @param   nm   property name.
1226      * @param   val   default value.
1227      * @return  the {@code Integer} value of the property.
1228      * @throws  SecurityException for the same reasons as
1229      *          {@link System#getProperty(String) System.getProperty}
1230      * @see     java.lang.System#getProperty(java.lang.String)
1231      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1232      */
1233     public static Integer getInteger(String nm, int val) {
1234         Integer result = getInteger(nm, null);
1235         return (result == null) ? Integer.valueOf(val) : result;
1236     }
1237 
1238     /**
1239      * Returns the integer value of the system property with the
1240      * specified name.  The first argument is treated as the name of a
1241      * system property.  System properties are accessible through the
1242      * {@link java.lang.System#getProperty(java.lang.String)} method.
1243      * The string value of this property is then interpreted as an
1244      * integer value, as per the {@link Integer#decode decode} method,
1245      * and an {@code Integer} object representing this value is
1246      * returned; in summary:
1247      *
1248      * <ul><li>If the property value begins with the two ASCII characters
1249      *         {@code 0x} or the ASCII character {@code #}, not
1250      *      followed by a minus sign, then the rest of it is parsed as a
1251      *      hexadecimal integer exactly as by the method
1252      *      {@link #valueOf(java.lang.String, int)} with radix 16.
1253      * <li>If the property value begins with the ASCII character
1254      *     {@code 0} followed by another character, it is parsed as an
1255      *     octal integer exactly as by the method
1256      *     {@link #valueOf(java.lang.String, int)} with radix 8.
1257      * <li>Otherwise, the property value is parsed as a decimal integer
1258      * exactly as by the method {@link #valueOf(java.lang.String, int)}
1259      * with radix 10.
1260      * </ul>
1261      *
1262      * <p>The second argument is the default value. The default value is
1263      * returned if there is no property of the specified name, if the
1264      * property does not have the correct numeric format, or if the
1265      * specified name is empty or {@code null}.
1266      *
1267      * @param   nm   property name.
1268      * @param   val   default value.
1269      * @return  the {@code Integer} value of the property.
1270      * @throws  SecurityException for the same reasons as
1271      *          {@link System#getProperty(String) System.getProperty}
1272      * @see     System#getProperty(java.lang.String)
1273      * @see     System#getProperty(java.lang.String, java.lang.String)
1274      */
1275     public static Integer getInteger(String nm, Integer val) {
1276         String v = null;
1277         try {
1278             v = System.getProperty(nm);
1279         } catch (IllegalArgumentException | NullPointerException e) {
1280         }
1281         if (v != null) {
1282             try {
1283                 return Integer.decode(v);
1284             } catch (NumberFormatException e) {
1285             }
1286         }
1287         return val;
1288     }
1289 
1290     /**
1291      * Decodes a {@code String} into an {@code Integer}.
1292      * Accepts decimal, hexadecimal, and octal numbers given
1293      * by the following grammar:
1294      *
1295      * <blockquote>
1296      * <dl>
1297      * <dt><i>DecodableString:</i>
1298      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1299      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1300      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1301      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1302      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1303      *
1304      * <dt><i>Sign:</i>
1305      * <dd>{@code -}
1306      * <dd>{@code +}
1307      * </dl>
1308      * </blockquote>
1309      *
1310      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1311      * are as defined in section {@jls 3.10.1} of
1312      * <cite>The Java Language Specification</cite>,
1313      * except that underscores are not accepted between digits.
1314      *
1315      * <p>The sequence of characters following an optional
1316      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1317      * "{@code #}", or leading zero) is parsed as by the {@code
1318      * Integer.parseInt} method with the indicated radix (10, 16, or
1319      * 8).  This sequence of characters must represent a positive
1320      * value or a {@link NumberFormatException} will be thrown.  The
1321      * result is negated if first character of the specified {@code
1322      * String} is the minus sign.  No whitespace characters are
1323      * permitted in the {@code String}.
1324      *
1325      * @param     nm the {@code String} to decode.
1326      * @return    an {@code Integer} object holding the {@code int}
1327      *             value represented by {@code nm}
1328      * @throws    NumberFormatException  if the {@code String} does not
1329      *            contain a parsable integer.
1330      * @see java.lang.Integer#parseInt(java.lang.String, int)
1331      */
1332     public static Integer decode(String nm) throws NumberFormatException {
1333         int radix = 10;
1334         int index = 0;
1335         boolean negative = false;
1336         int result;
1337 
1338         if (nm.isEmpty())
1339             throw new NumberFormatException("Zero length string");
1340         char firstChar = nm.charAt(0);
1341         // Handle sign, if present
1342         if (firstChar == '-') {
1343             negative = true;
1344             index++;
1345         } else if (firstChar == '+')
1346             index++;
1347 
1348         // Handle radix specifier, if present
1349         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1350             index += 2;
1351             radix = 16;
1352         }
1353         else if (nm.startsWith("#", index)) {
1354             index ++;
1355             radix = 16;
1356         }
1357         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1358             index ++;
1359             radix = 8;
1360         }
1361 
1362         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1363             throw new NumberFormatException("Sign character in wrong position");
1364 
1365         try {
1366             result = parseInt(nm, index, nm.length(), radix);
1367             result = negative ? -result : result;
1368         } catch (NumberFormatException e) {
1369             // If number is Integer.MIN_VALUE, we'll end up here. The next line
1370             // handles this case, and causes any genuine format error to be
1371             // rethrown.
1372             String constant = negative ? ("-" + nm.substring(index))
1373                                        : nm.substring(index);
1374             result = parseInt(constant, radix);
1375         }
1376         return result;
1377     }
1378 
1379     /**
1380      * Compares two {@code Integer} objects numerically.
1381      *
1382      * @param   anotherInteger   the {@code Integer} to be compared.
1383      * @return  the value {@code 0} if this {@code Integer} is
1384      *          equal to the argument {@code Integer}; a value less than
1385      *          {@code 0} if this {@code Integer} is numerically less
1386      *          than the argument {@code Integer}; and a value greater
1387      *          than {@code 0} if this {@code Integer} is numerically
1388      *           greater than the argument {@code Integer} (signed
1389      *           comparison).
1390      * @since   1.2
1391      */
1392     public int compareTo(Integer anotherInteger) {
1393         return compare(this.value, anotherInteger.value);
1394     }
1395 
1396     /**
1397      * Compares two {@code int} values numerically.
1398      * The value returned is identical to what would be returned by:
1399      * <pre>
1400      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
1401      * </pre>
1402      *
1403      * @param  x the first {@code int} to compare
1404      * @param  y the second {@code int} to compare
1405      * @return the value {@code 0} if {@code x == y};
1406      *         a value less than {@code 0} if {@code x < y}; and
1407      *         a value greater than {@code 0} if {@code x > y}
1408      * @since 1.7
1409      */
1410     public static int compare(int x, int y) {
1411         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1412     }
1413 
1414     /**
1415      * Compares two {@code int} values numerically treating the values
1416      * as unsigned.
1417      *
1418      * @param  x the first {@code int} to compare
1419      * @param  y the second {@code int} to compare
1420      * @return the value {@code 0} if {@code x == y}; a value less
1421      *         than {@code 0} if {@code x < y} as unsigned values; and
1422      *         a value greater than {@code 0} if {@code x > y} as
1423      *         unsigned values
1424      * @since 1.8
1425      */
1426     @IntrinsicCandidate
1427     public static int compareUnsigned(int x, int y) {
1428         return compare(x + MIN_VALUE, y + MIN_VALUE);
1429     }
1430 
1431     /**
1432      * Converts the argument to a {@code long} by an unsigned
1433      * conversion.  In an unsigned conversion to a {@code long}, the
1434      * high-order 32 bits of the {@code long} are zero and the
1435      * low-order 32 bits are equal to the bits of the integer
1436      * argument.
1437      *
1438      * Consequently, zero and positive {@code int} values are mapped
1439      * to a numerically equal {@code long} value and negative {@code
1440      * int} values are mapped to a {@code long} value equal to the
1441      * input plus 2<sup>32</sup>.
1442      *
1443      * @param  x the value to convert to an unsigned {@code long}
1444      * @return the argument converted to {@code long} by an unsigned
1445      *         conversion
1446      * @since 1.8
1447      */
1448     public static long toUnsignedLong(int x) {
1449         return ((long) x) & 0xffffffffL;
1450     }
1451 
1452     /**
1453      * Returns the unsigned quotient of dividing the first argument by
1454      * the second where each argument and the result is interpreted as
1455      * an unsigned value.
1456      *
1457      * <p>Note that in two's complement arithmetic, the three other
1458      * basic arithmetic operations of add, subtract, and multiply are
1459      * bit-wise identical if the two operands are regarded as both
1460      * being signed or both being unsigned.  Therefore separate {@code
1461      * addUnsigned}, etc. methods are not provided.
1462      *
1463      * @param dividend the value to be divided
1464      * @param divisor the value doing the dividing
1465      * @return the unsigned quotient of the first argument divided by
1466      * the second argument
1467      * @see #remainderUnsigned
1468      * @since 1.8
1469      */
1470     @IntrinsicCandidate
1471     public static int divideUnsigned(int dividend, int divisor) {
1472         // In lieu of tricky code, for now just use long arithmetic.
1473         return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
1474     }
1475 
1476     /**
1477      * Returns the unsigned remainder from dividing the first argument
1478      * by the second where each argument and the result is interpreted
1479      * as an unsigned value.
1480      *
1481      * @param dividend the value to be divided
1482      * @param divisor the value doing the dividing
1483      * @return the unsigned remainder of the first argument divided by
1484      * the second argument
1485      * @see #divideUnsigned
1486      * @since 1.8
1487      */
1488     @IntrinsicCandidate
1489     public static int remainderUnsigned(int dividend, int divisor) {
1490         // In lieu of tricky code, for now just use long arithmetic.
1491         return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
1492     }
1493 
1494 
1495     // Bit twiddling
1496 
1497     /**
1498      * The number of bits used to represent an {@code int} value in two's
1499      * complement binary form.
1500      *
1501      * @since 1.5
1502      */
1503     @Native public static final int SIZE = 32;
1504 
1505     /**
1506      * The number of bytes used to represent an {@code int} value in two's
1507      * complement binary form.
1508      *
1509      * @since 1.8
1510      */
1511     public static final int BYTES = SIZE / Byte.SIZE;
1512 
1513     /**
1514      * Returns an {@code int} value with at most a single one-bit, in the
1515      * position of the highest-order ("leftmost") one-bit in the specified
1516      * {@code int} value.  Returns zero if the specified value has no
1517      * one-bits in its two's complement binary representation, that is, if it
1518      * is equal to zero.
1519      *
1520      * @param i the value whose highest one bit is to be computed
1521      * @return an {@code int} value with a single one-bit, in the position
1522      *     of the highest-order one-bit in the specified value, or zero if
1523      *     the specified value is itself equal to zero.
1524      * @since 1.5
1525      */
1526     public static int highestOneBit(int i) {
1527         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1528     }
1529 
1530     /**
1531      * Returns an {@code int} value with at most a single one-bit, in the
1532      * position of the lowest-order ("rightmost") one-bit in the specified
1533      * {@code int} value.  Returns zero if the specified value has no
1534      * one-bits in its two's complement binary representation, that is, if it
1535      * is equal to zero.
1536      *
1537      * @param i the value whose lowest one bit is to be computed
1538      * @return an {@code int} value with a single one-bit, in the position
1539      *     of the lowest-order one-bit in the specified value, or zero if
1540      *     the specified value is itself equal to zero.
1541      * @since 1.5
1542      */
1543     public static int lowestOneBit(int i) {
1544         // HD, Section 2-1
1545         return i & -i;
1546     }
1547 
1548     /**
1549      * Returns the number of zero bits preceding the highest-order
1550      * ("leftmost") one-bit in the two's complement binary representation
1551      * of the specified {@code int} value.  Returns 32 if the
1552      * specified value has no one-bits in its two's complement representation,
1553      * in other words if it is equal to zero.
1554      *
1555      * <p>Note that this method is closely related to the logarithm base 2.
1556      * For all positive {@code int} values x:
1557      * <ul>
1558      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
1559      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
1560      * </ul>
1561      *
1562      * @param i the value whose number of leading zeros is to be computed
1563      * @return the number of zero bits preceding the highest-order
1564      *     ("leftmost") one-bit in the two's complement binary representation
1565      *     of the specified {@code int} value, or 32 if the value
1566      *     is equal to zero.
1567      * @since 1.5
1568      */
1569     @IntrinsicCandidate
1570     public static int numberOfLeadingZeros(int i) {
1571         // HD, Count leading 0's
1572         if (i <= 0)
1573             return i == 0 ? 32 : 0;
1574         int n = 31;
1575         if (i >= 1 << 16) { n -= 16; i >>>= 16; }
1576         if (i >= 1 <<  8) { n -=  8; i >>>=  8; }
1577         if (i >= 1 <<  4) { n -=  4; i >>>=  4; }
1578         if (i >= 1 <<  2) { n -=  2; i >>>=  2; }
1579         return n - (i >>> 1);
1580     }
1581 
1582     /**
1583      * Returns the number of zero bits following the lowest-order ("rightmost")
1584      * one-bit in the two's complement binary representation of the specified
1585      * {@code int} value.  Returns 32 if the specified value has no
1586      * one-bits in its two's complement representation, in other words if it is
1587      * equal to zero.
1588      *
1589      * @param i the value whose number of trailing zeros is to be computed
1590      * @return the number of zero bits following the lowest-order ("rightmost")
1591      *     one-bit in the two's complement binary representation of the
1592      *     specified {@code int} value, or 32 if the value is equal
1593      *     to zero.
1594      * @since 1.5
1595      */
1596     @IntrinsicCandidate
1597     public static int numberOfTrailingZeros(int i) {
1598         // HD, Count trailing 0's
1599         i = ~i & (i - 1);
1600         if (i <= 0) return i & 32;
1601         int n = 1;
1602         if (i > 1 << 16) { n += 16; i >>>= 16; }
1603         if (i > 1 <<  8) { n +=  8; i >>>=  8; }
1604         if (i > 1 <<  4) { n +=  4; i >>>=  4; }
1605         if (i > 1 <<  2) { n +=  2; i >>>=  2; }
1606         return n + (i >>> 1);
1607     }
1608 
1609     /**
1610      * Returns the number of one-bits in the two's complement binary
1611      * representation of the specified {@code int} value.  This function is
1612      * sometimes referred to as the <i>population count</i>.
1613      *
1614      * @param i the value whose bits are to be counted
1615      * @return the number of one-bits in the two's complement binary
1616      *     representation of the specified {@code int} value.
1617      * @since 1.5
1618      */
1619     @IntrinsicCandidate
1620     public static int bitCount(int i) {
1621         // HD, Figure 5-2
1622         i = i - ((i >>> 1) & 0x55555555);
1623         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
1624         i = (i + (i >>> 4)) & 0x0f0f0f0f;
1625         i = i + (i >>> 8);
1626         i = i + (i >>> 16);
1627         return i & 0x3f;
1628     }
1629 
1630     /**
1631      * Returns the value obtained by rotating the two's complement binary
1632      * representation of the specified {@code int} value left by the
1633      * specified number of bits.  (Bits shifted out of the left hand, or
1634      * high-order, side reenter on the right, or low-order.)
1635      *
1636      * <p>Note that left rotation with a negative distance is equivalent to
1637      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1638      * distance)}.  Note also that rotation by any multiple of 32 is a
1639      * no-op, so all but the last five bits of the rotation distance can be
1640      * ignored, even if the distance is negative: {@code rotateLeft(val,
1641      * distance) == rotateLeft(val, distance & 0x1F)}.
1642      *
1643      * @param i the value whose bits are to be rotated left
1644      * @param distance the number of bit positions to rotate left
1645      * @return the value obtained by rotating the two's complement binary
1646      *     representation of the specified {@code int} value left by the
1647      *     specified number of bits.
1648      * @since 1.5
1649      */
1650     public static int rotateLeft(int i, int distance) {
1651         return (i << distance) | (i >>> -distance);
1652     }
1653 
1654     /**
1655      * Returns the value obtained by rotating the two's complement binary
1656      * representation of the specified {@code int} value right by the
1657      * specified number of bits.  (Bits shifted out of the right hand, or
1658      * low-order, side reenter on the left, or high-order.)
1659      *
1660      * <p>Note that right rotation with a negative distance is equivalent to
1661      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1662      * distance)}.  Note also that rotation by any multiple of 32 is a
1663      * no-op, so all but the last five bits of the rotation distance can be
1664      * ignored, even if the distance is negative: {@code rotateRight(val,
1665      * distance) == rotateRight(val, distance & 0x1F)}.
1666      *
1667      * @param i the value whose bits are to be rotated right
1668      * @param distance the number of bit positions to rotate right
1669      * @return the value obtained by rotating the two's complement binary
1670      *     representation of the specified {@code int} value right by the
1671      *     specified number of bits.
1672      * @since 1.5
1673      */
1674     public static int rotateRight(int i, int distance) {
1675         return (i >>> distance) | (i << -distance);
1676     }
1677 
1678     /**
1679      * Returns the value obtained by reversing the order of the bits in the
1680      * two's complement binary representation of the specified {@code int}
1681      * value.
1682      *
1683      * @param i the value to be reversed
1684      * @return the value obtained by reversing order of the bits in the
1685      *     specified {@code int} value.
1686      * @since 1.5
1687      */
1688     @IntrinsicCandidate
1689     public static int reverse(int i) {
1690         // HD, Figure 7-1
1691         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
1692         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
1693         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
1694 
1695         return reverseBytes(i);
1696     }
1697 
1698     /**
1699      * Returns the value obtained by compressing the bits of the
1700      * specified {@code int} value, {@code i}, in accordance with
1701      * the specified bit mask.
1702      * <p>
1703      * For each one-bit value {@code mb} of the mask, from least
1704      * significant to most significant, the bit value of {@code i} at
1705      * the same bit location as {@code mb} is assigned to the compressed
1706      * value contiguously starting from the least significant bit location.
1707      * All the upper remaining bits of the compressed value are set
1708      * to zero.
1709      *
1710      * @apiNote
1711      * Consider the simple case of compressing the digits of a hexadecimal
1712      * value:
1713      * {@snippet lang="java" :
1714      * // Compressing drink to food
1715      * compress(0xCAFEBABE, 0xFF00FFF0) == 0xCABAB
1716      * }
1717      * Starting from the least significant hexadecimal digit at position 0
1718      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1719      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1720      * occur in the resulting compressed value contiguously from digit position
1721      * 0 in the same order.
1722      * <p>
1723      * The following identities all return {@code true} and are helpful to
1724      * understand the behaviour of {@code compress}:
1725      * {@snippet lang="java" :
1726      * // Returns 1 if the bit at position n is one
1727      * compress(x, 1 << n) == (x >> n & 1)
1728      *
1729      * // Logical shift right
1730      * compress(x, -1 << n) == x >>> n
1731      *
1732      * // Any bits not covered by the mask are ignored
1733      * compress(x, m) == compress(x & m, m)
1734      *
1735      * // Compressing a value by itself
1736      * compress(m, m) == (m == -1 || m == 0) ? m : (1 << bitCount(m)) - 1
1737      *
1738      * // Expanding then compressing with the same mask
1739      * compress(expand(x, m), m) == x & compress(m, m)
1740      * }
1741      * <p>
1742      * The Sheep And Goats (SAG) operation (see Hacker's Delight, section 7.7)
1743      * can be implemented as follows:
1744      * {@snippet lang="java" :
1745      * int compressLeft(int i, int mask) {
1746      *     // This implementation follows the description in Hacker's Delight which
1747      *     // is informative. A more optimal implementation is:
1748      *     //   Integer.compress(i, mask) << -Integer.bitCount(mask)
1749      *     return Integer.reverse(
1750      *         Integer.compress(Integer.reverse(i), Integer.reverse(mask)));
1751      * }
1752      *
1753      * int sag(int i, int mask) {
1754      *     return compressLeft(i, mask) | Integer.compress(i, ~mask);
1755      * }
1756      *
1757      * // Separate the sheep from the goats
1758      * sag(0xCAFEBABE, 0xFF00FFF0) == 0xCABABFEE
1759      * }
1760      *
1761      * @param i the value whose bits are to be compressed
1762      * @param mask the bit mask
1763      * @return the compressed value
1764      * @see #expand
1765      * @since 19
1766      */
1767     @IntrinsicCandidate
1768     public static int compress(int i, int mask) {
1769         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1770 
1771         i = i & mask; // Clear irrelevant bits
1772         int maskCount = ~mask << 1; // Count 0's to right
1773 
1774         for (int j = 0; j < 5; j++) {
1775             // Parallel prefix
1776             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1777             int maskPrefix = parallelSuffix(maskCount);
1778             // Bits to move
1779             int maskMove = maskPrefix & mask;
1780             // Compress mask
1781             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1782             // Bits of i to be moved
1783             int t = i & maskMove;
1784             // Compress i
1785             i = (i ^ t) | (t >>> (1 << j));
1786             // Adjust the mask count by identifying bits that have 0 to the right
1787             maskCount = maskCount & ~maskPrefix;
1788         }
1789         return i;
1790     }
1791 
1792     /**
1793      * Returns the value obtained by expanding the bits of the
1794      * specified {@code int} value, {@code i}, in accordance with
1795      * the specified bit mask.
1796      * <p>
1797      * For each one-bit value {@code mb} of the mask, from least
1798      * significant to most significant, the next contiguous bit value
1799      * of {@code i} starting at the least significant bit is assigned
1800      * to the expanded value at the same bit location as {@code mb}.
1801      * All other remaining bits of the expanded value are set to zero.
1802      *
1803      * @apiNote
1804      * Consider the simple case of expanding the digits of a hexadecimal
1805      * value:
1806      * {@snippet lang="java" :
1807      * expand(0x0000CABAB, 0xFF00FFF0) == 0xCA00BAB0
1808      * }
1809      * Starting from the least significant hexadecimal digit at position 0
1810      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1811      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1812      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1813      * <p>
1814      * The following identities all return {@code true} and are helpful to
1815      * understand the behaviour of {@code expand}:
1816      * {@snippet lang="java" :
1817      * // Logically shift right the bit at position 0
1818      * expand(x, 1 << n) == (x & 1) << n
1819      *
1820      * // Logically shift right
1821      * expand(x, -1 << n) == x << n
1822      *
1823      * // Expanding all bits returns the mask
1824      * expand(-1, m) == m
1825      *
1826      * // Any bits not covered by the mask are ignored
1827      * expand(x, m) == expand(x, m) & m
1828      *
1829      * // Compressing then expanding with the same mask
1830      * expand(compress(x, m), m) == x & m
1831      * }
1832      * <p>
1833      * The select operation for determining the position of the one-bit with
1834      * index {@code n} in a {@code int} value can be implemented as follows:
1835      * {@snippet lang="java" :
1836      * int select(int i, int n) {
1837      *     // the one-bit in i (the mask) with index n
1838      *     int nthBit = Integer.expand(1 << n, i);
1839      *     // the bit position of the one-bit with index n
1840      *     return Integer.numberOfTrailingZeros(nthBit);
1841      * }
1842      *
1843      * // The one-bit with index 0 is at bit position 1
1844      * select(0b10101010_10101010, 0) == 1
1845      * // The one-bit with index 3 is at bit position 7
1846      * select(0b10101010_10101010, 3) == 7
1847      * }
1848      *
1849      * @param i the value whose bits are to be expanded
1850      * @param mask the bit mask
1851      * @return the expanded value
1852      * @see #compress
1853      * @since 19
1854      */
1855     @IntrinsicCandidate
1856     public static int expand(int i, int mask) {
1857         // Save original mask
1858         int originalMask = mask;
1859         // Count 0's to right
1860         int maskCount = ~mask << 1;
1861         int maskPrefix = parallelSuffix(maskCount);
1862         // Bits to move
1863         int maskMove1 = maskPrefix & mask;
1864         // Compress mask
1865         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1866         maskCount = maskCount & ~maskPrefix;
1867 
1868         maskPrefix = parallelSuffix(maskCount);
1869         // Bits to move
1870         int maskMove2 = maskPrefix & mask;
1871         // Compress mask
1872         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1873         maskCount = maskCount & ~maskPrefix;
1874 
1875         maskPrefix = parallelSuffix(maskCount);
1876         // Bits to move
1877         int maskMove3 = maskPrefix & mask;
1878         // Compress mask
1879         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1880         maskCount = maskCount & ~maskPrefix;
1881 
1882         maskPrefix = parallelSuffix(maskCount);
1883         // Bits to move
1884         int maskMove4 = maskPrefix & mask;
1885         // Compress mask
1886         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1887         maskCount = maskCount & ~maskPrefix;
1888 
1889         maskPrefix = parallelSuffix(maskCount);
1890         // Bits to move
1891         int maskMove5 = maskPrefix & mask;
1892 
1893         int t = i << (1 << 4);
1894         i = (i & ~maskMove5) | (t & maskMove5);
1895         t = i << (1 << 3);
1896         i = (i & ~maskMove4) | (t & maskMove4);
1897         t = i << (1 << 2);
1898         i = (i & ~maskMove3) | (t & maskMove3);
1899         t = i << (1 << 1);
1900         i = (i & ~maskMove2) | (t & maskMove2);
1901         t = i << (1 << 0);
1902         i = (i & ~maskMove1) | (t & maskMove1);
1903 
1904         // Clear irrelevant bits
1905         return i & originalMask;
1906     }
1907 
1908     @ForceInline
1909     private static int parallelSuffix(int maskCount) {
1910         int maskPrefix = maskCount ^ (maskCount << 1);
1911         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1912         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1913         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1914         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1915         return maskPrefix;
1916     }
1917 
1918     /**
1919      * Returns the signum function of the specified {@code int} value.  (The
1920      * return value is -1 if the specified value is negative; 0 if the
1921      * specified value is zero; and 1 if the specified value is positive.)
1922      *
1923      * @param i the value whose signum is to be computed
1924      * @return the signum function of the specified {@code int} value.
1925      * @since 1.5
1926      */
1927     public static int signum(int i) {
1928         // HD, Section 2-7
1929         return (i >> 31) | (-i >>> 31);
1930     }
1931 
1932     /**
1933      * Returns the value obtained by reversing the order of the bytes in the
1934      * two's complement representation of the specified {@code int} value.
1935      *
1936      * @param i the value whose bytes are to be reversed
1937      * @return the value obtained by reversing the bytes in the specified
1938      *     {@code int} value.
1939      * @since 1.5
1940      */
1941     @IntrinsicCandidate
1942     public static int reverseBytes(int i) {
1943         return (i << 24)            |
1944                ((i & 0xff00) << 8)  |
1945                ((i >>> 8) & 0xff00) |
1946                (i >>> 24);
1947     }
1948 
1949     /**
1950      * Adds two integers together as per the + operator.
1951      *
1952      * @param a the first operand
1953      * @param b the second operand
1954      * @return the sum of {@code a} and {@code b}
1955      * @see java.util.function.BinaryOperator
1956      * @since 1.8
1957      */
1958     public static int sum(int a, int b) {
1959         return a + b;
1960     }
1961 
1962     /**
1963      * Returns the greater of two {@code int} values
1964      * as if by calling {@link Math#max(int, int) Math.max}.
1965      *
1966      * @param a the first operand
1967      * @param b the second operand
1968      * @return the greater of {@code a} and {@code b}
1969      * @see java.util.function.BinaryOperator
1970      * @since 1.8
1971      */
1972     public static int max(int a, int b) {
1973         return Math.max(a, b);
1974     }
1975 
1976     /**
1977      * Returns the smaller of two {@code int} values
1978      * as if by calling {@link Math#min(int, int) Math.min}.
1979      *
1980      * @param a the first operand
1981      * @param b the second operand
1982      * @return the smaller of {@code a} and {@code b}
1983      * @see java.util.function.BinaryOperator
1984      * @since 1.8
1985      */
1986     public static int min(int a, int b) {
1987         return Math.min(a, b);
1988     }
1989 
1990     /**
1991      * Returns an {@link Optional} containing the nominal descriptor for this
1992      * instance, which is the instance itself.
1993      *
1994      * @return an {@link Optional} describing the {@linkplain Integer} instance
1995      * @since 12
1996      */
1997     @Override
1998     public Optional<Integer> describeConstable() {
1999         return Optional.of(this);
2000     }
2001 
2002     /**
2003      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2004      * the instance itself.
2005      *
2006      * @param lookup ignored
2007      * @return the {@linkplain Integer} instance
2008      * @since 12
2009      */
2010     @Override
2011     public Integer resolveConstantDesc(MethodHandles.Lookup lookup) {
2012         return this;
2013     }
2014 
2015     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2016     @java.io.Serial
2017     @Native private static final long serialVersionUID = 1360826667806852920L;
2018 }