1 /*
   2  * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.misc.CDS;
  29 import jdk.internal.misc.VM;
  30 import jdk.internal.util.DecimalDigits;
  31 import jdk.internal.value.DeserializeConstructor;
  32 import jdk.internal.vm.annotation.ForceInline;
  33 import jdk.internal.vm.annotation.IntrinsicCandidate;
  34 import jdk.internal.vm.annotation.Stable;
  35 
  36 import java.lang.annotation.Native;
  37 import java.lang.constant.Constable;
  38 import java.lang.constant.ConstantDesc;
  39 import java.lang.invoke.MethodHandles;
  40 import java.util.Objects;
  41 import java.util.Optional;
  42 
  43 import static java.lang.Character.digit;
  44 import static java.lang.String.COMPACT_STRINGS;
  45 import static java.lang.String.LATIN1;
  46 import static java.lang.String.UTF16;
  47 
  48 /**
  49  * The {@code Integer} class is the {@linkplain
  50  * java.lang##wrapperClass wrapper class} for values of the primitive
  51  * type {@code int}. An object of type {@code Integer} contains a
  52  * single field whose type is {@code int}.
  53  *
  54  * <p>In addition, this class provides several methods for converting
  55  * an {@code int} to a {@code String} and a {@code String} to an
  56  * {@code int}, as well as other constants and methods useful when
  57  * dealing with an {@code int}.
  58  *
  59  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  60  * class; programmers should treat instances that are
  61  * {@linkplain #equals(Object) equal} as interchangeable and should not
  62  * use instances for synchronization, or unpredictable behavior may
  63  * occur. For example, in a future release, synchronization may fail.
  64  *
  65  * <p>Implementation note: The implementations of the "bit twiddling"
  66  * methods (such as {@link #highestOneBit(int) highestOneBit} and
  67  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
  68  * based on material from Henry S. Warren, Jr.'s <cite>Hacker's
  69  * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's
  70  * Delight, Second Edition</cite>, (Pearson Education, 2013).
  71  *
  72  * @author  Lee Boynton
  73  * @author  Arthur van Hoff
  74  * @author  Josh Bloch
  75  * @author  Joseph D. Darcy
  76  * @since 1.0
  77  */
  78 @jdk.internal.MigratedValueClass
  79 @jdk.internal.ValueBased
  80 public final class Integer extends Number
  81         implements Comparable<Integer>, Constable, ConstantDesc {
  82     /**
  83      * A constant holding the minimum value an {@code int} can
  84      * have, -2<sup>31</sup>.
  85      */
  86     @Native public static final int   MIN_VALUE = 0x80000000;
  87 
  88     /**
  89      * A constant holding the maximum value an {@code int} can
  90      * have, 2<sup>31</sup>-1.
  91      */
  92     @Native public static final int   MAX_VALUE = 0x7fffffff;
  93 
  94     /**
  95      * The {@code Class} instance representing the primitive type
  96      * {@code int}.
  97      *
  98      * @since   1.1
  99      */
 100     @SuppressWarnings("unchecked")
 101     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
 102 
 103     /**
 104      * All possible chars for representing a number as a String
 105      */
 106     static final char[] digits = {
 107         '0' , '1' , '2' , '3' , '4' , '5' ,
 108         '6' , '7' , '8' , '9' , 'a' , 'b' ,
 109         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
 110         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
 111         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
 112         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
 113     };
 114 
 115     /**
 116      * Returns a string representation of the first argument in the
 117      * radix specified by the second argument.
 118      *
 119      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 120      * or larger than {@code Character.MAX_RADIX}, then the radix
 121      * {@code 10} is used instead.
 122      *
 123      * <p>If the first argument is negative, the first element of the
 124      * result is the ASCII minus character {@code '-'}
 125      * ({@code '\u005Cu002D'}). If the first argument is not
 126      * negative, no sign character appears in the result.
 127      *
 128      * <p>The remaining characters of the result represent the magnitude
 129      * of the first argument. If the magnitude is zero, it is
 130      * represented by a single zero character {@code '0'}
 131      * ({@code '\u005Cu0030'}); otherwise, the first character of
 132      * the representation of the magnitude will not be the zero
 133      * character.  The following ASCII characters are used as digits:
 134      *
 135      * <blockquote>
 136      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 137      * </blockquote>
 138      *
 139      * These are {@code '\u005Cu0030'} through
 140      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 141      * {@code '\u005Cu007A'}. If {@code radix} is
 142      * <var>N</var>, then the first <var>N</var> of these characters
 143      * are used as radix-<var>N</var> digits in the order shown. Thus,
 144      * the digits for hexadecimal (radix 16) are
 145      * {@code 0123456789abcdef}. If uppercase letters are
 146      * desired, the {@link java.lang.String#toUpperCase()} method may
 147      * be called on the result:
 148      *
 149      * <blockquote>
 150      *  {@code Integer.toString(n, 16).toUpperCase()}
 151      * </blockquote>
 152      *
 153      * @param   i       an integer to be converted to a string.
 154      * @param   radix   the radix to use in the string representation.
 155      * @return  a string representation of the argument in the specified radix.
 156      * @see     java.lang.Character#MAX_RADIX
 157      * @see     java.lang.Character#MIN_RADIX
 158      */
 159     public static String toString(int i, int radix) {
 160         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 161             radix = 10;
 162 
 163         /* Use the faster version */
 164         if (radix == 10) {
 165             return toString(i);
 166         }
 167 
 168         if (COMPACT_STRINGS) {
 169             byte[] buf = new byte[33];
 170             boolean negative = (i < 0);
 171             int charPos = 32;
 172 
 173             if (!negative) {
 174                 i = -i;
 175             }
 176 
 177             while (i <= -radix) {
 178                 buf[charPos--] = (byte)digits[-(i % radix)];
 179                 i = i / radix;
 180             }
 181             buf[charPos] = (byte)digits[-i];
 182 
 183             if (negative) {
 184                 buf[--charPos] = '-';
 185             }
 186 
 187             return StringLatin1.newString(buf, charPos, (33 - charPos));
 188         }
 189         return toStringUTF16(i, radix);
 190     }
 191 
 192     private static String toStringUTF16(int i, int radix) {
 193         byte[] buf = new byte[33 * 2];
 194         boolean negative = (i < 0);
 195         int charPos = 32;
 196         if (!negative) {
 197             i = -i;
 198         }
 199         while (i <= -radix) {
 200             StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]);
 201             i = i / radix;
 202         }
 203         StringUTF16.putChar(buf, charPos, digits[-i]);
 204 
 205         if (negative) {
 206             StringUTF16.putChar(buf, --charPos, '-');
 207         }
 208         return StringUTF16.newString(buf, charPos, (33 - charPos));
 209     }
 210 
 211     /**
 212      * Returns a string representation of the first argument as an
 213      * unsigned integer value in the radix specified by the second
 214      * argument.
 215      *
 216      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 217      * or larger than {@code Character.MAX_RADIX}, then the radix
 218      * {@code 10} is used instead.
 219      *
 220      * <p>Note that since the first argument is treated as an unsigned
 221      * value, no leading sign character is printed.
 222      *
 223      * <p>If the magnitude is zero, it is represented by a single zero
 224      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 225      * the first character of the representation of the magnitude will
 226      * not be the zero character.
 227      *
 228      * <p>The behavior of radixes and the characters used as digits
 229      * are the same as {@link #toString(int, int) toString}.
 230      *
 231      * @param   i       an integer to be converted to an unsigned string.
 232      * @param   radix   the radix to use in the string representation.
 233      * @return  an unsigned string representation of the argument in the specified radix.
 234      * @see     #toString(int, int)
 235      * @since 1.8
 236      */
 237     public static String toUnsignedString(int i, int radix) {
 238         return Long.toUnsignedString(toUnsignedLong(i), radix);
 239     }
 240 
 241     /**
 242      * Returns a string representation of the integer argument as an
 243      * unsigned integer in base&nbsp;16.
 244      *
 245      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 246      * if the argument is negative; otherwise, it is equal to the
 247      * argument.  This value is converted to a string of ASCII digits
 248      * in hexadecimal (base&nbsp;16) with no extra leading
 249      * {@code 0}s.
 250      *
 251      * <p>The value of the argument can be recovered from the returned
 252      * string {@code s} by calling {@link
 253      * Integer#parseUnsignedInt(String, int)
 254      * Integer.parseUnsignedInt(s, 16)}.
 255      *
 256      * <p>If the unsigned magnitude is zero, it is represented by a
 257      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 258      * otherwise, the first character of the representation of the
 259      * unsigned magnitude will not be the zero character. The
 260      * following characters are used as hexadecimal digits:
 261      *
 262      * <blockquote>
 263      *  {@code 0123456789abcdef}
 264      * </blockquote>
 265      *
 266      * These are the characters {@code '\u005Cu0030'} through
 267      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 268      * {@code '\u005Cu0066'}. If uppercase letters are
 269      * desired, the {@link java.lang.String#toUpperCase()} method may
 270      * be called on the result:
 271      *
 272      * <blockquote>
 273      *  {@code Integer.toHexString(n).toUpperCase()}
 274      * </blockquote>
 275      *
 276      * @apiNote
 277      * The {@link java.util.HexFormat} class provides formatting and parsing
 278      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 279      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 280      * with leading zeros and for byte arrays includes for each byte
 281      * a delimiter, prefix, and suffix.
 282      *
 283      * @param   i   an integer to be converted to a string.
 284      * @return  the string representation of the unsigned integer value
 285      *          represented by the argument in hexadecimal (base&nbsp;16).
 286      * @see java.util.HexFormat
 287      * @see #parseUnsignedInt(String, int)
 288      * @see #toUnsignedString(int, int)
 289      * @since   1.0.2
 290      */
 291     public static String toHexString(int i) {
 292         return toUnsignedString0(i, 4);
 293     }
 294 
 295     /**
 296      * Returns a string representation of the integer argument as an
 297      * unsigned integer in base&nbsp;8.
 298      *
 299      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 300      * if the argument is negative; otherwise, it is equal to the
 301      * argument.  This value is converted to a string of ASCII digits
 302      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
 303      *
 304      * <p>The value of the argument can be recovered from the returned
 305      * string {@code s} by calling {@link
 306      * Integer#parseUnsignedInt(String, int)
 307      * Integer.parseUnsignedInt(s, 8)}.
 308      *
 309      * <p>If the unsigned magnitude is zero, it is represented by a
 310      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 311      * otherwise, the first character of the representation of the
 312      * unsigned magnitude will not be the zero character. The
 313      * following characters are used as octal digits:
 314      *
 315      * <blockquote>
 316      * {@code 01234567}
 317      * </blockquote>
 318      *
 319      * These are the characters {@code '\u005Cu0030'} through
 320      * {@code '\u005Cu0037'}.
 321      *
 322      * @param   i   an integer to be converted to a string.
 323      * @return  the string representation of the unsigned integer value
 324      *          represented by the argument in octal (base&nbsp;8).
 325      * @see #parseUnsignedInt(String, int)
 326      * @see #toUnsignedString(int, int)
 327      * @since   1.0.2
 328      */
 329     public static String toOctalString(int i) {
 330         return toUnsignedString0(i, 3);
 331     }
 332 
 333     /**
 334      * Returns a string representation of the integer argument as an
 335      * unsigned integer in base&nbsp;2.
 336      *
 337      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 338      * if the argument is negative; otherwise it is equal to the
 339      * argument.  This value is converted to a string of ASCII digits
 340      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
 341      *
 342      * <p>The value of the argument can be recovered from the returned
 343      * string {@code s} by calling {@link
 344      * Integer#parseUnsignedInt(String, int)
 345      * Integer.parseUnsignedInt(s, 2)}.
 346      *
 347      * <p>If the unsigned magnitude is zero, it is represented by a
 348      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 349      * otherwise, the first character of the representation of the
 350      * unsigned magnitude will not be the zero character. The
 351      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 352      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 353      *
 354      * @param   i   an integer to be converted to a string.
 355      * @return  the string representation of the unsigned integer value
 356      *          represented by the argument in binary (base&nbsp;2).
 357      * @see #parseUnsignedInt(String, int)
 358      * @see #toUnsignedString(int, int)
 359      * @since   1.0.2
 360      */
 361     public static String toBinaryString(int i) {
 362         return toUnsignedString0(i, 1);
 363     }
 364 
 365     /**
 366      * Convert the integer to an unsigned number.
 367      */
 368     private static String toUnsignedString0(int val, int shift) {
 369         // assert shift > 0 && shift <=5 : "Illegal shift value";
 370         int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
 371         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 372         if (COMPACT_STRINGS) {
 373             byte[] buf = new byte[chars];
 374             formatUnsignedInt(val, shift, buf, chars);
 375             return new String(buf, LATIN1);
 376         } else {
 377             byte[] buf = new byte[chars * 2];
 378             formatUnsignedIntUTF16(val, shift, buf, chars);
 379             return new String(buf, UTF16);
 380         }
 381     }
 382 
 383     /**
 384      * Format an {@code int} (treated as unsigned) into a byte buffer (LATIN1 version). If
 385      * {@code len} exceeds the formatted ASCII representation of {@code val},
 386      * {@code buf} will be padded with leading zeroes.
 387      *
 388      * @param val the unsigned int to format
 389      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 390      * @param buf the byte buffer to write to
 391      * @param len the number of characters to write
 392      */
 393     private static void formatUnsignedInt(int val, int shift, byte[] buf, int len) {
 394         int charPos = len;
 395         int radix = 1 << shift;
 396         int mask = radix - 1;
 397         do {
 398             buf[--charPos] = (byte)Integer.digits[val & mask];
 399             val >>>= shift;
 400         } while (charPos > 0);
 401     }
 402 
 403     /**
 404      * Format an {@code int} (treated as unsigned) into a byte buffer (UTF16 version). If
 405      * {@code len} exceeds the formatted ASCII representation of {@code val},
 406      * {@code buf} will be padded with leading zeroes.
 407      *
 408      * @param val the unsigned int to format
 409      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 410      * @param buf the byte buffer to write to
 411      * @param len the number of characters to write
 412      */
 413     private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int len) {
 414         int charPos = len;
 415         int radix = 1 << shift;
 416         int mask = radix - 1;
 417         do {
 418             StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]);
 419             val >>>= shift;
 420         } while (charPos > 0);
 421     }
 422 
 423     /**
 424      * Returns a {@code String} object representing the
 425      * specified integer. The argument is converted to signed decimal
 426      * representation and returned as a string, exactly as if the
 427      * argument and radix 10 were given as arguments to the {@link
 428      * #toString(int, int)} method.
 429      *
 430      * @param   i   an integer to be converted.
 431      * @return  a string representation of the argument in base&nbsp;10.
 432      */
 433     @IntrinsicCandidate
 434     public static String toString(int i) {
 435         int size = DecimalDigits.stringSize(i);
 436         if (COMPACT_STRINGS) {
 437             byte[] buf = new byte[size];
 438             StringLatin1.getChars(i, size, buf);
 439             return new String(buf, LATIN1);
 440         } else {
 441             byte[] buf = new byte[size * 2];
 442             StringUTF16.getChars(i, size, buf);
 443             return new String(buf, UTF16);
 444         }
 445     }
 446 
 447     /**
 448      * Returns a string representation of the argument as an unsigned
 449      * decimal value.
 450      *
 451      * The argument is converted to unsigned decimal representation
 452      * and returned as a string exactly as if the argument and radix
 453      * 10 were given as arguments to the {@link #toUnsignedString(int,
 454      * int)} method.
 455      *
 456      * @param   i  an integer to be converted to an unsigned string.
 457      * @return  an unsigned string representation of the argument.
 458      * @see     #toUnsignedString(int, int)
 459      * @since 1.8
 460      */
 461     public static String toUnsignedString(int i) {
 462         return Long.toString(toUnsignedLong(i));
 463     }
 464 
 465     /**
 466      * Parses the string argument as a signed integer in the radix
 467      * specified by the second argument. The characters in the string
 468      * must all be digits of the specified radix (as determined by
 469      * whether {@link java.lang.Character#digit(char, int)} returns a
 470      * nonnegative value), except that the first character may be an
 471      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 472      * indicate a negative value or an ASCII plus sign {@code '+'}
 473      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 474      * resulting integer value is returned.
 475      *
 476      * <p>An exception of type {@code NumberFormatException} is
 477      * thrown if any of the following situations occurs:
 478      * <ul>
 479      * <li>The first argument is {@code null} or is a string of
 480      * length zero.
 481      *
 482      * <li>The radix is either smaller than
 483      * {@link java.lang.Character#MIN_RADIX} or
 484      * larger than {@link java.lang.Character#MAX_RADIX}.
 485      *
 486      * <li>Any character of the string is not a digit of the specified
 487      * radix, except that the first character may be a minus sign
 488      * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
 489      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 490      * string is longer than length 1.
 491      *
 492      * <li>The value represented by the string is not a value of type
 493      * {@code int}.
 494      * </ul>
 495      *
 496      * <p>Examples:
 497      * <blockquote><pre>
 498      * parseInt("0", 10) returns 0
 499      * parseInt("473", 10) returns 473
 500      * parseInt("+42", 10) returns 42
 501      * parseInt("-0", 10) returns 0
 502      * parseInt("-FF", 16) returns -255
 503      * parseInt("1100110", 2) returns 102
 504      * parseInt("2147483647", 10) returns 2147483647
 505      * parseInt("-2147483648", 10) returns -2147483648
 506      * parseInt("2147483648", 10) throws a NumberFormatException
 507      * parseInt("99", 8) throws a NumberFormatException
 508      * parseInt("Kona", 10) throws a NumberFormatException
 509      * parseInt("Kona", 27) returns 411787
 510      * </pre></blockquote>
 511      *
 512      * @param      s   the {@code String} containing the integer
 513      *                  representation to be parsed
 514      * @param      radix   the radix to be used while parsing {@code s}.
 515      * @return     the integer represented by the string argument in the
 516      *             specified radix.
 517      * @throws     NumberFormatException if the {@code String}
 518      *             does not contain a parsable {@code int}.
 519      */
 520     public static int parseInt(String s, int radix)
 521                 throws NumberFormatException {
 522         /*
 523          * WARNING: This method may be invoked early during VM initialization
 524          * before IntegerCache is initialized. Care must be taken to not use
 525          * the valueOf method.
 526          */
 527 
 528         if (s == null) {
 529             throw new NumberFormatException("Cannot parse null string");
 530         }
 531 
 532         if (radix < Character.MIN_RADIX) {
 533             throw new NumberFormatException(String.format(
 534                 "radix %s less than Character.MIN_RADIX", radix));
 535         }
 536 
 537         if (radix > Character.MAX_RADIX) {
 538             throw new NumberFormatException(String.format(
 539                 "radix %s greater than Character.MAX_RADIX", radix));
 540         }
 541 
 542         int len = s.length();
 543         if (len == 0) {
 544             throw NumberFormatException.forInputString("", radix);
 545         }
 546         int digit = ~0xFF;
 547         int i = 0;
 548         char firstChar = s.charAt(i++);
 549         if (firstChar != '-' && firstChar != '+') {
 550             digit = digit(firstChar, radix);
 551         }
 552         if (digit >= 0 || digit == ~0xFF && len > 1) {
 553             int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 554             int multmin = limit / radix;
 555             int result = -(digit & 0xFF);
 556             boolean inRange = true;
 557             /* Accumulating negatively avoids surprises near MAX_VALUE */
 558             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 559                     && (inRange = result > multmin
 560                         || result == multmin && digit <= radix * multmin - limit)) {
 561                 result = radix * result - digit;
 562             }
 563             if (inRange && i == len && digit >= 0) {
 564                 return firstChar != '-' ? -result : result;
 565             }
 566         }
 567         throw NumberFormatException.forInputString(s, radix);
 568     }
 569 
 570     /**
 571      * Parses the {@link CharSequence} argument as a signed {@code int} in the
 572      * specified {@code radix}, beginning at the specified {@code beginIndex}
 573      * and extending to {@code endIndex - 1}.
 574      *
 575      * <p>The method does not take steps to guard against the
 576      * {@code CharSequence} being mutated while parsing.
 577      *
 578      * @param      s   the {@code CharSequence} containing the {@code int}
 579      *                  representation to be parsed
 580      * @param      beginIndex   the beginning index, inclusive.
 581      * @param      endIndex     the ending index, exclusive.
 582      * @param      radix   the radix to be used while parsing {@code s}.
 583      * @return     the signed {@code int} represented by the subsequence in
 584      *             the specified radix.
 585      * @throws     NullPointerException  if {@code s} is null.
 586      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 587      *             negative, or if {@code beginIndex} is greater than
 588      *             {@code endIndex} or if {@code endIndex} is greater than
 589      *             {@code s.length()}.
 590      * @throws     NumberFormatException  if the {@code CharSequence} does not
 591      *             contain a parsable {@code int} in the specified
 592      *             {@code radix}, or if {@code radix} is either smaller than
 593      *             {@link java.lang.Character#MIN_RADIX} or larger than
 594      *             {@link java.lang.Character#MAX_RADIX}.
 595      * @since  9
 596      */
 597     public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
 598                 throws NumberFormatException {
 599         Objects.requireNonNull(s);
 600         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 601 
 602         if (radix < Character.MIN_RADIX) {
 603             throw new NumberFormatException(String.format(
 604                 "radix %s less than Character.MIN_RADIX", radix));
 605         }
 606 
 607         if (radix > Character.MAX_RADIX) {
 608             throw new NumberFormatException(String.format(
 609                 "radix %s greater than Character.MAX_RADIX", radix));
 610         }
 611 
 612         /*
 613          * While s can be concurrently modified, it is ensured that each
 614          * of its characters is read at most once, from lower to higher indices.
 615          * This is obtained by reading them using the pattern s.charAt(i++),
 616          * and by not updating i anywhere else.
 617          */
 618         if (beginIndex == endIndex) {
 619             throw NumberFormatException.forInputString("", radix);
 620         }
 621         int digit = ~0xFF;
 622         int i = beginIndex;
 623         char firstChar = s.charAt(i++);
 624         if (firstChar != '-' && firstChar != '+') {
 625             digit = digit(firstChar, radix);
 626         }
 627         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 628             int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 629             int multmin = limit / radix;
 630             int result = -(digit & 0xFF);
 631             boolean inRange = true;
 632             /* Accumulating negatively avoids surprises near MAX_VALUE */
 633             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 634                     && (inRange = result > multmin
 635                         || result == multmin && digit <= radix * multmin - limit)) {
 636                 result = radix * result - digit;
 637             }
 638             if (inRange && i == endIndex && digit >= 0) {
 639                 return firstChar != '-' ? -result : result;
 640             }
 641         }
 642         throw NumberFormatException.forCharSequence(s, beginIndex,
 643             endIndex, i - (digit < -1 ? 0 : 1));
 644     }
 645 
 646     /**
 647      * Parses the string argument as a signed decimal integer. The
 648      * characters in the string must all be decimal digits, except
 649      * that the first character may be an ASCII minus sign {@code '-'}
 650      * ({@code '\u005Cu002D'}) to indicate a negative value or an
 651      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 652      * indicate a positive value. The resulting integer value is
 653      * returned, exactly as if the argument and the radix 10 were
 654      * given as arguments to the {@link #parseInt(java.lang.String,
 655      * int)} method.
 656      *
 657      * @param s    a {@code String} containing the {@code int}
 658      *             representation to be parsed
 659      * @return     the integer value represented by the argument in decimal.
 660      * @throws     NumberFormatException  if the string does not contain a
 661      *               parsable integer.
 662      */
 663     public static int parseInt(String s) throws NumberFormatException {
 664         return parseInt(s, 10);
 665     }
 666 
 667     /**
 668      * Parses the string argument as an unsigned integer in the radix
 669      * specified by the second argument.  An unsigned integer maps the
 670      * values usually associated with negative numbers to positive
 671      * numbers larger than {@code MAX_VALUE}.
 672      *
 673      * The characters in the string must all be digits of the
 674      * specified radix (as determined by whether {@link
 675      * java.lang.Character#digit(char, int)} returns a nonnegative
 676      * value), except that the first character may be an ASCII plus
 677      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 678      * integer value is returned.
 679      *
 680      * <p>An exception of type {@code NumberFormatException} is
 681      * thrown if any of the following situations occurs:
 682      * <ul>
 683      * <li>The first argument is {@code null} or is a string of
 684      * length zero.
 685      *
 686      * <li>The radix is either smaller than
 687      * {@link java.lang.Character#MIN_RADIX} or
 688      * larger than {@link java.lang.Character#MAX_RADIX}.
 689      *
 690      * <li>Any character of the string is not a digit of the specified
 691      * radix, except that the first character may be a plus sign
 692      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 693      * string is longer than length 1.
 694      *
 695      * <li>The value represented by the string is larger than the
 696      * largest unsigned {@code int}, 2<sup>32</sup>-1.
 697      *
 698      * </ul>
 699      *
 700      *
 701      * @param      s   the {@code String} containing the unsigned integer
 702      *                  representation to be parsed
 703      * @param      radix   the radix to be used while parsing {@code s}.
 704      * @return     the integer represented by the string argument in the
 705      *             specified radix.
 706      * @throws     NumberFormatException if the {@code String}
 707      *             does not contain a parsable {@code int}.
 708      * @since 1.8
 709      */
 710     public static int parseUnsignedInt(String s, int radix)
 711                 throws NumberFormatException {
 712         if (s == null)  {
 713             throw new NumberFormatException("Cannot parse null string");
 714         }
 715 
 716         if (radix < Character.MIN_RADIX) {
 717             throw new NumberFormatException(String.format(
 718                 "radix %s less than Character.MIN_RADIX", radix));
 719         }
 720 
 721         if (radix > Character.MAX_RADIX) {
 722             throw new NumberFormatException(String.format(
 723                 "radix %s greater than Character.MAX_RADIX", radix));
 724         }
 725 
 726         int len = s.length();
 727         if (len == 0) {
 728             throw NumberFormatException.forInputString(s, radix);
 729         }
 730         int i = 0;
 731         char firstChar = s.charAt(i++);
 732         if (firstChar == '-') {
 733             throw new NumberFormatException(String.format(
 734                 "Illegal leading minus sign on unsigned string %s.", s));
 735         }
 736         int digit = ~0xFF;
 737         if (firstChar != '+') {
 738             digit = digit(firstChar, radix);
 739         }
 740         if (digit >= 0 || digit == ~0xFF && len > 1) {
 741             int multmax = divideUnsigned(-1, radix);  // -1 is max unsigned int
 742             int result = digit & 0xFF;
 743             boolean inRange = true;
 744             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 745                     && (inRange = compareUnsigned(result, multmax) < 0
 746                         || result == multmax && digit < -radix * multmax)) {
 747                 result = radix * result + digit;
 748             }
 749             if (inRange && i == len && digit >= 0) {
 750                 return result;
 751             }
 752         }
 753         if (digit < 0) {
 754             throw NumberFormatException.forInputString(s, radix);
 755         }
 756         throw new NumberFormatException(String.format(
 757             "String value %s exceeds range of unsigned int.", s));
 758     }
 759 
 760     /**
 761      * Parses the {@link CharSequence} argument as an unsigned {@code int} in
 762      * the specified {@code radix}, beginning at the specified
 763      * {@code beginIndex} and extending to {@code endIndex - 1}.
 764      *
 765      * <p>The method does not take steps to guard against the
 766      * {@code CharSequence} being mutated while parsing.
 767      *
 768      * @param      s   the {@code CharSequence} containing the unsigned
 769      *                 {@code int} representation to be parsed
 770      * @param      beginIndex   the beginning index, inclusive.
 771      * @param      endIndex     the ending index, exclusive.
 772      * @param      radix   the radix to be used while parsing {@code s}.
 773      * @return     the unsigned {@code int} represented by the subsequence in
 774      *             the specified radix.
 775      * @throws     NullPointerException  if {@code s} is null.
 776      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 777      *             negative, or if {@code beginIndex} is greater than
 778      *             {@code endIndex} or if {@code endIndex} is greater than
 779      *             {@code s.length()}.
 780      * @throws     NumberFormatException  if the {@code CharSequence} does not
 781      *             contain a parsable unsigned {@code int} in the specified
 782      *             {@code radix}, or if {@code radix} is either smaller than
 783      *             {@link java.lang.Character#MIN_RADIX} or larger than
 784      *             {@link java.lang.Character#MAX_RADIX}.
 785      * @since  9
 786      */
 787     public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
 788                 throws NumberFormatException {
 789         Objects.requireNonNull(s);
 790         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 791 
 792         if (radix < Character.MIN_RADIX) {
 793             throw new NumberFormatException(String.format(
 794                 "radix %s less than Character.MIN_RADIX", radix));
 795         }
 796 
 797         if (radix > Character.MAX_RADIX) {
 798             throw new NumberFormatException(String.format(
 799                 "radix %s greater than Character.MAX_RADIX", radix));
 800         }
 801 
 802         /*
 803          * While s can be concurrently modified, it is ensured that each
 804          * of its characters is read at most once, from lower to higher indices.
 805          * This is obtained by reading them using the pattern s.charAt(i++),
 806          * and by not updating i anywhere else.
 807          */
 808         if (beginIndex == endIndex) {
 809             throw NumberFormatException.forInputString("", radix);
 810         }
 811         int i = beginIndex;
 812         char firstChar = s.charAt(i++);
 813         if (firstChar == '-') {
 814             throw new NumberFormatException(
 815                 "Illegal leading minus sign on unsigned string " + s + ".");
 816         }
 817         int digit = ~0xFF;
 818         if (firstChar != '+') {
 819             digit = digit(firstChar, radix);
 820         }
 821         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 822             int multmax = divideUnsigned(-1, radix);  // -1 is max unsigned int
 823             int result = digit & 0xFF;
 824             boolean inRange = true;
 825             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 826                     && (inRange = compareUnsigned(result, multmax) < 0
 827                         || result == multmax && digit < -radix * multmax)) {
 828                 result = radix * result + digit;
 829             }
 830             if (inRange && i == endIndex && digit >= 0) {
 831                 return result;
 832             }
 833         }
 834         if (digit < 0) {
 835             throw NumberFormatException.forCharSequence(s, beginIndex,
 836                 endIndex, i - (digit < -1 ? 0 : 1));
 837         }
 838         throw new NumberFormatException(String.format(
 839             "String value %s exceeds range of unsigned int.", s));
 840     }
 841 
 842     /**
 843      * Parses the string argument as an unsigned decimal integer. The
 844      * characters in the string must all be decimal digits, except
 845      * that the first character may be an ASCII plus sign {@code
 846      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 847      * is returned, exactly as if the argument and the radix 10 were
 848      * given as arguments to the {@link
 849      * #parseUnsignedInt(java.lang.String, int)} method.
 850      *
 851      * @param s   a {@code String} containing the unsigned {@code int}
 852      *            representation to be parsed
 853      * @return    the unsigned integer value represented by the argument in decimal.
 854      * @throws    NumberFormatException  if the string does not contain a
 855      *            parsable unsigned integer.
 856      * @since 1.8
 857      */
 858     public static int parseUnsignedInt(String s) throws NumberFormatException {
 859         return parseUnsignedInt(s, 10);
 860     }
 861 
 862     /**
 863      * Returns an {@code Integer} object holding the value
 864      * extracted from the specified {@code String} when parsed
 865      * with the radix given by the second argument. The first argument
 866      * is interpreted as representing a signed integer in the radix
 867      * specified by the second argument, exactly as if the arguments
 868      * were given to the {@link #parseInt(java.lang.String, int)}
 869      * method. The result is an {@code Integer} object that
 870      * represents the integer value specified by the string.
 871      *
 872      * <p>In other words, this method returns an {@code Integer}
 873      * object equal to the value of:
 874      *
 875      * <blockquote>
 876      *  {@code Integer.valueOf(Integer.parseInt(s, radix))}
 877      * </blockquote>
 878      *
 879      * @param      s   the string to be parsed.
 880      * @param      radix the radix to be used in interpreting {@code s}
 881      * @return     an {@code Integer} object holding the value
 882      *             represented by the string argument in the specified
 883      *             radix.
 884      * @throws    NumberFormatException if the {@code String}
 885      *            does not contain a parsable {@code int}.
 886      */
 887     public static Integer valueOf(String s, int radix) throws NumberFormatException {
 888         return Integer.valueOf(parseInt(s,radix));
 889     }
 890 
 891     /**
 892      * Returns an {@code Integer} object holding the
 893      * value of the specified {@code String}. The argument is
 894      * interpreted as representing a signed decimal integer, exactly
 895      * as if the argument were given to the {@link
 896      * #parseInt(java.lang.String)} method. The result is an
 897      * {@code Integer} object that represents the integer value
 898      * specified by the string.
 899      *
 900      * <p>In other words, this method returns an {@code Integer}
 901      * object equal to the value of:
 902      *
 903      * <blockquote>
 904      *  {@code Integer.valueOf(Integer.parseInt(s))}
 905      * </blockquote>
 906      *
 907      * @param      s   the string to be parsed.
 908      * @return     an {@code Integer} object holding the value
 909      *             represented by the string argument.
 910      * @throws     NumberFormatException  if the string cannot be parsed
 911      *             as an integer.
 912      */
 913     public static Integer valueOf(String s) throws NumberFormatException {
 914         return Integer.valueOf(parseInt(s, 10));
 915     }
 916 
 917     /**
 918      * Cache to support the object identity semantics of autoboxing for values between
 919      * -128 and 127 (inclusive) as required by JLS.
 920      *
 921      * The cache is initialized on first usage.  The size of the cache
 922      * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
 923      * During VM initialization, java.lang.Integer.IntegerCache.high property
 924      * may be set and saved in the private system properties in the
 925      * jdk.internal.misc.VM class.
 926      *
 927      * WARNING: The cache is archived with CDS and reloaded from the shared
 928      * archive at runtime. The archived cache (Integer[]) and Integer objects
 929      * reside in the closed archive heap regions. Care should be taken when
 930      * changing the implementation and the cache array should not be assigned
 931      * with new Integer object(s) after initialization.
 932      */
 933 
 934     private static final class IntegerCache {
 935         static final int low = -128;
 936         static final int high;
 937 
 938         @Stable
 939         static final Integer[] cache;
 940         static Integer[] archivedCache;
 941 
 942         static {
 943             // high value may be configured by property
 944             int h = 127;
 945             String integerCacheHighPropValue =
 946                 VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
 947             if (integerCacheHighPropValue != null) {
 948                 try {
 949                     h = Math.max(parseInt(integerCacheHighPropValue), 127);
 950                     // Maximum array size is Integer.MAX_VALUE
 951                     h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
 952                 } catch( NumberFormatException nfe) {
 953                     // If the property cannot be parsed into an int, ignore it.
 954                 }
 955             }
 956             high = h;
 957 
 958             // Load IntegerCache.archivedCache from archive, if possible
 959             CDS.initializeFromArchive(IntegerCache.class);
 960             int size = (high - low) + 1;
 961 
 962             // Use the archived cache if it exists and is large enough
 963             if (archivedCache == null || size > archivedCache.length) {
 964                 Integer[] c = new Integer[size];
 965                 int j = low;
 966                 for(int i = 0; i < c.length; i++) {
 967                     c[i] = new Integer(j++);
 968                 }
 969                 archivedCache = c;
 970             }
 971             cache = archivedCache;
 972             // range [-128, 127] must be interned (JLS7 5.1.7)
 973             assert IntegerCache.high >= 127;
 974         }
 975 
 976         private IntegerCache() {}
 977     }
 978 
 979     /**
 980      * Returns an {@code Integer} instance representing the specified
 981      * {@code int} value.  If a new {@code Integer} instance is not
 982      * required, this method should generally be used in preference to
 983      * the constructor {@link #Integer(int)}, as this method is likely
 984      * to yield significantly better space and time performance by
 985      * caching frequently requested values.
 986      *
 987      * This method will always cache values in the range -128 to 127,
 988      * inclusive, and may cache other values outside of this range.
 989      *
 990      * @param  i an {@code int} value.
 991      * @return an {@code Integer} instance representing {@code i}.
 992      * @since  1.5
 993      */
 994     @IntrinsicCandidate
 995     @DeserializeConstructor
 996     public static Integer valueOf(int i) {
 997         if (i >= IntegerCache.low && i <= IntegerCache.high)
 998             return IntegerCache.cache[i + (-IntegerCache.low)];
 999         return new Integer(i);
1000     }
1001 
1002     /**
1003      * The value of the {@code Integer}.
1004      *
1005      * @serial
1006      */
1007     private final int value;
1008 
1009     /**
1010      * Constructs a newly allocated {@code Integer} object that
1011      * represents the specified {@code int} value.
1012      *
1013      * @param   value   the value to be represented by the
1014      *                  {@code Integer} object.
1015      *
1016      * @deprecated
1017      * It is rarely appropriate to use this constructor. The static factory
1018      * {@link #valueOf(int)} is generally a better choice, as it is
1019      * likely to yield significantly better space and time performance.
1020      */
1021     @Deprecated(since="9", forRemoval = true)
1022     public Integer(int value) {
1023         this.value = value;
1024     }
1025 
1026     /**
1027      * Constructs a newly allocated {@code Integer} object that
1028      * represents the {@code int} value indicated by the
1029      * {@code String} parameter. The string is converted to an
1030      * {@code int} value in exactly the manner used by the
1031      * {@code parseInt} method for radix 10.
1032      *
1033      * @param   s   the {@code String} to be converted to an {@code Integer}.
1034      * @throws      NumberFormatException if the {@code String} does not
1035      *              contain a parsable integer.
1036      *
1037      * @deprecated
1038      * It is rarely appropriate to use this constructor.
1039      * Use {@link #parseInt(String)} to convert a string to a
1040      * {@code int} primitive, or use {@link #valueOf(String)}
1041      * to convert a string to an {@code Integer} object.
1042      */
1043     @Deprecated(since="9", forRemoval = true)
1044     public Integer(String s) throws NumberFormatException {
1045         this.value = parseInt(s, 10);
1046     }
1047 
1048     /**
1049      * Returns the value of this {@code Integer} as a {@code byte}
1050      * after a narrowing primitive conversion.
1051      * @jls 5.1.3 Narrowing Primitive Conversion
1052      */
1053     public byte byteValue() {
1054         return (byte)value;
1055     }
1056 
1057     /**
1058      * Returns the value of this {@code Integer} as a {@code short}
1059      * after a narrowing primitive conversion.
1060      * @jls 5.1.3 Narrowing Primitive Conversion
1061      */
1062     public short shortValue() {
1063         return (short)value;
1064     }
1065 
1066     /**
1067      * Returns the value of this {@code Integer} as an
1068      * {@code int}.
1069      */
1070     @IntrinsicCandidate
1071     public int intValue() {
1072         return value;
1073     }
1074 
1075     /**
1076      * Returns the value of this {@code Integer} as a {@code long}
1077      * after a widening primitive conversion.
1078      * @jls 5.1.2 Widening Primitive Conversion
1079      * @see Integer#toUnsignedLong(int)
1080      */
1081     public long longValue() {
1082         return (long)value;
1083     }
1084 
1085     /**
1086      * Returns the value of this {@code Integer} as a {@code float}
1087      * after a widening primitive conversion.
1088      * @jls 5.1.2 Widening Primitive Conversion
1089      */
1090     public float floatValue() {
1091         return (float)value;
1092     }
1093 
1094     /**
1095      * Returns the value of this {@code Integer} as a {@code double}
1096      * after a widening primitive conversion.
1097      * @jls 5.1.2 Widening Primitive Conversion
1098      */
1099     public double doubleValue() {
1100         return (double)value;
1101     }
1102 
1103     /**
1104      * Returns a {@code String} object representing this
1105      * {@code Integer}'s value. The value is converted to signed
1106      * decimal representation and returned as a string, exactly as if
1107      * the integer value were given as an argument to the {@link
1108      * java.lang.Integer#toString(int)} method.
1109      *
1110      * @return  a string representation of the value of this object in
1111      *          base&nbsp;10.
1112      */
1113     public String toString() {
1114         return toString(value);
1115     }
1116 
1117     /**
1118      * Returns a hash code for this {@code Integer}.
1119      *
1120      * @return  a hash code value for this object, equal to the
1121      *          primitive {@code int} value represented by this
1122      *          {@code Integer} object.
1123      */
1124     @Override
1125     public int hashCode() {
1126         return Integer.hashCode(value);
1127     }
1128 
1129     /**
1130      * Returns a hash code for an {@code int} value; compatible with
1131      * {@code Integer.hashCode()}.
1132      *
1133      * @param value the value to hash
1134      * @since 1.8
1135      *
1136      * @return a hash code value for an {@code int} value.
1137      */
1138     public static int hashCode(int value) {
1139         return value;
1140     }
1141 
1142     /**
1143      * Compares this object to the specified object.  The result is
1144      * {@code true} if and only if the argument is not
1145      * {@code null} and is an {@code Integer} object that
1146      * contains the same {@code int} value as this object.
1147      *
1148      * @param   obj   the object to compare with.
1149      * @return  {@code true} if the objects are the same;
1150      *          {@code false} otherwise.
1151      */
1152     public boolean equals(Object obj) {
1153         if (obj instanceof Integer) {
1154             return value == ((Integer)obj).intValue();
1155         }
1156         return false;
1157     }
1158 
1159     /**
1160      * Determines the integer value of the system property with the
1161      * specified name.
1162      *
1163      * <p>The first argument is treated as the name of a system
1164      * property.  System properties are accessible through the {@link
1165      * java.lang.System#getProperty(java.lang.String)} method. The
1166      * string value of this property is then interpreted as an integer
1167      * value using the grammar supported by {@link Integer#decode decode} and
1168      * an {@code Integer} object representing this value is returned.
1169      *
1170      * <p>If there is no property with the specified name, if the
1171      * specified name is empty or {@code null}, or if the property
1172      * does not have the correct numeric format, then {@code null} is
1173      * returned.
1174      *
1175      * <p>In other words, this method returns an {@code Integer}
1176      * object equal to the value of:
1177      *
1178      * <blockquote>
1179      *  {@code getInteger(nm, null)}
1180      * </blockquote>
1181      *
1182      * @param   nm   property name.
1183      * @return  the {@code Integer} value of the property.
1184      * @throws  SecurityException for the same reasons as
1185      *          {@link System#getProperty(String) System.getProperty}
1186      * @see     java.lang.System#getProperty(java.lang.String)
1187      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1188      */
1189     public static Integer getInteger(String nm) {
1190         return getInteger(nm, null);
1191     }
1192 
1193     /**
1194      * Determines the integer value of the system property with the
1195      * specified name.
1196      *
1197      * <p>The first argument is treated as the name of a system
1198      * property.  System properties are accessible through the {@link
1199      * java.lang.System#getProperty(java.lang.String)} method. The
1200      * string value of this property is then interpreted as an integer
1201      * value using the grammar supported by {@link Integer#decode decode} and
1202      * an {@code Integer} object representing this value is returned.
1203      *
1204      * <p>The second argument is the default value. An {@code Integer} object
1205      * that represents the value of the second argument is returned if there
1206      * is no property of the specified name, if the property does not have
1207      * the correct numeric format, or if the specified name is empty or
1208      * {@code null}.
1209      *
1210      * <p>In other words, this method returns an {@code Integer} object
1211      * equal to the value of:
1212      *
1213      * <blockquote>
1214      *  {@code getInteger(nm, Integer.valueOf(val))}
1215      * </blockquote>
1216      *
1217      * but in practice it may be implemented in a manner such as:
1218      *
1219      * <blockquote><pre>
1220      * Integer result = getInteger(nm, null);
1221      * return (result == null) ? Integer.valueOf(val) : result;
1222      * </pre></blockquote>
1223      *
1224      * to avoid the unnecessary allocation of an {@code Integer}
1225      * object when the default value is not needed.
1226      *
1227      * @param   nm   property name.
1228      * @param   val   default value.
1229      * @return  the {@code Integer} value of the property.
1230      * @throws  SecurityException for the same reasons as
1231      *          {@link System#getProperty(String) System.getProperty}
1232      * @see     java.lang.System#getProperty(java.lang.String)
1233      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1234      */
1235     public static Integer getInteger(String nm, int val) {
1236         Integer result = getInteger(nm, null);
1237         return (result == null) ? Integer.valueOf(val) : result;
1238     }
1239 
1240     /**
1241      * Returns the integer value of the system property with the
1242      * specified name.  The first argument is treated as the name of a
1243      * system property.  System properties are accessible through the
1244      * {@link java.lang.System#getProperty(java.lang.String)} method.
1245      * The string value of this property is then interpreted as an
1246      * integer value, as per the {@link Integer#decode decode} method,
1247      * and an {@code Integer} object representing this value is
1248      * returned; in summary:
1249      *
1250      * <ul><li>If the property value begins with the two ASCII characters
1251      *         {@code 0x} or the ASCII character {@code #}, not
1252      *      followed by a minus sign, then the rest of it is parsed as a
1253      *      hexadecimal integer exactly as by the method
1254      *      {@link #valueOf(java.lang.String, int)} with radix 16.
1255      * <li>If the property value begins with the ASCII character
1256      *     {@code 0} followed by another character, it is parsed as an
1257      *     octal integer exactly as by the method
1258      *     {@link #valueOf(java.lang.String, int)} with radix 8.
1259      * <li>Otherwise, the property value is parsed as a decimal integer
1260      * exactly as by the method {@link #valueOf(java.lang.String, int)}
1261      * with radix 10.
1262      * </ul>
1263      *
1264      * <p>The second argument is the default value. The default value is
1265      * returned if there is no property of the specified name, if the
1266      * property does not have the correct numeric format, or if the
1267      * specified name is empty or {@code null}.
1268      *
1269      * @param   nm   property name.
1270      * @param   val   default value.
1271      * @return  the {@code Integer} value of the property.
1272      * @throws  SecurityException for the same reasons as
1273      *          {@link System#getProperty(String) System.getProperty}
1274      * @see     System#getProperty(java.lang.String)
1275      * @see     System#getProperty(java.lang.String, java.lang.String)
1276      */
1277     public static Integer getInteger(String nm, Integer val) {
1278         String v = null;
1279         try {
1280             v = System.getProperty(nm);
1281         } catch (IllegalArgumentException | NullPointerException e) {
1282         }
1283         if (v != null) {
1284             try {
1285                 return Integer.decode(v);
1286             } catch (NumberFormatException e) {
1287             }
1288         }
1289         return val;
1290     }
1291 
1292     /**
1293      * Decodes a {@code String} into an {@code Integer}.
1294      * Accepts decimal, hexadecimal, and octal numbers given
1295      * by the following grammar:
1296      *
1297      * <blockquote>
1298      * <dl>
1299      * <dt><i>DecodableString:</i>
1300      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1301      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1302      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1303      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1304      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1305      *
1306      * <dt><i>Sign:</i>
1307      * <dd>{@code -}
1308      * <dd>{@code +}
1309      * </dl>
1310      * </blockquote>
1311      *
1312      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1313      * are as defined in section {@jls 3.10.1} of
1314      * <cite>The Java Language Specification</cite>,
1315      * except that underscores are not accepted between digits.
1316      *
1317      * <p>The sequence of characters following an optional
1318      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1319      * "{@code #}", or leading zero) is parsed as by the {@code
1320      * Integer.parseInt} method with the indicated radix (10, 16, or
1321      * 8).  This sequence of characters must represent a positive
1322      * value or a {@link NumberFormatException} will be thrown.  The
1323      * result is negated if first character of the specified {@code
1324      * String} is the minus sign.  No whitespace characters are
1325      * permitted in the {@code String}.
1326      *
1327      * @param     nm the {@code String} to decode.
1328      * @return    an {@code Integer} object holding the {@code int}
1329      *             value represented by {@code nm}
1330      * @throws    NumberFormatException  if the {@code String} does not
1331      *            contain a parsable integer.
1332      * @see java.lang.Integer#parseInt(java.lang.String, int)
1333      */
1334     public static Integer decode(String nm) throws NumberFormatException {
1335         int radix = 10;
1336         int index = 0;
1337         boolean negative = false;
1338         int result;
1339 
1340         if (nm.isEmpty())
1341             throw new NumberFormatException("Zero length string");
1342         char firstChar = nm.charAt(0);
1343         // Handle sign, if present
1344         if (firstChar == '-') {
1345             negative = true;
1346             index++;
1347         } else if (firstChar == '+')
1348             index++;
1349 
1350         // Handle radix specifier, if present
1351         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1352             index += 2;
1353             radix = 16;
1354         }
1355         else if (nm.startsWith("#", index)) {
1356             index ++;
1357             radix = 16;
1358         }
1359         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1360             index ++;
1361             radix = 8;
1362         }
1363 
1364         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1365             throw new NumberFormatException("Sign character in wrong position");
1366 
1367         try {
1368             result = parseInt(nm, index, nm.length(), radix);
1369             result = negative ? -result : result;
1370         } catch (NumberFormatException e) {
1371             // If number is Integer.MIN_VALUE, we'll end up here. The next line
1372             // handles this case, and causes any genuine format error to be
1373             // rethrown.
1374             String constant = negative ? ("-" + nm.substring(index))
1375                                        : nm.substring(index);
1376             result = parseInt(constant, radix);
1377         }
1378         return result;
1379     }
1380 
1381     /**
1382      * Compares two {@code Integer} objects numerically.
1383      *
1384      * @param   anotherInteger   the {@code Integer} to be compared.
1385      * @return  the value {@code 0} if this {@code Integer} is
1386      *          equal to the argument {@code Integer}; a value less than
1387      *          {@code 0} if this {@code Integer} is numerically less
1388      *          than the argument {@code Integer}; and a value greater
1389      *          than {@code 0} if this {@code Integer} is numerically
1390      *           greater than the argument {@code Integer} (signed
1391      *           comparison).
1392      * @since   1.2
1393      */
1394     public int compareTo(Integer anotherInteger) {
1395         return compare(this.value, anotherInteger.value);
1396     }
1397 
1398     /**
1399      * Compares two {@code int} values numerically.
1400      * The value returned is identical to what would be returned by:
1401      * <pre>
1402      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
1403      * </pre>
1404      *
1405      * @param  x the first {@code int} to compare
1406      * @param  y the second {@code int} to compare
1407      * @return the value {@code 0} if {@code x == y};
1408      *         a value less than {@code 0} if {@code x < y}; and
1409      *         a value greater than {@code 0} if {@code x > y}
1410      * @since 1.7
1411      */
1412     public static int compare(int x, int y) {
1413         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1414     }
1415 
1416     /**
1417      * Compares two {@code int} values numerically treating the values
1418      * as unsigned.
1419      *
1420      * @param  x the first {@code int} to compare
1421      * @param  y the second {@code int} to compare
1422      * @return the value {@code 0} if {@code x == y}; a value less
1423      *         than {@code 0} if {@code x < y} as unsigned values; and
1424      *         a value greater than {@code 0} if {@code x > y} as
1425      *         unsigned values
1426      * @since 1.8
1427      */
1428     @IntrinsicCandidate
1429     public static int compareUnsigned(int x, int y) {
1430         return compare(x + MIN_VALUE, y + MIN_VALUE);
1431     }
1432 
1433     /**
1434      * Converts the argument to a {@code long} by an unsigned
1435      * conversion.  In an unsigned conversion to a {@code long}, the
1436      * high-order 32 bits of the {@code long} are zero and the
1437      * low-order 32 bits are equal to the bits of the integer
1438      * argument.
1439      *
1440      * Consequently, zero and positive {@code int} values are mapped
1441      * to a numerically equal {@code long} value and negative {@code
1442      * int} values are mapped to a {@code long} value equal to the
1443      * input plus 2<sup>32</sup>.
1444      *
1445      * @param  x the value to convert to an unsigned {@code long}
1446      * @return the argument converted to {@code long} by an unsigned
1447      *         conversion
1448      * @since 1.8
1449      */
1450     public static long toUnsignedLong(int x) {
1451         return ((long) x) & 0xffffffffL;
1452     }
1453 
1454     /**
1455      * Returns the unsigned quotient of dividing the first argument by
1456      * the second where each argument and the result is interpreted as
1457      * an unsigned value.
1458      *
1459      * <p>Note that in two's complement arithmetic, the three other
1460      * basic arithmetic operations of add, subtract, and multiply are
1461      * bit-wise identical if the two operands are regarded as both
1462      * being signed or both being unsigned.  Therefore separate {@code
1463      * addUnsigned}, etc. methods are not provided.
1464      *
1465      * @param dividend the value to be divided
1466      * @param divisor the value doing the dividing
1467      * @return the unsigned quotient of the first argument divided by
1468      * the second argument
1469      * @see #remainderUnsigned
1470      * @since 1.8
1471      */
1472     @IntrinsicCandidate
1473     public static int divideUnsigned(int dividend, int divisor) {
1474         // In lieu of tricky code, for now just use long arithmetic.
1475         return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
1476     }
1477 
1478     /**
1479      * Returns the unsigned remainder from dividing the first argument
1480      * by the second where each argument and the result is interpreted
1481      * as an unsigned value.
1482      *
1483      * @param dividend the value to be divided
1484      * @param divisor the value doing the dividing
1485      * @return the unsigned remainder of the first argument divided by
1486      * the second argument
1487      * @see #divideUnsigned
1488      * @since 1.8
1489      */
1490     @IntrinsicCandidate
1491     public static int remainderUnsigned(int dividend, int divisor) {
1492         // In lieu of tricky code, for now just use long arithmetic.
1493         return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
1494     }
1495 
1496 
1497     // Bit twiddling
1498 
1499     /**
1500      * The number of bits used to represent an {@code int} value in two's
1501      * complement binary form.
1502      *
1503      * @since 1.5
1504      */
1505     @Native public static final int SIZE = 32;
1506 
1507     /**
1508      * The number of bytes used to represent an {@code int} value in two's
1509      * complement binary form.
1510      *
1511      * @since 1.8
1512      */
1513     public static final int BYTES = SIZE / Byte.SIZE;
1514 
1515     /**
1516      * Returns an {@code int} value with at most a single one-bit, in the
1517      * position of the highest-order ("leftmost") one-bit in the specified
1518      * {@code int} value.  Returns zero if the specified value has no
1519      * one-bits in its two's complement binary representation, that is, if it
1520      * is equal to zero.
1521      *
1522      * @param i the value whose highest one bit is to be computed
1523      * @return an {@code int} value with a single one-bit, in the position
1524      *     of the highest-order one-bit in the specified value, or zero if
1525      *     the specified value is itself equal to zero.
1526      * @since 1.5
1527      */
1528     public static int highestOneBit(int i) {
1529         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1530     }
1531 
1532     /**
1533      * Returns an {@code int} value with at most a single one-bit, in the
1534      * position of the lowest-order ("rightmost") one-bit in the specified
1535      * {@code int} value.  Returns zero if the specified value has no
1536      * one-bits in its two's complement binary representation, that is, if it
1537      * is equal to zero.
1538      *
1539      * @param i the value whose lowest one bit is to be computed
1540      * @return an {@code int} value with a single one-bit, in the position
1541      *     of the lowest-order one-bit in the specified value, or zero if
1542      *     the specified value is itself equal to zero.
1543      * @since 1.5
1544      */
1545     public static int lowestOneBit(int i) {
1546         // HD, Section 2-1
1547         return i & -i;
1548     }
1549 
1550     /**
1551      * Returns the number of zero bits preceding the highest-order
1552      * ("leftmost") one-bit in the two's complement binary representation
1553      * of the specified {@code int} value.  Returns 32 if the
1554      * specified value has no one-bits in its two's complement representation,
1555      * in other words if it is equal to zero.
1556      *
1557      * <p>Note that this method is closely related to the logarithm base 2.
1558      * For all positive {@code int} values x:
1559      * <ul>
1560      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
1561      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
1562      * </ul>
1563      *
1564      * @param i the value whose number of leading zeros is to be computed
1565      * @return the number of zero bits preceding the highest-order
1566      *     ("leftmost") one-bit in the two's complement binary representation
1567      *     of the specified {@code int} value, or 32 if the value
1568      *     is equal to zero.
1569      * @since 1.5
1570      */
1571     @IntrinsicCandidate
1572     public static int numberOfLeadingZeros(int i) {
1573         // HD, Count leading 0's
1574         if (i <= 0)
1575             return i == 0 ? 32 : 0;
1576         int n = 31;
1577         if (i >= 1 << 16) { n -= 16; i >>>= 16; }
1578         if (i >= 1 <<  8) { n -=  8; i >>>=  8; }
1579         if (i >= 1 <<  4) { n -=  4; i >>>=  4; }
1580         if (i >= 1 <<  2) { n -=  2; i >>>=  2; }
1581         return n - (i >>> 1);
1582     }
1583 
1584     /**
1585      * Returns the number of zero bits following the lowest-order ("rightmost")
1586      * one-bit in the two's complement binary representation of the specified
1587      * {@code int} value.  Returns 32 if the specified value has no
1588      * one-bits in its two's complement representation, in other words if it is
1589      * equal to zero.
1590      *
1591      * @param i the value whose number of trailing zeros is to be computed
1592      * @return the number of zero bits following the lowest-order ("rightmost")
1593      *     one-bit in the two's complement binary representation of the
1594      *     specified {@code int} value, or 32 if the value is equal
1595      *     to zero.
1596      * @since 1.5
1597      */
1598     @IntrinsicCandidate
1599     public static int numberOfTrailingZeros(int i) {
1600         // HD, Count trailing 0's
1601         i = ~i & (i - 1);
1602         if (i <= 0) return i & 32;
1603         int n = 1;
1604         if (i > 1 << 16) { n += 16; i >>>= 16; }
1605         if (i > 1 <<  8) { n +=  8; i >>>=  8; }
1606         if (i > 1 <<  4) { n +=  4; i >>>=  4; }
1607         if (i > 1 <<  2) { n +=  2; i >>>=  2; }
1608         return n + (i >>> 1);
1609     }
1610 
1611     /**
1612      * Returns the number of one-bits in the two's complement binary
1613      * representation of the specified {@code int} value.  This function is
1614      * sometimes referred to as the <i>population count</i>.
1615      *
1616      * @param i the value whose bits are to be counted
1617      * @return the number of one-bits in the two's complement binary
1618      *     representation of the specified {@code int} value.
1619      * @since 1.5
1620      */
1621     @IntrinsicCandidate
1622     public static int bitCount(int i) {
1623         // HD, Figure 5-2
1624         i = i - ((i >>> 1) & 0x55555555);
1625         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
1626         i = (i + (i >>> 4)) & 0x0f0f0f0f;
1627         i = i + (i >>> 8);
1628         i = i + (i >>> 16);
1629         return i & 0x3f;
1630     }
1631 
1632     /**
1633      * Returns the value obtained by rotating the two's complement binary
1634      * representation of the specified {@code int} value left by the
1635      * specified number of bits.  (Bits shifted out of the left hand, or
1636      * high-order, side reenter on the right, or low-order.)
1637      *
1638      * <p>Note that left rotation with a negative distance is equivalent to
1639      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1640      * distance)}.  Note also that rotation by any multiple of 32 is a
1641      * no-op, so all but the last five bits of the rotation distance can be
1642      * ignored, even if the distance is negative: {@code rotateLeft(val,
1643      * distance) == rotateLeft(val, distance & 0x1F)}.
1644      *
1645      * @param i the value whose bits are to be rotated left
1646      * @param distance the number of bit positions to rotate left
1647      * @return the value obtained by rotating the two's complement binary
1648      *     representation of the specified {@code int} value left by the
1649      *     specified number of bits.
1650      * @since 1.5
1651      */
1652     public static int rotateLeft(int i, int distance) {
1653         return (i << distance) | (i >>> -distance);
1654     }
1655 
1656     /**
1657      * Returns the value obtained by rotating the two's complement binary
1658      * representation of the specified {@code int} value right by the
1659      * specified number of bits.  (Bits shifted out of the right hand, or
1660      * low-order, side reenter on the left, or high-order.)
1661      *
1662      * <p>Note that right rotation with a negative distance is equivalent to
1663      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1664      * distance)}.  Note also that rotation by any multiple of 32 is a
1665      * no-op, so all but the last five bits of the rotation distance can be
1666      * ignored, even if the distance is negative: {@code rotateRight(val,
1667      * distance) == rotateRight(val, distance & 0x1F)}.
1668      *
1669      * @param i the value whose bits are to be rotated right
1670      * @param distance the number of bit positions to rotate right
1671      * @return the value obtained by rotating the two's complement binary
1672      *     representation of the specified {@code int} value right by the
1673      *     specified number of bits.
1674      * @since 1.5
1675      */
1676     public static int rotateRight(int i, int distance) {
1677         return (i >>> distance) | (i << -distance);
1678     }
1679 
1680     /**
1681      * Returns the value obtained by reversing the order of the bits in the
1682      * two's complement binary representation of the specified {@code int}
1683      * value.
1684      *
1685      * @param i the value to be reversed
1686      * @return the value obtained by reversing order of the bits in the
1687      *     specified {@code int} value.
1688      * @since 1.5
1689      */
1690     @IntrinsicCandidate
1691     public static int reverse(int i) {
1692         // HD, Figure 7-1
1693         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
1694         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
1695         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
1696 
1697         return reverseBytes(i);
1698     }
1699 
1700     /**
1701      * Returns the value obtained by compressing the bits of the
1702      * specified {@code int} value, {@code i}, in accordance with
1703      * the specified bit mask.
1704      * <p>
1705      * For each one-bit value {@code mb} of the mask, from least
1706      * significant to most significant, the bit value of {@code i} at
1707      * the same bit location as {@code mb} is assigned to the compressed
1708      * value contiguously starting from the least significant bit location.
1709      * All the upper remaining bits of the compressed value are set
1710      * to zero.
1711      *
1712      * @apiNote
1713      * Consider the simple case of compressing the digits of a hexadecimal
1714      * value:
1715      * {@snippet lang="java" :
1716      * // Compressing drink to food
1717      * compress(0xCAFEBABE, 0xFF00FFF0) == 0xCABAB
1718      * }
1719      * Starting from the least significant hexadecimal digit at position 0
1720      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1721      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1722      * occur in the resulting compressed value contiguously from digit position
1723      * 0 in the same order.
1724      * <p>
1725      * The following identities all return {@code true} and are helpful to
1726      * understand the behaviour of {@code compress}:
1727      * {@snippet lang="java" :
1728      * // Returns 1 if the bit at position n is one
1729      * compress(x, 1 << n) == (x >> n & 1)
1730      *
1731      * // Logical shift right
1732      * compress(x, -1 << n) == x >>> n
1733      *
1734      * // Any bits not covered by the mask are ignored
1735      * compress(x, m) == compress(x & m, m)
1736      *
1737      * // Compressing a value by itself
1738      * compress(m, m) == (m == -1 || m == 0) ? m : (1 << bitCount(m)) - 1
1739      *
1740      * // Expanding then compressing with the same mask
1741      * compress(expand(x, m), m) == x & compress(m, m)
1742      * }
1743      * <p>
1744      * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7)
1745      * can be implemented as follows:
1746      * {@snippet lang="java" :
1747      * int compressLeft(int i, int mask) {
1748      *     // This implementation follows the description in Hacker's Delight which
1749      *     // is informative. A more optimal implementation is:
1750      *     //   Integer.compress(i, mask) << -Integer.bitCount(mask)
1751      *     return Integer.reverse(
1752      *         Integer.compress(Integer.reverse(i), Integer.reverse(mask)));
1753      * }
1754      *
1755      * int sag(int i, int mask) {
1756      *     return compressLeft(i, mask) | Integer.compress(i, ~mask);
1757      * }
1758      *
1759      * // Separate the sheep from the goats
1760      * sag(0xCAFEBABE, 0xFF00FFF0) == 0xCABABFEE
1761      * }
1762      *
1763      * @param i the value whose bits are to be compressed
1764      * @param mask the bit mask
1765      * @return the compressed value
1766      * @see #expand
1767      * @since 19
1768      */
1769     @IntrinsicCandidate
1770     public static int compress(int i, int mask) {
1771         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1772 
1773         i = i & mask; // Clear irrelevant bits
1774         int maskCount = ~mask << 1; // Count 0's to right
1775 
1776         for (int j = 0; j < 5; j++) {
1777             // Parallel prefix
1778             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1779             int maskPrefix = parallelSuffix(maskCount);
1780             // Bits to move
1781             int maskMove = maskPrefix & mask;
1782             // Compress mask
1783             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1784             // Bits of i to be moved
1785             int t = i & maskMove;
1786             // Compress i
1787             i = (i ^ t) | (t >>> (1 << j));
1788             // Adjust the mask count by identifying bits that have 0 to the right
1789             maskCount = maskCount & ~maskPrefix;
1790         }
1791         return i;
1792     }
1793 
1794     /**
1795      * Returns the value obtained by expanding the bits of the
1796      * specified {@code int} value, {@code i}, in accordance with
1797      * the specified bit mask.
1798      * <p>
1799      * For each one-bit value {@code mb} of the mask, from least
1800      * significant to most significant, the next contiguous bit value
1801      * of {@code i} starting at the least significant bit is assigned
1802      * to the expanded value at the same bit location as {@code mb}.
1803      * All other remaining bits of the expanded value are set to zero.
1804      *
1805      * @apiNote
1806      * Consider the simple case of expanding the digits of a hexadecimal
1807      * value:
1808      * {@snippet lang="java" :
1809      * expand(0x0000CABAB, 0xFF00FFF0) == 0xCA00BAB0
1810      * }
1811      * Starting from the least significant hexadecimal digit at position 0
1812      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1813      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1814      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1815      * <p>
1816      * The following identities all return {@code true} and are helpful to
1817      * understand the behaviour of {@code expand}:
1818      * {@snippet lang="java" :
1819      * // Logically shift right the bit at position 0
1820      * expand(x, 1 << n) == (x & 1) << n
1821      *
1822      * // Logically shift right
1823      * expand(x, -1 << n) == x << n
1824      *
1825      * // Expanding all bits returns the mask
1826      * expand(-1, m) == m
1827      *
1828      * // Any bits not covered by the mask are ignored
1829      * expand(x, m) == expand(x, m) & m
1830      *
1831      * // Compressing then expanding with the same mask
1832      * expand(compress(x, m), m) == x & m
1833      * }
1834      * <p>
1835      * The select operation for determining the position of the one-bit with
1836      * index {@code n} in a {@code int} value can be implemented as follows:
1837      * {@snippet lang="java" :
1838      * int select(int i, int n) {
1839      *     // the one-bit in i (the mask) with index n
1840      *     int nthBit = Integer.expand(1 << n, i);
1841      *     // the bit position of the one-bit with index n
1842      *     return Integer.numberOfTrailingZeros(nthBit);
1843      * }
1844      *
1845      * // The one-bit with index 0 is at bit position 1
1846      * select(0b10101010_10101010, 0) == 1
1847      * // The one-bit with index 3 is at bit position 7
1848      * select(0b10101010_10101010, 3) == 7
1849      * }
1850      *
1851      * @param i the value whose bits are to be expanded
1852      * @param mask the bit mask
1853      * @return the expanded value
1854      * @see #compress
1855      * @since 19
1856      */
1857     @IntrinsicCandidate
1858     public static int expand(int i, int mask) {
1859         // Save original mask
1860         int originalMask = mask;
1861         // Count 0's to right
1862         int maskCount = ~mask << 1;
1863         int maskPrefix = parallelSuffix(maskCount);
1864         // Bits to move
1865         int maskMove1 = maskPrefix & mask;
1866         // Compress mask
1867         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1868         maskCount = maskCount & ~maskPrefix;
1869 
1870         maskPrefix = parallelSuffix(maskCount);
1871         // Bits to move
1872         int maskMove2 = maskPrefix & mask;
1873         // Compress mask
1874         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1875         maskCount = maskCount & ~maskPrefix;
1876 
1877         maskPrefix = parallelSuffix(maskCount);
1878         // Bits to move
1879         int maskMove3 = maskPrefix & mask;
1880         // Compress mask
1881         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1882         maskCount = maskCount & ~maskPrefix;
1883 
1884         maskPrefix = parallelSuffix(maskCount);
1885         // Bits to move
1886         int maskMove4 = maskPrefix & mask;
1887         // Compress mask
1888         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1889         maskCount = maskCount & ~maskPrefix;
1890 
1891         maskPrefix = parallelSuffix(maskCount);
1892         // Bits to move
1893         int maskMove5 = maskPrefix & mask;
1894 
1895         int t = i << (1 << 4);
1896         i = (i & ~maskMove5) | (t & maskMove5);
1897         t = i << (1 << 3);
1898         i = (i & ~maskMove4) | (t & maskMove4);
1899         t = i << (1 << 2);
1900         i = (i & ~maskMove3) | (t & maskMove3);
1901         t = i << (1 << 1);
1902         i = (i & ~maskMove2) | (t & maskMove2);
1903         t = i << (1 << 0);
1904         i = (i & ~maskMove1) | (t & maskMove1);
1905 
1906         // Clear irrelevant bits
1907         return i & originalMask;
1908     }
1909 
1910     @ForceInline
1911     private static int parallelSuffix(int maskCount) {
1912         int maskPrefix = maskCount ^ (maskCount << 1);
1913         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1914         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1915         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1916         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1917         return maskPrefix;
1918     }
1919 
1920     /**
1921      * Returns the signum function of the specified {@code int} value.  (The
1922      * return value is -1 if the specified value is negative; 0 if the
1923      * specified value is zero; and 1 if the specified value is positive.)
1924      *
1925      * @param i the value whose signum is to be computed
1926      * @return the signum function of the specified {@code int} value.
1927      * @since 1.5
1928      */
1929     public static int signum(int i) {
1930         // HD, Section 2-7
1931         return (i >> 31) | (-i >>> 31);
1932     }
1933 
1934     /**
1935      * Returns the value obtained by reversing the order of the bytes in the
1936      * two's complement representation of the specified {@code int} value.
1937      *
1938      * @param i the value whose bytes are to be reversed
1939      * @return the value obtained by reversing the bytes in the specified
1940      *     {@code int} value.
1941      * @since 1.5
1942      */
1943     @IntrinsicCandidate
1944     public static int reverseBytes(int i) {
1945         return (i << 24)            |
1946                ((i & 0xff00) << 8)  |
1947                ((i >>> 8) & 0xff00) |
1948                (i >>> 24);
1949     }
1950 
1951     /**
1952      * Adds two integers together as per the + operator.
1953      *
1954      * @param a the first operand
1955      * @param b the second operand
1956      * @return the sum of {@code a} and {@code b}
1957      * @see java.util.function.BinaryOperator
1958      * @since 1.8
1959      */
1960     public static int sum(int a, int b) {
1961         return a + b;
1962     }
1963 
1964     /**
1965      * Returns the greater of two {@code int} values
1966      * as if by calling {@link Math#max(int, int) Math.max}.
1967      *
1968      * @param a the first operand
1969      * @param b the second operand
1970      * @return the greater of {@code a} and {@code b}
1971      * @see java.util.function.BinaryOperator
1972      * @since 1.8
1973      */
1974     public static int max(int a, int b) {
1975         return Math.max(a, b);
1976     }
1977 
1978     /**
1979      * Returns the smaller of two {@code int} values
1980      * as if by calling {@link Math#min(int, int) Math.min}.
1981      *
1982      * @param a the first operand
1983      * @param b the second operand
1984      * @return the smaller of {@code a} and {@code b}
1985      * @see java.util.function.BinaryOperator
1986      * @since 1.8
1987      */
1988     public static int min(int a, int b) {
1989         return Math.min(a, b);
1990     }
1991 
1992     /**
1993      * Returns an {@link Optional} containing the nominal descriptor for this
1994      * instance, which is the instance itself.
1995      *
1996      * @return an {@link Optional} describing the {@linkplain Integer} instance
1997      * @since 12
1998      */
1999     @Override
2000     public Optional<Integer> describeConstable() {
2001         return Optional.of(this);
2002     }
2003 
2004     /**
2005      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2006      * the instance itself.
2007      *
2008      * @param lookup ignored
2009      * @return the {@linkplain Integer} instance
2010      * @since 12
2011      */
2012     @Override
2013     public Integer resolveConstantDesc(MethodHandles.Lookup lookup) {
2014         return this;
2015     }
2016 
2017     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2018     @java.io.Serial
2019     @Native private static final long serialVersionUID = 1360826667806852920L;
2020 }