1 /*
   2  * Copyright (c) 1994, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.lang.invoke.MethodHandles;
  30 import java.lang.constant.Constable;
  31 import java.lang.constant.ConstantDesc;
  32 import java.math.*;
  33 import java.util.Objects;
  34 import java.util.Optional;
  35 
  36 import jdk.internal.misc.CDS;
  37 import jdk.internal.util.DecimalDigits;
  38 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  39 import jdk.internal.vm.annotation.ForceInline;
  40 import jdk.internal.vm.annotation.IntrinsicCandidate;
  41 import jdk.internal.vm.annotation.Stable;
  42 
  43 import static java.lang.Character.digit;
  44 import static java.lang.String.COMPACT_STRINGS;
  45 
  46 /**
  47  * The {@code Long} class is the {@linkplain
  48  * java.lang##wrapperClass wrapper class} for values of the primitive
  49  * type {@code long}. An object of type {@code Long} contains a
  50  * single field whose type is {@code long}.
  51  *
  52  * <p> In addition, this class provides several methods for converting
  53  * a {@code long} to a {@code String} and a {@code String} to a {@code
  54  * long}, as well as other constants and methods useful when dealing
  55  * with a {@code long}.
  56  *
  57  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  58  * class; programmers should treat instances that are
  59  * {@linkplain #equals(Object) equal} as interchangeable and should not
  60  * use instances for synchronization, or unpredictable behavior may
  61  * occur. For example, in a future release, synchronization may fail.
  62  *
  63  * <p>Implementation note: The implementations of the "bit twiddling"
  64  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  65  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  66  * based on material from Henry S. Warren, Jr.'s <cite>Hacker's
  67  * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's
  68  * Delight, Second Edition</cite>, (Pearson Education, 2013).
  69  *
  70  * @since   1.0
  71  */
  72 @jdk.internal.ValueBased
  73 public final class Long extends Number
  74         implements Comparable<Long>, Constable, ConstantDesc {
  75     /**
  76      * A constant holding the minimum value a {@code long} can
  77      * have, -2<sup>63</sup>.
  78      */
  79     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  80 
  81     /**
  82      * A constant holding the maximum value a {@code long} can
  83      * have, 2<sup>63</sup>-1.
  84      */
  85     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  86 
  87     /**
  88      * The {@code Class} instance representing the primitive type
  89      * {@code long}.
  90      *
  91      * @since   1.1
  92      */
  93     public static final Class<Long> TYPE = Class.getPrimitiveClass("long");
  94 
  95     /**
  96      * Returns a string representation of the first argument in the
  97      * radix specified by the second argument.
  98      *
  99      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 100      * or larger than {@code Character.MAX_RADIX}, then the radix
 101      * {@code 10} is used instead.
 102      *
 103      * <p>If the first argument is negative, the first element of the
 104      * result is the ASCII minus sign {@code '-'}
 105      * ({@code '\u005Cu002d'}). If the first argument is not
 106      * negative, no sign character appears in the result.
 107      *
 108      * <p>The remaining characters of the result represent the magnitude
 109      * of the first argument. If the magnitude is zero, it is
 110      * represented by a single zero character {@code '0'}
 111      * ({@code '\u005Cu0030'}); otherwise, the first character of
 112      * the representation of the magnitude will not be the zero
 113      * character.  The following ASCII characters are used as digits:
 114      *
 115      * <blockquote>
 116      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 117      * </blockquote>
 118      *
 119      * These are {@code '\u005Cu0030'} through
 120      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 121      * {@code '\u005Cu007a'}. If {@code radix} is
 122      * <var>N</var>, then the first <var>N</var> of these characters
 123      * are used as radix-<var>N</var> digits in the order shown. Thus,
 124      * the digits for hexadecimal (radix 16) are
 125      * {@code 0123456789abcdef}. If uppercase letters are
 126      * desired, the {@link java.lang.String#toUpperCase()} method may
 127      * be called on the result:
 128      *
 129      * <blockquote>
 130      *  {@code Long.toString(n, 16).toUpperCase()}
 131      * </blockquote>
 132      *
 133      * @param   i       a {@code long} to be converted to a string.
 134      * @param   radix   the radix to use in the string representation.
 135      * @return  a string representation of the argument in the specified radix.
 136      * @see     java.lang.Character#MAX_RADIX
 137      * @see     java.lang.Character#MIN_RADIX
 138      */
 139     public static String toString(long i, int radix) {
 140         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 141             radix = 10;
 142         if (radix == 10)
 143             return toString(i);
 144 
 145         if (COMPACT_STRINGS) {
 146             byte[] buf = new byte[65];
 147             int charPos = 64;
 148             boolean negative = (i < 0);
 149 
 150             if (!negative) {
 151                 i = -i;
 152             }
 153 
 154             while (i <= -radix) {
 155                 buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 156                 i = i / radix;
 157             }
 158             buf[charPos] = Integer.digits[(int)(-i)];
 159 
 160             if (negative) {
 161                 buf[--charPos] = '-';
 162             }
 163             return StringLatin1.newString(buf, charPos, (65 - charPos));
 164         }
 165         return toStringUTF16(i, radix);
 166     }
 167 
 168     private static String toStringUTF16(long i, int radix) {
 169         byte[] buf = new byte[65 * 2];
 170         int charPos = 64;
 171         boolean negative = (i < 0);
 172         if (!negative) {
 173             i = -i;
 174         }
 175         while (i <= -radix) {
 176             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
 177             i = i / radix;
 178         }
 179         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
 180         if (negative) {
 181             StringUTF16.putChar(buf, --charPos, '-');
 182         }
 183         return StringUTF16.newString(buf, charPos, (65 - charPos));
 184     }
 185 
 186     /**
 187      * Returns a string representation of the first argument as an
 188      * unsigned integer value in the radix specified by the second
 189      * argument.
 190      *
 191      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 192      * or larger than {@code Character.MAX_RADIX}, then the radix
 193      * {@code 10} is used instead.
 194      *
 195      * <p>Note that since the first argument is treated as an unsigned
 196      * value, no leading sign character is printed.
 197      *
 198      * <p>If the magnitude is zero, it is represented by a single zero
 199      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 200      * the first character of the representation of the magnitude will
 201      * not be the zero character.
 202      *
 203      * <p>The behavior of radixes and the characters used as digits
 204      * are the same as {@link #toString(long, int) toString}.
 205      *
 206      * @param   i       an integer to be converted to an unsigned string.
 207      * @param   radix   the radix to use in the string representation.
 208      * @return  an unsigned string representation of the argument in the specified radix.
 209      * @see     #toString(long, int)
 210      * @since 1.8
 211      */
 212     public static String toUnsignedString(long i, int radix) {
 213         if (i >= 0)
 214             return toString(i, radix);
 215         else {
 216             return switch (radix) {
 217                 case 2  -> toBinaryString(i);
 218                 case 4  -> toUnsignedString0(i, 2);
 219                 case 8  -> toOctalString(i);
 220                 case 10 -> {
 221                     /*
 222                      * We can get the effect of an unsigned division by 10
 223                      * on a long value by first shifting right, yielding a
 224                      * positive value, and then dividing by 5.  This
 225                      * allows the last digit and preceding digits to be
 226                      * isolated more quickly than by an initial conversion
 227                      * to BigInteger.
 228                      */
 229                     long quot = (i >>> 1) / 5;
 230                     long rem = i - quot * 10;
 231                     yield toString(quot) + rem;
 232                 }
 233                 case 16 -> toHexString(i);
 234                 case 32 -> toUnsignedString0(i, 5);
 235                 default -> toUnsignedBigInteger(i).toString(radix);
 236             };
 237         }
 238     }
 239 
 240     /**
 241      * Return a BigInteger equal to the unsigned value of the
 242      * argument.
 243      */
 244     private static BigInteger toUnsignedBigInteger(long i) {
 245         if (i >= 0L)
 246             return BigInteger.valueOf(i);
 247         else {
 248             int upper = (int) (i >>> 32);
 249             int lower = (int) i;
 250 
 251             // return (upper << 32) + lower
 252             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 253                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 254         }
 255     }
 256 
 257     /**
 258      * Returns a string representation of the {@code long}
 259      * argument as an unsigned integer in base&nbsp;16.
 260      *
 261      * <p>The unsigned {@code long} value is the argument plus
 262      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 263      * equal to the argument.  This value is converted to a string of
 264      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 265      * leading {@code 0}s.
 266      *
 267      * <p>The value of the argument can be recovered from the returned
 268      * string {@code s} by calling {@link
 269      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 270      * 16)}.
 271      *
 272      * <p>If the unsigned magnitude is zero, it is represented by a
 273      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 274      * otherwise, the first character of the representation of the
 275      * unsigned magnitude will not be the zero character. The
 276      * following characters are used as hexadecimal digits:
 277      *
 278      * <blockquote>
 279      *  {@code 0123456789abcdef}
 280      * </blockquote>
 281      *
 282      * These are the characters {@code '\u005Cu0030'} through
 283      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 284      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 285      * the {@link java.lang.String#toUpperCase()} method may be called
 286      * on the result:
 287      *
 288      * <blockquote>
 289      *  {@code Long.toHexString(n).toUpperCase()}
 290      * </blockquote>
 291      *
 292      * @apiNote
 293      * The {@link java.util.HexFormat} class provides formatting and parsing
 294      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 295      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 296      * with leading zeros and for byte arrays includes for each byte
 297      * a delimiter, prefix, and suffix.
 298      *
 299      * @param   i   a {@code long} to be converted to a string.
 300      * @return  the string representation of the unsigned {@code long}
 301      *          value represented by the argument in hexadecimal
 302      *          (base&nbsp;16).
 303      * @see java.util.HexFormat
 304      * @see #parseUnsignedLong(String, int)
 305      * @see #toUnsignedString(long, int)
 306      * @since   1.0.2
 307      */
 308     public static String toHexString(long i) {
 309         return toUnsignedString0(i, 4);
 310     }
 311 
 312     /**
 313      * Returns a string representation of the {@code long}
 314      * argument as an unsigned integer in base&nbsp;8.
 315      *
 316      * <p>The unsigned {@code long} value is the argument plus
 317      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 318      * equal to the argument.  This value is converted to a string of
 319      * ASCII digits in octal (base&nbsp;8) with no extra leading
 320      * {@code 0}s.
 321      *
 322      * <p>The value of the argument can be recovered from the returned
 323      * string {@code s} by calling {@link
 324      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 325      * 8)}.
 326      *
 327      * <p>If the unsigned magnitude is zero, it is represented by a
 328      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 329      * otherwise, the first character of the representation of the
 330      * unsigned magnitude will not be the zero character. The
 331      * following characters are used as octal digits:
 332      *
 333      * <blockquote>
 334      *  {@code 01234567}
 335      * </blockquote>
 336      *
 337      * These are the characters {@code '\u005Cu0030'} through
 338      * {@code '\u005Cu0037'}.
 339      *
 340      * @param   i   a {@code long} to be converted to a string.
 341      * @return  the string representation of the unsigned {@code long}
 342      *          value represented by the argument in octal (base&nbsp;8).
 343      * @see #parseUnsignedLong(String, int)
 344      * @see #toUnsignedString(long, int)
 345      * @since   1.0.2
 346      */
 347     public static String toOctalString(long i) {
 348         return toUnsignedString0(i, 3);
 349     }
 350 
 351     /**
 352      * Returns a string representation of the {@code long}
 353      * argument as an unsigned integer in base&nbsp;2.
 354      *
 355      * <p>The unsigned {@code long} value is the argument plus
 356      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 357      * equal to the argument.  This value is converted to a string of
 358      * ASCII digits in binary (base&nbsp;2) with no extra leading
 359      * {@code 0}s.
 360      *
 361      * <p>The value of the argument can be recovered from the returned
 362      * string {@code s} by calling {@link
 363      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 364      * 2)}.
 365      *
 366      * <p>If the unsigned magnitude is zero, it is represented by a
 367      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 368      * otherwise, the first character of the representation of the
 369      * unsigned magnitude will not be the zero character. The
 370      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 371      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 372      *
 373      * @param   i   a {@code long} to be converted to a string.
 374      * @return  the string representation of the unsigned {@code long}
 375      *          value represented by the argument in binary (base&nbsp;2).
 376      * @see #parseUnsignedLong(String, int)
 377      * @see #toUnsignedString(long, int)
 378      * @since   1.0.2
 379      */
 380     public static String toBinaryString(long i) {
 381         return toUnsignedString0(i, 1);
 382     }
 383 
 384     /**
 385      * Format a long (treated as unsigned) into a String.
 386      * @param val the value to format
 387      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 388      */
 389     static String toUnsignedString0(long val, int shift) {
 390         // assert shift > 0 && shift <=5 : "Illegal shift value";
 391         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 392         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 393         byte[] buf = new byte[chars];
 394         formatUnsignedLong0(val, shift, buf, 0, chars);
 395         return String.newStringWithLatin1Bytes(buf);
 396     }
 397 
 398     /**
 399      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
 400      * {@code len} exceeds the formatted ASCII representation of {@code val},
 401      * {@code buf} will be padded with leading zeroes.
 402      *
 403      * @param val the unsigned long to format
 404      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 405      * @param buf the byte buffer to write to
 406      * @param offset the offset in the destination buffer to start at
 407      * @param len the number of characters to write
 408      */
 409     private static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
 410         int charPos = offset + len;
 411         int radix = 1 << shift;
 412         int mask = radix - 1;
 413         do {
 414             buf[--charPos] = Integer.digits[((int) val) & mask];
 415             val >>>= shift;
 416         } while (charPos > offset);
 417     }
 418 
 419     /**
 420      * Returns a {@code String} object representing the specified
 421      * {@code long}.  The argument is converted to signed decimal
 422      * representation and returned as a string, exactly as if the
 423      * argument and the radix 10 were given as arguments to the {@link
 424      * #toString(long, int)} method.
 425      *
 426      * @param   i   a {@code long} to be converted.
 427      * @return  a string representation of the argument in base&nbsp;10.
 428      */
 429     public static String toString(long i) {
 430         int size = DecimalDigits.stringSize(i);
 431         byte[] buf = new byte[size];
 432         DecimalDigits.uncheckedGetCharsLatin1(i, size, buf);
 433         return String.newStringWithLatin1Bytes(buf);
 434     }
 435 
 436     /**
 437      * Returns a string representation of the argument as an unsigned
 438      * decimal value.
 439      *
 440      * The argument is converted to unsigned decimal representation
 441      * and returned as a string exactly as if the argument and radix
 442      * 10 were given as arguments to the {@link #toUnsignedString(long,
 443      * int)} method.
 444      *
 445      * @param   i  an integer to be converted to an unsigned string.
 446      * @return  an unsigned string representation of the argument.
 447      * @see     #toUnsignedString(long, int)
 448      * @since 1.8
 449      */
 450     public static String toUnsignedString(long i) {
 451         return toUnsignedString(i, 10);
 452     }
 453 
 454     /**
 455      * Parses the string argument as a signed {@code long} in the
 456      * radix specified by the second argument. The characters in the
 457      * string must all be digits of the specified radix (as determined
 458      * by whether {@link java.lang.Character#digit(char, int)} returns
 459      * a nonnegative value), except that the first character may be an
 460      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 461      * indicate a negative value or an ASCII plus sign {@code '+'}
 462      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 463      * resulting {@code long} value is returned.
 464      *
 465      * <p>Note that neither the character {@code L}
 466      * ({@code '\u005Cu004C'}) nor {@code l}
 467      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 468      * of the string as a type indicator, as would be permitted in
 469      * Java programming language source code - except that either
 470      * {@code L} or {@code l} may appear as a digit for a
 471      * radix greater than or equal to 22.
 472      *
 473      * <p>An exception of type {@code NumberFormatException} is
 474      * thrown if any of the following situations occurs:
 475      * <ul>
 476      *
 477      * <li>The first argument is {@code null} or is a string of
 478      * length zero.
 479      *
 480      * <li>The {@code radix} is either smaller than {@link
 481      * java.lang.Character#MIN_RADIX} or larger than {@link
 482      * java.lang.Character#MAX_RADIX}.
 483      *
 484      * <li>Any character of the string is not a digit of the specified
 485      * radix, except that the first character may be a minus sign
 486      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 487      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 488      * longer than length 1.
 489      *
 490      * <li>The value represented by the string is not a value of type
 491      *      {@code long}.
 492      * </ul>
 493      *
 494      * <p>Examples:
 495      * <blockquote><pre>
 496      * parseLong("0", 10) returns 0L
 497      * parseLong("473", 10) returns 473L
 498      * parseLong("+42", 10) returns 42L
 499      * parseLong("-0", 10) returns 0L
 500      * parseLong("-FF", 16) returns -255L
 501      * parseLong("1100110", 2) returns 102L
 502      * parseLong("99", 8) throws a NumberFormatException
 503      * parseLong("Hazelnut", 10) throws a NumberFormatException
 504      * parseLong("Hazelnut", 36) returns 1356099454469L
 505      * </pre></blockquote>
 506      *
 507      * @param      s       the {@code String} containing the
 508      *                     {@code long} representation to be parsed.
 509      * @param      radix   the radix to be used while parsing {@code s}.
 510      * @return     the {@code long} represented by the string argument in
 511      *             the specified radix.
 512      * @throws     NumberFormatException  if the string does not contain a
 513      *             parsable {@code long}.
 514      */
 515     public static long parseLong(String s, int radix)
 516                 throws NumberFormatException {
 517         if (s == null) {
 518             throw new NumberFormatException("Cannot parse null string");
 519         }
 520 
 521         if (radix < Character.MIN_RADIX) {
 522             throw new NumberFormatException(String.format(
 523                 "radix %s less than Character.MIN_RADIX", radix));
 524         }
 525 
 526         if (radix > Character.MAX_RADIX) {
 527             throw new NumberFormatException(String.format(
 528                 "radix %s greater than Character.MAX_RADIX", radix));
 529         }
 530 
 531         int len = s.length();
 532         if (len == 0) {
 533             throw NumberFormatException.forInputString("", radix);
 534         }
 535         int digit = ~0xFF;
 536         int i = 0;
 537         char firstChar = s.charAt(i++);
 538         if (firstChar != '-' && firstChar != '+') {
 539             digit = digit(firstChar, radix);
 540         }
 541         if (digit >= 0 || digit == ~0xFF && len > 1) {
 542             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 543             long multmin = limit / radix;
 544             long result = -(digit & 0xFF);
 545             boolean inRange = true;
 546             /* Accumulating negatively avoids surprises near MAX_VALUE */
 547             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 548                     && (inRange = result > multmin
 549                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 550                 result = radix * result - digit;
 551             }
 552             if (inRange && i == len && digit >= 0) {
 553                 return firstChar != '-' ? -result : result;
 554             }
 555         }
 556         throw NumberFormatException.forInputString(s, radix);
 557     }
 558 
 559     /**
 560      * Parses the {@link CharSequence} argument as a signed {@code long} in
 561      * the specified {@code radix}, beginning at the specified
 562      * {@code beginIndex} and extending to {@code endIndex - 1}.
 563      *
 564      * <p>The method does not take steps to guard against the
 565      * {@code CharSequence} being mutated while parsing.
 566      *
 567      * @param      s   the {@code CharSequence} containing the {@code long}
 568      *                  representation to be parsed
 569      * @param      beginIndex   the beginning index, inclusive.
 570      * @param      endIndex     the ending index, exclusive.
 571      * @param      radix   the radix to be used while parsing {@code s}.
 572      * @return     the signed {@code long} represented by the subsequence in
 573      *             the specified radix.
 574      * @throws     NullPointerException  if {@code s} is null.
 575      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 576      *             negative, or if {@code beginIndex} is greater than
 577      *             {@code endIndex} or if {@code endIndex} is greater than
 578      *             {@code s.length()}.
 579      * @throws     NumberFormatException  if the {@code CharSequence} does not
 580      *             contain a parsable {@code long} in the specified
 581      *             {@code radix}, or if {@code radix} is either smaller than
 582      *             {@link java.lang.Character#MIN_RADIX} or larger than
 583      *             {@link java.lang.Character#MAX_RADIX}.
 584      * @since  9
 585      */
 586     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
 587                 throws NumberFormatException {
 588         Objects.requireNonNull(s);
 589         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 590 
 591         if (radix < Character.MIN_RADIX) {
 592             throw new NumberFormatException(String.format(
 593                 "radix %s less than Character.MIN_RADIX", radix));
 594         }
 595 
 596         if (radix > Character.MAX_RADIX) {
 597             throw new NumberFormatException(String.format(
 598                 "radix %s greater than Character.MAX_RADIX", radix));
 599         }
 600 
 601         /*
 602          * While s can be concurrently modified, it is ensured that each
 603          * of its characters is read at most once, from lower to higher indices.
 604          * This is obtained by reading them using the pattern s.charAt(i++),
 605          * and by not updating i anywhere else.
 606          */
 607         if (beginIndex == endIndex) {
 608             throw NumberFormatException.forInputString("", radix);
 609         }
 610         int digit = ~0xFF;  // ~0xFF means firstChar char is sign
 611         int i = beginIndex;
 612         char firstChar = s.charAt(i++);
 613         if (firstChar != '-' && firstChar != '+') {
 614             digit = digit(firstChar, radix);
 615         }
 616         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 617             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 618             long multmin = limit / radix;
 619             long result = -(digit & 0xFF);
 620             boolean inRange = true;
 621             /* Accumulating negatively avoids surprises near MAX_VALUE */
 622             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 623                     && (inRange = result > multmin
 624                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 625                 result = radix * result - digit;
 626             }
 627             if (inRange && i == endIndex && digit >= 0) {
 628                 return firstChar != '-' ? -result : result;
 629             }
 630         }
 631         throw NumberFormatException.forCharSequence(s, beginIndex,
 632             endIndex, i - (digit < -1 ? 0 : 1));
 633     }
 634 
 635     /**
 636      * Parses the string argument as a signed decimal {@code long}.
 637      * The characters in the string must all be decimal digits, except
 638      * that the first character may be an ASCII minus sign {@code '-'}
 639      * ({@code \u005Cu002D'}) to indicate a negative value or an
 640      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 641      * indicate a positive value. The resulting {@code long} value is
 642      * returned, exactly as if the argument and the radix {@code 10}
 643      * were given as arguments to the {@link
 644      * #parseLong(java.lang.String, int)} method.
 645      *
 646      * <p>Note that neither the character {@code L}
 647      * ({@code '\u005Cu004C'}) nor {@code l}
 648      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 649      * of the string as a type indicator, as would be permitted in
 650      * Java programming language source code.
 651      *
 652      * @param      s   a {@code String} containing the {@code long}
 653      *             representation to be parsed
 654      * @return     the {@code long} represented by the argument in
 655      *             decimal.
 656      * @throws     NumberFormatException  if the string does not contain a
 657      *             parsable {@code long}.
 658      */
 659     public static long parseLong(String s) throws NumberFormatException {
 660         return parseLong(s, 10);
 661     }
 662 
 663     /**
 664      * Parses the string argument as an unsigned {@code long} in the
 665      * radix specified by the second argument.  An unsigned integer
 666      * maps the values usually associated with negative numbers to
 667      * positive numbers larger than {@code MAX_VALUE}.
 668      *
 669      * The characters in the string must all be digits of the
 670      * specified radix (as determined by whether {@link
 671      * java.lang.Character#digit(char, int)} returns a nonnegative
 672      * value), except that the first character may be an ASCII plus
 673      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 674      * integer value is returned.
 675      *
 676      * <p>An exception of type {@code NumberFormatException} is
 677      * thrown if any of the following situations occurs:
 678      * <ul>
 679      * <li>The first argument is {@code null} or is a string of
 680      * length zero.
 681      *
 682      * <li>The radix is either smaller than
 683      * {@link java.lang.Character#MIN_RADIX} or
 684      * larger than {@link java.lang.Character#MAX_RADIX}.
 685      *
 686      * <li>Any character of the string is not a digit of the specified
 687      * radix, except that the first character may be a plus sign
 688      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 689      * string is longer than length 1.
 690      *
 691      * <li>The value represented by the string is larger than the
 692      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 693      *
 694      * </ul>
 695      *
 696      *
 697      * @param      s   the {@code String} containing the unsigned integer
 698      *                  representation to be parsed
 699      * @param      radix   the radix to be used while parsing {@code s}.
 700      * @return     the unsigned {@code long} represented by the string
 701      *             argument in the specified radix.
 702      * @throws     NumberFormatException if the {@code String}
 703      *             does not contain a parsable {@code long}.
 704      * @since 1.8
 705      */
 706     public static long parseUnsignedLong(String s, int radix)
 707                 throws NumberFormatException {
 708         if (s == null)  {
 709             throw new NumberFormatException("Cannot parse null string");
 710         }
 711 
 712         if (radix < Character.MIN_RADIX) {
 713             throw new NumberFormatException(String.format(
 714                 "radix %s less than Character.MIN_RADIX", radix));
 715         }
 716 
 717         if (radix > Character.MAX_RADIX) {
 718             throw new NumberFormatException(String.format(
 719                 "radix %s greater than Character.MAX_RADIX", radix));
 720         }
 721 
 722         int len = s.length();
 723         if (len == 0) {
 724             throw NumberFormatException.forInputString(s, radix);
 725         }
 726         int i = 0;
 727         char firstChar = s.charAt(i++);
 728         if (firstChar == '-') {
 729             throw new NumberFormatException(String.format(
 730                 "Illegal leading minus sign on unsigned string %s.", s));
 731         }
 732         int digit = ~0xFF;
 733         if (firstChar != '+') {
 734             digit = digit(firstChar, radix);
 735         }
 736         if (digit >= 0 || digit == ~0xFF && len > 1) {
 737             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 738             long result = digit & 0xFF;
 739             boolean inRange = true;
 740             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 741                     && (inRange = compareUnsigned(result, multmax) < 0
 742                         || result == multmax && digit < (int) (-radix * multmax))) {
 743                 result = radix * result + digit;
 744             }
 745             if (inRange && i == len && digit >= 0) {
 746                 return result;
 747             }
 748         }
 749         if (digit < 0) {
 750             throw NumberFormatException.forInputString(s, radix);
 751         }
 752         throw new NumberFormatException(String.format(
 753             "String value %s exceeds range of unsigned long.", s));
 754     }
 755 
 756     /**
 757      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
 758      * the specified {@code radix}, beginning at the specified
 759      * {@code beginIndex} and extending to {@code endIndex - 1}.
 760      *
 761      * <p>The method does not take steps to guard against the
 762      * {@code CharSequence} being mutated while parsing.
 763      *
 764      * @param      s   the {@code CharSequence} containing the unsigned
 765      *                 {@code long} representation to be parsed
 766      * @param      beginIndex   the beginning index, inclusive.
 767      * @param      endIndex     the ending index, exclusive.
 768      * @param      radix   the radix to be used while parsing {@code s}.
 769      * @return     the unsigned {@code long} represented by the subsequence in
 770      *             the specified radix.
 771      * @throws     NullPointerException  if {@code s} is null.
 772      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 773      *             negative, or if {@code beginIndex} is greater than
 774      *             {@code endIndex} or if {@code endIndex} is greater than
 775      *             {@code s.length()}.
 776      * @throws     NumberFormatException  if the {@code CharSequence} does not
 777      *             contain a parsable unsigned {@code long} in the specified
 778      *             {@code radix}, or if {@code radix} is either smaller than
 779      *             {@link java.lang.Character#MIN_RADIX} or larger than
 780      *             {@link java.lang.Character#MAX_RADIX}.
 781      * @since  9
 782      */
 783     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
 784                 throws NumberFormatException {
 785         Objects.requireNonNull(s);
 786         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 787 
 788         if (radix < Character.MIN_RADIX) {
 789             throw new NumberFormatException(String.format(
 790                 "radix %s less than Character.MIN_RADIX", radix));
 791         }
 792 
 793         if (radix > Character.MAX_RADIX) {
 794             throw new NumberFormatException(String.format(
 795                 "radix %s greater than Character.MAX_RADIX", radix));
 796         }
 797 
 798         /*
 799          * While s can be concurrently modified, it is ensured that each
 800          * of its characters is read at most once, from lower to higher indices.
 801          * This is obtained by reading them using the pattern s.charAt(i++),
 802          * and by not updating i anywhere else.
 803          */
 804         if (beginIndex == endIndex) {
 805             throw NumberFormatException.forInputString("", radix);
 806         }
 807         int i = beginIndex;
 808         char firstChar = s.charAt(i++);
 809         if (firstChar == '-') {
 810             throw new NumberFormatException(
 811                 "Illegal leading minus sign on unsigned string " + s + ".");
 812         }
 813         int digit = ~0xFF;
 814         if (firstChar != '+') {
 815             digit = digit(firstChar, radix);
 816         }
 817         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 818             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 819             long result = digit & 0xFF;
 820             boolean inRange = true;
 821             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 822                     && (inRange = compareUnsigned(result, multmax) < 0
 823                         || result == multmax && digit < (int) (-radix * multmax))) {
 824                 result = radix * result + digit;
 825             }
 826             if (inRange && i == endIndex && digit >= 0) {
 827                 return result;
 828             }
 829         }
 830         if (digit < 0) {
 831             throw NumberFormatException.forCharSequence(s, beginIndex,
 832                 endIndex, i - (digit < -1 ? 0 : 1));
 833         }
 834         throw new NumberFormatException(String.format(
 835             "String value %s exceeds range of unsigned long.", s));
 836     }
 837 
 838     /**
 839      * Parses the string argument as an unsigned decimal {@code long}. The
 840      * characters in the string must all be decimal digits, except
 841      * that the first character may be an ASCII plus sign {@code
 842      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 843      * is returned, exactly as if the argument and the radix 10 were
 844      * given as arguments to the {@link
 845      * #parseUnsignedLong(java.lang.String, int)} method.
 846      *
 847      * @param s   a {@code String} containing the unsigned {@code long}
 848      *            representation to be parsed
 849      * @return    the unsigned {@code long} value represented by the decimal string argument
 850      * @throws    NumberFormatException  if the string does not contain a
 851      *            parsable unsigned integer.
 852      * @since 1.8
 853      */
 854     public static long parseUnsignedLong(String s) throws NumberFormatException {
 855         return parseUnsignedLong(s, 10);
 856     }
 857 
 858     /**
 859      * Returns a {@code Long} object holding the value
 860      * extracted from the specified {@code String} when parsed
 861      * with the radix given by the second argument.  The first
 862      * argument is interpreted as representing a signed
 863      * {@code long} in the radix specified by the second
 864      * argument, exactly as if the arguments were given to the {@link
 865      * #parseLong(java.lang.String, int)} method. The result is a
 866      * {@code Long} object that represents the {@code long}
 867      * value specified by the string.
 868      *
 869      * <p>In other words, this method returns a {@code Long} object equal
 870      * to the value of:
 871      *
 872      * <blockquote>
 873      *  {@code Long.valueOf(Long.parseLong(s, radix))}
 874      * </blockquote>
 875      *
 876      * @param      s       the string to be parsed
 877      * @param      radix   the radix to be used in interpreting {@code s}
 878      * @return     a {@code Long} object holding the value
 879      *             represented by the string argument in the specified
 880      *             radix.
 881      * @throws     NumberFormatException  If the {@code String} does not
 882      *             contain a parsable {@code long}.
 883      */
 884     public static Long valueOf(String s, int radix) throws NumberFormatException {
 885         return Long.valueOf(parseLong(s, radix));
 886     }
 887 
 888     /**
 889      * Returns a {@code Long} object holding the value
 890      * of the specified {@code String}. The argument is
 891      * interpreted as representing a signed decimal {@code long},
 892      * exactly as if the argument were given to the {@link
 893      * #parseLong(java.lang.String)} method. The result is a
 894      * {@code Long} object that represents the integer value
 895      * specified by the string.
 896      *
 897      * <p>In other words, this method returns a {@code Long} object
 898      * equal to the value of:
 899      *
 900      * <blockquote>
 901      *  {@code Long.valueOf(Long.parseLong(s))}
 902      * </blockquote>
 903      *
 904      * @param      s   the string to be parsed.
 905      * @return     a {@code Long} object holding the value
 906      *             represented by the string argument.
 907      * @throws     NumberFormatException  If the string cannot be parsed
 908      *             as a {@code long}.
 909      */
 910     public static Long valueOf(String s) throws NumberFormatException
 911     {
 912         return Long.valueOf(parseLong(s, 10));
 913     }
 914 
 915     @AOTSafeClassInitializer
 916     private static final class LongCache {
 917         private LongCache() {}
 918 
 919         @Stable
 920         static final Long[] cache;
 921         static Long[] archivedCache;
 922 
 923         static {
 924             int size = -(-128) + 127 + 1;
 925 
 926             // Load and use the archived cache if it exists
 927             CDS.initializeFromArchive(LongCache.class);
 928             if (archivedCache == null) {
 929                 Long[] c = new Long[size];
 930                 long value = -128;
 931                 for(int i = 0; i < size; i++) {
 932                     c[i] = new Long(value++);
 933                 }
 934                 archivedCache = c;
 935             }
 936             cache = archivedCache;
 937             assert cache.length == size;
 938         }
 939     }
 940 
 941     /**
 942      * Returns a {@code Long} instance representing the specified
 943      * {@code long} value.
 944      * If a new {@code Long} instance is not required, this method
 945      * should generally be used in preference to the constructor
 946      * {@link #Long(long)}, as this method is likely to yield
 947      * significantly better space and time performance by caching
 948      * frequently requested values.
 949      *
 950      * This method will always cache values in the range -128 to 127,
 951      * inclusive, and may cache other values outside of this range.
 952      *
 953      * @param  l a long value.
 954      * @return a {@code Long} instance representing {@code l}.
 955      * @since  1.5
 956      */
 957     @IntrinsicCandidate
 958     public static Long valueOf(long l) {
 959         final int offset = 128;
 960         if (l >= -128 && l <= 127) { // will cache
 961             return LongCache.cache[(int)l + offset];
 962         }
 963         return new Long(l);
 964     }
 965 
 966     /**
 967      * Decodes a {@code String} into a {@code Long}.
 968      * Accepts decimal, hexadecimal, and octal numbers given by the
 969      * following grammar:
 970      *
 971      * <blockquote>
 972      * <dl>
 973      * <dt><i>DecodableString:</i>
 974      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 975      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 976      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 977      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 978      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 979      *
 980      * <dt><i>Sign:</i>
 981      * <dd>{@code -}
 982      * <dd>{@code +}
 983      * </dl>
 984      * </blockquote>
 985      *
 986      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 987      * are as defined in section {@jls 3.10.1} of
 988      * <cite>The Java Language Specification</cite>,
 989      * except that underscores are not accepted between digits.
 990      *
 991      * <p>The sequence of characters following an optional
 992      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 993      * "{@code #}", or leading zero) is parsed as by the {@code
 994      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 995      * This sequence of characters must represent a positive value or
 996      * a {@link NumberFormatException} will be thrown.  The result is
 997      * negated if first character of the specified {@code String} is
 998      * the minus sign.  No whitespace characters are permitted in the
 999      * {@code String}.
1000      *
1001      * @param     nm the {@code String} to decode.
1002      * @return    a {@code Long} object holding the {@code long}
1003      *            value represented by {@code nm}
1004      * @throws    NumberFormatException  if the {@code String} does not
1005      *            contain a parsable {@code long}.
1006      * @see java.lang.Long#parseLong(String, int)
1007      * @since 1.2
1008      */
1009     public static Long decode(String nm) throws NumberFormatException {
1010         int radix = 10;
1011         int index = 0;
1012         boolean negative = false;
1013         long result;
1014 
1015         if (nm.isEmpty())
1016             throw new NumberFormatException("Zero length string");
1017         char firstChar = nm.charAt(0);
1018         // Handle sign, if present
1019         if (firstChar == '-') {
1020             negative = true;
1021             index++;
1022         } else if (firstChar == '+')
1023             index++;
1024 
1025         // Handle radix specifier, if present
1026         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1027             index += 2;
1028             radix = 16;
1029         }
1030         else if (nm.startsWith("#", index)) {
1031             index ++;
1032             radix = 16;
1033         }
1034         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1035             index ++;
1036             radix = 8;
1037         }
1038 
1039         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1040             throw new NumberFormatException("Sign character in wrong position");
1041 
1042         try {
1043             result = parseLong(nm, index, nm.length(), radix);
1044             result = negative ? -result : result;
1045         } catch (NumberFormatException e) {
1046             // If number is Long.MIN_VALUE, we'll end up here. The next line
1047             // handles this case, and causes any genuine format error to be
1048             // rethrown.
1049             String constant = negative ? ("-" + nm.substring(index))
1050                                        : nm.substring(index);
1051             result = parseLong(constant, radix);
1052         }
1053         return result;
1054     }
1055 
1056     /**
1057      * The value of the {@code Long}.
1058      *
1059      * @serial
1060      */
1061     private final long value;
1062 
1063     /**
1064      * Constructs a newly allocated {@code Long} object that
1065      * represents the specified {@code long} argument.
1066      *
1067      * @param   value   the value to be represented by the
1068      *          {@code Long} object.
1069      *
1070      * @deprecated
1071      * It is rarely appropriate to use this constructor. The static factory
1072      * {@link #valueOf(long)} is generally a better choice, as it is
1073      * likely to yield significantly better space and time performance.
1074      */
1075     @Deprecated(since="9")
1076     public Long(long value) {
1077         this.value = value;
1078     }
1079 
1080     /**
1081      * Constructs a newly allocated {@code Long} object that
1082      * represents the {@code long} value indicated by the
1083      * {@code String} parameter. The string is converted to a
1084      * {@code long} value in exactly the manner used by the
1085      * {@code parseLong} method for radix 10.
1086      *
1087      * @param      s   the {@code String} to be converted to a
1088      *             {@code Long}.
1089      * @throws     NumberFormatException  if the {@code String} does not
1090      *             contain a parsable {@code long}.
1091      *
1092      * @deprecated
1093      * It is rarely appropriate to use this constructor.
1094      * Use {@link #parseLong(String)} to convert a string to a
1095      * {@code long} primitive, or use {@link #valueOf(String)}
1096      * to convert a string to a {@code Long} object.
1097      */
1098     @Deprecated(since="9")
1099     public Long(String s) throws NumberFormatException {
1100         this.value = parseLong(s, 10);
1101     }
1102 
1103     /**
1104      * Returns the value of this {@code Long} as a {@code byte} after
1105      * a narrowing primitive conversion.
1106      * @jls 5.1.3 Narrowing Primitive Conversion
1107      */
1108     public byte byteValue() {
1109         return (byte)value;
1110     }
1111 
1112     /**
1113      * Returns the value of this {@code Long} as a {@code short} after
1114      * a narrowing primitive conversion.
1115      * @jls 5.1.3 Narrowing Primitive Conversion
1116      */
1117     public short shortValue() {
1118         return (short)value;
1119     }
1120 
1121     /**
1122      * Returns the value of this {@code Long} as an {@code int} after
1123      * a narrowing primitive conversion.
1124      * @jls 5.1.3 Narrowing Primitive Conversion
1125      */
1126     public int intValue() {
1127         return (int)value;
1128     }
1129 
1130     /**
1131      * Returns the value of this {@code Long} as a
1132      * {@code long} value.
1133      */
1134     @IntrinsicCandidate
1135     public long longValue() {
1136         return value;
1137     }
1138 
1139     /**
1140      * Returns the value of this {@code Long} as a {@code float} after
1141      * a widening primitive conversion.
1142      * @jls 5.1.2 Widening Primitive Conversion
1143      */
1144     public float floatValue() {
1145         return (float)value;
1146     }
1147 
1148     /**
1149      * Returns the value of this {@code Long} as a {@code double}
1150      * after a widening primitive conversion.
1151      * @jls 5.1.2 Widening Primitive Conversion
1152      */
1153     public double doubleValue() {
1154         return (double)value;
1155     }
1156 
1157     /**
1158      * Returns a {@code String} object representing this
1159      * {@code Long}'s value.  The value is converted to signed
1160      * decimal representation and returned as a string, exactly as if
1161      * the {@code long} value were given as an argument to the
1162      * {@link java.lang.Long#toString(long)} method.
1163      *
1164      * @return  a string representation of the value of this object in
1165      *          base&nbsp;10.
1166      */
1167     public String toString() {
1168         return toString(value);
1169     }
1170 
1171     /**
1172      * Returns a hash code for this {@code Long}. The result is
1173      * the exclusive OR of the two halves of the primitive
1174      * {@code long} value held by this {@code Long}
1175      * object. That is, the hashcode is the value of the expression:
1176      *
1177      * <blockquote>
1178      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1179      * </blockquote>
1180      *
1181      * @return  a hash code value for this object.
1182      */
1183     @Override
1184     public int hashCode() {
1185         return Long.hashCode(value);
1186     }
1187 
1188     /**
1189      * Returns a hash code for a {@code long} value; compatible with
1190      * {@code Long.hashCode()}.
1191      *
1192      * @param value the value to hash
1193      * @return a hash code value for a {@code long} value.
1194      * @since 1.8
1195      */
1196     public static int hashCode(long value) {
1197         return (int)(value ^ (value >>> 32));
1198     }
1199 
1200     /**
1201      * Compares this object to the specified object.  The result is
1202      * {@code true} if and only if the argument is not
1203      * {@code null} and is a {@code Long} object that
1204      * contains the same {@code long} value as this object.
1205      *
1206      * @param   obj   the object to compare with.
1207      * @return  {@code true} if the objects are the same;
1208      *          {@code false} otherwise.
1209      */
1210     public boolean equals(Object obj) {
1211         if (obj instanceof Long ell) {
1212             return value == ell.longValue();
1213         }
1214         return false;
1215     }
1216 
1217     /**
1218      * Determines the {@code long} value of the system property
1219      * with the specified name.
1220      *
1221      * <p>The first argument is treated as the name of a system
1222      * property.  System properties are accessible through the {@link
1223      * java.lang.System#getProperty(java.lang.String)} method. The
1224      * string value of this property is then interpreted as a {@code
1225      * long} value using the grammar supported by {@link Long#decode decode}
1226      * and a {@code Long} object representing this value is returned.
1227      *
1228      * <p>If there is no property with the specified name, if the
1229      * specified name is empty or {@code null}, or if the property
1230      * does not have the correct numeric format, then {@code null} is
1231      * returned.
1232      *
1233      * <p>In other words, this method returns a {@code Long} object
1234      * equal to the value of:
1235      *
1236      * <blockquote>
1237      *  {@code getLong(nm, null)}
1238      * </blockquote>
1239      *
1240      * @param   nm   property name.
1241      * @return  the {@code Long} value of the property.
1242      * @see     java.lang.System#getProperty(java.lang.String)
1243      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1244      */
1245     public static Long getLong(String nm) {
1246         return getLong(nm, null);
1247     }
1248 
1249     /**
1250      * Determines the {@code long} value of the system property
1251      * with the specified name.
1252      *
1253      * <p>The first argument is treated as the name of a system
1254      * property.  System properties are accessible through the {@link
1255      * java.lang.System#getProperty(java.lang.String)} method. The
1256      * string value of this property is then interpreted as a {@code
1257      * long} value using the grammar supported by {@link Long#decode decode}
1258      * and a {@code Long} object representing this value is returned.
1259      *
1260      * <p>The second argument is the default value. A {@code Long} object
1261      * that represents the value of the second argument is returned if there
1262      * is no property of the specified name, if the property does not have
1263      * the correct numeric format, or if the specified name is empty or null.
1264      *
1265      * <p>In other words, this method returns a {@code Long} object equal
1266      * to the value of:
1267      *
1268      * <blockquote>
1269      *  {@code getLong(nm, Long.valueOf(val))}
1270      * </blockquote>
1271      *
1272      * but in practice it may be implemented in a manner such as:
1273      *
1274      * <blockquote><pre>
1275      * Long result = getLong(nm, null);
1276      * return (result == null) ? Long.valueOf(val) : result;
1277      * </pre></blockquote>
1278      *
1279      * to avoid the unnecessary allocation of a {@code Long} object when
1280      * the default value is not needed.
1281      *
1282      * @param   nm    property name.
1283      * @param   val   default value.
1284      * @return  the {@code Long} value of the property.
1285      * @see     java.lang.System#getProperty(java.lang.String)
1286      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1287      */
1288     public static Long getLong(String nm, long val) {
1289         Long result = Long.getLong(nm, null);
1290         return (result == null) ? Long.valueOf(val) : result;
1291     }
1292 
1293     /**
1294      * Returns the {@code long} value of the system property with
1295      * the specified name.  The first argument is treated as the name
1296      * of a system property.  System properties are accessible through
1297      * the {@link java.lang.System#getProperty(java.lang.String)}
1298      * method. The string value of this property is then interpreted
1299      * as a {@code long} value, as per the
1300      * {@link Long#decode decode} method, and a {@code Long} object
1301      * representing this value is returned; in summary:
1302      *
1303      * <ul>
1304      * <li>If the property value begins with the two ASCII characters
1305      * {@code 0x} or the ASCII character {@code #}, not followed by
1306      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1307      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1308      * with radix 16.
1309      * <li>If the property value begins with the ASCII character
1310      * {@code 0} followed by another character, it is parsed as
1311      * an octal integer exactly as by the method {@link
1312      * #valueOf(java.lang.String, int)} with radix 8.
1313      * <li>Otherwise the property value is parsed as a decimal
1314      * integer exactly as by the method
1315      * {@link #valueOf(java.lang.String, int)} with radix 10.
1316      * </ul>
1317      *
1318      * <p>Note that, in every case, neither {@code L}
1319      * ({@code '\u005Cu004C'}) nor {@code l}
1320      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1321      * of the property value as a type indicator, as would be
1322      * permitted in Java programming language source code.
1323      *
1324      * <p>The second argument is the default value. The default value is
1325      * returned if there is no property of the specified name, if the
1326      * property does not have the correct numeric format, or if the
1327      * specified name is empty or {@code null}.
1328      *
1329      * @param   nm   property name.
1330      * @param   val   default value.
1331      * @return  the {@code Long} value of the property.
1332      * @see     System#getProperty(java.lang.String)
1333      * @see     System#getProperty(java.lang.String, java.lang.String)
1334      */
1335     public static Long getLong(String nm, Long val) {
1336         String v = nm != null && !nm.isEmpty() ? System.getProperty(nm) : null;
1337         if (v != null) {
1338             try {
1339                 return Long.decode(v);
1340             } catch (NumberFormatException e) {
1341             }
1342         }
1343         return val;
1344     }
1345 
1346     /**
1347      * Compares two {@code Long} objects numerically.
1348      *
1349      * @param   anotherLong   the {@code Long} to be compared.
1350      * @return  the value {@code 0} if this {@code Long} is
1351      *          equal to the argument {@code Long}; a value less than
1352      *          {@code 0} if this {@code Long} is numerically less
1353      *          than the argument {@code Long}; and a value greater
1354      *          than {@code 0} if this {@code Long} is numerically
1355      *           greater than the argument {@code Long} (signed
1356      *           comparison).
1357      * @since   1.2
1358      */
1359     public int compareTo(Long anotherLong) {
1360         return compare(this.value, anotherLong.value);
1361     }
1362 
1363     /**
1364      * Compares two {@code long} values numerically.
1365      * The value returned is identical to what would be returned by:
1366      * <pre>
1367      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1368      * </pre>
1369      *
1370      * @param  x the first {@code long} to compare
1371      * @param  y the second {@code long} to compare
1372      * @return the value {@code 0} if {@code x == y};
1373      *         a value less than {@code 0} if {@code x < y}; and
1374      *         a value greater than {@code 0} if {@code x > y}
1375      * @since 1.7
1376      */
1377     public static int compare(long x, long y) {
1378         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1379     }
1380 
1381     /**
1382      * Compares two {@code long} values numerically treating the values
1383      * as unsigned.
1384      *
1385      * @param  x the first {@code long} to compare
1386      * @param  y the second {@code long} to compare
1387      * @return the value {@code 0} if {@code x == y}; a value less
1388      *         than {@code 0} if {@code x < y} as unsigned values; and
1389      *         a value greater than {@code 0} if {@code x > y} as
1390      *         unsigned values
1391      * @since 1.8
1392      */
1393     @IntrinsicCandidate
1394     public static int compareUnsigned(long x, long y) {
1395         return compare(x + MIN_VALUE, y + MIN_VALUE);
1396     }
1397 
1398 
1399     /**
1400      * Returns the unsigned quotient of dividing the first argument by
1401      * the second where each argument and the result is interpreted as
1402      * an unsigned value.
1403      *
1404      * <p>Note that in two's complement arithmetic, the three other
1405      * basic arithmetic operations of add, subtract, and multiply are
1406      * bit-wise identical if the two operands are regarded as both
1407      * being signed or both being unsigned.  Therefore separate {@code
1408      * addUnsigned}, etc. methods are not provided.
1409      *
1410      * @param dividend the value to be divided
1411      * @param divisor the value doing the dividing
1412      * @return the unsigned quotient of the first argument divided by
1413      * the second argument
1414      * @throws ArithmeticException if the divisor is zero
1415      * @see #remainderUnsigned
1416      * @since 1.8
1417      */
1418     @IntrinsicCandidate
1419     public static long divideUnsigned(long dividend, long divisor) {
1420         /* See Hacker's Delight (2nd ed), section 9.3 */
1421         if (divisor >= 0) {
1422             final long q = (dividend >>> 1) / divisor << 1;
1423             final long r = dividend - q * divisor;
1424             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1425         }
1426         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1427     }
1428 
1429     /**
1430      * Returns the unsigned remainder from dividing the first argument
1431      * by the second where each argument and the result is interpreted
1432      * as an unsigned value.
1433      *
1434      * @param dividend the value to be divided
1435      * @param divisor the value doing the dividing
1436      * @return the unsigned remainder of the first argument divided by
1437      * the second argument
1438      * @throws ArithmeticException if the divisor is zero
1439      * @see #divideUnsigned
1440      * @since 1.8
1441      */
1442     @IntrinsicCandidate
1443     public static long remainderUnsigned(long dividend, long divisor) {
1444         /* See Hacker's Delight (2nd ed), section 9.3 */
1445         if (divisor >= 0) {
1446             final long q = (dividend >>> 1) / divisor << 1;
1447             final long r = dividend - q * divisor;
1448             /*
1449              * Here, 0 <= r < 2 * divisor
1450              * (1) When 0 <= r < divisor, the remainder is simply r.
1451              * (2) Otherwise the remainder is r - divisor.
1452              *
1453              * In case (1), r - divisor < 0. Applying ~ produces a long with
1454              * sign bit 0, so >> produces 0. The returned value is thus r.
1455              *
1456              * In case (2), a similar reasoning shows that >> produces -1,
1457              * so the returned value is r - divisor.
1458              */
1459             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1460         }
1461         /*
1462          * (1) When dividend >= 0, the remainder is dividend.
1463          * (2) Otherwise
1464          *      (2.1) When dividend < divisor, the remainder is dividend.
1465          *      (2.2) Otherwise the remainder is dividend - divisor
1466          *
1467          * A reasoning similar to the above shows that the returned value
1468          * is as expected.
1469          */
1470         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1471     }
1472 
1473     // Bit Twiddling
1474 
1475     /**
1476      * The number of bits used to represent a {@code long} value in two's
1477      * complement binary form.
1478      *
1479      * @since 1.5
1480      */
1481     @Native public static final int SIZE = 64;
1482 
1483     /**
1484      * The number of bytes used to represent a {@code long} value in two's
1485      * complement binary form.
1486      *
1487      * @since 1.8
1488      */
1489     public static final int BYTES = SIZE / Byte.SIZE;
1490 
1491     /**
1492      * Returns a {@code long} value with at most a single one-bit, in the
1493      * position of the highest-order ("leftmost") one-bit in the specified
1494      * {@code long} value.  Returns zero if the specified value has no
1495      * one-bits in its two's complement binary representation, that is, if it
1496      * is equal to zero.
1497      *
1498      * @param i the value whose highest one bit is to be computed
1499      * @return a {@code long} value with a single one-bit, in the position
1500      *     of the highest-order one-bit in the specified value, or zero if
1501      *     the specified value is itself equal to zero.
1502      * @since 1.5
1503      */
1504     public static long highestOneBit(long i) {
1505         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1506     }
1507 
1508     /**
1509      * Returns a {@code long} value with at most a single one-bit, in the
1510      * position of the lowest-order ("rightmost") one-bit in the specified
1511      * {@code long} value.  Returns zero if the specified value has no
1512      * one-bits in its two's complement binary representation, that is, if it
1513      * is equal to zero.
1514      *
1515      * @param i the value whose lowest one bit is to be computed
1516      * @return a {@code long} value with a single one-bit, in the position
1517      *     of the lowest-order one-bit in the specified value, or zero if
1518      *     the specified value is itself equal to zero.
1519      * @since 1.5
1520      */
1521     public static long lowestOneBit(long i) {
1522         // HD, Section 2-1
1523         return i & -i;
1524     }
1525 
1526     /**
1527      * Returns the number of zero bits preceding the highest-order
1528      * ("leftmost") one-bit in the two's complement binary representation
1529      * of the specified {@code long} value.  Returns 64 if the
1530      * specified value has no one-bits in its two's complement representation,
1531      * in other words if it is equal to zero.
1532      *
1533      * <p>Note that this method is closely related to the logarithm base 2.
1534      * For all positive {@code long} values x:
1535      * <ul>
1536      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1537      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1538      * </ul>
1539      *
1540      * @param i the value whose number of leading zeros is to be computed
1541      * @return the number of zero bits preceding the highest-order
1542      *     ("leftmost") one-bit in the two's complement binary representation
1543      *     of the specified {@code long} value, or 64 if the value
1544      *     is equal to zero.
1545      * @since 1.5
1546      */
1547     @IntrinsicCandidate
1548     public static int numberOfLeadingZeros(long i) {
1549         int x = (int)(i >>> 32);
1550         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1551                 : Integer.numberOfLeadingZeros(x);
1552     }
1553 
1554     /**
1555      * Returns the number of zero bits following the lowest-order ("rightmost")
1556      * one-bit in the two's complement binary representation of the specified
1557      * {@code long} value.  Returns 64 if the specified value has no
1558      * one-bits in its two's complement representation, in other words if it is
1559      * equal to zero.
1560      *
1561      * @param i the value whose number of trailing zeros is to be computed
1562      * @return the number of zero bits following the lowest-order ("rightmost")
1563      *     one-bit in the two's complement binary representation of the
1564      *     specified {@code long} value, or 64 if the value is equal
1565      *     to zero.
1566      * @since 1.5
1567      */
1568     @IntrinsicCandidate
1569     public static int numberOfTrailingZeros(long i) {
1570         int x = (int)i;
1571         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1572                 : Integer.numberOfTrailingZeros(x);
1573     }
1574 
1575     /**
1576      * Returns the number of one-bits in the two's complement binary
1577      * representation of the specified {@code long} value.  This function is
1578      * sometimes referred to as the <i>population count</i>.
1579      *
1580      * @param i the value whose bits are to be counted
1581      * @return the number of one-bits in the two's complement binary
1582      *     representation of the specified {@code long} value.
1583      * @since 1.5
1584      */
1585      @IntrinsicCandidate
1586      public static int bitCount(long i) {
1587         // HD, Figure 5-2
1588         i = i - ((i >>> 1) & 0x5555555555555555L);
1589         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1590         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1591         i = i + (i >>> 8);
1592         i = i + (i >>> 16);
1593         i = i + (i >>> 32);
1594         return (int)i & 0x7f;
1595      }
1596 
1597     /**
1598      * Returns the value obtained by rotating the two's complement binary
1599      * representation of the specified {@code long} value left by the
1600      * specified number of bits.  (Bits shifted out of the left hand, or
1601      * high-order, side reenter on the right, or low-order.)
1602      *
1603      * <p>Note that left rotation with a negative distance is equivalent to
1604      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1605      * distance)}.  Note also that rotation by any multiple of 64 is a
1606      * no-op, so all but the last six bits of the rotation distance can be
1607      * ignored, even if the distance is negative: {@code rotateLeft(val,
1608      * distance) == rotateLeft(val, distance & 0x3F)}.
1609      *
1610      * @param i the value whose bits are to be rotated left
1611      * @param distance the number of bit positions to rotate left
1612      * @return the value obtained by rotating the two's complement binary
1613      *     representation of the specified {@code long} value left by the
1614      *     specified number of bits.
1615      * @since 1.5
1616      */
1617     public static long rotateLeft(long i, int distance) {
1618         return (i << distance) | (i >>> -distance);
1619     }
1620 
1621     /**
1622      * Returns the value obtained by rotating the two's complement binary
1623      * representation of the specified {@code long} value right by the
1624      * specified number of bits.  (Bits shifted out of the right hand, or
1625      * low-order, side reenter on the left, or high-order.)
1626      *
1627      * <p>Note that right rotation with a negative distance is equivalent to
1628      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1629      * distance)}.  Note also that rotation by any multiple of 64 is a
1630      * no-op, so all but the last six bits of the rotation distance can be
1631      * ignored, even if the distance is negative: {@code rotateRight(val,
1632      * distance) == rotateRight(val, distance & 0x3F)}.
1633      *
1634      * @param i the value whose bits are to be rotated right
1635      * @param distance the number of bit positions to rotate right
1636      * @return the value obtained by rotating the two's complement binary
1637      *     representation of the specified {@code long} value right by the
1638      *     specified number of bits.
1639      * @since 1.5
1640      */
1641     public static long rotateRight(long i, int distance) {
1642         return (i >>> distance) | (i << -distance);
1643     }
1644 
1645     /**
1646      * Returns the value obtained by reversing the order of the bits in the
1647      * two's complement binary representation of the specified {@code long}
1648      * value.
1649      *
1650      * @param i the value to be reversed
1651      * @return the value obtained by reversing order of the bits in the
1652      *     specified {@code long} value.
1653      * @since 1.5
1654      */
1655     @IntrinsicCandidate
1656     public static long reverse(long i) {
1657         // HD, Figure 7-1
1658         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1659         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1660         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1661 
1662         return reverseBytes(i);
1663     }
1664 
1665     /**
1666      * Returns the value obtained by compressing the bits of the
1667      * specified {@code long} value, {@code i}, in accordance with
1668      * the specified bit mask.
1669      * <p>
1670      * For each one-bit value {@code mb} of the mask, from least
1671      * significant to most significant, the bit value of {@code i} at
1672      * the same bit location as {@code mb} is assigned to the compressed
1673      * value contiguously starting from the least significant bit location.
1674      * All the upper remaining bits of the compressed value are set
1675      * to zero.
1676      *
1677      * @apiNote
1678      * Consider the simple case of compressing the digits of a hexadecimal
1679      * value:
1680      * {@snippet lang="java" :
1681      * // Compressing drink to food
1682      * compress(0xCAFEBABEL, 0xFF00FFF0L) == 0xCABABL
1683      * }
1684      * Starting from the least significant hexadecimal digit at position 0
1685      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1686      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1687      * occur in the resulting compressed value contiguously from digit position
1688      * 0 in the same order.
1689      * <p>
1690      * The following identities all return {@code true} and are helpful to
1691      * understand the behaviour of {@code compress}:
1692      * {@snippet lang="java" :
1693      * // Returns 1 if the bit at position n is one
1694      * compress(x, 1L << n) == (x >> n & 1)
1695      *
1696      * // Logical shift right
1697      * compress(x, -1L << n) == x >>> n
1698      *
1699      * // Any bits not covered by the mask are ignored
1700      * compress(x, m) == compress(x & m, m)
1701      *
1702      * // Compressing a value by itself
1703      * compress(m, m) == (m == -1 || m == 0) ? m : (1L << bitCount(m)) - 1
1704      *
1705      * // Expanding then compressing with the same mask
1706      * compress(expand(x, m), m) == x & compress(m, m)
1707      * }
1708      * <p>
1709      * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7)
1710      * can be implemented as follows:
1711      * {@snippet lang="java" :
1712      * long compressLeft(long i, long mask) {
1713      *     // This implementation follows the description in Hacker's Delight which
1714      *     // is informative. A more optimal implementation is:
1715      *     //   Long.compress(i, mask) << -Long.bitCount(mask)
1716      *     return Long.reverse(
1717      *         Long.compress(Long.reverse(i), Long.reverse(mask)));
1718      * }
1719      *
1720      * long sag(long i, long mask) {
1721      *     return compressLeft(i, mask) | Long.compress(i, ~mask);
1722      * }
1723      *
1724      * // Separate the sheep from the goats
1725      * sag(0x00000000_CAFEBABEL, 0xFFFFFFFF_FF00FFF0L) == 0x00000000_CABABFEEL
1726      * }
1727      *
1728      * @param i the value whose bits are to be compressed
1729      * @param mask the bit mask
1730      * @return the compressed value
1731      * @see #expand
1732      * @since 19
1733      */
1734     @IntrinsicCandidate
1735     public static long compress(long i, long mask) {
1736         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1737 
1738         i = i & mask; // Clear irrelevant bits
1739         long maskCount = ~mask << 1; // Count 0's to right
1740 
1741         for (int j = 0; j < 6; j++) {
1742             // Parallel prefix
1743             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1744             long maskPrefix = parallelSuffix(maskCount);
1745             // Bits to move
1746             long maskMove = maskPrefix & mask;
1747             // Compress mask
1748             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1749             // Bits of i to be moved
1750             long t = i & maskMove;
1751             // Compress i
1752             i = (i ^ t) | (t >>> (1 << j));
1753             // Adjust the mask count by identifying bits that have 0 to the right
1754             maskCount = maskCount & ~maskPrefix;
1755         }
1756         return i;
1757     }
1758 
1759     /**
1760      * Returns the value obtained by expanding the bits of the
1761      * specified {@code long} value, {@code i}, in accordance with
1762      * the specified bit mask.
1763      * <p>
1764      * For each one-bit value {@code mb} of the mask, from least
1765      * significant to most significant, the next contiguous bit value
1766      * of {@code i} starting at the least significant bit is assigned
1767      * to the expanded value at the same bit location as {@code mb}.
1768      * All other remaining bits of the expanded value are set to zero.
1769      *
1770      * @apiNote
1771      * Consider the simple case of expanding the digits of a hexadecimal
1772      * value:
1773      * {@snippet lang="java" :
1774      * expand(0x0000CABABL, 0xFF00FFF0L) == 0xCA00BAB0L
1775      * }
1776      * Starting from the least significant hexadecimal digit at position 0
1777      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1778      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1779      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1780      * <p>
1781      * The following identities all return {@code true} and are helpful to
1782      * understand the behaviour of {@code expand}:
1783      * {@snippet lang="java" :
1784      * // Logically shift right the bit at position 0
1785      * expand(x, 1L << n) == (x & 1) << n
1786      *
1787      * // Logically shift right
1788      * expand(x, -1L << n) == x << n
1789      *
1790      * // Expanding all bits returns the mask
1791      * expand(-1L, m) == m
1792      *
1793      * // Any bits not covered by the mask are ignored
1794      * expand(x, m) == expand(x, m) & m
1795      *
1796      * // Compressing then expanding with the same mask
1797      * expand(compress(x, m), m) == x & m
1798      * }
1799      * <p>
1800      * The select operation for determining the position of the one-bit with
1801      * index {@code n} in a {@code long} value can be implemented as follows:
1802      * {@snippet lang="java" :
1803      * long select(long i, long n) {
1804      *     // the one-bit in i (the mask) with index n
1805      *     long nthBit = Long.expand(1L << n, i);
1806      *     // the bit position of the one-bit with index n
1807      *     return Long.numberOfTrailingZeros(nthBit);
1808      * }
1809      *
1810      * // The one-bit with index 0 is at bit position 1
1811      * select(0b10101010_10101010, 0) == 1
1812      * // The one-bit with index 3 is at bit position 7
1813      * select(0b10101010_10101010, 3) == 7
1814      * }
1815      *
1816      * @param i the value whose bits are to be expanded
1817      * @param mask the bit mask
1818      * @return the expanded value
1819      * @see #compress
1820      * @since 19
1821      */
1822     @IntrinsicCandidate
1823     public static long expand(long i, long mask) {
1824         // Save original mask
1825         long originalMask = mask;
1826         // Count 0's to right
1827         long maskCount = ~mask << 1;
1828         long maskPrefix = parallelSuffix(maskCount);
1829         // Bits to move
1830         long maskMove1 = maskPrefix & mask;
1831         // Compress mask
1832         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1833         maskCount = maskCount & ~maskPrefix;
1834 
1835         maskPrefix = parallelSuffix(maskCount);
1836         // Bits to move
1837         long maskMove2 = maskPrefix & mask;
1838         // Compress mask
1839         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1840         maskCount = maskCount & ~maskPrefix;
1841 
1842         maskPrefix = parallelSuffix(maskCount);
1843         // Bits to move
1844         long maskMove3 = maskPrefix & mask;
1845         // Compress mask
1846         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1847         maskCount = maskCount & ~maskPrefix;
1848 
1849         maskPrefix = parallelSuffix(maskCount);
1850         // Bits to move
1851         long maskMove4 = maskPrefix & mask;
1852         // Compress mask
1853         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1854         maskCount = maskCount & ~maskPrefix;
1855 
1856         maskPrefix = parallelSuffix(maskCount);
1857         // Bits to move
1858         long maskMove5 = maskPrefix & mask;
1859         // Compress mask
1860         mask = (mask ^ maskMove5) | (maskMove5 >>> (1 << 4));
1861         maskCount = maskCount & ~maskPrefix;
1862 
1863         maskPrefix = parallelSuffix(maskCount);
1864         // Bits to move
1865         long maskMove6 = maskPrefix & mask;
1866 
1867         long t = i << (1 << 5);
1868         i = (i & ~maskMove6) | (t & maskMove6);
1869         t = i << (1 << 4);
1870         i = (i & ~maskMove5) | (t & maskMove5);
1871         t = i << (1 << 3);
1872         i = (i & ~maskMove4) | (t & maskMove4);
1873         t = i << (1 << 2);
1874         i = (i & ~maskMove3) | (t & maskMove3);
1875         t = i << (1 << 1);
1876         i = (i & ~maskMove2) | (t & maskMove2);
1877         t = i << (1 << 0);
1878         i = (i & ~maskMove1) | (t & maskMove1);
1879 
1880         // Clear irrelevant bits
1881         return i & originalMask;
1882     }
1883 
1884     @ForceInline
1885     private static long parallelSuffix(long maskCount) {
1886         long maskPrefix = maskCount ^ (maskCount << 1);
1887         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1888         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1889         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1890         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1891         maskPrefix = maskPrefix ^ (maskPrefix << 32);
1892         return maskPrefix;
1893     }
1894 
1895     /**
1896      * Returns the signum function of the specified {@code long} value.  (The
1897      * return value is -1 if the specified value is negative; 0 if the
1898      * specified value is zero; and 1 if the specified value is positive.)
1899      *
1900      * @param i the value whose signum is to be computed
1901      * @return the signum function of the specified {@code long} value.
1902      * @since 1.5
1903      */
1904     public static int signum(long i) {
1905         // HD, Section 2-7
1906         return (int) ((i >> 63) | (-i >>> 63));
1907     }
1908 
1909     /**
1910      * Returns the value obtained by reversing the order of the bytes in the
1911      * two's complement representation of the specified {@code long} value.
1912      *
1913      * @param i the value whose bytes are to be reversed
1914      * @return the value obtained by reversing the bytes in the specified
1915      *     {@code long} value.
1916      * @since 1.5
1917      */
1918     @IntrinsicCandidate
1919     public static long reverseBytes(long i) {
1920         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1921         return (i << 48) | ((i & 0xffff0000L) << 16) |
1922             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1923     }
1924 
1925     /**
1926      * Adds two {@code long} values together as per the + operator.
1927      *
1928      * @param a the first operand
1929      * @param b the second operand
1930      * @return the sum of {@code a} and {@code b}
1931      * @see java.util.function.BinaryOperator
1932      * @since 1.8
1933      */
1934     public static long sum(long a, long b) {
1935         return a + b;
1936     }
1937 
1938     /**
1939      * Returns the greater of two {@code long} values
1940      * as if by calling {@link Math#max(long, long) Math.max}.
1941      *
1942      * @param a the first operand
1943      * @param b the second operand
1944      * @return the greater of {@code a} and {@code b}
1945      * @see java.util.function.BinaryOperator
1946      * @since 1.8
1947      */
1948     public static long max(long a, long b) {
1949         return Math.max(a, b);
1950     }
1951 
1952     /**
1953      * Returns the smaller of two {@code long} values
1954      * as if by calling {@link Math#min(long, long) Math.min}.
1955      *
1956      * @param a the first operand
1957      * @param b the second operand
1958      * @return the smaller of {@code a} and {@code b}
1959      * @see java.util.function.BinaryOperator
1960      * @since 1.8
1961      */
1962     public static long min(long a, long b) {
1963         return Math.min(a, b);
1964     }
1965 
1966     /**
1967      * Returns an {@link Optional} containing the nominal descriptor for this
1968      * instance, which is the instance itself.
1969      *
1970      * @return an {@link Optional} describing the {@linkplain Long} instance
1971      * @since 12
1972      */
1973     @Override
1974     public Optional<Long> describeConstable() {
1975         return Optional.of(this);
1976     }
1977 
1978     /**
1979      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1980      * the instance itself.
1981      *
1982      * @param lookup ignored
1983      * @return the {@linkplain Long} instance
1984      * @since 12
1985      */
1986     @Override
1987     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
1988         return this;
1989     }
1990 
1991     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1992     @java.io.Serial
1993     @Native private static final long serialVersionUID = 4290774380558885855L;
1994 }