1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.lang.invoke.MethodHandles;
  30 import java.lang.constant.Constable;
  31 import java.lang.constant.ConstantDesc;
  32 import java.math.*;
  33 import java.util.Objects;
  34 import java.util.Optional;
  35 
  36 import jdk.internal.misc.CDS;
  37 import jdk.internal.util.DecimalDigits;
  38 import jdk.internal.vm.annotation.ForceInline;
  39 import jdk.internal.vm.annotation.IntrinsicCandidate;
  40 import jdk.internal.vm.annotation.Stable;
  41 
  42 import static java.lang.Character.digit;
  43 import static java.lang.String.COMPACT_STRINGS;
  44 import static java.lang.String.LATIN1;
  45 import static java.lang.String.UTF16;
  46 
  47 /**
  48  * The {@code Long} class is the {@linkplain
  49  * java.lang##wrapperClass wrapper class} for values of the primitive
  50  * type {@code long}. An object of type {@code Long} contains a
  51  * single field whose type is {@code long}.
  52  *
  53  * <p> In addition, this class provides several methods for converting
  54  * a {@code long} to a {@code String} and a {@code String} to a {@code
  55  * long}, as well as other constants and methods useful when dealing
  56  * with a {@code long}.
  57  *
  58  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  59  * class; programmers should treat instances that are
  60  * {@linkplain #equals(Object) equal} as interchangeable and should not
  61  * use instances for synchronization, or unpredictable behavior may
  62  * occur. For example, in a future release, synchronization may fail.
  63  *
  64  * <p>Implementation note: The implementations of the "bit twiddling"
  65  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  66  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  67  * based on material from Henry S. Warren, Jr.'s <cite>Hacker's
  68  * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's
  69  * Delight, Second Edition</cite>, (Pearson Education, 2013).
  70  *
  71  * @since   1.0
  72  */
  73 @jdk.internal.ValueBased
  74 public final class Long extends Number
  75         implements Comparable<Long>, Constable, ConstantDesc {
  76     /**
  77      * A constant holding the minimum value a {@code long} can
  78      * have, -2<sup>63</sup>.
  79      */
  80     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  81 
  82     /**
  83      * A constant holding the maximum value a {@code long} can
  84      * have, 2<sup>63</sup>-1.
  85      */
  86     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  87 
  88     /**
  89      * The {@code Class} instance representing the primitive type
  90      * {@code long}.
  91      *
  92      * @since   1.1
  93      */
  94     public static final Class<Long> TYPE = Class.getPrimitiveClass("long");
  95 
  96     /**
  97      * Returns a string representation of the first argument in the
  98      * radix specified by the second argument.
  99      *
 100      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 101      * or larger than {@code Character.MAX_RADIX}, then the radix
 102      * {@code 10} is used instead.
 103      *
 104      * <p>If the first argument is negative, the first element of the
 105      * result is the ASCII minus sign {@code '-'}
 106      * ({@code '\u005Cu002d'}). If the first argument is not
 107      * negative, no sign character appears in the result.
 108      *
 109      * <p>The remaining characters of the result represent the magnitude
 110      * of the first argument. If the magnitude is zero, it is
 111      * represented by a single zero character {@code '0'}
 112      * ({@code '\u005Cu0030'}); otherwise, the first character of
 113      * the representation of the magnitude will not be the zero
 114      * character.  The following ASCII characters are used as digits:
 115      *
 116      * <blockquote>
 117      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 118      * </blockquote>
 119      *
 120      * These are {@code '\u005Cu0030'} through
 121      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 122      * {@code '\u005Cu007a'}. If {@code radix} is
 123      * <var>N</var>, then the first <var>N</var> of these characters
 124      * are used as radix-<var>N</var> digits in the order shown. Thus,
 125      * the digits for hexadecimal (radix 16) are
 126      * {@code 0123456789abcdef}. If uppercase letters are
 127      * desired, the {@link java.lang.String#toUpperCase()} method may
 128      * be called on the result:
 129      *
 130      * <blockquote>
 131      *  {@code Long.toString(n, 16).toUpperCase()}
 132      * </blockquote>
 133      *
 134      * @param   i       a {@code long} to be converted to a string.
 135      * @param   radix   the radix to use in the string representation.
 136      * @return  a string representation of the argument in the specified radix.
 137      * @see     java.lang.Character#MAX_RADIX
 138      * @see     java.lang.Character#MIN_RADIX
 139      */
 140     public static String toString(long i, int radix) {
 141         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 142             radix = 10;
 143         if (radix == 10)
 144             return toString(i);
 145 
 146         if (COMPACT_STRINGS) {
 147             byte[] buf = new byte[65];
 148             int charPos = 64;
 149             boolean negative = (i < 0);
 150 
 151             if (!negative) {
 152                 i = -i;
 153             }
 154 
 155             while (i <= -radix) {
 156                 buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 157                 i = i / radix;
 158             }
 159             buf[charPos] = Integer.digits[(int)(-i)];
 160 
 161             if (negative) {
 162                 buf[--charPos] = '-';
 163             }
 164             return StringLatin1.newString(buf, charPos, (65 - charPos));
 165         }
 166         return toStringUTF16(i, radix);
 167     }
 168 
 169     private static String toStringUTF16(long i, int radix) {
 170         byte[] buf = new byte[65 * 2];
 171         int charPos = 64;
 172         boolean negative = (i < 0);
 173         if (!negative) {
 174             i = -i;
 175         }
 176         while (i <= -radix) {
 177             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
 178             i = i / radix;
 179         }
 180         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
 181         if (negative) {
 182             StringUTF16.putChar(buf, --charPos, '-');
 183         }
 184         return StringUTF16.newString(buf, charPos, (65 - charPos));
 185     }
 186 
 187     /**
 188      * Returns a string representation of the first argument as an
 189      * unsigned integer value in the radix specified by the second
 190      * argument.
 191      *
 192      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 193      * or larger than {@code Character.MAX_RADIX}, then the radix
 194      * {@code 10} is used instead.
 195      *
 196      * <p>Note that since the first argument is treated as an unsigned
 197      * value, no leading sign character is printed.
 198      *
 199      * <p>If the magnitude is zero, it is represented by a single zero
 200      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 201      * the first character of the representation of the magnitude will
 202      * not be the zero character.
 203      *
 204      * <p>The behavior of radixes and the characters used as digits
 205      * are the same as {@link #toString(long, int) toString}.
 206      *
 207      * @param   i       an integer to be converted to an unsigned string.
 208      * @param   radix   the radix to use in the string representation.
 209      * @return  an unsigned string representation of the argument in the specified radix.
 210      * @see     #toString(long, int)
 211      * @since 1.8
 212      */
 213     public static String toUnsignedString(long i, int radix) {
 214         if (i >= 0)
 215             return toString(i, radix);
 216         else {
 217             return switch (radix) {
 218                 case 2  -> toBinaryString(i);
 219                 case 4  -> toUnsignedString0(i, 2);
 220                 case 8  -> toOctalString(i);
 221                 case 10 -> {
 222                     /*
 223                      * We can get the effect of an unsigned division by 10
 224                      * on a long value by first shifting right, yielding a
 225                      * positive value, and then dividing by 5.  This
 226                      * allows the last digit and preceding digits to be
 227                      * isolated more quickly than by an initial conversion
 228                      * to BigInteger.
 229                      */
 230                     long quot = (i >>> 1) / 5;
 231                     long rem = i - quot * 10;
 232                     yield toString(quot) + rem;
 233                 }
 234                 case 16 -> toHexString(i);
 235                 case 32 -> toUnsignedString0(i, 5);
 236                 default -> toUnsignedBigInteger(i).toString(radix);
 237             };
 238         }
 239     }
 240 
 241     /**
 242      * Return a BigInteger equal to the unsigned value of the
 243      * argument.
 244      */
 245     private static BigInteger toUnsignedBigInteger(long i) {
 246         if (i >= 0L)
 247             return BigInteger.valueOf(i);
 248         else {
 249             int upper = (int) (i >>> 32);
 250             int lower = (int) i;
 251 
 252             // return (upper << 32) + lower
 253             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 254                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 255         }
 256     }
 257 
 258     /**
 259      * Returns a string representation of the {@code long}
 260      * argument as an unsigned integer in base&nbsp;16.
 261      *
 262      * <p>The unsigned {@code long} value is the argument plus
 263      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 264      * equal to the argument.  This value is converted to a string of
 265      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 266      * leading {@code 0}s.
 267      *
 268      * <p>The value of the argument can be recovered from the returned
 269      * string {@code s} by calling {@link
 270      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 271      * 16)}.
 272      *
 273      * <p>If the unsigned magnitude is zero, it is represented by a
 274      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 275      * otherwise, the first character of the representation of the
 276      * unsigned magnitude will not be the zero character. The
 277      * following characters are used as hexadecimal digits:
 278      *
 279      * <blockquote>
 280      *  {@code 0123456789abcdef}
 281      * </blockquote>
 282      *
 283      * These are the characters {@code '\u005Cu0030'} through
 284      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 285      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 286      * the {@link java.lang.String#toUpperCase()} method may be called
 287      * on the result:
 288      *
 289      * <blockquote>
 290      *  {@code Long.toHexString(n).toUpperCase()}
 291      * </blockquote>
 292      *
 293      * @apiNote
 294      * The {@link java.util.HexFormat} class provides formatting and parsing
 295      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 296      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 297      * with leading zeros and for byte arrays includes for each byte
 298      * a delimiter, prefix, and suffix.
 299      *
 300      * @param   i   a {@code long} to be converted to a string.
 301      * @return  the string representation of the unsigned {@code long}
 302      *          value represented by the argument in hexadecimal
 303      *          (base&nbsp;16).
 304      * @see java.util.HexFormat
 305      * @see #parseUnsignedLong(String, int)
 306      * @see #toUnsignedString(long, int)
 307      * @since   1.0.2
 308      */
 309     public static String toHexString(long i) {
 310         return toUnsignedString0(i, 4);
 311     }
 312 
 313     /**
 314      * Returns a string representation of the {@code long}
 315      * argument as an unsigned integer in base&nbsp;8.
 316      *
 317      * <p>The unsigned {@code long} value is the argument plus
 318      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 319      * equal to the argument.  This value is converted to a string of
 320      * ASCII digits in octal (base&nbsp;8) with no extra leading
 321      * {@code 0}s.
 322      *
 323      * <p>The value of the argument can be recovered from the returned
 324      * string {@code s} by calling {@link
 325      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 326      * 8)}.
 327      *
 328      * <p>If the unsigned magnitude is zero, it is represented by a
 329      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 330      * otherwise, the first character of the representation of the
 331      * unsigned magnitude will not be the zero character. The
 332      * following characters are used as octal digits:
 333      *
 334      * <blockquote>
 335      *  {@code 01234567}
 336      * </blockquote>
 337      *
 338      * These are the characters {@code '\u005Cu0030'} through
 339      * {@code '\u005Cu0037'}.
 340      *
 341      * @param   i   a {@code long} to be converted to a string.
 342      * @return  the string representation of the unsigned {@code long}
 343      *          value represented by the argument in octal (base&nbsp;8).
 344      * @see #parseUnsignedLong(String, int)
 345      * @see #toUnsignedString(long, int)
 346      * @since   1.0.2
 347      */
 348     public static String toOctalString(long i) {
 349         return toUnsignedString0(i, 3);
 350     }
 351 
 352     /**
 353      * Returns a string representation of the {@code long}
 354      * argument as an unsigned integer in base&nbsp;2.
 355      *
 356      * <p>The unsigned {@code long} value is the argument plus
 357      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 358      * equal to the argument.  This value is converted to a string of
 359      * ASCII digits in binary (base&nbsp;2) with no extra leading
 360      * {@code 0}s.
 361      *
 362      * <p>The value of the argument can be recovered from the returned
 363      * string {@code s} by calling {@link
 364      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 365      * 2)}.
 366      *
 367      * <p>If the unsigned magnitude is zero, it is represented by a
 368      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 369      * otherwise, the first character of the representation of the
 370      * unsigned magnitude will not be the zero character. The
 371      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 372      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 373      *
 374      * @param   i   a {@code long} to be converted to a string.
 375      * @return  the string representation of the unsigned {@code long}
 376      *          value represented by the argument in binary (base&nbsp;2).
 377      * @see #parseUnsignedLong(String, int)
 378      * @see #toUnsignedString(long, int)
 379      * @since   1.0.2
 380      */
 381     public static String toBinaryString(long i) {
 382         return toUnsignedString0(i, 1);
 383     }
 384 
 385     /**
 386      * Format a long (treated as unsigned) into a String.
 387      * @param val the value to format
 388      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 389      */
 390     static String toUnsignedString0(long val, int shift) {
 391         // assert shift > 0 && shift <=5 : "Illegal shift value";
 392         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 393         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 394         byte[] buf = new byte[chars];
 395         formatUnsignedLong0(val, shift, buf, 0, chars);
 396         return String.newStringWithLatin1Bytes(buf);
 397     }
 398 
 399     /**
 400      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
 401      * {@code len} exceeds the formatted ASCII representation of {@code val},
 402      * {@code buf} will be padded with leading zeroes.
 403      *
 404      * @param val the unsigned long to format
 405      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 406      * @param buf the byte buffer to write to
 407      * @param offset the offset in the destination buffer to start at
 408      * @param len the number of characters to write
 409      */
 410     private static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
 411         int charPos = offset + len;
 412         int radix = 1 << shift;
 413         int mask = radix - 1;
 414         do {
 415             buf[--charPos] = Integer.digits[((int) val) & mask];
 416             val >>>= shift;
 417         } while (charPos > offset);
 418     }
 419 
 420     /**
 421      * Returns a {@code String} object representing the specified
 422      * {@code long}.  The argument is converted to signed decimal
 423      * representation and returned as a string, exactly as if the
 424      * argument and the radix 10 were given as arguments to the {@link
 425      * #toString(long, int)} method.
 426      *
 427      * @param   i   a {@code long} to be converted.
 428      * @return  a string representation of the argument in base&nbsp;10.
 429      */
 430     public static String toString(long i) {
 431         int size = DecimalDigits.stringSize(i);
 432         byte[] buf = new byte[size];
 433         DecimalDigits.uncheckedGetCharsLatin1(i, size, buf);
 434         return String.newStringWithLatin1Bytes(buf);
 435     }
 436 
 437     /**
 438      * Returns a string representation of the argument as an unsigned
 439      * decimal value.
 440      *
 441      * The argument is converted to unsigned decimal representation
 442      * and returned as a string exactly as if the argument and radix
 443      * 10 were given as arguments to the {@link #toUnsignedString(long,
 444      * int)} method.
 445      *
 446      * @param   i  an integer to be converted to an unsigned string.
 447      * @return  an unsigned string representation of the argument.
 448      * @see     #toUnsignedString(long, int)
 449      * @since 1.8
 450      */
 451     public static String toUnsignedString(long i) {
 452         return toUnsignedString(i, 10);
 453     }
 454 
 455     /**
 456      * Parses the string argument as a signed {@code long} in the
 457      * radix specified by the second argument. The characters in the
 458      * string must all be digits of the specified radix (as determined
 459      * by whether {@link java.lang.Character#digit(char, int)} returns
 460      * a nonnegative value), except that the first character may be an
 461      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 462      * indicate a negative value or an ASCII plus sign {@code '+'}
 463      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 464      * resulting {@code long} value is returned.
 465      *
 466      * <p>Note that neither the character {@code L}
 467      * ({@code '\u005Cu004C'}) nor {@code l}
 468      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 469      * of the string as a type indicator, as would be permitted in
 470      * Java programming language source code - except that either
 471      * {@code L} or {@code l} may appear as a digit for a
 472      * radix greater than or equal to 22.
 473      *
 474      * <p>An exception of type {@code NumberFormatException} is
 475      * thrown if any of the following situations occurs:
 476      * <ul>
 477      *
 478      * <li>The first argument is {@code null} or is a string of
 479      * length zero.
 480      *
 481      * <li>The {@code radix} is either smaller than {@link
 482      * java.lang.Character#MIN_RADIX} or larger than {@link
 483      * java.lang.Character#MAX_RADIX}.
 484      *
 485      * <li>Any character of the string is not a digit of the specified
 486      * radix, except that the first character may be a minus sign
 487      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 488      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 489      * longer than length 1.
 490      *
 491      * <li>The value represented by the string is not a value of type
 492      *      {@code long}.
 493      * </ul>
 494      *
 495      * <p>Examples:
 496      * <blockquote><pre>
 497      * parseLong("0", 10) returns 0L
 498      * parseLong("473", 10) returns 473L
 499      * parseLong("+42", 10) returns 42L
 500      * parseLong("-0", 10) returns 0L
 501      * parseLong("-FF", 16) returns -255L
 502      * parseLong("1100110", 2) returns 102L
 503      * parseLong("99", 8) throws a NumberFormatException
 504      * parseLong("Hazelnut", 10) throws a NumberFormatException
 505      * parseLong("Hazelnut", 36) returns 1356099454469L
 506      * </pre></blockquote>
 507      *
 508      * @param      s       the {@code String} containing the
 509      *                     {@code long} representation to be parsed.
 510      * @param      radix   the radix to be used while parsing {@code s}.
 511      * @return     the {@code long} represented by the string argument in
 512      *             the specified radix.
 513      * @throws     NumberFormatException  if the string does not contain a
 514      *             parsable {@code long}.
 515      */
 516     public static long parseLong(String s, int radix)
 517                 throws NumberFormatException {
 518         if (s == null) {
 519             throw new NumberFormatException("Cannot parse null string");
 520         }
 521 
 522         if (radix < Character.MIN_RADIX) {
 523             throw new NumberFormatException(String.format(
 524                 "radix %s less than Character.MIN_RADIX", radix));
 525         }
 526 
 527         if (radix > Character.MAX_RADIX) {
 528             throw new NumberFormatException(String.format(
 529                 "radix %s greater than Character.MAX_RADIX", radix));
 530         }
 531 
 532         int len = s.length();
 533         if (len == 0) {
 534             throw NumberFormatException.forInputString("", radix);
 535         }
 536         int digit = ~0xFF;
 537         int i = 0;
 538         char firstChar = s.charAt(i++);
 539         if (firstChar != '-' && firstChar != '+') {
 540             digit = digit(firstChar, radix);
 541         }
 542         if (digit >= 0 || digit == ~0xFF && len > 1) {
 543             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 544             long multmin = limit / radix;
 545             long result = -(digit & 0xFF);
 546             boolean inRange = true;
 547             /* Accumulating negatively avoids surprises near MAX_VALUE */
 548             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 549                     && (inRange = result > multmin
 550                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 551                 result = radix * result - digit;
 552             }
 553             if (inRange && i == len && digit >= 0) {
 554                 return firstChar != '-' ? -result : result;
 555             }
 556         }
 557         throw NumberFormatException.forInputString(s, radix);
 558     }
 559 
 560     /**
 561      * Parses the {@link CharSequence} argument as a signed {@code long} in
 562      * the specified {@code radix}, beginning at the specified
 563      * {@code beginIndex} and extending to {@code endIndex - 1}.
 564      *
 565      * <p>The method does not take steps to guard against the
 566      * {@code CharSequence} being mutated while parsing.
 567      *
 568      * @param      s   the {@code CharSequence} containing the {@code long}
 569      *                  representation to be parsed
 570      * @param      beginIndex   the beginning index, inclusive.
 571      * @param      endIndex     the ending index, exclusive.
 572      * @param      radix   the radix to be used while parsing {@code s}.
 573      * @return     the signed {@code long} represented by the subsequence in
 574      *             the specified radix.
 575      * @throws     NullPointerException  if {@code s} is null.
 576      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 577      *             negative, or if {@code beginIndex} is greater than
 578      *             {@code endIndex} or if {@code endIndex} is greater than
 579      *             {@code s.length()}.
 580      * @throws     NumberFormatException  if the {@code CharSequence} does not
 581      *             contain a parsable {@code long} in the specified
 582      *             {@code radix}, or if {@code radix} is either smaller than
 583      *             {@link java.lang.Character#MIN_RADIX} or larger than
 584      *             {@link java.lang.Character#MAX_RADIX}.
 585      * @since  9
 586      */
 587     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
 588                 throws NumberFormatException {
 589         Objects.requireNonNull(s);
 590         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 591 
 592         if (radix < Character.MIN_RADIX) {
 593             throw new NumberFormatException(String.format(
 594                 "radix %s less than Character.MIN_RADIX", radix));
 595         }
 596 
 597         if (radix > Character.MAX_RADIX) {
 598             throw new NumberFormatException(String.format(
 599                 "radix %s greater than Character.MAX_RADIX", radix));
 600         }
 601 
 602         /*
 603          * While s can be concurrently modified, it is ensured that each
 604          * of its characters is read at most once, from lower to higher indices.
 605          * This is obtained by reading them using the pattern s.charAt(i++),
 606          * and by not updating i anywhere else.
 607          */
 608         if (beginIndex == endIndex) {
 609             throw NumberFormatException.forInputString("", radix);
 610         }
 611         int digit = ~0xFF;  // ~0xFF means firstChar char is sign
 612         int i = beginIndex;
 613         char firstChar = s.charAt(i++);
 614         if (firstChar != '-' && firstChar != '+') {
 615             digit = digit(firstChar, radix);
 616         }
 617         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 618             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 619             long multmin = limit / radix;
 620             long result = -(digit & 0xFF);
 621             boolean inRange = true;
 622             /* Accumulating negatively avoids surprises near MAX_VALUE */
 623             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 624                     && (inRange = result > multmin
 625                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 626                 result = radix * result - digit;
 627             }
 628             if (inRange && i == endIndex && digit >= 0) {
 629                 return firstChar != '-' ? -result : result;
 630             }
 631         }
 632         throw NumberFormatException.forCharSequence(s, beginIndex,
 633             endIndex, i - (digit < -1 ? 0 : 1));
 634     }
 635 
 636     /**
 637      * Parses the string argument as a signed decimal {@code long}.
 638      * The characters in the string must all be decimal digits, except
 639      * that the first character may be an ASCII minus sign {@code '-'}
 640      * ({@code \u005Cu002D'}) to indicate a negative value or an
 641      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 642      * indicate a positive value. The resulting {@code long} value is
 643      * returned, exactly as if the argument and the radix {@code 10}
 644      * were given as arguments to the {@link
 645      * #parseLong(java.lang.String, int)} method.
 646      *
 647      * <p>Note that neither the character {@code L}
 648      * ({@code '\u005Cu004C'}) nor {@code l}
 649      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 650      * of the string as a type indicator, as would be permitted in
 651      * Java programming language source code.
 652      *
 653      * @param      s   a {@code String} containing the {@code long}
 654      *             representation to be parsed
 655      * @return     the {@code long} represented by the argument in
 656      *             decimal.
 657      * @throws     NumberFormatException  if the string does not contain a
 658      *             parsable {@code long}.
 659      */
 660     public static long parseLong(String s) throws NumberFormatException {
 661         return parseLong(s, 10);
 662     }
 663 
 664     /**
 665      * Parses the string argument as an unsigned {@code long} in the
 666      * radix specified by the second argument.  An unsigned integer
 667      * maps the values usually associated with negative numbers to
 668      * positive numbers larger than {@code MAX_VALUE}.
 669      *
 670      * The characters in the string must all be digits of the
 671      * specified radix (as determined by whether {@link
 672      * java.lang.Character#digit(char, int)} returns a nonnegative
 673      * value), except that the first character may be an ASCII plus
 674      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 675      * integer value is returned.
 676      *
 677      * <p>An exception of type {@code NumberFormatException} is
 678      * thrown if any of the following situations occurs:
 679      * <ul>
 680      * <li>The first argument is {@code null} or is a string of
 681      * length zero.
 682      *
 683      * <li>The radix is either smaller than
 684      * {@link java.lang.Character#MIN_RADIX} or
 685      * larger than {@link java.lang.Character#MAX_RADIX}.
 686      *
 687      * <li>Any character of the string is not a digit of the specified
 688      * radix, except that the first character may be a plus sign
 689      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 690      * string is longer than length 1.
 691      *
 692      * <li>The value represented by the string is larger than the
 693      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 694      *
 695      * </ul>
 696      *
 697      *
 698      * @param      s   the {@code String} containing the unsigned integer
 699      *                  representation to be parsed
 700      * @param      radix   the radix to be used while parsing {@code s}.
 701      * @return     the unsigned {@code long} represented by the string
 702      *             argument in the specified radix.
 703      * @throws     NumberFormatException if the {@code String}
 704      *             does not contain a parsable {@code long}.
 705      * @since 1.8
 706      */
 707     public static long parseUnsignedLong(String s, int radix)
 708                 throws NumberFormatException {
 709         if (s == null)  {
 710             throw new NumberFormatException("Cannot parse null string");
 711         }
 712 
 713         if (radix < Character.MIN_RADIX) {
 714             throw new NumberFormatException(String.format(
 715                 "radix %s less than Character.MIN_RADIX", radix));
 716         }
 717 
 718         if (radix > Character.MAX_RADIX) {
 719             throw new NumberFormatException(String.format(
 720                 "radix %s greater than Character.MAX_RADIX", radix));
 721         }
 722 
 723         int len = s.length();
 724         if (len == 0) {
 725             throw NumberFormatException.forInputString(s, radix);
 726         }
 727         int i = 0;
 728         char firstChar = s.charAt(i++);
 729         if (firstChar == '-') {
 730             throw new NumberFormatException(String.format(
 731                 "Illegal leading minus sign on unsigned string %s.", s));
 732         }
 733         int digit = ~0xFF;
 734         if (firstChar != '+') {
 735             digit = digit(firstChar, radix);
 736         }
 737         if (digit >= 0 || digit == ~0xFF && len > 1) {
 738             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 739             long result = digit & 0xFF;
 740             boolean inRange = true;
 741             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 742                     && (inRange = compareUnsigned(result, multmax) < 0
 743                         || result == multmax && digit < (int) (-radix * multmax))) {
 744                 result = radix * result + digit;
 745             }
 746             if (inRange && i == len && digit >= 0) {
 747                 return result;
 748             }
 749         }
 750         if (digit < 0) {
 751             throw NumberFormatException.forInputString(s, radix);
 752         }
 753         throw new NumberFormatException(String.format(
 754             "String value %s exceeds range of unsigned long.", s));
 755     }
 756 
 757     /**
 758      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
 759      * the specified {@code radix}, beginning at the specified
 760      * {@code beginIndex} and extending to {@code endIndex - 1}.
 761      *
 762      * <p>The method does not take steps to guard against the
 763      * {@code CharSequence} being mutated while parsing.
 764      *
 765      * @param      s   the {@code CharSequence} containing the unsigned
 766      *                 {@code long} representation to be parsed
 767      * @param      beginIndex   the beginning index, inclusive.
 768      * @param      endIndex     the ending index, exclusive.
 769      * @param      radix   the radix to be used while parsing {@code s}.
 770      * @return     the unsigned {@code long} represented by the subsequence in
 771      *             the specified radix.
 772      * @throws     NullPointerException  if {@code s} is null.
 773      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 774      *             negative, or if {@code beginIndex} is greater than
 775      *             {@code endIndex} or if {@code endIndex} is greater than
 776      *             {@code s.length()}.
 777      * @throws     NumberFormatException  if the {@code CharSequence} does not
 778      *             contain a parsable unsigned {@code long} in the specified
 779      *             {@code radix}, or if {@code radix} is either smaller than
 780      *             {@link java.lang.Character#MIN_RADIX} or larger than
 781      *             {@link java.lang.Character#MAX_RADIX}.
 782      * @since  9
 783      */
 784     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
 785                 throws NumberFormatException {
 786         Objects.requireNonNull(s);
 787         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 788 
 789         if (radix < Character.MIN_RADIX) {
 790             throw new NumberFormatException(String.format(
 791                 "radix %s less than Character.MIN_RADIX", radix));
 792         }
 793 
 794         if (radix > Character.MAX_RADIX) {
 795             throw new NumberFormatException(String.format(
 796                 "radix %s greater than Character.MAX_RADIX", radix));
 797         }
 798 
 799         /*
 800          * While s can be concurrently modified, it is ensured that each
 801          * of its characters is read at most once, from lower to higher indices.
 802          * This is obtained by reading them using the pattern s.charAt(i++),
 803          * and by not updating i anywhere else.
 804          */
 805         if (beginIndex == endIndex) {
 806             throw NumberFormatException.forInputString("", radix);
 807         }
 808         int i = beginIndex;
 809         char firstChar = s.charAt(i++);
 810         if (firstChar == '-') {
 811             throw new NumberFormatException(
 812                 "Illegal leading minus sign on unsigned string " + s + ".");
 813         }
 814         int digit = ~0xFF;
 815         if (firstChar != '+') {
 816             digit = digit(firstChar, radix);
 817         }
 818         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 819             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 820             long result = digit & 0xFF;
 821             boolean inRange = true;
 822             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 823                     && (inRange = compareUnsigned(result, multmax) < 0
 824                         || result == multmax && digit < (int) (-radix * multmax))) {
 825                 result = radix * result + digit;
 826             }
 827             if (inRange && i == endIndex && digit >= 0) {
 828                 return result;
 829             }
 830         }
 831         if (digit < 0) {
 832             throw NumberFormatException.forCharSequence(s, beginIndex,
 833                 endIndex, i - (digit < -1 ? 0 : 1));
 834         }
 835         throw new NumberFormatException(String.format(
 836             "String value %s exceeds range of unsigned long.", s));
 837     }
 838 
 839     /**
 840      * Parses the string argument as an unsigned decimal {@code long}. The
 841      * characters in the string must all be decimal digits, except
 842      * that the first character may be an ASCII plus sign {@code
 843      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 844      * is returned, exactly as if the argument and the radix 10 were
 845      * given as arguments to the {@link
 846      * #parseUnsignedLong(java.lang.String, int)} method.
 847      *
 848      * @param s   a {@code String} containing the unsigned {@code long}
 849      *            representation to be parsed
 850      * @return    the unsigned {@code long} value represented by the decimal string argument
 851      * @throws    NumberFormatException  if the string does not contain a
 852      *            parsable unsigned integer.
 853      * @since 1.8
 854      */
 855     public static long parseUnsignedLong(String s) throws NumberFormatException {
 856         return parseUnsignedLong(s, 10);
 857     }
 858 
 859     /**
 860      * Returns a {@code Long} object holding the value
 861      * extracted from the specified {@code String} when parsed
 862      * with the radix given by the second argument.  The first
 863      * argument is interpreted as representing a signed
 864      * {@code long} in the radix specified by the second
 865      * argument, exactly as if the arguments were given to the {@link
 866      * #parseLong(java.lang.String, int)} method. The result is a
 867      * {@code Long} object that represents the {@code long}
 868      * value specified by the string.
 869      *
 870      * <p>In other words, this method returns a {@code Long} object equal
 871      * to the value of:
 872      *
 873      * <blockquote>
 874      *  {@code Long.valueOf(Long.parseLong(s, radix))}
 875      * </blockquote>
 876      *
 877      * @param      s       the string to be parsed
 878      * @param      radix   the radix to be used in interpreting {@code s}
 879      * @return     a {@code Long} object holding the value
 880      *             represented by the string argument in the specified
 881      *             radix.
 882      * @throws     NumberFormatException  If the {@code String} does not
 883      *             contain a parsable {@code long}.
 884      */
 885     public static Long valueOf(String s, int radix) throws NumberFormatException {
 886         return Long.valueOf(parseLong(s, radix));
 887     }
 888 
 889     /**
 890      * Returns a {@code Long} object holding the value
 891      * of the specified {@code String}. The argument is
 892      * interpreted as representing a signed decimal {@code long},
 893      * exactly as if the argument were given to the {@link
 894      * #parseLong(java.lang.String)} method. The result is a
 895      * {@code Long} object that represents the integer value
 896      * specified by the string.
 897      *
 898      * <p>In other words, this method returns a {@code Long} object
 899      * equal to the value of:
 900      *
 901      * <blockquote>
 902      *  {@code Long.valueOf(Long.parseLong(s))}
 903      * </blockquote>
 904      *
 905      * @param      s   the string to be parsed.
 906      * @return     a {@code Long} object holding the value
 907      *             represented by the string argument.
 908      * @throws     NumberFormatException  If the string cannot be parsed
 909      *             as a {@code long}.
 910      */
 911     public static Long valueOf(String s) throws NumberFormatException
 912     {
 913         return Long.valueOf(parseLong(s, 10));
 914     }
 915 
 916     private static final class LongCache {
 917         private LongCache() {}
 918 
 919         @Stable
 920         static final Long[] cache;
 921         static Long[] archivedCache;
 922 
 923         static {
 924             int size = -(-128) + 127 + 1;
 925 
 926             // Load and use the archived cache if it exists
 927             CDS.initializeFromArchive(LongCache.class);
 928             if (archivedCache == null) {
 929                 Long[] c = new Long[size];
 930                 long value = -128;
 931                 for(int i = 0; i < size; i++) {
 932                     c[i] = new Long(value++);
 933                 }
 934                 archivedCache = c;
 935             }
 936             cache = archivedCache;
 937             assert cache.length == size;
 938         }
 939     }
 940 
 941     /**
 942      * Returns a {@code Long} instance representing the specified
 943      * {@code long} value.
 944      * If a new {@code Long} instance is not required, this method
 945      * should generally be used in preference to the constructor
 946      * {@link #Long(long)}, as this method is likely to yield
 947      * significantly better space and time performance by caching
 948      * frequently requested values.
 949      *
 950      * This method will always cache values in the range -128 to 127,
 951      * inclusive, and may cache other values outside of this range.
 952      *
 953      * @param  l a long value.
 954      * @return a {@code Long} instance representing {@code l}.
 955      * @since  1.5
 956      */
 957     @IntrinsicCandidate
 958     public static Long valueOf(long l) {
 959         final int offset = 128;
 960         if (l >= -128 && l <= 127) { // will cache
 961             return LongCache.cache[(int)l + offset];
 962         }
 963         return new Long(l);
 964     }
 965 
 966     /**
 967      * Decodes a {@code String} into a {@code Long}.
 968      * Accepts decimal, hexadecimal, and octal numbers given by the
 969      * following grammar:
 970      *
 971      * <blockquote>
 972      * <dl>
 973      * <dt><i>DecodableString:</i>
 974      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 975      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 976      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 977      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 978      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 979      *
 980      * <dt><i>Sign:</i>
 981      * <dd>{@code -}
 982      * <dd>{@code +}
 983      * </dl>
 984      * </blockquote>
 985      *
 986      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 987      * are as defined in section {@jls 3.10.1} of
 988      * <cite>The Java Language Specification</cite>,
 989      * except that underscores are not accepted between digits.
 990      *
 991      * <p>The sequence of characters following an optional
 992      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 993      * "{@code #}", or leading zero) is parsed as by the {@code
 994      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 995      * This sequence of characters must represent a positive value or
 996      * a {@link NumberFormatException} will be thrown.  The result is
 997      * negated if first character of the specified {@code String} is
 998      * the minus sign.  No whitespace characters are permitted in the
 999      * {@code String}.
1000      *
1001      * @param     nm the {@code String} to decode.
1002      * @return    a {@code Long} object holding the {@code long}
1003      *            value represented by {@code nm}
1004      * @throws    NumberFormatException  if the {@code String} does not
1005      *            contain a parsable {@code long}.
1006      * @see java.lang.Long#parseLong(String, int)
1007      * @since 1.2
1008      */
1009     public static Long decode(String nm) throws NumberFormatException {
1010         int radix = 10;
1011         int index = 0;
1012         boolean negative = false;
1013         long result;
1014 
1015         if (nm.isEmpty())
1016             throw new NumberFormatException("Zero length string");
1017         char firstChar = nm.charAt(0);
1018         // Handle sign, if present
1019         if (firstChar == '-') {
1020             negative = true;
1021             index++;
1022         } else if (firstChar == '+')
1023             index++;
1024 
1025         // Handle radix specifier, if present
1026         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1027             index += 2;
1028             radix = 16;
1029         }
1030         else if (nm.startsWith("#", index)) {
1031             index ++;
1032             radix = 16;
1033         }
1034         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1035             index ++;
1036             radix = 8;
1037         }
1038 
1039         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1040             throw new NumberFormatException("Sign character in wrong position");
1041 
1042         try {
1043             result = parseLong(nm, index, nm.length(), radix);
1044             result = negative ? -result : result;
1045         } catch (NumberFormatException e) {
1046             // If number is Long.MIN_VALUE, we'll end up here. The next line
1047             // handles this case, and causes any genuine format error to be
1048             // rethrown.
1049             String constant = negative ? ("-" + nm.substring(index))
1050                                        : nm.substring(index);
1051             result = parseLong(constant, radix);
1052         }
1053         return result;
1054     }
1055 
1056     /**
1057      * The value of the {@code Long}.
1058      *
1059      * @serial
1060      */
1061     private final long value;
1062 
1063     /**
1064      * Constructs a newly allocated {@code Long} object that
1065      * represents the specified {@code long} argument.
1066      *
1067      * @param   value   the value to be represented by the
1068      *          {@code Long} object.
1069      *
1070      * @deprecated
1071      * It is rarely appropriate to use this constructor. The static factory
1072      * {@link #valueOf(long)} is generally a better choice, as it is
1073      * likely to yield significantly better space and time performance.
1074      */
1075     @Deprecated(since="9")
1076     public Long(long value) {
1077         this.value = value;
1078     }
1079 
1080     /**
1081      * Constructs a newly allocated {@code Long} object that
1082      * represents the {@code long} value indicated by the
1083      * {@code String} parameter. The string is converted to a
1084      * {@code long} value in exactly the manner used by the
1085      * {@code parseLong} method for radix 10.
1086      *
1087      * @param      s   the {@code String} to be converted to a
1088      *             {@code Long}.
1089      * @throws     NumberFormatException  if the {@code String} does not
1090      *             contain a parsable {@code long}.
1091      *
1092      * @deprecated
1093      * It is rarely appropriate to use this constructor.
1094      * Use {@link #parseLong(String)} to convert a string to a
1095      * {@code long} primitive, or use {@link #valueOf(String)}
1096      * to convert a string to a {@code Long} object.
1097      */
1098     @Deprecated(since="9")
1099     public Long(String s) throws NumberFormatException {
1100         this.value = parseLong(s, 10);
1101     }
1102 
1103     /**
1104      * Returns the value of this {@code Long} as a {@code byte} after
1105      * a narrowing primitive conversion.
1106      * @jls 5.1.3 Narrowing Primitive Conversion
1107      */
1108     public byte byteValue() {
1109         return (byte)value;
1110     }
1111 
1112     /**
1113      * Returns the value of this {@code Long} as a {@code short} after
1114      * a narrowing primitive conversion.
1115      * @jls 5.1.3 Narrowing Primitive Conversion
1116      */
1117     public short shortValue() {
1118         return (short)value;
1119     }
1120 
1121     /**
1122      * Returns the value of this {@code Long} as an {@code int} after
1123      * a narrowing primitive conversion.
1124      * @jls 5.1.3 Narrowing Primitive Conversion
1125      */
1126     public int intValue() {
1127         return (int)value;
1128     }
1129 
1130     /**
1131      * Returns the value of this {@code Long} as a
1132      * {@code long} value.
1133      */
1134     @IntrinsicCandidate
1135     public long longValue() {
1136         return value;
1137     }
1138 
1139     /**
1140      * Returns the value of this {@code Long} as a {@code float} after
1141      * a widening primitive conversion.
1142      * @jls 5.1.2 Widening Primitive Conversion
1143      */
1144     public float floatValue() {
1145         return (float)value;
1146     }
1147 
1148     /**
1149      * Returns the value of this {@code Long} as a {@code double}
1150      * after a widening primitive conversion.
1151      * @jls 5.1.2 Widening Primitive Conversion
1152      */
1153     public double doubleValue() {
1154         return (double)value;
1155     }
1156 
1157     /**
1158      * Returns a {@code String} object representing this
1159      * {@code Long}'s value.  The value is converted to signed
1160      * decimal representation and returned as a string, exactly as if
1161      * the {@code long} value were given as an argument to the
1162      * {@link java.lang.Long#toString(long)} method.
1163      *
1164      * @return  a string representation of the value of this object in
1165      *          base&nbsp;10.
1166      */
1167     public String toString() {
1168         return toString(value);
1169     }
1170 
1171     /**
1172      * Returns a hash code for this {@code Long}. The result is
1173      * the exclusive OR of the two halves of the primitive
1174      * {@code long} value held by this {@code Long}
1175      * object. That is, the hashcode is the value of the expression:
1176      *
1177      * <blockquote>
1178      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1179      * </blockquote>
1180      *
1181      * @return  a hash code value for this object.
1182      */
1183     @Override
1184     public int hashCode() {
1185         return Long.hashCode(value);
1186     }
1187 
1188     /**
1189      * Returns a hash code for a {@code long} value; compatible with
1190      * {@code Long.hashCode()}.
1191      *
1192      * @param value the value to hash
1193      * @return a hash code value for a {@code long} value.
1194      * @since 1.8
1195      */
1196     public static int hashCode(long value) {
1197         return (int)(value ^ (value >>> 32));
1198     }
1199 
1200     /**
1201      * Compares this object to the specified object.  The result is
1202      * {@code true} if and only if the argument is not
1203      * {@code null} and is a {@code Long} object that
1204      * contains the same {@code long} value as this object.
1205      *
1206      * @param   obj   the object to compare with.
1207      * @return  {@code true} if the objects are the same;
1208      *          {@code false} otherwise.
1209      */
1210     public boolean equals(Object obj) {
1211         if (obj instanceof Long ell) {
1212             return value == ell.longValue();
1213         }
1214         return false;
1215     }
1216 
1217     /**
1218      * Determines the {@code long} value of the system property
1219      * with the specified name.
1220      *
1221      * <p>The first argument is treated as the name of a system
1222      * property.  System properties are accessible through the {@link
1223      * java.lang.System#getProperty(java.lang.String)} method. The
1224      * string value of this property is then interpreted as a {@code
1225      * long} value using the grammar supported by {@link Long#decode decode}
1226      * and a {@code Long} object representing this value is returned.
1227      *
1228      * <p>If there is no property with the specified name, if the
1229      * specified name is empty or {@code null}, or if the property
1230      * does not have the correct numeric format, then {@code null} is
1231      * returned.
1232      *
1233      * <p>In other words, this method returns a {@code Long} object
1234      * equal to the value of:
1235      *
1236      * <blockquote>
1237      *  {@code getLong(nm, null)}
1238      * </blockquote>
1239      *
1240      * @param   nm   property name.
1241      * @return  the {@code Long} value of the property.
1242      * @see     java.lang.System#getProperty(java.lang.String)
1243      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1244      */
1245     public static Long getLong(String nm) {
1246         return getLong(nm, null);
1247     }
1248 
1249     /**
1250      * Determines the {@code long} value of the system property
1251      * with the specified name.
1252      *
1253      * <p>The first argument is treated as the name of a system
1254      * property.  System properties are accessible through the {@link
1255      * java.lang.System#getProperty(java.lang.String)} method. The
1256      * string value of this property is then interpreted as a {@code
1257      * long} value using the grammar supported by {@link Long#decode decode}
1258      * and a {@code Long} object representing this value is returned.
1259      *
1260      * <p>The second argument is the default value. A {@code Long} object
1261      * that represents the value of the second argument is returned if there
1262      * is no property of the specified name, if the property does not have
1263      * the correct numeric format, or if the specified name is empty or null.
1264      *
1265      * <p>In other words, this method returns a {@code Long} object equal
1266      * to the value of:
1267      *
1268      * <blockquote>
1269      *  {@code getLong(nm, Long.valueOf(val))}
1270      * </blockquote>
1271      *
1272      * but in practice it may be implemented in a manner such as:
1273      *
1274      * <blockquote><pre>
1275      * Long result = getLong(nm, null);
1276      * return (result == null) ? Long.valueOf(val) : result;
1277      * </pre></blockquote>
1278      *
1279      * to avoid the unnecessary allocation of a {@code Long} object when
1280      * the default value is not needed.
1281      *
1282      * @param   nm    property name.
1283      * @param   val   default value.
1284      * @return  the {@code Long} value of the property.
1285      * @see     java.lang.System#getProperty(java.lang.String)
1286      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1287      */
1288     public static Long getLong(String nm, long val) {
1289         Long result = Long.getLong(nm, null);
1290         return (result == null) ? Long.valueOf(val) : result;
1291     }
1292 
1293     /**
1294      * Returns the {@code long} value of the system property with
1295      * the specified name.  The first argument is treated as the name
1296      * of a system property.  System properties are accessible through
1297      * the {@link java.lang.System#getProperty(java.lang.String)}
1298      * method. The string value of this property is then interpreted
1299      * as a {@code long} value, as per the
1300      * {@link Long#decode decode} method, and a {@code Long} object
1301      * representing this value is returned; in summary:
1302      *
1303      * <ul>
1304      * <li>If the property value begins with the two ASCII characters
1305      * {@code 0x} or the ASCII character {@code #}, not followed by
1306      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1307      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1308      * with radix 16.
1309      * <li>If the property value begins with the ASCII character
1310      * {@code 0} followed by another character, it is parsed as
1311      * an octal integer exactly as by the method {@link
1312      * #valueOf(java.lang.String, int)} with radix 8.
1313      * <li>Otherwise the property value is parsed as a decimal
1314      * integer exactly as by the method
1315      * {@link #valueOf(java.lang.String, int)} with radix 10.
1316      * </ul>
1317      *
1318      * <p>Note that, in every case, neither {@code L}
1319      * ({@code '\u005Cu004C'}) nor {@code l}
1320      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1321      * of the property value as a type indicator, as would be
1322      * permitted in Java programming language source code.
1323      *
1324      * <p>The second argument is the default value. The default value is
1325      * returned if there is no property of the specified name, if the
1326      * property does not have the correct numeric format, or if the
1327      * specified name is empty or {@code null}.
1328      *
1329      * @param   nm   property name.
1330      * @param   val   default value.
1331      * @return  the {@code Long} value of the property.
1332      * @see     System#getProperty(java.lang.String)
1333      * @see     System#getProperty(java.lang.String, java.lang.String)
1334      */
1335     public static Long getLong(String nm, Long val) {
1336         String v = nm != null && !nm.isEmpty() ? System.getProperty(nm) : null;
1337         if (v != null) {
1338             try {
1339                 return Long.decode(v);
1340             } catch (NumberFormatException e) {
1341             }
1342         }
1343         return val;
1344     }
1345 
1346     /**
1347      * Compares two {@code Long} objects numerically.
1348      *
1349      * @param   anotherLong   the {@code Long} to be compared.
1350      * @return  the value {@code 0} if this {@code Long} is
1351      *          equal to the argument {@code Long}; a value less than
1352      *          {@code 0} if this {@code Long} is numerically less
1353      *          than the argument {@code Long}; and a value greater
1354      *          than {@code 0} if this {@code Long} is numerically
1355      *           greater than the argument {@code Long} (signed
1356      *           comparison).
1357      * @since   1.2
1358      */
1359     public int compareTo(Long anotherLong) {
1360         return compare(this.value, anotherLong.value);
1361     }
1362 
1363     /**
1364      * Compares two {@code long} values numerically.
1365      * The value returned is identical to what would be returned by:
1366      * <pre>
1367      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1368      * </pre>
1369      *
1370      * @param  x the first {@code long} to compare
1371      * @param  y the second {@code long} to compare
1372      * @return the value {@code 0} if {@code x == y};
1373      *         a value less than {@code 0} if {@code x < y}; and
1374      *         a value greater than {@code 0} if {@code x > y}
1375      * @since 1.7
1376      */
1377     public static int compare(long x, long y) {
1378         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1379     }
1380 
1381     /**
1382      * Compares two {@code long} values numerically treating the values
1383      * as unsigned.
1384      *
1385      * @param  x the first {@code long} to compare
1386      * @param  y the second {@code long} to compare
1387      * @return the value {@code 0} if {@code x == y}; a value less
1388      *         than {@code 0} if {@code x < y} as unsigned values; and
1389      *         a value greater than {@code 0} if {@code x > y} as
1390      *         unsigned values
1391      * @since 1.8
1392      */
1393     @IntrinsicCandidate
1394     public static int compareUnsigned(long x, long y) {
1395         return compare(x + MIN_VALUE, y + MIN_VALUE);
1396     }
1397 
1398 
1399     /**
1400      * Returns the unsigned quotient of dividing the first argument by
1401      * the second where each argument and the result is interpreted as
1402      * an unsigned value.
1403      *
1404      * <p>Note that in two's complement arithmetic, the three other
1405      * basic arithmetic operations of add, subtract, and multiply are
1406      * bit-wise identical if the two operands are regarded as both
1407      * being signed or both being unsigned.  Therefore separate {@code
1408      * addUnsigned}, etc. methods are not provided.
1409      *
1410      * @param dividend the value to be divided
1411      * @param divisor the value doing the dividing
1412      * @return the unsigned quotient of the first argument divided by
1413      * the second argument
1414      * @see #remainderUnsigned
1415      * @since 1.8
1416      */
1417     @IntrinsicCandidate
1418     public static long divideUnsigned(long dividend, long divisor) {
1419         /* See Hacker's Delight (2nd ed), section 9.3 */
1420         if (divisor >= 0) {
1421             final long q = (dividend >>> 1) / divisor << 1;
1422             final long r = dividend - q * divisor;
1423             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1424         }
1425         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1426     }
1427 
1428     /**
1429      * Returns the unsigned remainder from dividing the first argument
1430      * by the second where each argument and the result is interpreted
1431      * as an unsigned value.
1432      *
1433      * @param dividend the value to be divided
1434      * @param divisor the value doing the dividing
1435      * @return the unsigned remainder of the first argument divided by
1436      * the second argument
1437      * @see #divideUnsigned
1438      * @since 1.8
1439      */
1440     @IntrinsicCandidate
1441     public static long remainderUnsigned(long dividend, long divisor) {
1442         /* See Hacker's Delight (2nd ed), section 9.3 */
1443         if (divisor >= 0) {
1444             final long q = (dividend >>> 1) / divisor << 1;
1445             final long r = dividend - q * divisor;
1446             /*
1447              * Here, 0 <= r < 2 * divisor
1448              * (1) When 0 <= r < divisor, the remainder is simply r.
1449              * (2) Otherwise the remainder is r - divisor.
1450              *
1451              * In case (1), r - divisor < 0. Applying ~ produces a long with
1452              * sign bit 0, so >> produces 0. The returned value is thus r.
1453              *
1454              * In case (2), a similar reasoning shows that >> produces -1,
1455              * so the returned value is r - divisor.
1456              */
1457             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1458         }
1459         /*
1460          * (1) When dividend >= 0, the remainder is dividend.
1461          * (2) Otherwise
1462          *      (2.1) When dividend < divisor, the remainder is dividend.
1463          *      (2.2) Otherwise the remainder is dividend - divisor
1464          *
1465          * A reasoning similar to the above shows that the returned value
1466          * is as expected.
1467          */
1468         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1469     }
1470 
1471     // Bit Twiddling
1472 
1473     /**
1474      * The number of bits used to represent a {@code long} value in two's
1475      * complement binary form.
1476      *
1477      * @since 1.5
1478      */
1479     @Native public static final int SIZE = 64;
1480 
1481     /**
1482      * The number of bytes used to represent a {@code long} value in two's
1483      * complement binary form.
1484      *
1485      * @since 1.8
1486      */
1487     public static final int BYTES = SIZE / Byte.SIZE;
1488 
1489     /**
1490      * Returns a {@code long} value with at most a single one-bit, in the
1491      * position of the highest-order ("leftmost") one-bit in the specified
1492      * {@code long} value.  Returns zero if the specified value has no
1493      * one-bits in its two's complement binary representation, that is, if it
1494      * is equal to zero.
1495      *
1496      * @param i the value whose highest one bit is to be computed
1497      * @return a {@code long} value with a single one-bit, in the position
1498      *     of the highest-order one-bit in the specified value, or zero if
1499      *     the specified value is itself equal to zero.
1500      * @since 1.5
1501      */
1502     public static long highestOneBit(long i) {
1503         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1504     }
1505 
1506     /**
1507      * Returns a {@code long} value with at most a single one-bit, in the
1508      * position of the lowest-order ("rightmost") one-bit in the specified
1509      * {@code long} value.  Returns zero if the specified value has no
1510      * one-bits in its two's complement binary representation, that is, if it
1511      * is equal to zero.
1512      *
1513      * @param i the value whose lowest one bit is to be computed
1514      * @return a {@code long} value with a single one-bit, in the position
1515      *     of the lowest-order one-bit in the specified value, or zero if
1516      *     the specified value is itself equal to zero.
1517      * @since 1.5
1518      */
1519     public static long lowestOneBit(long i) {
1520         // HD, Section 2-1
1521         return i & -i;
1522     }
1523 
1524     /**
1525      * Returns the number of zero bits preceding the highest-order
1526      * ("leftmost") one-bit in the two's complement binary representation
1527      * of the specified {@code long} value.  Returns 64 if the
1528      * specified value has no one-bits in its two's complement representation,
1529      * in other words if it is equal to zero.
1530      *
1531      * <p>Note that this method is closely related to the logarithm base 2.
1532      * For all positive {@code long} values x:
1533      * <ul>
1534      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1535      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1536      * </ul>
1537      *
1538      * @param i the value whose number of leading zeros is to be computed
1539      * @return the number of zero bits preceding the highest-order
1540      *     ("leftmost") one-bit in the two's complement binary representation
1541      *     of the specified {@code long} value, or 64 if the value
1542      *     is equal to zero.
1543      * @since 1.5
1544      */
1545     @IntrinsicCandidate
1546     public static int numberOfLeadingZeros(long i) {
1547         int x = (int)(i >>> 32);
1548         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1549                 : Integer.numberOfLeadingZeros(x);
1550     }
1551 
1552     /**
1553      * Returns the number of zero bits following the lowest-order ("rightmost")
1554      * one-bit in the two's complement binary representation of the specified
1555      * {@code long} value.  Returns 64 if the specified value has no
1556      * one-bits in its two's complement representation, in other words if it is
1557      * equal to zero.
1558      *
1559      * @param i the value whose number of trailing zeros is to be computed
1560      * @return the number of zero bits following the lowest-order ("rightmost")
1561      *     one-bit in the two's complement binary representation of the
1562      *     specified {@code long} value, or 64 if the value is equal
1563      *     to zero.
1564      * @since 1.5
1565      */
1566     @IntrinsicCandidate
1567     public static int numberOfTrailingZeros(long i) {
1568         int x = (int)i;
1569         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1570                 : Integer.numberOfTrailingZeros(x);
1571     }
1572 
1573     /**
1574      * Returns the number of one-bits in the two's complement binary
1575      * representation of the specified {@code long} value.  This function is
1576      * sometimes referred to as the <i>population count</i>.
1577      *
1578      * @param i the value whose bits are to be counted
1579      * @return the number of one-bits in the two's complement binary
1580      *     representation of the specified {@code long} value.
1581      * @since 1.5
1582      */
1583      @IntrinsicCandidate
1584      public static int bitCount(long i) {
1585         // HD, Figure 5-2
1586         i = i - ((i >>> 1) & 0x5555555555555555L);
1587         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1588         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1589         i = i + (i >>> 8);
1590         i = i + (i >>> 16);
1591         i = i + (i >>> 32);
1592         return (int)i & 0x7f;
1593      }
1594 
1595     /**
1596      * Returns the value obtained by rotating the two's complement binary
1597      * representation of the specified {@code long} value left by the
1598      * specified number of bits.  (Bits shifted out of the left hand, or
1599      * high-order, side reenter on the right, or low-order.)
1600      *
1601      * <p>Note that left rotation with a negative distance is equivalent to
1602      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1603      * distance)}.  Note also that rotation by any multiple of 64 is a
1604      * no-op, so all but the last six bits of the rotation distance can be
1605      * ignored, even if the distance is negative: {@code rotateLeft(val,
1606      * distance) == rotateLeft(val, distance & 0x3F)}.
1607      *
1608      * @param i the value whose bits are to be rotated left
1609      * @param distance the number of bit positions to rotate left
1610      * @return the value obtained by rotating the two's complement binary
1611      *     representation of the specified {@code long} value left by the
1612      *     specified number of bits.
1613      * @since 1.5
1614      */
1615     public static long rotateLeft(long i, int distance) {
1616         return (i << distance) | (i >>> -distance);
1617     }
1618 
1619     /**
1620      * Returns the value obtained by rotating the two's complement binary
1621      * representation of the specified {@code long} value right by the
1622      * specified number of bits.  (Bits shifted out of the right hand, or
1623      * low-order, side reenter on the left, or high-order.)
1624      *
1625      * <p>Note that right rotation with a negative distance is equivalent to
1626      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1627      * distance)}.  Note also that rotation by any multiple of 64 is a
1628      * no-op, so all but the last six bits of the rotation distance can be
1629      * ignored, even if the distance is negative: {@code rotateRight(val,
1630      * distance) == rotateRight(val, distance & 0x3F)}.
1631      *
1632      * @param i the value whose bits are to be rotated right
1633      * @param distance the number of bit positions to rotate right
1634      * @return the value obtained by rotating the two's complement binary
1635      *     representation of the specified {@code long} value right by the
1636      *     specified number of bits.
1637      * @since 1.5
1638      */
1639     public static long rotateRight(long i, int distance) {
1640         return (i >>> distance) | (i << -distance);
1641     }
1642 
1643     /**
1644      * Returns the value obtained by reversing the order of the bits in the
1645      * two's complement binary representation of the specified {@code long}
1646      * value.
1647      *
1648      * @param i the value to be reversed
1649      * @return the value obtained by reversing order of the bits in the
1650      *     specified {@code long} value.
1651      * @since 1.5
1652      */
1653     @IntrinsicCandidate
1654     public static long reverse(long i) {
1655         // HD, Figure 7-1
1656         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1657         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1658         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1659 
1660         return reverseBytes(i);
1661     }
1662 
1663     /**
1664      * Returns the value obtained by compressing the bits of the
1665      * specified {@code long} value, {@code i}, in accordance with
1666      * the specified bit mask.
1667      * <p>
1668      * For each one-bit value {@code mb} of the mask, from least
1669      * significant to most significant, the bit value of {@code i} at
1670      * the same bit location as {@code mb} is assigned to the compressed
1671      * value contiguously starting from the least significant bit location.
1672      * All the upper remaining bits of the compressed value are set
1673      * to zero.
1674      *
1675      * @apiNote
1676      * Consider the simple case of compressing the digits of a hexadecimal
1677      * value:
1678      * {@snippet lang="java" :
1679      * // Compressing drink to food
1680      * compress(0xCAFEBABEL, 0xFF00FFF0L) == 0xCABABL
1681      * }
1682      * Starting from the least significant hexadecimal digit at position 0
1683      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1684      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1685      * occur in the resulting compressed value contiguously from digit position
1686      * 0 in the same order.
1687      * <p>
1688      * The following identities all return {@code true} and are helpful to
1689      * understand the behaviour of {@code compress}:
1690      * {@snippet lang="java" :
1691      * // Returns 1 if the bit at position n is one
1692      * compress(x, 1L << n) == (x >> n & 1)
1693      *
1694      * // Logical shift right
1695      * compress(x, -1L << n) == x >>> n
1696      *
1697      * // Any bits not covered by the mask are ignored
1698      * compress(x, m) == compress(x & m, m)
1699      *
1700      * // Compressing a value by itself
1701      * compress(m, m) == (m == -1 || m == 0) ? m : (1L << bitCount(m)) - 1
1702      *
1703      * // Expanding then compressing with the same mask
1704      * compress(expand(x, m), m) == x & compress(m, m)
1705      * }
1706      * <p>
1707      * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7)
1708      * can be implemented as follows:
1709      * {@snippet lang="java" :
1710      * long compressLeft(long i, long mask) {
1711      *     // This implementation follows the description in Hacker's Delight which
1712      *     // is informative. A more optimal implementation is:
1713      *     //   Long.compress(i, mask) << -Long.bitCount(mask)
1714      *     return Long.reverse(
1715      *         Long.compress(Long.reverse(i), Long.reverse(mask)));
1716      * }
1717      *
1718      * long sag(long i, long mask) {
1719      *     return compressLeft(i, mask) | Long.compress(i, ~mask);
1720      * }
1721      *
1722      * // Separate the sheep from the goats
1723      * sag(0x00000000_CAFEBABEL, 0xFFFFFFFF_FF00FFF0L) == 0x00000000_CABABFEEL
1724      * }
1725      *
1726      * @param i the value whose bits are to be compressed
1727      * @param mask the bit mask
1728      * @return the compressed value
1729      * @see #expand
1730      * @since 19
1731      */
1732     @IntrinsicCandidate
1733     public static long compress(long i, long mask) {
1734         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1735 
1736         i = i & mask; // Clear irrelevant bits
1737         long maskCount = ~mask << 1; // Count 0's to right
1738 
1739         for (int j = 0; j < 6; j++) {
1740             // Parallel prefix
1741             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1742             long maskPrefix = parallelSuffix(maskCount);
1743             // Bits to move
1744             long maskMove = maskPrefix & mask;
1745             // Compress mask
1746             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1747             // Bits of i to be moved
1748             long t = i & maskMove;
1749             // Compress i
1750             i = (i ^ t) | (t >>> (1 << j));
1751             // Adjust the mask count by identifying bits that have 0 to the right
1752             maskCount = maskCount & ~maskPrefix;
1753         }
1754         return i;
1755     }
1756 
1757     /**
1758      * Returns the value obtained by expanding the bits of the
1759      * specified {@code long} value, {@code i}, in accordance with
1760      * the specified bit mask.
1761      * <p>
1762      * For each one-bit value {@code mb} of the mask, from least
1763      * significant to most significant, the next contiguous bit value
1764      * of {@code i} starting at the least significant bit is assigned
1765      * to the expanded value at the same bit location as {@code mb}.
1766      * All other remaining bits of the expanded value are set to zero.
1767      *
1768      * @apiNote
1769      * Consider the simple case of expanding the digits of a hexadecimal
1770      * value:
1771      * {@snippet lang="java" :
1772      * expand(0x0000CABABL, 0xFF00FFF0L) == 0xCA00BAB0L
1773      * }
1774      * Starting from the least significant hexadecimal digit at position 0
1775      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1776      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1777      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1778      * <p>
1779      * The following identities all return {@code true} and are helpful to
1780      * understand the behaviour of {@code expand}:
1781      * {@snippet lang="java" :
1782      * // Logically shift right the bit at position 0
1783      * expand(x, 1L << n) == (x & 1) << n
1784      *
1785      * // Logically shift right
1786      * expand(x, -1L << n) == x << n
1787      *
1788      * // Expanding all bits returns the mask
1789      * expand(-1L, m) == m
1790      *
1791      * // Any bits not covered by the mask are ignored
1792      * expand(x, m) == expand(x, m) & m
1793      *
1794      * // Compressing then expanding with the same mask
1795      * expand(compress(x, m), m) == x & m
1796      * }
1797      * <p>
1798      * The select operation for determining the position of the one-bit with
1799      * index {@code n} in a {@code long} value can be implemented as follows:
1800      * {@snippet lang="java" :
1801      * long select(long i, long n) {
1802      *     // the one-bit in i (the mask) with index n
1803      *     long nthBit = Long.expand(1L << n, i);
1804      *     // the bit position of the one-bit with index n
1805      *     return Long.numberOfTrailingZeros(nthBit);
1806      * }
1807      *
1808      * // The one-bit with index 0 is at bit position 1
1809      * select(0b10101010_10101010, 0) == 1
1810      * // The one-bit with index 3 is at bit position 7
1811      * select(0b10101010_10101010, 3) == 7
1812      * }
1813      *
1814      * @param i the value whose bits are to be expanded
1815      * @param mask the bit mask
1816      * @return the expanded value
1817      * @see #compress
1818      * @since 19
1819      */
1820     @IntrinsicCandidate
1821     public static long expand(long i, long mask) {
1822         // Save original mask
1823         long originalMask = mask;
1824         // Count 0's to right
1825         long maskCount = ~mask << 1;
1826         long maskPrefix = parallelSuffix(maskCount);
1827         // Bits to move
1828         long maskMove1 = maskPrefix & mask;
1829         // Compress mask
1830         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1831         maskCount = maskCount & ~maskPrefix;
1832 
1833         maskPrefix = parallelSuffix(maskCount);
1834         // Bits to move
1835         long maskMove2 = maskPrefix & mask;
1836         // Compress mask
1837         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1838         maskCount = maskCount & ~maskPrefix;
1839 
1840         maskPrefix = parallelSuffix(maskCount);
1841         // Bits to move
1842         long maskMove3 = maskPrefix & mask;
1843         // Compress mask
1844         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1845         maskCount = maskCount & ~maskPrefix;
1846 
1847         maskPrefix = parallelSuffix(maskCount);
1848         // Bits to move
1849         long maskMove4 = maskPrefix & mask;
1850         // Compress mask
1851         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1852         maskCount = maskCount & ~maskPrefix;
1853 
1854         maskPrefix = parallelSuffix(maskCount);
1855         // Bits to move
1856         long maskMove5 = maskPrefix & mask;
1857         // Compress mask
1858         mask = (mask ^ maskMove5) | (maskMove5 >>> (1 << 4));
1859         maskCount = maskCount & ~maskPrefix;
1860 
1861         maskPrefix = parallelSuffix(maskCount);
1862         // Bits to move
1863         long maskMove6 = maskPrefix & mask;
1864 
1865         long t = i << (1 << 5);
1866         i = (i & ~maskMove6) | (t & maskMove6);
1867         t = i << (1 << 4);
1868         i = (i & ~maskMove5) | (t & maskMove5);
1869         t = i << (1 << 3);
1870         i = (i & ~maskMove4) | (t & maskMove4);
1871         t = i << (1 << 2);
1872         i = (i & ~maskMove3) | (t & maskMove3);
1873         t = i << (1 << 1);
1874         i = (i & ~maskMove2) | (t & maskMove2);
1875         t = i << (1 << 0);
1876         i = (i & ~maskMove1) | (t & maskMove1);
1877 
1878         // Clear irrelevant bits
1879         return i & originalMask;
1880     }
1881 
1882     @ForceInline
1883     private static long parallelSuffix(long maskCount) {
1884         long maskPrefix = maskCount ^ (maskCount << 1);
1885         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1886         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1887         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1888         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1889         maskPrefix = maskPrefix ^ (maskPrefix << 32);
1890         return maskPrefix;
1891     }
1892 
1893     /**
1894      * Returns the signum function of the specified {@code long} value.  (The
1895      * return value is -1 if the specified value is negative; 0 if the
1896      * specified value is zero; and 1 if the specified value is positive.)
1897      *
1898      * @param i the value whose signum is to be computed
1899      * @return the signum function of the specified {@code long} value.
1900      * @since 1.5
1901      */
1902     public static int signum(long i) {
1903         // HD, Section 2-7
1904         return (int) ((i >> 63) | (-i >>> 63));
1905     }
1906 
1907     /**
1908      * Returns the value obtained by reversing the order of the bytes in the
1909      * two's complement representation of the specified {@code long} value.
1910      *
1911      * @param i the value whose bytes are to be reversed
1912      * @return the value obtained by reversing the bytes in the specified
1913      *     {@code long} value.
1914      * @since 1.5
1915      */
1916     @IntrinsicCandidate
1917     public static long reverseBytes(long i) {
1918         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1919         return (i << 48) | ((i & 0xffff0000L) << 16) |
1920             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1921     }
1922 
1923     /**
1924      * Adds two {@code long} values together as per the + operator.
1925      *
1926      * @param a the first operand
1927      * @param b the second operand
1928      * @return the sum of {@code a} and {@code b}
1929      * @see java.util.function.BinaryOperator
1930      * @since 1.8
1931      */
1932     public static long sum(long a, long b) {
1933         return a + b;
1934     }
1935 
1936     /**
1937      * Returns the greater of two {@code long} values
1938      * as if by calling {@link Math#max(long, long) Math.max}.
1939      *
1940      * @param a the first operand
1941      * @param b the second operand
1942      * @return the greater of {@code a} and {@code b}
1943      * @see java.util.function.BinaryOperator
1944      * @since 1.8
1945      */
1946     public static long max(long a, long b) {
1947         return Math.max(a, b);
1948     }
1949 
1950     /**
1951      * Returns the smaller of two {@code long} values
1952      * as if by calling {@link Math#min(long, long) Math.min}.
1953      *
1954      * @param a the first operand
1955      * @param b the second operand
1956      * @return the smaller of {@code a} and {@code b}
1957      * @see java.util.function.BinaryOperator
1958      * @since 1.8
1959      */
1960     public static long min(long a, long b) {
1961         return Math.min(a, b);
1962     }
1963 
1964     /**
1965      * Returns an {@link Optional} containing the nominal descriptor for this
1966      * instance, which is the instance itself.
1967      *
1968      * @return an {@link Optional} describing the {@linkplain Long} instance
1969      * @since 12
1970      */
1971     @Override
1972     public Optional<Long> describeConstable() {
1973         return Optional.of(this);
1974     }
1975 
1976     /**
1977      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1978      * the instance itself.
1979      *
1980      * @param lookup ignored
1981      * @return the {@linkplain Long} instance
1982      * @since 12
1983      */
1984     @Override
1985     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
1986         return this;
1987     }
1988 
1989     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1990     @java.io.Serial
1991     @Native private static final long serialVersionUID = 4290774380558885855L;
1992 }