1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.lang.invoke.MethodHandles;
  30 import java.lang.constant.Constable;
  31 import java.lang.constant.ConstantDesc;
  32 import java.math.*;
  33 import java.util.Objects;
  34 import java.util.Optional;
  35 
  36 import jdk.internal.misc.CDS;
  37 import jdk.internal.misc.PreviewFeatures;
  38 import jdk.internal.value.DeserializeConstructor;
  39 import jdk.internal.util.DecimalDigits;
  40 import jdk.internal.vm.annotation.ForceInline;
  41 import jdk.internal.vm.annotation.IntrinsicCandidate;
  42 import jdk.internal.vm.annotation.Stable;
  43 
  44 import static java.lang.Character.digit;
  45 import static java.lang.String.COMPACT_STRINGS;
  46 import static java.lang.String.LATIN1;
  47 import static java.lang.String.UTF16;
  48 
  49 /**
  50  * The {@code Long} class is the {@linkplain
  51  * java.lang##wrapperClass wrapper class} for values of the primitive
  52  * type {@code long}. An object of type {@code Long} contains a
  53  * single field whose type is {@code long}.
  54  *
  55  * <p> In addition, this class provides several methods for converting
  56  * a {@code long} to a {@code String} and a {@code String} to a {@code
  57  * long}, as well as other constants and methods useful when dealing
  58  * with a {@code long}.
  59  *
  60  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  61  * class; programmers should treat instances that are {@linkplain #equals(Object) equal}
  62  * as interchangeable and should not use instances for synchronization, mutexes, or
  63  * with {@linkplain java.lang.ref.Reference object references}.
  64  *
  65  * <div class="preview-block">
  66  *      <div class="preview-comment">
  67  *          When preview features are enabled, {@code Long} is a {@linkplain Class#isValue value class}.
  68  *          Use of value class instances for synchronization, mutexes, or with
  69  *          {@linkplain java.lang.ref.Reference object references} result in
  70  *          {@link IdentityException}.
  71  *      </div>
  72  * </div>
  73  *
  74  *
  75  * <p>Implementation note: The implementations of the "bit twiddling"
  76  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  77  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  78  * based on material from Henry S. Warren, Jr.'s <cite>Hacker's
  79  * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's
  80  * Delight, Second Edition</cite>, (Pearson Education, 2013).
  81  *
  82  * @author  Lee Boynton
  83  * @author  Arthur van Hoff
  84  * @author  Josh Bloch
  85  * @author  Joseph D. Darcy
  86  * @since   1.0
  87  */
  88 @jdk.internal.MigratedValueClass
  89 @jdk.internal.ValueBased
  90 public final class Long extends Number
  91         implements Comparable<Long>, Constable, ConstantDesc {
  92     /**
  93      * A constant holding the minimum value a {@code long} can
  94      * have, -2<sup>63</sup>.
  95      */
  96     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  97 
  98     /**
  99      * A constant holding the maximum value a {@code long} can
 100      * have, 2<sup>63</sup>-1.
 101      */
 102     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
 103 
 104     /**
 105      * The {@code Class} instance representing the primitive type
 106      * {@code long}.
 107      *
 108      * @since   1.1
 109      */
 110     public static final Class<Long> TYPE = Class.getPrimitiveClass("long");
 111 
 112     /**
 113      * Returns a string representation of the first argument in the
 114      * radix specified by the second argument.
 115      *
 116      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 117      * or larger than {@code Character.MAX_RADIX}, then the radix
 118      * {@code 10} is used instead.
 119      *
 120      * <p>If the first argument is negative, the first element of the
 121      * result is the ASCII minus sign {@code '-'}
 122      * ({@code '\u005Cu002d'}). If the first argument is not
 123      * negative, no sign character appears in the result.
 124      *
 125      * <p>The remaining characters of the result represent the magnitude
 126      * of the first argument. If the magnitude is zero, it is
 127      * represented by a single zero character {@code '0'}
 128      * ({@code '\u005Cu0030'}); otherwise, the first character of
 129      * the representation of the magnitude will not be the zero
 130      * character.  The following ASCII characters are used as digits:
 131      *
 132      * <blockquote>
 133      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 134      * </blockquote>
 135      *
 136      * These are {@code '\u005Cu0030'} through
 137      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 138      * {@code '\u005Cu007a'}. If {@code radix} is
 139      * <var>N</var>, then the first <var>N</var> of these characters
 140      * are used as radix-<var>N</var> digits in the order shown. Thus,
 141      * the digits for hexadecimal (radix 16) are
 142      * {@code 0123456789abcdef}. If uppercase letters are
 143      * desired, the {@link java.lang.String#toUpperCase()} method may
 144      * be called on the result:
 145      *
 146      * <blockquote>
 147      *  {@code Long.toString(n, 16).toUpperCase()}
 148      * </blockquote>
 149      *
 150      * @param   i       a {@code long} to be converted to a string.
 151      * @param   radix   the radix to use in the string representation.
 152      * @return  a string representation of the argument in the specified radix.
 153      * @see     java.lang.Character#MAX_RADIX
 154      * @see     java.lang.Character#MIN_RADIX
 155      */
 156     public static String toString(long i, int radix) {
 157         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 158             radix = 10;
 159         if (radix == 10)
 160             return toString(i);
 161 
 162         if (COMPACT_STRINGS) {
 163             byte[] buf = new byte[65];
 164             int charPos = 64;
 165             boolean negative = (i < 0);
 166 
 167             if (!negative) {
 168                 i = -i;
 169             }
 170 
 171             while (i <= -radix) {
 172                 buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 173                 i = i / radix;
 174             }
 175             buf[charPos] = Integer.digits[(int)(-i)];
 176 
 177             if (negative) {
 178                 buf[--charPos] = '-';
 179             }
 180             return StringLatin1.newString(buf, charPos, (65 - charPos));
 181         }
 182         return toStringUTF16(i, radix);
 183     }
 184 
 185     private static String toStringUTF16(long i, int radix) {
 186         byte[] buf = new byte[65 * 2];
 187         int charPos = 64;
 188         boolean negative = (i < 0);
 189         if (!negative) {
 190             i = -i;
 191         }
 192         while (i <= -radix) {
 193             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
 194             i = i / radix;
 195         }
 196         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
 197         if (negative) {
 198             StringUTF16.putChar(buf, --charPos, '-');
 199         }
 200         return StringUTF16.newString(buf, charPos, (65 - charPos));
 201     }
 202 
 203     /**
 204      * Returns a string representation of the first argument as an
 205      * unsigned integer value in the radix specified by the second
 206      * argument.
 207      *
 208      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 209      * or larger than {@code Character.MAX_RADIX}, then the radix
 210      * {@code 10} is used instead.
 211      *
 212      * <p>Note that since the first argument is treated as an unsigned
 213      * value, no leading sign character is printed.
 214      *
 215      * <p>If the magnitude is zero, it is represented by a single zero
 216      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 217      * the first character of the representation of the magnitude will
 218      * not be the zero character.
 219      *
 220      * <p>The behavior of radixes and the characters used as digits
 221      * are the same as {@link #toString(long, int) toString}.
 222      *
 223      * @param   i       an integer to be converted to an unsigned string.
 224      * @param   radix   the radix to use in the string representation.
 225      * @return  an unsigned string representation of the argument in the specified radix.
 226      * @see     #toString(long, int)
 227      * @since 1.8
 228      */
 229     public static String toUnsignedString(long i, int radix) {
 230         if (i >= 0)
 231             return toString(i, radix);
 232         else {
 233             return switch (radix) {
 234                 case 2  -> toBinaryString(i);
 235                 case 4  -> toUnsignedString0(i, 2);
 236                 case 8  -> toOctalString(i);
 237                 case 10 -> {
 238                     /*
 239                      * We can get the effect of an unsigned division by 10
 240                      * on a long value by first shifting right, yielding a
 241                      * positive value, and then dividing by 5.  This
 242                      * allows the last digit and preceding digits to be
 243                      * isolated more quickly than by an initial conversion
 244                      * to BigInteger.
 245                      */
 246                     long quot = (i >>> 1) / 5;
 247                     long rem = i - quot * 10;
 248                     yield toString(quot) + rem;
 249                 }
 250                 case 16 -> toHexString(i);
 251                 case 32 -> toUnsignedString0(i, 5);
 252                 default -> toUnsignedBigInteger(i).toString(radix);
 253             };
 254         }
 255     }
 256 
 257     /**
 258      * Return a BigInteger equal to the unsigned value of the
 259      * argument.
 260      */
 261     private static BigInteger toUnsignedBigInteger(long i) {
 262         if (i >= 0L)
 263             return BigInteger.valueOf(i);
 264         else {
 265             int upper = (int) (i >>> 32);
 266             int lower = (int) i;
 267 
 268             // return (upper << 32) + lower
 269             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 270                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 271         }
 272     }
 273 
 274     /**
 275      * Returns a string representation of the {@code long}
 276      * argument as an unsigned integer in base&nbsp;16.
 277      *
 278      * <p>The unsigned {@code long} value is the argument plus
 279      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 280      * equal to the argument.  This value is converted to a string of
 281      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 282      * leading {@code 0}s.
 283      *
 284      * <p>The value of the argument can be recovered from the returned
 285      * string {@code s} by calling {@link
 286      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 287      * 16)}.
 288      *
 289      * <p>If the unsigned magnitude is zero, it is represented by a
 290      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 291      * otherwise, the first character of the representation of the
 292      * unsigned magnitude will not be the zero character. The
 293      * following characters are used as hexadecimal digits:
 294      *
 295      * <blockquote>
 296      *  {@code 0123456789abcdef}
 297      * </blockquote>
 298      *
 299      * These are the characters {@code '\u005Cu0030'} through
 300      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 301      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 302      * the {@link java.lang.String#toUpperCase()} method may be called
 303      * on the result:
 304      *
 305      * <blockquote>
 306      *  {@code Long.toHexString(n).toUpperCase()}
 307      * </blockquote>
 308      *
 309      * @apiNote
 310      * The {@link java.util.HexFormat} class provides formatting and parsing
 311      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 312      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 313      * with leading zeros and for byte arrays includes for each byte
 314      * a delimiter, prefix, and suffix.
 315      *
 316      * @param   i   a {@code long} to be converted to a string.
 317      * @return  the string representation of the unsigned {@code long}
 318      *          value represented by the argument in hexadecimal
 319      *          (base&nbsp;16).
 320      * @see java.util.HexFormat
 321      * @see #parseUnsignedLong(String, int)
 322      * @see #toUnsignedString(long, int)
 323      * @since   1.0.2
 324      */
 325     public static String toHexString(long i) {
 326         return toUnsignedString0(i, 4);
 327     }
 328 
 329     /**
 330      * Returns a string representation of the {@code long}
 331      * argument as an unsigned integer in base&nbsp;8.
 332      *
 333      * <p>The unsigned {@code long} value is the argument plus
 334      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 335      * equal to the argument.  This value is converted to a string of
 336      * ASCII digits in octal (base&nbsp;8) with no extra leading
 337      * {@code 0}s.
 338      *
 339      * <p>The value of the argument can be recovered from the returned
 340      * string {@code s} by calling {@link
 341      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 342      * 8)}.
 343      *
 344      * <p>If the unsigned magnitude is zero, it is represented by a
 345      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 346      * otherwise, the first character of the representation of the
 347      * unsigned magnitude will not be the zero character. The
 348      * following characters are used as octal digits:
 349      *
 350      * <blockquote>
 351      *  {@code 01234567}
 352      * </blockquote>
 353      *
 354      * These are the characters {@code '\u005Cu0030'} through
 355      * {@code '\u005Cu0037'}.
 356      *
 357      * @param   i   a {@code long} to be converted to a string.
 358      * @return  the string representation of the unsigned {@code long}
 359      *          value represented by the argument in octal (base&nbsp;8).
 360      * @see #parseUnsignedLong(String, int)
 361      * @see #toUnsignedString(long, int)
 362      * @since   1.0.2
 363      */
 364     public static String toOctalString(long i) {
 365         return toUnsignedString0(i, 3);
 366     }
 367 
 368     /**
 369      * Returns a string representation of the {@code long}
 370      * argument as an unsigned integer in base&nbsp;2.
 371      *
 372      * <p>The unsigned {@code long} value is the argument plus
 373      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 374      * equal to the argument.  This value is converted to a string of
 375      * ASCII digits in binary (base&nbsp;2) with no extra leading
 376      * {@code 0}s.
 377      *
 378      * <p>The value of the argument can be recovered from the returned
 379      * string {@code s} by calling {@link
 380      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 381      * 2)}.
 382      *
 383      * <p>If the unsigned magnitude is zero, it is represented by a
 384      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 385      * otherwise, the first character of the representation of the
 386      * unsigned magnitude will not be the zero character. The
 387      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 388      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 389      *
 390      * @param   i   a {@code long} to be converted to a string.
 391      * @return  the string representation of the unsigned {@code long}
 392      *          value represented by the argument in binary (base&nbsp;2).
 393      * @see #parseUnsignedLong(String, int)
 394      * @see #toUnsignedString(long, int)
 395      * @since   1.0.2
 396      */
 397     public static String toBinaryString(long i) {
 398         return toUnsignedString0(i, 1);
 399     }
 400 
 401     /**
 402      * Format a long (treated as unsigned) into a String.
 403      * @param val the value to format
 404      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 405      */
 406     static String toUnsignedString0(long val, int shift) {
 407         // assert shift > 0 && shift <=5 : "Illegal shift value";
 408         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 409         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 410         if (COMPACT_STRINGS) {
 411             byte[] buf = new byte[chars];
 412             formatUnsignedLong0(val, shift, buf, 0, chars);
 413             return new String(buf, LATIN1);
 414         } else {
 415             byte[] buf = new byte[chars * 2];
 416             formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
 417             return new String(buf, UTF16);
 418         }
 419     }
 420 
 421     /**
 422      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
 423      * {@code len} exceeds the formatted ASCII representation of {@code val},
 424      * {@code buf} will be padded with leading zeroes.
 425      *
 426      * @param val the unsigned long to format
 427      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 428      * @param buf the byte buffer to write to
 429      * @param offset the offset in the destination buffer to start at
 430      * @param len the number of characters to write
 431      */
 432     private static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
 433         int charPos = offset + len;
 434         int radix = 1 << shift;
 435         int mask = radix - 1;
 436         do {
 437             buf[--charPos] = Integer.digits[((int) val) & mask];
 438             val >>>= shift;
 439         } while (charPos > offset);
 440     }
 441 
 442     /**
 443      * Format a long (treated as unsigned) into a byte buffer (UTF16 version). If
 444      * {@code len} exceeds the formatted ASCII representation of {@code val},
 445      * {@code buf} will be padded with leading zeroes.
 446      *
 447      * @param val the unsigned long to format
 448      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 449      * @param buf the byte buffer to write to
 450      * @param offset the offset in the destination buffer to start at
 451      * @param len the number of characters to write
 452      */
 453     private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
 454         int charPos = offset + len;
 455         int radix = 1 << shift;
 456         int mask = radix - 1;
 457         do {
 458             StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
 459             val >>>= shift;
 460         } while (charPos > offset);
 461     }
 462 
 463     /**
 464      * Returns a {@code String} object representing the specified
 465      * {@code long}.  The argument is converted to signed decimal
 466      * representation and returned as a string, exactly as if the
 467      * argument and the radix 10 were given as arguments to the {@link
 468      * #toString(long, int)} method.
 469      *
 470      * @param   i   a {@code long} to be converted.
 471      * @return  a string representation of the argument in base&nbsp;10.
 472      */
 473     public static String toString(long i) {
 474         int size = DecimalDigits.stringSize(i);
 475         if (COMPACT_STRINGS) {
 476             byte[] buf = new byte[size];
 477             DecimalDigits.uncheckedGetCharsLatin1(i, size, buf);
 478             return new String(buf, LATIN1);
 479         } else {
 480             byte[] buf = new byte[size * 2];
 481             DecimalDigits.uncheckedGetCharsUTF16(i, size, buf);
 482             return new String(buf, UTF16);
 483         }
 484     }
 485 
 486     /**
 487      * Returns a string representation of the argument as an unsigned
 488      * decimal value.
 489      *
 490      * The argument is converted to unsigned decimal representation
 491      * and returned as a string exactly as if the argument and radix
 492      * 10 were given as arguments to the {@link #toUnsignedString(long,
 493      * int)} method.
 494      *
 495      * @param   i  an integer to be converted to an unsigned string.
 496      * @return  an unsigned string representation of the argument.
 497      * @see     #toUnsignedString(long, int)
 498      * @since 1.8
 499      */
 500     public static String toUnsignedString(long i) {
 501         return toUnsignedString(i, 10);
 502     }
 503 
 504     /**
 505      * Parses the string argument as a signed {@code long} in the
 506      * radix specified by the second argument. The characters in the
 507      * string must all be digits of the specified radix (as determined
 508      * by whether {@link java.lang.Character#digit(char, int)} returns
 509      * a nonnegative value), except that the first character may be an
 510      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 511      * indicate a negative value or an ASCII plus sign {@code '+'}
 512      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 513      * resulting {@code long} value is returned.
 514      *
 515      * <p>Note that neither the character {@code L}
 516      * ({@code '\u005Cu004C'}) nor {@code l}
 517      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 518      * of the string as a type indicator, as would be permitted in
 519      * Java programming language source code - except that either
 520      * {@code L} or {@code l} may appear as a digit for a
 521      * radix greater than or equal to 22.
 522      *
 523      * <p>An exception of type {@code NumberFormatException} is
 524      * thrown if any of the following situations occurs:
 525      * <ul>
 526      *
 527      * <li>The first argument is {@code null} or is a string of
 528      * length zero.
 529      *
 530      * <li>The {@code radix} is either smaller than {@link
 531      * java.lang.Character#MIN_RADIX} or larger than {@link
 532      * java.lang.Character#MAX_RADIX}.
 533      *
 534      * <li>Any character of the string is not a digit of the specified
 535      * radix, except that the first character may be a minus sign
 536      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 537      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 538      * longer than length 1.
 539      *
 540      * <li>The value represented by the string is not a value of type
 541      *      {@code long}.
 542      * </ul>
 543      *
 544      * <p>Examples:
 545      * <blockquote><pre>
 546      * parseLong("0", 10) returns 0L
 547      * parseLong("473", 10) returns 473L
 548      * parseLong("+42", 10) returns 42L
 549      * parseLong("-0", 10) returns 0L
 550      * parseLong("-FF", 16) returns -255L
 551      * parseLong("1100110", 2) returns 102L
 552      * parseLong("99", 8) throws a NumberFormatException
 553      * parseLong("Hazelnut", 10) throws a NumberFormatException
 554      * parseLong("Hazelnut", 36) returns 1356099454469L
 555      * </pre></blockquote>
 556      *
 557      * @param      s       the {@code String} containing the
 558      *                     {@code long} representation to be parsed.
 559      * @param      radix   the radix to be used while parsing {@code s}.
 560      * @return     the {@code long} represented by the string argument in
 561      *             the specified radix.
 562      * @throws     NumberFormatException  if the string does not contain a
 563      *             parsable {@code long}.
 564      */
 565     public static long parseLong(String s, int radix)
 566                 throws NumberFormatException {
 567         if (s == null) {
 568             throw new NumberFormatException("Cannot parse null string");
 569         }
 570 
 571         if (radix < Character.MIN_RADIX) {
 572             throw new NumberFormatException(String.format(
 573                 "radix %s less than Character.MIN_RADIX", radix));
 574         }
 575 
 576         if (radix > Character.MAX_RADIX) {
 577             throw new NumberFormatException(String.format(
 578                 "radix %s greater than Character.MAX_RADIX", radix));
 579         }
 580 
 581         int len = s.length();
 582         if (len == 0) {
 583             throw NumberFormatException.forInputString("", radix);
 584         }
 585         int digit = ~0xFF;
 586         int i = 0;
 587         char firstChar = s.charAt(i++);
 588         if (firstChar != '-' && firstChar != '+') {
 589             digit = digit(firstChar, radix);
 590         }
 591         if (digit >= 0 || digit == ~0xFF && len > 1) {
 592             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 593             long multmin = limit / radix;
 594             long result = -(digit & 0xFF);
 595             boolean inRange = true;
 596             /* Accumulating negatively avoids surprises near MAX_VALUE */
 597             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 598                     && (inRange = result > multmin
 599                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 600                 result = radix * result - digit;
 601             }
 602             if (inRange && i == len && digit >= 0) {
 603                 return firstChar != '-' ? -result : result;
 604             }
 605         }
 606         throw NumberFormatException.forInputString(s, radix);
 607     }
 608 
 609     /**
 610      * Parses the {@link CharSequence} argument as a signed {@code long} in
 611      * the specified {@code radix}, beginning at the specified
 612      * {@code beginIndex} and extending to {@code endIndex - 1}.
 613      *
 614      * <p>The method does not take steps to guard against the
 615      * {@code CharSequence} being mutated while parsing.
 616      *
 617      * @param      s   the {@code CharSequence} containing the {@code long}
 618      *                  representation to be parsed
 619      * @param      beginIndex   the beginning index, inclusive.
 620      * @param      endIndex     the ending index, exclusive.
 621      * @param      radix   the radix to be used while parsing {@code s}.
 622      * @return     the signed {@code long} represented by the subsequence in
 623      *             the specified radix.
 624      * @throws     NullPointerException  if {@code s} is null.
 625      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 626      *             negative, or if {@code beginIndex} is greater than
 627      *             {@code endIndex} or if {@code endIndex} is greater than
 628      *             {@code s.length()}.
 629      * @throws     NumberFormatException  if the {@code CharSequence} does not
 630      *             contain a parsable {@code long} in the specified
 631      *             {@code radix}, or if {@code radix} is either smaller than
 632      *             {@link java.lang.Character#MIN_RADIX} or larger than
 633      *             {@link java.lang.Character#MAX_RADIX}.
 634      * @since  9
 635      */
 636     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
 637                 throws NumberFormatException {
 638         Objects.requireNonNull(s);
 639         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 640 
 641         if (radix < Character.MIN_RADIX) {
 642             throw new NumberFormatException(String.format(
 643                 "radix %s less than Character.MIN_RADIX", radix));
 644         }
 645 
 646         if (radix > Character.MAX_RADIX) {
 647             throw new NumberFormatException(String.format(
 648                 "radix %s greater than Character.MAX_RADIX", radix));
 649         }
 650 
 651         /*
 652          * While s can be concurrently modified, it is ensured that each
 653          * of its characters is read at most once, from lower to higher indices.
 654          * This is obtained by reading them using the pattern s.charAt(i++),
 655          * and by not updating i anywhere else.
 656          */
 657         if (beginIndex == endIndex) {
 658             throw NumberFormatException.forInputString("", radix);
 659         }
 660         int digit = ~0xFF;  // ~0xFF means firstChar char is sign
 661         int i = beginIndex;
 662         char firstChar = s.charAt(i++);
 663         if (firstChar != '-' && firstChar != '+') {
 664             digit = digit(firstChar, radix);
 665         }
 666         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 667             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 668             long multmin = limit / radix;
 669             long result = -(digit & 0xFF);
 670             boolean inRange = true;
 671             /* Accumulating negatively avoids surprises near MAX_VALUE */
 672             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 673                     && (inRange = result > multmin
 674                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 675                 result = radix * result - digit;
 676             }
 677             if (inRange && i == endIndex && digit >= 0) {
 678                 return firstChar != '-' ? -result : result;
 679             }
 680         }
 681         throw NumberFormatException.forCharSequence(s, beginIndex,
 682             endIndex, i - (digit < -1 ? 0 : 1));
 683     }
 684 
 685     /**
 686      * Parses the string argument as a signed decimal {@code long}.
 687      * The characters in the string must all be decimal digits, except
 688      * that the first character may be an ASCII minus sign {@code '-'}
 689      * ({@code \u005Cu002D'}) to indicate a negative value or an
 690      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 691      * indicate a positive value. The resulting {@code long} value is
 692      * returned, exactly as if the argument and the radix {@code 10}
 693      * were given as arguments to the {@link
 694      * #parseLong(java.lang.String, int)} method.
 695      *
 696      * <p>Note that neither the character {@code L}
 697      * ({@code '\u005Cu004C'}) nor {@code l}
 698      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 699      * of the string as a type indicator, as would be permitted in
 700      * Java programming language source code.
 701      *
 702      * @param      s   a {@code String} containing the {@code long}
 703      *             representation to be parsed
 704      * @return     the {@code long} represented by the argument in
 705      *             decimal.
 706      * @throws     NumberFormatException  if the string does not contain a
 707      *             parsable {@code long}.
 708      */
 709     public static long parseLong(String s) throws NumberFormatException {
 710         return parseLong(s, 10);
 711     }
 712 
 713     /**
 714      * Parses the string argument as an unsigned {@code long} in the
 715      * radix specified by the second argument.  An unsigned integer
 716      * maps the values usually associated with negative numbers to
 717      * positive numbers larger than {@code MAX_VALUE}.
 718      *
 719      * The characters in the string must all be digits of the
 720      * specified radix (as determined by whether {@link
 721      * java.lang.Character#digit(char, int)} returns a nonnegative
 722      * value), except that the first character may be an ASCII plus
 723      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 724      * integer value is returned.
 725      *
 726      * <p>An exception of type {@code NumberFormatException} is
 727      * thrown if any of the following situations occurs:
 728      * <ul>
 729      * <li>The first argument is {@code null} or is a string of
 730      * length zero.
 731      *
 732      * <li>The radix is either smaller than
 733      * {@link java.lang.Character#MIN_RADIX} or
 734      * larger than {@link java.lang.Character#MAX_RADIX}.
 735      *
 736      * <li>Any character of the string is not a digit of the specified
 737      * radix, except that the first character may be a plus sign
 738      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 739      * string is longer than length 1.
 740      *
 741      * <li>The value represented by the string is larger than the
 742      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 743      *
 744      * </ul>
 745      *
 746      *
 747      * @param      s   the {@code String} containing the unsigned integer
 748      *                  representation to be parsed
 749      * @param      radix   the radix to be used while parsing {@code s}.
 750      * @return     the unsigned {@code long} represented by the string
 751      *             argument in the specified radix.
 752      * @throws     NumberFormatException if the {@code String}
 753      *             does not contain a parsable {@code long}.
 754      * @since 1.8
 755      */
 756     public static long parseUnsignedLong(String s, int radix)
 757                 throws NumberFormatException {
 758         if (s == null)  {
 759             throw new NumberFormatException("Cannot parse null string");
 760         }
 761 
 762         if (radix < Character.MIN_RADIX) {
 763             throw new NumberFormatException(String.format(
 764                 "radix %s less than Character.MIN_RADIX", radix));
 765         }
 766 
 767         if (radix > Character.MAX_RADIX) {
 768             throw new NumberFormatException(String.format(
 769                 "radix %s greater than Character.MAX_RADIX", radix));
 770         }
 771 
 772         int len = s.length();
 773         if (len == 0) {
 774             throw NumberFormatException.forInputString(s, radix);
 775         }
 776         int i = 0;
 777         char firstChar = s.charAt(i++);
 778         if (firstChar == '-') {
 779             throw new NumberFormatException(String.format(
 780                 "Illegal leading minus sign on unsigned string %s.", s));
 781         }
 782         int digit = ~0xFF;
 783         if (firstChar != '+') {
 784             digit = digit(firstChar, radix);
 785         }
 786         if (digit >= 0 || digit == ~0xFF && len > 1) {
 787             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 788             long result = digit & 0xFF;
 789             boolean inRange = true;
 790             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 791                     && (inRange = compareUnsigned(result, multmax) < 0
 792                         || result == multmax && digit < (int) (-radix * multmax))) {
 793                 result = radix * result + digit;
 794             }
 795             if (inRange && i == len && digit >= 0) {
 796                 return result;
 797             }
 798         }
 799         if (digit < 0) {
 800             throw NumberFormatException.forInputString(s, radix);
 801         }
 802         throw new NumberFormatException(String.format(
 803             "String value %s exceeds range of unsigned long.", s));
 804     }
 805 
 806     /**
 807      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
 808      * the specified {@code radix}, beginning at the specified
 809      * {@code beginIndex} and extending to {@code endIndex - 1}.
 810      *
 811      * <p>The method does not take steps to guard against the
 812      * {@code CharSequence} being mutated while parsing.
 813      *
 814      * @param      s   the {@code CharSequence} containing the unsigned
 815      *                 {@code long} representation to be parsed
 816      * @param      beginIndex   the beginning index, inclusive.
 817      * @param      endIndex     the ending index, exclusive.
 818      * @param      radix   the radix to be used while parsing {@code s}.
 819      * @return     the unsigned {@code long} represented by the subsequence in
 820      *             the specified radix.
 821      * @throws     NullPointerException  if {@code s} is null.
 822      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 823      *             negative, or if {@code beginIndex} is greater than
 824      *             {@code endIndex} or if {@code endIndex} is greater than
 825      *             {@code s.length()}.
 826      * @throws     NumberFormatException  if the {@code CharSequence} does not
 827      *             contain a parsable unsigned {@code long} in the specified
 828      *             {@code radix}, or if {@code radix} is either smaller than
 829      *             {@link java.lang.Character#MIN_RADIX} or larger than
 830      *             {@link java.lang.Character#MAX_RADIX}.
 831      * @since  9
 832      */
 833     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
 834                 throws NumberFormatException {
 835         Objects.requireNonNull(s);
 836         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 837 
 838         if (radix < Character.MIN_RADIX) {
 839             throw new NumberFormatException(String.format(
 840                 "radix %s less than Character.MIN_RADIX", radix));
 841         }
 842 
 843         if (radix > Character.MAX_RADIX) {
 844             throw new NumberFormatException(String.format(
 845                 "radix %s greater than Character.MAX_RADIX", radix));
 846         }
 847 
 848         /*
 849          * While s can be concurrently modified, it is ensured that each
 850          * of its characters is read at most once, from lower to higher indices.
 851          * This is obtained by reading them using the pattern s.charAt(i++),
 852          * and by not updating i anywhere else.
 853          */
 854         if (beginIndex == endIndex) {
 855             throw NumberFormatException.forInputString("", radix);
 856         }
 857         int i = beginIndex;
 858         char firstChar = s.charAt(i++);
 859         if (firstChar == '-') {
 860             throw new NumberFormatException(
 861                 "Illegal leading minus sign on unsigned string " + s + ".");
 862         }
 863         int digit = ~0xFF;
 864         if (firstChar != '+') {
 865             digit = digit(firstChar, radix);
 866         }
 867         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 868             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 869             long result = digit & 0xFF;
 870             boolean inRange = true;
 871             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 872                     && (inRange = compareUnsigned(result, multmax) < 0
 873                         || result == multmax && digit < (int) (-radix * multmax))) {
 874                 result = radix * result + digit;
 875             }
 876             if (inRange && i == endIndex && digit >= 0) {
 877                 return result;
 878             }
 879         }
 880         if (digit < 0) {
 881             throw NumberFormatException.forCharSequence(s, beginIndex,
 882                 endIndex, i - (digit < -1 ? 0 : 1));
 883         }
 884         throw new NumberFormatException(String.format(
 885             "String value %s exceeds range of unsigned long.", s));
 886     }
 887 
 888     /**
 889      * Parses the string argument as an unsigned decimal {@code long}. The
 890      * characters in the string must all be decimal digits, except
 891      * that the first character may be an ASCII plus sign {@code
 892      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 893      * is returned, exactly as if the argument and the radix 10 were
 894      * given as arguments to the {@link
 895      * #parseUnsignedLong(java.lang.String, int)} method.
 896      *
 897      * @param s   a {@code String} containing the unsigned {@code long}
 898      *            representation to be parsed
 899      * @return    the unsigned {@code long} value represented by the decimal string argument
 900      * @throws    NumberFormatException  if the string does not contain a
 901      *            parsable unsigned integer.
 902      * @since 1.8
 903      */
 904     public static long parseUnsignedLong(String s) throws NumberFormatException {
 905         return parseUnsignedLong(s, 10);
 906     }
 907 
 908     /**
 909      * Returns a {@code Long} object holding the value
 910      * extracted from the specified {@code String} when parsed
 911      * with the radix given by the second argument.  The first
 912      * argument is interpreted as representing a signed
 913      * {@code long} in the radix specified by the second
 914      * argument, exactly as if the arguments were given to the {@link
 915      * #parseLong(java.lang.String, int)} method. The result is a
 916      * {@code Long} object that represents the {@code long}
 917      * value specified by the string.
 918      *
 919      * <p>In other words, this method returns a {@code Long} object equal
 920      * to the value of:
 921      *
 922      * <blockquote>
 923      *  {@code Long.valueOf(Long.parseLong(s, radix))}
 924      * </blockquote>
 925      *
 926      * @param      s       the string to be parsed
 927      * @param      radix   the radix to be used in interpreting {@code s}
 928      * @return     a {@code Long} object holding the value
 929      *             represented by the string argument in the specified
 930      *             radix.
 931      * @throws     NumberFormatException  If the {@code String} does not
 932      *             contain a parsable {@code long}.
 933      */
 934     public static Long valueOf(String s, int radix) throws NumberFormatException {
 935         return Long.valueOf(parseLong(s, radix));
 936     }
 937 
 938     /**
 939      * Returns a {@code Long} object holding the value
 940      * of the specified {@code String}. The argument is
 941      * interpreted as representing a signed decimal {@code long},
 942      * exactly as if the argument were given to the {@link
 943      * #parseLong(java.lang.String)} method. The result is a
 944      * {@code Long} object that represents the integer value
 945      * specified by the string.
 946      *
 947      * <p>In other words, this method returns a {@code Long} object
 948      * equal to the value of:
 949      *
 950      * <blockquote>
 951      *  {@code Long.valueOf(Long.parseLong(s))}
 952      * </blockquote>
 953      *
 954      * @param      s   the string to be parsed.
 955      * @return     a {@code Long} object holding the value
 956      *             represented by the string argument.
 957      * @throws     NumberFormatException  If the string cannot be parsed
 958      *             as a {@code long}.
 959      */
 960     public static Long valueOf(String s) throws NumberFormatException
 961     {
 962         return Long.valueOf(parseLong(s, 10));
 963     }
 964 
 965     private static final class LongCache {
 966         private LongCache() {}
 967 
 968         @Stable
 969         static final Long[] cache;
 970         static Long[] archivedCache;
 971 
 972         static {
 973             int size = -(-128) + 127 + 1;
 974 
 975             // Load and use the archived cache if it exists
 976             CDS.initializeFromArchive(LongCache.class);
 977             if (archivedCache == null) {
 978                 Long[] c = new Long[size];
 979                 long value = -128;
 980                 for(int i = 0; i < size; i++) {
 981                     c[i] = new Long(value++);
 982                 }
 983                 archivedCache = c;
 984             }
 985             cache = archivedCache;
 986             assert cache.length == size;
 987         }
 988     }
 989 
 990     /**
 991      * Returns a {@code Long} instance representing the specified
 992      * {@code long} value.
 993      * <div class="preview-block">
 994      *      <div class="preview-comment">
 995      *          <p>
 996      *              - When preview features are NOT enabled, {@code Long} is an identity class.
 997      *              If a new {@code Long} instance is not required, this method
 998      *              should generally be used in preference to the constructor
 999      *              {@link #Long(long)}, as this method is likely to yield
1000      *              significantly better space and time performance by caching
1001      *              frequently requested values.
1002      *              This method will always cache values in the range -128 to 127,
1003      *              inclusive, and may cache other values outside of this range.
1004      *          </p>
1005      *          <p>
1006      *              - When preview features are enabled, {@code Long} is a {@linkplain Class#isValue value class}.
1007      *              The {@code valueOf} behavior is the same as invoking the constructor,
1008      *              whether cached or not.
1009      *          </p>
1010      *      </div>
1011      * </div>
1012      *
1013      * @param  l a long value.
1014      * @return a {@code Long} instance representing {@code l}.
1015      * @since  1.5
1016      */
1017     @IntrinsicCandidate
1018     @DeserializeConstructor
1019     public static Long valueOf(long l) {
1020         if (!PreviewFeatures.isEnabled()) {
1021             if (l >= -128 && l <= 127) { // will cache
1022                 final int offset = 128;
1023                 return LongCache.cache[(int) l + offset];
1024             }
1025         }
1026         return new Long(l);
1027     }
1028 
1029     /**
1030      * Decodes a {@code String} into a {@code Long}.
1031      * Accepts decimal, hexadecimal, and octal numbers given by the
1032      * following grammar:
1033      *
1034      * <blockquote>
1035      * <dl>
1036      * <dt><i>DecodableString:</i>
1037      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1038      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1039      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1040      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1041      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1042      *
1043      * <dt><i>Sign:</i>
1044      * <dd>{@code -}
1045      * <dd>{@code +}
1046      * </dl>
1047      * </blockquote>
1048      *
1049      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1050      * are as defined in section {@jls 3.10.1} of
1051      * <cite>The Java Language Specification</cite>,
1052      * except that underscores are not accepted between digits.
1053      *
1054      * <p>The sequence of characters following an optional
1055      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1056      * "{@code #}", or leading zero) is parsed as by the {@code
1057      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1058      * This sequence of characters must represent a positive value or
1059      * a {@link NumberFormatException} will be thrown.  The result is
1060      * negated if first character of the specified {@code String} is
1061      * the minus sign.  No whitespace characters are permitted in the
1062      * {@code String}.
1063      *
1064      * @param     nm the {@code String} to decode.
1065      * @return    a {@code Long} object holding the {@code long}
1066      *            value represented by {@code nm}
1067      * @throws    NumberFormatException  if the {@code String} does not
1068      *            contain a parsable {@code long}.
1069      * @see java.lang.Long#parseLong(String, int)
1070      * @since 1.2
1071      */
1072     public static Long decode(String nm) throws NumberFormatException {
1073         int radix = 10;
1074         int index = 0;
1075         boolean negative = false;
1076         long result;
1077 
1078         if (nm.isEmpty())
1079             throw new NumberFormatException("Zero length string");
1080         char firstChar = nm.charAt(0);
1081         // Handle sign, if present
1082         if (firstChar == '-') {
1083             negative = true;
1084             index++;
1085         } else if (firstChar == '+')
1086             index++;
1087 
1088         // Handle radix specifier, if present
1089         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1090             index += 2;
1091             radix = 16;
1092         }
1093         else if (nm.startsWith("#", index)) {
1094             index ++;
1095             radix = 16;
1096         }
1097         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1098             index ++;
1099             radix = 8;
1100         }
1101 
1102         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1103             throw new NumberFormatException("Sign character in wrong position");
1104 
1105         try {
1106             result = parseLong(nm, index, nm.length(), radix);
1107             result = negative ? -result : result;
1108         } catch (NumberFormatException e) {
1109             // If number is Long.MIN_VALUE, we'll end up here. The next line
1110             // handles this case, and causes any genuine format error to be
1111             // rethrown.
1112             String constant = negative ? ("-" + nm.substring(index))
1113                                        : nm.substring(index);
1114             result = parseLong(constant, radix);
1115         }
1116         return result;
1117     }
1118 
1119     /**
1120      * The value of the {@code Long}.
1121      *
1122      * @serial
1123      */
1124     private final long value;
1125 
1126     /**
1127      * Constructs a newly allocated {@code Long} object that
1128      * represents the specified {@code long} argument.
1129      *
1130      * @param   value   the value to be represented by the
1131      *          {@code Long} object.
1132      *
1133      * @deprecated
1134      * It is rarely appropriate to use this constructor. The static factory
1135      * {@link #valueOf(long)} is generally a better choice, as it is
1136      * likely to yield significantly better space and time performance.
1137      */
1138     @Deprecated(since="9")
1139     public Long(long value) {
1140         this.value = value;
1141     }
1142 
1143     /**
1144      * Constructs a newly allocated {@code Long} object that
1145      * represents the {@code long} value indicated by the
1146      * {@code String} parameter. The string is converted to a
1147      * {@code long} value in exactly the manner used by the
1148      * {@code parseLong} method for radix 10.
1149      *
1150      * @param      s   the {@code String} to be converted to a
1151      *             {@code Long}.
1152      * @throws     NumberFormatException  if the {@code String} does not
1153      *             contain a parsable {@code long}.
1154      *
1155      * @deprecated
1156      * It is rarely appropriate to use this constructor.
1157      * Use {@link #parseLong(String)} to convert a string to a
1158      * {@code long} primitive, or use {@link #valueOf(String)}
1159      * to convert a string to a {@code Long} object.
1160      */
1161     @Deprecated(since="9")
1162     public Long(String s) throws NumberFormatException {
1163         this.value = parseLong(s, 10);
1164     }
1165 
1166     /**
1167      * Returns the value of this {@code Long} as a {@code byte} after
1168      * a narrowing primitive conversion.
1169      * @jls 5.1.3 Narrowing Primitive Conversion
1170      */
1171     public byte byteValue() {
1172         return (byte)value;
1173     }
1174 
1175     /**
1176      * Returns the value of this {@code Long} as a {@code short} after
1177      * a narrowing primitive conversion.
1178      * @jls 5.1.3 Narrowing Primitive Conversion
1179      */
1180     public short shortValue() {
1181         return (short)value;
1182     }
1183 
1184     /**
1185      * Returns the value of this {@code Long} as an {@code int} after
1186      * a narrowing primitive conversion.
1187      * @jls 5.1.3 Narrowing Primitive Conversion
1188      */
1189     public int intValue() {
1190         return (int)value;
1191     }
1192 
1193     /**
1194      * Returns the value of this {@code Long} as a
1195      * {@code long} value.
1196      */
1197     @IntrinsicCandidate
1198     public long longValue() {
1199         return value;
1200     }
1201 
1202     /**
1203      * Returns the value of this {@code Long} as a {@code float} after
1204      * a widening primitive conversion.
1205      * @jls 5.1.2 Widening Primitive Conversion
1206      */
1207     public float floatValue() {
1208         return (float)value;
1209     }
1210 
1211     /**
1212      * Returns the value of this {@code Long} as a {@code double}
1213      * after a widening primitive conversion.
1214      * @jls 5.1.2 Widening Primitive Conversion
1215      */
1216     public double doubleValue() {
1217         return (double)value;
1218     }
1219 
1220     /**
1221      * Returns a {@code String} object representing this
1222      * {@code Long}'s value.  The value is converted to signed
1223      * decimal representation and returned as a string, exactly as if
1224      * the {@code long} value were given as an argument to the
1225      * {@link java.lang.Long#toString(long)} method.
1226      *
1227      * @return  a string representation of the value of this object in
1228      *          base&nbsp;10.
1229      */
1230     public String toString() {
1231         return toString(value);
1232     }
1233 
1234     /**
1235      * Returns a hash code for this {@code Long}. The result is
1236      * the exclusive OR of the two halves of the primitive
1237      * {@code long} value held by this {@code Long}
1238      * object. That is, the hashcode is the value of the expression:
1239      *
1240      * <blockquote>
1241      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1242      * </blockquote>
1243      *
1244      * @return  a hash code value for this object.
1245      */
1246     @Override
1247     public int hashCode() {
1248         return Long.hashCode(value);
1249     }
1250 
1251     /**
1252      * Returns a hash code for a {@code long} value; compatible with
1253      * {@code Long.hashCode()}.
1254      *
1255      * @param value the value to hash
1256      * @return a hash code value for a {@code long} value.
1257      * @since 1.8
1258      */
1259     public static int hashCode(long value) {
1260         return (int)(value ^ (value >>> 32));
1261     }
1262 
1263     /**
1264      * Compares this object to the specified object.  The result is
1265      * {@code true} if and only if the argument is not
1266      * {@code null} and is a {@code Long} object that
1267      * contains the same {@code long} value as this object.
1268      *
1269      * @param   obj   the object to compare with.
1270      * @return  {@code true} if the objects are the same;
1271      *          {@code false} otherwise.
1272      */
1273     public boolean equals(Object obj) {
1274         if (obj instanceof Long ell) {
1275             return value == ell.longValue();
1276         }
1277         return false;
1278     }
1279 
1280     /**
1281      * Determines the {@code long} value of the system property
1282      * with the specified name.
1283      *
1284      * <p>The first argument is treated as the name of a system
1285      * property.  System properties are accessible through the {@link
1286      * java.lang.System#getProperty(java.lang.String)} method. The
1287      * string value of this property is then interpreted as a {@code
1288      * long} value using the grammar supported by {@link Long#decode decode}
1289      * and a {@code Long} object representing this value is returned.
1290      *
1291      * <p>If there is no property with the specified name, if the
1292      * specified name is empty or {@code null}, or if the property
1293      * does not have the correct numeric format, then {@code null} is
1294      * returned.
1295      *
1296      * <p>In other words, this method returns a {@code Long} object
1297      * equal to the value of:
1298      *
1299      * <blockquote>
1300      *  {@code getLong(nm, null)}
1301      * </blockquote>
1302      *
1303      * @param   nm   property name.
1304      * @return  the {@code Long} value of the property.
1305      * @see     java.lang.System#getProperty(java.lang.String)
1306      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1307      */
1308     public static Long getLong(String nm) {
1309         return getLong(nm, null);
1310     }
1311 
1312     /**
1313      * Determines the {@code long} value of the system property
1314      * with the specified name.
1315      *
1316      * <p>The first argument is treated as the name of a system
1317      * property.  System properties are accessible through the {@link
1318      * java.lang.System#getProperty(java.lang.String)} method. The
1319      * string value of this property is then interpreted as a {@code
1320      * long} value using the grammar supported by {@link Long#decode decode}
1321      * and a {@code Long} object representing this value is returned.
1322      *
1323      * <p>The second argument is the default value. A {@code Long} object
1324      * that represents the value of the second argument is returned if there
1325      * is no property of the specified name, if the property does not have
1326      * the correct numeric format, or if the specified name is empty or null.
1327      *
1328      * <p>In other words, this method returns a {@code Long} object equal
1329      * to the value of:
1330      *
1331      * <blockquote>
1332      *  {@code getLong(nm, Long.valueOf(val))}
1333      * </blockquote>
1334      *
1335      * but in practice it may be implemented in a manner such as:
1336      *
1337      * <blockquote><pre>
1338      * Long result = getLong(nm, null);
1339      * return (result == null) ? Long.valueOf(val) : result;
1340      * </pre></blockquote>
1341      *
1342      * to avoid the unnecessary allocation of a {@code Long} object when
1343      * the default value is not needed.
1344      *
1345      * @param   nm    property name.
1346      * @param   val   default value.
1347      * @return  the {@code Long} value of the property.
1348      * @see     java.lang.System#getProperty(java.lang.String)
1349      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1350      */
1351     public static Long getLong(String nm, long val) {
1352         Long result = Long.getLong(nm, null);
1353         return (result == null) ? Long.valueOf(val) : result;
1354     }
1355 
1356     /**
1357      * Returns the {@code long} value of the system property with
1358      * the specified name.  The first argument is treated as the name
1359      * of a system property.  System properties are accessible through
1360      * the {@link java.lang.System#getProperty(java.lang.String)}
1361      * method. The string value of this property is then interpreted
1362      * as a {@code long} value, as per the
1363      * {@link Long#decode decode} method, and a {@code Long} object
1364      * representing this value is returned; in summary:
1365      *
1366      * <ul>
1367      * <li>If the property value begins with the two ASCII characters
1368      * {@code 0x} or the ASCII character {@code #}, not followed by
1369      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1370      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1371      * with radix 16.
1372      * <li>If the property value begins with the ASCII character
1373      * {@code 0} followed by another character, it is parsed as
1374      * an octal integer exactly as by the method {@link
1375      * #valueOf(java.lang.String, int)} with radix 8.
1376      * <li>Otherwise the property value is parsed as a decimal
1377      * integer exactly as by the method
1378      * {@link #valueOf(java.lang.String, int)} with radix 10.
1379      * </ul>
1380      *
1381      * <p>Note that, in every case, neither {@code L}
1382      * ({@code '\u005Cu004C'}) nor {@code l}
1383      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1384      * of the property value as a type indicator, as would be
1385      * permitted in Java programming language source code.
1386      *
1387      * <p>The second argument is the default value. The default value is
1388      * returned if there is no property of the specified name, if the
1389      * property does not have the correct numeric format, or if the
1390      * specified name is empty or {@code null}.
1391      *
1392      * @param   nm   property name.
1393      * @param   val   default value.
1394      * @return  the {@code Long} value of the property.
1395      * @see     System#getProperty(java.lang.String)
1396      * @see     System#getProperty(java.lang.String, java.lang.String)
1397      */
1398     public static Long getLong(String nm, Long val) {
1399         String v = nm != null && !nm.isEmpty() ? System.getProperty(nm) : null;
1400         if (v != null) {
1401             try {
1402                 return Long.decode(v);
1403             } catch (NumberFormatException e) {
1404             }
1405         }
1406         return val;
1407     }
1408 
1409     /**
1410      * Compares two {@code Long} objects numerically.
1411      *
1412      * @param   anotherLong   the {@code Long} to be compared.
1413      * @return  the value {@code 0} if this {@code Long} is
1414      *          equal to the argument {@code Long}; a value less than
1415      *          {@code 0} if this {@code Long} is numerically less
1416      *          than the argument {@code Long}; and a value greater
1417      *          than {@code 0} if this {@code Long} is numerically
1418      *           greater than the argument {@code Long} (signed
1419      *           comparison).
1420      * @since   1.2
1421      */
1422     public int compareTo(Long anotherLong) {
1423         return compare(this.value, anotherLong.value);
1424     }
1425 
1426     /**
1427      * Compares two {@code long} values numerically.
1428      * The value returned is identical to what would be returned by:
1429      * <pre>
1430      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1431      * </pre>
1432      *
1433      * @param  x the first {@code long} to compare
1434      * @param  y the second {@code long} to compare
1435      * @return the value {@code 0} if {@code x == y};
1436      *         a value less than {@code 0} if {@code x < y}; and
1437      *         a value greater than {@code 0} if {@code x > y}
1438      * @since 1.7
1439      */
1440     public static int compare(long x, long y) {
1441         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1442     }
1443 
1444     /**
1445      * Compares two {@code long} values numerically treating the values
1446      * as unsigned.
1447      *
1448      * @param  x the first {@code long} to compare
1449      * @param  y the second {@code long} to compare
1450      * @return the value {@code 0} if {@code x == y}; a value less
1451      *         than {@code 0} if {@code x < y} as unsigned values; and
1452      *         a value greater than {@code 0} if {@code x > y} as
1453      *         unsigned values
1454      * @since 1.8
1455      */
1456     @IntrinsicCandidate
1457     public static int compareUnsigned(long x, long y) {
1458         return compare(x + MIN_VALUE, y + MIN_VALUE);
1459     }
1460 
1461 
1462     /**
1463      * Returns the unsigned quotient of dividing the first argument by
1464      * the second where each argument and the result is interpreted as
1465      * an unsigned value.
1466      *
1467      * <p>Note that in two's complement arithmetic, the three other
1468      * basic arithmetic operations of add, subtract, and multiply are
1469      * bit-wise identical if the two operands are regarded as both
1470      * being signed or both being unsigned.  Therefore separate {@code
1471      * addUnsigned}, etc. methods are not provided.
1472      *
1473      * @param dividend the value to be divided
1474      * @param divisor the value doing the dividing
1475      * @return the unsigned quotient of the first argument divided by
1476      * the second argument
1477      * @see #remainderUnsigned
1478      * @since 1.8
1479      */
1480     @IntrinsicCandidate
1481     public static long divideUnsigned(long dividend, long divisor) {
1482         /* See Hacker's Delight (2nd ed), section 9.3 */
1483         if (divisor >= 0) {
1484             final long q = (dividend >>> 1) / divisor << 1;
1485             final long r = dividend - q * divisor;
1486             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1487         }
1488         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1489     }
1490 
1491     /**
1492      * Returns the unsigned remainder from dividing the first argument
1493      * by the second where each argument and the result is interpreted
1494      * as an unsigned value.
1495      *
1496      * @param dividend the value to be divided
1497      * @param divisor the value doing the dividing
1498      * @return the unsigned remainder of the first argument divided by
1499      * the second argument
1500      * @see #divideUnsigned
1501      * @since 1.8
1502      */
1503     @IntrinsicCandidate
1504     public static long remainderUnsigned(long dividend, long divisor) {
1505         /* See Hacker's Delight (2nd ed), section 9.3 */
1506         if (divisor >= 0) {
1507             final long q = (dividend >>> 1) / divisor << 1;
1508             final long r = dividend - q * divisor;
1509             /*
1510              * Here, 0 <= r < 2 * divisor
1511              * (1) When 0 <= r < divisor, the remainder is simply r.
1512              * (2) Otherwise the remainder is r - divisor.
1513              *
1514              * In case (1), r - divisor < 0. Applying ~ produces a long with
1515              * sign bit 0, so >> produces 0. The returned value is thus r.
1516              *
1517              * In case (2), a similar reasoning shows that >> produces -1,
1518              * so the returned value is r - divisor.
1519              */
1520             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1521         }
1522         /*
1523          * (1) When dividend >= 0, the remainder is dividend.
1524          * (2) Otherwise
1525          *      (2.1) When dividend < divisor, the remainder is dividend.
1526          *      (2.2) Otherwise the remainder is dividend - divisor
1527          *
1528          * A reasoning similar to the above shows that the returned value
1529          * is as expected.
1530          */
1531         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1532     }
1533 
1534     // Bit Twiddling
1535 
1536     /**
1537      * The number of bits used to represent a {@code long} value in two's
1538      * complement binary form.
1539      *
1540      * @since 1.5
1541      */
1542     @Native public static final int SIZE = 64;
1543 
1544     /**
1545      * The number of bytes used to represent a {@code long} value in two's
1546      * complement binary form.
1547      *
1548      * @since 1.8
1549      */
1550     public static final int BYTES = SIZE / Byte.SIZE;
1551 
1552     /**
1553      * Returns a {@code long} value with at most a single one-bit, in the
1554      * position of the highest-order ("leftmost") one-bit in the specified
1555      * {@code long} value.  Returns zero if the specified value has no
1556      * one-bits in its two's complement binary representation, that is, if it
1557      * is equal to zero.
1558      *
1559      * @param i the value whose highest one bit is to be computed
1560      * @return a {@code long} value with a single one-bit, in the position
1561      *     of the highest-order one-bit in the specified value, or zero if
1562      *     the specified value is itself equal to zero.
1563      * @since 1.5
1564      */
1565     public static long highestOneBit(long i) {
1566         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1567     }
1568 
1569     /**
1570      * Returns a {@code long} value with at most a single one-bit, in the
1571      * position of the lowest-order ("rightmost") one-bit in the specified
1572      * {@code long} value.  Returns zero if the specified value has no
1573      * one-bits in its two's complement binary representation, that is, if it
1574      * is equal to zero.
1575      *
1576      * @param i the value whose lowest one bit is to be computed
1577      * @return a {@code long} value with a single one-bit, in the position
1578      *     of the lowest-order one-bit in the specified value, or zero if
1579      *     the specified value is itself equal to zero.
1580      * @since 1.5
1581      */
1582     public static long lowestOneBit(long i) {
1583         // HD, Section 2-1
1584         return i & -i;
1585     }
1586 
1587     /**
1588      * Returns the number of zero bits preceding the highest-order
1589      * ("leftmost") one-bit in the two's complement binary representation
1590      * of the specified {@code long} value.  Returns 64 if the
1591      * specified value has no one-bits in its two's complement representation,
1592      * in other words if it is equal to zero.
1593      *
1594      * <p>Note that this method is closely related to the logarithm base 2.
1595      * For all positive {@code long} values x:
1596      * <ul>
1597      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1598      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1599      * </ul>
1600      *
1601      * @param i the value whose number of leading zeros is to be computed
1602      * @return the number of zero bits preceding the highest-order
1603      *     ("leftmost") one-bit in the two's complement binary representation
1604      *     of the specified {@code long} value, or 64 if the value
1605      *     is equal to zero.
1606      * @since 1.5
1607      */
1608     @IntrinsicCandidate
1609     public static int numberOfLeadingZeros(long i) {
1610         int x = (int)(i >>> 32);
1611         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1612                 : Integer.numberOfLeadingZeros(x);
1613     }
1614 
1615     /**
1616      * Returns the number of zero bits following the lowest-order ("rightmost")
1617      * one-bit in the two's complement binary representation of the specified
1618      * {@code long} value.  Returns 64 if the specified value has no
1619      * one-bits in its two's complement representation, in other words if it is
1620      * equal to zero.
1621      *
1622      * @param i the value whose number of trailing zeros is to be computed
1623      * @return the number of zero bits following the lowest-order ("rightmost")
1624      *     one-bit in the two's complement binary representation of the
1625      *     specified {@code long} value, or 64 if the value is equal
1626      *     to zero.
1627      * @since 1.5
1628      */
1629     @IntrinsicCandidate
1630     public static int numberOfTrailingZeros(long i) {
1631         int x = (int)i;
1632         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1633                 : Integer.numberOfTrailingZeros(x);
1634     }
1635 
1636     /**
1637      * Returns the number of one-bits in the two's complement binary
1638      * representation of the specified {@code long} value.  This function is
1639      * sometimes referred to as the <i>population count</i>.
1640      *
1641      * @param i the value whose bits are to be counted
1642      * @return the number of one-bits in the two's complement binary
1643      *     representation of the specified {@code long} value.
1644      * @since 1.5
1645      */
1646      @IntrinsicCandidate
1647      public static int bitCount(long i) {
1648         // HD, Figure 5-2
1649         i = i - ((i >>> 1) & 0x5555555555555555L);
1650         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1651         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1652         i = i + (i >>> 8);
1653         i = i + (i >>> 16);
1654         i = i + (i >>> 32);
1655         return (int)i & 0x7f;
1656      }
1657 
1658     /**
1659      * Returns the value obtained by rotating the two's complement binary
1660      * representation of the specified {@code long} value left by the
1661      * specified number of bits.  (Bits shifted out of the left hand, or
1662      * high-order, side reenter on the right, or low-order.)
1663      *
1664      * <p>Note that left rotation with a negative distance is equivalent to
1665      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1666      * distance)}.  Note also that rotation by any multiple of 64 is a
1667      * no-op, so all but the last six bits of the rotation distance can be
1668      * ignored, even if the distance is negative: {@code rotateLeft(val,
1669      * distance) == rotateLeft(val, distance & 0x3F)}.
1670      *
1671      * @param i the value whose bits are to be rotated left
1672      * @param distance the number of bit positions to rotate left
1673      * @return the value obtained by rotating the two's complement binary
1674      *     representation of the specified {@code long} value left by the
1675      *     specified number of bits.
1676      * @since 1.5
1677      */
1678     public static long rotateLeft(long i, int distance) {
1679         return (i << distance) | (i >>> -distance);
1680     }
1681 
1682     /**
1683      * Returns the value obtained by rotating the two's complement binary
1684      * representation of the specified {@code long} value right by the
1685      * specified number of bits.  (Bits shifted out of the right hand, or
1686      * low-order, side reenter on the left, or high-order.)
1687      *
1688      * <p>Note that right rotation with a negative distance is equivalent to
1689      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1690      * distance)}.  Note also that rotation by any multiple of 64 is a
1691      * no-op, so all but the last six bits of the rotation distance can be
1692      * ignored, even if the distance is negative: {@code rotateRight(val,
1693      * distance) == rotateRight(val, distance & 0x3F)}.
1694      *
1695      * @param i the value whose bits are to be rotated right
1696      * @param distance the number of bit positions to rotate right
1697      * @return the value obtained by rotating the two's complement binary
1698      *     representation of the specified {@code long} value right by the
1699      *     specified number of bits.
1700      * @since 1.5
1701      */
1702     public static long rotateRight(long i, int distance) {
1703         return (i >>> distance) | (i << -distance);
1704     }
1705 
1706     /**
1707      * Returns the value obtained by reversing the order of the bits in the
1708      * two's complement binary representation of the specified {@code long}
1709      * value.
1710      *
1711      * @param i the value to be reversed
1712      * @return the value obtained by reversing order of the bits in the
1713      *     specified {@code long} value.
1714      * @since 1.5
1715      */
1716     @IntrinsicCandidate
1717     public static long reverse(long i) {
1718         // HD, Figure 7-1
1719         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1720         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1721         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1722 
1723         return reverseBytes(i);
1724     }
1725 
1726     /**
1727      * Returns the value obtained by compressing the bits of the
1728      * specified {@code long} value, {@code i}, in accordance with
1729      * the specified bit mask.
1730      * <p>
1731      * For each one-bit value {@code mb} of the mask, from least
1732      * significant to most significant, the bit value of {@code i} at
1733      * the same bit location as {@code mb} is assigned to the compressed
1734      * value contiguously starting from the least significant bit location.
1735      * All the upper remaining bits of the compressed value are set
1736      * to zero.
1737      *
1738      * @apiNote
1739      * Consider the simple case of compressing the digits of a hexadecimal
1740      * value:
1741      * {@snippet lang="java" :
1742      * // Compressing drink to food
1743      * compress(0xCAFEBABEL, 0xFF00FFF0L) == 0xCABABL
1744      * }
1745      * Starting from the least significant hexadecimal digit at position 0
1746      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1747      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1748      * occur in the resulting compressed value contiguously from digit position
1749      * 0 in the same order.
1750      * <p>
1751      * The following identities all return {@code true} and are helpful to
1752      * understand the behaviour of {@code compress}:
1753      * {@snippet lang="java" :
1754      * // Returns 1 if the bit at position n is one
1755      * compress(x, 1L << n) == (x >> n & 1)
1756      *
1757      * // Logical shift right
1758      * compress(x, -1L << n) == x >>> n
1759      *
1760      * // Any bits not covered by the mask are ignored
1761      * compress(x, m) == compress(x & m, m)
1762      *
1763      * // Compressing a value by itself
1764      * compress(m, m) == (m == -1 || m == 0) ? m : (1L << bitCount(m)) - 1
1765      *
1766      * // Expanding then compressing with the same mask
1767      * compress(expand(x, m), m) == x & compress(m, m)
1768      * }
1769      * <p>
1770      * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7)
1771      * can be implemented as follows:
1772      * {@snippet lang="java" :
1773      * long compressLeft(long i, long mask) {
1774      *     // This implementation follows the description in Hacker's Delight which
1775      *     // is informative. A more optimal implementation is:
1776      *     //   Long.compress(i, mask) << -Long.bitCount(mask)
1777      *     return Long.reverse(
1778      *         Long.compress(Long.reverse(i), Long.reverse(mask)));
1779      * }
1780      *
1781      * long sag(long i, long mask) {
1782      *     return compressLeft(i, mask) | Long.compress(i, ~mask);
1783      * }
1784      *
1785      * // Separate the sheep from the goats
1786      * sag(0x00000000_CAFEBABEL, 0xFFFFFFFF_FF00FFF0L) == 0x00000000_CABABFEEL
1787      * }
1788      *
1789      * @param i the value whose bits are to be compressed
1790      * @param mask the bit mask
1791      * @return the compressed value
1792      * @see #expand
1793      * @since 19
1794      */
1795     @IntrinsicCandidate
1796     public static long compress(long i, long mask) {
1797         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1798 
1799         i = i & mask; // Clear irrelevant bits
1800         long maskCount = ~mask << 1; // Count 0's to right
1801 
1802         for (int j = 0; j < 6; j++) {
1803             // Parallel prefix
1804             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1805             long maskPrefix = parallelSuffix(maskCount);
1806             // Bits to move
1807             long maskMove = maskPrefix & mask;
1808             // Compress mask
1809             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1810             // Bits of i to be moved
1811             long t = i & maskMove;
1812             // Compress i
1813             i = (i ^ t) | (t >>> (1 << j));
1814             // Adjust the mask count by identifying bits that have 0 to the right
1815             maskCount = maskCount & ~maskPrefix;
1816         }
1817         return i;
1818     }
1819 
1820     /**
1821      * Returns the value obtained by expanding the bits of the
1822      * specified {@code long} value, {@code i}, in accordance with
1823      * the specified bit mask.
1824      * <p>
1825      * For each one-bit value {@code mb} of the mask, from least
1826      * significant to most significant, the next contiguous bit value
1827      * of {@code i} starting at the least significant bit is assigned
1828      * to the expanded value at the same bit location as {@code mb}.
1829      * All other remaining bits of the expanded value are set to zero.
1830      *
1831      * @apiNote
1832      * Consider the simple case of expanding the digits of a hexadecimal
1833      * value:
1834      * {@snippet lang="java" :
1835      * expand(0x0000CABABL, 0xFF00FFF0L) == 0xCA00BAB0L
1836      * }
1837      * Starting from the least significant hexadecimal digit at position 0
1838      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1839      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1840      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1841      * <p>
1842      * The following identities all return {@code true} and are helpful to
1843      * understand the behaviour of {@code expand}:
1844      * {@snippet lang="java" :
1845      * // Logically shift right the bit at position 0
1846      * expand(x, 1L << n) == (x & 1) << n
1847      *
1848      * // Logically shift right
1849      * expand(x, -1L << n) == x << n
1850      *
1851      * // Expanding all bits returns the mask
1852      * expand(-1L, m) == m
1853      *
1854      * // Any bits not covered by the mask are ignored
1855      * expand(x, m) == expand(x, m) & m
1856      *
1857      * // Compressing then expanding with the same mask
1858      * expand(compress(x, m), m) == x & m
1859      * }
1860      * <p>
1861      * The select operation for determining the position of the one-bit with
1862      * index {@code n} in a {@code long} value can be implemented as follows:
1863      * {@snippet lang="java" :
1864      * long select(long i, long n) {
1865      *     // the one-bit in i (the mask) with index n
1866      *     long nthBit = Long.expand(1L << n, i);
1867      *     // the bit position of the one-bit with index n
1868      *     return Long.numberOfTrailingZeros(nthBit);
1869      * }
1870      *
1871      * // The one-bit with index 0 is at bit position 1
1872      * select(0b10101010_10101010, 0) == 1
1873      * // The one-bit with index 3 is at bit position 7
1874      * select(0b10101010_10101010, 3) == 7
1875      * }
1876      *
1877      * @param i the value whose bits are to be expanded
1878      * @param mask the bit mask
1879      * @return the expanded value
1880      * @see #compress
1881      * @since 19
1882      */
1883     @IntrinsicCandidate
1884     public static long expand(long i, long mask) {
1885         // Save original mask
1886         long originalMask = mask;
1887         // Count 0's to right
1888         long maskCount = ~mask << 1;
1889         long maskPrefix = parallelSuffix(maskCount);
1890         // Bits to move
1891         long maskMove1 = maskPrefix & mask;
1892         // Compress mask
1893         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1894         maskCount = maskCount & ~maskPrefix;
1895 
1896         maskPrefix = parallelSuffix(maskCount);
1897         // Bits to move
1898         long maskMove2 = maskPrefix & mask;
1899         // Compress mask
1900         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1901         maskCount = maskCount & ~maskPrefix;
1902 
1903         maskPrefix = parallelSuffix(maskCount);
1904         // Bits to move
1905         long maskMove3 = maskPrefix & mask;
1906         // Compress mask
1907         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1908         maskCount = maskCount & ~maskPrefix;
1909 
1910         maskPrefix = parallelSuffix(maskCount);
1911         // Bits to move
1912         long maskMove4 = maskPrefix & mask;
1913         // Compress mask
1914         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1915         maskCount = maskCount & ~maskPrefix;
1916 
1917         maskPrefix = parallelSuffix(maskCount);
1918         // Bits to move
1919         long maskMove5 = maskPrefix & mask;
1920         // Compress mask
1921         mask = (mask ^ maskMove5) | (maskMove5 >>> (1 << 4));
1922         maskCount = maskCount & ~maskPrefix;
1923 
1924         maskPrefix = parallelSuffix(maskCount);
1925         // Bits to move
1926         long maskMove6 = maskPrefix & mask;
1927 
1928         long t = i << (1 << 5);
1929         i = (i & ~maskMove6) | (t & maskMove6);
1930         t = i << (1 << 4);
1931         i = (i & ~maskMove5) | (t & maskMove5);
1932         t = i << (1 << 3);
1933         i = (i & ~maskMove4) | (t & maskMove4);
1934         t = i << (1 << 2);
1935         i = (i & ~maskMove3) | (t & maskMove3);
1936         t = i << (1 << 1);
1937         i = (i & ~maskMove2) | (t & maskMove2);
1938         t = i << (1 << 0);
1939         i = (i & ~maskMove1) | (t & maskMove1);
1940 
1941         // Clear irrelevant bits
1942         return i & originalMask;
1943     }
1944 
1945     @ForceInline
1946     private static long parallelSuffix(long maskCount) {
1947         long maskPrefix = maskCount ^ (maskCount << 1);
1948         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1949         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1950         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1951         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1952         maskPrefix = maskPrefix ^ (maskPrefix << 32);
1953         return maskPrefix;
1954     }
1955 
1956     /**
1957      * Returns the signum function of the specified {@code long} value.  (The
1958      * return value is -1 if the specified value is negative; 0 if the
1959      * specified value is zero; and 1 if the specified value is positive.)
1960      *
1961      * @param i the value whose signum is to be computed
1962      * @return the signum function of the specified {@code long} value.
1963      * @since 1.5
1964      */
1965     public static int signum(long i) {
1966         // HD, Section 2-7
1967         return (int) ((i >> 63) | (-i >>> 63));
1968     }
1969 
1970     /**
1971      * Returns the value obtained by reversing the order of the bytes in the
1972      * two's complement representation of the specified {@code long} value.
1973      *
1974      * @param i the value whose bytes are to be reversed
1975      * @return the value obtained by reversing the bytes in the specified
1976      *     {@code long} value.
1977      * @since 1.5
1978      */
1979     @IntrinsicCandidate
1980     public static long reverseBytes(long i) {
1981         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1982         return (i << 48) | ((i & 0xffff0000L) << 16) |
1983             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1984     }
1985 
1986     /**
1987      * Adds two {@code long} values together as per the + operator.
1988      *
1989      * @param a the first operand
1990      * @param b the second operand
1991      * @return the sum of {@code a} and {@code b}
1992      * @see java.util.function.BinaryOperator
1993      * @since 1.8
1994      */
1995     public static long sum(long a, long b) {
1996         return a + b;
1997     }
1998 
1999     /**
2000      * Returns the greater of two {@code long} values
2001      * as if by calling {@link Math#max(long, long) Math.max}.
2002      *
2003      * @param a the first operand
2004      * @param b the second operand
2005      * @return the greater of {@code a} and {@code b}
2006      * @see java.util.function.BinaryOperator
2007      * @since 1.8
2008      */
2009     public static long max(long a, long b) {
2010         return Math.max(a, b);
2011     }
2012 
2013     /**
2014      * Returns the smaller of two {@code long} values
2015      * as if by calling {@link Math#min(long, long) Math.min}.
2016      *
2017      * @param a the first operand
2018      * @param b the second operand
2019      * @return the smaller of {@code a} and {@code b}
2020      * @see java.util.function.BinaryOperator
2021      * @since 1.8
2022      */
2023     public static long min(long a, long b) {
2024         return Math.min(a, b);
2025     }
2026 
2027     /**
2028      * Returns an {@link Optional} containing the nominal descriptor for this
2029      * instance, which is the instance itself.
2030      *
2031      * @return an {@link Optional} describing the {@linkplain Long} instance
2032      * @since 12
2033      */
2034     @Override
2035     public Optional<Long> describeConstable() {
2036         return Optional.of(this);
2037     }
2038 
2039     /**
2040      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2041      * the instance itself.
2042      *
2043      * @param lookup ignored
2044      * @return the {@linkplain Long} instance
2045      * @since 12
2046      */
2047     @Override
2048     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
2049         return this;
2050     }
2051 
2052     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2053     @java.io.Serial
2054     @Native private static final long serialVersionUID = 4290774380558885855L;
2055 }