1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.lang.invoke.MethodHandles;
  30 import java.lang.constant.Constable;
  31 import java.lang.constant.ConstantDesc;
  32 import java.math.*;
  33 import java.util.Objects;
  34 import java.util.Optional;
  35 
  36 import jdk.internal.misc.CDS;
  37 import jdk.internal.misc.PreviewFeatures;
  38 import jdk.internal.value.DeserializeConstructor;
  39 import jdk.internal.util.DecimalDigits;
  40 import jdk.internal.vm.annotation.ForceInline;
  41 import jdk.internal.vm.annotation.IntrinsicCandidate;
  42 import jdk.internal.vm.annotation.Stable;
  43 
  44 import static java.lang.Character.digit;
  45 import static java.lang.String.COMPACT_STRINGS;
  46 
  47 /**
  48  * The {@code Long} class is the {@linkplain
  49  * java.lang##wrapperClass wrapper class} for values of the primitive
  50  * type {@code long}. An object of type {@code Long} contains a
  51  * single field whose type is {@code long}.
  52  *
  53  * <p> In addition, this class provides several methods for converting
  54  * a {@code long} to a {@code String} and a {@code String} to a {@code
  55  * long}, as well as other constants and methods useful when dealing
  56  * with a {@code long}.
  57  *
  58  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
  59  * class; programmers should treat instances that are {@linkplain #equals(Object) equal}
  60  * as interchangeable and should not use instances for synchronization, mutexes, or
  61  * with {@linkplain java.lang.ref.Reference object references}.
  62  *
  63  * <div class="preview-block">
  64  *      <div class="preview-comment">
  65  *          When preview features are enabled, {@code Long} is a {@linkplain Class#isValue value class}.
  66  *          Use of value class instances for synchronization, mutexes, or with
  67  *          {@linkplain java.lang.ref.Reference object references} result in
  68  *          {@link IdentityException}.
  69  *      </div>
  70  * </div>
  71  *
  72  *
  73  * <p>Implementation note: The implementations of the "bit twiddling"
  74  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  75  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  76  * based on material from Henry S. Warren, Jr.'s <cite>Hacker's
  77  * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's
  78  * Delight, Second Edition</cite>, (Pearson Education, 2013).
  79  *
  80  * @since   1.0
  81  */
  82 @jdk.internal.MigratedValueClass
  83 @jdk.internal.ValueBased
  84 public final class Long extends Number
  85         implements Comparable<Long>, Constable, ConstantDesc {
  86     /**
  87      * A constant holding the minimum value a {@code long} can
  88      * have, -2<sup>63</sup>.
  89      */
  90     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  91 
  92     /**
  93      * A constant holding the maximum value a {@code long} can
  94      * have, 2<sup>63</sup>-1.
  95      */
  96     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  97 
  98     /**
  99      * The {@code Class} instance representing the primitive type
 100      * {@code long}.
 101      *
 102      * @since   1.1
 103      */
 104     public static final Class<Long> TYPE = Class.getPrimitiveClass("long");
 105 
 106     /**
 107      * Returns a string representation of the first argument in the
 108      * radix specified by the second argument.
 109      *
 110      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 111      * or larger than {@code Character.MAX_RADIX}, then the radix
 112      * {@code 10} is used instead.
 113      *
 114      * <p>If the first argument is negative, the first element of the
 115      * result is the ASCII minus sign {@code '-'}
 116      * ({@code '\u005Cu002d'}). If the first argument is not
 117      * negative, no sign character appears in the result.
 118      *
 119      * <p>The remaining characters of the result represent the magnitude
 120      * of the first argument. If the magnitude is zero, it is
 121      * represented by a single zero character {@code '0'}
 122      * ({@code '\u005Cu0030'}); otherwise, the first character of
 123      * the representation of the magnitude will not be the zero
 124      * character.  The following ASCII characters are used as digits:
 125      *
 126      * <blockquote>
 127      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 128      * </blockquote>
 129      *
 130      * These are {@code '\u005Cu0030'} through
 131      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 132      * {@code '\u005Cu007a'}. If {@code radix} is
 133      * <var>N</var>, then the first <var>N</var> of these characters
 134      * are used as radix-<var>N</var> digits in the order shown. Thus,
 135      * the digits for hexadecimal (radix 16) are
 136      * {@code 0123456789abcdef}. If uppercase letters are
 137      * desired, the {@link java.lang.String#toUpperCase()} method may
 138      * be called on the result:
 139      *
 140      * <blockquote>
 141      *  {@code Long.toString(n, 16).toUpperCase()}
 142      * </blockquote>
 143      *
 144      * @param   i       a {@code long} to be converted to a string.
 145      * @param   radix   the radix to use in the string representation.
 146      * @return  a string representation of the argument in the specified radix.
 147      * @see     java.lang.Character#MAX_RADIX
 148      * @see     java.lang.Character#MIN_RADIX
 149      */
 150     public static String toString(long i, int radix) {
 151         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 152             radix = 10;
 153         if (radix == 10)
 154             return toString(i);
 155 
 156         if (COMPACT_STRINGS) {
 157             byte[] buf = new byte[65];
 158             int charPos = 64;
 159             boolean negative = (i < 0);
 160 
 161             if (!negative) {
 162                 i = -i;
 163             }
 164 
 165             while (i <= -radix) {
 166                 buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 167                 i = i / radix;
 168             }
 169             buf[charPos] = Integer.digits[(int)(-i)];
 170 
 171             if (negative) {
 172                 buf[--charPos] = '-';
 173             }
 174             return StringLatin1.newString(buf, charPos, (65 - charPos));
 175         }
 176         return toStringUTF16(i, radix);
 177     }
 178 
 179     private static String toStringUTF16(long i, int radix) {
 180         byte[] buf = new byte[65 * 2];
 181         int charPos = 64;
 182         boolean negative = (i < 0);
 183         if (!negative) {
 184             i = -i;
 185         }
 186         while (i <= -radix) {
 187             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
 188             i = i / radix;
 189         }
 190         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
 191         if (negative) {
 192             StringUTF16.putChar(buf, --charPos, '-');
 193         }
 194         return StringUTF16.newString(buf, charPos, (65 - charPos));
 195     }
 196 
 197     /**
 198      * Returns a string representation of the first argument as an
 199      * unsigned integer value in the radix specified by the second
 200      * argument.
 201      *
 202      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 203      * or larger than {@code Character.MAX_RADIX}, then the radix
 204      * {@code 10} is used instead.
 205      *
 206      * <p>Note that since the first argument is treated as an unsigned
 207      * value, no leading sign character is printed.
 208      *
 209      * <p>If the magnitude is zero, it is represented by a single zero
 210      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 211      * the first character of the representation of the magnitude will
 212      * not be the zero character.
 213      *
 214      * <p>The behavior of radixes and the characters used as digits
 215      * are the same as {@link #toString(long, int) toString}.
 216      *
 217      * @param   i       an integer to be converted to an unsigned string.
 218      * @param   radix   the radix to use in the string representation.
 219      * @return  an unsigned string representation of the argument in the specified radix.
 220      * @see     #toString(long, int)
 221      * @since 1.8
 222      */
 223     public static String toUnsignedString(long i, int radix) {
 224         if (i >= 0)
 225             return toString(i, radix);
 226         else {
 227             return switch (radix) {
 228                 case 2  -> toBinaryString(i);
 229                 case 4  -> toUnsignedString0(i, 2);
 230                 case 8  -> toOctalString(i);
 231                 case 10 -> {
 232                     /*
 233                      * We can get the effect of an unsigned division by 10
 234                      * on a long value by first shifting right, yielding a
 235                      * positive value, and then dividing by 5.  This
 236                      * allows the last digit and preceding digits to be
 237                      * isolated more quickly than by an initial conversion
 238                      * to BigInteger.
 239                      */
 240                     long quot = (i >>> 1) / 5;
 241                     long rem = i - quot * 10;
 242                     yield toString(quot) + rem;
 243                 }
 244                 case 16 -> toHexString(i);
 245                 case 32 -> toUnsignedString0(i, 5);
 246                 default -> toUnsignedBigInteger(i).toString(radix);
 247             };
 248         }
 249     }
 250 
 251     /**
 252      * Return a BigInteger equal to the unsigned value of the
 253      * argument.
 254      */
 255     private static BigInteger toUnsignedBigInteger(long i) {
 256         if (i >= 0L)
 257             return BigInteger.valueOf(i);
 258         else {
 259             int upper = (int) (i >>> 32);
 260             int lower = (int) i;
 261 
 262             // return (upper << 32) + lower
 263             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 264                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 265         }
 266     }
 267 
 268     /**
 269      * Returns a string representation of the {@code long}
 270      * argument as an unsigned integer in base&nbsp;16.
 271      *
 272      * <p>The unsigned {@code long} value is the argument plus
 273      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 274      * equal to the argument.  This value is converted to a string of
 275      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 276      * leading {@code 0}s.
 277      *
 278      * <p>The value of the argument can be recovered from the returned
 279      * string {@code s} by calling {@link
 280      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 281      * 16)}.
 282      *
 283      * <p>If the unsigned magnitude is zero, it is represented by a
 284      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 285      * otherwise, the first character of the representation of the
 286      * unsigned magnitude will not be the zero character. The
 287      * following characters are used as hexadecimal digits:
 288      *
 289      * <blockquote>
 290      *  {@code 0123456789abcdef}
 291      * </blockquote>
 292      *
 293      * These are the characters {@code '\u005Cu0030'} through
 294      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 295      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 296      * the {@link java.lang.String#toUpperCase()} method may be called
 297      * on the result:
 298      *
 299      * <blockquote>
 300      *  {@code Long.toHexString(n).toUpperCase()}
 301      * </blockquote>
 302      *
 303      * @apiNote
 304      * The {@link java.util.HexFormat} class provides formatting and parsing
 305      * of byte arrays and primitives to return a string or adding to an {@link Appendable}.
 306      * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters,
 307      * with leading zeros and for byte arrays includes for each byte
 308      * a delimiter, prefix, and suffix.
 309      *
 310      * @param   i   a {@code long} to be converted to a string.
 311      * @return  the string representation of the unsigned {@code long}
 312      *          value represented by the argument in hexadecimal
 313      *          (base&nbsp;16).
 314      * @see java.util.HexFormat
 315      * @see #parseUnsignedLong(String, int)
 316      * @see #toUnsignedString(long, int)
 317      * @since   1.0.2
 318      */
 319     public static String toHexString(long i) {
 320         return toUnsignedString0(i, 4);
 321     }
 322 
 323     /**
 324      * Returns a string representation of the {@code long}
 325      * argument as an unsigned integer in base&nbsp;8.
 326      *
 327      * <p>The unsigned {@code long} value is the argument plus
 328      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 329      * equal to the argument.  This value is converted to a string of
 330      * ASCII digits in octal (base&nbsp;8) with no extra leading
 331      * {@code 0}s.
 332      *
 333      * <p>The value of the argument can be recovered from the returned
 334      * string {@code s} by calling {@link
 335      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 336      * 8)}.
 337      *
 338      * <p>If the unsigned magnitude is zero, it is represented by a
 339      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 340      * otherwise, the first character of the representation of the
 341      * unsigned magnitude will not be the zero character. The
 342      * following characters are used as octal digits:
 343      *
 344      * <blockquote>
 345      *  {@code 01234567}
 346      * </blockquote>
 347      *
 348      * These are the characters {@code '\u005Cu0030'} through
 349      * {@code '\u005Cu0037'}.
 350      *
 351      * @param   i   a {@code long} to be converted to a string.
 352      * @return  the string representation of the unsigned {@code long}
 353      *          value represented by the argument in octal (base&nbsp;8).
 354      * @see #parseUnsignedLong(String, int)
 355      * @see #toUnsignedString(long, int)
 356      * @since   1.0.2
 357      */
 358     public static String toOctalString(long i) {
 359         return toUnsignedString0(i, 3);
 360     }
 361 
 362     /**
 363      * Returns a string representation of the {@code long}
 364      * argument as an unsigned integer in base&nbsp;2.
 365      *
 366      * <p>The unsigned {@code long} value is the argument plus
 367      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 368      * equal to the argument.  This value is converted to a string of
 369      * ASCII digits in binary (base&nbsp;2) with no extra leading
 370      * {@code 0}s.
 371      *
 372      * <p>The value of the argument can be recovered from the returned
 373      * string {@code s} by calling {@link
 374      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 375      * 2)}.
 376      *
 377      * <p>If the unsigned magnitude is zero, it is represented by a
 378      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 379      * otherwise, the first character of the representation of the
 380      * unsigned magnitude will not be the zero character. The
 381      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 382      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 383      *
 384      * @param   i   a {@code long} to be converted to a string.
 385      * @return  the string representation of the unsigned {@code long}
 386      *          value represented by the argument in binary (base&nbsp;2).
 387      * @see #parseUnsignedLong(String, int)
 388      * @see #toUnsignedString(long, int)
 389      * @since   1.0.2
 390      */
 391     public static String toBinaryString(long i) {
 392         return toUnsignedString0(i, 1);
 393     }
 394 
 395     /**
 396      * Format a long (treated as unsigned) into a String.
 397      * @param val the value to format
 398      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 399      */
 400     static String toUnsignedString0(long val, int shift) {
 401         // assert shift > 0 && shift <=5 : "Illegal shift value";
 402         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 403         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 404         byte[] buf = new byte[chars];
 405         formatUnsignedLong0(val, shift, buf, 0, chars);
 406         return String.newStringWithLatin1Bytes(buf);
 407     }
 408 
 409     /**
 410      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
 411      * {@code len} exceeds the formatted ASCII representation of {@code val},
 412      * {@code buf} will be padded with leading zeroes.
 413      *
 414      * @param val the unsigned long to format
 415      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 416      * @param buf the byte buffer to write to
 417      * @param offset the offset in the destination buffer to start at
 418      * @param len the number of characters to write
 419      */
 420     private static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
 421         int charPos = offset + len;
 422         int radix = 1 << shift;
 423         int mask = radix - 1;
 424         do {
 425             buf[--charPos] = Integer.digits[((int) val) & mask];
 426             val >>>= shift;
 427         } while (charPos > offset);
 428     }
 429 
 430     /**
 431      * Returns a {@code String} object representing the specified
 432      * {@code long}.  The argument is converted to signed decimal
 433      * representation and returned as a string, exactly as if the
 434      * argument and the radix 10 were given as arguments to the {@link
 435      * #toString(long, int)} method.
 436      *
 437      * @param   i   a {@code long} to be converted.
 438      * @return  a string representation of the argument in base&nbsp;10.
 439      */
 440     public static String toString(long i) {
 441         int size = DecimalDigits.stringSize(i);
 442         byte[] buf = new byte[size];
 443         DecimalDigits.uncheckedGetCharsLatin1(i, size, buf);
 444         return String.newStringWithLatin1Bytes(buf);
 445     }
 446 
 447     /**
 448      * Returns a string representation of the argument as an unsigned
 449      * decimal value.
 450      *
 451      * The argument is converted to unsigned decimal representation
 452      * and returned as a string exactly as if the argument and radix
 453      * 10 were given as arguments to the {@link #toUnsignedString(long,
 454      * int)} method.
 455      *
 456      * @param   i  an integer to be converted to an unsigned string.
 457      * @return  an unsigned string representation of the argument.
 458      * @see     #toUnsignedString(long, int)
 459      * @since 1.8
 460      */
 461     public static String toUnsignedString(long i) {
 462         return toUnsignedString(i, 10);
 463     }
 464 
 465     /**
 466      * Parses the string argument as a signed {@code long} in the
 467      * radix specified by the second argument. The characters in the
 468      * string must all be digits of the specified radix (as determined
 469      * by whether {@link java.lang.Character#digit(char, int)} returns
 470      * a nonnegative value), except that the first character may be an
 471      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 472      * indicate a negative value or an ASCII plus sign {@code '+'}
 473      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 474      * resulting {@code long} value is returned.
 475      *
 476      * <p>Note that neither the character {@code L}
 477      * ({@code '\u005Cu004C'}) nor {@code l}
 478      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 479      * of the string as a type indicator, as would be permitted in
 480      * Java programming language source code - except that either
 481      * {@code L} or {@code l} may appear as a digit for a
 482      * radix greater than or equal to 22.
 483      *
 484      * <p>An exception of type {@code NumberFormatException} is
 485      * thrown if any of the following situations occurs:
 486      * <ul>
 487      *
 488      * <li>The first argument is {@code null} or is a string of
 489      * length zero.
 490      *
 491      * <li>The {@code radix} is either smaller than {@link
 492      * java.lang.Character#MIN_RADIX} or larger than {@link
 493      * java.lang.Character#MAX_RADIX}.
 494      *
 495      * <li>Any character of the string is not a digit of the specified
 496      * radix, except that the first character may be a minus sign
 497      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 498      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 499      * longer than length 1.
 500      *
 501      * <li>The value represented by the string is not a value of type
 502      *      {@code long}.
 503      * </ul>
 504      *
 505      * <p>Examples:
 506      * <blockquote><pre>
 507      * parseLong("0", 10) returns 0L
 508      * parseLong("473", 10) returns 473L
 509      * parseLong("+42", 10) returns 42L
 510      * parseLong("-0", 10) returns 0L
 511      * parseLong("-FF", 16) returns -255L
 512      * parseLong("1100110", 2) returns 102L
 513      * parseLong("99", 8) throws a NumberFormatException
 514      * parseLong("Hazelnut", 10) throws a NumberFormatException
 515      * parseLong("Hazelnut", 36) returns 1356099454469L
 516      * </pre></blockquote>
 517      *
 518      * @param      s       the {@code String} containing the
 519      *                     {@code long} representation to be parsed.
 520      * @param      radix   the radix to be used while parsing {@code s}.
 521      * @return     the {@code long} represented by the string argument in
 522      *             the specified radix.
 523      * @throws     NumberFormatException  if the string does not contain a
 524      *             parsable {@code long}.
 525      */
 526     public static long parseLong(String s, int radix)
 527                 throws NumberFormatException {
 528         if (s == null) {
 529             throw new NumberFormatException("Cannot parse null string");
 530         }
 531 
 532         if (radix < Character.MIN_RADIX) {
 533             throw new NumberFormatException(String.format(
 534                 "radix %s less than Character.MIN_RADIX", radix));
 535         }
 536 
 537         if (radix > Character.MAX_RADIX) {
 538             throw new NumberFormatException(String.format(
 539                 "radix %s greater than Character.MAX_RADIX", radix));
 540         }
 541 
 542         int len = s.length();
 543         if (len == 0) {
 544             throw NumberFormatException.forInputString("", radix);
 545         }
 546         int digit = ~0xFF;
 547         int i = 0;
 548         char firstChar = s.charAt(i++);
 549         if (firstChar != '-' && firstChar != '+') {
 550             digit = digit(firstChar, radix);
 551         }
 552         if (digit >= 0 || digit == ~0xFF && len > 1) {
 553             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 554             long multmin = limit / radix;
 555             long result = -(digit & 0xFF);
 556             boolean inRange = true;
 557             /* Accumulating negatively avoids surprises near MAX_VALUE */
 558             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 559                     && (inRange = result > multmin
 560                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 561                 result = radix * result - digit;
 562             }
 563             if (inRange && i == len && digit >= 0) {
 564                 return firstChar != '-' ? -result : result;
 565             }
 566         }
 567         throw NumberFormatException.forInputString(s, radix);
 568     }
 569 
 570     /**
 571      * Parses the {@link CharSequence} argument as a signed {@code long} in
 572      * the specified {@code radix}, beginning at the specified
 573      * {@code beginIndex} and extending to {@code endIndex - 1}.
 574      *
 575      * <p>The method does not take steps to guard against the
 576      * {@code CharSequence} being mutated while parsing.
 577      *
 578      * @param      s   the {@code CharSequence} containing the {@code long}
 579      *                  representation to be parsed
 580      * @param      beginIndex   the beginning index, inclusive.
 581      * @param      endIndex     the ending index, exclusive.
 582      * @param      radix   the radix to be used while parsing {@code s}.
 583      * @return     the signed {@code long} represented by the subsequence in
 584      *             the specified radix.
 585      * @throws     NullPointerException  if {@code s} is null.
 586      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 587      *             negative, or if {@code beginIndex} is greater than
 588      *             {@code endIndex} or if {@code endIndex} is greater than
 589      *             {@code s.length()}.
 590      * @throws     NumberFormatException  if the {@code CharSequence} does not
 591      *             contain a parsable {@code long} in the specified
 592      *             {@code radix}, or if {@code radix} is either smaller than
 593      *             {@link java.lang.Character#MIN_RADIX} or larger than
 594      *             {@link java.lang.Character#MAX_RADIX}.
 595      * @since  9
 596      */
 597     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
 598                 throws NumberFormatException {
 599         Objects.requireNonNull(s);
 600         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 601 
 602         if (radix < Character.MIN_RADIX) {
 603             throw new NumberFormatException(String.format(
 604                 "radix %s less than Character.MIN_RADIX", radix));
 605         }
 606 
 607         if (radix > Character.MAX_RADIX) {
 608             throw new NumberFormatException(String.format(
 609                 "radix %s greater than Character.MAX_RADIX", radix));
 610         }
 611 
 612         /*
 613          * While s can be concurrently modified, it is ensured that each
 614          * of its characters is read at most once, from lower to higher indices.
 615          * This is obtained by reading them using the pattern s.charAt(i++),
 616          * and by not updating i anywhere else.
 617          */
 618         if (beginIndex == endIndex) {
 619             throw NumberFormatException.forInputString("", radix);
 620         }
 621         int digit = ~0xFF;  // ~0xFF means firstChar char is sign
 622         int i = beginIndex;
 623         char firstChar = s.charAt(i++);
 624         if (firstChar != '-' && firstChar != '+') {
 625             digit = digit(firstChar, radix);
 626         }
 627         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 628             long limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE;
 629             long multmin = limit / radix;
 630             long result = -(digit & 0xFF);
 631             boolean inRange = true;
 632             /* Accumulating negatively avoids surprises near MAX_VALUE */
 633             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 634                     && (inRange = result > multmin
 635                         || result == multmin && digit <= (int) (radix * multmin - limit))) {
 636                 result = radix * result - digit;
 637             }
 638             if (inRange && i == endIndex && digit >= 0) {
 639                 return firstChar != '-' ? -result : result;
 640             }
 641         }
 642         throw NumberFormatException.forCharSequence(s, beginIndex,
 643             endIndex, i - (digit < -1 ? 0 : 1));
 644     }
 645 
 646     /**
 647      * Parses the string argument as a signed decimal {@code long}.
 648      * The characters in the string must all be decimal digits, except
 649      * that the first character may be an ASCII minus sign {@code '-'}
 650      * ({@code \u005Cu002D'}) to indicate a negative value or an
 651      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 652      * indicate a positive value. The resulting {@code long} value is
 653      * returned, exactly as if the argument and the radix {@code 10}
 654      * were given as arguments to the {@link
 655      * #parseLong(java.lang.String, int)} method.
 656      *
 657      * <p>Note that neither the character {@code L}
 658      * ({@code '\u005Cu004C'}) nor {@code l}
 659      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 660      * of the string as a type indicator, as would be permitted in
 661      * Java programming language source code.
 662      *
 663      * @param      s   a {@code String} containing the {@code long}
 664      *             representation to be parsed
 665      * @return     the {@code long} represented by the argument in
 666      *             decimal.
 667      * @throws     NumberFormatException  if the string does not contain a
 668      *             parsable {@code long}.
 669      */
 670     public static long parseLong(String s) throws NumberFormatException {
 671         return parseLong(s, 10);
 672     }
 673 
 674     /**
 675      * Parses the string argument as an unsigned {@code long} in the
 676      * radix specified by the second argument.  An unsigned integer
 677      * maps the values usually associated with negative numbers to
 678      * positive numbers larger than {@code MAX_VALUE}.
 679      *
 680      * The characters in the string must all be digits of the
 681      * specified radix (as determined by whether {@link
 682      * java.lang.Character#digit(char, int)} returns a nonnegative
 683      * value), except that the first character may be an ASCII plus
 684      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 685      * integer value is returned.
 686      *
 687      * <p>An exception of type {@code NumberFormatException} is
 688      * thrown if any of the following situations occurs:
 689      * <ul>
 690      * <li>The first argument is {@code null} or is a string of
 691      * length zero.
 692      *
 693      * <li>The radix is either smaller than
 694      * {@link java.lang.Character#MIN_RADIX} or
 695      * larger than {@link java.lang.Character#MAX_RADIX}.
 696      *
 697      * <li>Any character of the string is not a digit of the specified
 698      * radix, except that the first character may be a plus sign
 699      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 700      * string is longer than length 1.
 701      *
 702      * <li>The value represented by the string is larger than the
 703      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 704      *
 705      * </ul>
 706      *
 707      *
 708      * @param      s   the {@code String} containing the unsigned integer
 709      *                  representation to be parsed
 710      * @param      radix   the radix to be used while parsing {@code s}.
 711      * @return     the unsigned {@code long} represented by the string
 712      *             argument in the specified radix.
 713      * @throws     NumberFormatException if the {@code String}
 714      *             does not contain a parsable {@code long}.
 715      * @since 1.8
 716      */
 717     public static long parseUnsignedLong(String s, int radix)
 718                 throws NumberFormatException {
 719         if (s == null)  {
 720             throw new NumberFormatException("Cannot parse null string");
 721         }
 722 
 723         if (radix < Character.MIN_RADIX) {
 724             throw new NumberFormatException(String.format(
 725                 "radix %s less than Character.MIN_RADIX", radix));
 726         }
 727 
 728         if (radix > Character.MAX_RADIX) {
 729             throw new NumberFormatException(String.format(
 730                 "radix %s greater than Character.MAX_RADIX", radix));
 731         }
 732 
 733         int len = s.length();
 734         if (len == 0) {
 735             throw NumberFormatException.forInputString(s, radix);
 736         }
 737         int i = 0;
 738         char firstChar = s.charAt(i++);
 739         if (firstChar == '-') {
 740             throw new NumberFormatException(String.format(
 741                 "Illegal leading minus sign on unsigned string %s.", s));
 742         }
 743         int digit = ~0xFF;
 744         if (firstChar != '+') {
 745             digit = digit(firstChar, radix);
 746         }
 747         if (digit >= 0 || digit == ~0xFF && len > 1) {
 748             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 749             long result = digit & 0xFF;
 750             boolean inRange = true;
 751             while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0
 752                     && (inRange = compareUnsigned(result, multmax) < 0
 753                         || result == multmax && digit < (int) (-radix * multmax))) {
 754                 result = radix * result + digit;
 755             }
 756             if (inRange && i == len && digit >= 0) {
 757                 return result;
 758             }
 759         }
 760         if (digit < 0) {
 761             throw NumberFormatException.forInputString(s, radix);
 762         }
 763         throw new NumberFormatException(String.format(
 764             "String value %s exceeds range of unsigned long.", s));
 765     }
 766 
 767     /**
 768      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
 769      * the specified {@code radix}, beginning at the specified
 770      * {@code beginIndex} and extending to {@code endIndex - 1}.
 771      *
 772      * <p>The method does not take steps to guard against the
 773      * {@code CharSequence} being mutated while parsing.
 774      *
 775      * @param      s   the {@code CharSequence} containing the unsigned
 776      *                 {@code long} representation to be parsed
 777      * @param      beginIndex   the beginning index, inclusive.
 778      * @param      endIndex     the ending index, exclusive.
 779      * @param      radix   the radix to be used while parsing {@code s}.
 780      * @return     the unsigned {@code long} represented by the subsequence in
 781      *             the specified radix.
 782      * @throws     NullPointerException  if {@code s} is null.
 783      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 784      *             negative, or if {@code beginIndex} is greater than
 785      *             {@code endIndex} or if {@code endIndex} is greater than
 786      *             {@code s.length()}.
 787      * @throws     NumberFormatException  if the {@code CharSequence} does not
 788      *             contain a parsable unsigned {@code long} in the specified
 789      *             {@code radix}, or if {@code radix} is either smaller than
 790      *             {@link java.lang.Character#MIN_RADIX} or larger than
 791      *             {@link java.lang.Character#MAX_RADIX}.
 792      * @since  9
 793      */
 794     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
 795                 throws NumberFormatException {
 796         Objects.requireNonNull(s);
 797         Objects.checkFromToIndex(beginIndex, endIndex, s.length());
 798 
 799         if (radix < Character.MIN_RADIX) {
 800             throw new NumberFormatException(String.format(
 801                 "radix %s less than Character.MIN_RADIX", radix));
 802         }
 803 
 804         if (radix > Character.MAX_RADIX) {
 805             throw new NumberFormatException(String.format(
 806                 "radix %s greater than Character.MAX_RADIX", radix));
 807         }
 808 
 809         /*
 810          * While s can be concurrently modified, it is ensured that each
 811          * of its characters is read at most once, from lower to higher indices.
 812          * This is obtained by reading them using the pattern s.charAt(i++),
 813          * and by not updating i anywhere else.
 814          */
 815         if (beginIndex == endIndex) {
 816             throw NumberFormatException.forInputString("", radix);
 817         }
 818         int i = beginIndex;
 819         char firstChar = s.charAt(i++);
 820         if (firstChar == '-') {
 821             throw new NumberFormatException(
 822                 "Illegal leading minus sign on unsigned string " + s + ".");
 823         }
 824         int digit = ~0xFF;
 825         if (firstChar != '+') {
 826             digit = digit(firstChar, radix);
 827         }
 828         if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) {
 829             long multmax = divideUnsigned(-1L, radix);  // -1L is max unsigned long
 830             long result = digit & 0xFF;
 831             boolean inRange = true;
 832             while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0
 833                     && (inRange = compareUnsigned(result, multmax) < 0
 834                         || result == multmax && digit < (int) (-radix * multmax))) {
 835                 result = radix * result + digit;
 836             }
 837             if (inRange && i == endIndex && digit >= 0) {
 838                 return result;
 839             }
 840         }
 841         if (digit < 0) {
 842             throw NumberFormatException.forCharSequence(s, beginIndex,
 843                 endIndex, i - (digit < -1 ? 0 : 1));
 844         }
 845         throw new NumberFormatException(String.format(
 846             "String value %s exceeds range of unsigned long.", s));
 847     }
 848 
 849     /**
 850      * Parses the string argument as an unsigned decimal {@code long}. The
 851      * characters in the string must all be decimal digits, except
 852      * that the first character may be an ASCII plus sign {@code
 853      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 854      * is returned, exactly as if the argument and the radix 10 were
 855      * given as arguments to the {@link
 856      * #parseUnsignedLong(java.lang.String, int)} method.
 857      *
 858      * @param s   a {@code String} containing the unsigned {@code long}
 859      *            representation to be parsed
 860      * @return    the unsigned {@code long} value represented by the decimal string argument
 861      * @throws    NumberFormatException  if the string does not contain a
 862      *            parsable unsigned integer.
 863      * @since 1.8
 864      */
 865     public static long parseUnsignedLong(String s) throws NumberFormatException {
 866         return parseUnsignedLong(s, 10);
 867     }
 868 
 869     /**
 870      * Returns a {@code Long} object holding the value
 871      * extracted from the specified {@code String} when parsed
 872      * with the radix given by the second argument.  The first
 873      * argument is interpreted as representing a signed
 874      * {@code long} in the radix specified by the second
 875      * argument, exactly as if the arguments were given to the {@link
 876      * #parseLong(java.lang.String, int)} method. The result is a
 877      * {@code Long} object that represents the {@code long}
 878      * value specified by the string.
 879      *
 880      * <p>In other words, this method returns a {@code Long} object equal
 881      * to the value of:
 882      *
 883      * <blockquote>
 884      *  {@code Long.valueOf(Long.parseLong(s, radix))}
 885      * </blockquote>
 886      *
 887      * @param      s       the string to be parsed
 888      * @param      radix   the radix to be used in interpreting {@code s}
 889      * @return     a {@code Long} object holding the value
 890      *             represented by the string argument in the specified
 891      *             radix.
 892      * @throws     NumberFormatException  If the {@code String} does not
 893      *             contain a parsable {@code long}.
 894      */
 895     public static Long valueOf(String s, int radix) throws NumberFormatException {
 896         return Long.valueOf(parseLong(s, radix));
 897     }
 898 
 899     /**
 900      * Returns a {@code Long} object holding the value
 901      * of the specified {@code String}. The argument is
 902      * interpreted as representing a signed decimal {@code long},
 903      * exactly as if the argument were given to the {@link
 904      * #parseLong(java.lang.String)} method. The result is a
 905      * {@code Long} object that represents the integer value
 906      * specified by the string.
 907      *
 908      * <p>In other words, this method returns a {@code Long} object
 909      * equal to the value of:
 910      *
 911      * <blockquote>
 912      *  {@code Long.valueOf(Long.parseLong(s))}
 913      * </blockquote>
 914      *
 915      * @param      s   the string to be parsed.
 916      * @return     a {@code Long} object holding the value
 917      *             represented by the string argument.
 918      * @throws     NumberFormatException  If the string cannot be parsed
 919      *             as a {@code long}.
 920      */
 921     public static Long valueOf(String s) throws NumberFormatException
 922     {
 923         return Long.valueOf(parseLong(s, 10));
 924     }
 925 
 926     private static final class LongCache {
 927         private LongCache() {}
 928 
 929         @Stable
 930         static final Long[] cache;
 931         static Long[] archivedCache;
 932 
 933         static {
 934             int size = -(-128) + 127 + 1;
 935 
 936             // Load and use the archived cache if it exists
 937             CDS.initializeFromArchive(LongCache.class);
 938             if (archivedCache == null) {
 939                 Long[] c = new Long[size];
 940                 long value = -128;
 941                 for(int i = 0; i < size; i++) {
 942                     c[i] = new Long(value++);
 943                 }
 944                 archivedCache = c;
 945             }
 946             cache = archivedCache;
 947             assert cache.length == size;
 948         }
 949     }
 950 
 951     /**
 952      * Returns a {@code Long} instance representing the specified
 953      * {@code long} value.
 954      * <div class="preview-block">
 955      *      <div class="preview-comment">
 956      *          <p>
 957      *              - When preview features are NOT enabled, {@code Long} is an identity class.
 958      *              If a new {@code Long} instance is not required, this method
 959      *              should generally be used in preference to the constructor
 960      *              {@link #Long(long)}, as this method is likely to yield
 961      *              significantly better space and time performance by caching
 962      *              frequently requested values.
 963      *              This method will always cache values in the range -128 to 127,
 964      *              inclusive, and may cache other values outside of this range.
 965      *          </p>
 966      *          <p>
 967      *              - When preview features are enabled, {@code Long} is a {@linkplain Class#isValue value class}.
 968      *              The {@code valueOf} behavior is the same as invoking the constructor,
 969      *              whether cached or not.
 970      *          </p>
 971      *      </div>
 972      * </div>
 973      *
 974      * @param  l a long value.
 975      * @return a {@code Long} instance representing {@code l}.
 976      * @since  1.5
 977      */
 978     @IntrinsicCandidate
 979     @DeserializeConstructor
 980     public static Long valueOf(long l) {
 981         if (!PreviewFeatures.isEnabled()) {
 982             if (l >= -128 && l <= 127) { // will cache
 983                 final int offset = 128;
 984                 return LongCache.cache[(int) l + offset];
 985             }
 986         }
 987         return new Long(l);
 988     }
 989 
 990     /**
 991      * Decodes a {@code String} into a {@code Long}.
 992      * Accepts decimal, hexadecimal, and octal numbers given by the
 993      * following grammar:
 994      *
 995      * <blockquote>
 996      * <dl>
 997      * <dt><i>DecodableString:</i>
 998      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 999      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1000      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1001      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1002      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1003      *
1004      * <dt><i>Sign:</i>
1005      * <dd>{@code -}
1006      * <dd>{@code +}
1007      * </dl>
1008      * </blockquote>
1009      *
1010      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1011      * are as defined in section {@jls 3.10.1} of
1012      * <cite>The Java Language Specification</cite>,
1013      * except that underscores are not accepted between digits.
1014      *
1015      * <p>The sequence of characters following an optional
1016      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1017      * "{@code #}", or leading zero) is parsed as by the {@code
1018      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1019      * This sequence of characters must represent a positive value or
1020      * a {@link NumberFormatException} will be thrown.  The result is
1021      * negated if first character of the specified {@code String} is
1022      * the minus sign.  No whitespace characters are permitted in the
1023      * {@code String}.
1024      *
1025      * @param     nm the {@code String} to decode.
1026      * @return    a {@code Long} object holding the {@code long}
1027      *            value represented by {@code nm}
1028      * @throws    NumberFormatException  if the {@code String} does not
1029      *            contain a parsable {@code long}.
1030      * @see java.lang.Long#parseLong(String, int)
1031      * @since 1.2
1032      */
1033     public static Long decode(String nm) throws NumberFormatException {
1034         int radix = 10;
1035         int index = 0;
1036         boolean negative = false;
1037         long result;
1038 
1039         if (nm.isEmpty())
1040             throw new NumberFormatException("Zero length string");
1041         char firstChar = nm.charAt(0);
1042         // Handle sign, if present
1043         if (firstChar == '-') {
1044             negative = true;
1045             index++;
1046         } else if (firstChar == '+')
1047             index++;
1048 
1049         // Handle radix specifier, if present
1050         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1051             index += 2;
1052             radix = 16;
1053         }
1054         else if (nm.startsWith("#", index)) {
1055             index ++;
1056             radix = 16;
1057         }
1058         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1059             index ++;
1060             radix = 8;
1061         }
1062 
1063         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1064             throw new NumberFormatException("Sign character in wrong position");
1065 
1066         try {
1067             result = parseLong(nm, index, nm.length(), radix);
1068             result = negative ? -result : result;
1069         } catch (NumberFormatException e) {
1070             // If number is Long.MIN_VALUE, we'll end up here. The next line
1071             // handles this case, and causes any genuine format error to be
1072             // rethrown.
1073             String constant = negative ? ("-" + nm.substring(index))
1074                                        : nm.substring(index);
1075             result = parseLong(constant, radix);
1076         }
1077         return result;
1078     }
1079 
1080     /**
1081      * The value of the {@code Long}.
1082      *
1083      * @serial
1084      */
1085     private final long value;
1086 
1087     /**
1088      * Constructs a newly allocated {@code Long} object that
1089      * represents the specified {@code long} argument.
1090      *
1091      * @param   value   the value to be represented by the
1092      *          {@code Long} object.
1093      *
1094      * @deprecated
1095      * It is rarely appropriate to use this constructor. The static factory
1096      * {@link #valueOf(long)} is generally a better choice, as it is
1097      * likely to yield significantly better space and time performance.
1098      */
1099     @Deprecated(since="9")
1100     public Long(long value) {
1101         this.value = value;
1102     }
1103 
1104     /**
1105      * Constructs a newly allocated {@code Long} object that
1106      * represents the {@code long} value indicated by the
1107      * {@code String} parameter. The string is converted to a
1108      * {@code long} value in exactly the manner used by the
1109      * {@code parseLong} method for radix 10.
1110      *
1111      * @param      s   the {@code String} to be converted to a
1112      *             {@code Long}.
1113      * @throws     NumberFormatException  if the {@code String} does not
1114      *             contain a parsable {@code long}.
1115      *
1116      * @deprecated
1117      * It is rarely appropriate to use this constructor.
1118      * Use {@link #parseLong(String)} to convert a string to a
1119      * {@code long} primitive, or use {@link #valueOf(String)}
1120      * to convert a string to a {@code Long} object.
1121      */
1122     @Deprecated(since="9")
1123     public Long(String s) throws NumberFormatException {
1124         this.value = parseLong(s, 10);
1125     }
1126 
1127     /**
1128      * Returns the value of this {@code Long} as a {@code byte} after
1129      * a narrowing primitive conversion.
1130      * @jls 5.1.3 Narrowing Primitive Conversion
1131      */
1132     public byte byteValue() {
1133         return (byte)value;
1134     }
1135 
1136     /**
1137      * Returns the value of this {@code Long} as a {@code short} after
1138      * a narrowing primitive conversion.
1139      * @jls 5.1.3 Narrowing Primitive Conversion
1140      */
1141     public short shortValue() {
1142         return (short)value;
1143     }
1144 
1145     /**
1146      * Returns the value of this {@code Long} as an {@code int} after
1147      * a narrowing primitive conversion.
1148      * @jls 5.1.3 Narrowing Primitive Conversion
1149      */
1150     public int intValue() {
1151         return (int)value;
1152     }
1153 
1154     /**
1155      * Returns the value of this {@code Long} as a
1156      * {@code long} value.
1157      */
1158     @IntrinsicCandidate
1159     public long longValue() {
1160         return value;
1161     }
1162 
1163     /**
1164      * Returns the value of this {@code Long} as a {@code float} after
1165      * a widening primitive conversion.
1166      * @jls 5.1.2 Widening Primitive Conversion
1167      */
1168     public float floatValue() {
1169         return (float)value;
1170     }
1171 
1172     /**
1173      * Returns the value of this {@code Long} as a {@code double}
1174      * after a widening primitive conversion.
1175      * @jls 5.1.2 Widening Primitive Conversion
1176      */
1177     public double doubleValue() {
1178         return (double)value;
1179     }
1180 
1181     /**
1182      * Returns a {@code String} object representing this
1183      * {@code Long}'s value.  The value is converted to signed
1184      * decimal representation and returned as a string, exactly as if
1185      * the {@code long} value were given as an argument to the
1186      * {@link java.lang.Long#toString(long)} method.
1187      *
1188      * @return  a string representation of the value of this object in
1189      *          base&nbsp;10.
1190      */
1191     public String toString() {
1192         return toString(value);
1193     }
1194 
1195     /**
1196      * Returns a hash code for this {@code Long}. The result is
1197      * the exclusive OR of the two halves of the primitive
1198      * {@code long} value held by this {@code Long}
1199      * object. That is, the hashcode is the value of the expression:
1200      *
1201      * <blockquote>
1202      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1203      * </blockquote>
1204      *
1205      * @return  a hash code value for this object.
1206      */
1207     @Override
1208     public int hashCode() {
1209         return Long.hashCode(value);
1210     }
1211 
1212     /**
1213      * Returns a hash code for a {@code long} value; compatible with
1214      * {@code Long.hashCode()}.
1215      *
1216      * @param value the value to hash
1217      * @return a hash code value for a {@code long} value.
1218      * @since 1.8
1219      */
1220     public static int hashCode(long value) {
1221         return (int)(value ^ (value >>> 32));
1222     }
1223 
1224     /**
1225      * Compares this object to the specified object.  The result is
1226      * {@code true} if and only if the argument is not
1227      * {@code null} and is a {@code Long} object that
1228      * contains the same {@code long} value as this object.
1229      *
1230      * @param   obj   the object to compare with.
1231      * @return  {@code true} if the objects are the same;
1232      *          {@code false} otherwise.
1233      */
1234     public boolean equals(Object obj) {
1235         if (obj instanceof Long ell) {
1236             return value == ell.longValue();
1237         }
1238         return false;
1239     }
1240 
1241     /**
1242      * Determines the {@code long} value of the system property
1243      * with the specified name.
1244      *
1245      * <p>The first argument is treated as the name of a system
1246      * property.  System properties are accessible through the {@link
1247      * java.lang.System#getProperty(java.lang.String)} method. The
1248      * string value of this property is then interpreted as a {@code
1249      * long} value using the grammar supported by {@link Long#decode decode}
1250      * and a {@code Long} object representing this value is returned.
1251      *
1252      * <p>If there is no property with the specified name, if the
1253      * specified name is empty or {@code null}, or if the property
1254      * does not have the correct numeric format, then {@code null} is
1255      * returned.
1256      *
1257      * <p>In other words, this method returns a {@code Long} object
1258      * equal to the value of:
1259      *
1260      * <blockquote>
1261      *  {@code getLong(nm, null)}
1262      * </blockquote>
1263      *
1264      * @param   nm   property name.
1265      * @return  the {@code Long} value of the property.
1266      * @see     java.lang.System#getProperty(java.lang.String)
1267      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1268      */
1269     public static Long getLong(String nm) {
1270         return getLong(nm, null);
1271     }
1272 
1273     /**
1274      * Determines the {@code long} value of the system property
1275      * with the specified name.
1276      *
1277      * <p>The first argument is treated as the name of a system
1278      * property.  System properties are accessible through the {@link
1279      * java.lang.System#getProperty(java.lang.String)} method. The
1280      * string value of this property is then interpreted as a {@code
1281      * long} value using the grammar supported by {@link Long#decode decode}
1282      * and a {@code Long} object representing this value is returned.
1283      *
1284      * <p>The second argument is the default value. A {@code Long} object
1285      * that represents the value of the second argument is returned if there
1286      * is no property of the specified name, if the property does not have
1287      * the correct numeric format, or if the specified name is empty or null.
1288      *
1289      * <p>In other words, this method returns a {@code Long} object equal
1290      * to the value of:
1291      *
1292      * <blockquote>
1293      *  {@code getLong(nm, Long.valueOf(val))}
1294      * </blockquote>
1295      *
1296      * but in practice it may be implemented in a manner such as:
1297      *
1298      * <blockquote><pre>
1299      * Long result = getLong(nm, null);
1300      * return (result == null) ? Long.valueOf(val) : result;
1301      * </pre></blockquote>
1302      *
1303      * to avoid the unnecessary allocation of a {@code Long} object when
1304      * the default value is not needed.
1305      *
1306      * @param   nm    property name.
1307      * @param   val   default value.
1308      * @return  the {@code Long} value of the property.
1309      * @see     java.lang.System#getProperty(java.lang.String)
1310      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1311      */
1312     public static Long getLong(String nm, long val) {
1313         Long result = Long.getLong(nm, null);
1314         return (result == null) ? Long.valueOf(val) : result;
1315     }
1316 
1317     /**
1318      * Returns the {@code long} value of the system property with
1319      * the specified name.  The first argument is treated as the name
1320      * of a system property.  System properties are accessible through
1321      * the {@link java.lang.System#getProperty(java.lang.String)}
1322      * method. The string value of this property is then interpreted
1323      * as a {@code long} value, as per the
1324      * {@link Long#decode decode} method, and a {@code Long} object
1325      * representing this value is returned; in summary:
1326      *
1327      * <ul>
1328      * <li>If the property value begins with the two ASCII characters
1329      * {@code 0x} or the ASCII character {@code #}, not followed by
1330      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1331      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1332      * with radix 16.
1333      * <li>If the property value begins with the ASCII character
1334      * {@code 0} followed by another character, it is parsed as
1335      * an octal integer exactly as by the method {@link
1336      * #valueOf(java.lang.String, int)} with radix 8.
1337      * <li>Otherwise the property value is parsed as a decimal
1338      * integer exactly as by the method
1339      * {@link #valueOf(java.lang.String, int)} with radix 10.
1340      * </ul>
1341      *
1342      * <p>Note that, in every case, neither {@code L}
1343      * ({@code '\u005Cu004C'}) nor {@code l}
1344      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1345      * of the property value as a type indicator, as would be
1346      * permitted in Java programming language source code.
1347      *
1348      * <p>The second argument is the default value. The default value is
1349      * returned if there is no property of the specified name, if the
1350      * property does not have the correct numeric format, or if the
1351      * specified name is empty or {@code null}.
1352      *
1353      * @param   nm   property name.
1354      * @param   val   default value.
1355      * @return  the {@code Long} value of the property.
1356      * @see     System#getProperty(java.lang.String)
1357      * @see     System#getProperty(java.lang.String, java.lang.String)
1358      */
1359     public static Long getLong(String nm, Long val) {
1360         String v = nm != null && !nm.isEmpty() ? System.getProperty(nm) : null;
1361         if (v != null) {
1362             try {
1363                 return Long.decode(v);
1364             } catch (NumberFormatException e) {
1365             }
1366         }
1367         return val;
1368     }
1369 
1370     /**
1371      * Compares two {@code Long} objects numerically.
1372      *
1373      * @param   anotherLong   the {@code Long} to be compared.
1374      * @return  the value {@code 0} if this {@code Long} is
1375      *          equal to the argument {@code Long}; a value less than
1376      *          {@code 0} if this {@code Long} is numerically less
1377      *          than the argument {@code Long}; and a value greater
1378      *          than {@code 0} if this {@code Long} is numerically
1379      *           greater than the argument {@code Long} (signed
1380      *           comparison).
1381      * @since   1.2
1382      */
1383     public int compareTo(Long anotherLong) {
1384         return compare(this.value, anotherLong.value);
1385     }
1386 
1387     /**
1388      * Compares two {@code long} values numerically.
1389      * The value returned is identical to what would be returned by:
1390      * <pre>
1391      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1392      * </pre>
1393      *
1394      * @param  x the first {@code long} to compare
1395      * @param  y the second {@code long} to compare
1396      * @return the value {@code 0} if {@code x == y};
1397      *         a value less than {@code 0} if {@code x < y}; and
1398      *         a value greater than {@code 0} if {@code x > y}
1399      * @since 1.7
1400      */
1401     public static int compare(long x, long y) {
1402         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1403     }
1404 
1405     /**
1406      * Compares two {@code long} values numerically treating the values
1407      * as unsigned.
1408      *
1409      * @param  x the first {@code long} to compare
1410      * @param  y the second {@code long} to compare
1411      * @return the value {@code 0} if {@code x == y}; a value less
1412      *         than {@code 0} if {@code x < y} as unsigned values; and
1413      *         a value greater than {@code 0} if {@code x > y} as
1414      *         unsigned values
1415      * @since 1.8
1416      */
1417     @IntrinsicCandidate
1418     public static int compareUnsigned(long x, long y) {
1419         return compare(x + MIN_VALUE, y + MIN_VALUE);
1420     }
1421 
1422 
1423     /**
1424      * Returns the unsigned quotient of dividing the first argument by
1425      * the second where each argument and the result is interpreted as
1426      * an unsigned value.
1427      *
1428      * <p>Note that in two's complement arithmetic, the three other
1429      * basic arithmetic operations of add, subtract, and multiply are
1430      * bit-wise identical if the two operands are regarded as both
1431      * being signed or both being unsigned.  Therefore separate {@code
1432      * addUnsigned}, etc. methods are not provided.
1433      *
1434      * @param dividend the value to be divided
1435      * @param divisor the value doing the dividing
1436      * @return the unsigned quotient of the first argument divided by
1437      * the second argument
1438      * @see #remainderUnsigned
1439      * @since 1.8
1440      */
1441     @IntrinsicCandidate
1442     public static long divideUnsigned(long dividend, long divisor) {
1443         /* See Hacker's Delight (2nd ed), section 9.3 */
1444         if (divisor >= 0) {
1445             final long q = (dividend >>> 1) / divisor << 1;
1446             final long r = dividend - q * divisor;
1447             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1448         }
1449         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1450     }
1451 
1452     /**
1453      * Returns the unsigned remainder from dividing the first argument
1454      * by the second where each argument and the result is interpreted
1455      * as an unsigned value.
1456      *
1457      * @param dividend the value to be divided
1458      * @param divisor the value doing the dividing
1459      * @return the unsigned remainder of the first argument divided by
1460      * the second argument
1461      * @see #divideUnsigned
1462      * @since 1.8
1463      */
1464     @IntrinsicCandidate
1465     public static long remainderUnsigned(long dividend, long divisor) {
1466         /* See Hacker's Delight (2nd ed), section 9.3 */
1467         if (divisor >= 0) {
1468             final long q = (dividend >>> 1) / divisor << 1;
1469             final long r = dividend - q * divisor;
1470             /*
1471              * Here, 0 <= r < 2 * divisor
1472              * (1) When 0 <= r < divisor, the remainder is simply r.
1473              * (2) Otherwise the remainder is r - divisor.
1474              *
1475              * In case (1), r - divisor < 0. Applying ~ produces a long with
1476              * sign bit 0, so >> produces 0. The returned value is thus r.
1477              *
1478              * In case (2), a similar reasoning shows that >> produces -1,
1479              * so the returned value is r - divisor.
1480              */
1481             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1482         }
1483         /*
1484          * (1) When dividend >= 0, the remainder is dividend.
1485          * (2) Otherwise
1486          *      (2.1) When dividend < divisor, the remainder is dividend.
1487          *      (2.2) Otherwise the remainder is dividend - divisor
1488          *
1489          * A reasoning similar to the above shows that the returned value
1490          * is as expected.
1491          */
1492         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1493     }
1494 
1495     // Bit Twiddling
1496 
1497     /**
1498      * The number of bits used to represent a {@code long} value in two's
1499      * complement binary form.
1500      *
1501      * @since 1.5
1502      */
1503     @Native public static final int SIZE = 64;
1504 
1505     /**
1506      * The number of bytes used to represent a {@code long} value in two's
1507      * complement binary form.
1508      *
1509      * @since 1.8
1510      */
1511     public static final int BYTES = SIZE / Byte.SIZE;
1512 
1513     /**
1514      * Returns a {@code long} value with at most a single one-bit, in the
1515      * position of the highest-order ("leftmost") one-bit in the specified
1516      * {@code long} value.  Returns zero if the specified value has no
1517      * one-bits in its two's complement binary representation, that is, if it
1518      * is equal to zero.
1519      *
1520      * @param i the value whose highest one bit is to be computed
1521      * @return a {@code long} value with a single one-bit, in the position
1522      *     of the highest-order one-bit in the specified value, or zero if
1523      *     the specified value is itself equal to zero.
1524      * @since 1.5
1525      */
1526     public static long highestOneBit(long i) {
1527         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1528     }
1529 
1530     /**
1531      * Returns a {@code long} value with at most a single one-bit, in the
1532      * position of the lowest-order ("rightmost") one-bit in the specified
1533      * {@code long} value.  Returns zero if the specified value has no
1534      * one-bits in its two's complement binary representation, that is, if it
1535      * is equal to zero.
1536      *
1537      * @param i the value whose lowest one bit is to be computed
1538      * @return a {@code long} value with a single one-bit, in the position
1539      *     of the lowest-order one-bit in the specified value, or zero if
1540      *     the specified value is itself equal to zero.
1541      * @since 1.5
1542      */
1543     public static long lowestOneBit(long i) {
1544         // HD, Section 2-1
1545         return i & -i;
1546     }
1547 
1548     /**
1549      * Returns the number of zero bits preceding the highest-order
1550      * ("leftmost") one-bit in the two's complement binary representation
1551      * of the specified {@code long} value.  Returns 64 if the
1552      * specified value has no one-bits in its two's complement representation,
1553      * in other words if it is equal to zero.
1554      *
1555      * <p>Note that this method is closely related to the logarithm base 2.
1556      * For all positive {@code long} values x:
1557      * <ul>
1558      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1559      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1560      * </ul>
1561      *
1562      * @param i the value whose number of leading zeros is to be computed
1563      * @return the number of zero bits preceding the highest-order
1564      *     ("leftmost") one-bit in the two's complement binary representation
1565      *     of the specified {@code long} value, or 64 if the value
1566      *     is equal to zero.
1567      * @since 1.5
1568      */
1569     @IntrinsicCandidate
1570     public static int numberOfLeadingZeros(long i) {
1571         int x = (int)(i >>> 32);
1572         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1573                 : Integer.numberOfLeadingZeros(x);
1574     }
1575 
1576     /**
1577      * Returns the number of zero bits following the lowest-order ("rightmost")
1578      * one-bit in the two's complement binary representation of the specified
1579      * {@code long} value.  Returns 64 if the specified value has no
1580      * one-bits in its two's complement representation, in other words if it is
1581      * equal to zero.
1582      *
1583      * @param i the value whose number of trailing zeros is to be computed
1584      * @return the number of zero bits following the lowest-order ("rightmost")
1585      *     one-bit in the two's complement binary representation of the
1586      *     specified {@code long} value, or 64 if the value is equal
1587      *     to zero.
1588      * @since 1.5
1589      */
1590     @IntrinsicCandidate
1591     public static int numberOfTrailingZeros(long i) {
1592         int x = (int)i;
1593         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1594                 : Integer.numberOfTrailingZeros(x);
1595     }
1596 
1597     /**
1598      * Returns the number of one-bits in the two's complement binary
1599      * representation of the specified {@code long} value.  This function is
1600      * sometimes referred to as the <i>population count</i>.
1601      *
1602      * @param i the value whose bits are to be counted
1603      * @return the number of one-bits in the two's complement binary
1604      *     representation of the specified {@code long} value.
1605      * @since 1.5
1606      */
1607      @IntrinsicCandidate
1608      public static int bitCount(long i) {
1609         // HD, Figure 5-2
1610         i = i - ((i >>> 1) & 0x5555555555555555L);
1611         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1612         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1613         i = i + (i >>> 8);
1614         i = i + (i >>> 16);
1615         i = i + (i >>> 32);
1616         return (int)i & 0x7f;
1617      }
1618 
1619     /**
1620      * Returns the value obtained by rotating the two's complement binary
1621      * representation of the specified {@code long} value left by the
1622      * specified number of bits.  (Bits shifted out of the left hand, or
1623      * high-order, side reenter on the right, or low-order.)
1624      *
1625      * <p>Note that left rotation with a negative distance is equivalent to
1626      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1627      * distance)}.  Note also that rotation by any multiple of 64 is a
1628      * no-op, so all but the last six bits of the rotation distance can be
1629      * ignored, even if the distance is negative: {@code rotateLeft(val,
1630      * distance) == rotateLeft(val, distance & 0x3F)}.
1631      *
1632      * @param i the value whose bits are to be rotated left
1633      * @param distance the number of bit positions to rotate left
1634      * @return the value obtained by rotating the two's complement binary
1635      *     representation of the specified {@code long} value left by the
1636      *     specified number of bits.
1637      * @since 1.5
1638      */
1639     public static long rotateLeft(long i, int distance) {
1640         return (i << distance) | (i >>> -distance);
1641     }
1642 
1643     /**
1644      * Returns the value obtained by rotating the two's complement binary
1645      * representation of the specified {@code long} value right by the
1646      * specified number of bits.  (Bits shifted out of the right hand, or
1647      * low-order, side reenter on the left, or high-order.)
1648      *
1649      * <p>Note that right rotation with a negative distance is equivalent to
1650      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1651      * distance)}.  Note also that rotation by any multiple of 64 is a
1652      * no-op, so all but the last six bits of the rotation distance can be
1653      * ignored, even if the distance is negative: {@code rotateRight(val,
1654      * distance) == rotateRight(val, distance & 0x3F)}.
1655      *
1656      * @param i the value whose bits are to be rotated right
1657      * @param distance the number of bit positions to rotate right
1658      * @return the value obtained by rotating the two's complement binary
1659      *     representation of the specified {@code long} value right by the
1660      *     specified number of bits.
1661      * @since 1.5
1662      */
1663     public static long rotateRight(long i, int distance) {
1664         return (i >>> distance) | (i << -distance);
1665     }
1666 
1667     /**
1668      * Returns the value obtained by reversing the order of the bits in the
1669      * two's complement binary representation of the specified {@code long}
1670      * value.
1671      *
1672      * @param i the value to be reversed
1673      * @return the value obtained by reversing order of the bits in the
1674      *     specified {@code long} value.
1675      * @since 1.5
1676      */
1677     @IntrinsicCandidate
1678     public static long reverse(long i) {
1679         // HD, Figure 7-1
1680         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1681         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1682         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1683 
1684         return reverseBytes(i);
1685     }
1686 
1687     /**
1688      * Returns the value obtained by compressing the bits of the
1689      * specified {@code long} value, {@code i}, in accordance with
1690      * the specified bit mask.
1691      * <p>
1692      * For each one-bit value {@code mb} of the mask, from least
1693      * significant to most significant, the bit value of {@code i} at
1694      * the same bit location as {@code mb} is assigned to the compressed
1695      * value contiguously starting from the least significant bit location.
1696      * All the upper remaining bits of the compressed value are set
1697      * to zero.
1698      *
1699      * @apiNote
1700      * Consider the simple case of compressing the digits of a hexadecimal
1701      * value:
1702      * {@snippet lang="java" :
1703      * // Compressing drink to food
1704      * compress(0xCAFEBABEL, 0xFF00FFF0L) == 0xCABABL
1705      * }
1706      * Starting from the least significant hexadecimal digit at position 0
1707      * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits
1708      * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits
1709      * occur in the resulting compressed value contiguously from digit position
1710      * 0 in the same order.
1711      * <p>
1712      * The following identities all return {@code true} and are helpful to
1713      * understand the behaviour of {@code compress}:
1714      * {@snippet lang="java" :
1715      * // Returns 1 if the bit at position n is one
1716      * compress(x, 1L << n) == (x >> n & 1)
1717      *
1718      * // Logical shift right
1719      * compress(x, -1L << n) == x >>> n
1720      *
1721      * // Any bits not covered by the mask are ignored
1722      * compress(x, m) == compress(x & m, m)
1723      *
1724      * // Compressing a value by itself
1725      * compress(m, m) == (m == -1 || m == 0) ? m : (1L << bitCount(m)) - 1
1726      *
1727      * // Expanding then compressing with the same mask
1728      * compress(expand(x, m), m) == x & compress(m, m)
1729      * }
1730      * <p>
1731      * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7)
1732      * can be implemented as follows:
1733      * {@snippet lang="java" :
1734      * long compressLeft(long i, long mask) {
1735      *     // This implementation follows the description in Hacker's Delight which
1736      *     // is informative. A more optimal implementation is:
1737      *     //   Long.compress(i, mask) << -Long.bitCount(mask)
1738      *     return Long.reverse(
1739      *         Long.compress(Long.reverse(i), Long.reverse(mask)));
1740      * }
1741      *
1742      * long sag(long i, long mask) {
1743      *     return compressLeft(i, mask) | Long.compress(i, ~mask);
1744      * }
1745      *
1746      * // Separate the sheep from the goats
1747      * sag(0x00000000_CAFEBABEL, 0xFFFFFFFF_FF00FFF0L) == 0x00000000_CABABFEEL
1748      * }
1749      *
1750      * @param i the value whose bits are to be compressed
1751      * @param mask the bit mask
1752      * @return the compressed value
1753      * @see #expand
1754      * @since 19
1755      */
1756     @IntrinsicCandidate
1757     public static long compress(long i, long mask) {
1758         // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract
1759 
1760         i = i & mask; // Clear irrelevant bits
1761         long maskCount = ~mask << 1; // Count 0's to right
1762 
1763         for (int j = 0; j < 6; j++) {
1764             // Parallel prefix
1765             // Mask prefix identifies bits of the mask that have an odd number of 0's to the right
1766             long maskPrefix = parallelSuffix(maskCount);
1767             // Bits to move
1768             long maskMove = maskPrefix & mask;
1769             // Compress mask
1770             mask = (mask ^ maskMove) | (maskMove >>> (1 << j));
1771             // Bits of i to be moved
1772             long t = i & maskMove;
1773             // Compress i
1774             i = (i ^ t) | (t >>> (1 << j));
1775             // Adjust the mask count by identifying bits that have 0 to the right
1776             maskCount = maskCount & ~maskPrefix;
1777         }
1778         return i;
1779     }
1780 
1781     /**
1782      * Returns the value obtained by expanding the bits of the
1783      * specified {@code long} value, {@code i}, in accordance with
1784      * the specified bit mask.
1785      * <p>
1786      * For each one-bit value {@code mb} of the mask, from least
1787      * significant to most significant, the next contiguous bit value
1788      * of {@code i} starting at the least significant bit is assigned
1789      * to the expanded value at the same bit location as {@code mb}.
1790      * All other remaining bits of the expanded value are set to zero.
1791      *
1792      * @apiNote
1793      * Consider the simple case of expanding the digits of a hexadecimal
1794      * value:
1795      * {@snippet lang="java" :
1796      * expand(0x0000CABABL, 0xFF00FFF0L) == 0xCA00BAB0L
1797      * }
1798      * Starting from the least significant hexadecimal digit at position 0
1799      * from the right, the mask {@code 0xFF00FFF0} selects the first five
1800      * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur
1801      * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7.
1802      * <p>
1803      * The following identities all return {@code true} and are helpful to
1804      * understand the behaviour of {@code expand}:
1805      * {@snippet lang="java" :
1806      * // Logically shift right the bit at position 0
1807      * expand(x, 1L << n) == (x & 1) << n
1808      *
1809      * // Logically shift right
1810      * expand(x, -1L << n) == x << n
1811      *
1812      * // Expanding all bits returns the mask
1813      * expand(-1L, m) == m
1814      *
1815      * // Any bits not covered by the mask are ignored
1816      * expand(x, m) == expand(x, m) & m
1817      *
1818      * // Compressing then expanding with the same mask
1819      * expand(compress(x, m), m) == x & m
1820      * }
1821      * <p>
1822      * The select operation for determining the position of the one-bit with
1823      * index {@code n} in a {@code long} value can be implemented as follows:
1824      * {@snippet lang="java" :
1825      * long select(long i, long n) {
1826      *     // the one-bit in i (the mask) with index n
1827      *     long nthBit = Long.expand(1L << n, i);
1828      *     // the bit position of the one-bit with index n
1829      *     return Long.numberOfTrailingZeros(nthBit);
1830      * }
1831      *
1832      * // The one-bit with index 0 is at bit position 1
1833      * select(0b10101010_10101010, 0) == 1
1834      * // The one-bit with index 3 is at bit position 7
1835      * select(0b10101010_10101010, 3) == 7
1836      * }
1837      *
1838      * @param i the value whose bits are to be expanded
1839      * @param mask the bit mask
1840      * @return the expanded value
1841      * @see #compress
1842      * @since 19
1843      */
1844     @IntrinsicCandidate
1845     public static long expand(long i, long mask) {
1846         // Save original mask
1847         long originalMask = mask;
1848         // Count 0's to right
1849         long maskCount = ~mask << 1;
1850         long maskPrefix = parallelSuffix(maskCount);
1851         // Bits to move
1852         long maskMove1 = maskPrefix & mask;
1853         // Compress mask
1854         mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0));
1855         maskCount = maskCount & ~maskPrefix;
1856 
1857         maskPrefix = parallelSuffix(maskCount);
1858         // Bits to move
1859         long maskMove2 = maskPrefix & mask;
1860         // Compress mask
1861         mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1));
1862         maskCount = maskCount & ~maskPrefix;
1863 
1864         maskPrefix = parallelSuffix(maskCount);
1865         // Bits to move
1866         long maskMove3 = maskPrefix & mask;
1867         // Compress mask
1868         mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2));
1869         maskCount = maskCount & ~maskPrefix;
1870 
1871         maskPrefix = parallelSuffix(maskCount);
1872         // Bits to move
1873         long maskMove4 = maskPrefix & mask;
1874         // Compress mask
1875         mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3));
1876         maskCount = maskCount & ~maskPrefix;
1877 
1878         maskPrefix = parallelSuffix(maskCount);
1879         // Bits to move
1880         long maskMove5 = maskPrefix & mask;
1881         // Compress mask
1882         mask = (mask ^ maskMove5) | (maskMove5 >>> (1 << 4));
1883         maskCount = maskCount & ~maskPrefix;
1884 
1885         maskPrefix = parallelSuffix(maskCount);
1886         // Bits to move
1887         long maskMove6 = maskPrefix & mask;
1888 
1889         long t = i << (1 << 5);
1890         i = (i & ~maskMove6) | (t & maskMove6);
1891         t = i << (1 << 4);
1892         i = (i & ~maskMove5) | (t & maskMove5);
1893         t = i << (1 << 3);
1894         i = (i & ~maskMove4) | (t & maskMove4);
1895         t = i << (1 << 2);
1896         i = (i & ~maskMove3) | (t & maskMove3);
1897         t = i << (1 << 1);
1898         i = (i & ~maskMove2) | (t & maskMove2);
1899         t = i << (1 << 0);
1900         i = (i & ~maskMove1) | (t & maskMove1);
1901 
1902         // Clear irrelevant bits
1903         return i & originalMask;
1904     }
1905 
1906     @ForceInline
1907     private static long parallelSuffix(long maskCount) {
1908         long maskPrefix = maskCount ^ (maskCount << 1);
1909         maskPrefix = maskPrefix ^ (maskPrefix << 2);
1910         maskPrefix = maskPrefix ^ (maskPrefix << 4);
1911         maskPrefix = maskPrefix ^ (maskPrefix << 8);
1912         maskPrefix = maskPrefix ^ (maskPrefix << 16);
1913         maskPrefix = maskPrefix ^ (maskPrefix << 32);
1914         return maskPrefix;
1915     }
1916 
1917     /**
1918      * Returns the signum function of the specified {@code long} value.  (The
1919      * return value is -1 if the specified value is negative; 0 if the
1920      * specified value is zero; and 1 if the specified value is positive.)
1921      *
1922      * @param i the value whose signum is to be computed
1923      * @return the signum function of the specified {@code long} value.
1924      * @since 1.5
1925      */
1926     public static int signum(long i) {
1927         // HD, Section 2-7
1928         return (int) ((i >> 63) | (-i >>> 63));
1929     }
1930 
1931     /**
1932      * Returns the value obtained by reversing the order of the bytes in the
1933      * two's complement representation of the specified {@code long} value.
1934      *
1935      * @param i the value whose bytes are to be reversed
1936      * @return the value obtained by reversing the bytes in the specified
1937      *     {@code long} value.
1938      * @since 1.5
1939      */
1940     @IntrinsicCandidate
1941     public static long reverseBytes(long i) {
1942         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1943         return (i << 48) | ((i & 0xffff0000L) << 16) |
1944             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1945     }
1946 
1947     /**
1948      * Adds two {@code long} values together as per the + operator.
1949      *
1950      * @param a the first operand
1951      * @param b the second operand
1952      * @return the sum of {@code a} and {@code b}
1953      * @see java.util.function.BinaryOperator
1954      * @since 1.8
1955      */
1956     public static long sum(long a, long b) {
1957         return a + b;
1958     }
1959 
1960     /**
1961      * Returns the greater of two {@code long} values
1962      * as if by calling {@link Math#max(long, long) Math.max}.
1963      *
1964      * @param a the first operand
1965      * @param b the second operand
1966      * @return the greater of {@code a} and {@code b}
1967      * @see java.util.function.BinaryOperator
1968      * @since 1.8
1969      */
1970     public static long max(long a, long b) {
1971         return Math.max(a, b);
1972     }
1973 
1974     /**
1975      * Returns the smaller of two {@code long} values
1976      * as if by calling {@link Math#min(long, long) Math.min}.
1977      *
1978      * @param a the first operand
1979      * @param b the second operand
1980      * @return the smaller of {@code a} and {@code b}
1981      * @see java.util.function.BinaryOperator
1982      * @since 1.8
1983      */
1984     public static long min(long a, long b) {
1985         return Math.min(a, b);
1986     }
1987 
1988     /**
1989      * Returns an {@link Optional} containing the nominal descriptor for this
1990      * instance, which is the instance itself.
1991      *
1992      * @return an {@link Optional} describing the {@linkplain Long} instance
1993      * @since 12
1994      */
1995     @Override
1996     public Optional<Long> describeConstable() {
1997         return Optional.of(this);
1998     }
1999 
2000     /**
2001      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2002      * the instance itself.
2003      *
2004      * @param lookup ignored
2005      * @return the {@linkplain Long} instance
2006      * @since 12
2007      */
2008     @Override
2009     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
2010         return this;
2011     }
2012 
2013     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2014     @java.io.Serial
2015     @Native private static final long serialVersionUID = 4290774380558885855L;
2016 }