1 /* 2 * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.lang.invoke; 26 27 import sun.invoke.util.Wrapper; 28 29 import java.lang.reflect.Modifier; 30 31 import static java.lang.invoke.MethodHandleInfo.*; 32 import static sun.invoke.util.Wrapper.forPrimitiveType; 33 import static sun.invoke.util.Wrapper.forWrapperType; 34 import static sun.invoke.util.Wrapper.isWrapperType; 35 36 /** 37 * Abstract implementation of a lambda metafactory which provides parameter 38 * unrolling and input validation. 39 * 40 * @see LambdaMetafactory 41 */ 42 /* package */ abstract class AbstractValidatingLambdaMetafactory { 43 44 /* 45 * For context, the comments for the following fields are marked in quotes 46 * with their values, given this program: 47 * interface II<T> { Object foo(T x); } 48 * interface JJ<R extends Number> extends II<R> { } 49 * class CC { String impl(int i) { return "impl:"+i; }} 50 * class X { 51 * public static void main(String[] args) { 52 * JJ<Integer> iii = (new CC())::impl; 53 * System.out.printf(">>> %s\n", iii.foo(44)); 54 * }} 55 */ 56 final MethodHandles.Lookup caller; // The caller's lookup context 57 final Class<?> targetClass; // The class calling the meta-factory via invokedynamic "class X" 58 final MethodType factoryType; // The type of the invoked method "(CC)II" 59 final Class<?> interfaceClass; // The type of the returned instance "interface JJ" 60 final String interfaceMethodName; // Name of the method to implement "foo" 61 final MethodType interfaceMethodType; // Type of the method to implement "(Object)Object" 62 final MethodHandle implementation; // Raw method handle for the implementation method 63 final MethodType implMethodType; // Type of the implementation MethodHandle "(CC,int)String" 64 final MethodHandleInfo implInfo; // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]" 65 final int implKind; // Invocation kind for implementation "5"=invokevirtual 66 final boolean implIsInstanceMethod; // Is the implementation an instance method "true" 67 final Class<?> implClass; // Class for referencing the implementation method "class CC" 68 final MethodType dynamicMethodType; // Dynamically checked method type "(Integer)Object" 69 final boolean isSerializable; // Should the returned instance be serializable 70 final Class<?>[] altInterfaces; // Additional interfaces to be implemented 71 final MethodType[] altMethods; // Signatures of additional methods to bridge 72 73 74 /** 75 * Meta-factory constructor. 76 * 77 * @param caller Stacked automatically by VM; represents a lookup context 78 * with the accessibility privileges of the caller. 79 * @param factoryType Stacked automatically by VM; the signature of the 80 * invoked method, which includes the expected static 81 * type of the returned lambda object, and the static 82 * types of the captured arguments for the lambda. In 83 * the event that the implementation method is an 84 * instance method, the first argument in the invocation 85 * signature will correspond to the receiver. 86 * @param interfaceMethodName Name of the method in the functional interface to 87 * which the lambda or method reference is being 88 * converted, represented as a String. 89 * @param interfaceMethodType Type of the method in the functional interface to 90 * which the lambda or method reference is being 91 * converted, represented as a MethodType. 92 * @param implementation The implementation method which should be called 93 * (with suitable adaptation of argument types, return 94 * types, and adjustment for captured arguments) when 95 * methods of the resulting functional interface instance 96 * are invoked. 97 * @param dynamicMethodType The signature of the primary functional 98 * interface method after type variables are 99 * substituted with their instantiation from 100 * the capture site 101 * @param isSerializable Should the lambda be made serializable? If set, 102 * either the target type or one of the additional SAM 103 * types must extend {@code Serializable}. 104 * @param altInterfaces Additional interfaces which the lambda object 105 * should implement. 106 * @param altMethods Method types for additional signatures to be 107 * implemented by invoking the implementation method 108 * @throws LambdaConversionException If any of the meta-factory protocol 109 * invariants are violated 110 * @throws SecurityException If a security manager is present, and it 111 * <a href="MethodHandles.Lookup.html#secmgr">denies access</a> 112 * from {@code caller} to the package of {@code implementation}. 113 */ 114 AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller, 115 MethodType factoryType, 116 String interfaceMethodName, 117 MethodType interfaceMethodType, 118 MethodHandle implementation, 119 MethodType dynamicMethodType, 120 boolean isSerializable, 121 Class<?>[] altInterfaces, 122 MethodType[] altMethods) 123 throws LambdaConversionException { 124 if (!caller.hasFullPrivilegeAccess()) { 125 throw new LambdaConversionException(String.format( 126 "Invalid caller: %s", 127 caller.lookupClass().getName())); 128 } 129 this.caller = caller; 130 this.targetClass = caller.lookupClass(); 131 this.factoryType = factoryType; 132 133 this.interfaceClass = factoryType.returnType(); 134 135 this.interfaceMethodName = interfaceMethodName; 136 this.interfaceMethodType = interfaceMethodType; 137 138 this.implementation = implementation; 139 this.implMethodType = implementation.type(); 140 try { 141 this.implInfo = caller.revealDirect(implementation); // may throw SecurityException 142 } catch (IllegalArgumentException e) { 143 throw new LambdaConversionException(implementation + " is not direct or cannot be cracked"); 144 } 145 switch (implInfo.getReferenceKind()) { 146 case REF_invokeVirtual: 147 case REF_invokeInterface: 148 this.implClass = implMethodType.parameterType(0); 149 // reference kind reported by implInfo may not match implMethodType's first param 150 // Example: implMethodType is (Cloneable)String, implInfo is for Object.toString 151 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 152 this.implIsInstanceMethod = true; 153 break; 154 case REF_invokeSpecial: 155 // JDK-8172817: should use referenced class here, but we don't know what it was 156 this.implClass = implInfo.getDeclaringClass(); 157 this.implIsInstanceMethod = true; 158 159 // Classes compiled prior to dynamic nestmate support invoke a private instance 160 // method with REF_invokeSpecial. Newer classes use REF_invokeVirtual or 161 // REF_invokeInterface, and we can use that instruction in the lambda class. 162 if (targetClass == implClass && Modifier.isPrivate(implInfo.getModifiers())) { 163 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 164 } else { 165 this.implKind = REF_invokeSpecial; 166 } 167 break; 168 case REF_invokeStatic: 169 case REF_newInvokeSpecial: 170 // JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was 171 this.implClass = implInfo.getDeclaringClass(); 172 this.implKind = implInfo.getReferenceKind(); 173 this.implIsInstanceMethod = false; 174 break; 175 default: 176 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo)); 177 } 178 179 this.dynamicMethodType = dynamicMethodType; 180 this.isSerializable = isSerializable; 181 this.altInterfaces = altInterfaces; 182 this.altMethods = altMethods; 183 184 if (interfaceMethodName.isEmpty() || 185 interfaceMethodName.indexOf('.') >= 0 || 186 interfaceMethodName.indexOf(';') >= 0 || 187 interfaceMethodName.indexOf('[') >= 0 || 188 interfaceMethodName.indexOf('/') >= 0 || 189 interfaceMethodName.indexOf('<') >= 0 || 190 interfaceMethodName.indexOf('>') >= 0) { 191 throw new LambdaConversionException(String.format( 192 "Method name '%s' is not legal", 193 interfaceMethodName)); 194 } 195 196 if (!interfaceClass.isInterface()) { 197 throw new LambdaConversionException(String.format( 198 "%s is not an interface", 199 interfaceClass.getName())); 200 } 201 202 for (Class<?> c : altInterfaces) { 203 if (!c.isInterface()) { 204 throw new LambdaConversionException(String.format( 205 "%s is not an interface", 206 c.getName())); 207 } 208 } 209 } 210 211 /** 212 * Build the CallSite. 213 * 214 * @return a CallSite, which, when invoked, will return an instance of the 215 * functional interface 216 * @throws LambdaConversionException 217 */ 218 abstract CallSite buildCallSite() 219 throws LambdaConversionException; 220 221 /** 222 * Check the meta-factory arguments for errors 223 * @throws LambdaConversionException if there are improper conversions 224 */ 225 void validateMetafactoryArgs() throws LambdaConversionException { 226 // Check arity: captured + SAM == impl 227 final int implArity = implMethodType.parameterCount(); 228 final int capturedArity = factoryType.parameterCount(); 229 final int samArity = interfaceMethodType.parameterCount(); 230 final int dynamicArity = dynamicMethodType.parameterCount(); 231 if (implArity != capturedArity + samArity) { 232 throw new LambdaConversionException( 233 String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters", 234 implIsInstanceMethod ? "instance" : "static", implInfo, 235 capturedArity, samArity, implArity)); 236 } 237 if (dynamicArity != samArity) { 238 throw new LambdaConversionException( 239 String.format("Incorrect number of parameters for %s method %s; %d dynamic parameters, %d functional interface method parameters", 240 implIsInstanceMethod ? "instance" : "static", implInfo, 241 dynamicArity, samArity)); 242 } 243 for (MethodType bridgeMT : altMethods) { 244 if (bridgeMT.parameterCount() != samArity) { 245 throw new LambdaConversionException( 246 String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s", 247 bridgeMT, interfaceMethodType)); 248 } 249 } 250 251 // If instance: first captured arg (receiver) must be subtype of class where impl method is defined 252 final int capturedStart; // index of first non-receiver capture parameter in implMethodType 253 final int samStart; // index of first non-receiver sam parameter in implMethodType 254 if (implIsInstanceMethod) { 255 final Class<?> receiverClass; 256 257 // implementation is an instance method, adjust for receiver in captured variables / SAM arguments 258 if (capturedArity == 0) { 259 // receiver is function parameter 260 capturedStart = 0; 261 samStart = 1; 262 receiverClass = dynamicMethodType.parameterType(0); 263 } else { 264 // receiver is a captured variable 265 capturedStart = 1; 266 samStart = capturedArity; 267 receiverClass = factoryType.parameterType(0); 268 } 269 270 // check receiver type 271 if (!implClass.isAssignableFrom(receiverClass)) { 272 throw new LambdaConversionException( 273 String.format("Invalid receiver type %s; not a subtype of implementation type %s", 274 receiverClass, implClass)); 275 } 276 } else { 277 // no receiver 278 capturedStart = 0; 279 samStart = capturedArity; 280 } 281 282 // Check for exact match on non-receiver captured arguments 283 for (int i=capturedStart; i<capturedArity; i++) { 284 Class<?> implParamType = implMethodType.parameterType(i); 285 Class<?> capturedParamType = factoryType.parameterType(i); 286 if (!capturedParamType.equals(implParamType)) { 287 throw new LambdaConversionException( 288 String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s", 289 i, capturedParamType, implParamType)); 290 } 291 } 292 // Check for adaptation match on non-receiver SAM arguments 293 for (int i=samStart; i<implArity; i++) { 294 Class<?> implParamType = implMethodType.parameterType(i); 295 Class<?> dynamicParamType = dynamicMethodType.parameterType(i - capturedArity); 296 if (!isAdaptableTo(dynamicParamType, implParamType, true)) { 297 throw new LambdaConversionException( 298 String.format("Type mismatch for lambda argument %d: %s is not convertible to %s", 299 i, dynamicParamType, implParamType)); 300 } 301 } 302 303 // Adaptation match: return type 304 Class<?> expectedType = dynamicMethodType.returnType(); 305 Class<?> actualReturnType = implMethodType.returnType(); 306 if (!isAdaptableToAsReturn(actualReturnType, expectedType)) { 307 throw new LambdaConversionException( 308 String.format("Type mismatch for lambda return: %s is not convertible to %s", 309 actualReturnType, expectedType)); 310 } 311 312 // Check descriptors of generated methods 313 checkDescriptor(interfaceMethodType); 314 for (MethodType bridgeMT : altMethods) { 315 checkDescriptor(bridgeMT); 316 } 317 } 318 319 /** Validate that the given descriptor's types are compatible with {@code dynamicMethodType} **/ 320 private void checkDescriptor(MethodType descriptor) throws LambdaConversionException { 321 for (int i = 0; i < dynamicMethodType.parameterCount(); i++) { 322 Class<?> dynamicParamType = dynamicMethodType.parameterType(i); 323 Class<?> descriptorParamType = descriptor.parameterType(i); 324 if (!descriptorParamType.isAssignableFrom(dynamicParamType)) { 325 String msg = String.format("Type mismatch for dynamic parameter %d: %s is not a subtype of %s", 326 i, dynamicParamType, descriptorParamType); 327 throw new LambdaConversionException(msg); 328 } 329 } 330 331 Class<?> dynamicReturnType = dynamicMethodType.returnType(); 332 Class<?> descriptorReturnType = descriptor.returnType(); 333 if (!isAdaptableToAsReturnStrict(dynamicReturnType, descriptorReturnType)) { 334 String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s", 335 dynamicReturnType, descriptorReturnType); 336 throw new LambdaConversionException(msg); 337 } 338 } 339 340 /** 341 * Check type adaptability for parameter types. 342 * @param fromType Type to convert from 343 * @param toType Type to convert to 344 * @param strict If true, do strict checks, else allow that fromType may be parameterized 345 * @return True if 'fromType' can be passed to an argument of 'toType' 346 */ 347 private boolean isAdaptableTo(Class<?> fromType, Class<?> toType, boolean strict) { 348 if (fromType.equals(toType)) { 349 return true; 350 } 351 if (fromType.isPrimitive()) { 352 Wrapper wfrom = forPrimitiveType(fromType); 353 if (toType.isPrimitive()) { 354 // both are primitive: widening 355 Wrapper wto = forPrimitiveType(toType); 356 return wto.isConvertibleFrom(wfrom); 357 } else { 358 // from primitive to reference: boxing 359 return toType.isAssignableFrom(wfrom.wrapperType()); 360 } 361 } else { 362 if (toType.isPrimitive()) { 363 // from reference to primitive: unboxing 364 Wrapper wfrom; 365 if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) { 366 // fromType is a primitive wrapper; unbox+widen 367 Wrapper wto = forPrimitiveType(toType); 368 return wto.isConvertibleFrom(wfrom); 369 } else { 370 // must be convertible to primitive 371 return !strict; 372 } 373 } else { 374 // both are reference types: fromType should be a superclass of toType. 375 return !strict || toType.isAssignableFrom(fromType); 376 } 377 } 378 } 379 380 /** 381 * Check type adaptability for return types -- 382 * special handling of void type) and parameterized fromType 383 * @return True if 'fromType' can be converted to 'toType' 384 */ 385 private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) { 386 return toType.equals(void.class) 387 || !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false); 388 } 389 private boolean isAdaptableToAsReturnStrict(Class<?> fromType, Class<?> toType) { 390 if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType); 391 else return isAdaptableTo(fromType, toType, true); 392 } 393 394 395 /*********** Logging support -- for debugging only, uncomment as needed 396 static final Executor logPool = Executors.newSingleThreadExecutor(); 397 protected static void log(final String s) { 398 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 399 @Override 400 public void run() { 401 System.out.println(s); 402 } 403 }); 404 } 405 406 protected static void log(final String s, final Throwable e) { 407 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 408 @Override 409 public void run() { 410 System.out.println(s); 411 e.printStackTrace(System.out); 412 } 413 }); 414 } 415 ***********************/ 416 417 }