1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         FIELD_ACCESS("fieldAccess"),
 267         FIELD_ACCESS_INIT("fieldAccessInit"),
 268         VOLATILE_FIELD_ACCESS("volatileFieldAccess"),
 269         VOLATILE_FIELD_ACCESS_INIT("volatileFieldAccessInit"),
 270         FIELD_ACCESS_B("fieldAccessB"),
 271         FIELD_ACCESS_INIT_B("fieldAccessInitB"),
 272         VOLATILE_FIELD_ACCESS_B("volatileFieldAccessB"),
 273         VOLATILE_FIELD_ACCESS_INIT_B("volatileFieldAccessInitB"),
 274         FIELD_ACCESS_C("fieldAccessC"),
 275         FIELD_ACCESS_INIT_C("fieldAccessInitC"),
 276         VOLATILE_FIELD_ACCESS_C("volatileFieldAccessC"),
 277         VOLATILE_FIELD_ACCESS_INIT_C("volatileFieldAccessInitC"),
 278         FIELD_ACCESS_S("fieldAccessS"),
 279         FIELD_ACCESS_INIT_S("fieldAccessInitS"),
 280         VOLATILE_FIELD_ACCESS_S("volatileFieldAccessS"),
 281         VOLATILE_FIELD_ACCESS_INIT_S("volatileFieldAccessInitS"),
 282         FIELD_ACCESS_Z("fieldAccessZ"),
 283         FIELD_ACCESS_INIT_Z("fieldAccessInitZ"),
 284         VOLATILE_FIELD_ACCESS_Z("volatileFieldAccessZ"),
 285         VOLATILE_FIELD_ACCESS_INIT_Z("volatileFieldAccessInitZ"),
 286         FIELD_ACCESS_CAST("fieldAccessCast"),
 287         FIELD_ACCESS_INIT_CAST("fieldAccessInitCast"),
 288         VOLATILE_FIELD_ACCESS_CAST("volatileFieldAccessCast"),
 289         VOLATILE_FIELD_ACCESS_INIT_CAST("volatileFieldAccessInitCast"),
 290         TRY_FINALLY("tryFinally"),
 291         TABLE_SWITCH("tableSwitch"),
 292         COLLECTOR("collector"),
 293         LOOP("loop"),
 294         GUARD("guard"),
 295         GUARD_WITH_CATCH("guardWithCatch"),
 296         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 297         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 298         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 299 
 300         final String defaultLambdaName;
 301         final String methodName;
 302 
 303         private Kind(String defaultLambdaName) {
 304             this(defaultLambdaName, defaultLambdaName);
 305         }
 306 
 307         private Kind(String defaultLambdaName, String methodName) {
 308             this.defaultLambdaName = defaultLambdaName;
 309             this.methodName = methodName;
 310         }
 311     }
 312 
 313     // private version that doesn't do checks or defensive copies
 314     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 315         this.arity = arity;
 316         this.result = result;
 317         this.forceInline = forceInline;
 318         this.customized = customized;
 319         this.names = names;
 320         this.kind = kind;
 321         this.vmentry = null;
 322         this.isCompiled = false;
 323     }
 324 
 325     // root factory pre/post processing and calls simple constructor
 326     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 327         names = names.clone();
 328         assert(namesOK(arity, names));
 329         result = fixResult(result, names);
 330 
 331         boolean canInterpret = normalizeNames(arity, names);
 332         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 333         assert(form.nameRefsAreLegal());
 334         if (!canInterpret) {
 335             form.compileToBytecode();
 336         }
 337         return form;
 338     }
 339 
 340     // derived factories with defaults
 341     private static final int DEFAULT_RESULT = LAST_RESULT;
 342     private static final boolean DEFAULT_FORCE_INLINE = true;
 343     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 344     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 345 
 346     static LambdaForm create(int arity, Name[] names, int result) {
 347         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 348     }
 349     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 350         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 351     }
 352     static LambdaForm create(int arity, Name[] names) {
 353         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 354     }
 355     static LambdaForm create(int arity, Name[] names, Kind kind) {
 356         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 357     }
 358     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 359         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 360     }
 361 
 362     private static int fixResult(int result, Name[] names) {
 363         if (result == LAST_RESULT)
 364             result = names.length - 1;  // might still be void
 365         if (result >= 0 && names[result].type == V_TYPE)
 366             result = VOID_RESULT;
 367         return result;
 368     }
 369 
 370     static boolean debugNames() {
 371         return DEBUG_NAME_COUNTERS != null;
 372     }
 373 
 374     static void associateWithDebugName(LambdaForm form, String name) {
 375         assert (debugNames());
 376         synchronized (DEBUG_NAMES) {
 377             DEBUG_NAMES.put(form, name);
 378         }
 379     }
 380 
 381     String lambdaName() {
 382         if (DEBUG_NAMES != null) {
 383             synchronized (DEBUG_NAMES) {
 384                 String name = DEBUG_NAMES.get(this);
 385                 if (name == null) {
 386                     name = generateDebugName();
 387                 }
 388                 return name;
 389             }
 390         }
 391         return kind.defaultLambdaName;
 392     }
 393 
 394     private String generateDebugName() {
 395         assert (debugNames());
 396         String debugNameStem = kind.defaultLambdaName;
 397         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 398         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 399         StringBuilder buf = new StringBuilder(debugNameStem);
 400         int leadingZero = buf.length();
 401         buf.append((int) ctr);
 402         for (int i = buf.length() - leadingZero; i < 3; i++) {
 403             buf.insert(leadingZero, '0');
 404         }
 405         buf.append('_');
 406         buf.append(basicTypeSignature());
 407         String name = buf.toString();
 408         associateWithDebugName(this, name);
 409         return name;
 410     }
 411 
 412     private static boolean namesOK(int arity, Name[] names) {
 413         for (int i = 0; i < names.length; i++) {
 414             Name n = names[i];
 415             assert(n != null) : "n is null";
 416             if (i < arity)
 417                 assert( n.isParam()) : n + " is not param at " + i;
 418             else
 419                 assert(!n.isParam()) : n + " is param at " + i;
 420         }
 421         return true;
 422     }
 423 
 424     /** Customize LambdaForm for a particular MethodHandle */
 425     LambdaForm customize(MethodHandle mh) {
 426         if (customized == mh) {
 427             return this;
 428         }
 429         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 430         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 431             // If shared LambdaForm has been compiled, compile customized version as well.
 432             customForm.compileToBytecode();
 433         }
 434         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 435         return customForm;
 436     }
 437 
 438     /** Get uncustomized flavor of the LambdaForm */
 439     LambdaForm uncustomize() {
 440         if (customized == null) {
 441             return this;
 442         }
 443         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 444         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 445         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 446             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 447             uncustomizedForm.compileToBytecode();
 448         }
 449         return uncustomizedForm;
 450     }
 451 
 452     /** Renumber and/or replace params so that they are interned and canonically numbered.
 453      *  @return true if we can interpret
 454      */
 455     private static boolean normalizeNames(int arity, Name[] names) {
 456         Name[] oldNames = names.clone();
 457         int maxOutArity = 0;
 458         for (int i = 0; i < names.length; i++) {
 459             Name n = names[i];
 460             names[i] = n.withIndex(i);
 461             if (n.arguments != null && maxOutArity < n.arguments.length)
 462                 maxOutArity = n.arguments.length;
 463         }
 464         if (oldNames != null) {
 465             for (int i = Math.max(1, arity); i < names.length; i++) {
 466                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 467                 names[i] = fixed.withIndex(i);
 468             }
 469         }
 470         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 471         boolean needIntern = false;
 472         for (int i = 0; i < maxInterned; i++) {
 473             Name n = names[i], n2 = internArgument(n);
 474             if (n != n2) {
 475                 names[i] = n2;
 476                 needIntern = true;
 477             }
 478         }
 479         if (needIntern) {
 480             for (int i = arity; i < names.length; i++) {
 481                 names[i].internArguments();
 482             }
 483         }
 484 
 485         // return true if we can interpret
 486         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 487             // Cannot use LF interpreter on very high arity expressions.
 488             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 489             return false;
 490         }
 491         return true;
 492     }
 493 
 494     /**
 495      * Check that all embedded Name references are localizable to this lambda,
 496      * and are properly ordered after their corresponding definitions.
 497      * <p>
 498      * Note that a Name can be local to multiple lambdas, as long as
 499      * it possesses the same index in each use site.
 500      * This allows Name references to be freely reused to construct
 501      * fresh lambdas, without confusion.
 502      */
 503     boolean nameRefsAreLegal() {
 504         assert(arity >= 0 && arity <= names.length);
 505         assert(result >= -1 && result < names.length);
 506         // Do all names possess an index consistent with their local definition order?
 507         for (int i = 0; i < arity; i++) {
 508             Name n = names[i];
 509             assert(n.index() == i) : Arrays.asList(n.index(), i);
 510             assert(n.isParam());
 511         }
 512         // Also, do all local name references
 513         for (int i = arity; i < names.length; i++) {
 514             Name n = names[i];
 515             assert(n.index() == i);
 516             for (Object arg : n.arguments) {
 517                 if (arg instanceof Name n2) {
 518                     int i2 = n2.index;
 519                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 520                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 521                     assert(i2 < i);  // ref must come after def!
 522                 }
 523             }
 524         }
 525         return true;
 526     }
 527 
 528     // /** Invoke this form on the given arguments. */
 529     // final Object invoke(Object... args) throws Throwable {
 530     //     // NYI: fit this into the fast path?
 531     //     return interpretWithArguments(args);
 532     // }
 533 
 534     /** Report the return type. */
 535     BasicType returnType() {
 536         if (result < 0)  return V_TYPE;
 537         Name n = names[result];
 538         return n.type;
 539     }
 540 
 541     /** Report the N-th argument type. */
 542     BasicType parameterType(int n) {
 543         return parameter(n).type;
 544     }
 545 
 546     /** Report the N-th argument name. */
 547     Name parameter(int n) {
 548         Name param = names[n];
 549         assert(n < arity && param.isParam());
 550         return param;
 551     }
 552 
 553     /** Report the N-th argument type constraint. */
 554     Object parameterConstraint(int n) {
 555         return parameter(n).constraint;
 556     }
 557 
 558     /** Report the arity. */
 559     int arity() {
 560         return arity;
 561     }
 562 
 563     /** Report the number of expressions (non-parameter names). */
 564     int expressionCount() {
 565         return names.length - arity;
 566     }
 567 
 568     /** Return the method type corresponding to my basic type signature. */
 569     MethodType methodType() {
 570         Class<?>[] ptypes = new Class<?>[arity];
 571         for (int i = 0; i < arity; ++i) {
 572             ptypes[i] = parameterType(i).btClass;
 573         }
 574         return MethodType.methodType(returnType().btClass, ptypes, true);
 575     }
 576 
 577     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 578     final String basicTypeSignature() {
 579         StringBuilder buf = new StringBuilder(arity() + 3);
 580         for (int i = 0, a = arity(); i < a; i++)
 581             buf.append(parameterType(i).basicTypeChar());
 582         return buf.append('_').append(returnType().basicTypeChar()).toString();
 583     }
 584     static int signatureArity(String sig) {
 585         assert(isValidSignature(sig));
 586         return sig.indexOf('_');
 587     }
 588     static boolean isValidSignature(String sig) {
 589         int arity = sig.indexOf('_');
 590         if (arity < 0)  return false;  // must be of the form *_*
 591         int siglen = sig.length();
 592         if (siglen != arity + 2)  return false;  // *_X
 593         for (int i = 0; i < siglen; i++) {
 594             if (i == arity)  continue;  // skip '_'
 595             char c = sig.charAt(i);
 596             if (c == 'V')
 597                 return (i == siglen - 1 && arity == siglen - 2);
 598             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 599         }
 600         return true;  // [LIJFD]*_[LIJFDV]
 601     }
 602 
 603     /**
 604      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 605      */
 606     boolean isSelectAlternative(int pos) {
 607         // selectAlternative idiom:
 608         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 609         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 610         if (pos+1 >= names.length)  return false;
 611         Name name0 = names[pos];
 612         Name name1 = names[pos+1];
 613         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 614                 name1.isInvokeBasic() &&
 615                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 616                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 617     }
 618 
 619     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 620         if (pos+2 >= names.length)  return false;
 621         Name name0 = names[pos];
 622         Name name1 = names[pos+1];
 623         Name name2 = names[pos+2];
 624         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 625                 name0.isInvokeBasic() &&
 626                 name2.isInvokeBasic() &&
 627                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 628                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 629                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 630                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 631     }
 632 
 633     /**
 634      * Check if i-th name is a start of GuardWithCatch idiom.
 635      */
 636     boolean isGuardWithCatch(int pos) {
 637         // GuardWithCatch idiom:
 638         //   t_{n}:L=MethodHandle.invokeBasic(...)
 639         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 640         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 641         return isMatchingIdiom(pos, "guardWithCatch", 3);
 642     }
 643 
 644     /**
 645      * Check if i-th name is a start of the tryFinally idiom.
 646      */
 647     boolean isTryFinally(int pos) {
 648         // tryFinally idiom:
 649         //   t_{n}:L=MethodHandle.invokeBasic(...)
 650         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 651         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 652         return isMatchingIdiom(pos, "tryFinally", 2);
 653     }
 654 
 655     /**
 656      * Check if i-th name is a start of the tableSwitch idiom.
 657      */
 658     boolean isTableSwitch(int pos) {
 659         // tableSwitch idiom:
 660         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 661         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 662         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 663         if (pos + 2 >= names.length)  return false;
 664 
 665         final int POS_COLLECT_ARGS = pos;
 666         final int POS_TABLE_SWITCH = pos + 1;
 667         final int POS_UNBOX_RESULT = pos + 2;
 668 
 669         Name collectArgs = names[POS_COLLECT_ARGS];
 670         Name tableSwitch = names[POS_TABLE_SWITCH];
 671         Name unboxResult = names[POS_UNBOX_RESULT];
 672         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 673                 collectArgs.isInvokeBasic() &&
 674                 unboxResult.isInvokeBasic() &&
 675                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 676                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 677                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 678                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 679     }
 680 
 681     /**
 682      * Check if i-th name is a start of the loop idiom.
 683      */
 684     boolean isLoop(int pos) {
 685         // loop idiom:
 686         //   t_{n}:L=MethodHandle.invokeBasic(...)
 687         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 688         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 689         return isMatchingIdiom(pos, "loop", 2);
 690     }
 691 
 692     /*
 693      * Code generation issues:
 694      *
 695      * Compiled LFs should be reusable in general.
 696      * The biggest issue is how to decide when to pull a name into
 697      * the bytecode, versus loading a reified form from the MH data.
 698      *
 699      * For example, an asType wrapper may require execution of a cast
 700      * after a call to a MH.  The target type of the cast can be placed
 701      * as a constant in the LF itself.  This will force the cast type
 702      * to be compiled into the bytecodes and native code for the MH.
 703      * Or, the target type of the cast can be erased in the LF, and
 704      * loaded from the MH data.  (Later on, if the MH as a whole is
 705      * inlined, the data will flow into the inlined instance of the LF,
 706      * as a constant, and the end result will be an optimal cast.)
 707      *
 708      * This erasure of cast types can be done with any use of
 709      * reference types.  It can also be done with whole method
 710      * handles.  Erasing a method handle might leave behind
 711      * LF code that executes correctly for any MH of a given
 712      * type, and load the required MH from the enclosing MH's data.
 713      * Or, the erasure might even erase the expected MT.
 714      *
 715      * Also, for direct MHs, the MemberName of the target
 716      * could be erased, and loaded from the containing direct MH.
 717      * As a simple case, a LF for all int-valued non-static
 718      * field getters would perform a cast on its input argument
 719      * (to non-constant base type derived from the MemberName)
 720      * and load an integer value from the input object
 721      * (at a non-constant offset also derived from the MemberName).
 722      * Such MN-erased LFs would be inlinable back to optimized
 723      * code, whenever a constant enclosing DMH is available
 724      * to supply a constant MN from its data.
 725      *
 726      * The main problem here is to keep LFs reasonably generic,
 727      * while ensuring that hot spots will inline good instances.
 728      * "Reasonably generic" means that we don't end up with
 729      * repeated versions of bytecode or machine code that do
 730      * not differ in their optimized form.  Repeated versions
 731      * of machine would have the undesirable overheads of
 732      * (a) redundant compilation work and (b) extra I$ pressure.
 733      * To control repeated versions, we need to be ready to
 734      * erase details from LFs and move them into MH data,
 735      * whenever those details are not relevant to significant
 736      * optimization.  "Significant" means optimization of
 737      * code that is actually hot.
 738      *
 739      * Achieving this may require dynamic splitting of MHs, by replacing
 740      * a generic LF with a more specialized one, on the same MH,
 741      * if (a) the MH is frequently executed and (b) the MH cannot
 742      * be inlined into a containing caller, such as an invokedynamic.
 743      *
 744      * Compiled LFs that are no longer used should be GC-able.
 745      * If they contain non-BCP references, they should be properly
 746      * interlinked with the class loader(s) that their embedded types
 747      * depend on.  This probably means that reusable compiled LFs
 748      * will be tabulated (indexed) on relevant class loaders,
 749      * or else that the tables that cache them will have weak links.
 750      */
 751 
 752     /**
 753      * Make this LF directly executable, as part of a MethodHandle.
 754      * Invariant:  Every MH which is invoked must prepare its LF
 755      * before invocation.
 756      * (In principle, the JVM could do this very lazily,
 757      * as a sort of pre-invocation linkage step.)
 758      */
 759     public void prepare() {
 760         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 761             compileToBytecode();
 762         }
 763         if (this.vmentry != null) {
 764             // already prepared (e.g., a primitive DMH invoker form)
 765             return;
 766         }
 767         MethodType mtype = methodType();
 768         MethodTypeForm form = mtype.form();
 769 
 770         MemberName entry = form.cachedInterpretEntry();
 771         if (entry == null) {
 772             assert (isValidSignature(basicTypeSignature()));
 773             entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 774             entry = form.setCachedInterpretEntry(entry);
 775         }
 776         this.vmentry = entry;
 777         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 778     }
 779 
 780     private static @Stable PerfCounter LF_FAILED;
 781 
 782     private static PerfCounter failedCompilationCounter() {
 783         if (LF_FAILED == null) {
 784             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 785         }
 786         return LF_FAILED;
 787     }
 788 
 789     /** Generate optimizable bytecode for this form. */
 790     void compileToBytecode() {
 791         if (forceInterpretation()) {
 792             return; // this should not be compiled
 793         }
 794         if (vmentry != null && isCompiled) {
 795             return;  // already compiled somehow
 796         }
 797 
 798         // Obtain the invoker MethodType outside of the following try block.
 799         // This ensures that an IllegalArgumentException is directly thrown if the
 800         // type would have 256 or more parameters
 801         MethodType invokerType = methodType();
 802         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 803         try {
 804             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 805             if (TRACE_INTERPRETER)
 806                 traceInterpreter("compileToBytecode", this);
 807             isCompiled = true;
 808         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 809             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 810             invocationCounter = -1;
 811             failedCompilationCounter().increment();
 812             if (LOG_LF_COMPILATION_FAILURE) {
 813                 System.out.println("LambdaForm compilation failed: " + this);
 814                 bge.printStackTrace(System.out);
 815             }
 816         } catch (Error e) {
 817             // Pass through any error
 818             throw e;
 819         } catch (Exception e) {
 820             // Wrap any exception
 821             throw newInternalError(this.toString(), e);
 822         }
 823     }
 824 
 825     // The next few routines are called only from assert expressions
 826     // They verify that the built-in invokers process the correct raw data types.
 827     private static boolean argumentTypesMatch(String sig, Object[] av) {
 828         int arity = signatureArity(sig);
 829         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 830         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 831         MethodHandle mh = (MethodHandle) av[0];
 832         MethodType mt = mh.type();
 833         assert(mt.parameterCount() == arity-1);
 834         for (int i = 0; i < av.length; i++) {
 835             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 836             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 837         }
 838         return true;
 839     }
 840     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 841         // The following line is needed because (...)void method handles can use non-void invokers
 842         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 843         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 844         switch (tc) {
 845         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 846         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 847         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 848         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 849         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 850         case V_TYPE: break;  // allow anything here; will be dropped
 851         default:  assert(false);
 852         }
 853         return true;
 854     }
 855     private static boolean checkInt(Class<?> type, Object x) {
 856         assert(x instanceof Integer);
 857         if (type == int.class)  return true;
 858         Wrapper w = Wrapper.forBasicType(type);
 859         assert(w.isSubwordOrInt());
 860         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 861         return x.equals(x1);
 862     }
 863     private static boolean checkRef(Class<?> type, Object x) {
 864         assert(!type.isPrimitive());
 865         if (x == null)  return true;
 866         if (type.isInterface())  return true;
 867         return type.isInstance(x);
 868     }
 869 
 870     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 871     private static final int COMPILE_THRESHOLD;
 872     static {
 873         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 874     }
 875     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 876 
 877     private boolean forceInterpretation() {
 878         return invocationCounter == -1;
 879     }
 880 
 881     /** Interpretively invoke this form on the given arguments. */
 882     @Hidden
 883     @DontInline
 884     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 885         if (TRACE_INTERPRETER)
 886             return interpretWithArgumentsTracing(argumentValues);
 887         checkInvocationCounter();
 888         assert(arityCheck(argumentValues));
 889         Object[] values = Arrays.copyOf(argumentValues, names.length);
 890         for (int i = argumentValues.length; i < values.length; i++) {
 891             values[i] = interpretName(names[i], values);
 892         }
 893         Object rv = (result < 0) ? null : values[result];
 894         assert(resultCheck(argumentValues, rv));
 895         return rv;
 896     }
 897 
 898     /** Evaluate a single Name within this form, applying its function to its arguments. */
 899     @Hidden
 900     @DontInline
 901     Object interpretName(Name name, Object[] values) throws Throwable {
 902         if (TRACE_INTERPRETER)
 903             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 904         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 905         for (int i = 0; i < arguments.length; i++) {
 906             Object a = arguments[i];
 907             if (a instanceof Name n) {
 908                 int i2 = n.index();
 909                 assert(names[i2] == a);
 910                 a = values[i2];
 911                 arguments[i] = a;
 912             }
 913         }
 914         return name.function.invokeWithArguments(arguments);
 915     }
 916 
 917     private void checkInvocationCounter() {
 918         if (COMPILE_THRESHOLD != 0 &&
 919             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 920             invocationCounter++;  // benign race
 921             if (invocationCounter >= COMPILE_THRESHOLD) {
 922                 // Replace vmentry with a bytecode version of this LF.
 923                 compileToBytecode();
 924             }
 925         }
 926     }
 927     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 928         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 929         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 930             int ctr = invocationCounter++;  // benign race
 931             traceInterpreter("| invocationCounter", ctr);
 932             if (invocationCounter >= COMPILE_THRESHOLD) {
 933                 compileToBytecode();
 934             }
 935         }
 936         Object rval;
 937         try {
 938             assert(arityCheck(argumentValues));
 939             Object[] values = Arrays.copyOf(argumentValues, names.length);
 940             for (int i = argumentValues.length; i < values.length; i++) {
 941                 values[i] = interpretName(names[i], values);
 942             }
 943             rval = (result < 0) ? null : values[result];
 944         } catch (Throwable ex) {
 945             traceInterpreter("] throw =>", ex);
 946             throw ex;
 947         }
 948         traceInterpreter("] return =>", rval);
 949         return rval;
 950     }
 951 
 952     static void traceInterpreter(String event, Object obj, Object... args) {
 953         if (TRACE_INTERPRETER) {
 954             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 955         }
 956     }
 957     static void traceInterpreter(String event, Object obj) {
 958         traceInterpreter(event, obj, (Object[])null);
 959     }
 960     private boolean arityCheck(Object[] argumentValues) {
 961         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 962         // also check that the leading (receiver) argument is somehow bound to this LF:
 963         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 964         MethodHandle mh = (MethodHandle) argumentValues[0];
 965         assert(mh.internalForm() == this);
 966         // note:  argument #0 could also be an interface wrapper, in the future
 967         argumentTypesMatch(basicTypeSignature(), argumentValues);
 968         return true;
 969     }
 970     private boolean resultCheck(Object[] argumentValues, Object result) {
 971         MethodHandle mh = (MethodHandle) argumentValues[0];
 972         MethodType mt = mh.type();
 973         assert(valueMatches(returnType(), mt.returnType(), result));
 974         return true;
 975     }
 976 
 977     public String toString() {
 978         return debugString(-1);
 979     }
 980 
 981     String debugString(int indentLevel) {
 982         String prefix = MethodHandle.debugPrefix(indentLevel);
 983         String lambdaName = lambdaName();
 984         StringBuilder buf = new StringBuilder(lambdaName);
 985         buf.append("=Lambda(");
 986         for (int i = 0; i < names.length; i++) {
 987             if (i == arity)  buf.append(")=>{");
 988             Name n = names[i];
 989             if (i >= arity)  buf.append("\n    ").append(prefix);
 990             buf.append(n.paramString());
 991             if (i < arity) {
 992                 if (i+1 < arity)  buf.append(",");
 993                 continue;
 994             }
 995             buf.append("=").append(n.exprString());
 996             buf.append(";");
 997         }
 998         if (arity == names.length)  buf.append(")=>{");
 999         buf.append(result < 0 ? "void" : names[result]).append("}");
1000         if (TRACE_INTERPRETER) {
1001             // Extra verbosity:
1002             buf.append(":").append(basicTypeSignature());
1003             buf.append("/").append(vmentry);
1004         }
1005         return buf.toString();
1006     }
1007 
1008     @Override
1009     public boolean equals(Object obj) {
1010         return obj instanceof LambdaForm lf && equals(lf);
1011     }
1012     public boolean equals(LambdaForm that) {
1013         if (this.result != that.result)  return false;
1014         return Arrays.equals(this.names, that.names);
1015     }
1016     public int hashCode() {
1017         return result + 31 * Arrays.hashCode(names);
1018     }
1019     LambdaFormEditor editor() {
1020         return LambdaFormEditor.lambdaFormEditor(this);
1021     }
1022 
1023     boolean contains(Name name) {
1024         int pos = name.index();
1025         if (pos >= 0) {
1026             return pos < names.length && name.equals(names[pos]);
1027         }
1028         for (int i = arity; i < names.length; i++) {
1029             if (name.equals(names[i]))
1030                 return true;
1031         }
1032         return false;
1033     }
1034 
1035     static class NamedFunction {
1036         final MemberName member;
1037         private @Stable MethodHandle resolvedHandle;
1038         private @Stable MethodType type;
1039 
1040         NamedFunction(MethodHandle resolvedHandle) {
1041             this(resolvedHandle.internalMemberName(), resolvedHandle);
1042         }
1043         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1044             this.member = member;
1045             this.resolvedHandle = resolvedHandle;
1046              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1047              //assert(!isInvokeBasic(member));
1048         }
1049         NamedFunction(MethodType basicInvokerType) {
1050             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1051             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1052                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1053                 this.member = resolvedHandle.internalMemberName();
1054             } else {
1055                 // necessary to pass BigArityTest
1056                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1057             }
1058             assert(isInvokeBasic(member));
1059         }
1060 
1061         private static boolean isInvokeBasic(MemberName member) {
1062             return member != null &&
1063                    member.getDeclaringClass() == MethodHandle.class &&
1064                   "invokeBasic".equals(member.getName());
1065         }
1066 
1067         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1068         // Any LambdaForm containing such a member is not interpretable.
1069         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1070         // And even without the resolvedHandle, the name can still be compiled and optimized.
1071         NamedFunction(Method method) {
1072             this(new MemberName(method));
1073         }
1074         NamedFunction(MemberName member) {
1075             this(member, null);
1076         }
1077 
1078         MethodHandle resolvedHandle() {
1079             if (resolvedHandle == null)  resolve();
1080             return resolvedHandle;
1081         }
1082 
1083         synchronized void resolve() {
1084             if (resolvedHandle == null) {
1085                 resolvedHandle = DirectMethodHandle.make(member);
1086             }
1087         }
1088 
1089         @Override
1090         public boolean equals(Object other) {
1091             if (this == other) return true;
1092             if (other == null) return false;
1093             return (other instanceof NamedFunction that)
1094                     && this.member != null
1095                     && this.member.equals(that.member);
1096         }
1097 
1098         @Override
1099         public int hashCode() {
1100             if (member != null)
1101                 return member.hashCode();
1102             return super.hashCode();
1103         }
1104 
1105         static final MethodType INVOKER_METHOD_TYPE =
1106             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1107 
1108         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1109             typeForm = typeForm.basicType().form();  // normalize to basic type
1110             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1111             if (mh != null)  return mh;
1112             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1113             mh = DirectMethodHandle.make(invoker);
1114             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1115             if (mh2 != null)  return mh2;  // benign race
1116             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1117                 throw newInternalError(mh.debugString());
1118             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1119         }
1120 
1121         @Hidden
1122         Object invokeWithArguments(Object... arguments) throws Throwable {
1123             // If we have a cached invoker, call it right away.
1124             // NOTE: The invoker always returns a reference value.
1125             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1126             return invoker().invokeBasic(resolvedHandle(), arguments);
1127         }
1128 
1129         @Hidden
1130         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1131             Object rval;
1132             try {
1133                 traceInterpreter("[ call", this, arguments);
1134                 // resolvedHandle might be uninitialized, ok for tracing
1135                 if (resolvedHandle == null) {
1136                     traceInterpreter("| resolve", this);
1137                     resolvedHandle();
1138                 }
1139                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1140             } catch (Throwable ex) {
1141                 traceInterpreter("] throw =>", ex);
1142                 throw ex;
1143             }
1144             traceInterpreter("] return =>", rval);
1145             return rval;
1146         }
1147 
1148         private MethodHandle invoker() {
1149             return computeInvoker(methodType().form());
1150         }
1151 
1152         MethodType methodType() {
1153             MethodType type = this.type;
1154             if (type == null) {
1155                 this.type = type = calculateMethodType(member, resolvedHandle);
1156             }
1157             return type;
1158         }
1159 
1160         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1161             if (resolvedHandle != null) {
1162                 return resolvedHandle.type();
1163             } else {
1164                 // only for certain internal LFs during bootstrapping
1165                 return member.getInvocationType();
1166             }
1167         }
1168 
1169         MemberName member() {
1170             assert(assertMemberIsConsistent());
1171             return member;
1172         }
1173 
1174         // Called only from assert.
1175         private boolean assertMemberIsConsistent() {
1176             if (resolvedHandle instanceof DirectMethodHandle) {
1177                 MemberName m = resolvedHandle.internalMemberName();
1178                 assert(m.equals(member));
1179             }
1180             return true;
1181         }
1182 
1183         Class<?> memberDeclaringClassOrNull() {
1184             return (member == null) ? null : member.getDeclaringClass();
1185         }
1186 
1187         BasicType returnType() {
1188             return basicType(methodType().returnType());
1189         }
1190 
1191         BasicType parameterType(int n) {
1192             return basicType(methodType().parameterType(n));
1193         }
1194 
1195         int arity() {
1196             return methodType().parameterCount();
1197         }
1198 
1199         public String toString() {
1200             if (member == null)  return String.valueOf(resolvedHandle);
1201             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1202         }
1203 
1204         public boolean isIdentity() {
1205             return this.equals(identity(returnType()));
1206         }
1207 
1208         public MethodHandleImpl.Intrinsic intrinsicName() {
1209             return resolvedHandle != null
1210                 ? resolvedHandle.intrinsicName()
1211                 : MethodHandleImpl.Intrinsic.NONE;
1212         }
1213 
1214         public Object intrinsicData() {
1215             return resolvedHandle != null
1216                 ? resolvedHandle.intrinsicData()
1217                 : null;
1218         }
1219     }
1220 
1221     public static String basicTypeSignature(MethodType type) {
1222         int params = type.parameterCount();
1223         char[] sig = new char[params + 2];
1224         int sigp = 0;
1225         while (sigp < params) {
1226             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1227         }
1228         sig[sigp++] = '_';
1229         sig[sigp++] = basicTypeChar(type.returnType());
1230         assert(sigp == sig.length);
1231         return String.valueOf(sig);
1232     }
1233 
1234     /** Hack to make signatures more readable when they show up in method names.
1235      * Signature should start with a sequence of uppercase ASCII letters.
1236      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1237      * A tail of anything other than uppercase ASCII is passed through unchanged.
1238      * @param signature sequence of uppercase ASCII letters with possible repetitions
1239      * @return same sequence, with repetitions counted by decimal numerals
1240      */
1241     public static String shortenSignature(String signature) {
1242         final int NO_CHAR = -1, MIN_RUN = 3;
1243         int c0, c1 = NO_CHAR, c1reps = 0;
1244         StringBuilder buf = null;
1245         int len = signature.length();
1246         if (len < MIN_RUN)  return signature;
1247         for (int i = 0; i <= len; i++) {
1248             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1249                 // wrong kind of char; bail out here
1250                 if (buf != null) {
1251                     buf.append(signature, i - c1reps, len);
1252                 }
1253                 break;
1254             }
1255             // shift in the next char:
1256             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1257             if (c1 == c0) { ++c1reps; continue; }
1258             // shift in the next count:
1259             int c0reps = c1reps; c1reps = 1;
1260             // end of a  character run
1261             if (c0reps < MIN_RUN) {
1262                 if (buf != null) {
1263                     while (--c0reps >= 0)
1264                         buf.append((char)c0);
1265                 }
1266                 continue;
1267             }
1268             // found three or more in a row
1269             if (buf == null)
1270                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1271             buf.append((char)c0).append(c0reps);
1272         }
1273         return (buf == null) ? signature : buf.toString();
1274     }
1275 
1276     static final class Name {
1277         final BasicType type;
1278         final short index;
1279         final NamedFunction function;
1280         final Object constraint;  // additional type information, if not null
1281         @Stable final Object[] arguments;
1282 
1283         private static final Object[] EMPTY_ARGS = new Object[0];
1284 
1285         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1286             this.index = (short)index;
1287             this.type = type;
1288             this.function = function;
1289             this.arguments = arguments;
1290             this.constraint = constraint;
1291             assert(this.index == index && typesMatch(function, arguments));
1292             assert(constraint == null || isParam());  // only params have constraints
1293             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1294         }
1295 
1296         Name(MethodHandle function, Object... arguments) {
1297             this(new NamedFunction(function), arguments);
1298         }
1299         Name(MethodType functionType, Object... arguments) {
1300             this(new NamedFunction(functionType), arguments);
1301             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1302         }
1303         Name(MemberName function, Object... arguments) {
1304             this(new NamedFunction(function), arguments);
1305         }
1306         Name(NamedFunction function) {
1307             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1308         }
1309         Name(NamedFunction function, Object arg) {
1310             this(-1, function.returnType(), function, new Object[] { arg }, null);
1311         }
1312         Name(NamedFunction function, Object arg0, Object arg1) {
1313             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1314         }
1315         Name(NamedFunction function, Object... arguments) {
1316             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1317         }
1318         /** Create a raw parameter of the given type, with an expected index. */
1319         Name(int index, BasicType type) {
1320             this(index, type, null, null, null);
1321         }
1322         /** Create a raw parameter of the given type. */
1323         Name(BasicType type) { this(-1, type); }
1324 
1325         BasicType type() { return type; }
1326         int index() { return index; }
1327 
1328         char typeChar() {
1329             return type.btChar;
1330         }
1331 
1332         Name withIndex(int i) {
1333             if (i == this.index) return this;
1334             return new Name(i, type, function, arguments, constraint);
1335         }
1336 
1337         Name withConstraint(Object constraint) {
1338             if (constraint == this.constraint)  return this;
1339             return new Name(index, type, function, arguments, constraint);
1340         }
1341 
1342         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1343             if (oldName == newName)  return this;
1344             @SuppressWarnings("LocalVariableHidesMemberVariable")
1345             Object[] arguments = this.arguments;
1346             if (arguments == null)  return this;
1347             boolean replaced = false;
1348             for (int j = 0; j < arguments.length; j++) {
1349                 if (arguments[j] == oldName) {
1350                     if (!replaced) {
1351                         replaced = true;
1352                         arguments = arguments.clone();
1353                     }
1354                     arguments[j] = newName;
1355                 }
1356             }
1357             if (!replaced)  return this;
1358             return new Name(function, arguments);
1359         }
1360         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1361          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1362          */
1363         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1364             if (start >= end)  return this;
1365             @SuppressWarnings("LocalVariableHidesMemberVariable")
1366             Object[] arguments = this.arguments;
1367             boolean replaced = false;
1368         eachArg:
1369             for (int j = 0; j < arguments.length; j++) {
1370                 if (arguments[j] instanceof Name n) {
1371                     int check = n.index;
1372                     // harmless check to see if the thing is already in newNames:
1373                     if (check >= 0 && check < newNames.length && n == newNames[check])
1374                         continue eachArg;
1375                     // n might not have the correct index: n != oldNames[n.index].
1376                     for (int i = start; i < end; i++) {
1377                         if (n == oldNames[i]) {
1378                             if (n == newNames[i])
1379                                 continue eachArg;
1380                             if (!replaced) {
1381                                 replaced = true;
1382                                 arguments = arguments.clone();
1383                             }
1384                             arguments[j] = newNames[i];
1385                             continue eachArg;
1386                         }
1387                     }
1388                 }
1389             }
1390             if (!replaced)  return this;
1391             return new Name(function, arguments);
1392         }
1393         void internArguments() {
1394             @SuppressWarnings("LocalVariableHidesMemberVariable")
1395             Object[] arguments = this.arguments;
1396             for (int j = 0; j < arguments.length; j++) {
1397                 if (arguments[j] instanceof Name n) {
1398                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1399                         arguments[j] = internArgument(n);
1400                 }
1401             }
1402         }
1403         boolean isParam() {
1404             return function == null;
1405         }
1406 
1407         boolean refersTo(Class<?> declaringClass, String methodName) {
1408             return function != null &&
1409                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1410         }
1411 
1412         /**
1413          * Check if MemberName is a call to MethodHandle.invokeBasic.
1414          */
1415         boolean isInvokeBasic() {
1416             if (function == null)
1417                 return false;
1418             if (arguments.length < 1)
1419                 return false;  // must have MH argument
1420             MemberName member = function.member();
1421             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1422                     !member.isPublic() && !member.isStatic();
1423         }
1424 
1425         /**
1426          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1427          */
1428         boolean isLinkerMethodInvoke() {
1429             if (function == null)
1430                 return false;
1431             if (arguments.length < 1)
1432                 return false;  // must have MH argument
1433             MemberName member = function.member();
1434             return member != null &&
1435                     member.getDeclaringClass() == MethodHandle.class &&
1436                     !member.isPublic() && member.isStatic() &&
1437                     member.getName().startsWith("linkTo");
1438         }
1439 
1440         public String toString() {
1441             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1442         }
1443         public String debugString() {
1444             String s = paramString();
1445             return (function == null) ? s : s + "=" + exprString();
1446         }
1447         public String paramString() {
1448             String s = toString();
1449             Object c = constraint;
1450             if (c == null)
1451                 return s;
1452             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1453             return s + "/" + c;
1454         }
1455         public String exprString() {
1456             if (function == null)  return toString();
1457             StringBuilder buf = new StringBuilder(function.toString());
1458             buf.append("(");
1459             String cma = "";
1460             for (Object a : arguments) {
1461                 buf.append(cma); cma = ",";
1462                 if (a instanceof Name || a instanceof Integer)
1463                     buf.append(a);
1464                 else
1465                     buf.append("(").append(a).append(")");
1466             }
1467             buf.append(")");
1468             return buf.toString();
1469         }
1470 
1471         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1472             if (arguments == null) {
1473                 assert(function == null);
1474                 return true;
1475             }
1476             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1477             for (int i = 0; i < arguments.length; i++) {
1478                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1479             }
1480             return true;
1481         }
1482 
1483         private static boolean typesMatch(BasicType parameterType, Object object) {
1484             if (object instanceof Name name) {
1485                 return name.type == parameterType;
1486             }
1487             switch (parameterType) {
1488                 case I_TYPE:  return object instanceof Integer;
1489                 case J_TYPE:  return object instanceof Long;
1490                 case F_TYPE:  return object instanceof Float;
1491                 case D_TYPE:  return object instanceof Double;
1492             }
1493             assert(parameterType == L_TYPE);
1494             return true;
1495         }
1496 
1497         /** Return the index of the last occurrence of n in the argument array.
1498          *  Return -1 if the name is not used.
1499          */
1500         int lastUseIndex(Name n) {
1501             Object[] arguments = this.arguments;
1502             if (arguments == null)  return -1;
1503             for (int i = arguments.length; --i >= 0; ) {
1504                 if (arguments[i] == n)  return i;
1505             }
1506             return -1;
1507         }
1508 
1509         public boolean equals(Name that) {
1510             if (this == that)  return true;
1511             if (isParam())
1512                 // each parameter is a unique atom
1513                 return false;  // this != that
1514             return
1515                 //this.index == that.index &&
1516                 this.type == that.type &&
1517                 this.function.equals(that.function) &&
1518                 Arrays.equals(this.arguments, that.arguments);
1519         }
1520         @Override
1521         public boolean equals(Object x) {
1522             return x instanceof Name n && equals(n);
1523         }
1524         @Override
1525         public int hashCode() {
1526             if (isParam())
1527                 return index | (type.ordinal() << 8);
1528             return function.hashCode() ^ Arrays.hashCode(arguments);
1529         }
1530     }
1531 
1532     /** Return the index of the last name which contains n as an argument.
1533      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1534      */
1535     int lastUseIndex(Name n) {
1536         int ni = n.index, nmax = names.length;
1537         assert(names[ni] == n);
1538         if (result == ni)  return nmax;  // live all the way beyond the end
1539         for (int i = nmax; --i > ni; ) {
1540             if (names[i].lastUseIndex(n) >= 0)
1541                 return i;
1542         }
1543         return -1;
1544     }
1545 
1546     /** Return the number of times n is used as an argument or return value. */
1547     int useCount(Name n) {
1548         int count = (result == n.index) ? 1 : 0;
1549         int i = Math.max(n.index + 1, arity);
1550         Name[] names = this.names;
1551         while (i < names.length) {
1552             Object[] arguments = names[i++].arguments;
1553             if (arguments != null) {
1554                 for (Object argument : arguments) {
1555                     if (argument == n) {
1556                         count++;
1557                     }
1558                 }
1559             }
1560         }
1561         return count;
1562     }
1563 
1564     static Name argument(int which, BasicType type) {
1565         if (which >= INTERNED_ARGUMENT_LIMIT)
1566             return new Name(which, type);
1567         return INTERNED_ARGUMENTS[type.ordinal()][which];
1568     }
1569     static Name internArgument(Name n) {
1570         assert(n.isParam()) : "not param: " + n;
1571         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1572         if (n.constraint != null)  return n;
1573         return argument(n.index, n.type);
1574     }
1575     static Name[] arguments(int extra, MethodType types) {
1576         int length = types.parameterCount();
1577         Name[] names = new Name[length + extra];
1578         for (int i = 0; i < length; i++)
1579             names[i] = argument(i, basicType(types.parameterType(i)));
1580         return names;
1581     }
1582 
1583     static Name[] invokeArguments(int extra, MethodType types) {
1584         int length = types.parameterCount();
1585         Name[] names = new Name[length + extra + 1];
1586         names[0] = argument(0, L_TYPE);
1587         for (int i = 0; i < length; i++)
1588             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1589         return names;
1590     }
1591 
1592     static final int INTERNED_ARGUMENT_LIMIT = 10;
1593     private static final Name[][] INTERNED_ARGUMENTS
1594             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1595     static {
1596         for (BasicType type : BasicType.ARG_TYPES) {
1597             int ord = type.ordinal();
1598             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1599                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1600             }
1601         }
1602     }
1603 
1604     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1605 
1606     static LambdaForm identityForm(BasicType type) {
1607         int ord = type.ordinal();
1608         LambdaForm form = LF_identity[ord];
1609         if (form != null) {
1610             return form;
1611         }
1612         createIdentityForm(type);
1613         return LF_identity[ord];
1614     }
1615 
1616     static NamedFunction identity(BasicType type) {
1617         int ord = type.ordinal();
1618         NamedFunction function = NF_identity[ord];
1619         if (function != null) {
1620             return function;
1621         }
1622         createIdentityForm(type);
1623         return NF_identity[ord];
1624     }
1625 
1626     static LambdaForm constantForm(BasicType type) {
1627         assert type != null && type != V_TYPE : type;
1628         var cached = LF_constant[type.ordinal()];
1629         if (cached != null)
1630             return cached;
1631         return createConstantForm(type);
1632     }
1633 
1634     private static LambdaForm createConstantForm(BasicType type) {
1635         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1636         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1637         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1638         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1639         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1640     }
1641 
1642     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1643     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1644     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1645 
1646     private static final Object createIdentityFormLock = new Object();
1647     private static void createIdentityForm(BasicType type) {
1648         // Avoid racy initialization during bootstrap
1649         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1650         synchronized (createIdentityFormLock) {
1651             final int ord = type.ordinal();
1652             LambdaForm idForm = LF_identity[ord];
1653             if (idForm != null) {
1654                 return;
1655             }
1656             char btChar = type.basicTypeChar();
1657             boolean isVoid = (type == V_TYPE);
1658             Class<?> btClass = type.btClass;
1659             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1660 
1661             // Look up symbolic names.  It might not be necessary to have these,
1662             // but if we need to emit direct references to bytecodes, it helps.
1663             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1664             try {
1665                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1666             } catch (IllegalAccessException|NoSuchMethodException ex) {
1667                 throw newInternalError(ex);
1668             }
1669 
1670             NamedFunction idFun;
1671 
1672             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1673             // bootstrap dependency on this method in case we're interpreting LFs
1674             if (isVoid) {
1675                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1676                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1677                 idForm.compileToBytecode();
1678                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1679             } else {
1680                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1681                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1682                 idForm.compileToBytecode();
1683                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1684                             MethodHandleImpl.Intrinsic.IDENTITY));
1685             }
1686 
1687             LF_identity[ord] = idForm;
1688             NF_identity[ord] = idFun;
1689 
1690             assert(idFun.isIdentity());
1691         }
1692     }
1693 
1694     // Avoid appealing to ValueConversions at bootstrap time:
1695     private static int identity_I(int x) { return x; }
1696     private static long identity_J(long x) { return x; }
1697     private static float identity_F(float x) { return x; }
1698     private static double identity_D(double x) { return x; }
1699     private static Object identity_L(Object x) { return x; }
1700     private static void identity_V() { return; }
1701     /**
1702      * Internal marker for byte-compiled LambdaForms.
1703      */
1704     /*non-public*/
1705     @Target(ElementType.METHOD)
1706     @Retention(RetentionPolicy.RUNTIME)
1707     @interface Compiled {
1708     }
1709 
1710     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1711     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1712     static {
1713         if (debugEnabled()) {
1714             DEBUG_NAME_COUNTERS = new HashMap<>();
1715             DEBUG_NAMES = new HashMap<>();
1716         } else {
1717             DEBUG_NAME_COUNTERS = null;
1718             DEBUG_NAMES = null;
1719         }
1720     }
1721 
1722     static {
1723         // The Holder class will contain pre-generated forms resolved
1724         // using MemberName.getFactory(). However, that doesn't initialize the
1725         // class, which subtly breaks inlining etc. By forcing
1726         // initialization of the Holder class we avoid these issues.
1727         UNSAFE.ensureClassInitialized(Holder.class);
1728     }
1729 
1730     /* Placeholder class for identity and constant forms generated ahead of time */
1731     final class Holder {}
1732 
1733     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1734     // during execution of the static initializes of this class.
1735     // Turning on TRACE_INTERPRETER too early will cause
1736     // stack overflows and other misbehavior during attempts to trace events
1737     // that occur during LambdaForm.<clinit>.
1738     // Therefore, do not move this line higher in this file, and do not remove.
1739     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1740 }