1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_INT("getInt"),
 271         PUT_INT("putInt"),
 272         GET_INT_VOLATILE("getIntVolatile"),
 273         PUT_INT_VOLATILE("putIntVolatile"),
 274         GET_BOOLEAN("getBoolean"),
 275         PUT_BOOLEAN("putBoolean"),
 276         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 277         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 278         GET_BYTE("getByte"),
 279         PUT_BYTE("putByte"),
 280         GET_BYTE_VOLATILE("getByteVolatile"),
 281         PUT_BYTE_VOLATILE("putByteVolatile"),
 282         GET_CHAR("getChar"),
 283         PUT_CHAR("putChar"),
 284         GET_CHAR_VOLATILE("getCharVolatile"),
 285         PUT_CHAR_VOLATILE("putCharVolatile"),
 286         GET_SHORT("getShort"),
 287         PUT_SHORT("putShort"),
 288         GET_SHORT_VOLATILE("getShortVolatile"),
 289         PUT_SHORT_VOLATILE("putShortVolatile"),
 290         GET_LONG("getLong"),
 291         PUT_LONG("putLong"),
 292         GET_LONG_VOLATILE("getLongVolatile"),
 293         PUT_LONG_VOLATILE("putLongVolatile"),
 294         GET_FLOAT("getFloat"),
 295         PUT_FLOAT("putFloat"),
 296         GET_FLOAT_VOLATILE("getFloatVolatile"),
 297         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 298         GET_DOUBLE("getDouble"),
 299         PUT_DOUBLE("putDouble"),
 300         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 301         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 302         TRY_FINALLY("tryFinally"),
 303         TABLE_SWITCH("tableSwitch"),
 304         COLLECTOR("collector"),
 305         LOOP("loop"),
 306         GUARD("guard"),
 307         GUARD_WITH_CATCH("guardWithCatch"),
 308         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 309         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 310         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 311 
 312         final String defaultLambdaName;
 313         final String methodName;
 314 
 315         private Kind(String defaultLambdaName) {
 316             this(defaultLambdaName, defaultLambdaName);
 317         }
 318 
 319         private Kind(String defaultLambdaName, String methodName) {
 320             this.defaultLambdaName = defaultLambdaName;
 321             this.methodName = methodName;
 322         }
 323     }
 324 
 325     // private version that doesn't do checks or defensive copies
 326     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 327         this.arity = arity;
 328         this.result = result;
 329         this.forceInline = forceInline;
 330         this.customized = customized;
 331         this.names = names;
 332         this.kind = kind;
 333         this.vmentry = null;
 334         this.isCompiled = false;
 335     }
 336 
 337     // root factory pre/post processing and calls simple constructor
 338     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 339         names = names.clone();
 340         assert(namesOK(arity, names));
 341         result = fixResult(result, names);
 342 
 343         boolean canInterpret = normalizeNames(arity, names);
 344         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 345         assert(form.nameRefsAreLegal());
 346         if (!canInterpret) {
 347             form.compileToBytecode();
 348         }
 349         return form;
 350     }
 351 
 352     // derived factories with defaults
 353     private static final int DEFAULT_RESULT = LAST_RESULT;
 354     private static final boolean DEFAULT_FORCE_INLINE = true;
 355     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 356     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 357 
 358     static LambdaForm create(int arity, Name[] names, int result) {
 359         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 360     }
 361     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 362         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 363     }
 364     static LambdaForm create(int arity, Name[] names) {
 365         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 366     }
 367     static LambdaForm create(int arity, Name[] names, Kind kind) {
 368         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 369     }
 370     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 371         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 372     }
 373 
 374     private static int fixResult(int result, Name[] names) {
 375         if (result == LAST_RESULT)
 376             result = names.length - 1;  // might still be void
 377         if (result >= 0 && names[result].type == V_TYPE)
 378             result = VOID_RESULT;
 379         return result;
 380     }
 381 
 382     static boolean debugNames() {
 383         return DEBUG_NAME_COUNTERS != null;
 384     }
 385 
 386     static void associateWithDebugName(LambdaForm form, String name) {
 387         assert (debugNames());
 388         synchronized (DEBUG_NAMES) {
 389             DEBUG_NAMES.put(form, name);
 390         }
 391     }
 392 
 393     String lambdaName() {
 394         if (DEBUG_NAMES != null) {
 395             synchronized (DEBUG_NAMES) {
 396                 String name = DEBUG_NAMES.get(this);
 397                 if (name == null) {
 398                     name = generateDebugName();
 399                 }
 400                 return name;
 401             }
 402         }
 403         return kind.defaultLambdaName;
 404     }
 405 
 406     private String generateDebugName() {
 407         assert (debugNames());
 408         String debugNameStem = kind.defaultLambdaName;
 409         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 410         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 411         StringBuilder buf = new StringBuilder(debugNameStem);
 412         int leadingZero = buf.length();
 413         buf.append((int) ctr);
 414         for (int i = buf.length() - leadingZero; i < 3; i++) {
 415             buf.insert(leadingZero, '0');
 416         }
 417         buf.append('_');
 418         buf.append(basicTypeSignature());
 419         String name = buf.toString();
 420         associateWithDebugName(this, name);
 421         return name;
 422     }
 423 
 424     private static boolean namesOK(int arity, Name[] names) {
 425         for (int i = 0; i < names.length; i++) {
 426             Name n = names[i];
 427             assert(n != null) : "n is null";
 428             if (i < arity)
 429                 assert( n.isParam()) : n + " is not param at " + i;
 430             else
 431                 assert(!n.isParam()) : n + " is param at " + i;
 432         }
 433         return true;
 434     }
 435 
 436     /** Customize LambdaForm for a particular MethodHandle */
 437     LambdaForm customize(MethodHandle mh) {
 438         if (customized == mh) {
 439             return this;
 440         }
 441         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 442         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 443             // If shared LambdaForm has been compiled, compile customized version as well.
 444             customForm.compileToBytecode();
 445         }
 446         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 447         return customForm;
 448     }
 449 
 450     /** Get uncustomized flavor of the LambdaForm */
 451     LambdaForm uncustomize() {
 452         if (customized == null) {
 453             return this;
 454         }
 455         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 456         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 457         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 458             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 459             uncustomizedForm.compileToBytecode();
 460         }
 461         return uncustomizedForm;
 462     }
 463 
 464     /** Renumber and/or replace params so that they are interned and canonically numbered.
 465      *  @return true if we can interpret
 466      */
 467     private static boolean normalizeNames(int arity, Name[] names) {
 468         Name[] oldNames = names.clone();
 469         int maxOutArity = 0;
 470         for (int i = 0; i < names.length; i++) {
 471             Name n = names[i];
 472             names[i] = n.withIndex(i);
 473             if (n.arguments != null && maxOutArity < n.arguments.length)
 474                 maxOutArity = n.arguments.length;
 475         }
 476         if (oldNames != null) {
 477             for (int i = Math.max(1, arity); i < names.length; i++) {
 478                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 479                 names[i] = fixed.withIndex(i);
 480             }
 481         }
 482         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 483         boolean needIntern = false;
 484         for (int i = 0; i < maxInterned; i++) {
 485             Name n = names[i], n2 = internArgument(n);
 486             if (n != n2) {
 487                 names[i] = n2;
 488                 needIntern = true;
 489             }
 490         }
 491         if (needIntern) {
 492             for (int i = arity; i < names.length; i++) {
 493                 names[i].internArguments();
 494             }
 495         }
 496 
 497         // return true if we can interpret
 498         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 499             // Cannot use LF interpreter on very high arity expressions.
 500             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 501             return false;
 502         }
 503         return true;
 504     }
 505 
 506     /**
 507      * Check that all embedded Name references are localizable to this lambda,
 508      * and are properly ordered after their corresponding definitions.
 509      * <p>
 510      * Note that a Name can be local to multiple lambdas, as long as
 511      * it possesses the same index in each use site.
 512      * This allows Name references to be freely reused to construct
 513      * fresh lambdas, without confusion.
 514      */
 515     boolean nameRefsAreLegal() {
 516         assert(arity >= 0 && arity <= names.length);
 517         assert(result >= -1 && result < names.length);
 518         // Do all names possess an index consistent with their local definition order?
 519         for (int i = 0; i < arity; i++) {
 520             Name n = names[i];
 521             assert(n.index() == i) : Arrays.asList(n.index(), i);
 522             assert(n.isParam());
 523         }
 524         // Also, do all local name references
 525         for (int i = arity; i < names.length; i++) {
 526             Name n = names[i];
 527             assert(n.index() == i);
 528             for (Object arg : n.arguments) {
 529                 if (arg instanceof Name n2) {
 530                     int i2 = n2.index;
 531                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 532                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 533                     assert(i2 < i);  // ref must come after def!
 534                 }
 535             }
 536         }
 537         return true;
 538     }
 539 
 540     // /** Invoke this form on the given arguments. */
 541     // final Object invoke(Object... args) throws Throwable {
 542     //     // NYI: fit this into the fast path?
 543     //     return interpretWithArguments(args);
 544     // }
 545 
 546     /** Report the return type. */
 547     BasicType returnType() {
 548         if (result < 0)  return V_TYPE;
 549         Name n = names[result];
 550         return n.type;
 551     }
 552 
 553     /** Report the N-th argument type. */
 554     BasicType parameterType(int n) {
 555         return parameter(n).type;
 556     }
 557 
 558     /** Report the N-th argument name. */
 559     Name parameter(int n) {
 560         Name param = names[n];
 561         assert(n < arity && param.isParam());
 562         return param;
 563     }
 564 
 565     /** Report the N-th argument type constraint. */
 566     Object parameterConstraint(int n) {
 567         return parameter(n).constraint;
 568     }
 569 
 570     /** Report the arity. */
 571     int arity() {
 572         return arity;
 573     }
 574 
 575     /** Report the number of expressions (non-parameter names). */
 576     int expressionCount() {
 577         return names.length - arity;
 578     }
 579 
 580     /** Return the method type corresponding to my basic type signature. */
 581     MethodType methodType() {
 582         Class<?>[] ptypes = new Class<?>[arity];
 583         for (int i = 0; i < arity; ++i) {
 584             ptypes[i] = parameterType(i).btClass;
 585         }
 586         return MethodType.methodType(returnType().btClass, ptypes, true);
 587     }
 588 
 589     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 590     final String basicTypeSignature() {
 591         StringBuilder buf = new StringBuilder(arity() + 3);
 592         for (int i = 0, a = arity(); i < a; i++)
 593             buf.append(parameterType(i).basicTypeChar());
 594         return buf.append('_').append(returnType().basicTypeChar()).toString();
 595     }
 596     static int signatureArity(String sig) {
 597         assert(isValidSignature(sig));
 598         return sig.indexOf('_');
 599     }
 600     static boolean isValidSignature(String sig) {
 601         int arity = sig.indexOf('_');
 602         if (arity < 0)  return false;  // must be of the form *_*
 603         int siglen = sig.length();
 604         if (siglen != arity + 2)  return false;  // *_X
 605         for (int i = 0; i < siglen; i++) {
 606             if (i == arity)  continue;  // skip '_'
 607             char c = sig.charAt(i);
 608             if (c == 'V')
 609                 return (i == siglen - 1 && arity == siglen - 2);
 610             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 611         }
 612         return true;  // [LIJFD]*_[LIJFDV]
 613     }
 614 
 615     /**
 616      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 617      */
 618     boolean isSelectAlternative(int pos) {
 619         // selectAlternative idiom:
 620         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 621         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 622         if (pos+1 >= names.length)  return false;
 623         Name name0 = names[pos];
 624         Name name1 = names[pos+1];
 625         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 626                 name1.isInvokeBasic() &&
 627                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 628                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 629     }
 630 
 631     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 632         if (pos+2 >= names.length)  return false;
 633         Name name0 = names[pos];
 634         Name name1 = names[pos+1];
 635         Name name2 = names[pos+2];
 636         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 637                 name0.isInvokeBasic() &&
 638                 name2.isInvokeBasic() &&
 639                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 640                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 641                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 642                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 643     }
 644 
 645     /**
 646      * Check if i-th name is a start of GuardWithCatch idiom.
 647      */
 648     boolean isGuardWithCatch(int pos) {
 649         // GuardWithCatch idiom:
 650         //   t_{n}:L=MethodHandle.invokeBasic(...)
 651         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 652         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 653         return isMatchingIdiom(pos, "guardWithCatch", 3);
 654     }
 655 
 656     /**
 657      * Check if i-th name is a start of the tryFinally idiom.
 658      */
 659     boolean isTryFinally(int pos) {
 660         // tryFinally idiom:
 661         //   t_{n}:L=MethodHandle.invokeBasic(...)
 662         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 663         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 664         return isMatchingIdiom(pos, "tryFinally", 2);
 665     }
 666 
 667     /**
 668      * Check if i-th name is a start of the tableSwitch idiom.
 669      */
 670     boolean isTableSwitch(int pos) {
 671         // tableSwitch idiom:
 672         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 673         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 674         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 675         if (pos + 2 >= names.length)  return false;
 676 
 677         final int POS_COLLECT_ARGS = pos;
 678         final int POS_TABLE_SWITCH = pos + 1;
 679         final int POS_UNBOX_RESULT = pos + 2;
 680 
 681         Name collectArgs = names[POS_COLLECT_ARGS];
 682         Name tableSwitch = names[POS_TABLE_SWITCH];
 683         Name unboxResult = names[POS_UNBOX_RESULT];
 684         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 685                 collectArgs.isInvokeBasic() &&
 686                 unboxResult.isInvokeBasic() &&
 687                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 688                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 689                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 690                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 691     }
 692 
 693     /**
 694      * Check if i-th name is a start of the loop idiom.
 695      */
 696     boolean isLoop(int pos) {
 697         // loop idiom:
 698         //   t_{n}:L=MethodHandle.invokeBasic(...)
 699         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 700         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 701         return isMatchingIdiom(pos, "loop", 2);
 702     }
 703 
 704     /*
 705      * Code generation issues:
 706      *
 707      * Compiled LFs should be reusable in general.
 708      * The biggest issue is how to decide when to pull a name into
 709      * the bytecode, versus loading a reified form from the MH data.
 710      *
 711      * For example, an asType wrapper may require execution of a cast
 712      * after a call to a MH.  The target type of the cast can be placed
 713      * as a constant in the LF itself.  This will force the cast type
 714      * to be compiled into the bytecodes and native code for the MH.
 715      * Or, the target type of the cast can be erased in the LF, and
 716      * loaded from the MH data.  (Later on, if the MH as a whole is
 717      * inlined, the data will flow into the inlined instance of the LF,
 718      * as a constant, and the end result will be an optimal cast.)
 719      *
 720      * This erasure of cast types can be done with any use of
 721      * reference types.  It can also be done with whole method
 722      * handles.  Erasing a method handle might leave behind
 723      * LF code that executes correctly for any MH of a given
 724      * type, and load the required MH from the enclosing MH's data.
 725      * Or, the erasure might even erase the expected MT.
 726      *
 727      * Also, for direct MHs, the MemberName of the target
 728      * could be erased, and loaded from the containing direct MH.
 729      * As a simple case, a LF for all int-valued non-static
 730      * field getters would perform a cast on its input argument
 731      * (to non-constant base type derived from the MemberName)
 732      * and load an integer value from the input object
 733      * (at a non-constant offset also derived from the MemberName).
 734      * Such MN-erased LFs would be inlinable back to optimized
 735      * code, whenever a constant enclosing DMH is available
 736      * to supply a constant MN from its data.
 737      *
 738      * The main problem here is to keep LFs reasonably generic,
 739      * while ensuring that hot spots will inline good instances.
 740      * "Reasonably generic" means that we don't end up with
 741      * repeated versions of bytecode or machine code that do
 742      * not differ in their optimized form.  Repeated versions
 743      * of machine would have the undesirable overheads of
 744      * (a) redundant compilation work and (b) extra I$ pressure.
 745      * To control repeated versions, we need to be ready to
 746      * erase details from LFs and move them into MH data,
 747      * whenever those details are not relevant to significant
 748      * optimization.  "Significant" means optimization of
 749      * code that is actually hot.
 750      *
 751      * Achieving this may require dynamic splitting of MHs, by replacing
 752      * a generic LF with a more specialized one, on the same MH,
 753      * if (a) the MH is frequently executed and (b) the MH cannot
 754      * be inlined into a containing caller, such as an invokedynamic.
 755      *
 756      * Compiled LFs that are no longer used should be GC-able.
 757      * If they contain non-BCP references, they should be properly
 758      * interlinked with the class loader(s) that their embedded types
 759      * depend on.  This probably means that reusable compiled LFs
 760      * will be tabulated (indexed) on relevant class loaders,
 761      * or else that the tables that cache them will have weak links.
 762      */
 763 
 764     /**
 765      * Make this LF directly executable, as part of a MethodHandle.
 766      * Invariant:  Every MH which is invoked must prepare its LF
 767      * before invocation.
 768      * (In principle, the JVM could do this very lazily,
 769      * as a sort of pre-invocation linkage step.)
 770      */
 771     public void prepare() {
 772         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 773             compileToBytecode();
 774         }
 775         if (this.vmentry != null) {
 776             // already prepared (e.g., a primitive DMH invoker form)
 777             return;
 778         }
 779         MethodType mtype = methodType();
 780         MethodTypeForm form = mtype.form();
 781 
 782         MemberName entry = form.cachedInterpretEntry();
 783         if (entry == null) {
 784             assert (isValidSignature(basicTypeSignature()));
 785             entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 786             entry = form.setCachedInterpretEntry(entry);
 787         }
 788         this.vmentry = entry;
 789         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 790     }
 791 
 792     private static @Stable PerfCounter LF_FAILED;
 793 
 794     private static PerfCounter failedCompilationCounter() {
 795         if (LF_FAILED == null) {
 796             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 797         }
 798         return LF_FAILED;
 799     }
 800 
 801     /** Generate optimizable bytecode for this form. */
 802     void compileToBytecode() {
 803         if (forceInterpretation()) {
 804             return; // this should not be compiled
 805         }
 806         if (vmentry != null && isCompiled) {
 807             return;  // already compiled somehow
 808         }
 809 
 810         // Obtain the invoker MethodType outside of the following try block.
 811         // This ensures that an IllegalArgumentException is directly thrown if the
 812         // type would have 256 or more parameters
 813         MethodType invokerType = methodType();
 814         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 815         try {
 816             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 817             if (TRACE_INTERPRETER)
 818                 traceInterpreter("compileToBytecode", this);
 819             isCompiled = true;
 820         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 821             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 822             invocationCounter = -1;
 823             failedCompilationCounter().increment();
 824             if (LOG_LF_COMPILATION_FAILURE) {
 825                 System.out.println("LambdaForm compilation failed: " + this);
 826                 bge.printStackTrace(System.out);
 827             }
 828         } catch (Error e) {
 829             // Pass through any error
 830             throw e;
 831         } catch (Exception e) {
 832             // Wrap any exception
 833             throw newInternalError(this.toString(), e);
 834         }
 835     }
 836 
 837     // The next few routines are called only from assert expressions
 838     // They verify that the built-in invokers process the correct raw data types.
 839     private static boolean argumentTypesMatch(String sig, Object[] av) {
 840         int arity = signatureArity(sig);
 841         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 842         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 843         MethodHandle mh = (MethodHandle) av[0];
 844         MethodType mt = mh.type();
 845         assert(mt.parameterCount() == arity-1);
 846         for (int i = 0; i < av.length; i++) {
 847             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 848             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 849         }
 850         return true;
 851     }
 852     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 853         // The following line is needed because (...)void method handles can use non-void invokers
 854         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 855         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 856         switch (tc) {
 857         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 858         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 859         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 860         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 861         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 862         case V_TYPE: break;  // allow anything here; will be dropped
 863         default:  assert(false);
 864         }
 865         return true;
 866     }
 867     private static boolean checkInt(Class<?> type, Object x) {
 868         assert(x instanceof Integer);
 869         if (type == int.class)  return true;
 870         Wrapper w = Wrapper.forBasicType(type);
 871         assert(w.isSubwordOrInt());
 872         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 873         return x.equals(x1);
 874     }
 875     private static boolean checkRef(Class<?> type, Object x) {
 876         assert(!type.isPrimitive());
 877         if (x == null)  return true;
 878         if (type.isInterface())  return true;
 879         return type.isInstance(x);
 880     }
 881 
 882     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 883     private static final int COMPILE_THRESHOLD;
 884     static {
 885         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 886     }
 887     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 888 
 889     private boolean forceInterpretation() {
 890         return invocationCounter == -1;
 891     }
 892 
 893     /** Interpretively invoke this form on the given arguments. */
 894     @Hidden
 895     @DontInline
 896     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 897         if (TRACE_INTERPRETER)
 898             return interpretWithArgumentsTracing(argumentValues);
 899         checkInvocationCounter();
 900         assert(arityCheck(argumentValues));
 901         Object[] values = Arrays.copyOf(argumentValues, names.length);
 902         for (int i = argumentValues.length; i < values.length; i++) {
 903             values[i] = interpretName(names[i], values);
 904         }
 905         Object rv = (result < 0) ? null : values[result];
 906         assert(resultCheck(argumentValues, rv));
 907         return rv;
 908     }
 909 
 910     /** Evaluate a single Name within this form, applying its function to its arguments. */
 911     @Hidden
 912     @DontInline
 913     Object interpretName(Name name, Object[] values) throws Throwable {
 914         if (TRACE_INTERPRETER)
 915             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 916         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 917         for (int i = 0; i < arguments.length; i++) {
 918             Object a = arguments[i];
 919             if (a instanceof Name n) {
 920                 int i2 = n.index();
 921                 assert(names[i2] == a);
 922                 a = values[i2];
 923                 arguments[i] = a;
 924             }
 925         }
 926         return name.function.invokeWithArguments(arguments);
 927     }
 928 
 929     private void checkInvocationCounter() {
 930         if (COMPILE_THRESHOLD != 0 &&
 931             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 932             invocationCounter++;  // benign race
 933             if (invocationCounter >= COMPILE_THRESHOLD) {
 934                 // Replace vmentry with a bytecode version of this LF.
 935                 compileToBytecode();
 936             }
 937         }
 938     }
 939     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 940         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 941         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 942             int ctr = invocationCounter++;  // benign race
 943             traceInterpreter("| invocationCounter", ctr);
 944             if (invocationCounter >= COMPILE_THRESHOLD) {
 945                 compileToBytecode();
 946             }
 947         }
 948         Object rval;
 949         try {
 950             assert(arityCheck(argumentValues));
 951             Object[] values = Arrays.copyOf(argumentValues, names.length);
 952             for (int i = argumentValues.length; i < values.length; i++) {
 953                 values[i] = interpretName(names[i], values);
 954             }
 955             rval = (result < 0) ? null : values[result];
 956         } catch (Throwable ex) {
 957             traceInterpreter("] throw =>", ex);
 958             throw ex;
 959         }
 960         traceInterpreter("] return =>", rval);
 961         return rval;
 962     }
 963 
 964     static void traceInterpreter(String event, Object obj, Object... args) {
 965         if (TRACE_INTERPRETER) {
 966             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 967         }
 968     }
 969     static void traceInterpreter(String event, Object obj) {
 970         traceInterpreter(event, obj, (Object[])null);
 971     }
 972     private boolean arityCheck(Object[] argumentValues) {
 973         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 974         // also check that the leading (receiver) argument is somehow bound to this LF:
 975         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 976         MethodHandle mh = (MethodHandle) argumentValues[0];
 977         assert(mh.internalForm() == this);
 978         // note:  argument #0 could also be an interface wrapper, in the future
 979         argumentTypesMatch(basicTypeSignature(), argumentValues);
 980         return true;
 981     }
 982     private boolean resultCheck(Object[] argumentValues, Object result) {
 983         MethodHandle mh = (MethodHandle) argumentValues[0];
 984         MethodType mt = mh.type();
 985         assert(valueMatches(returnType(), mt.returnType(), result));
 986         return true;
 987     }
 988 
 989     public String toString() {
 990         return debugString(-1);
 991     }
 992 
 993     String debugString(int indentLevel) {
 994         String prefix = MethodHandle.debugPrefix(indentLevel);
 995         String lambdaName = lambdaName();
 996         StringBuilder buf = new StringBuilder(lambdaName);
 997         buf.append("=Lambda(");
 998         for (int i = 0; i < names.length; i++) {
 999             if (i == arity)  buf.append(")=>{");
1000             Name n = names[i];
1001             if (i >= arity)  buf.append("\n    ").append(prefix);
1002             buf.append(n.paramString());
1003             if (i < arity) {
1004                 if (i+1 < arity)  buf.append(",");
1005                 continue;
1006             }
1007             buf.append("=").append(n.exprString());
1008             buf.append(";");
1009         }
1010         if (arity == names.length)  buf.append(")=>{");
1011         buf.append(result < 0 ? "void" : names[result]).append("}");
1012         if (TRACE_INTERPRETER) {
1013             // Extra verbosity:
1014             buf.append(":").append(basicTypeSignature());
1015             buf.append("/").append(vmentry);
1016         }
1017         return buf.toString();
1018     }
1019 
1020     @Override
1021     public boolean equals(Object obj) {
1022         return obj instanceof LambdaForm lf && equals(lf);
1023     }
1024     public boolean equals(LambdaForm that) {
1025         if (this.result != that.result)  return false;
1026         return Arrays.equals(this.names, that.names);
1027     }
1028     public int hashCode() {
1029         return result + 31 * Arrays.hashCode(names);
1030     }
1031     LambdaFormEditor editor() {
1032         return LambdaFormEditor.lambdaFormEditor(this);
1033     }
1034 
1035     boolean contains(Name name) {
1036         int pos = name.index();
1037         if (pos >= 0) {
1038             return pos < names.length && name.equals(names[pos]);
1039         }
1040         for (int i = arity; i < names.length; i++) {
1041             if (name.equals(names[i]))
1042                 return true;
1043         }
1044         return false;
1045     }
1046 
1047     static class NamedFunction {
1048         final MemberName member;
1049         private @Stable MethodHandle resolvedHandle;
1050         private @Stable MethodType type;
1051 
1052         NamedFunction(MethodHandle resolvedHandle) {
1053             this(resolvedHandle.internalMemberName(), resolvedHandle);
1054         }
1055         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1056             this.member = member;
1057             this.resolvedHandle = resolvedHandle;
1058              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1059              //assert(!isInvokeBasic(member));
1060         }
1061         NamedFunction(MethodType basicInvokerType) {
1062             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1063             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1064                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1065                 this.member = resolvedHandle.internalMemberName();
1066             } else {
1067                 // necessary to pass BigArityTest
1068                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1069             }
1070             assert(isInvokeBasic(member));
1071         }
1072 
1073         private static boolean isInvokeBasic(MemberName member) {
1074             return member != null &&
1075                    member.getDeclaringClass() == MethodHandle.class &&
1076                   "invokeBasic".equals(member.getName());
1077         }
1078 
1079         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1080         // Any LambdaForm containing such a member is not interpretable.
1081         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1082         // And even without the resolvedHandle, the name can still be compiled and optimized.
1083         NamedFunction(Method method) {
1084             this(new MemberName(method));
1085         }
1086         NamedFunction(MemberName member) {
1087             this(member, null);
1088         }
1089 
1090         MethodHandle resolvedHandle() {
1091             if (resolvedHandle == null)  resolve();
1092             return resolvedHandle;
1093         }
1094 
1095         synchronized void resolve() {
1096             if (resolvedHandle == null) {
1097                 resolvedHandle = DirectMethodHandle.make(member);
1098             }
1099         }
1100 
1101         @Override
1102         public boolean equals(Object other) {
1103             if (this == other) return true;
1104             if (other == null) return false;
1105             return (other instanceof NamedFunction that)
1106                     && this.member != null
1107                     && this.member.equals(that.member);
1108         }
1109 
1110         @Override
1111         public int hashCode() {
1112             if (member != null)
1113                 return member.hashCode();
1114             return super.hashCode();
1115         }
1116 
1117         static final MethodType INVOKER_METHOD_TYPE =
1118             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1119 
1120         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1121             typeForm = typeForm.basicType().form();  // normalize to basic type
1122             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1123             if (mh != null)  return mh;
1124             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1125             mh = DirectMethodHandle.make(invoker);
1126             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1127             if (mh2 != null)  return mh2;  // benign race
1128             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1129                 throw newInternalError(mh.debugString());
1130             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1131         }
1132 
1133         @Hidden
1134         Object invokeWithArguments(Object... arguments) throws Throwable {
1135             // If we have a cached invoker, call it right away.
1136             // NOTE: The invoker always returns a reference value.
1137             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1138             return invoker().invokeBasic(resolvedHandle(), arguments);
1139         }
1140 
1141         @Hidden
1142         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1143             Object rval;
1144             try {
1145                 traceInterpreter("[ call", this, arguments);
1146                 // resolvedHandle might be uninitialized, ok for tracing
1147                 if (resolvedHandle == null) {
1148                     traceInterpreter("| resolve", this);
1149                     resolvedHandle();
1150                 }
1151                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1152             } catch (Throwable ex) {
1153                 traceInterpreter("] throw =>", ex);
1154                 throw ex;
1155             }
1156             traceInterpreter("] return =>", rval);
1157             return rval;
1158         }
1159 
1160         private MethodHandle invoker() {
1161             return computeInvoker(methodType().form());
1162         }
1163 
1164         MethodType methodType() {
1165             MethodType type = this.type;
1166             if (type == null) {
1167                 this.type = type = calculateMethodType(member, resolvedHandle);
1168             }
1169             return type;
1170         }
1171 
1172         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1173             if (resolvedHandle != null) {
1174                 return resolvedHandle.type();
1175             } else {
1176                 // only for certain internal LFs during bootstrapping
1177                 return member.getInvocationType();
1178             }
1179         }
1180 
1181         MemberName member() {
1182             assert(assertMemberIsConsistent());
1183             return member;
1184         }
1185 
1186         // Called only from assert.
1187         private boolean assertMemberIsConsistent() {
1188             if (resolvedHandle instanceof DirectMethodHandle) {
1189                 MemberName m = resolvedHandle.internalMemberName();
1190                 assert(m.equals(member));
1191             }
1192             return true;
1193         }
1194 
1195         Class<?> memberDeclaringClassOrNull() {
1196             return (member == null) ? null : member.getDeclaringClass();
1197         }
1198 
1199         BasicType returnType() {
1200             return basicType(methodType().returnType());
1201         }
1202 
1203         BasicType parameterType(int n) {
1204             return basicType(methodType().parameterType(n));
1205         }
1206 
1207         int arity() {
1208             return methodType().parameterCount();
1209         }
1210 
1211         public String toString() {
1212             if (member == null)  return String.valueOf(resolvedHandle);
1213             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1214         }
1215 
1216         public boolean isIdentity() {
1217             return this.equals(identity(returnType()));
1218         }
1219 
1220         public MethodHandleImpl.Intrinsic intrinsicName() {
1221             return resolvedHandle != null
1222                 ? resolvedHandle.intrinsicName()
1223                 : MethodHandleImpl.Intrinsic.NONE;
1224         }
1225 
1226         public Object intrinsicData() {
1227             return resolvedHandle != null
1228                 ? resolvedHandle.intrinsicData()
1229                 : null;
1230         }
1231     }
1232 
1233     public static String basicTypeSignature(MethodType type) {
1234         int params = type.parameterCount();
1235         char[] sig = new char[params + 2];
1236         int sigp = 0;
1237         while (sigp < params) {
1238             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1239         }
1240         sig[sigp++] = '_';
1241         sig[sigp++] = basicTypeChar(type.returnType());
1242         assert(sigp == sig.length);
1243         return String.valueOf(sig);
1244     }
1245 
1246     /** Hack to make signatures more readable when they show up in method names.
1247      * Signature should start with a sequence of uppercase ASCII letters.
1248      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1249      * A tail of anything other than uppercase ASCII is passed through unchanged.
1250      * @param signature sequence of uppercase ASCII letters with possible repetitions
1251      * @return same sequence, with repetitions counted by decimal numerals
1252      */
1253     public static String shortenSignature(String signature) {
1254         final int NO_CHAR = -1, MIN_RUN = 3;
1255         int c0, c1 = NO_CHAR, c1reps = 0;
1256         StringBuilder buf = null;
1257         int len = signature.length();
1258         if (len < MIN_RUN)  return signature;
1259         for (int i = 0; i <= len; i++) {
1260             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1261                 // wrong kind of char; bail out here
1262                 if (buf != null) {
1263                     buf.append(signature, i - c1reps, len);
1264                 }
1265                 break;
1266             }
1267             // shift in the next char:
1268             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1269             if (c1 == c0) { ++c1reps; continue; }
1270             // shift in the next count:
1271             int c0reps = c1reps; c1reps = 1;
1272             // end of a  character run
1273             if (c0reps < MIN_RUN) {
1274                 if (buf != null) {
1275                     while (--c0reps >= 0)
1276                         buf.append((char)c0);
1277                 }
1278                 continue;
1279             }
1280             // found three or more in a row
1281             if (buf == null)
1282                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1283             buf.append((char)c0).append(c0reps);
1284         }
1285         return (buf == null) ? signature : buf.toString();
1286     }
1287 
1288     static final class Name {
1289         final BasicType type;
1290         final short index;
1291         final NamedFunction function;
1292         final Object constraint;  // additional type information, if not null
1293         @Stable final Object[] arguments;
1294 
1295         private static final Object[] EMPTY_ARGS = new Object[0];
1296 
1297         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1298             this.index = (short)index;
1299             this.type = type;
1300             this.function = function;
1301             this.arguments = arguments;
1302             this.constraint = constraint;
1303             assert(this.index == index && typesMatch(function, arguments));
1304             assert(constraint == null || isParam());  // only params have constraints
1305             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1306         }
1307 
1308         Name(MethodHandle function, Object... arguments) {
1309             this(new NamedFunction(function), arguments);
1310         }
1311         Name(MethodType functionType, Object... arguments) {
1312             this(new NamedFunction(functionType), arguments);
1313             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1314         }
1315         Name(MemberName function, Object... arguments) {
1316             this(new NamedFunction(function), arguments);
1317         }
1318         Name(NamedFunction function) {
1319             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1320         }
1321         Name(NamedFunction function, Object arg) {
1322             this(-1, function.returnType(), function, new Object[] { arg }, null);
1323         }
1324         Name(NamedFunction function, Object arg0, Object arg1) {
1325             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1326         }
1327         Name(NamedFunction function, Object... arguments) {
1328             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1329         }
1330         /** Create a raw parameter of the given type, with an expected index. */
1331         Name(int index, BasicType type) {
1332             this(index, type, null, null, null);
1333         }
1334         /** Create a raw parameter of the given type. */
1335         Name(BasicType type) { this(-1, type); }
1336 
1337         BasicType type() { return type; }
1338         int index() { return index; }
1339 
1340         char typeChar() {
1341             return type.btChar;
1342         }
1343 
1344         Name withIndex(int i) {
1345             if (i == this.index) return this;
1346             return new Name(i, type, function, arguments, constraint);
1347         }
1348 
1349         Name withConstraint(Object constraint) {
1350             if (constraint == this.constraint)  return this;
1351             return new Name(index, type, function, arguments, constraint);
1352         }
1353 
1354         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1355             if (oldName == newName)  return this;
1356             @SuppressWarnings("LocalVariableHidesMemberVariable")
1357             Object[] arguments = this.arguments;
1358             if (arguments == null)  return this;
1359             boolean replaced = false;
1360             for (int j = 0; j < arguments.length; j++) {
1361                 if (arguments[j] == oldName) {
1362                     if (!replaced) {
1363                         replaced = true;
1364                         arguments = arguments.clone();
1365                     }
1366                     arguments[j] = newName;
1367                 }
1368             }
1369             if (!replaced)  return this;
1370             return new Name(function, arguments);
1371         }
1372         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1373          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1374          */
1375         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1376             if (start >= end)  return this;
1377             @SuppressWarnings("LocalVariableHidesMemberVariable")
1378             Object[] arguments = this.arguments;
1379             boolean replaced = false;
1380         eachArg:
1381             for (int j = 0; j < arguments.length; j++) {
1382                 if (arguments[j] instanceof Name n) {
1383                     int check = n.index;
1384                     // harmless check to see if the thing is already in newNames:
1385                     if (check >= 0 && check < newNames.length && n == newNames[check])
1386                         continue eachArg;
1387                     // n might not have the correct index: n != oldNames[n.index].
1388                     for (int i = start; i < end; i++) {
1389                         if (n == oldNames[i]) {
1390                             if (n == newNames[i])
1391                                 continue eachArg;
1392                             if (!replaced) {
1393                                 replaced = true;
1394                                 arguments = arguments.clone();
1395                             }
1396                             arguments[j] = newNames[i];
1397                             continue eachArg;
1398                         }
1399                     }
1400                 }
1401             }
1402             if (!replaced)  return this;
1403             return new Name(function, arguments);
1404         }
1405         void internArguments() {
1406             @SuppressWarnings("LocalVariableHidesMemberVariable")
1407             Object[] arguments = this.arguments;
1408             for (int j = 0; j < arguments.length; j++) {
1409                 if (arguments[j] instanceof Name n) {
1410                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1411                         arguments[j] = internArgument(n);
1412                 }
1413             }
1414         }
1415         boolean isParam() {
1416             return function == null;
1417         }
1418 
1419         boolean refersTo(Class<?> declaringClass, String methodName) {
1420             return function != null &&
1421                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1422         }
1423 
1424         /**
1425          * Check if MemberName is a call to MethodHandle.invokeBasic.
1426          */
1427         boolean isInvokeBasic() {
1428             if (function == null)
1429                 return false;
1430             if (arguments.length < 1)
1431                 return false;  // must have MH argument
1432             MemberName member = function.member();
1433             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1434                     !member.isPublic() && !member.isStatic();
1435         }
1436 
1437         /**
1438          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1439          */
1440         boolean isLinkerMethodInvoke() {
1441             if (function == null)
1442                 return false;
1443             if (arguments.length < 1)
1444                 return false;  // must have MH argument
1445             MemberName member = function.member();
1446             return member != null &&
1447                     member.getDeclaringClass() == MethodHandle.class &&
1448                     !member.isPublic() && member.isStatic() &&
1449                     member.getName().startsWith("linkTo");
1450         }
1451 
1452         public String toString() {
1453             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1454         }
1455         public String debugString() {
1456             String s = paramString();
1457             return (function == null) ? s : s + "=" + exprString();
1458         }
1459         public String paramString() {
1460             String s = toString();
1461             Object c = constraint;
1462             if (c == null)
1463                 return s;
1464             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1465             return s + "/" + c;
1466         }
1467         public String exprString() {
1468             if (function == null)  return toString();
1469             StringBuilder buf = new StringBuilder(function.toString());
1470             buf.append("(");
1471             String cma = "";
1472             for (Object a : arguments) {
1473                 buf.append(cma); cma = ",";
1474                 if (a instanceof Name || a instanceof Integer)
1475                     buf.append(a);
1476                 else
1477                     buf.append("(").append(a).append(")");
1478             }
1479             buf.append(")");
1480             return buf.toString();
1481         }
1482 
1483         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1484             if (arguments == null) {
1485                 assert(function == null);
1486                 return true;
1487             }
1488             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1489             for (int i = 0; i < arguments.length; i++) {
1490                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1491             }
1492             return true;
1493         }
1494 
1495         private static boolean typesMatch(BasicType parameterType, Object object) {
1496             if (object instanceof Name name) {
1497                 return name.type == parameterType;
1498             }
1499             switch (parameterType) {
1500                 case I_TYPE:  return object instanceof Integer;
1501                 case J_TYPE:  return object instanceof Long;
1502                 case F_TYPE:  return object instanceof Float;
1503                 case D_TYPE:  return object instanceof Double;
1504             }
1505             assert(parameterType == L_TYPE);
1506             return true;
1507         }
1508 
1509         /** Return the index of the last occurrence of n in the argument array.
1510          *  Return -1 if the name is not used.
1511          */
1512         int lastUseIndex(Name n) {
1513             Object[] arguments = this.arguments;
1514             if (arguments == null)  return -1;
1515             for (int i = arguments.length; --i >= 0; ) {
1516                 if (arguments[i] == n)  return i;
1517             }
1518             return -1;
1519         }
1520 
1521         public boolean equals(Name that) {
1522             if (this == that)  return true;
1523             if (isParam())
1524                 // each parameter is a unique atom
1525                 return false;  // this != that
1526             return
1527                 //this.index == that.index &&
1528                 this.type == that.type &&
1529                 this.function.equals(that.function) &&
1530                 Arrays.equals(this.arguments, that.arguments);
1531         }
1532         @Override
1533         public boolean equals(Object x) {
1534             return x instanceof Name n && equals(n);
1535         }
1536         @Override
1537         public int hashCode() {
1538             if (isParam())
1539                 return index | (type.ordinal() << 8);
1540             return function.hashCode() ^ Arrays.hashCode(arguments);
1541         }
1542     }
1543 
1544     /** Return the index of the last name which contains n as an argument.
1545      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1546      */
1547     int lastUseIndex(Name n) {
1548         int ni = n.index, nmax = names.length;
1549         assert(names[ni] == n);
1550         if (result == ni)  return nmax;  // live all the way beyond the end
1551         for (int i = nmax; --i > ni; ) {
1552             if (names[i].lastUseIndex(n) >= 0)
1553                 return i;
1554         }
1555         return -1;
1556     }
1557 
1558     /** Return the number of times n is used as an argument or return value. */
1559     int useCount(Name n) {
1560         int count = (result == n.index) ? 1 : 0;
1561         int i = Math.max(n.index + 1, arity);
1562         Name[] names = this.names;
1563         while (i < names.length) {
1564             Object[] arguments = names[i++].arguments;
1565             if (arguments != null) {
1566                 for (Object argument : arguments) {
1567                     if (argument == n) {
1568                         count++;
1569                     }
1570                 }
1571             }
1572         }
1573         return count;
1574     }
1575 
1576     static Name argument(int which, BasicType type) {
1577         if (which >= INTERNED_ARGUMENT_LIMIT)
1578             return new Name(which, type);
1579         return INTERNED_ARGUMENTS[type.ordinal()][which];
1580     }
1581     static Name internArgument(Name n) {
1582         assert(n.isParam()) : "not param: " + n;
1583         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1584         if (n.constraint != null)  return n;
1585         return argument(n.index, n.type);
1586     }
1587     static Name[] arguments(int extra, MethodType types) {
1588         int length = types.parameterCount();
1589         Name[] names = new Name[length + extra];
1590         for (int i = 0; i < length; i++)
1591             names[i] = argument(i, basicType(types.parameterType(i)));
1592         return names;
1593     }
1594 
1595     static Name[] invokeArguments(int extra, MethodType types) {
1596         int length = types.parameterCount();
1597         Name[] names = new Name[length + extra + 1];
1598         names[0] = argument(0, L_TYPE);
1599         for (int i = 0; i < length; i++)
1600             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1601         return names;
1602     }
1603 
1604     static final int INTERNED_ARGUMENT_LIMIT = 10;
1605     private static final Name[][] INTERNED_ARGUMENTS
1606             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1607     static {
1608         for (BasicType type : BasicType.ARG_TYPES) {
1609             int ord = type.ordinal();
1610             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1611                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1612             }
1613         }
1614     }
1615 
1616     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1617 
1618     static LambdaForm identityForm(BasicType type) {
1619         int ord = type.ordinal();
1620         LambdaForm form = LF_identity[ord];
1621         if (form != null) {
1622             return form;
1623         }
1624         createIdentityForm(type);
1625         return LF_identity[ord];
1626     }
1627 
1628     static NamedFunction identity(BasicType type) {
1629         int ord = type.ordinal();
1630         NamedFunction function = NF_identity[ord];
1631         if (function != null) {
1632             return function;
1633         }
1634         createIdentityForm(type);
1635         return NF_identity[ord];
1636     }
1637 
1638     static LambdaForm constantForm(BasicType type) {
1639         assert type != null && type != V_TYPE : type;
1640         var cached = LF_constant[type.ordinal()];
1641         if (cached != null)
1642             return cached;
1643         return createConstantForm(type);
1644     }
1645 
1646     private static LambdaForm createConstantForm(BasicType type) {
1647         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1648         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1649         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1650         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1651         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1652     }
1653 
1654     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1655     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1656     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1657 
1658     private static final Object createIdentityFormLock = new Object();
1659     private static void createIdentityForm(BasicType type) {
1660         // Avoid racy initialization during bootstrap
1661         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1662         synchronized (createIdentityFormLock) {
1663             final int ord = type.ordinal();
1664             LambdaForm idForm = LF_identity[ord];
1665             if (idForm != null) {
1666                 return;
1667             }
1668             char btChar = type.basicTypeChar();
1669             boolean isVoid = (type == V_TYPE);
1670             Class<?> btClass = type.btClass;
1671             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1672 
1673             // Look up symbolic names.  It might not be necessary to have these,
1674             // but if we need to emit direct references to bytecodes, it helps.
1675             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1676             try {
1677                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1678             } catch (IllegalAccessException|NoSuchMethodException ex) {
1679                 throw newInternalError(ex);
1680             }
1681 
1682             NamedFunction idFun;
1683 
1684             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1685             // bootstrap dependency on this method in case we're interpreting LFs
1686             if (isVoid) {
1687                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1688                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1689                 idForm.compileToBytecode();
1690                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1691             } else {
1692                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1693                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1694                 idForm.compileToBytecode();
1695                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1696                             MethodHandleImpl.Intrinsic.IDENTITY));
1697             }
1698 
1699             LF_identity[ord] = idForm;
1700             NF_identity[ord] = idFun;
1701 
1702             assert(idFun.isIdentity());
1703         }
1704     }
1705 
1706     // Avoid appealing to ValueConversions at bootstrap time:
1707     private static int identity_I(int x) { return x; }
1708     private static long identity_J(long x) { return x; }
1709     private static float identity_F(float x) { return x; }
1710     private static double identity_D(double x) { return x; }
1711     private static Object identity_L(Object x) { return x; }
1712     private static void identity_V() { return; }
1713     /**
1714      * Internal marker for byte-compiled LambdaForms.
1715      */
1716     /*non-public*/
1717     @Target(ElementType.METHOD)
1718     @Retention(RetentionPolicy.RUNTIME)
1719     @interface Compiled {
1720     }
1721 
1722     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1723     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1724     static {
1725         if (debugEnabled()) {
1726             DEBUG_NAME_COUNTERS = new HashMap<>();
1727             DEBUG_NAMES = new HashMap<>();
1728         } else {
1729             DEBUG_NAME_COUNTERS = null;
1730             DEBUG_NAMES = null;
1731         }
1732     }
1733 
1734     static {
1735         // The Holder class will contain pre-generated forms resolved
1736         // using MemberName.getFactory(). However, that doesn't initialize the
1737         // class, which subtly breaks inlining etc. By forcing
1738         // initialization of the Holder class we avoid these issues.
1739         UNSAFE.ensureClassInitialized(Holder.class);
1740     }
1741 
1742     /* Placeholder class for identity and constant forms generated ahead of time */
1743     final class Holder {}
1744 
1745     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1746     // during execution of the static initializes of this class.
1747     // Turning on TRACE_INTERPRETER too early will cause
1748     // stack overflows and other misbehavior during attempts to trace events
1749     // that occur during LambdaForm.<clinit>.
1750     // Therefore, do not move this line higher in this file, and do not remove.
1751     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1752 }