1 /* 2 * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.lang.classfile.TypeKind; 29 import jdk.internal.perf.PerfCounter; 30 import jdk.internal.vm.annotation.DontInline; 31 import jdk.internal.vm.annotation.Hidden; 32 import jdk.internal.vm.annotation.Stable; 33 import sun.invoke.util.Wrapper; 34 35 import java.lang.annotation.ElementType; 36 import java.lang.annotation.Retention; 37 import java.lang.annotation.RetentionPolicy; 38 import java.lang.annotation.Target; 39 import java.lang.reflect.Method; 40 import java.util.Arrays; 41 import java.util.HashMap; 42 43 import static java.lang.invoke.LambdaForm.BasicType.*; 44 import static java.lang.invoke.MethodHandleNatives.Constants.*; 45 import static java.lang.invoke.MethodHandleStatics.*; 46 47 /** 48 * The symbolic, non-executable form of a method handle's invocation semantics. 49 * It consists of a series of names. 50 * The first N (N=arity) names are parameters, 51 * while any remaining names are temporary values. 52 * Each temporary specifies the application of a function to some arguments. 53 * The functions are method handles, while the arguments are mixes of 54 * constant values and local names. 55 * The result of the lambda is defined as one of the names, often the last one. 56 * <p> 57 * Here is an approximate grammar: 58 * <blockquote><pre>{@code 59 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}" 60 * ArgName = "a" N ":" T 61 * TempName = "t" N ":" T "=" Function "(" Argument* ");" 62 * Function = ConstantValue 63 * Argument = NameRef | ConstantValue 64 * Result = NameRef | "void" 65 * NameRef = "a" N | "t" N 66 * N = (any whole number) 67 * T = "L" | "I" | "J" | "F" | "D" | "V" 68 * }</pre></blockquote> 69 * Names are numbered consecutively from left to right starting at zero. 70 * (The letters are merely a taste of syntax sugar.) 71 * Thus, the first temporary (if any) is always numbered N (where N=arity). 72 * Every occurrence of a name reference in an argument list must refer to 73 * a name previously defined within the same lambda. 74 * A lambda has a void result if and only if its result index is -1. 75 * If a temporary has the type "V", it cannot be the subject of a NameRef, 76 * even though possesses a number. 77 * Note that all reference types are erased to "L", which stands for {@code Object}. 78 * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. 79 * The other types stand for the usual primitive types. 80 * <p> 81 * Function invocation closely follows the static rules of the Java verifier. 82 * Arguments and return values must exactly match when their "Name" types are 83 * considered. 84 * Conversions are allowed only if they do not change the erased type. 85 * <ul> 86 * <li>L = Object: casts are used freely to convert into and out of reference types 87 * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments}) 88 * <li>J = long: no implicit conversions 89 * <li>F = float: no implicit conversions 90 * <li>D = double: no implicit conversions 91 * <li>V = void: a function result may be void if and only if its Name is of type "V" 92 * </ul> 93 * Although implicit conversions are not allowed, explicit ones can easily be 94 * encoded by using temporary expressions which call type-transformed identity functions. 95 * <p> 96 * Examples: 97 * <blockquote><pre>{@code 98 * (a0:J)=>{ a0 } 99 * == identity(long) 100 * (a0:I)=>{ t1:V = System.out#println(a0); void } 101 * == System.out#println(int) 102 * (a0:L)=>{ t1:V = System.out#println(a0); a0 } 103 * == identity, with printing side-effect 104 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 105 * t3:L = BoundMethodHandle#target(a0); 106 * t4:L = MethodHandle#invoke(t3, t2, a1); t4 } 107 * == general invoker for unary insertArgument combination 108 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0); 109 * t3:L = MethodHandle#invoke(t2, a1); 110 * t4:L = FilterMethodHandle#target(a0); 111 * t5:L = MethodHandle#invoke(t4, t3); t5 } 112 * == general invoker for unary filterArgument combination 113 * (a0:L, a1:L)=>{ ...(same as previous example)... 114 * t5:L = MethodHandle#invoke(t4, t3, a1); t5 } 115 * == general invoker for unary/unary foldArgument combination 116 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 } 117 * == invoker for identity method handle which performs i2l 118 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 119 * t3:L = Class#cast(t2,a1); t3 } 120 * == invoker for identity method handle which performs cast 121 * }</pre></blockquote> 122 * <p> 123 * @author John Rose, JSR 292 EG 124 */ 125 class LambdaForm { 126 final int arity; 127 final int result; 128 final boolean forceInline; 129 final MethodHandle customized; 130 @Stable final Name[] names; 131 final Kind kind; 132 MemberName vmentry; // low-level behavior, or null if not yet prepared 133 private boolean isCompiled; 134 135 // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF) 136 volatile Object transformCache; 137 138 public static final int VOID_RESULT = -1, LAST_RESULT = -2; 139 140 enum BasicType { 141 L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types 142 I_TYPE('I', int.class, Wrapper.INT, TypeKind.INT), 143 J_TYPE('J', long.class, Wrapper.LONG, TypeKind.LONG), 144 F_TYPE('F', float.class, Wrapper.FLOAT, TypeKind.FLOAT), 145 D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE), // all primitive types 146 V_TYPE('V', void.class, Wrapper.VOID, TypeKind.VOID); // not valid in all contexts 147 148 static final @Stable BasicType[] ALL_TYPES = BasicType.values(); 149 static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1); 150 151 static final int ARG_TYPE_LIMIT = ARG_TYPES.length; 152 static final int TYPE_LIMIT = ALL_TYPES.length; 153 154 final char btChar; 155 final Class<?> btClass; 156 final Wrapper btWrapper; 157 final TypeKind btKind; 158 159 private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) { 160 this.btChar = btChar; 161 this.btClass = btClass; 162 this.btWrapper = wrapper; 163 this.btKind = typeKind; 164 } 165 166 char basicTypeChar() { 167 return btChar; 168 } 169 Class<?> basicTypeClass() { 170 return btClass; 171 } 172 Wrapper basicTypeWrapper() { 173 return btWrapper; 174 } 175 TypeKind basicTypeKind() { 176 return btKind; 177 } 178 int basicTypeSlots() { 179 return btWrapper.stackSlots(); 180 } 181 182 static BasicType basicType(byte type) { 183 return ALL_TYPES[type]; 184 } 185 static BasicType basicType(char type) { 186 return switch (type) { 187 case 'L' -> L_TYPE; 188 case 'I' -> I_TYPE; 189 case 'J' -> J_TYPE; 190 case 'F' -> F_TYPE; 191 case 'D' -> D_TYPE; 192 case 'V' -> V_TYPE; 193 // all subword types are represented as ints 194 case 'Z', 'B', 'S', 'C' -> I_TYPE; 195 default -> throw newInternalError("Unknown type char: '" + type + "'"); 196 }; 197 } 198 static BasicType basicType(Class<?> type) { 199 return basicType(Wrapper.basicTypeChar(type)); 200 } 201 static int[] basicTypeOrds(BasicType[] types) { 202 if (types == null) { 203 return null; 204 } 205 int[] a = new int[types.length]; 206 for(int i = 0; i < types.length; ++i) { 207 a[i] = types[i].ordinal(); 208 } 209 return a; 210 } 211 212 static char basicTypeChar(Class<?> type) { 213 return basicType(type).btChar; 214 } 215 216 static int[] basicTypesOrd(Class<?>[] types) { 217 int[] ords = new int[types.length]; 218 for (int i = 0; i < ords.length; i++) { 219 ords[i] = basicType(types[i]).ordinal(); 220 } 221 return ords; 222 } 223 224 static boolean isBasicTypeChar(char c) { 225 return "LIJFDV".indexOf(c) >= 0; 226 } 227 static boolean isArgBasicTypeChar(char c) { 228 return "LIJFD".indexOf(c) >= 0; 229 } 230 231 static { assert(checkBasicType()); } 232 private static boolean checkBasicType() { 233 for (int i = 0; i < ARG_TYPE_LIMIT; i++) { 234 assert ARG_TYPES[i].ordinal() == i; 235 assert ARG_TYPES[i] == ALL_TYPES[i]; 236 } 237 for (int i = 0; i < TYPE_LIMIT; i++) { 238 assert ALL_TYPES[i].ordinal() == i; 239 } 240 assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE; 241 assert !Arrays.asList(ARG_TYPES).contains(V_TYPE); 242 return true; 243 } 244 } 245 246 enum Kind { 247 GENERIC("invoke"), 248 IDENTITY("identity"), 249 CONSTANT("constant"), 250 BOUND_REINVOKER("BMH.reinvoke", "reinvoke"), 251 REINVOKER("MH.reinvoke", "reinvoke"), 252 DELEGATE("MH.delegate", "delegate"), 253 EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"), 254 EXACT_INVOKER("MH.exactInvoker", "exactInvoker"), 255 GENERIC_LINKER("MH.invoke_MT", "invoke_MT"), 256 GENERIC_INVOKER("MH.invoker", "invoker"), 257 LINK_TO_TARGET_METHOD("linkToTargetMethod"), 258 LINK_TO_CALL_SITE("linkToCallSite"), 259 DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"), 260 DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"), 261 DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"), 262 DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"), 263 DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"), 264 DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"), 265 DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"), 266 GET_REFERENCE("getReference"), 267 PUT_REFERENCE("putReference"), 268 GET_REFERENCE_VOLATILE("getReferenceVolatile"), 269 PUT_REFERENCE_VOLATILE("putReferenceVolatile"), 270 GET_INT("getInt"), 271 PUT_INT("putInt"), 272 GET_INT_VOLATILE("getIntVolatile"), 273 PUT_INT_VOLATILE("putIntVolatile"), 274 GET_BOOLEAN("getBoolean"), 275 PUT_BOOLEAN("putBoolean"), 276 GET_BOOLEAN_VOLATILE("getBooleanVolatile"), 277 PUT_BOOLEAN_VOLATILE("putBooleanVolatile"), 278 GET_BYTE("getByte"), 279 PUT_BYTE("putByte"), 280 GET_BYTE_VOLATILE("getByteVolatile"), 281 PUT_BYTE_VOLATILE("putByteVolatile"), 282 GET_CHAR("getChar"), 283 PUT_CHAR("putChar"), 284 GET_CHAR_VOLATILE("getCharVolatile"), 285 PUT_CHAR_VOLATILE("putCharVolatile"), 286 GET_SHORT("getShort"), 287 PUT_SHORT("putShort"), 288 GET_SHORT_VOLATILE("getShortVolatile"), 289 PUT_SHORT_VOLATILE("putShortVolatile"), 290 GET_LONG("getLong"), 291 PUT_LONG("putLong"), 292 GET_LONG_VOLATILE("getLongVolatile"), 293 PUT_LONG_VOLATILE("putLongVolatile"), 294 GET_FLOAT("getFloat"), 295 PUT_FLOAT("putFloat"), 296 GET_FLOAT_VOLATILE("getFloatVolatile"), 297 PUT_FLOAT_VOLATILE("putFloatVolatile"), 298 GET_DOUBLE("getDouble"), 299 PUT_DOUBLE("putDouble"), 300 GET_DOUBLE_VOLATILE("getDoubleVolatile"), 301 PUT_DOUBLE_VOLATILE("putDoubleVolatile"), 302 TRY_FINALLY("tryFinally"), 303 TABLE_SWITCH("tableSwitch"), 304 COLLECTOR("collector"), 305 LOOP("loop"), 306 GUARD("guard"), 307 GUARD_WITH_CATCH("guardWithCatch"), 308 VARHANDLE_EXACT_INVOKER("VH.exactInvoker"), 309 VARHANDLE_INVOKER("VH.invoker", "invoker"), 310 VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT"); 311 312 final String defaultLambdaName; 313 final String methodName; 314 315 private Kind(String defaultLambdaName) { 316 this(defaultLambdaName, defaultLambdaName); 317 } 318 319 private Kind(String defaultLambdaName, String methodName) { 320 this.defaultLambdaName = defaultLambdaName; 321 this.methodName = methodName; 322 } 323 } 324 325 // private version that doesn't do checks or defensive copies 326 private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) { 327 this.arity = arity; 328 this.result = result; 329 this.forceInline = forceInline; 330 this.customized = customized; 331 this.names = names; 332 this.kind = kind; 333 this.vmentry = null; 334 this.isCompiled = false; 335 } 336 337 // root factory pre/post processing and calls simple constructor 338 private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) { 339 names = names.clone(); 340 assert(namesOK(arity, names)); 341 result = fixResult(result, names); 342 343 boolean canInterpret = normalizeNames(arity, names); 344 LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind); 345 assert(form.nameRefsAreLegal()); 346 if (!canInterpret) { 347 form.compileToBytecode(); 348 } 349 return form; 350 } 351 352 // derived factories with defaults 353 private static final int DEFAULT_RESULT = LAST_RESULT; 354 private static final boolean DEFAULT_FORCE_INLINE = true; 355 private static final MethodHandle DEFAULT_CUSTOMIZED = null; 356 private static final Kind DEFAULT_KIND = Kind.GENERIC; 357 358 static LambdaForm create(int arity, Name[] names, int result) { 359 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 360 } 361 static LambdaForm create(int arity, Name[] names, int result, Kind kind) { 362 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 363 } 364 static LambdaForm create(int arity, Name[] names) { 365 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 366 } 367 static LambdaForm create(int arity, Name[] names, Kind kind) { 368 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 369 } 370 static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) { 371 return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind); 372 } 373 374 private static int fixResult(int result, Name[] names) { 375 if (result == LAST_RESULT) 376 result = names.length - 1; // might still be void 377 if (result >= 0 && names[result].type == V_TYPE) 378 result = VOID_RESULT; 379 return result; 380 } 381 382 static boolean debugNames() { 383 return DEBUG_NAME_COUNTERS != null; 384 } 385 386 static void associateWithDebugName(LambdaForm form, String name) { 387 assert (debugNames()); 388 synchronized (DEBUG_NAMES) { 389 DEBUG_NAMES.put(form, name); 390 } 391 } 392 393 String lambdaName() { 394 if (DEBUG_NAMES != null) { 395 synchronized (DEBUG_NAMES) { 396 String name = DEBUG_NAMES.get(this); 397 if (name == null) { 398 name = generateDebugName(); 399 } 400 return name; 401 } 402 } 403 return kind.defaultLambdaName; 404 } 405 406 private String generateDebugName() { 407 assert (debugNames()); 408 String debugNameStem = kind.defaultLambdaName; 409 Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0); 410 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1); 411 StringBuilder buf = new StringBuilder(debugNameStem); 412 int leadingZero = buf.length(); 413 buf.append((int) ctr); 414 for (int i = buf.length() - leadingZero; i < 3; i++) { 415 buf.insert(leadingZero, '0'); 416 } 417 buf.append('_'); 418 buf.append(basicTypeSignature()); 419 String name = buf.toString(); 420 associateWithDebugName(this, name); 421 return name; 422 } 423 424 private static boolean namesOK(int arity, Name[] names) { 425 for (int i = 0; i < names.length; i++) { 426 Name n = names[i]; 427 assert(n != null) : "n is null"; 428 if (i < arity) 429 assert( n.isParam()) : n + " is not param at " + i; 430 else 431 assert(!n.isParam()) : n + " is param at " + i; 432 } 433 return true; 434 } 435 436 /** Customize LambdaForm for a particular MethodHandle */ 437 LambdaForm customize(MethodHandle mh) { 438 if (customized == mh) { 439 return this; 440 } 441 LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind); 442 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 443 // If shared LambdaForm has been compiled, compile customized version as well. 444 customForm.compileToBytecode(); 445 } 446 customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form. 447 return customForm; 448 } 449 450 /** Get uncustomized flavor of the LambdaForm */ 451 LambdaForm uncustomize() { 452 if (customized == null) { 453 return this; 454 } 455 assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version. 456 LambdaForm uncustomizedForm = (LambdaForm)transformCache; 457 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 458 // If customized LambdaForm has been compiled, compile uncustomized version as well. 459 uncustomizedForm.compileToBytecode(); 460 } 461 return uncustomizedForm; 462 } 463 464 /** Renumber and/or replace params so that they are interned and canonically numbered. 465 * @return true if we can interpret 466 */ 467 private static boolean normalizeNames(int arity, Name[] names) { 468 Name[] oldNames = names.clone(); 469 int maxOutArity = 0; 470 for (int i = 0; i < names.length; i++) { 471 Name n = names[i]; 472 names[i] = n.withIndex(i); 473 if (n.arguments != null && maxOutArity < n.arguments.length) 474 maxOutArity = n.arguments.length; 475 } 476 if (oldNames != null) { 477 for (int i = Math.max(1, arity); i < names.length; i++) { 478 Name fixed = names[i].replaceNames(oldNames, names, 0, i); 479 names[i] = fixed.withIndex(i); 480 } 481 } 482 int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); 483 boolean needIntern = false; 484 for (int i = 0; i < maxInterned; i++) { 485 Name n = names[i], n2 = internArgument(n); 486 if (n != n2) { 487 names[i] = n2; 488 needIntern = true; 489 } 490 } 491 if (needIntern) { 492 for (int i = arity; i < names.length; i++) { 493 names[i].internArguments(); 494 } 495 } 496 497 // return true if we can interpret 498 if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) { 499 // Cannot use LF interpreter on very high arity expressions. 500 assert(maxOutArity <= MethodType.MAX_JVM_ARITY); 501 return false; 502 } 503 return true; 504 } 505 506 /** 507 * Check that all embedded Name references are localizable to this lambda, 508 * and are properly ordered after their corresponding definitions. 509 * <p> 510 * Note that a Name can be local to multiple lambdas, as long as 511 * it possesses the same index in each use site. 512 * This allows Name references to be freely reused to construct 513 * fresh lambdas, without confusion. 514 */ 515 boolean nameRefsAreLegal() { 516 assert(arity >= 0 && arity <= names.length); 517 assert(result >= -1 && result < names.length); 518 // Do all names possess an index consistent with their local definition order? 519 for (int i = 0; i < arity; i++) { 520 Name n = names[i]; 521 assert(n.index() == i) : Arrays.asList(n.index(), i); 522 assert(n.isParam()); 523 } 524 // Also, do all local name references 525 for (int i = arity; i < names.length; i++) { 526 Name n = names[i]; 527 assert(n.index() == i); 528 for (Object arg : n.arguments) { 529 if (arg instanceof Name n2) { 530 int i2 = n2.index; 531 assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; 532 assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); 533 assert(i2 < i); // ref must come after def! 534 } 535 } 536 } 537 return true; 538 } 539 540 // /** Invoke this form on the given arguments. */ 541 // final Object invoke(Object... args) throws Throwable { 542 // // NYI: fit this into the fast path? 543 // return interpretWithArguments(args); 544 // } 545 546 /** Report the return type. */ 547 BasicType returnType() { 548 if (result < 0) return V_TYPE; 549 Name n = names[result]; 550 return n.type; 551 } 552 553 /** Report the N-th argument type. */ 554 BasicType parameterType(int n) { 555 return parameter(n).type; 556 } 557 558 /** Report the N-th argument name. */ 559 Name parameter(int n) { 560 Name param = names[n]; 561 assert(n < arity && param.isParam()); 562 return param; 563 } 564 565 /** Report the N-th argument type constraint. */ 566 Object parameterConstraint(int n) { 567 return parameter(n).constraint; 568 } 569 570 /** Report the arity. */ 571 int arity() { 572 return arity; 573 } 574 575 /** Report the number of expressions (non-parameter names). */ 576 int expressionCount() { 577 return names.length - arity; 578 } 579 580 /** Return the method type corresponding to my basic type signature. */ 581 MethodType methodType() { 582 Class<?>[] ptypes = new Class<?>[arity]; 583 for (int i = 0; i < arity; ++i) { 584 ptypes[i] = parameterType(i).btClass; 585 } 586 return MethodType.methodType(returnType().btClass, ptypes, true); 587 } 588 589 /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ 590 final String basicTypeSignature() { 591 StringBuilder buf = new StringBuilder(arity() + 3); 592 for (int i = 0, a = arity(); i < a; i++) 593 buf.append(parameterType(i).basicTypeChar()); 594 return buf.append('_').append(returnType().basicTypeChar()).toString(); 595 } 596 static int signatureArity(String sig) { 597 assert(isValidSignature(sig)); 598 return sig.indexOf('_'); 599 } 600 static boolean isValidSignature(String sig) { 601 int arity = sig.indexOf('_'); 602 if (arity < 0) return false; // must be of the form *_* 603 int siglen = sig.length(); 604 if (siglen != arity + 2) return false; // *_X 605 for (int i = 0; i < siglen; i++) { 606 if (i == arity) continue; // skip '_' 607 char c = sig.charAt(i); 608 if (c == 'V') 609 return (i == siglen - 1 && arity == siglen - 2); 610 if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] 611 } 612 return true; // [LIJFD]*_[LIJFDV] 613 } 614 615 /** 616 * Check if i-th name is a call to MethodHandleImpl.selectAlternative. 617 */ 618 boolean isSelectAlternative(int pos) { 619 // selectAlternative idiom: 620 // t_{n}:L=MethodHandleImpl.selectAlternative(...) 621 // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 622 if (pos+1 >= names.length) return false; 623 Name name0 = names[pos]; 624 Name name1 = names[pos+1]; 625 return name0.refersTo(MethodHandleImpl.class, "selectAlternative") && 626 name1.isInvokeBasic() && 627 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 628 lastUseIndex(name0) == pos+1; // t_{n} is local: used only in t_{n+1} 629 } 630 631 private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) { 632 if (pos+2 >= names.length) return false; 633 Name name0 = names[pos]; 634 Name name1 = names[pos+1]; 635 Name name2 = names[pos+2]; 636 return name1.refersTo(MethodHandleImpl.class, idiomName) && 637 name0.isInvokeBasic() && 638 name2.isInvokeBasic() && 639 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n}); 640 lastUseIndex(name0) == pos+1 && // t_{n} is local: used only in t_{n+1} 641 name2.lastUseIndex(name1) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 642 lastUseIndex(name1) == pos+2; // t_{n+1} is local: used only in t_{n+2} 643 } 644 645 /** 646 * Check if i-th name is a start of GuardWithCatch idiom. 647 */ 648 boolean isGuardWithCatch(int pos) { 649 // GuardWithCatch idiom: 650 // t_{n}:L=MethodHandle.invokeBasic(...) 651 // t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n}); 652 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 653 return isMatchingIdiom(pos, "guardWithCatch", 3); 654 } 655 656 /** 657 * Check if i-th name is a start of the tryFinally idiom. 658 */ 659 boolean isTryFinally(int pos) { 660 // tryFinally idiom: 661 // t_{n}:L=MethodHandle.invokeBasic(...) 662 // t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n}) 663 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 664 return isMatchingIdiom(pos, "tryFinally", 2); 665 } 666 667 /** 668 * Check if i-th name is a start of the tableSwitch idiom. 669 */ 670 boolean isTableSwitch(int pos) { 671 // tableSwitch idiom: 672 // t_{n}:L=MethodHandle.invokeBasic(...) // args 673 // t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n}) 674 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 675 if (pos + 2 >= names.length) return false; 676 677 final int POS_COLLECT_ARGS = pos; 678 final int POS_TABLE_SWITCH = pos + 1; 679 final int POS_UNBOX_RESULT = pos + 2; 680 681 Name collectArgs = names[POS_COLLECT_ARGS]; 682 Name tableSwitch = names[POS_TABLE_SWITCH]; 683 Name unboxResult = names[POS_UNBOX_RESULT]; 684 return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") && 685 collectArgs.isInvokeBasic() && 686 unboxResult.isInvokeBasic() && 687 tableSwitch.lastUseIndex(collectArgs) == 3 && // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n}); 688 lastUseIndex(collectArgs) == POS_TABLE_SWITCH && // t_{n} is local: used only in t_{n+1} 689 unboxResult.lastUseIndex(tableSwitch) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 690 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT; // t_{n+1} is local: used only in t_{n+2} 691 } 692 693 /** 694 * Check if i-th name is a start of the loop idiom. 695 */ 696 boolean isLoop(int pos) { 697 // loop idiom: 698 // t_{n}:L=MethodHandle.invokeBasic(...) 699 // t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n}) 700 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 701 return isMatchingIdiom(pos, "loop", 2); 702 } 703 704 /* 705 * Code generation issues: 706 * 707 * Compiled LFs should be reusable in general. 708 * The biggest issue is how to decide when to pull a name into 709 * the bytecode, versus loading a reified form from the MH data. 710 * 711 * For example, an asType wrapper may require execution of a cast 712 * after a call to a MH. The target type of the cast can be placed 713 * as a constant in the LF itself. This will force the cast type 714 * to be compiled into the bytecodes and native code for the MH. 715 * Or, the target type of the cast can be erased in the LF, and 716 * loaded from the MH data. (Later on, if the MH as a whole is 717 * inlined, the data will flow into the inlined instance of the LF, 718 * as a constant, and the end result will be an optimal cast.) 719 * 720 * This erasure of cast types can be done with any use of 721 * reference types. It can also be done with whole method 722 * handles. Erasing a method handle might leave behind 723 * LF code that executes correctly for any MH of a given 724 * type, and load the required MH from the enclosing MH's data. 725 * Or, the erasure might even erase the expected MT. 726 * 727 * Also, for direct MHs, the MemberName of the target 728 * could be erased, and loaded from the containing direct MH. 729 * As a simple case, a LF for all int-valued non-static 730 * field getters would perform a cast on its input argument 731 * (to non-constant base type derived from the MemberName) 732 * and load an integer value from the input object 733 * (at a non-constant offset also derived from the MemberName). 734 * Such MN-erased LFs would be inlinable back to optimized 735 * code, whenever a constant enclosing DMH is available 736 * to supply a constant MN from its data. 737 * 738 * The main problem here is to keep LFs reasonably generic, 739 * while ensuring that hot spots will inline good instances. 740 * "Reasonably generic" means that we don't end up with 741 * repeated versions of bytecode or machine code that do 742 * not differ in their optimized form. Repeated versions 743 * of machine would have the undesirable overheads of 744 * (a) redundant compilation work and (b) extra I$ pressure. 745 * To control repeated versions, we need to be ready to 746 * erase details from LFs and move them into MH data, 747 * whenever those details are not relevant to significant 748 * optimization. "Significant" means optimization of 749 * code that is actually hot. 750 * 751 * Achieving this may require dynamic splitting of MHs, by replacing 752 * a generic LF with a more specialized one, on the same MH, 753 * if (a) the MH is frequently executed and (b) the MH cannot 754 * be inlined into a containing caller, such as an invokedynamic. 755 * 756 * Compiled LFs that are no longer used should be GC-able. 757 * If they contain non-BCP references, they should be properly 758 * interlinked with the class loader(s) that their embedded types 759 * depend on. This probably means that reusable compiled LFs 760 * will be tabulated (indexed) on relevant class loaders, 761 * or else that the tables that cache them will have weak links. 762 */ 763 764 /** 765 * Make this LF directly executable, as part of a MethodHandle. 766 * Invariant: Every MH which is invoked must prepare its LF 767 * before invocation. 768 * (In principle, the JVM could do this very lazily, 769 * as a sort of pre-invocation linkage step.) 770 */ 771 public void prepare() { 772 if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) { 773 compileToBytecode(); 774 } 775 if (this.vmentry != null) { 776 // already prepared (e.g., a primitive DMH invoker form) 777 return; 778 } 779 MethodType mtype = methodType(); 780 MethodTypeForm form = mtype.form(); 781 782 MemberName entry = form.cachedInterpretEntry(); 783 if (entry == null) { 784 assert (isValidSignature(basicTypeSignature())); 785 entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype); 786 entry = form.setCachedInterpretEntry(entry); 787 } 788 this.vmentry = entry; 789 // TO DO: Maybe add invokeGeneric, invokeWithArguments 790 } 791 792 private static @Stable PerfCounter LF_FAILED; 793 794 private static PerfCounter failedCompilationCounter() { 795 if (LF_FAILED == null) { 796 LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations"); 797 } 798 return LF_FAILED; 799 } 800 801 /** Generate optimizable bytecode for this form. */ 802 void compileToBytecode() { 803 if (forceInterpretation()) { 804 return; // this should not be compiled 805 } 806 if (vmentry != null && isCompiled) { 807 return; // already compiled somehow 808 } 809 810 // Obtain the invoker MethodType outside of the following try block. 811 // This ensures that an IllegalArgumentException is directly thrown if the 812 // type would have 256 or more parameters 813 MethodType invokerType = methodType(); 814 assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); 815 try { 816 vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); 817 if (TRACE_INTERPRETER) 818 traceInterpreter("compileToBytecode", this); 819 isCompiled = true; 820 } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) { 821 // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only 822 invocationCounter = -1; 823 failedCompilationCounter().increment(); 824 if (LOG_LF_COMPILATION_FAILURE) { 825 System.out.println("LambdaForm compilation failed: " + this); 826 bge.printStackTrace(System.out); 827 } 828 } catch (Error e) { 829 // Pass through any error 830 throw e; 831 } catch (Exception e) { 832 // Wrap any exception 833 throw newInternalError(this.toString(), e); 834 } 835 } 836 837 // The next few routines are called only from assert expressions 838 // They verify that the built-in invokers process the correct raw data types. 839 private static boolean argumentTypesMatch(String sig, Object[] av) { 840 int arity = signatureArity(sig); 841 assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; 842 assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0]; 843 MethodHandle mh = (MethodHandle) av[0]; 844 MethodType mt = mh.type(); 845 assert(mt.parameterCount() == arity-1); 846 for (int i = 0; i < av.length; i++) { 847 Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); 848 assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); 849 } 850 return true; 851 } 852 private static boolean valueMatches(BasicType tc, Class<?> type, Object x) { 853 // The following line is needed because (...)void method handles can use non-void invokers 854 if (type == void.class) tc = V_TYPE; // can drop any kind of value 855 assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); 856 switch (tc) { 857 case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; 858 case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; 859 case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; 860 case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; 861 case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; 862 case V_TYPE: break; // allow anything here; will be dropped 863 default: assert(false); 864 } 865 return true; 866 } 867 private static boolean checkInt(Class<?> type, Object x) { 868 assert(x instanceof Integer); 869 if (type == int.class) return true; 870 Wrapper w = Wrapper.forBasicType(type); 871 assert(w.isSubwordOrInt()); 872 Object x1 = Wrapper.INT.wrap(w.wrap(x)); 873 return x.equals(x1); 874 } 875 private static boolean checkRef(Class<?> type, Object x) { 876 assert(!type.isPrimitive()); 877 if (x == null) return true; 878 if (type.isInterface()) return true; 879 return type.isInstance(x); 880 } 881 882 /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ 883 private static final int COMPILE_THRESHOLD; 884 static { 885 COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD); 886 } 887 private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever 888 889 private boolean forceInterpretation() { 890 return invocationCounter == -1; 891 } 892 893 /** Interpretively invoke this form on the given arguments. */ 894 @Hidden 895 @DontInline 896 Object interpretWithArguments(Object... argumentValues) throws Throwable { 897 if (TRACE_INTERPRETER) 898 return interpretWithArgumentsTracing(argumentValues); 899 checkInvocationCounter(); 900 assert(arityCheck(argumentValues)); 901 Object[] values = Arrays.copyOf(argumentValues, names.length); 902 for (int i = argumentValues.length; i < values.length; i++) { 903 values[i] = interpretName(names[i], values); 904 } 905 Object rv = (result < 0) ? null : values[result]; 906 assert(resultCheck(argumentValues, rv)); 907 return rv; 908 } 909 910 /** Evaluate a single Name within this form, applying its function to its arguments. */ 911 @Hidden 912 @DontInline 913 Object interpretName(Name name, Object[] values) throws Throwable { 914 if (TRACE_INTERPRETER) 915 traceInterpreter("| interpretName", name.debugString(), (Object[]) null); 916 Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); 917 for (int i = 0; i < arguments.length; i++) { 918 Object a = arguments[i]; 919 if (a instanceof Name n) { 920 int i2 = n.index(); 921 assert(names[i2] == a); 922 a = values[i2]; 923 arguments[i] = a; 924 } 925 } 926 return name.function.invokeWithArguments(arguments); 927 } 928 929 private void checkInvocationCounter() { 930 if (COMPILE_THRESHOLD != 0 && 931 !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 932 invocationCounter++; // benign race 933 if (invocationCounter >= COMPILE_THRESHOLD) { 934 // Replace vmentry with a bytecode version of this LF. 935 compileToBytecode(); 936 } 937 } 938 } 939 Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { 940 traceInterpreter("[ interpretWithArguments", this, argumentValues); 941 if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 942 int ctr = invocationCounter++; // benign race 943 traceInterpreter("| invocationCounter", ctr); 944 if (invocationCounter >= COMPILE_THRESHOLD) { 945 compileToBytecode(); 946 } 947 } 948 Object rval; 949 try { 950 assert(arityCheck(argumentValues)); 951 Object[] values = Arrays.copyOf(argumentValues, names.length); 952 for (int i = argumentValues.length; i < values.length; i++) { 953 values[i] = interpretName(names[i], values); 954 } 955 rval = (result < 0) ? null : values[result]; 956 } catch (Throwable ex) { 957 traceInterpreter("] throw =>", ex); 958 throw ex; 959 } 960 traceInterpreter("] return =>", rval); 961 return rval; 962 } 963 964 static void traceInterpreter(String event, Object obj, Object... args) { 965 if (TRACE_INTERPRETER) { 966 System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); 967 } 968 } 969 static void traceInterpreter(String event, Object obj) { 970 traceInterpreter(event, obj, (Object[])null); 971 } 972 private boolean arityCheck(Object[] argumentValues) { 973 assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; 974 // also check that the leading (receiver) argument is somehow bound to this LF: 975 assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; 976 MethodHandle mh = (MethodHandle) argumentValues[0]; 977 assert(mh.internalForm() == this); 978 // note: argument #0 could also be an interface wrapper, in the future 979 argumentTypesMatch(basicTypeSignature(), argumentValues); 980 return true; 981 } 982 private boolean resultCheck(Object[] argumentValues, Object result) { 983 MethodHandle mh = (MethodHandle) argumentValues[0]; 984 MethodType mt = mh.type(); 985 assert(valueMatches(returnType(), mt.returnType(), result)); 986 return true; 987 } 988 989 public String toString() { 990 return debugString(-1); 991 } 992 993 String debugString(int indentLevel) { 994 String prefix = MethodHandle.debugPrefix(indentLevel); 995 String lambdaName = lambdaName(); 996 StringBuilder buf = new StringBuilder(lambdaName); 997 buf.append("=Lambda("); 998 for (int i = 0; i < names.length; i++) { 999 if (i == arity) buf.append(")=>{"); 1000 Name n = names[i]; 1001 if (i >= arity) buf.append("\n ").append(prefix); 1002 buf.append(n.paramString()); 1003 if (i < arity) { 1004 if (i+1 < arity) buf.append(","); 1005 continue; 1006 } 1007 buf.append("=").append(n.exprString()); 1008 buf.append(";"); 1009 } 1010 if (arity == names.length) buf.append(")=>{"); 1011 buf.append(result < 0 ? "void" : names[result]).append("}"); 1012 if (TRACE_INTERPRETER) { 1013 // Extra verbosity: 1014 buf.append(":").append(basicTypeSignature()); 1015 buf.append("/").append(vmentry); 1016 } 1017 return buf.toString(); 1018 } 1019 1020 @Override 1021 public boolean equals(Object obj) { 1022 return obj instanceof LambdaForm lf && equals(lf); 1023 } 1024 public boolean equals(LambdaForm that) { 1025 if (this.result != that.result) return false; 1026 return Arrays.equals(this.names, that.names); 1027 } 1028 public int hashCode() { 1029 return result + 31 * Arrays.hashCode(names); 1030 } 1031 LambdaFormEditor editor() { 1032 return LambdaFormEditor.lambdaFormEditor(this); 1033 } 1034 1035 boolean contains(Name name) { 1036 int pos = name.index(); 1037 if (pos >= 0) { 1038 return pos < names.length && name.equals(names[pos]); 1039 } 1040 for (int i = arity; i < names.length; i++) { 1041 if (name.equals(names[i])) 1042 return true; 1043 } 1044 return false; 1045 } 1046 1047 static class NamedFunction { 1048 final MemberName member; 1049 private @Stable MethodHandle resolvedHandle; 1050 private @Stable MethodType type; 1051 1052 NamedFunction(MethodHandle resolvedHandle) { 1053 this(resolvedHandle.internalMemberName(), resolvedHandle); 1054 } 1055 NamedFunction(MemberName member, MethodHandle resolvedHandle) { 1056 this.member = member; 1057 this.resolvedHandle = resolvedHandle; 1058 // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest. 1059 //assert(!isInvokeBasic(member)); 1060 } 1061 NamedFunction(MethodType basicInvokerType) { 1062 assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; 1063 if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { 1064 this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); 1065 this.member = resolvedHandle.internalMemberName(); 1066 } else { 1067 // necessary to pass BigArityTest 1068 this.member = Invokers.invokeBasicMethod(basicInvokerType); 1069 } 1070 assert(isInvokeBasic(member)); 1071 } 1072 1073 private static boolean isInvokeBasic(MemberName member) { 1074 return member != null && 1075 member.getDeclaringClass() == MethodHandle.class && 1076 "invokeBasic".equals(member.getName()); 1077 } 1078 1079 // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc. 1080 // Any LambdaForm containing such a member is not interpretable. 1081 // This is OK, since all such LFs are prepared with special primitive vmentry points. 1082 // And even without the resolvedHandle, the name can still be compiled and optimized. 1083 NamedFunction(Method method) { 1084 this(new MemberName(method)); 1085 } 1086 NamedFunction(MemberName member) { 1087 this(member, null); 1088 } 1089 1090 MethodHandle resolvedHandle() { 1091 if (resolvedHandle == null) resolve(); 1092 return resolvedHandle; 1093 } 1094 1095 synchronized void resolve() { 1096 if (resolvedHandle == null) { 1097 resolvedHandle = DirectMethodHandle.make(member); 1098 } 1099 } 1100 1101 @Override 1102 public boolean equals(Object other) { 1103 if (this == other) return true; 1104 if (other == null) return false; 1105 return (other instanceof NamedFunction that) 1106 && this.member != null 1107 && this.member.equals(that.member); 1108 } 1109 1110 @Override 1111 public int hashCode() { 1112 if (member != null) 1113 return member.hashCode(); 1114 return super.hashCode(); 1115 } 1116 1117 static final MethodType INVOKER_METHOD_TYPE = 1118 MethodType.methodType(Object.class, MethodHandle.class, Object[].class); 1119 1120 private static MethodHandle computeInvoker(MethodTypeForm typeForm) { 1121 typeForm = typeForm.basicType().form(); // normalize to basic type 1122 MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1123 if (mh != null) return mh; 1124 MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while 1125 mh = DirectMethodHandle.make(invoker); 1126 MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1127 if (mh2 != null) return mh2; // benign race 1128 if (!mh.type().equals(INVOKER_METHOD_TYPE)) 1129 throw newInternalError(mh.debugString()); 1130 return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh); 1131 } 1132 1133 @Hidden 1134 Object invokeWithArguments(Object... arguments) throws Throwable { 1135 // If we have a cached invoker, call it right away. 1136 // NOTE: The invoker always returns a reference value. 1137 if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); 1138 return invoker().invokeBasic(resolvedHandle(), arguments); 1139 } 1140 1141 @Hidden 1142 Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { 1143 Object rval; 1144 try { 1145 traceInterpreter("[ call", this, arguments); 1146 // resolvedHandle might be uninitialized, ok for tracing 1147 if (resolvedHandle == null) { 1148 traceInterpreter("| resolve", this); 1149 resolvedHandle(); 1150 } 1151 rval = invoker().invokeBasic(resolvedHandle(), arguments); 1152 } catch (Throwable ex) { 1153 traceInterpreter("] throw =>", ex); 1154 throw ex; 1155 } 1156 traceInterpreter("] return =>", rval); 1157 return rval; 1158 } 1159 1160 private MethodHandle invoker() { 1161 return computeInvoker(methodType().form()); 1162 } 1163 1164 MethodType methodType() { 1165 MethodType type = this.type; 1166 if (type == null) { 1167 this.type = type = calculateMethodType(member, resolvedHandle); 1168 } 1169 return type; 1170 } 1171 1172 private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) { 1173 if (resolvedHandle != null) { 1174 return resolvedHandle.type(); 1175 } else { 1176 // only for certain internal LFs during bootstrapping 1177 return member.getInvocationType(); 1178 } 1179 } 1180 1181 MemberName member() { 1182 assert(assertMemberIsConsistent()); 1183 return member; 1184 } 1185 1186 // Called only from assert. 1187 private boolean assertMemberIsConsistent() { 1188 if (resolvedHandle instanceof DirectMethodHandle) { 1189 MemberName m = resolvedHandle.internalMemberName(); 1190 assert(m.equals(member)); 1191 } 1192 return true; 1193 } 1194 1195 Class<?> memberDeclaringClassOrNull() { 1196 return (member == null) ? null : member.getDeclaringClass(); 1197 } 1198 1199 BasicType returnType() { 1200 return basicType(methodType().returnType()); 1201 } 1202 1203 BasicType parameterType(int n) { 1204 return basicType(methodType().parameterType(n)); 1205 } 1206 1207 int arity() { 1208 return methodType().parameterCount(); 1209 } 1210 1211 public String toString() { 1212 if (member == null) return String.valueOf(resolvedHandle); 1213 return member.getDeclaringClass().getSimpleName()+"."+member.getName(); 1214 } 1215 1216 public boolean isIdentity() { 1217 return this.equals(identity(returnType())); 1218 } 1219 1220 public MethodHandleImpl.Intrinsic intrinsicName() { 1221 return resolvedHandle != null 1222 ? resolvedHandle.intrinsicName() 1223 : MethodHandleImpl.Intrinsic.NONE; 1224 } 1225 1226 public Object intrinsicData() { 1227 return resolvedHandle != null 1228 ? resolvedHandle.intrinsicData() 1229 : null; 1230 } 1231 } 1232 1233 public static String basicTypeSignature(MethodType type) { 1234 int params = type.parameterCount(); 1235 char[] sig = new char[params + 2]; 1236 int sigp = 0; 1237 while (sigp < params) { 1238 sig[sigp] = basicTypeChar(type.parameterType(sigp++)); 1239 } 1240 sig[sigp++] = '_'; 1241 sig[sigp++] = basicTypeChar(type.returnType()); 1242 assert(sigp == sig.length); 1243 return String.valueOf(sig); 1244 } 1245 1246 /** Hack to make signatures more readable when they show up in method names. 1247 * Signature should start with a sequence of uppercase ASCII letters. 1248 * Runs of three or more are replaced by a single letter plus a decimal repeat count. 1249 * A tail of anything other than uppercase ASCII is passed through unchanged. 1250 * @param signature sequence of uppercase ASCII letters with possible repetitions 1251 * @return same sequence, with repetitions counted by decimal numerals 1252 */ 1253 public static String shortenSignature(String signature) { 1254 final int NO_CHAR = -1, MIN_RUN = 3; 1255 int c0, c1 = NO_CHAR, c1reps = 0; 1256 StringBuilder buf = null; 1257 int len = signature.length(); 1258 if (len < MIN_RUN) return signature; 1259 for (int i = 0; i <= len; i++) { 1260 if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) { 1261 // wrong kind of char; bail out here 1262 if (buf != null) { 1263 buf.append(signature, i - c1reps, len); 1264 } 1265 break; 1266 } 1267 // shift in the next char: 1268 c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); 1269 if (c1 == c0) { ++c1reps; continue; } 1270 // shift in the next count: 1271 int c0reps = c1reps; c1reps = 1; 1272 // end of a character run 1273 if (c0reps < MIN_RUN) { 1274 if (buf != null) { 1275 while (--c0reps >= 0) 1276 buf.append((char)c0); 1277 } 1278 continue; 1279 } 1280 // found three or more in a row 1281 if (buf == null) 1282 buf = new StringBuilder().append(signature, 0, i - c0reps); 1283 buf.append((char)c0).append(c0reps); 1284 } 1285 return (buf == null) ? signature : buf.toString(); 1286 } 1287 1288 static final class Name { 1289 final BasicType type; 1290 final short index; 1291 final NamedFunction function; 1292 final Object constraint; // additional type information, if not null 1293 @Stable final Object[] arguments; 1294 1295 private static final Object[] EMPTY_ARGS = new Object[0]; 1296 1297 private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) { 1298 this.index = (short)index; 1299 this.type = type; 1300 this.function = function; 1301 this.arguments = arguments; 1302 this.constraint = constraint; 1303 assert(this.index == index && typesMatch(function, arguments)); 1304 assert(constraint == null || isParam()); // only params have constraints 1305 assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class); 1306 } 1307 1308 Name(MethodHandle function, Object... arguments) { 1309 this(new NamedFunction(function), arguments); 1310 } 1311 Name(MethodType functionType, Object... arguments) { 1312 this(new NamedFunction(functionType), arguments); 1313 assert(arguments[0] instanceof Name name && name.type == L_TYPE); 1314 } 1315 Name(MemberName function, Object... arguments) { 1316 this(new NamedFunction(function), arguments); 1317 } 1318 Name(NamedFunction function) { 1319 this(-1, function.returnType(), function, EMPTY_ARGS, null); 1320 } 1321 Name(NamedFunction function, Object arg) { 1322 this(-1, function.returnType(), function, new Object[] { arg }, null); 1323 } 1324 Name(NamedFunction function, Object arg0, Object arg1) { 1325 this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null); 1326 } 1327 Name(NamedFunction function, Object... arguments) { 1328 this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null); 1329 } 1330 /** Create a raw parameter of the given type, with an expected index. */ 1331 Name(int index, BasicType type) { 1332 this(index, type, null, null, null); 1333 } 1334 /** Create a raw parameter of the given type. */ 1335 Name(BasicType type) { this(-1, type); } 1336 1337 BasicType type() { return type; } 1338 int index() { return index; } 1339 1340 char typeChar() { 1341 return type.btChar; 1342 } 1343 1344 Name withIndex(int i) { 1345 if (i == this.index) return this; 1346 return new Name(i, type, function, arguments, constraint); 1347 } 1348 1349 Name withConstraint(Object constraint) { 1350 if (constraint == this.constraint) return this; 1351 return new Name(index, type, function, arguments, constraint); 1352 } 1353 1354 Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly 1355 if (oldName == newName) return this; 1356 @SuppressWarnings("LocalVariableHidesMemberVariable") 1357 Object[] arguments = this.arguments; 1358 if (arguments == null) return this; 1359 boolean replaced = false; 1360 for (int j = 0; j < arguments.length; j++) { 1361 if (arguments[j] == oldName) { 1362 if (!replaced) { 1363 replaced = true; 1364 arguments = arguments.clone(); 1365 } 1366 arguments[j] = newName; 1367 } 1368 } 1369 if (!replaced) return this; 1370 return new Name(function, arguments); 1371 } 1372 /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i]. 1373 * Limit such replacements to {@code start<=i<end}. Return possibly changed self. 1374 */ 1375 Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) { 1376 if (start >= end) return this; 1377 @SuppressWarnings("LocalVariableHidesMemberVariable") 1378 Object[] arguments = this.arguments; 1379 boolean replaced = false; 1380 eachArg: 1381 for (int j = 0; j < arguments.length; j++) { 1382 if (arguments[j] instanceof Name n) { 1383 int check = n.index; 1384 // harmless check to see if the thing is already in newNames: 1385 if (check >= 0 && check < newNames.length && n == newNames[check]) 1386 continue eachArg; 1387 // n might not have the correct index: n != oldNames[n.index]. 1388 for (int i = start; i < end; i++) { 1389 if (n == oldNames[i]) { 1390 if (n == newNames[i]) 1391 continue eachArg; 1392 if (!replaced) { 1393 replaced = true; 1394 arguments = arguments.clone(); 1395 } 1396 arguments[j] = newNames[i]; 1397 continue eachArg; 1398 } 1399 } 1400 } 1401 } 1402 if (!replaced) return this; 1403 return new Name(function, arguments); 1404 } 1405 void internArguments() { 1406 @SuppressWarnings("LocalVariableHidesMemberVariable") 1407 Object[] arguments = this.arguments; 1408 for (int j = 0; j < arguments.length; j++) { 1409 if (arguments[j] instanceof Name n) { 1410 if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) 1411 arguments[j] = internArgument(n); 1412 } 1413 } 1414 } 1415 boolean isParam() { 1416 return function == null; 1417 } 1418 1419 boolean refersTo(Class<?> declaringClass, String methodName) { 1420 return function != null && 1421 function.member() != null && function.member().refersTo(declaringClass, methodName); 1422 } 1423 1424 /** 1425 * Check if MemberName is a call to MethodHandle.invokeBasic. 1426 */ 1427 boolean isInvokeBasic() { 1428 if (function == null) 1429 return false; 1430 if (arguments.length < 1) 1431 return false; // must have MH argument 1432 MemberName member = function.member(); 1433 return member != null && member.refersTo(MethodHandle.class, "invokeBasic") && 1434 !member.isPublic() && !member.isStatic(); 1435 } 1436 1437 /** 1438 * Check if MemberName is a call to MethodHandle.linkToStatic, etc. 1439 */ 1440 boolean isLinkerMethodInvoke() { 1441 if (function == null) 1442 return false; 1443 if (arguments.length < 1) 1444 return false; // must have MH argument 1445 MemberName member = function.member(); 1446 return member != null && 1447 member.getDeclaringClass() == MethodHandle.class && 1448 !member.isPublic() && member.isStatic() && 1449 member.getName().startsWith("linkTo"); 1450 } 1451 1452 public String toString() { 1453 return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); 1454 } 1455 public String debugString() { 1456 String s = paramString(); 1457 return (function == null) ? s : s + "=" + exprString(); 1458 } 1459 public String paramString() { 1460 String s = toString(); 1461 Object c = constraint; 1462 if (c == null) 1463 return s; 1464 if (c instanceof Class<?> cl) c = cl.getSimpleName(); 1465 return s + "/" + c; 1466 } 1467 public String exprString() { 1468 if (function == null) return toString(); 1469 StringBuilder buf = new StringBuilder(function.toString()); 1470 buf.append("("); 1471 String cma = ""; 1472 for (Object a : arguments) { 1473 buf.append(cma); cma = ","; 1474 if (a instanceof Name || a instanceof Integer) 1475 buf.append(a); 1476 else 1477 buf.append("(").append(a).append(")"); 1478 } 1479 buf.append(")"); 1480 return buf.toString(); 1481 } 1482 1483 private boolean typesMatch(NamedFunction function, Object ... arguments) { 1484 if (arguments == null) { 1485 assert(function == null); 1486 return true; 1487 } 1488 assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); 1489 for (int i = 0; i < arguments.length; i++) { 1490 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); 1491 } 1492 return true; 1493 } 1494 1495 private static boolean typesMatch(BasicType parameterType, Object object) { 1496 if (object instanceof Name name) { 1497 return name.type == parameterType; 1498 } 1499 switch (parameterType) { 1500 case I_TYPE: return object instanceof Integer; 1501 case J_TYPE: return object instanceof Long; 1502 case F_TYPE: return object instanceof Float; 1503 case D_TYPE: return object instanceof Double; 1504 } 1505 assert(parameterType == L_TYPE); 1506 return true; 1507 } 1508 1509 /** Return the index of the last occurrence of n in the argument array. 1510 * Return -1 if the name is not used. 1511 */ 1512 int lastUseIndex(Name n) { 1513 Object[] arguments = this.arguments; 1514 if (arguments == null) return -1; 1515 for (int i = arguments.length; --i >= 0; ) { 1516 if (arguments[i] == n) return i; 1517 } 1518 return -1; 1519 } 1520 1521 public boolean equals(Name that) { 1522 if (this == that) return true; 1523 if (isParam()) 1524 // each parameter is a unique atom 1525 return false; // this != that 1526 return 1527 //this.index == that.index && 1528 this.type == that.type && 1529 this.function.equals(that.function) && 1530 Arrays.equals(this.arguments, that.arguments); 1531 } 1532 @Override 1533 public boolean equals(Object x) { 1534 return x instanceof Name n && equals(n); 1535 } 1536 @Override 1537 public int hashCode() { 1538 if (isParam()) 1539 return index | (type.ordinal() << 8); 1540 return function.hashCode() ^ Arrays.hashCode(arguments); 1541 } 1542 } 1543 1544 /** Return the index of the last name which contains n as an argument. 1545 * Return -1 if the name is not used. Return names.length if it is the return value. 1546 */ 1547 int lastUseIndex(Name n) { 1548 int ni = n.index, nmax = names.length; 1549 assert(names[ni] == n); 1550 if (result == ni) return nmax; // live all the way beyond the end 1551 for (int i = nmax; --i > ni; ) { 1552 if (names[i].lastUseIndex(n) >= 0) 1553 return i; 1554 } 1555 return -1; 1556 } 1557 1558 /** Return the number of times n is used as an argument or return value. */ 1559 int useCount(Name n) { 1560 int count = (result == n.index) ? 1 : 0; 1561 int i = Math.max(n.index + 1, arity); 1562 Name[] names = this.names; 1563 while (i < names.length) { 1564 Object[] arguments = names[i++].arguments; 1565 if (arguments != null) { 1566 for (Object argument : arguments) { 1567 if (argument == n) { 1568 count++; 1569 } 1570 } 1571 } 1572 } 1573 return count; 1574 } 1575 1576 static Name argument(int which, BasicType type) { 1577 if (which >= INTERNED_ARGUMENT_LIMIT) 1578 return new Name(which, type); 1579 return INTERNED_ARGUMENTS[type.ordinal()][which]; 1580 } 1581 static Name internArgument(Name n) { 1582 assert(n.isParam()) : "not param: " + n; 1583 assert(n.index < INTERNED_ARGUMENT_LIMIT); 1584 if (n.constraint != null) return n; 1585 return argument(n.index, n.type); 1586 } 1587 static Name[] arguments(int extra, MethodType types) { 1588 int length = types.parameterCount(); 1589 Name[] names = new Name[length + extra]; 1590 for (int i = 0; i < length; i++) 1591 names[i] = argument(i, basicType(types.parameterType(i))); 1592 return names; 1593 } 1594 1595 static Name[] invokeArguments(int extra, MethodType types) { 1596 int length = types.parameterCount(); 1597 Name[] names = new Name[length + extra + 1]; 1598 names[0] = argument(0, L_TYPE); 1599 for (int i = 0; i < length; i++) 1600 names[i + 1] = argument(i + 1, basicType(types.parameterType(i))); 1601 return names; 1602 } 1603 1604 static final int INTERNED_ARGUMENT_LIMIT = 10; 1605 private static final Name[][] INTERNED_ARGUMENTS 1606 = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; 1607 static { 1608 for (BasicType type : BasicType.ARG_TYPES) { 1609 int ord = type.ordinal(); 1610 for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) { 1611 INTERNED_ARGUMENTS[ord][i] = new Name(i, type); 1612 } 1613 } 1614 } 1615 1616 private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 1617 1618 static LambdaForm identityForm(BasicType type) { 1619 int ord = type.ordinal(); 1620 LambdaForm form = LF_identity[ord]; 1621 if (form != null) { 1622 return form; 1623 } 1624 createIdentityForm(type); 1625 return LF_identity[ord]; 1626 } 1627 1628 static NamedFunction identity(BasicType type) { 1629 int ord = type.ordinal(); 1630 NamedFunction function = NF_identity[ord]; 1631 if (function != null) { 1632 return function; 1633 } 1634 createIdentityForm(type); 1635 return NF_identity[ord]; 1636 } 1637 1638 static LambdaForm constantForm(BasicType type) { 1639 assert type != null && type != V_TYPE : type; 1640 var cached = LF_constant[type.ordinal()]; 1641 if (cached != null) 1642 return cached; 1643 return createConstantForm(type); 1644 } 1645 1646 private static LambdaForm createConstantForm(BasicType type) { 1647 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle 1648 var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type); 1649 var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data 1650 Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) }; 1651 return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT); 1652 } 1653 1654 private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT]; 1655 private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; 1656 private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void 1657 1658 private static final Object createIdentityFormLock = new Object(); 1659 private static void createIdentityForm(BasicType type) { 1660 // Avoid racy initialization during bootstrap 1661 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); 1662 synchronized (createIdentityFormLock) { 1663 final int ord = type.ordinal(); 1664 LambdaForm idForm = LF_identity[ord]; 1665 if (idForm != null) { 1666 return; 1667 } 1668 char btChar = type.basicTypeChar(); 1669 boolean isVoid = (type == V_TYPE); 1670 Class<?> btClass = type.btClass; 1671 MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass); 1672 1673 // Look up symbolic names. It might not be necessary to have these, 1674 // but if we need to emit direct references to bytecodes, it helps. 1675 MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); 1676 try { 1677 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class); 1678 } catch (IllegalAccessException|NoSuchMethodException ex) { 1679 throw newInternalError(ex); 1680 } 1681 1682 NamedFunction idFun; 1683 1684 // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular 1685 // bootstrap dependency on this method in case we're interpreting LFs 1686 if (isVoid) { 1687 Name[] idNames = new Name[] { argument(0, L_TYPE) }; 1688 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY); 1689 idForm.compileToBytecode(); 1690 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm)); 1691 } else { 1692 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; 1693 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY); 1694 idForm.compileToBytecode(); 1695 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm, 1696 MethodHandleImpl.Intrinsic.IDENTITY)); 1697 } 1698 1699 LF_identity[ord] = idForm; 1700 NF_identity[ord] = idFun; 1701 1702 assert(idFun.isIdentity()); 1703 } 1704 } 1705 1706 // Avoid appealing to ValueConversions at bootstrap time: 1707 private static int identity_I(int x) { return x; } 1708 private static long identity_J(long x) { return x; } 1709 private static float identity_F(float x) { return x; } 1710 private static double identity_D(double x) { return x; } 1711 private static Object identity_L(Object x) { return x; } 1712 private static void identity_V() { return; } 1713 /** 1714 * Internal marker for byte-compiled LambdaForms. 1715 */ 1716 /*non-public*/ 1717 @Target(ElementType.METHOD) 1718 @Retention(RetentionPolicy.RUNTIME) 1719 @interface Compiled { 1720 } 1721 1722 private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS; 1723 private static final HashMap<LambdaForm,String> DEBUG_NAMES; 1724 static { 1725 if (debugEnabled()) { 1726 DEBUG_NAME_COUNTERS = new HashMap<>(); 1727 DEBUG_NAMES = new HashMap<>(); 1728 } else { 1729 DEBUG_NAME_COUNTERS = null; 1730 DEBUG_NAMES = null; 1731 } 1732 } 1733 1734 static { 1735 // The Holder class will contain pre-generated forms resolved 1736 // using MemberName.getFactory(). However, that doesn't initialize the 1737 // class, which subtly breaks inlining etc. By forcing 1738 // initialization of the Holder class we avoid these issues. 1739 UNSAFE.ensureClassInitialized(Holder.class); 1740 } 1741 1742 /* Placeholder class for identity and constant forms generated ahead of time */ 1743 final class Holder {} 1744 1745 // The following hack is necessary in order to suppress TRACE_INTERPRETER 1746 // during execution of the static initializes of this class. 1747 // Turning on TRACE_INTERPRETER too early will cause 1748 // stack overflows and other misbehavior during attempts to trace events 1749 // that occur during LambdaForm.<clinit>. 1750 // Therefore, do not move this line higher in this file, and do not remove. 1751 private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; 1752 }