1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_INT("getInt"),
 271         PUT_INT("putInt"),
 272         GET_INT_VOLATILE("getIntVolatile"),
 273         PUT_INT_VOLATILE("putIntVolatile"),
 274         GET_BOOLEAN("getBoolean"),
 275         PUT_BOOLEAN("putBoolean"),
 276         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 277         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 278         GET_BYTE("getByte"),
 279         PUT_BYTE("putByte"),
 280         GET_BYTE_VOLATILE("getByteVolatile"),
 281         PUT_BYTE_VOLATILE("putByteVolatile"),
 282         GET_CHAR("getChar"),
 283         PUT_CHAR("putChar"),
 284         GET_CHAR_VOLATILE("getCharVolatile"),
 285         PUT_CHAR_VOLATILE("putCharVolatile"),
 286         GET_SHORT("getShort"),
 287         PUT_SHORT("putShort"),
 288         GET_SHORT_VOLATILE("getShortVolatile"),
 289         PUT_SHORT_VOLATILE("putShortVolatile"),
 290         GET_LONG("getLong"),
 291         PUT_LONG("putLong"),
 292         GET_LONG_VOLATILE("getLongVolatile"),
 293         PUT_LONG_VOLATILE("putLongVolatile"),
 294         GET_FLOAT("getFloat"),
 295         PUT_FLOAT("putFloat"),
 296         GET_FLOAT_VOLATILE("getFloatVolatile"),
 297         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 298         GET_DOUBLE("getDouble"),
 299         PUT_DOUBLE("putDouble"),
 300         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 301         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 302         TRY_FINALLY("tryFinally"),
 303         TABLE_SWITCH("tableSwitch"),
 304         COLLECTOR("collector"),
 305         LOOP("loop"),
 306         GUARD("guard"),
 307         GUARD_WITH_CATCH("guardWithCatch"),
 308         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 309         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 310         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 311 
 312         final String defaultLambdaName;
 313         final String methodName;
 314 
 315         private Kind(String defaultLambdaName) {
 316             this(defaultLambdaName, defaultLambdaName);
 317         }
 318 
 319         private Kind(String defaultLambdaName, String methodName) {
 320             this.defaultLambdaName = defaultLambdaName;
 321             this.methodName = methodName;
 322         }
 323     }
 324 
 325     // private version that doesn't do checks or defensive copies
 326     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 327         this.arity = arity;
 328         this.result = result;
 329         this.forceInline = forceInline;
 330         this.customized = customized;
 331         this.names = names;
 332         this.kind = kind;
 333         this.vmentry = null;
 334         this.isCompiled = false;
 335     }
 336 
 337     // root factory pre/post processing and calls simple constructor
 338     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 339         names = names.clone();
 340         assert(namesOK(arity, names));
 341         result = fixResult(result, names);
 342 
 343         boolean canInterpret = normalizeNames(arity, names);
 344         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 345         assert(form.nameRefsAreLegal());
 346         if (!canInterpret) {
 347             form.compileToBytecode();
 348         }
 349         return form;
 350     }
 351 
 352     // derived factories with defaults
 353     private static final int DEFAULT_RESULT = LAST_RESULT;
 354     private static final boolean DEFAULT_FORCE_INLINE = true;
 355     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 356     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 357 
 358     static LambdaForm create(int arity, Name[] names, int result) {
 359         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 360     }
 361     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 362         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 363     }
 364     static LambdaForm create(int arity, Name[] names) {
 365         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 366     }
 367     static LambdaForm create(int arity, Name[] names, Kind kind) {
 368         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 369     }
 370     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 371         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 372     }
 373 
 374     private static LambdaForm createBlankForType(MethodType mt) {
 375         // Make a dummy blank lambda form.
 376         // It is used as a template for managing the invocation of similar forms that are non-empty.
 377         // Called only from getPreparedForm.
 378         LambdaForm form = new LambdaForm(0, 0, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, new Name[0], Kind.GENERIC);
 379         return form;
 380     }
 381 
 382     private static int fixResult(int result, Name[] names) {
 383         if (result == LAST_RESULT)
 384             result = names.length - 1;  // might still be void
 385         if (result >= 0 && names[result].type == V_TYPE)
 386             result = VOID_RESULT;
 387         return result;
 388     }
 389 
 390     static boolean debugNames() {
 391         return DEBUG_NAME_COUNTERS != null;
 392     }
 393 
 394     static void associateWithDebugName(LambdaForm form, String name) {
 395         assert (debugNames());
 396         synchronized (DEBUG_NAMES) {
 397             DEBUG_NAMES.put(form, name);
 398         }
 399     }
 400 
 401     String lambdaName() {
 402         if (DEBUG_NAMES != null) {
 403             synchronized (DEBUG_NAMES) {
 404                 String name = DEBUG_NAMES.get(this);
 405                 if (name == null) {
 406                     name = generateDebugName();
 407                 }
 408                 return name;
 409             }
 410         }
 411         return kind.defaultLambdaName;
 412     }
 413 
 414     private String generateDebugName() {
 415         assert (debugNames());
 416         String debugNameStem = kind.defaultLambdaName;
 417         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 418         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 419         StringBuilder buf = new StringBuilder(debugNameStem);
 420         int leadingZero = buf.length();
 421         buf.append((int) ctr);
 422         for (int i = buf.length() - leadingZero; i < 3; i++) {
 423             buf.insert(leadingZero, '0');
 424         }
 425         buf.append('_');
 426         buf.append(basicTypeSignature());
 427         String name = buf.toString();
 428         associateWithDebugName(this, name);
 429         return name;
 430     }
 431 
 432     private static boolean namesOK(int arity, Name[] names) {
 433         for (int i = 0; i < names.length; i++) {
 434             Name n = names[i];
 435             assert(n != null) : "n is null";
 436             if (i < arity)
 437                 assert( n.isParam()) : n + " is not param at " + i;
 438             else
 439                 assert(!n.isParam()) : n + " is param at " + i;
 440         }
 441         return true;
 442     }
 443 
 444     /** Customize LambdaForm for a particular MethodHandle */
 445     LambdaForm customize(MethodHandle mh) {
 446         if (customized == mh) {
 447             return this;
 448         }
 449         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 450         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 451             // If shared LambdaForm has been compiled, compile customized version as well.
 452             customForm.compileToBytecode();
 453         }
 454         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 455         return customForm;
 456     }
 457 
 458     /** Get uncustomized flavor of the LambdaForm */
 459     LambdaForm uncustomize() {
 460         if (customized == null) {
 461             return this;
 462         }
 463         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 464         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 465         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 466             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 467             uncustomizedForm.compileToBytecode();
 468         }
 469         return uncustomizedForm;
 470     }
 471 
 472     /** Renumber and/or replace params so that they are interned and canonically numbered.
 473      *  @return true if we can interpret
 474      */
 475     private static boolean normalizeNames(int arity, Name[] names) {
 476         Name[] oldNames = names.clone();
 477         int maxOutArity = 0;
 478         for (int i = 0; i < names.length; i++) {
 479             Name n = names[i];
 480             names[i] = n.withIndex(i);
 481             if (n.arguments != null && maxOutArity < n.arguments.length)
 482                 maxOutArity = n.arguments.length;
 483         }
 484         if (oldNames != null) {
 485             for (int i = Math.max(1, arity); i < names.length; i++) {
 486                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 487                 names[i] = fixed.withIndex(i);
 488             }
 489         }
 490         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 491         boolean needIntern = false;
 492         for (int i = 0; i < maxInterned; i++) {
 493             Name n = names[i], n2 = internArgument(n);
 494             if (n != n2) {
 495                 names[i] = n2;
 496                 needIntern = true;
 497             }
 498         }
 499         if (needIntern) {
 500             for (int i = arity; i < names.length; i++) {
 501                 names[i].internArguments();
 502             }
 503         }
 504 
 505         // return true if we can interpret
 506         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 507             // Cannot use LF interpreter on very high arity expressions.
 508             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 509             return false;
 510         }
 511         return true;
 512     }
 513 
 514     /**
 515      * Check that all embedded Name references are localizable to this lambda,
 516      * and are properly ordered after their corresponding definitions.
 517      * <p>
 518      * Note that a Name can be local to multiple lambdas, as long as
 519      * it possesses the same index in each use site.
 520      * This allows Name references to be freely reused to construct
 521      * fresh lambdas, without confusion.
 522      */
 523     boolean nameRefsAreLegal() {
 524         assert(arity >= 0 && arity <= names.length);
 525         assert(result >= -1 && result < names.length);
 526         // Do all names possess an index consistent with their local definition order?
 527         for (int i = 0; i < arity; i++) {
 528             Name n = names[i];
 529             assert(n.index() == i) : Arrays.asList(n.index(), i);
 530             assert(n.isParam());
 531         }
 532         // Also, do all local name references
 533         for (int i = arity; i < names.length; i++) {
 534             Name n = names[i];
 535             assert(n.index() == i);
 536             for (Object arg : n.arguments) {
 537                 if (arg instanceof Name n2) {
 538                     int i2 = n2.index;
 539                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 540                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 541                     assert(i2 < i);  // ref must come after def!
 542                 }
 543             }
 544         }
 545         return true;
 546     }
 547 
 548     // /** Invoke this form on the given arguments. */
 549     // final Object invoke(Object... args) throws Throwable {
 550     //     // NYI: fit this into the fast path?
 551     //     return interpretWithArguments(args);
 552     // }
 553 
 554     /** Report the return type. */
 555     BasicType returnType() {
 556         if (result < 0)  return V_TYPE;
 557         Name n = names[result];
 558         return n.type;
 559     }
 560 
 561     /** Report the N-th argument type. */
 562     BasicType parameterType(int n) {
 563         return parameter(n).type;
 564     }
 565 
 566     /** Report the N-th argument name. */
 567     Name parameter(int n) {
 568         Name param = names[n];
 569         assert(n < arity && param.isParam());
 570         return param;
 571     }
 572 
 573     /** Report the N-th argument type constraint. */
 574     Object parameterConstraint(int n) {
 575         return parameter(n).constraint;
 576     }
 577 
 578     /** Report the arity. */
 579     int arity() {
 580         return arity;
 581     }
 582 
 583     /** Report the number of expressions (non-parameter names). */
 584     int expressionCount() {
 585         return names.length - arity;
 586     }
 587 
 588     /** Return the method type corresponding to my basic type signature. */
 589     MethodType methodType() {
 590         Class<?>[] ptypes = new Class<?>[arity];
 591         for (int i = 0; i < arity; ++i) {
 592             ptypes[i] = parameterType(i).btClass;
 593         }
 594         return MethodType.methodType(returnType().btClass, ptypes, true);
 595     }
 596 
 597     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 598     final String basicTypeSignature() {
 599         StringBuilder buf = new StringBuilder(arity() + 3);
 600         for (int i = 0, a = arity(); i < a; i++)
 601             buf.append(parameterType(i).basicTypeChar());
 602         return buf.append('_').append(returnType().basicTypeChar()).toString();
 603     }
 604     static int signatureArity(String sig) {
 605         assert(isValidSignature(sig));
 606         return sig.indexOf('_');
 607     }
 608     static boolean isValidSignature(String sig) {
 609         int arity = sig.indexOf('_');
 610         if (arity < 0)  return false;  // must be of the form *_*
 611         int siglen = sig.length();
 612         if (siglen != arity + 2)  return false;  // *_X
 613         for (int i = 0; i < siglen; i++) {
 614             if (i == arity)  continue;  // skip '_'
 615             char c = sig.charAt(i);
 616             if (c == 'V')
 617                 return (i == siglen - 1 && arity == siglen - 2);
 618             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 619         }
 620         return true;  // [LIJFD]*_[LIJFDV]
 621     }
 622 
 623     /**
 624      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 625      */
 626     boolean isSelectAlternative(int pos) {
 627         // selectAlternative idiom:
 628         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 629         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 630         if (pos+1 >= names.length)  return false;
 631         Name name0 = names[pos];
 632         Name name1 = names[pos+1];
 633         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 634                 name1.isInvokeBasic() &&
 635                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 636                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 637     }
 638 
 639     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 640         if (pos+2 >= names.length)  return false;
 641         Name name0 = names[pos];
 642         Name name1 = names[pos+1];
 643         Name name2 = names[pos+2];
 644         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 645                 name0.isInvokeBasic() &&
 646                 name2.isInvokeBasic() &&
 647                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 648                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 649                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 650                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 651     }
 652 
 653     /**
 654      * Check if i-th name is a start of GuardWithCatch idiom.
 655      */
 656     boolean isGuardWithCatch(int pos) {
 657         // GuardWithCatch idiom:
 658         //   t_{n}:L=MethodHandle.invokeBasic(...)
 659         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 660         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 661         return isMatchingIdiom(pos, "guardWithCatch", 3);
 662     }
 663 
 664     /**
 665      * Check if i-th name is a start of the tryFinally idiom.
 666      */
 667     boolean isTryFinally(int pos) {
 668         // tryFinally idiom:
 669         //   t_{n}:L=MethodHandle.invokeBasic(...)
 670         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 671         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 672         return isMatchingIdiom(pos, "tryFinally", 2);
 673     }
 674 
 675     /**
 676      * Check if i-th name is a start of the tableSwitch idiom.
 677      */
 678     boolean isTableSwitch(int pos) {
 679         // tableSwitch idiom:
 680         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 681         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 682         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 683         if (pos + 2 >= names.length)  return false;
 684 
 685         final int POS_COLLECT_ARGS = pos;
 686         final int POS_TABLE_SWITCH = pos + 1;
 687         final int POS_UNBOX_RESULT = pos + 2;
 688 
 689         Name collectArgs = names[POS_COLLECT_ARGS];
 690         Name tableSwitch = names[POS_TABLE_SWITCH];
 691         Name unboxResult = names[POS_UNBOX_RESULT];
 692         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 693                 collectArgs.isInvokeBasic() &&
 694                 unboxResult.isInvokeBasic() &&
 695                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 696                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 697                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 698                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 699     }
 700 
 701     /**
 702      * Check if i-th name is a start of the loop idiom.
 703      */
 704     boolean isLoop(int pos) {
 705         // loop idiom:
 706         //   t_{n}:L=MethodHandle.invokeBasic(...)
 707         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 708         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 709         return isMatchingIdiom(pos, "loop", 2);
 710     }
 711 
 712     /*
 713      * Code generation issues:
 714      *
 715      * Compiled LFs should be reusable in general.
 716      * The biggest issue is how to decide when to pull a name into
 717      * the bytecode, versus loading a reified form from the MH data.
 718      *
 719      * For example, an asType wrapper may require execution of a cast
 720      * after a call to a MH.  The target type of the cast can be placed
 721      * as a constant in the LF itself.  This will force the cast type
 722      * to be compiled into the bytecodes and native code for the MH.
 723      * Or, the target type of the cast can be erased in the LF, and
 724      * loaded from the MH data.  (Later on, if the MH as a whole is
 725      * inlined, the data will flow into the inlined instance of the LF,
 726      * as a constant, and the end result will be an optimal cast.)
 727      *
 728      * This erasure of cast types can be done with any use of
 729      * reference types.  It can also be done with whole method
 730      * handles.  Erasing a method handle might leave behind
 731      * LF code that executes correctly for any MH of a given
 732      * type, and load the required MH from the enclosing MH's data.
 733      * Or, the erasure might even erase the expected MT.
 734      *
 735      * Also, for direct MHs, the MemberName of the target
 736      * could be erased, and loaded from the containing direct MH.
 737      * As a simple case, a LF for all int-valued non-static
 738      * field getters would perform a cast on its input argument
 739      * (to non-constant base type derived from the MemberName)
 740      * and load an integer value from the input object
 741      * (at a non-constant offset also derived from the MemberName).
 742      * Such MN-erased LFs would be inlinable back to optimized
 743      * code, whenever a constant enclosing DMH is available
 744      * to supply a constant MN from its data.
 745      *
 746      * The main problem here is to keep LFs reasonably generic,
 747      * while ensuring that hot spots will inline good instances.
 748      * "Reasonably generic" means that we don't end up with
 749      * repeated versions of bytecode or machine code that do
 750      * not differ in their optimized form.  Repeated versions
 751      * of machine would have the undesirable overheads of
 752      * (a) redundant compilation work and (b) extra I$ pressure.
 753      * To control repeated versions, we need to be ready to
 754      * erase details from LFs and move them into MH data,
 755      * whenever those details are not relevant to significant
 756      * optimization.  "Significant" means optimization of
 757      * code that is actually hot.
 758      *
 759      * Achieving this may require dynamic splitting of MHs, by replacing
 760      * a generic LF with a more specialized one, on the same MH,
 761      * if (a) the MH is frequently executed and (b) the MH cannot
 762      * be inlined into a containing caller, such as an invokedynamic.
 763      *
 764      * Compiled LFs that are no longer used should be GC-able.
 765      * If they contain non-BCP references, they should be properly
 766      * interlinked with the class loader(s) that their embedded types
 767      * depend on.  This probably means that reusable compiled LFs
 768      * will be tabulated (indexed) on relevant class loaders,
 769      * or else that the tables that cache them will have weak links.
 770      */
 771 
 772     /**
 773      * Make this LF directly executable, as part of a MethodHandle.
 774      * Invariant:  Every MH which is invoked must prepare its LF
 775      * before invocation.
 776      * (In principle, the JVM could do this very lazily,
 777      * as a sort of pre-invocation linkage step.)
 778      */
 779     public void prepare() {
 780         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 781             compileToBytecode();
 782         }
 783         if (this.vmentry != null) {
 784             // already prepared (e.g., a primitive DMH invoker form)
 785             return;
 786         }
 787         MethodType mtype = methodType();
 788         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 789         if (prep == null) {
 790             assert (isValidSignature(basicTypeSignature()));
 791             prep = LambdaForm.createBlankForType(mtype);
 792             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 793             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 794         }
 795         this.vmentry = prep.vmentry;
 796         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 797     }
 798 
 799     private static @Stable PerfCounter LF_FAILED;
 800 
 801     private static PerfCounter failedCompilationCounter() {
 802         if (LF_FAILED == null) {
 803             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 804         }
 805         return LF_FAILED;
 806     }
 807 
 808     /** Generate optimizable bytecode for this form. */
 809     void compileToBytecode() {
 810         if (forceInterpretation()) {
 811             return; // this should not be compiled
 812         }
 813         if (vmentry != null && isCompiled) {
 814             return;  // already compiled somehow
 815         }
 816 
 817         // Obtain the invoker MethodType outside of the following try block.
 818         // This ensures that an IllegalArgumentException is directly thrown if the
 819         // type would have 256 or more parameters
 820         MethodType invokerType = methodType();
 821         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 822         try {
 823             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 824             if (TRACE_INTERPRETER)
 825                 traceInterpreter("compileToBytecode", this);
 826             isCompiled = true;
 827         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 828             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 829             invocationCounter = -1;
 830             failedCompilationCounter().increment();
 831             if (LOG_LF_COMPILATION_FAILURE) {
 832                 System.out.println("LambdaForm compilation failed: " + this);
 833                 bge.printStackTrace(System.out);
 834             }
 835         } catch (Error e) {
 836             // Pass through any error
 837             throw e;
 838         } catch (Exception e) {
 839             // Wrap any exception
 840             throw newInternalError(this.toString(), e);
 841         }
 842     }
 843 
 844     // The next few routines are called only from assert expressions
 845     // They verify that the built-in invokers process the correct raw data types.
 846     private static boolean argumentTypesMatch(String sig, Object[] av) {
 847         int arity = signatureArity(sig);
 848         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 849         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 850         MethodHandle mh = (MethodHandle) av[0];
 851         MethodType mt = mh.type();
 852         assert(mt.parameterCount() == arity-1);
 853         for (int i = 0; i < av.length; i++) {
 854             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 855             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 856         }
 857         return true;
 858     }
 859     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 860         // The following line is needed because (...)void method handles can use non-void invokers
 861         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 862         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 863         switch (tc) {
 864         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 865         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 866         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 867         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 868         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 869         case V_TYPE: break;  // allow anything here; will be dropped
 870         default:  assert(false);
 871         }
 872         return true;
 873     }
 874     private static boolean checkInt(Class<?> type, Object x) {
 875         assert(x instanceof Integer);
 876         if (type == int.class)  return true;
 877         Wrapper w = Wrapper.forBasicType(type);
 878         assert(w.isSubwordOrInt());
 879         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 880         return x.equals(x1);
 881     }
 882     private static boolean checkRef(Class<?> type, Object x) {
 883         assert(!type.isPrimitive());
 884         if (x == null)  return true;
 885         if (type.isInterface())  return true;
 886         return type.isInstance(x);
 887     }
 888 
 889     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 890     private static final int COMPILE_THRESHOLD;
 891     static {
 892         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 893     }
 894     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 895 
 896     private boolean forceInterpretation() {
 897         return invocationCounter == -1;
 898     }
 899 
 900     /** Interpretively invoke this form on the given arguments. */
 901     @Hidden
 902     @DontInline
 903     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 904         if (TRACE_INTERPRETER)
 905             return interpretWithArgumentsTracing(argumentValues);
 906         checkInvocationCounter();
 907         assert(arityCheck(argumentValues));
 908         Object[] values = Arrays.copyOf(argumentValues, names.length);
 909         for (int i = argumentValues.length; i < values.length; i++) {
 910             values[i] = interpretName(names[i], values);
 911         }
 912         Object rv = (result < 0) ? null : values[result];
 913         assert(resultCheck(argumentValues, rv));
 914         return rv;
 915     }
 916 
 917     /** Evaluate a single Name within this form, applying its function to its arguments. */
 918     @Hidden
 919     @DontInline
 920     Object interpretName(Name name, Object[] values) throws Throwable {
 921         if (TRACE_INTERPRETER)
 922             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 923         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 924         for (int i = 0; i < arguments.length; i++) {
 925             Object a = arguments[i];
 926             if (a instanceof Name n) {
 927                 int i2 = n.index();
 928                 assert(names[i2] == a);
 929                 a = values[i2];
 930                 arguments[i] = a;
 931             }
 932         }
 933         return name.function.invokeWithArguments(arguments);
 934     }
 935 
 936     private void checkInvocationCounter() {
 937         if (COMPILE_THRESHOLD != 0 &&
 938             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 939             invocationCounter++;  // benign race
 940             if (invocationCounter >= COMPILE_THRESHOLD) {
 941                 // Replace vmentry with a bytecode version of this LF.
 942                 compileToBytecode();
 943             }
 944         }
 945     }
 946     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 947         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 948         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 949             int ctr = invocationCounter++;  // benign race
 950             traceInterpreter("| invocationCounter", ctr);
 951             if (invocationCounter >= COMPILE_THRESHOLD) {
 952                 compileToBytecode();
 953             }
 954         }
 955         Object rval;
 956         try {
 957             assert(arityCheck(argumentValues));
 958             Object[] values = Arrays.copyOf(argumentValues, names.length);
 959             for (int i = argumentValues.length; i < values.length; i++) {
 960                 values[i] = interpretName(names[i], values);
 961             }
 962             rval = (result < 0) ? null : values[result];
 963         } catch (Throwable ex) {
 964             traceInterpreter("] throw =>", ex);
 965             throw ex;
 966         }
 967         traceInterpreter("] return =>", rval);
 968         return rval;
 969     }
 970 
 971     static void traceInterpreter(String event, Object obj, Object... args) {
 972         if (TRACE_INTERPRETER) {
 973             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 974         }
 975     }
 976     static void traceInterpreter(String event, Object obj) {
 977         traceInterpreter(event, obj, (Object[])null);
 978     }
 979     private boolean arityCheck(Object[] argumentValues) {
 980         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 981         // also check that the leading (receiver) argument is somehow bound to this LF:
 982         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 983         MethodHandle mh = (MethodHandle) argumentValues[0];
 984         assert(mh.internalForm() == this);
 985         // note:  argument #0 could also be an interface wrapper, in the future
 986         argumentTypesMatch(basicTypeSignature(), argumentValues);
 987         return true;
 988     }
 989     private boolean resultCheck(Object[] argumentValues, Object result) {
 990         MethodHandle mh = (MethodHandle) argumentValues[0];
 991         MethodType mt = mh.type();
 992         assert(valueMatches(returnType(), mt.returnType(), result));
 993         return true;
 994     }
 995 
 996     public String toString() {
 997         return debugString(-1);
 998     }
 999 
1000     String debugString(int indentLevel) {
1001         String prefix = MethodHandle.debugPrefix(indentLevel);
1002         String lambdaName = lambdaName();
1003         StringBuilder buf = new StringBuilder(lambdaName);
1004         buf.append("=Lambda(");
1005         for (int i = 0; i < names.length; i++) {
1006             if (i == arity)  buf.append(")=>{");
1007             Name n = names[i];
1008             if (i >= arity)  buf.append("\n    ").append(prefix);
1009             buf.append(n.paramString());
1010             if (i < arity) {
1011                 if (i+1 < arity)  buf.append(",");
1012                 continue;
1013             }
1014             buf.append("=").append(n.exprString());
1015             buf.append(";");
1016         }
1017         if (arity == names.length)  buf.append(")=>{");
1018         buf.append(result < 0 ? "void" : names[result]).append("}");
1019         if (TRACE_INTERPRETER) {
1020             // Extra verbosity:
1021             buf.append(":").append(basicTypeSignature());
1022             buf.append("/").append(vmentry);
1023         }
1024         return buf.toString();
1025     }
1026 
1027     @Override
1028     public boolean equals(Object obj) {
1029         return obj instanceof LambdaForm lf && equals(lf);
1030     }
1031     public boolean equals(LambdaForm that) {
1032         if (this.result != that.result)  return false;
1033         return Arrays.equals(this.names, that.names);
1034     }
1035     public int hashCode() {
1036         return result + 31 * Arrays.hashCode(names);
1037     }
1038     LambdaFormEditor editor() {
1039         return LambdaFormEditor.lambdaFormEditor(this);
1040     }
1041 
1042     boolean contains(Name name) {
1043         int pos = name.index();
1044         if (pos >= 0) {
1045             return pos < names.length && name.equals(names[pos]);
1046         }
1047         for (int i = arity; i < names.length; i++) {
1048             if (name.equals(names[i]))
1049                 return true;
1050         }
1051         return false;
1052     }
1053 
1054     static class NamedFunction {
1055         final MemberName member;
1056         private @Stable MethodHandle resolvedHandle;
1057         private @Stable MethodType type;
1058 
1059         NamedFunction(MethodHandle resolvedHandle) {
1060             this(resolvedHandle.internalMemberName(), resolvedHandle);
1061         }
1062         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1063             this.member = member;
1064             this.resolvedHandle = resolvedHandle;
1065              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1066              //assert(!isInvokeBasic(member));
1067         }
1068         NamedFunction(MethodType basicInvokerType) {
1069             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1070             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1071                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1072                 this.member = resolvedHandle.internalMemberName();
1073             } else {
1074                 // necessary to pass BigArityTest
1075                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1076             }
1077             assert(isInvokeBasic(member));
1078         }
1079 
1080         private static boolean isInvokeBasic(MemberName member) {
1081             return member != null &&
1082                    member.getDeclaringClass() == MethodHandle.class &&
1083                   "invokeBasic".equals(member.getName());
1084         }
1085 
1086         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1087         // Any LambdaForm containing such a member is not interpretable.
1088         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1089         // And even without the resolvedHandle, the name can still be compiled and optimized.
1090         NamedFunction(Method method) {
1091             this(new MemberName(method));
1092         }
1093         NamedFunction(MemberName member) {
1094             this(member, null);
1095         }
1096 
1097         MethodHandle resolvedHandle() {
1098             if (resolvedHandle == null)  resolve();
1099             return resolvedHandle;
1100         }
1101 
1102         synchronized void resolve() {
1103             if (resolvedHandle == null) {
1104                 resolvedHandle = DirectMethodHandle.make(member);
1105             }
1106         }
1107 
1108         @Override
1109         public boolean equals(Object other) {
1110             if (this == other) return true;
1111             if (other == null) return false;
1112             return (other instanceof NamedFunction that)
1113                     && this.member != null
1114                     && this.member.equals(that.member);
1115         }
1116 
1117         @Override
1118         public int hashCode() {
1119             if (member != null)
1120                 return member.hashCode();
1121             return super.hashCode();
1122         }
1123 
1124         static final MethodType INVOKER_METHOD_TYPE =
1125             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1126 
1127         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1128             typeForm = typeForm.basicType().form();  // normalize to basic type
1129             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1130             if (mh != null)  return mh;
1131             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1132             mh = DirectMethodHandle.make(invoker);
1133             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1134             if (mh2 != null)  return mh2;  // benign race
1135             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1136                 throw newInternalError(mh.debugString());
1137             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1138         }
1139 
1140         @Hidden
1141         Object invokeWithArguments(Object... arguments) throws Throwable {
1142             // If we have a cached invoker, call it right away.
1143             // NOTE: The invoker always returns a reference value.
1144             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1145             return invoker().invokeBasic(resolvedHandle(), arguments);
1146         }
1147 
1148         @Hidden
1149         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1150             Object rval;
1151             try {
1152                 traceInterpreter("[ call", this, arguments);
1153                 // resolvedHandle might be uninitialized, ok for tracing
1154                 if (resolvedHandle == null) {
1155                     traceInterpreter("| resolve", this);
1156                     resolvedHandle();
1157                 }
1158                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1159             } catch (Throwable ex) {
1160                 traceInterpreter("] throw =>", ex);
1161                 throw ex;
1162             }
1163             traceInterpreter("] return =>", rval);
1164             return rval;
1165         }
1166 
1167         private MethodHandle invoker() {
1168             return computeInvoker(methodType().form());
1169         }
1170 
1171         MethodType methodType() {
1172             MethodType type = this.type;
1173             if (type == null) {
1174                 this.type = type = calculateMethodType(member, resolvedHandle);
1175             }
1176             return type;
1177         }
1178 
1179         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1180             if (resolvedHandle != null) {
1181                 return resolvedHandle.type();
1182             } else {
1183                 // only for certain internal LFs during bootstrapping
1184                 return member.getInvocationType();
1185             }
1186         }
1187 
1188         MemberName member() {
1189             assert(assertMemberIsConsistent());
1190             return member;
1191         }
1192 
1193         // Called only from assert.
1194         private boolean assertMemberIsConsistent() {
1195             if (resolvedHandle instanceof DirectMethodHandle) {
1196                 MemberName m = resolvedHandle.internalMemberName();
1197                 assert(m.equals(member));
1198             }
1199             return true;
1200         }
1201 
1202         Class<?> memberDeclaringClassOrNull() {
1203             return (member == null) ? null : member.getDeclaringClass();
1204         }
1205 
1206         BasicType returnType() {
1207             return basicType(methodType().returnType());
1208         }
1209 
1210         BasicType parameterType(int n) {
1211             return basicType(methodType().parameterType(n));
1212         }
1213 
1214         int arity() {
1215             return methodType().parameterCount();
1216         }
1217 
1218         public String toString() {
1219             if (member == null)  return String.valueOf(resolvedHandle);
1220             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1221         }
1222 
1223         public boolean isIdentity() {
1224             return this.equals(identity(returnType()));
1225         }
1226 
1227         public MethodHandleImpl.Intrinsic intrinsicName() {
1228             return resolvedHandle != null
1229                 ? resolvedHandle.intrinsicName()
1230                 : MethodHandleImpl.Intrinsic.NONE;
1231         }
1232 
1233         public Object intrinsicData() {
1234             return resolvedHandle != null
1235                 ? resolvedHandle.intrinsicData()
1236                 : null;
1237         }
1238     }
1239 
1240     public static String basicTypeSignature(MethodType type) {
1241         int params = type.parameterCount();
1242         char[] sig = new char[params + 2];
1243         int sigp = 0;
1244         while (sigp < params) {
1245             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1246         }
1247         sig[sigp++] = '_';
1248         sig[sigp++] = basicTypeChar(type.returnType());
1249         assert(sigp == sig.length);
1250         return String.valueOf(sig);
1251     }
1252 
1253     /** Hack to make signatures more readable when they show up in method names.
1254      * Signature should start with a sequence of uppercase ASCII letters.
1255      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1256      * A tail of anything other than uppercase ASCII is passed through unchanged.
1257      * @param signature sequence of uppercase ASCII letters with possible repetitions
1258      * @return same sequence, with repetitions counted by decimal numerals
1259      */
1260     public static String shortenSignature(String signature) {
1261         final int NO_CHAR = -1, MIN_RUN = 3;
1262         int c0, c1 = NO_CHAR, c1reps = 0;
1263         StringBuilder buf = null;
1264         int len = signature.length();
1265         if (len < MIN_RUN)  return signature;
1266         for (int i = 0; i <= len; i++) {
1267             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1268                 // wrong kind of char; bail out here
1269                 if (buf != null) {
1270                     buf.append(signature, i - c1reps, len);
1271                 }
1272                 break;
1273             }
1274             // shift in the next char:
1275             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1276             if (c1 == c0) { ++c1reps; continue; }
1277             // shift in the next count:
1278             int c0reps = c1reps; c1reps = 1;
1279             // end of a  character run
1280             if (c0reps < MIN_RUN) {
1281                 if (buf != null) {
1282                     while (--c0reps >= 0)
1283                         buf.append((char)c0);
1284                 }
1285                 continue;
1286             }
1287             // found three or more in a row
1288             if (buf == null)
1289                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1290             buf.append((char)c0).append(c0reps);
1291         }
1292         return (buf == null) ? signature : buf.toString();
1293     }
1294 
1295     static final class Name {
1296         final BasicType type;
1297         final short index;
1298         final NamedFunction function;
1299         final Object constraint;  // additional type information, if not null
1300         @Stable final Object[] arguments;
1301 
1302         private static final Object[] EMPTY_ARGS = new Object[0];
1303 
1304         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1305             this.index = (short)index;
1306             this.type = type;
1307             this.function = function;
1308             this.arguments = arguments;
1309             this.constraint = constraint;
1310             assert(this.index == index && typesMatch(function, arguments));
1311             assert(constraint == null || isParam());  // only params have constraints
1312             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1313         }
1314 
1315         Name(MethodHandle function, Object... arguments) {
1316             this(new NamedFunction(function), arguments);
1317         }
1318         Name(MethodType functionType, Object... arguments) {
1319             this(new NamedFunction(functionType), arguments);
1320             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1321         }
1322         Name(MemberName function, Object... arguments) {
1323             this(new NamedFunction(function), arguments);
1324         }
1325         Name(NamedFunction function) {
1326             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1327         }
1328         Name(NamedFunction function, Object arg) {
1329             this(-1, function.returnType(), function, new Object[] { arg }, null);
1330         }
1331         Name(NamedFunction function, Object arg0, Object arg1) {
1332             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1333         }
1334         Name(NamedFunction function, Object... arguments) {
1335             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1336         }
1337         /** Create a raw parameter of the given type, with an expected index. */
1338         Name(int index, BasicType type) {
1339             this(index, type, null, null, null);
1340         }
1341         /** Create a raw parameter of the given type. */
1342         Name(BasicType type) { this(-1, type); }
1343 
1344         BasicType type() { return type; }
1345         int index() { return index; }
1346 
1347         char typeChar() {
1348             return type.btChar;
1349         }
1350 
1351         Name withIndex(int i) {
1352             if (i == this.index) return this;
1353             return new Name(i, type, function, arguments, constraint);
1354         }
1355 
1356         Name withConstraint(Object constraint) {
1357             if (constraint == this.constraint)  return this;
1358             return new Name(index, type, function, arguments, constraint);
1359         }
1360 
1361         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1362             if (oldName == newName)  return this;
1363             @SuppressWarnings("LocalVariableHidesMemberVariable")
1364             Object[] arguments = this.arguments;
1365             if (arguments == null)  return this;
1366             boolean replaced = false;
1367             for (int j = 0; j < arguments.length; j++) {
1368                 if (arguments[j] == oldName) {
1369                     if (!replaced) {
1370                         replaced = true;
1371                         arguments = arguments.clone();
1372                     }
1373                     arguments[j] = newName;
1374                 }
1375             }
1376             if (!replaced)  return this;
1377             return new Name(function, arguments);
1378         }
1379         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1380          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1381          */
1382         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1383             if (start >= end)  return this;
1384             @SuppressWarnings("LocalVariableHidesMemberVariable")
1385             Object[] arguments = this.arguments;
1386             boolean replaced = false;
1387         eachArg:
1388             for (int j = 0; j < arguments.length; j++) {
1389                 if (arguments[j] instanceof Name n) {
1390                     int check = n.index;
1391                     // harmless check to see if the thing is already in newNames:
1392                     if (check >= 0 && check < newNames.length && n == newNames[check])
1393                         continue eachArg;
1394                     // n might not have the correct index: n != oldNames[n.index].
1395                     for (int i = start; i < end; i++) {
1396                         if (n == oldNames[i]) {
1397                             if (n == newNames[i])
1398                                 continue eachArg;
1399                             if (!replaced) {
1400                                 replaced = true;
1401                                 arguments = arguments.clone();
1402                             }
1403                             arguments[j] = newNames[i];
1404                             continue eachArg;
1405                         }
1406                     }
1407                 }
1408             }
1409             if (!replaced)  return this;
1410             return new Name(function, arguments);
1411         }
1412         void internArguments() {
1413             @SuppressWarnings("LocalVariableHidesMemberVariable")
1414             Object[] arguments = this.arguments;
1415             for (int j = 0; j < arguments.length; j++) {
1416                 if (arguments[j] instanceof Name n) {
1417                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1418                         arguments[j] = internArgument(n);
1419                 }
1420             }
1421         }
1422         boolean isParam() {
1423             return function == null;
1424         }
1425 
1426         boolean refersTo(Class<?> declaringClass, String methodName) {
1427             return function != null &&
1428                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1429         }
1430 
1431         /**
1432          * Check if MemberName is a call to MethodHandle.invokeBasic.
1433          */
1434         boolean isInvokeBasic() {
1435             if (function == null)
1436                 return false;
1437             if (arguments.length < 1)
1438                 return false;  // must have MH argument
1439             MemberName member = function.member();
1440             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1441                     !member.isPublic() && !member.isStatic();
1442         }
1443 
1444         /**
1445          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1446          */
1447         boolean isLinkerMethodInvoke() {
1448             if (function == null)
1449                 return false;
1450             if (arguments.length < 1)
1451                 return false;  // must have MH argument
1452             MemberName member = function.member();
1453             return member != null &&
1454                     member.getDeclaringClass() == MethodHandle.class &&
1455                     !member.isPublic() && member.isStatic() &&
1456                     member.getName().startsWith("linkTo");
1457         }
1458 
1459         public String toString() {
1460             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1461         }
1462         public String debugString() {
1463             String s = paramString();
1464             return (function == null) ? s : s + "=" + exprString();
1465         }
1466         public String paramString() {
1467             String s = toString();
1468             Object c = constraint;
1469             if (c == null)
1470                 return s;
1471             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1472             return s + "/" + c;
1473         }
1474         public String exprString() {
1475             if (function == null)  return toString();
1476             StringBuilder buf = new StringBuilder(function.toString());
1477             buf.append("(");
1478             String cma = "";
1479             for (Object a : arguments) {
1480                 buf.append(cma); cma = ",";
1481                 if (a instanceof Name || a instanceof Integer)
1482                     buf.append(a);
1483                 else
1484                     buf.append("(").append(a).append(")");
1485             }
1486             buf.append(")");
1487             return buf.toString();
1488         }
1489 
1490         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1491             if (arguments == null) {
1492                 assert(function == null);
1493                 return true;
1494             }
1495             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1496             for (int i = 0; i < arguments.length; i++) {
1497                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1498             }
1499             return true;
1500         }
1501 
1502         private static boolean typesMatch(BasicType parameterType, Object object) {
1503             if (object instanceof Name name) {
1504                 return name.type == parameterType;
1505             }
1506             switch (parameterType) {
1507                 case I_TYPE:  return object instanceof Integer;
1508                 case J_TYPE:  return object instanceof Long;
1509                 case F_TYPE:  return object instanceof Float;
1510                 case D_TYPE:  return object instanceof Double;
1511             }
1512             assert(parameterType == L_TYPE);
1513             return true;
1514         }
1515 
1516         /** Return the index of the last occurrence of n in the argument array.
1517          *  Return -1 if the name is not used.
1518          */
1519         int lastUseIndex(Name n) {
1520             Object[] arguments = this.arguments;
1521             if (arguments == null)  return -1;
1522             for (int i = arguments.length; --i >= 0; ) {
1523                 if (arguments[i] == n)  return i;
1524             }
1525             return -1;
1526         }
1527 
1528         public boolean equals(Name that) {
1529             if (this == that)  return true;
1530             if (isParam())
1531                 // each parameter is a unique atom
1532                 return false;  // this != that
1533             return
1534                 //this.index == that.index &&
1535                 this.type == that.type &&
1536                 this.function.equals(that.function) &&
1537                 Arrays.equals(this.arguments, that.arguments);
1538         }
1539         @Override
1540         public boolean equals(Object x) {
1541             return x instanceof Name n && equals(n);
1542         }
1543         @Override
1544         public int hashCode() {
1545             if (isParam())
1546                 return index | (type.ordinal() << 8);
1547             return function.hashCode() ^ Arrays.hashCode(arguments);
1548         }
1549     }
1550 
1551     /** Return the index of the last name which contains n as an argument.
1552      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1553      */
1554     int lastUseIndex(Name n) {
1555         int ni = n.index, nmax = names.length;
1556         assert(names[ni] == n);
1557         if (result == ni)  return nmax;  // live all the way beyond the end
1558         for (int i = nmax; --i > ni; ) {
1559             if (names[i].lastUseIndex(n) >= 0)
1560                 return i;
1561         }
1562         return -1;
1563     }
1564 
1565     /** Return the number of times n is used as an argument or return value. */
1566     int useCount(Name n) {
1567         int count = (result == n.index) ? 1 : 0;
1568         int i = Math.max(n.index + 1, arity);
1569         Name[] names = this.names;
1570         while (i < names.length) {
1571             Object[] arguments = names[i++].arguments;
1572             if (arguments != null) {
1573                 for (Object argument : arguments) {
1574                     if (argument == n) {
1575                         count++;
1576                     }
1577                 }
1578             }
1579         }
1580         return count;
1581     }
1582 
1583     static Name argument(int which, BasicType type) {
1584         if (which >= INTERNED_ARGUMENT_LIMIT)
1585             return new Name(which, type);
1586         return INTERNED_ARGUMENTS[type.ordinal()][which];
1587     }
1588     static Name internArgument(Name n) {
1589         assert(n.isParam()) : "not param: " + n;
1590         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1591         if (n.constraint != null)  return n;
1592         return argument(n.index, n.type);
1593     }
1594     static Name[] arguments(int extra, MethodType types) {
1595         int length = types.parameterCount();
1596         Name[] names = new Name[length + extra];
1597         for (int i = 0; i < length; i++)
1598             names[i] = argument(i, basicType(types.parameterType(i)));
1599         return names;
1600     }
1601 
1602     static Name[] invokeArguments(int extra, MethodType types) {
1603         int length = types.parameterCount();
1604         Name[] names = new Name[length + extra + 1];
1605         names[0] = argument(0, L_TYPE);
1606         for (int i = 0; i < length; i++)
1607             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1608         return names;
1609     }
1610 
1611     static final int INTERNED_ARGUMENT_LIMIT = 10;
1612     private static final Name[][] INTERNED_ARGUMENTS
1613             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1614     static {
1615         for (BasicType type : BasicType.ARG_TYPES) {
1616             int ord = type.ordinal();
1617             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1618                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1619             }
1620         }
1621     }
1622 
1623     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1624 
1625     static LambdaForm identityForm(BasicType type) {
1626         int ord = type.ordinal();
1627         LambdaForm form = LF_identity[ord];
1628         if (form != null) {
1629             return form;
1630         }
1631         createIdentityForm(type);
1632         return LF_identity[ord];
1633     }
1634 
1635     static NamedFunction identity(BasicType type) {
1636         int ord = type.ordinal();
1637         NamedFunction function = NF_identity[ord];
1638         if (function != null) {
1639             return function;
1640         }
1641         createIdentityForm(type);
1642         return NF_identity[ord];
1643     }
1644 
1645     static LambdaForm constantForm(BasicType type) {
1646         assert type != null && type != V_TYPE : type;
1647         var cached = LF_constant[type.ordinal()];
1648         if (cached != null)
1649             return cached;
1650         return createConstantForm(type);
1651     }
1652 
1653     private static LambdaForm createConstantForm(BasicType type) {
1654         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1655         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1656         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1657         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1658         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1659     }
1660 
1661     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1662     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1663     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1664 
1665     private static final Object createIdentityFormLock = new Object();
1666     private static void createIdentityForm(BasicType type) {
1667         // Avoid racy initialization during bootstrap
1668         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1669         synchronized (createIdentityFormLock) {
1670             final int ord = type.ordinal();
1671             LambdaForm idForm = LF_identity[ord];
1672             if (idForm != null) {
1673                 return;
1674             }
1675             char btChar = type.basicTypeChar();
1676             boolean isVoid = (type == V_TYPE);
1677             Class<?> btClass = type.btClass;
1678             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1679 
1680             // Look up symbolic names.  It might not be necessary to have these,
1681             // but if we need to emit direct references to bytecodes, it helps.
1682             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1683             try {
1684                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1685             } catch (IllegalAccessException|NoSuchMethodException ex) {
1686                 throw newInternalError(ex);
1687             }
1688 
1689             NamedFunction idFun;
1690 
1691             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1692             // bootstrap dependency on this method in case we're interpreting LFs
1693             if (isVoid) {
1694                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1695                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1696                 idForm.compileToBytecode();
1697                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1698             } else {
1699                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1700                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1701                 idForm.compileToBytecode();
1702                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1703                             MethodHandleImpl.Intrinsic.IDENTITY));
1704             }
1705 
1706             LF_identity[ord] = idForm;
1707             NF_identity[ord] = idFun;
1708 
1709             assert(idFun.isIdentity());
1710         }
1711     }
1712 
1713     // Avoid appealing to ValueConversions at bootstrap time:
1714     private static int identity_I(int x) { return x; }
1715     private static long identity_J(long x) { return x; }
1716     private static float identity_F(float x) { return x; }
1717     private static double identity_D(double x) { return x; }
1718     private static Object identity_L(Object x) { return x; }
1719     private static void identity_V() { return; }
1720     /**
1721      * Internal marker for byte-compiled LambdaForms.
1722      */
1723     /*non-public*/
1724     @Target(ElementType.METHOD)
1725     @Retention(RetentionPolicy.RUNTIME)
1726     @interface Compiled {
1727     }
1728 
1729     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1730     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1731     static {
1732         if (debugEnabled()) {
1733             DEBUG_NAME_COUNTERS = new HashMap<>();
1734             DEBUG_NAMES = new HashMap<>();
1735         } else {
1736             DEBUG_NAME_COUNTERS = null;
1737             DEBUG_NAMES = null;
1738         }
1739     }
1740 
1741     static {
1742         // The Holder class will contain pre-generated forms resolved
1743         // using MemberName.getFactory(). However, that doesn't initialize the
1744         // class, which subtly breaks inlining etc. By forcing
1745         // initialization of the Holder class we avoid these issues.
1746         UNSAFE.ensureClassInitialized(Holder.class);
1747     }
1748 
1749     /* Placeholder class for identity and constant forms generated ahead of time */
1750     final class Holder {}
1751 
1752     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1753     // during execution of the static initializes of this class.
1754     // Turning on TRACE_INTERPRETER too early will cause
1755     // stack overflows and other misbehavior during attempts to trace events
1756     // that occur during LambdaForm.<clinit>.
1757     // Therefore, do not move this line higher in this file, and do not remove.
1758     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1759 }