1 /* 2 * Copyright (c) 2011, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.lang.classfile.TypeKind; 29 import jdk.internal.perf.PerfCounter; 30 import jdk.internal.vm.annotation.DontInline; 31 import jdk.internal.vm.annotation.Hidden; 32 import jdk.internal.vm.annotation.Stable; 33 import sun.invoke.util.Wrapper; 34 35 import java.lang.annotation.ElementType; 36 import java.lang.annotation.Retention; 37 import java.lang.annotation.RetentionPolicy; 38 import java.lang.annotation.Target; 39 import java.lang.reflect.Method; 40 import java.util.Arrays; 41 import java.util.HashMap; 42 43 import static java.lang.invoke.LambdaForm.BasicType.*; 44 import static java.lang.invoke.MethodHandleNatives.Constants.*; 45 import static java.lang.invoke.MethodHandleStatics.*; 46 47 /** 48 * The symbolic, non-executable form of a method handle's invocation semantics. 49 * It consists of a series of names. 50 * The first N (N=arity) names are parameters, 51 * while any remaining names are temporary values. 52 * Each temporary specifies the application of a function to some arguments. 53 * The functions are method handles, while the arguments are mixes of 54 * constant values and local names. 55 * The result of the lambda is defined as one of the names, often the last one. 56 * <p> 57 * Here is an approximate grammar: 58 * <blockquote><pre>{@code 59 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}" 60 * ArgName = "a" N ":" T 61 * TempName = "t" N ":" T "=" Function "(" Argument* ");" 62 * Function = ConstantValue 63 * Argument = NameRef | ConstantValue 64 * Result = NameRef | "void" 65 * NameRef = "a" N | "t" N 66 * N = (any whole number) 67 * T = "L" | "I" | "J" | "F" | "D" | "V" 68 * }</pre></blockquote> 69 * Names are numbered consecutively from left to right starting at zero. 70 * (The letters are merely a taste of syntax sugar.) 71 * Thus, the first temporary (if any) is always numbered N (where N=arity). 72 * Every occurrence of a name reference in an argument list must refer to 73 * a name previously defined within the same lambda. 74 * A lambda has a void result if and only if its result index is -1. 75 * If a temporary has the type "V", it cannot be the subject of a NameRef, 76 * even though possesses a number. 77 * Note that all reference types are erased to "L", which stands for {@code Object}. 78 * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. 79 * The other types stand for the usual primitive types. 80 * <p> 81 * Function invocation closely follows the static rules of the Java verifier. 82 * Arguments and return values must exactly match when their "Name" types are 83 * considered. 84 * Conversions are allowed only if they do not change the erased type. 85 * <ul> 86 * <li>L = Object: casts are used freely to convert into and out of reference types 87 * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments}) 88 * <li>J = long: no implicit conversions 89 * <li>F = float: no implicit conversions 90 * <li>D = double: no implicit conversions 91 * <li>V = void: a function result may be void if and only if its Name is of type "V" 92 * </ul> 93 * Although implicit conversions are not allowed, explicit ones can easily be 94 * encoded by using temporary expressions which call type-transformed identity functions. 95 * <p> 96 * Examples: 97 * <blockquote><pre>{@code 98 * (a0:J)=>{ a0 } 99 * == identity(long) 100 * (a0:I)=>{ t1:V = System.out#println(a0); void } 101 * == System.out#println(int) 102 * (a0:L)=>{ t1:V = System.out#println(a0); a0 } 103 * == identity, with printing side-effect 104 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 105 * t3:L = BoundMethodHandle#target(a0); 106 * t4:L = MethodHandle#invoke(t3, t2, a1); t4 } 107 * == general invoker for unary insertArgument combination 108 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0); 109 * t3:L = MethodHandle#invoke(t2, a1); 110 * t4:L = FilterMethodHandle#target(a0); 111 * t5:L = MethodHandle#invoke(t4, t3); t5 } 112 * == general invoker for unary filterArgument combination 113 * (a0:L, a1:L)=>{ ...(same as previous example)... 114 * t5:L = MethodHandle#invoke(t4, t3, a1); t5 } 115 * == general invoker for unary/unary foldArgument combination 116 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 } 117 * == invoker for identity method handle which performs i2l 118 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 119 * t3:L = Class#cast(t2,a1); t3 } 120 * == invoker for identity method handle which performs cast 121 * }</pre></blockquote> 122 * <p> 123 * @author John Rose, JSR 292 EG 124 */ 125 class LambdaForm { 126 final int arity; 127 final int result; 128 final boolean forceInline; 129 final MethodHandle customized; 130 @Stable final Name[] names; 131 final Kind kind; 132 MemberName vmentry; // low-level behavior, or null if not yet prepared 133 private boolean isCompiled; 134 135 // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF) 136 volatile Object transformCache; 137 138 public static final int VOID_RESULT = -1, LAST_RESULT = -2; 139 140 enum BasicType { 141 L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types 142 I_TYPE('I', int.class, Wrapper.INT, TypeKind.INT), 143 J_TYPE('J', long.class, Wrapper.LONG, TypeKind.LONG), 144 F_TYPE('F', float.class, Wrapper.FLOAT, TypeKind.FLOAT), 145 D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE), // all primitive types 146 V_TYPE('V', void.class, Wrapper.VOID, TypeKind.VOID); // not valid in all contexts 147 148 static final @Stable BasicType[] ALL_TYPES = BasicType.values(); 149 static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1); 150 151 static final int ARG_TYPE_LIMIT = ARG_TYPES.length; 152 static final int TYPE_LIMIT = ALL_TYPES.length; 153 154 final char btChar; 155 final Class<?> btClass; 156 final Wrapper btWrapper; 157 final TypeKind btKind; 158 159 private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) { 160 this.btChar = btChar; 161 this.btClass = btClass; 162 this.btWrapper = wrapper; 163 this.btKind = typeKind; 164 } 165 166 char basicTypeChar() { 167 return btChar; 168 } 169 Class<?> basicTypeClass() { 170 return btClass; 171 } 172 Wrapper basicTypeWrapper() { 173 return btWrapper; 174 } 175 TypeKind basicTypeKind() { 176 return btKind; 177 } 178 int basicTypeSlots() { 179 return btWrapper.stackSlots(); 180 } 181 182 static BasicType basicType(byte type) { 183 return ALL_TYPES[type]; 184 } 185 static BasicType basicType(char type) { 186 return switch (type) { 187 case 'L' -> L_TYPE; 188 case 'I' -> I_TYPE; 189 case 'J' -> J_TYPE; 190 case 'F' -> F_TYPE; 191 case 'D' -> D_TYPE; 192 case 'V' -> V_TYPE; 193 // all subword types are represented as ints 194 case 'Z', 'B', 'S', 'C' -> I_TYPE; 195 default -> throw newInternalError("Unknown type char: '" + type + "'"); 196 }; 197 } 198 static BasicType basicType(Class<?> type) { 199 return basicType(Wrapper.basicTypeChar(type)); 200 } 201 static int[] basicTypeOrds(BasicType[] types) { 202 if (types == null) { 203 return null; 204 } 205 int[] a = new int[types.length]; 206 for(int i = 0; i < types.length; ++i) { 207 a[i] = types[i].ordinal(); 208 } 209 return a; 210 } 211 212 static char basicTypeChar(Class<?> type) { 213 return basicType(type).btChar; 214 } 215 216 static int[] basicTypesOrd(Class<?>[] types) { 217 int[] ords = new int[types.length]; 218 for (int i = 0; i < ords.length; i++) { 219 ords[i] = basicType(types[i]).ordinal(); 220 } 221 return ords; 222 } 223 224 static boolean isBasicTypeChar(char c) { 225 return "LIJFDV".indexOf(c) >= 0; 226 } 227 static boolean isArgBasicTypeChar(char c) { 228 return "LIJFD".indexOf(c) >= 0; 229 } 230 231 static { assert(checkBasicType()); } 232 private static boolean checkBasicType() { 233 for (int i = 0; i < ARG_TYPE_LIMIT; i++) { 234 assert ARG_TYPES[i].ordinal() == i; 235 assert ARG_TYPES[i] == ALL_TYPES[i]; 236 } 237 for (int i = 0; i < TYPE_LIMIT; i++) { 238 assert ALL_TYPES[i].ordinal() == i; 239 } 240 assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE; 241 assert !Arrays.asList(ARG_TYPES).contains(V_TYPE); 242 return true; 243 } 244 } 245 246 enum Kind { 247 GENERIC("invoke"), 248 ZERO("zero"), 249 IDENTITY("identity"), 250 BOUND_REINVOKER("BMH.reinvoke", "reinvoke"), 251 REINVOKER("MH.reinvoke", "reinvoke"), 252 DELEGATE("MH.delegate", "delegate"), 253 EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"), 254 EXACT_INVOKER("MH.exactInvoker", "exactInvoker"), 255 GENERIC_LINKER("MH.invoke_MT", "invoke_MT"), 256 GENERIC_INVOKER("MH.invoker", "invoker"), 257 LINK_TO_TARGET_METHOD("linkToTargetMethod"), 258 LINK_TO_CALL_SITE("linkToCallSite"), 259 DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"), 260 DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"), 261 DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"), 262 DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"), 263 DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"), 264 DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"), 265 DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"), 266 GET_REFERENCE("getReference"), 267 PUT_REFERENCE("putReference"), 268 GET_REFERENCE_VOLATILE("getReferenceVolatile"), 269 PUT_REFERENCE_VOLATILE("putReferenceVolatile"), 270 GET_INT("getInt"), 271 PUT_INT("putInt"), 272 GET_INT_VOLATILE("getIntVolatile"), 273 PUT_INT_VOLATILE("putIntVolatile"), 274 GET_BOOLEAN("getBoolean"), 275 PUT_BOOLEAN("putBoolean"), 276 GET_BOOLEAN_VOLATILE("getBooleanVolatile"), 277 PUT_BOOLEAN_VOLATILE("putBooleanVolatile"), 278 GET_BYTE("getByte"), 279 PUT_BYTE("putByte"), 280 GET_BYTE_VOLATILE("getByteVolatile"), 281 PUT_BYTE_VOLATILE("putByteVolatile"), 282 GET_CHAR("getChar"), 283 PUT_CHAR("putChar"), 284 GET_CHAR_VOLATILE("getCharVolatile"), 285 PUT_CHAR_VOLATILE("putCharVolatile"), 286 GET_SHORT("getShort"), 287 PUT_SHORT("putShort"), 288 GET_SHORT_VOLATILE("getShortVolatile"), 289 PUT_SHORT_VOLATILE("putShortVolatile"), 290 GET_LONG("getLong"), 291 PUT_LONG("putLong"), 292 GET_LONG_VOLATILE("getLongVolatile"), 293 PUT_LONG_VOLATILE("putLongVolatile"), 294 GET_FLOAT("getFloat"), 295 PUT_FLOAT("putFloat"), 296 GET_FLOAT_VOLATILE("getFloatVolatile"), 297 PUT_FLOAT_VOLATILE("putFloatVolatile"), 298 GET_DOUBLE("getDouble"), 299 PUT_DOUBLE("putDouble"), 300 GET_DOUBLE_VOLATILE("getDoubleVolatile"), 301 PUT_DOUBLE_VOLATILE("putDoubleVolatile"), 302 TRY_FINALLY("tryFinally"), 303 TABLE_SWITCH("tableSwitch"), 304 COLLECTOR("collector"), 305 LOOP("loop"), 306 GUARD("guard"), 307 GUARD_WITH_CATCH("guardWithCatch"), 308 VARHANDLE_EXACT_INVOKER("VH.exactInvoker"), 309 VARHANDLE_INVOKER("VH.invoker", "invoker"), 310 VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT"); 311 312 final String defaultLambdaName; 313 final String methodName; 314 315 private Kind(String defaultLambdaName) { 316 this(defaultLambdaName, defaultLambdaName); 317 } 318 319 private Kind(String defaultLambdaName, String methodName) { 320 this.defaultLambdaName = defaultLambdaName; 321 this.methodName = methodName; 322 } 323 } 324 325 // private version that doesn't do checks or defensive copies 326 private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) { 327 this.arity = arity; 328 this.result = result; 329 this.forceInline = forceInline; 330 this.customized = customized; 331 this.names = names; 332 this.kind = kind; 333 this.vmentry = null; 334 this.isCompiled = false; 335 } 336 337 // root factory pre/post processing and calls simple constructor 338 private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) { 339 names = names.clone(); 340 assert(namesOK(arity, names)); 341 result = fixResult(result, names); 342 343 boolean canInterpret = normalizeNames(arity, names); 344 LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind); 345 assert(form.nameRefsAreLegal()); 346 if (!canInterpret) { 347 form.compileToBytecode(); 348 } 349 return form; 350 } 351 352 // derived factories with defaults 353 private static final int DEFAULT_RESULT = LAST_RESULT; 354 private static final boolean DEFAULT_FORCE_INLINE = true; 355 private static final MethodHandle DEFAULT_CUSTOMIZED = null; 356 private static final Kind DEFAULT_KIND = Kind.GENERIC; 357 358 static LambdaForm create(int arity, Name[] names, int result) { 359 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 360 } 361 static LambdaForm create(int arity, Name[] names, int result, Kind kind) { 362 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 363 } 364 static LambdaForm create(int arity, Name[] names) { 365 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 366 } 367 static LambdaForm create(int arity, Name[] names, Kind kind) { 368 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 369 } 370 static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) { 371 return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind); 372 } 373 374 private static LambdaForm createBlankForType(MethodType mt) { 375 // Make a blank lambda form, which returns a constant zero or null. 376 // It is used as a template for managing the invocation of similar forms that are non-empty. 377 // Called only from getPreparedForm. 378 int arity = mt.parameterCount(); 379 int result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? VOID_RESULT : arity; 380 Name[] names = buildEmptyNames(arity, mt, result == VOID_RESULT); 381 boolean canInterpret = normalizeNames(arity, names); 382 LambdaForm form = new LambdaForm(arity, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, names, Kind.ZERO); 383 assert(form.nameRefsAreLegal() && form.isEmpty() && isValidSignature(form.basicTypeSignature())); 384 if (!canInterpret) { 385 form.compileToBytecode(); 386 } 387 return form; 388 } 389 390 private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) { 391 Name[] names = arguments(isVoid ? 0 : 1, mt); 392 if (!isVoid) { 393 Name zero = new Name(constantZero(basicType(mt.returnType()))); 394 names[arity] = zero.withIndex(arity); 395 } 396 assert(namesOK(arity, names)); 397 return names; 398 } 399 400 private static int fixResult(int result, Name[] names) { 401 if (result == LAST_RESULT) 402 result = names.length - 1; // might still be void 403 if (result >= 0 && names[result].type == V_TYPE) 404 result = VOID_RESULT; 405 return result; 406 } 407 408 static boolean debugNames() { 409 return DEBUG_NAME_COUNTERS != null; 410 } 411 412 static void associateWithDebugName(LambdaForm form, String name) { 413 assert (debugNames()); 414 synchronized (DEBUG_NAMES) { 415 DEBUG_NAMES.put(form, name); 416 } 417 } 418 419 String lambdaName() { 420 if (DEBUG_NAMES != null) { 421 synchronized (DEBUG_NAMES) { 422 String name = DEBUG_NAMES.get(this); 423 if (name == null) { 424 name = generateDebugName(); 425 } 426 return name; 427 } 428 } 429 return kind.defaultLambdaName; 430 } 431 432 private String generateDebugName() { 433 assert (debugNames()); 434 String debugNameStem = kind.defaultLambdaName; 435 Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0); 436 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1); 437 StringBuilder buf = new StringBuilder(debugNameStem); 438 int leadingZero = buf.length(); 439 buf.append((int) ctr); 440 for (int i = buf.length() - leadingZero; i < 3; i++) { 441 buf.insert(leadingZero, '0'); 442 } 443 buf.append('_'); 444 buf.append(basicTypeSignature()); 445 String name = buf.toString(); 446 associateWithDebugName(this, name); 447 return name; 448 } 449 450 private static boolean namesOK(int arity, Name[] names) { 451 for (int i = 0; i < names.length; i++) { 452 Name n = names[i]; 453 assert(n != null) : "n is null"; 454 if (i < arity) 455 assert( n.isParam()) : n + " is not param at " + i; 456 else 457 assert(!n.isParam()) : n + " is param at " + i; 458 } 459 return true; 460 } 461 462 /** Customize LambdaForm for a particular MethodHandle */ 463 LambdaForm customize(MethodHandle mh) { 464 if (customized == mh) { 465 return this; 466 } 467 LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind); 468 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 469 // If shared LambdaForm has been compiled, compile customized version as well. 470 customForm.compileToBytecode(); 471 } 472 customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form. 473 return customForm; 474 } 475 476 /** Get uncustomized flavor of the LambdaForm */ 477 LambdaForm uncustomize() { 478 if (customized == null) { 479 return this; 480 } 481 assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version. 482 LambdaForm uncustomizedForm = (LambdaForm)transformCache; 483 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 484 // If customized LambdaForm has been compiled, compile uncustomized version as well. 485 uncustomizedForm.compileToBytecode(); 486 } 487 return uncustomizedForm; 488 } 489 490 /** Renumber and/or replace params so that they are interned and canonically numbered. 491 * @return true if we can interpret 492 */ 493 private static boolean normalizeNames(int arity, Name[] names) { 494 Name[] oldNames = names.clone(); 495 int maxOutArity = 0; 496 for (int i = 0; i < names.length; i++) { 497 Name n = names[i]; 498 names[i] = n.withIndex(i); 499 if (n.arguments != null && maxOutArity < n.arguments.length) 500 maxOutArity = n.arguments.length; 501 } 502 if (oldNames != null) { 503 for (int i = Math.max(1, arity); i < names.length; i++) { 504 Name fixed = names[i].replaceNames(oldNames, names, 0, i); 505 names[i] = fixed.withIndex(i); 506 } 507 } 508 int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); 509 boolean needIntern = false; 510 for (int i = 0; i < maxInterned; i++) { 511 Name n = names[i], n2 = internArgument(n); 512 if (n != n2) { 513 names[i] = n2; 514 needIntern = true; 515 } 516 } 517 if (needIntern) { 518 for (int i = arity; i < names.length; i++) { 519 names[i].internArguments(); 520 } 521 } 522 523 // return true if we can interpret 524 if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) { 525 // Cannot use LF interpreter on very high arity expressions. 526 assert(maxOutArity <= MethodType.MAX_JVM_ARITY); 527 return false; 528 } 529 return true; 530 } 531 532 /** 533 * Check that all embedded Name references are localizable to this lambda, 534 * and are properly ordered after their corresponding definitions. 535 * <p> 536 * Note that a Name can be local to multiple lambdas, as long as 537 * it possesses the same index in each use site. 538 * This allows Name references to be freely reused to construct 539 * fresh lambdas, without confusion. 540 */ 541 boolean nameRefsAreLegal() { 542 assert(arity >= 0 && arity <= names.length); 543 assert(result >= -1 && result < names.length); 544 // Do all names possess an index consistent with their local definition order? 545 for (int i = 0; i < arity; i++) { 546 Name n = names[i]; 547 assert(n.index() == i) : Arrays.asList(n.index(), i); 548 assert(n.isParam()); 549 } 550 // Also, do all local name references 551 for (int i = arity; i < names.length; i++) { 552 Name n = names[i]; 553 assert(n.index() == i); 554 for (Object arg : n.arguments) { 555 if (arg instanceof Name n2) { 556 int i2 = n2.index; 557 assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; 558 assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); 559 assert(i2 < i); // ref must come after def! 560 } 561 } 562 } 563 return true; 564 } 565 566 // /** Invoke this form on the given arguments. */ 567 // final Object invoke(Object... args) throws Throwable { 568 // // NYI: fit this into the fast path? 569 // return interpretWithArguments(args); 570 // } 571 572 /** Report the return type. */ 573 BasicType returnType() { 574 if (result < 0) return V_TYPE; 575 Name n = names[result]; 576 return n.type; 577 } 578 579 /** Report the N-th argument type. */ 580 BasicType parameterType(int n) { 581 return parameter(n).type; 582 } 583 584 /** Report the N-th argument name. */ 585 Name parameter(int n) { 586 Name param = names[n]; 587 assert(n < arity && param.isParam()); 588 return param; 589 } 590 591 /** Report the N-th argument type constraint. */ 592 Object parameterConstraint(int n) { 593 return parameter(n).constraint; 594 } 595 596 /** Report the arity. */ 597 int arity() { 598 return arity; 599 } 600 601 /** Report the number of expressions (non-parameter names). */ 602 int expressionCount() { 603 return names.length - arity; 604 } 605 606 /** Return the method type corresponding to my basic type signature. */ 607 MethodType methodType() { 608 Class<?>[] ptypes = new Class<?>[arity]; 609 for (int i = 0; i < arity; ++i) { 610 ptypes[i] = parameterType(i).btClass; 611 } 612 return MethodType.methodType(returnType().btClass, ptypes, true); 613 } 614 615 /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ 616 final String basicTypeSignature() { 617 StringBuilder buf = new StringBuilder(arity() + 3); 618 for (int i = 0, a = arity(); i < a; i++) 619 buf.append(parameterType(i).basicTypeChar()); 620 return buf.append('_').append(returnType().basicTypeChar()).toString(); 621 } 622 static int signatureArity(String sig) { 623 assert(isValidSignature(sig)); 624 return sig.indexOf('_'); 625 } 626 static boolean isValidSignature(String sig) { 627 int arity = sig.indexOf('_'); 628 if (arity < 0) return false; // must be of the form *_* 629 int siglen = sig.length(); 630 if (siglen != arity + 2) return false; // *_X 631 for (int i = 0; i < siglen; i++) { 632 if (i == arity) continue; // skip '_' 633 char c = sig.charAt(i); 634 if (c == 'V') 635 return (i == siglen - 1 && arity == siglen - 2); 636 if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] 637 } 638 return true; // [LIJFD]*_[LIJFDV] 639 } 640 641 /** 642 * Check if i-th name is a call to MethodHandleImpl.selectAlternative. 643 */ 644 boolean isSelectAlternative(int pos) { 645 // selectAlternative idiom: 646 // t_{n}:L=MethodHandleImpl.selectAlternative(...) 647 // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 648 if (pos+1 >= names.length) return false; 649 Name name0 = names[pos]; 650 Name name1 = names[pos+1]; 651 return name0.refersTo(MethodHandleImpl.class, "selectAlternative") && 652 name1.isInvokeBasic() && 653 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 654 lastUseIndex(name0) == pos+1; // t_{n} is local: used only in t_{n+1} 655 } 656 657 private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) { 658 if (pos+2 >= names.length) return false; 659 Name name0 = names[pos]; 660 Name name1 = names[pos+1]; 661 Name name2 = names[pos+2]; 662 return name1.refersTo(MethodHandleImpl.class, idiomName) && 663 name0.isInvokeBasic() && 664 name2.isInvokeBasic() && 665 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n}); 666 lastUseIndex(name0) == pos+1 && // t_{n} is local: used only in t_{n+1} 667 name2.lastUseIndex(name1) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 668 lastUseIndex(name1) == pos+2; // t_{n+1} is local: used only in t_{n+2} 669 } 670 671 /** 672 * Check if i-th name is a start of GuardWithCatch idiom. 673 */ 674 boolean isGuardWithCatch(int pos) { 675 // GuardWithCatch idiom: 676 // t_{n}:L=MethodHandle.invokeBasic(...) 677 // t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n}); 678 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 679 return isMatchingIdiom(pos, "guardWithCatch", 3); 680 } 681 682 /** 683 * Check if i-th name is a start of the tryFinally idiom. 684 */ 685 boolean isTryFinally(int pos) { 686 // tryFinally idiom: 687 // t_{n}:L=MethodHandle.invokeBasic(...) 688 // t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n}) 689 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 690 return isMatchingIdiom(pos, "tryFinally", 2); 691 } 692 693 /** 694 * Check if i-th name is a start of the tableSwitch idiom. 695 */ 696 boolean isTableSwitch(int pos) { 697 // tableSwitch idiom: 698 // t_{n}:L=MethodHandle.invokeBasic(...) // args 699 // t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n}) 700 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 701 if (pos + 2 >= names.length) return false; 702 703 final int POS_COLLECT_ARGS = pos; 704 final int POS_TABLE_SWITCH = pos + 1; 705 final int POS_UNBOX_RESULT = pos + 2; 706 707 Name collectArgs = names[POS_COLLECT_ARGS]; 708 Name tableSwitch = names[POS_TABLE_SWITCH]; 709 Name unboxResult = names[POS_UNBOX_RESULT]; 710 return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") && 711 collectArgs.isInvokeBasic() && 712 unboxResult.isInvokeBasic() && 713 tableSwitch.lastUseIndex(collectArgs) == 3 && // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n}); 714 lastUseIndex(collectArgs) == POS_TABLE_SWITCH && // t_{n} is local: used only in t_{n+1} 715 unboxResult.lastUseIndex(tableSwitch) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 716 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT; // t_{n+1} is local: used only in t_{n+2} 717 } 718 719 /** 720 * Check if i-th name is a start of the loop idiom. 721 */ 722 boolean isLoop(int pos) { 723 // loop idiom: 724 // t_{n}:L=MethodHandle.invokeBasic(...) 725 // t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n}) 726 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 727 return isMatchingIdiom(pos, "loop", 2); 728 } 729 730 /* 731 * Code generation issues: 732 * 733 * Compiled LFs should be reusable in general. 734 * The biggest issue is how to decide when to pull a name into 735 * the bytecode, versus loading a reified form from the MH data. 736 * 737 * For example, an asType wrapper may require execution of a cast 738 * after a call to a MH. The target type of the cast can be placed 739 * as a constant in the LF itself. This will force the cast type 740 * to be compiled into the bytecodes and native code for the MH. 741 * Or, the target type of the cast can be erased in the LF, and 742 * loaded from the MH data. (Later on, if the MH as a whole is 743 * inlined, the data will flow into the inlined instance of the LF, 744 * as a constant, and the end result will be an optimal cast.) 745 * 746 * This erasure of cast types can be done with any use of 747 * reference types. It can also be done with whole method 748 * handles. Erasing a method handle might leave behind 749 * LF code that executes correctly for any MH of a given 750 * type, and load the required MH from the enclosing MH's data. 751 * Or, the erasure might even erase the expected MT. 752 * 753 * Also, for direct MHs, the MemberName of the target 754 * could be erased, and loaded from the containing direct MH. 755 * As a simple case, a LF for all int-valued non-static 756 * field getters would perform a cast on its input argument 757 * (to non-constant base type derived from the MemberName) 758 * and load an integer value from the input object 759 * (at a non-constant offset also derived from the MemberName). 760 * Such MN-erased LFs would be inlinable back to optimized 761 * code, whenever a constant enclosing DMH is available 762 * to supply a constant MN from its data. 763 * 764 * The main problem here is to keep LFs reasonably generic, 765 * while ensuring that hot spots will inline good instances. 766 * "Reasonably generic" means that we don't end up with 767 * repeated versions of bytecode or machine code that do 768 * not differ in their optimized form. Repeated versions 769 * of machine would have the undesirable overheads of 770 * (a) redundant compilation work and (b) extra I$ pressure. 771 * To control repeated versions, we need to be ready to 772 * erase details from LFs and move them into MH data, 773 * whenever those details are not relevant to significant 774 * optimization. "Significant" means optimization of 775 * code that is actually hot. 776 * 777 * Achieving this may require dynamic splitting of MHs, by replacing 778 * a generic LF with a more specialized one, on the same MH, 779 * if (a) the MH is frequently executed and (b) the MH cannot 780 * be inlined into a containing caller, such as an invokedynamic. 781 * 782 * Compiled LFs that are no longer used should be GC-able. 783 * If they contain non-BCP references, they should be properly 784 * interlinked with the class loader(s) that their embedded types 785 * depend on. This probably means that reusable compiled LFs 786 * will be tabulated (indexed) on relevant class loaders, 787 * or else that the tables that cache them will have weak links. 788 */ 789 790 /** 791 * Make this LF directly executable, as part of a MethodHandle. 792 * Invariant: Every MH which is invoked must prepare its LF 793 * before invocation. 794 * (In principle, the JVM could do this very lazily, 795 * as a sort of pre-invocation linkage step.) 796 */ 797 public void prepare() { 798 if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) { 799 compileToBytecode(); 800 } 801 if (this.vmentry != null) { 802 // already prepared (e.g., a primitive DMH invoker form) 803 return; 804 } 805 MethodType mtype = methodType(); 806 LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET); 807 if (prep == null) { 808 assert (isValidSignature(basicTypeSignature())); 809 prep = LambdaForm.createBlankForType(mtype); 810 prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype); 811 prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep); 812 } 813 this.vmentry = prep.vmentry; 814 // TO DO: Maybe add invokeGeneric, invokeWithArguments 815 } 816 817 private static @Stable PerfCounter LF_FAILED; 818 819 private static PerfCounter failedCompilationCounter() { 820 if (LF_FAILED == null) { 821 LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations"); 822 } 823 return LF_FAILED; 824 } 825 826 /** Generate optimizable bytecode for this form. */ 827 void compileToBytecode() { 828 if (forceInterpretation()) { 829 return; // this should not be compiled 830 } 831 if (vmentry != null && isCompiled) { 832 return; // already compiled somehow 833 } 834 835 // Obtain the invoker MethodType outside of the following try block. 836 // This ensures that an IllegalArgumentException is directly thrown if the 837 // type would have 256 or more parameters 838 MethodType invokerType = methodType(); 839 assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); 840 try { 841 vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); 842 if (TRACE_INTERPRETER) 843 traceInterpreter("compileToBytecode", this); 844 isCompiled = true; 845 } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) { 846 // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only 847 invocationCounter = -1; 848 failedCompilationCounter().increment(); 849 if (LOG_LF_COMPILATION_FAILURE) { 850 System.out.println("LambdaForm compilation failed: " + this); 851 bge.printStackTrace(System.out); 852 } 853 } catch (Error e) { 854 // Pass through any error 855 throw e; 856 } catch (Exception e) { 857 // Wrap any exception 858 throw newInternalError(this.toString(), e); 859 } 860 } 861 862 // The next few routines are called only from assert expressions 863 // They verify that the built-in invokers process the correct raw data types. 864 private static boolean argumentTypesMatch(String sig, Object[] av) { 865 int arity = signatureArity(sig); 866 assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; 867 assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0]; 868 MethodHandle mh = (MethodHandle) av[0]; 869 MethodType mt = mh.type(); 870 assert(mt.parameterCount() == arity-1); 871 for (int i = 0; i < av.length; i++) { 872 Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); 873 assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); 874 } 875 return true; 876 } 877 private static boolean valueMatches(BasicType tc, Class<?> type, Object x) { 878 // The following line is needed because (...)void method handles can use non-void invokers 879 if (type == void.class) tc = V_TYPE; // can drop any kind of value 880 assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); 881 switch (tc) { 882 case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; 883 case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; 884 case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; 885 case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; 886 case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; 887 case V_TYPE: break; // allow anything here; will be dropped 888 default: assert(false); 889 } 890 return true; 891 } 892 private static boolean checkInt(Class<?> type, Object x) { 893 assert(x instanceof Integer); 894 if (type == int.class) return true; 895 Wrapper w = Wrapper.forBasicType(type); 896 assert(w.isSubwordOrInt()); 897 Object x1 = Wrapper.INT.wrap(w.wrap(x)); 898 return x.equals(x1); 899 } 900 private static boolean checkRef(Class<?> type, Object x) { 901 assert(!type.isPrimitive()); 902 if (x == null) return true; 903 if (type.isInterface()) return true; 904 return type.isInstance(x); 905 } 906 907 /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ 908 private static final int COMPILE_THRESHOLD; 909 static { 910 COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD); 911 } 912 private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever 913 914 private boolean forceInterpretation() { 915 return invocationCounter == -1; 916 } 917 918 /** Interpretively invoke this form on the given arguments. */ 919 @Hidden 920 @DontInline 921 Object interpretWithArguments(Object... argumentValues) throws Throwable { 922 if (TRACE_INTERPRETER) 923 return interpretWithArgumentsTracing(argumentValues); 924 checkInvocationCounter(); 925 assert(arityCheck(argumentValues)); 926 Object[] values = Arrays.copyOf(argumentValues, names.length); 927 for (int i = argumentValues.length; i < values.length; i++) { 928 values[i] = interpretName(names[i], values); 929 } 930 Object rv = (result < 0) ? null : values[result]; 931 assert(resultCheck(argumentValues, rv)); 932 return rv; 933 } 934 935 /** Evaluate a single Name within this form, applying its function to its arguments. */ 936 @Hidden 937 @DontInline 938 Object interpretName(Name name, Object[] values) throws Throwable { 939 if (TRACE_INTERPRETER) 940 traceInterpreter("| interpretName", name.debugString(), (Object[]) null); 941 Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); 942 for (int i = 0; i < arguments.length; i++) { 943 Object a = arguments[i]; 944 if (a instanceof Name n) { 945 int i2 = n.index(); 946 assert(names[i2] == a); 947 a = values[i2]; 948 arguments[i] = a; 949 } 950 } 951 return name.function.invokeWithArguments(arguments); 952 } 953 954 private void checkInvocationCounter() { 955 if (COMPILE_THRESHOLD != 0 && 956 !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 957 invocationCounter++; // benign race 958 if (invocationCounter >= COMPILE_THRESHOLD) { 959 // Replace vmentry with a bytecode version of this LF. 960 compileToBytecode(); 961 } 962 } 963 } 964 Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { 965 traceInterpreter("[ interpretWithArguments", this, argumentValues); 966 if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 967 int ctr = invocationCounter++; // benign race 968 traceInterpreter("| invocationCounter", ctr); 969 if (invocationCounter >= COMPILE_THRESHOLD) { 970 compileToBytecode(); 971 } 972 } 973 Object rval; 974 try { 975 assert(arityCheck(argumentValues)); 976 Object[] values = Arrays.copyOf(argumentValues, names.length); 977 for (int i = argumentValues.length; i < values.length; i++) { 978 values[i] = interpretName(names[i], values); 979 } 980 rval = (result < 0) ? null : values[result]; 981 } catch (Throwable ex) { 982 traceInterpreter("] throw =>", ex); 983 throw ex; 984 } 985 traceInterpreter("] return =>", rval); 986 return rval; 987 } 988 989 static void traceInterpreter(String event, Object obj, Object... args) { 990 if (TRACE_INTERPRETER) { 991 System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); 992 } 993 } 994 static void traceInterpreter(String event, Object obj) { 995 traceInterpreter(event, obj, (Object[])null); 996 } 997 private boolean arityCheck(Object[] argumentValues) { 998 assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; 999 // also check that the leading (receiver) argument is somehow bound to this LF: 1000 assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; 1001 MethodHandle mh = (MethodHandle) argumentValues[0]; 1002 assert(mh.internalForm() == this); 1003 // note: argument #0 could also be an interface wrapper, in the future 1004 argumentTypesMatch(basicTypeSignature(), argumentValues); 1005 return true; 1006 } 1007 private boolean resultCheck(Object[] argumentValues, Object result) { 1008 MethodHandle mh = (MethodHandle) argumentValues[0]; 1009 MethodType mt = mh.type(); 1010 assert(valueMatches(returnType(), mt.returnType(), result)); 1011 return true; 1012 } 1013 1014 private boolean isEmpty() { 1015 if (result < 0) 1016 return (names.length == arity); 1017 else if (result == arity && names.length == arity + 1) 1018 return names[arity].isConstantZero(); 1019 else 1020 return false; 1021 } 1022 1023 public String toString() { 1024 return debugString(-1); 1025 } 1026 1027 String debugString(int indentLevel) { 1028 String prefix = MethodHandle.debugPrefix(indentLevel); 1029 String lambdaName = lambdaName(); 1030 StringBuilder buf = new StringBuilder(lambdaName); 1031 buf.append("=Lambda("); 1032 for (int i = 0; i < names.length; i++) { 1033 if (i == arity) buf.append(")=>{"); 1034 Name n = names[i]; 1035 if (i >= arity) buf.append("\n ").append(prefix); 1036 buf.append(n.paramString()); 1037 if (i < arity) { 1038 if (i+1 < arity) buf.append(","); 1039 continue; 1040 } 1041 buf.append("=").append(n.exprString()); 1042 buf.append(";"); 1043 } 1044 if (arity == names.length) buf.append(")=>{"); 1045 buf.append(result < 0 ? "void" : names[result]).append("}"); 1046 if (TRACE_INTERPRETER) { 1047 // Extra verbosity: 1048 buf.append(":").append(basicTypeSignature()); 1049 buf.append("/").append(vmentry); 1050 } 1051 return buf.toString(); 1052 } 1053 1054 @Override 1055 public boolean equals(Object obj) { 1056 return obj instanceof LambdaForm lf && equals(lf); 1057 } 1058 public boolean equals(LambdaForm that) { 1059 if (this.result != that.result) return false; 1060 return Arrays.equals(this.names, that.names); 1061 } 1062 public int hashCode() { 1063 return result + 31 * Arrays.hashCode(names); 1064 } 1065 LambdaFormEditor editor() { 1066 return LambdaFormEditor.lambdaFormEditor(this); 1067 } 1068 1069 boolean contains(Name name) { 1070 int pos = name.index(); 1071 if (pos >= 0) { 1072 return pos < names.length && name.equals(names[pos]); 1073 } 1074 for (int i = arity; i < names.length; i++) { 1075 if (name.equals(names[i])) 1076 return true; 1077 } 1078 return false; 1079 } 1080 1081 static class NamedFunction { 1082 final MemberName member; 1083 private @Stable MethodHandle resolvedHandle; 1084 private @Stable MethodType type; 1085 1086 NamedFunction(MethodHandle resolvedHandle) { 1087 this(resolvedHandle.internalMemberName(), resolvedHandle); 1088 } 1089 NamedFunction(MemberName member, MethodHandle resolvedHandle) { 1090 this.member = member; 1091 this.resolvedHandle = resolvedHandle; 1092 // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest. 1093 //assert(!isInvokeBasic(member)); 1094 } 1095 NamedFunction(MethodType basicInvokerType) { 1096 assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; 1097 if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { 1098 this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); 1099 this.member = resolvedHandle.internalMemberName(); 1100 } else { 1101 // necessary to pass BigArityTest 1102 this.member = Invokers.invokeBasicMethod(basicInvokerType); 1103 } 1104 assert(isInvokeBasic(member)); 1105 } 1106 1107 private static boolean isInvokeBasic(MemberName member) { 1108 return member != null && 1109 member.getDeclaringClass() == MethodHandle.class && 1110 "invokeBasic".equals(member.getName()); 1111 } 1112 1113 // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc. 1114 // Any LambdaForm containing such a member is not interpretable. 1115 // This is OK, since all such LFs are prepared with special primitive vmentry points. 1116 // And even without the resolvedHandle, the name can still be compiled and optimized. 1117 NamedFunction(Method method) { 1118 this(new MemberName(method)); 1119 } 1120 NamedFunction(MemberName member) { 1121 this(member, null); 1122 } 1123 1124 MethodHandle resolvedHandle() { 1125 if (resolvedHandle == null) resolve(); 1126 return resolvedHandle; 1127 } 1128 1129 synchronized void resolve() { 1130 if (resolvedHandle == null) { 1131 resolvedHandle = DirectMethodHandle.make(member); 1132 } 1133 } 1134 1135 @Override 1136 public boolean equals(Object other) { 1137 if (this == other) return true; 1138 if (other == null) return false; 1139 return (other instanceof NamedFunction that) 1140 && this.member != null 1141 && this.member.equals(that.member); 1142 } 1143 1144 @Override 1145 public int hashCode() { 1146 if (member != null) 1147 return member.hashCode(); 1148 return super.hashCode(); 1149 } 1150 1151 static final MethodType INVOKER_METHOD_TYPE = 1152 MethodType.methodType(Object.class, MethodHandle.class, Object[].class); 1153 1154 private static MethodHandle computeInvoker(MethodTypeForm typeForm) { 1155 typeForm = typeForm.basicType().form(); // normalize to basic type 1156 MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1157 if (mh != null) return mh; 1158 MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while 1159 mh = DirectMethodHandle.make(invoker); 1160 MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1161 if (mh2 != null) return mh2; // benign race 1162 if (!mh.type().equals(INVOKER_METHOD_TYPE)) 1163 throw newInternalError(mh.debugString()); 1164 return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh); 1165 } 1166 1167 @Hidden 1168 Object invokeWithArguments(Object... arguments) throws Throwable { 1169 // If we have a cached invoker, call it right away. 1170 // NOTE: The invoker always returns a reference value. 1171 if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); 1172 return invoker().invokeBasic(resolvedHandle(), arguments); 1173 } 1174 1175 @Hidden 1176 Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { 1177 Object rval; 1178 try { 1179 traceInterpreter("[ call", this, arguments); 1180 // resolvedHandle might be uninitialized, ok for tracing 1181 if (resolvedHandle == null) { 1182 traceInterpreter("| resolve", this); 1183 resolvedHandle(); 1184 } 1185 rval = invoker().invokeBasic(resolvedHandle(), arguments); 1186 } catch (Throwable ex) { 1187 traceInterpreter("] throw =>", ex); 1188 throw ex; 1189 } 1190 traceInterpreter("] return =>", rval); 1191 return rval; 1192 } 1193 1194 private MethodHandle invoker() { 1195 return computeInvoker(methodType().form()); 1196 } 1197 1198 MethodType methodType() { 1199 MethodType type = this.type; 1200 if (type == null) { 1201 this.type = type = calculateMethodType(member, resolvedHandle); 1202 } 1203 return type; 1204 } 1205 1206 private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) { 1207 if (resolvedHandle != null) { 1208 return resolvedHandle.type(); 1209 } else { 1210 // only for certain internal LFs during bootstrapping 1211 return member.getInvocationType(); 1212 } 1213 } 1214 1215 MemberName member() { 1216 assert(assertMemberIsConsistent()); 1217 return member; 1218 } 1219 1220 // Called only from assert. 1221 private boolean assertMemberIsConsistent() { 1222 if (resolvedHandle instanceof DirectMethodHandle) { 1223 MemberName m = resolvedHandle.internalMemberName(); 1224 assert(m.equals(member)); 1225 } 1226 return true; 1227 } 1228 1229 Class<?> memberDeclaringClassOrNull() { 1230 return (member == null) ? null : member.getDeclaringClass(); 1231 } 1232 1233 BasicType returnType() { 1234 return basicType(methodType().returnType()); 1235 } 1236 1237 BasicType parameterType(int n) { 1238 return basicType(methodType().parameterType(n)); 1239 } 1240 1241 int arity() { 1242 return methodType().parameterCount(); 1243 } 1244 1245 public String toString() { 1246 if (member == null) return String.valueOf(resolvedHandle); 1247 return member.getDeclaringClass().getSimpleName()+"."+member.getName(); 1248 } 1249 1250 public boolean isIdentity() { 1251 return this.equals(identity(returnType())); 1252 } 1253 1254 public boolean isConstantZero() { 1255 return this.equals(constantZero(returnType())); 1256 } 1257 1258 public MethodHandleImpl.Intrinsic intrinsicName() { 1259 return resolvedHandle != null 1260 ? resolvedHandle.intrinsicName() 1261 : MethodHandleImpl.Intrinsic.NONE; 1262 } 1263 1264 public Object intrinsicData() { 1265 return resolvedHandle != null 1266 ? resolvedHandle.intrinsicData() 1267 : null; 1268 } 1269 } 1270 1271 public static String basicTypeSignature(MethodType type) { 1272 int params = type.parameterCount(); 1273 char[] sig = new char[params + 2]; 1274 int sigp = 0; 1275 while (sigp < params) { 1276 sig[sigp] = basicTypeChar(type.parameterType(sigp++)); 1277 } 1278 sig[sigp++] = '_'; 1279 sig[sigp++] = basicTypeChar(type.returnType()); 1280 assert(sigp == sig.length); 1281 return String.valueOf(sig); 1282 } 1283 1284 /** Hack to make signatures more readable when they show up in method names. 1285 * Signature should start with a sequence of uppercase ASCII letters. 1286 * Runs of three or more are replaced by a single letter plus a decimal repeat count. 1287 * A tail of anything other than uppercase ASCII is passed through unchanged. 1288 * @param signature sequence of uppercase ASCII letters with possible repetitions 1289 * @return same sequence, with repetitions counted by decimal numerals 1290 */ 1291 public static String shortenSignature(String signature) { 1292 final int NO_CHAR = -1, MIN_RUN = 3; 1293 int c0, c1 = NO_CHAR, c1reps = 0; 1294 StringBuilder buf = null; 1295 int len = signature.length(); 1296 if (len < MIN_RUN) return signature; 1297 for (int i = 0; i <= len; i++) { 1298 if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) { 1299 // wrong kind of char; bail out here 1300 if (buf != null) { 1301 buf.append(signature, i - c1reps, len); 1302 } 1303 break; 1304 } 1305 // shift in the next char: 1306 c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); 1307 if (c1 == c0) { ++c1reps; continue; } 1308 // shift in the next count: 1309 int c0reps = c1reps; c1reps = 1; 1310 // end of a character run 1311 if (c0reps < MIN_RUN) { 1312 if (buf != null) { 1313 while (--c0reps >= 0) 1314 buf.append((char)c0); 1315 } 1316 continue; 1317 } 1318 // found three or more in a row 1319 if (buf == null) 1320 buf = new StringBuilder().append(signature, 0, i - c0reps); 1321 buf.append((char)c0).append(c0reps); 1322 } 1323 return (buf == null) ? signature : buf.toString(); 1324 } 1325 1326 static final class Name { 1327 final BasicType type; 1328 final short index; 1329 final NamedFunction function; 1330 final Object constraint; // additional type information, if not null 1331 @Stable final Object[] arguments; 1332 1333 private static final Object[] EMPTY_ARGS = new Object[0]; 1334 1335 private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) { 1336 this.index = (short)index; 1337 this.type = type; 1338 this.function = function; 1339 this.arguments = arguments; 1340 this.constraint = constraint; 1341 assert(this.index == index && typesMatch(function, arguments)); 1342 assert(constraint == null || isParam()); // only params have constraints 1343 assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class); 1344 } 1345 1346 Name(MethodHandle function, Object... arguments) { 1347 this(new NamedFunction(function), arguments); 1348 } 1349 Name(MethodType functionType, Object... arguments) { 1350 this(new NamedFunction(functionType), arguments); 1351 assert(arguments[0] instanceof Name name && name.type == L_TYPE); 1352 } 1353 Name(MemberName function, Object... arguments) { 1354 this(new NamedFunction(function), arguments); 1355 } 1356 Name(NamedFunction function) { 1357 this(-1, function.returnType(), function, EMPTY_ARGS, null); 1358 } 1359 Name(NamedFunction function, Object arg) { 1360 this(-1, function.returnType(), function, new Object[] { arg }, null); 1361 } 1362 Name(NamedFunction function, Object arg0, Object arg1) { 1363 this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null); 1364 } 1365 Name(NamedFunction function, Object... arguments) { 1366 this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null); 1367 } 1368 /** Create a raw parameter of the given type, with an expected index. */ 1369 Name(int index, BasicType type) { 1370 this(index, type, null, null, null); 1371 } 1372 /** Create a raw parameter of the given type. */ 1373 Name(BasicType type) { this(-1, type); } 1374 1375 BasicType type() { return type; } 1376 int index() { return index; } 1377 1378 char typeChar() { 1379 return type.btChar; 1380 } 1381 1382 Name withIndex(int i) { 1383 if (i == this.index) return this; 1384 return new Name(i, type, function, arguments, constraint); 1385 } 1386 1387 Name withConstraint(Object constraint) { 1388 if (constraint == this.constraint) return this; 1389 return new Name(index, type, function, arguments, constraint); 1390 } 1391 1392 Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly 1393 if (oldName == newName) return this; 1394 @SuppressWarnings("LocalVariableHidesMemberVariable") 1395 Object[] arguments = this.arguments; 1396 if (arguments == null) return this; 1397 boolean replaced = false; 1398 for (int j = 0; j < arguments.length; j++) { 1399 if (arguments[j] == oldName) { 1400 if (!replaced) { 1401 replaced = true; 1402 arguments = arguments.clone(); 1403 } 1404 arguments[j] = newName; 1405 } 1406 } 1407 if (!replaced) return this; 1408 return new Name(function, arguments); 1409 } 1410 /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i]. 1411 * Limit such replacements to {@code start<=i<end}. Return possibly changed self. 1412 */ 1413 Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) { 1414 if (start >= end) return this; 1415 @SuppressWarnings("LocalVariableHidesMemberVariable") 1416 Object[] arguments = this.arguments; 1417 boolean replaced = false; 1418 eachArg: 1419 for (int j = 0; j < arguments.length; j++) { 1420 if (arguments[j] instanceof Name n) { 1421 int check = n.index; 1422 // harmless check to see if the thing is already in newNames: 1423 if (check >= 0 && check < newNames.length && n == newNames[check]) 1424 continue eachArg; 1425 // n might not have the correct index: n != oldNames[n.index]. 1426 for (int i = start; i < end; i++) { 1427 if (n == oldNames[i]) { 1428 if (n == newNames[i]) 1429 continue eachArg; 1430 if (!replaced) { 1431 replaced = true; 1432 arguments = arguments.clone(); 1433 } 1434 arguments[j] = newNames[i]; 1435 continue eachArg; 1436 } 1437 } 1438 } 1439 } 1440 if (!replaced) return this; 1441 return new Name(function, arguments); 1442 } 1443 void internArguments() { 1444 @SuppressWarnings("LocalVariableHidesMemberVariable") 1445 Object[] arguments = this.arguments; 1446 for (int j = 0; j < arguments.length; j++) { 1447 if (arguments[j] instanceof Name n) { 1448 if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) 1449 arguments[j] = internArgument(n); 1450 } 1451 } 1452 } 1453 boolean isParam() { 1454 return function == null; 1455 } 1456 boolean isConstantZero() { 1457 return !isParam() && arguments.length == 0 && function.isConstantZero(); 1458 } 1459 1460 boolean refersTo(Class<?> declaringClass, String methodName) { 1461 return function != null && 1462 function.member() != null && function.member().refersTo(declaringClass, methodName); 1463 } 1464 1465 /** 1466 * Check if MemberName is a call to MethodHandle.invokeBasic. 1467 */ 1468 boolean isInvokeBasic() { 1469 if (function == null) 1470 return false; 1471 if (arguments.length < 1) 1472 return false; // must have MH argument 1473 MemberName member = function.member(); 1474 return member != null && member.refersTo(MethodHandle.class, "invokeBasic") && 1475 !member.isPublic() && !member.isStatic(); 1476 } 1477 1478 /** 1479 * Check if MemberName is a call to MethodHandle.linkToStatic, etc. 1480 */ 1481 boolean isLinkerMethodInvoke() { 1482 if (function == null) 1483 return false; 1484 if (arguments.length < 1) 1485 return false; // must have MH argument 1486 MemberName member = function.member(); 1487 return member != null && 1488 member.getDeclaringClass() == MethodHandle.class && 1489 !member.isPublic() && member.isStatic() && 1490 member.getName().startsWith("linkTo"); 1491 } 1492 1493 public String toString() { 1494 return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); 1495 } 1496 public String debugString() { 1497 String s = paramString(); 1498 return (function == null) ? s : s + "=" + exprString(); 1499 } 1500 public String paramString() { 1501 String s = toString(); 1502 Object c = constraint; 1503 if (c == null) 1504 return s; 1505 if (c instanceof Class<?> cl) c = cl.getSimpleName(); 1506 return s + "/" + c; 1507 } 1508 public String exprString() { 1509 if (function == null) return toString(); 1510 StringBuilder buf = new StringBuilder(function.toString()); 1511 buf.append("("); 1512 String cma = ""; 1513 for (Object a : arguments) { 1514 buf.append(cma); cma = ","; 1515 if (a instanceof Name || a instanceof Integer) 1516 buf.append(a); 1517 else 1518 buf.append("(").append(a).append(")"); 1519 } 1520 buf.append(")"); 1521 return buf.toString(); 1522 } 1523 1524 private boolean typesMatch(NamedFunction function, Object ... arguments) { 1525 if (arguments == null) { 1526 assert(function == null); 1527 return true; 1528 } 1529 assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); 1530 for (int i = 0; i < arguments.length; i++) { 1531 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); 1532 } 1533 return true; 1534 } 1535 1536 private static boolean typesMatch(BasicType parameterType, Object object) { 1537 if (object instanceof Name name) { 1538 return name.type == parameterType; 1539 } 1540 switch (parameterType) { 1541 case I_TYPE: return object instanceof Integer; 1542 case J_TYPE: return object instanceof Long; 1543 case F_TYPE: return object instanceof Float; 1544 case D_TYPE: return object instanceof Double; 1545 } 1546 assert(parameterType == L_TYPE); 1547 return true; 1548 } 1549 1550 /** Return the index of the last occurrence of n in the argument array. 1551 * Return -1 if the name is not used. 1552 */ 1553 int lastUseIndex(Name n) { 1554 Object[] arguments = this.arguments; 1555 if (arguments == null) return -1; 1556 for (int i = arguments.length; --i >= 0; ) { 1557 if (arguments[i] == n) return i; 1558 } 1559 return -1; 1560 } 1561 1562 public boolean equals(Name that) { 1563 if (this == that) return true; 1564 if (isParam()) 1565 // each parameter is a unique atom 1566 return false; // this != that 1567 return 1568 //this.index == that.index && 1569 this.type == that.type && 1570 this.function.equals(that.function) && 1571 Arrays.equals(this.arguments, that.arguments); 1572 } 1573 @Override 1574 public boolean equals(Object x) { 1575 return x instanceof Name n && equals(n); 1576 } 1577 @Override 1578 public int hashCode() { 1579 if (isParam()) 1580 return index | (type.ordinal() << 8); 1581 return function.hashCode() ^ Arrays.hashCode(arguments); 1582 } 1583 } 1584 1585 /** Return the index of the last name which contains n as an argument. 1586 * Return -1 if the name is not used. Return names.length if it is the return value. 1587 */ 1588 int lastUseIndex(Name n) { 1589 int ni = n.index, nmax = names.length; 1590 assert(names[ni] == n); 1591 if (result == ni) return nmax; // live all the way beyond the end 1592 for (int i = nmax; --i > ni; ) { 1593 if (names[i].lastUseIndex(n) >= 0) 1594 return i; 1595 } 1596 return -1; 1597 } 1598 1599 /** Return the number of times n is used as an argument or return value. */ 1600 int useCount(Name n) { 1601 int count = (result == n.index) ? 1 : 0; 1602 int i = Math.max(n.index + 1, arity); 1603 Name[] names = this.names; 1604 while (i < names.length) { 1605 Object[] arguments = names[i++].arguments; 1606 if (arguments != null) { 1607 for (Object argument : arguments) { 1608 if (argument == n) { 1609 count++; 1610 } 1611 } 1612 } 1613 } 1614 return count; 1615 } 1616 1617 static Name argument(int which, BasicType type) { 1618 if (which >= INTERNED_ARGUMENT_LIMIT) 1619 return new Name(which, type); 1620 return INTERNED_ARGUMENTS[type.ordinal()][which]; 1621 } 1622 static Name internArgument(Name n) { 1623 assert(n.isParam()) : "not param: " + n; 1624 assert(n.index < INTERNED_ARGUMENT_LIMIT); 1625 if (n.constraint != null) return n; 1626 return argument(n.index, n.type); 1627 } 1628 static Name[] arguments(int extra, MethodType types) { 1629 int length = types.parameterCount(); 1630 Name[] names = new Name[length + extra]; 1631 for (int i = 0; i < length; i++) 1632 names[i] = argument(i, basicType(types.parameterType(i))); 1633 return names; 1634 } 1635 1636 static Name[] invokeArguments(int extra, MethodType types) { 1637 int length = types.parameterCount(); 1638 Name[] names = new Name[length + extra + 1]; 1639 names[0] = argument(0, L_TYPE); 1640 for (int i = 0; i < length; i++) 1641 names[i + 1] = argument(i + 1, basicType(types.parameterType(i))); 1642 return names; 1643 } 1644 1645 static final int INTERNED_ARGUMENT_LIMIT = 10; 1646 private static final Name[][] INTERNED_ARGUMENTS 1647 = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; 1648 static { 1649 for (BasicType type : BasicType.ARG_TYPES) { 1650 int ord = type.ordinal(); 1651 for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) { 1652 INTERNED_ARGUMENTS[ord][i] = new Name(i, type); 1653 } 1654 } 1655 } 1656 1657 private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 1658 1659 static LambdaForm identityForm(BasicType type) { 1660 int ord = type.ordinal(); 1661 LambdaForm form = LF_identity[ord]; 1662 if (form != null) { 1663 return form; 1664 } 1665 createFormsFor(type); 1666 return LF_identity[ord]; 1667 } 1668 1669 static LambdaForm zeroForm(BasicType type) { 1670 int ord = type.ordinal(); 1671 LambdaForm form = LF_zero[ord]; 1672 if (form != null) { 1673 return form; 1674 } 1675 createFormsFor(type); 1676 return LF_zero[ord]; 1677 } 1678 1679 static NamedFunction identity(BasicType type) { 1680 int ord = type.ordinal(); 1681 NamedFunction function = NF_identity[ord]; 1682 if (function != null) { 1683 return function; 1684 } 1685 createFormsFor(type); 1686 return NF_identity[ord]; 1687 } 1688 1689 static NamedFunction constantZero(BasicType type) { 1690 int ord = type.ordinal(); 1691 NamedFunction function = NF_zero[ord]; 1692 if (function != null) { 1693 return function; 1694 } 1695 createFormsFor(type); 1696 return NF_zero[ord]; 1697 } 1698 1699 private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT]; 1700 private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT]; 1701 private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; 1702 private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT]; 1703 1704 private static final Object createFormsLock = new Object(); 1705 private static void createFormsFor(BasicType type) { 1706 // Avoid racy initialization during bootstrap 1707 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); 1708 synchronized (createFormsLock) { 1709 final int ord = type.ordinal(); 1710 LambdaForm idForm = LF_identity[ord]; 1711 if (idForm != null) { 1712 return; 1713 } 1714 char btChar = type.basicTypeChar(); 1715 boolean isVoid = (type == V_TYPE); 1716 Class<?> btClass = type.btClass; 1717 MethodType zeType = MethodType.methodType(btClass); 1718 MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass); 1719 1720 // Look up symbolic names. It might not be necessary to have these, 1721 // but if we need to emit direct references to bytecodes, it helps. 1722 // Zero is built from a call to an identity function with a constant zero input. 1723 MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); 1724 MemberName zeMem = null; 1725 try { 1726 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class); 1727 if (!isVoid) { 1728 zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic); 1729 zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, LM_TRUSTED, NoSuchMethodException.class); 1730 } 1731 } catch (IllegalAccessException|NoSuchMethodException ex) { 1732 throw newInternalError(ex); 1733 } 1734 1735 NamedFunction idFun; 1736 LambdaForm zeForm; 1737 NamedFunction zeFun; 1738 1739 // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular 1740 // bootstrap dependency on this method in case we're interpreting LFs 1741 if (isVoid) { 1742 Name[] idNames = new Name[] { argument(0, L_TYPE) }; 1743 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY); 1744 idForm.compileToBytecode(); 1745 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm)); 1746 1747 zeForm = idForm; 1748 zeFun = idFun; 1749 } else { 1750 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; 1751 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY); 1752 idForm.compileToBytecode(); 1753 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(idMem.getInvocationType(), idForm), 1754 MethodHandleImpl.Intrinsic.IDENTITY)); 1755 1756 Object zeValue = Wrapper.forBasicType(btChar).zero(); 1757 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) }; 1758 zeForm = LambdaForm.create(1, zeNames, 1, Kind.ZERO); 1759 zeForm.compileToBytecode(); 1760 zeFun = new NamedFunction(zeMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm), 1761 MethodHandleImpl.Intrinsic.ZERO)); 1762 } 1763 1764 LF_zero[ord] = zeForm; 1765 NF_zero[ord] = zeFun; 1766 LF_identity[ord] = idForm; 1767 NF_identity[ord] = idFun; 1768 1769 assert(idFun.isIdentity()); 1770 assert(zeFun.isConstantZero()); 1771 assert(new Name(zeFun).isConstantZero()); 1772 } 1773 } 1774 1775 // Avoid appealing to ValueConversions at bootstrap time: 1776 private static int identity_I(int x) { return x; } 1777 private static long identity_J(long x) { return x; } 1778 private static float identity_F(float x) { return x; } 1779 private static double identity_D(double x) { return x; } 1780 private static Object identity_L(Object x) { return x; } 1781 private static void identity_V() { return; } 1782 private static int zero_I() { return 0; } 1783 private static long zero_J() { return 0; } 1784 private static float zero_F() { return 0; } 1785 private static double zero_D() { return 0; } 1786 private static Object zero_L() { return null; } 1787 1788 /** 1789 * Internal marker for byte-compiled LambdaForms. 1790 */ 1791 /*non-public*/ 1792 @Target(ElementType.METHOD) 1793 @Retention(RetentionPolicy.RUNTIME) 1794 @interface Compiled { 1795 } 1796 1797 private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS; 1798 private static final HashMap<LambdaForm,String> DEBUG_NAMES; 1799 static { 1800 if (debugEnabled()) { 1801 DEBUG_NAME_COUNTERS = new HashMap<>(); 1802 DEBUG_NAMES = new HashMap<>(); 1803 } else { 1804 DEBUG_NAME_COUNTERS = null; 1805 DEBUG_NAMES = null; 1806 } 1807 } 1808 1809 static { 1810 // The Holder class will contain pre-generated forms resolved 1811 // using MemberName.getFactory(). However, that doesn't initialize the 1812 // class, which subtly breaks inlining etc. By forcing 1813 // initialization of the Holder class we avoid these issues. 1814 UNSAFE.ensureClassInitialized(Holder.class); 1815 } 1816 1817 /* Placeholder class for zero and identity forms generated ahead of time */ 1818 final class Holder {} 1819 1820 // The following hack is necessary in order to suppress TRACE_INTERPRETER 1821 // during execution of the static initializes of this class. 1822 // Turning on TRACE_INTERPRETER too early will cause 1823 // stack overflows and other misbehavior during attempts to trace events 1824 // that occur during LambdaForm.<clinit>. 1825 // Therefore, do not move this line higher in this file, and do not remove. 1826 private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; 1827 }