1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  31 import jdk.internal.vm.annotation.DontInline;
  32 import jdk.internal.vm.annotation.Hidden;
  33 import jdk.internal.vm.annotation.Stable;
  34 import sun.invoke.util.Wrapper;
  35 
  36 import java.lang.annotation.ElementType;
  37 import java.lang.annotation.Retention;
  38 import java.lang.annotation.RetentionPolicy;
  39 import java.lang.annotation.Target;
  40 import java.lang.reflect.Method;
  41 import java.util.Arrays;
  42 import java.util.HashMap;
  43 
  44 import static java.lang.invoke.LambdaForm.BasicType.*;
  45 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  46 import static java.lang.invoke.MethodHandleStatics.*;
  47 
  48 /**
  49  * The symbolic, non-executable form of a method handle's invocation semantics.
  50  * It consists of a series of names.
  51  * The first N (N=arity) names are parameters,
  52  * while any remaining names are temporary values.
  53  * Each temporary specifies the application of a function to some arguments.
  54  * The functions are method handles, while the arguments are mixes of
  55  * constant values and local names.
  56  * The result of the lambda is defined as one of the names, often the last one.
  57  * <p>
  58  * Here is an approximate grammar:
  59  * <blockquote><pre>{@code
  60  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  61  * ArgName = "a" N ":" T
  62  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  63  * Function = ConstantValue
  64  * Argument = NameRef | ConstantValue
  65  * Result = NameRef | "void"
  66  * NameRef = "a" N | "t" N
  67  * N = (any whole number)
  68  * T = "L" | "I" | "J" | "F" | "D" | "V"
  69  * }</pre></blockquote>
  70  * Names are numbered consecutively from left to right starting at zero.
  71  * (The letters are merely a taste of syntax sugar.)
  72  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  73  * Every occurrence of a name reference in an argument list must refer to
  74  * a name previously defined within the same lambda.
  75  * A lambda has a void result if and only if its result index is -1.
  76  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  77  * even though possesses a number.
  78  * Note that all reference types are erased to "L", which stands for {@code Object}.
  79  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  80  * The other types stand for the usual primitive types.
  81  * <p>
  82  * Function invocation closely follows the static rules of the Java verifier.
  83  * Arguments and return values must exactly match when their "Name" types are
  84  * considered.
  85  * Conversions are allowed only if they do not change the erased type.
  86  * <ul>
  87  * <li>L = Object: casts are used freely to convert into and out of reference types
  88  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  89  * <li>J = long: no implicit conversions
  90  * <li>F = float: no implicit conversions
  91  * <li>D = double: no implicit conversions
  92  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  93  * </ul>
  94  * Although implicit conversions are not allowed, explicit ones can easily be
  95  * encoded by using temporary expressions which call type-transformed identity functions.
  96  * <p>
  97  * Examples:
  98  * <blockquote><pre>{@code
  99  * (a0:J)=>{ a0 }
 100  *     == identity(long)
 101  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 102  *     == System.out#println(int)
 103  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 104  *     == identity, with printing side-effect
 105  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 106  *                 t3:L = BoundMethodHandle#target(a0);
 107  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 108  *     == general invoker for unary insertArgument combination
 109  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 110  *                 t3:L = MethodHandle#invoke(t2, a1);
 111  *                 t4:L = FilterMethodHandle#target(a0);
 112  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 113  *     == general invoker for unary filterArgument combination
 114  * (a0:L, a1:L)=>{ ...(same as previous example)...
 115  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 116  *     == general invoker for unary/unary foldArgument combination
 117  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 118  *     == invoker for identity method handle which performs i2l
 119  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 120  *                 t3:L = Class#cast(t2,a1); t3 }
 121  *     == invoker for identity method handle which performs cast
 122  * }</pre></blockquote>
 123  * <p>
 124  * @author John Rose, JSR 292 EG
 125  */
 126 @AOTSafeClassInitializer
 127 class LambdaForm {
 128     final int arity;
 129     final int result;
 130     final boolean forceInline;
 131     final MethodHandle customized;
 132     @Stable final Name[] names;
 133     final Kind kind;
 134     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 135     private boolean isCompiled;
 136 
 137     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 138     volatile Object transformCache;
 139 
 140     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 141 
 142     enum BasicType {
 143         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 144         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 145         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 146         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 147         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 148         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 149 
 150         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 151         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 152 
 153         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 154         static final int TYPE_LIMIT = ALL_TYPES.length;
 155 
 156         final char btChar;
 157         final Class<?> btClass;
 158         final Wrapper btWrapper;
 159         final TypeKind btKind;
 160 
 161         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 162             this.btChar = btChar;
 163             this.btClass = btClass;
 164             this.btWrapper = wrapper;
 165             this.btKind = typeKind;
 166         }
 167 
 168         char basicTypeChar() {
 169             return btChar;
 170         }
 171         Class<?> basicTypeClass() {
 172             return btClass;
 173         }
 174         Wrapper basicTypeWrapper() {
 175             return btWrapper;
 176         }
 177         TypeKind basicTypeKind() {
 178             return btKind;
 179         }
 180         int basicTypeSlots() {
 181             return btWrapper.stackSlots();
 182         }
 183 
 184         static BasicType basicType(byte type) {
 185             return ALL_TYPES[type];
 186         }
 187         static BasicType basicType(char type) {
 188             return switch (type) {
 189                 case 'L' -> L_TYPE;
 190                 case 'I' -> I_TYPE;
 191                 case 'J' -> J_TYPE;
 192                 case 'F' -> F_TYPE;
 193                 case 'D' -> D_TYPE;
 194                 case 'V' -> V_TYPE;
 195                 // all subword types are represented as ints
 196                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 197                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 198             };
 199         }
 200         static BasicType basicType(Class<?> type) {
 201             return basicType(Wrapper.basicTypeChar(type));
 202         }
 203         static int[] basicTypeOrds(BasicType[] types) {
 204             if (types == null) {
 205                 return null;
 206             }
 207             int[] a = new int[types.length];
 208             for(int i = 0; i < types.length; ++i) {
 209                 a[i] = types[i].ordinal();
 210             }
 211             return a;
 212         }
 213 
 214         static char basicTypeChar(Class<?> type) {
 215             return basicType(type).btChar;
 216         }
 217 
 218         static int[] basicTypesOrd(Class<?>[] types) {
 219             int[] ords = new int[types.length];
 220             for (int i = 0; i < ords.length; i++) {
 221                 ords[i] = basicType(types[i]).ordinal();
 222             }
 223             return ords;
 224         }
 225 
 226         static boolean isBasicTypeChar(char c) {
 227             return "LIJFDV".indexOf(c) >= 0;
 228         }
 229         static boolean isArgBasicTypeChar(char c) {
 230             return "LIJFD".indexOf(c) >= 0;
 231         }
 232 
 233         static { assert(checkBasicType()); }
 234         private static boolean checkBasicType() {
 235             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 236                 assert ARG_TYPES[i].ordinal() == i;
 237                 assert ARG_TYPES[i] == ALL_TYPES[i];
 238             }
 239             for (int i = 0; i < TYPE_LIMIT; i++) {
 240                 assert ALL_TYPES[i].ordinal() == i;
 241             }
 242             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 243             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 244             return true;
 245         }
 246     }
 247 
 248     enum Kind {
 249         GENERIC("invoke"),
 250         IDENTITY("identity"),
 251         CONSTANT("constant"),
 252         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 253         REINVOKER("MH.reinvoke", "reinvoke"),
 254         DELEGATE("MH.delegate", "delegate"),
 255         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 256         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 257         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 258         GENERIC_INVOKER("MH.invoker", "invoker"),
 259         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 260         LINK_TO_CALL_SITE("linkToCallSite"),
 261         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 262         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 263         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 264         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 265         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 266         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 267         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 268         FIELD_ACCESS("fieldAccess"),
 269         FIELD_ACCESS_INIT("fieldAccessInit"),
 270         VOLATILE_FIELD_ACCESS("volatileFieldAccess"),
 271         VOLATILE_FIELD_ACCESS_INIT("volatileFieldAccessInit"),
 272         FIELD_ACCESS_B("fieldAccessB"),
 273         FIELD_ACCESS_INIT_B("fieldAccessInitB"),
 274         VOLATILE_FIELD_ACCESS_B("volatileFieldAccessB"),
 275         VOLATILE_FIELD_ACCESS_INIT_B("volatileFieldAccessInitB"),
 276         FIELD_ACCESS_C("fieldAccessC"),
 277         FIELD_ACCESS_INIT_C("fieldAccessInitC"),
 278         VOLATILE_FIELD_ACCESS_C("volatileFieldAccessC"),
 279         VOLATILE_FIELD_ACCESS_INIT_C("volatileFieldAccessInitC"),
 280         FIELD_ACCESS_S("fieldAccessS"),
 281         FIELD_ACCESS_INIT_S("fieldAccessInitS"),
 282         VOLATILE_FIELD_ACCESS_S("volatileFieldAccessS"),
 283         VOLATILE_FIELD_ACCESS_INIT_S("volatileFieldAccessInitS"),
 284         FIELD_ACCESS_Z("fieldAccessZ"),
 285         FIELD_ACCESS_INIT_Z("fieldAccessInitZ"),
 286         VOLATILE_FIELD_ACCESS_Z("volatileFieldAccessZ"),
 287         VOLATILE_FIELD_ACCESS_INIT_Z("volatileFieldAccessInitZ"),
 288         FIELD_ACCESS_CAST("fieldAccessCast"),
 289         FIELD_ACCESS_INIT_CAST("fieldAccessInitCast"),
 290         VOLATILE_FIELD_ACCESS_CAST("volatileFieldAccessCast"),
 291         VOLATILE_FIELD_ACCESS_INIT_CAST("volatileFieldAccessInitCast"),
 292         TRY_FINALLY("tryFinally"),
 293         TABLE_SWITCH("tableSwitch"),
 294         COLLECTOR("collector"),
 295         LOOP("loop"),
 296         GUARD("guard"),
 297         GUARD_WITH_CATCH("guardWithCatch"),
 298         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 299         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 300         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 301 
 302         final String defaultLambdaName;
 303         final String methodName;
 304 
 305         private Kind(String defaultLambdaName) {
 306             this(defaultLambdaName, defaultLambdaName);
 307         }
 308 
 309         private Kind(String defaultLambdaName, String methodName) {
 310             this.defaultLambdaName = defaultLambdaName;
 311             this.methodName = methodName;
 312         }
 313     }
 314 
 315     // private version that doesn't do checks or defensive copies
 316     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 317         this.arity = arity;
 318         this.result = result;
 319         this.forceInline = forceInline;
 320         this.customized = customized;
 321         this.names = names;
 322         this.kind = kind;
 323         this.vmentry = null;
 324         this.isCompiled = false;
 325     }
 326 
 327     // root factory pre/post processing and calls simple constructor
 328     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 329         names = names.clone();
 330         assert(namesOK(arity, names));
 331         result = fixResult(result, names);
 332 
 333         boolean canInterpret = normalizeNames(arity, names);
 334         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 335         assert(form.nameRefsAreLegal());
 336         if (!canInterpret) {
 337             form.compileToBytecode();
 338         }
 339         return form;
 340     }
 341 
 342     // derived factories with defaults
 343     private static final int DEFAULT_RESULT = LAST_RESULT;
 344     private static final boolean DEFAULT_FORCE_INLINE = true;
 345     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 346     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 347 
 348     static LambdaForm create(int arity, Name[] names, int result) {
 349         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 350     }
 351     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 352         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 353     }
 354     static LambdaForm create(int arity, Name[] names) {
 355         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 356     }
 357     static LambdaForm create(int arity, Name[] names, Kind kind) {
 358         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 359     }
 360     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 361         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 362     }
 363 
 364     private static int fixResult(int result, Name[] names) {
 365         if (result == LAST_RESULT)
 366             result = names.length - 1;  // might still be void
 367         if (result >= 0 && names[result].type == V_TYPE)
 368             result = VOID_RESULT;
 369         return result;
 370     }
 371 
 372     static boolean debugNames() {
 373         return DEBUG_NAME_COUNTERS != null;
 374     }
 375 
 376     static void associateWithDebugName(LambdaForm form, String name) {
 377         assert (debugNames());
 378         synchronized (DEBUG_NAMES) {
 379             DEBUG_NAMES.put(form, name);
 380         }
 381     }
 382 
 383     String lambdaName() {
 384         if (DEBUG_NAMES != null) {
 385             synchronized (DEBUG_NAMES) {
 386                 String name = DEBUG_NAMES.get(this);
 387                 if (name == null) {
 388                     name = generateDebugName();
 389                 }
 390                 return name;
 391             }
 392         }
 393         return kind.defaultLambdaName;
 394     }
 395 
 396     private String generateDebugName() {
 397         assert (debugNames());
 398         String debugNameStem = kind.defaultLambdaName;
 399         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 400         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 401         StringBuilder buf = new StringBuilder(debugNameStem);
 402         int leadingZero = buf.length();
 403         buf.append((int) ctr);
 404         for (int i = buf.length() - leadingZero; i < 3; i++) {
 405             buf.insert(leadingZero, '0');
 406         }
 407         buf.append('_');
 408         buf.append(basicTypeSignature());
 409         String name = buf.toString();
 410         associateWithDebugName(this, name);
 411         return name;
 412     }
 413 
 414     private static boolean namesOK(int arity, Name[] names) {
 415         for (int i = 0; i < names.length; i++) {
 416             Name n = names[i];
 417             assert(n != null) : "n is null";
 418             if (i < arity)
 419                 assert( n.isParam()) : n + " is not param at " + i;
 420             else
 421                 assert(!n.isParam()) : n + " is param at " + i;
 422         }
 423         return true;
 424     }
 425 
 426     /** Customize LambdaForm for a particular MethodHandle */
 427     LambdaForm customize(MethodHandle mh) {
 428         if (customized == mh) {
 429             return this;
 430         }
 431         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 432         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 433             // If shared LambdaForm has been compiled, compile customized version as well.
 434             customForm.compileToBytecode();
 435         }
 436         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 437         return customForm;
 438     }
 439 
 440     /** Get uncustomized flavor of the LambdaForm */
 441     LambdaForm uncustomize() {
 442         if (customized == null) {
 443             return this;
 444         }
 445         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 446         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 447         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 448             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 449             uncustomizedForm.compileToBytecode();
 450         }
 451         return uncustomizedForm;
 452     }
 453 
 454     /** Renumber and/or replace params so that they are interned and canonically numbered.
 455      *  @return true if we can interpret
 456      */
 457     private static boolean normalizeNames(int arity, Name[] names) {
 458         Name[] oldNames = names.clone();
 459         int maxOutArity = 0;
 460         for (int i = 0; i < names.length; i++) {
 461             Name n = names[i];
 462             names[i] = n.withIndex(i);
 463             if (n.arguments != null && maxOutArity < n.arguments.length)
 464                 maxOutArity = n.arguments.length;
 465         }
 466         if (oldNames != null) {
 467             for (int i = Math.max(1, arity); i < names.length; i++) {
 468                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 469                 names[i] = fixed.withIndex(i);
 470             }
 471         }
 472         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 473         boolean needIntern = false;
 474         for (int i = 0; i < maxInterned; i++) {
 475             Name n = names[i], n2 = internArgument(n);
 476             if (n != n2) {
 477                 names[i] = n2;
 478                 needIntern = true;
 479             }
 480         }
 481         if (needIntern) {
 482             for (int i = arity; i < names.length; i++) {
 483                 names[i].internArguments();
 484             }
 485         }
 486 
 487         // return true if we can interpret
 488         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 489             // Cannot use LF interpreter on very high arity expressions.
 490             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 491             return false;
 492         }
 493         return true;
 494     }
 495 
 496     /**
 497      * Check that all embedded Name references are localizable to this lambda,
 498      * and are properly ordered after their corresponding definitions.
 499      * <p>
 500      * Note that a Name can be local to multiple lambdas, as long as
 501      * it possesses the same index in each use site.
 502      * This allows Name references to be freely reused to construct
 503      * fresh lambdas, without confusion.
 504      */
 505     boolean nameRefsAreLegal() {
 506         assert(arity >= 0 && arity <= names.length);
 507         assert(result >= -1 && result < names.length);
 508         // Do all names possess an index consistent with their local definition order?
 509         for (int i = 0; i < arity; i++) {
 510             Name n = names[i];
 511             assert(n.index() == i) : Arrays.asList(n.index(), i);
 512             assert(n.isParam());
 513         }
 514         // Also, do all local name references
 515         for (int i = arity; i < names.length; i++) {
 516             Name n = names[i];
 517             assert(n.index() == i);
 518             for (Object arg : n.arguments) {
 519                 if (arg instanceof Name n2) {
 520                     int i2 = n2.index;
 521                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 522                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 523                     assert(i2 < i);  // ref must come after def!
 524                 }
 525             }
 526         }
 527         return true;
 528     }
 529 
 530     // /** Invoke this form on the given arguments. */
 531     // final Object invoke(Object... args) throws Throwable {
 532     //     // NYI: fit this into the fast path?
 533     //     return interpretWithArguments(args);
 534     // }
 535 
 536     /** Report the return type. */
 537     BasicType returnType() {
 538         if (result < 0)  return V_TYPE;
 539         Name n = names[result];
 540         return n.type;
 541     }
 542 
 543     /** Report the N-th argument type. */
 544     BasicType parameterType(int n) {
 545         return parameter(n).type;
 546     }
 547 
 548     /** Report the N-th argument name. */
 549     Name parameter(int n) {
 550         Name param = names[n];
 551         assert(n < arity && param.isParam());
 552         return param;
 553     }
 554 
 555     /** Report the N-th argument type constraint. */
 556     Object parameterConstraint(int n) {
 557         return parameter(n).constraint;
 558     }
 559 
 560     /** Report the arity. */
 561     int arity() {
 562         return arity;
 563     }
 564 
 565     /** Report the number of expressions (non-parameter names). */
 566     int expressionCount() {
 567         return names.length - arity;
 568     }
 569 
 570     /** Return the method type corresponding to my basic type signature. */
 571     MethodType methodType() {
 572         Class<?>[] ptypes = new Class<?>[arity];
 573         for (int i = 0; i < arity; ++i) {
 574             ptypes[i] = parameterType(i).btClass;
 575         }
 576         return MethodType.methodType(returnType().btClass, ptypes, true);
 577     }
 578 
 579     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 580     final String basicTypeSignature() {
 581         StringBuilder buf = new StringBuilder(arity() + 3);
 582         for (int i = 0, a = arity(); i < a; i++)
 583             buf.append(parameterType(i).basicTypeChar());
 584         return buf.append('_').append(returnType().basicTypeChar()).toString();
 585     }
 586     static int signatureArity(String sig) {
 587         assert(isValidSignature(sig));
 588         return sig.indexOf('_');
 589     }
 590     static boolean isValidSignature(String sig) {
 591         int arity = sig.indexOf('_');
 592         if (arity < 0)  return false;  // must be of the form *_*
 593         int siglen = sig.length();
 594         if (siglen != arity + 2)  return false;  // *_X
 595         for (int i = 0; i < siglen; i++) {
 596             if (i == arity)  continue;  // skip '_'
 597             char c = sig.charAt(i);
 598             if (c == 'V')
 599                 return (i == siglen - 1 && arity == siglen - 2);
 600             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 601         }
 602         return true;  // [LIJFD]*_[LIJFDV]
 603     }
 604 
 605     /**
 606      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 607      */
 608     boolean isSelectAlternative(int pos) {
 609         // selectAlternative idiom:
 610         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 611         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 612         if (pos+1 >= names.length)  return false;
 613         Name name0 = names[pos];
 614         Name name1 = names[pos+1];
 615         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 616                 name1.isInvokeBasic() &&
 617                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 618                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 619     }
 620 
 621     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 622         if (pos+2 >= names.length)  return false;
 623         Name name0 = names[pos];
 624         Name name1 = names[pos+1];
 625         Name name2 = names[pos+2];
 626         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 627                 name0.isInvokeBasic() &&
 628                 name2.isInvokeBasic() &&
 629                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 630                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 631                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 632                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 633     }
 634 
 635     /**
 636      * Check if i-th name is a start of GuardWithCatch idiom.
 637      */
 638     boolean isGuardWithCatch(int pos) {
 639         // GuardWithCatch idiom:
 640         //   t_{n}:L=MethodHandle.invokeBasic(...)
 641         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 642         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 643         return isMatchingIdiom(pos, "guardWithCatch", 3);
 644     }
 645 
 646     /**
 647      * Check if i-th name is a start of the tryFinally idiom.
 648      */
 649     boolean isTryFinally(int pos) {
 650         // tryFinally idiom:
 651         //   t_{n}:L=MethodHandle.invokeBasic(...)
 652         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 653         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 654         return isMatchingIdiom(pos, "tryFinally", 2);
 655     }
 656 
 657     /**
 658      * Check if i-th name is a start of the tableSwitch idiom.
 659      */
 660     boolean isTableSwitch(int pos) {
 661         // tableSwitch idiom:
 662         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 663         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 664         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 665         if (pos + 2 >= names.length)  return false;
 666 
 667         final int POS_COLLECT_ARGS = pos;
 668         final int POS_TABLE_SWITCH = pos + 1;
 669         final int POS_UNBOX_RESULT = pos + 2;
 670 
 671         Name collectArgs = names[POS_COLLECT_ARGS];
 672         Name tableSwitch = names[POS_TABLE_SWITCH];
 673         Name unboxResult = names[POS_UNBOX_RESULT];
 674         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 675                 collectArgs.isInvokeBasic() &&
 676                 unboxResult.isInvokeBasic() &&
 677                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 678                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 679                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 680                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 681     }
 682 
 683     /**
 684      * Check if i-th name is a start of the loop idiom.
 685      */
 686     boolean isLoop(int pos) {
 687         // loop idiom:
 688         //   t_{n}:L=MethodHandle.invokeBasic(...)
 689         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 690         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 691         return isMatchingIdiom(pos, "loop", 2);
 692     }
 693 
 694     /*
 695      * Code generation issues:
 696      *
 697      * Compiled LFs should be reusable in general.
 698      * The biggest issue is how to decide when to pull a name into
 699      * the bytecode, versus loading a reified form from the MH data.
 700      *
 701      * For example, an asType wrapper may require execution of a cast
 702      * after a call to a MH.  The target type of the cast can be placed
 703      * as a constant in the LF itself.  This will force the cast type
 704      * to be compiled into the bytecodes and native code for the MH.
 705      * Or, the target type of the cast can be erased in the LF, and
 706      * loaded from the MH data.  (Later on, if the MH as a whole is
 707      * inlined, the data will flow into the inlined instance of the LF,
 708      * as a constant, and the end result will be an optimal cast.)
 709      *
 710      * This erasure of cast types can be done with any use of
 711      * reference types.  It can also be done with whole method
 712      * handles.  Erasing a method handle might leave behind
 713      * LF code that executes correctly for any MH of a given
 714      * type, and load the required MH from the enclosing MH's data.
 715      * Or, the erasure might even erase the expected MT.
 716      *
 717      * Also, for direct MHs, the MemberName of the target
 718      * could be erased, and loaded from the containing direct MH.
 719      * As a simple case, a LF for all int-valued non-static
 720      * field getters would perform a cast on its input argument
 721      * (to non-constant base type derived from the MemberName)
 722      * and load an integer value from the input object
 723      * (at a non-constant offset also derived from the MemberName).
 724      * Such MN-erased LFs would be inlinable back to optimized
 725      * code, whenever a constant enclosing DMH is available
 726      * to supply a constant MN from its data.
 727      *
 728      * The main problem here is to keep LFs reasonably generic,
 729      * while ensuring that hot spots will inline good instances.
 730      * "Reasonably generic" means that we don't end up with
 731      * repeated versions of bytecode or machine code that do
 732      * not differ in their optimized form.  Repeated versions
 733      * of machine would have the undesirable overheads of
 734      * (a) redundant compilation work and (b) extra I$ pressure.
 735      * To control repeated versions, we need to be ready to
 736      * erase details from LFs and move them into MH data,
 737      * whenever those details are not relevant to significant
 738      * optimization.  "Significant" means optimization of
 739      * code that is actually hot.
 740      *
 741      * Achieving this may require dynamic splitting of MHs, by replacing
 742      * a generic LF with a more specialized one, on the same MH,
 743      * if (a) the MH is frequently executed and (b) the MH cannot
 744      * be inlined into a containing caller, such as an invokedynamic.
 745      *
 746      * Compiled LFs that are no longer used should be GC-able.
 747      * If they contain non-BCP references, they should be properly
 748      * interlinked with the class loader(s) that their embedded types
 749      * depend on.  This probably means that reusable compiled LFs
 750      * will be tabulated (indexed) on relevant class loaders,
 751      * or else that the tables that cache them will have weak links.
 752      */
 753 
 754     /**
 755      * Make this LF directly executable, as part of a MethodHandle.
 756      * Invariant:  Every MH which is invoked must prepare its LF
 757      * before invocation.
 758      * (In principle, the JVM could do this very lazily,
 759      * as a sort of pre-invocation linkage step.)
 760      */
 761     public void prepare() {
 762         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 763             compileToBytecode();
 764         }
 765         if (this.vmentry != null) {
 766             // already prepared (e.g., a primitive DMH invoker form)
 767             return;
 768         }
 769         MethodType mtype = methodType();
 770         MethodTypeForm form = mtype.form();
 771 
 772         MemberName entry = form.cachedInterpretEntry();
 773         if (entry == null) {
 774             assert (isValidSignature(basicTypeSignature()));
 775             entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 776             entry = form.setCachedInterpretEntry(entry);
 777         }
 778         this.vmentry = entry;
 779         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 780     }
 781 
 782     private static @Stable PerfCounter LF_FAILED;
 783 
 784     private static PerfCounter failedCompilationCounter() {
 785         if (LF_FAILED == null) {
 786             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 787         }
 788         return LF_FAILED;
 789     }
 790 
 791     /** Generate optimizable bytecode for this form. */
 792     void compileToBytecode() {
 793         if (forceInterpretation()) {
 794             return; // this should not be compiled
 795         }
 796         if (vmentry != null && isCompiled) {
 797             return;  // already compiled somehow
 798         }
 799 
 800         // Obtain the invoker MethodType outside of the following try block.
 801         // This ensures that an IllegalArgumentException is directly thrown if the
 802         // type would have 256 or more parameters
 803         MethodType invokerType = methodType();
 804         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 805         try {
 806             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 807             if (TRACE_INTERPRETER)
 808                 traceInterpreter("compileToBytecode", this);
 809             isCompiled = true;
 810         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 811             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 812             invocationCounter = -1;
 813             failedCompilationCounter().increment();
 814             if (LOG_LF_COMPILATION_FAILURE) {
 815                 System.out.println("LambdaForm compilation failed: " + this);
 816                 bge.printStackTrace(System.out);
 817             }
 818         } catch (Error e) {
 819             // Pass through any error
 820             throw e;
 821         } catch (Exception e) {
 822             // Wrap any exception
 823             throw newInternalError(this.toString(), e);
 824         }
 825     }
 826 
 827     // The next few routines are called only from assert expressions
 828     // They verify that the built-in invokers process the correct raw data types.
 829     private static boolean argumentTypesMatch(String sig, Object[] av) {
 830         int arity = signatureArity(sig);
 831         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 832         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 833         MethodHandle mh = (MethodHandle) av[0];
 834         MethodType mt = mh.type();
 835         assert(mt.parameterCount() == arity-1);
 836         for (int i = 0; i < av.length; i++) {
 837             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 838             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 839         }
 840         return true;
 841     }
 842     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 843         // The following line is needed because (...)void method handles can use non-void invokers
 844         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 845         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 846         switch (tc) {
 847         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 848         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 849         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 850         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 851         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 852         case V_TYPE: break;  // allow anything here; will be dropped
 853         default:  assert(false);
 854         }
 855         return true;
 856     }
 857     private static boolean checkInt(Class<?> type, Object x) {
 858         assert(x instanceof Integer);
 859         if (type == int.class)  return true;
 860         Wrapper w = Wrapper.forBasicType(type);
 861         assert(w.isSubwordOrInt());
 862         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 863         return x.equals(x1);
 864     }
 865     private static boolean checkRef(Class<?> type, Object x) {
 866         assert(!type.isPrimitive());
 867         if (x == null)  return true;
 868         if (type.isInterface())  return true;
 869         return type.isInstance(x);
 870     }
 871 
 872     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 873     private static final int COMPILE_THRESHOLD;
 874     static {
 875         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 876     }
 877     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 878 
 879     private boolean forceInterpretation() {
 880         return invocationCounter == -1;
 881     }
 882 
 883     /** Interpretively invoke this form on the given arguments. */
 884     @Hidden
 885     @DontInline
 886     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 887         if (TRACE_INTERPRETER)
 888             return interpretWithArgumentsTracing(argumentValues);
 889         checkInvocationCounter();
 890         assert(arityCheck(argumentValues));
 891         Object[] values = Arrays.copyOf(argumentValues, names.length);
 892         for (int i = argumentValues.length; i < values.length; i++) {
 893             values[i] = interpretName(names[i], values);
 894         }
 895         Object rv = (result < 0) ? null : values[result];
 896         assert(resultCheck(argumentValues, rv));
 897         return rv;
 898     }
 899 
 900     /** Evaluate a single Name within this form, applying its function to its arguments. */
 901     @Hidden
 902     @DontInline
 903     Object interpretName(Name name, Object[] values) throws Throwable {
 904         if (TRACE_INTERPRETER)
 905             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 906         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 907         for (int i = 0; i < arguments.length; i++) {
 908             Object a = arguments[i];
 909             if (a instanceof Name n) {
 910                 int i2 = n.index();
 911                 assert(names[i2] == a);
 912                 a = values[i2];
 913                 arguments[i] = a;
 914             }
 915         }
 916         return name.function.invokeWithArguments(arguments);
 917     }
 918 
 919     private void checkInvocationCounter() {
 920         if (COMPILE_THRESHOLD != 0 &&
 921             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 922             invocationCounter++;  // benign race
 923             if (invocationCounter >= COMPILE_THRESHOLD) {
 924                 // Replace vmentry with a bytecode version of this LF.
 925                 compileToBytecode();
 926             }
 927         }
 928     }
 929     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 930         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 931         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 932             int ctr = invocationCounter++;  // benign race
 933             traceInterpreter("| invocationCounter", ctr);
 934             if (invocationCounter >= COMPILE_THRESHOLD) {
 935                 compileToBytecode();
 936             }
 937         }
 938         Object rval;
 939         try {
 940             assert(arityCheck(argumentValues));
 941             Object[] values = Arrays.copyOf(argumentValues, names.length);
 942             for (int i = argumentValues.length; i < values.length; i++) {
 943                 values[i] = interpretName(names[i], values);
 944             }
 945             rval = (result < 0) ? null : values[result];
 946         } catch (Throwable ex) {
 947             traceInterpreter("] throw =>", ex);
 948             throw ex;
 949         }
 950         traceInterpreter("] return =>", rval);
 951         return rval;
 952     }
 953 
 954     static void traceInterpreter(String event, Object obj, Object... args) {
 955         if (TRACE_INTERPRETER) {
 956             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 957         }
 958     }
 959     static void traceInterpreter(String event, Object obj) {
 960         traceInterpreter(event, obj, (Object[])null);
 961     }
 962     private boolean arityCheck(Object[] argumentValues) {
 963         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 964         // also check that the leading (receiver) argument is somehow bound to this LF:
 965         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 966         MethodHandle mh = (MethodHandle) argumentValues[0];
 967         assert(mh.internalForm() == this);
 968         // note:  argument #0 could also be an interface wrapper, in the future
 969         argumentTypesMatch(basicTypeSignature(), argumentValues);
 970         return true;
 971     }
 972     private boolean resultCheck(Object[] argumentValues, Object result) {
 973         MethodHandle mh = (MethodHandle) argumentValues[0];
 974         MethodType mt = mh.type();
 975         assert(valueMatches(returnType(), mt.returnType(), result));
 976         return true;
 977     }
 978 
 979     public String toString() {
 980         return debugString(-1);
 981     }
 982 
 983     String debugString(int indentLevel) {
 984         String prefix = MethodHandle.debugPrefix(indentLevel);
 985         String lambdaName = lambdaName();
 986         StringBuilder buf = new StringBuilder(lambdaName);
 987         buf.append("=Lambda(");
 988         for (int i = 0; i < names.length; i++) {
 989             if (i == arity)  buf.append(")=>{");
 990             Name n = names[i];
 991             if (i >= arity)  buf.append("\n    ").append(prefix);
 992             buf.append(n.paramString());
 993             if (i < arity) {
 994                 if (i+1 < arity)  buf.append(",");
 995                 continue;
 996             }
 997             buf.append("=").append(n.exprString());
 998             buf.append(";");
 999         }
1000         if (arity == names.length)  buf.append(")=>{");
1001         buf.append(result < 0 ? "void" : names[result]).append("}");
1002         if (TRACE_INTERPRETER) {
1003             // Extra verbosity:
1004             buf.append(":").append(basicTypeSignature());
1005             buf.append("/").append(vmentry);
1006         }
1007         return buf.toString();
1008     }
1009 
1010     @Override
1011     public boolean equals(Object obj) {
1012         return obj instanceof LambdaForm lf && equals(lf);
1013     }
1014     public boolean equals(LambdaForm that) {
1015         if (this.result != that.result)  return false;
1016         return Arrays.equals(this.names, that.names);
1017     }
1018     public int hashCode() {
1019         return result + 31 * Arrays.hashCode(names);
1020     }
1021     LambdaFormEditor editor() {
1022         return LambdaFormEditor.lambdaFormEditor(this);
1023     }
1024 
1025     boolean contains(Name name) {
1026         int pos = name.index();
1027         if (pos >= 0) {
1028             return pos < names.length && name.equals(names[pos]);
1029         }
1030         for (int i = arity; i < names.length; i++) {
1031             if (name.equals(names[i]))
1032                 return true;
1033         }
1034         return false;
1035     }
1036 
1037     @AOTSafeClassInitializer
1038     static class NamedFunction {
1039         final MemberName member;
1040         private @Stable MethodHandle resolvedHandle;
1041         private @Stable MethodType type;
1042 
1043         NamedFunction(MethodHandle resolvedHandle) {
1044             this(resolvedHandle.internalMemberName(), resolvedHandle);
1045         }
1046         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1047             this.member = member;
1048             this.resolvedHandle = resolvedHandle;
1049              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1050              //assert(!isInvokeBasic(member));
1051         }
1052         NamedFunction(MethodType basicInvokerType) {
1053             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1054             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1055                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1056                 this.member = resolvedHandle.internalMemberName();
1057             } else {
1058                 // necessary to pass BigArityTest
1059                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1060             }
1061             assert(isInvokeBasic(member));
1062         }
1063 
1064         private static boolean isInvokeBasic(MemberName member) {
1065             return member != null &&
1066                    member.getDeclaringClass() == MethodHandle.class &&
1067                   "invokeBasic".equals(member.getName());
1068         }
1069 
1070         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1071         // Any LambdaForm containing such a member is not interpretable.
1072         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1073         // And even without the resolvedHandle, the name can still be compiled and optimized.
1074         NamedFunction(Method method) {
1075             this(new MemberName(method));
1076         }
1077         NamedFunction(MemberName member) {
1078             this(member, null);
1079         }
1080 
1081         MethodHandle resolvedHandle() {
1082             if (resolvedHandle == null)  resolve();
1083             return resolvedHandle;
1084         }
1085 
1086         synchronized void resolve() {
1087             if (resolvedHandle == null) {
1088                 resolvedHandle = DirectMethodHandle.make(member);
1089             }
1090         }
1091 
1092         @Override
1093         public boolean equals(Object other) {
1094             if (this == other) return true;
1095             if (other == null) return false;
1096             return (other instanceof NamedFunction that)
1097                     && this.member != null
1098                     && this.member.equals(that.member);
1099         }
1100 
1101         @Override
1102         public int hashCode() {
1103             if (member != null)
1104                 return member.hashCode();
1105             return super.hashCode();
1106         }
1107 
1108         static final MethodType INVOKER_METHOD_TYPE =
1109             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1110 
1111         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1112             typeForm = typeForm.basicType().form();  // normalize to basic type
1113             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1114             if (mh != null)  return mh;
1115             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1116             mh = DirectMethodHandle.make(invoker);
1117             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1118             if (mh2 != null)  return mh2;  // benign race
1119             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1120                 throw newInternalError(mh.debugString());
1121             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1122         }
1123 
1124         @Hidden
1125         Object invokeWithArguments(Object... arguments) throws Throwable {
1126             // If we have a cached invoker, call it right away.
1127             // NOTE: The invoker always returns a reference value.
1128             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1129             return invoker().invokeBasic(resolvedHandle(), arguments);
1130         }
1131 
1132         @Hidden
1133         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1134             Object rval;
1135             try {
1136                 traceInterpreter("[ call", this, arguments);
1137                 // resolvedHandle might be uninitialized, ok for tracing
1138                 if (resolvedHandle == null) {
1139                     traceInterpreter("| resolve", this);
1140                     resolvedHandle();
1141                 }
1142                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1143             } catch (Throwable ex) {
1144                 traceInterpreter("] throw =>", ex);
1145                 throw ex;
1146             }
1147             traceInterpreter("] return =>", rval);
1148             return rval;
1149         }
1150 
1151         private MethodHandle invoker() {
1152             return computeInvoker(methodType().form());
1153         }
1154 
1155         MethodType methodType() {
1156             MethodType type = this.type;
1157             if (type == null) {
1158                 this.type = type = calculateMethodType(member, resolvedHandle);
1159             }
1160             return type;
1161         }
1162 
1163         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1164             if (resolvedHandle != null) {
1165                 return resolvedHandle.type();
1166             } else {
1167                 // only for certain internal LFs during bootstrapping
1168                 return member.getInvocationType();
1169             }
1170         }
1171 
1172         MemberName member() {
1173             assert(assertMemberIsConsistent());
1174             return member;
1175         }
1176 
1177         // Called only from assert.
1178         private boolean assertMemberIsConsistent() {
1179             if (resolvedHandle instanceof DirectMethodHandle) {
1180                 MemberName m = resolvedHandle.internalMemberName();
1181                 assert(m.equals(member));
1182             }
1183             return true;
1184         }
1185 
1186         Class<?> memberDeclaringClassOrNull() {
1187             return (member == null) ? null : member.getDeclaringClass();
1188         }
1189 
1190         BasicType returnType() {
1191             return basicType(methodType().returnType());
1192         }
1193 
1194         BasicType parameterType(int n) {
1195             return basicType(methodType().parameterType(n));
1196         }
1197 
1198         int arity() {
1199             return methodType().parameterCount();
1200         }
1201 
1202         public String toString() {
1203             if (member == null)  return String.valueOf(resolvedHandle);
1204             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1205         }
1206 
1207         public boolean isIdentity() {
1208             return this.equals(identity(returnType()));
1209         }
1210 
1211         public MethodHandleImpl.Intrinsic intrinsicName() {
1212             return resolvedHandle != null
1213                 ? resolvedHandle.intrinsicName()
1214                 : MethodHandleImpl.Intrinsic.NONE;
1215         }
1216 
1217         public Object intrinsicData() {
1218             return resolvedHandle != null
1219                 ? resolvedHandle.intrinsicData()
1220                 : null;
1221         }
1222     }
1223 
1224     public static String basicTypeSignature(MethodType type) {
1225         int params = type.parameterCount();
1226         char[] sig = new char[params + 2];
1227         int sigp = 0;
1228         while (sigp < params) {
1229             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1230         }
1231         sig[sigp++] = '_';
1232         sig[sigp++] = basicTypeChar(type.returnType());
1233         assert(sigp == sig.length);
1234         return String.valueOf(sig);
1235     }
1236 
1237     /** Hack to make signatures more readable when they show up in method names.
1238      * Signature should start with a sequence of uppercase ASCII letters.
1239      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1240      * A tail of anything other than uppercase ASCII is passed through unchanged.
1241      * @param signature sequence of uppercase ASCII letters with possible repetitions
1242      * @return same sequence, with repetitions counted by decimal numerals
1243      */
1244     public static String shortenSignature(String signature) {
1245         final int NO_CHAR = -1, MIN_RUN = 3;
1246         int c0, c1 = NO_CHAR, c1reps = 0;
1247         StringBuilder buf = null;
1248         int len = signature.length();
1249         if (len < MIN_RUN)  return signature;
1250         for (int i = 0; i <= len; i++) {
1251             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1252                 // wrong kind of char; bail out here
1253                 if (buf != null) {
1254                     buf.append(signature, i - c1reps, len);
1255                 }
1256                 break;
1257             }
1258             // shift in the next char:
1259             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1260             if (c1 == c0) { ++c1reps; continue; }
1261             // shift in the next count:
1262             int c0reps = c1reps; c1reps = 1;
1263             // end of a  character run
1264             if (c0reps < MIN_RUN) {
1265                 if (buf != null) {
1266                     while (--c0reps >= 0)
1267                         buf.append((char)c0);
1268                 }
1269                 continue;
1270             }
1271             // found three or more in a row
1272             if (buf == null)
1273                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1274             buf.append((char)c0).append(c0reps);
1275         }
1276         return (buf == null) ? signature : buf.toString();
1277     }
1278 
1279     static final class Name {
1280         final BasicType type;
1281         final short index;
1282         final NamedFunction function;
1283         final Object constraint;  // additional type information, if not null
1284         @Stable final Object[] arguments;
1285 
1286         private static final Object[] EMPTY_ARGS = new Object[0];
1287 
1288         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1289             this.index = (short)index;
1290             this.type = type;
1291             this.function = function;
1292             this.arguments = arguments;
1293             this.constraint = constraint;
1294             assert(this.index == index && typesMatch(function, arguments));
1295             assert(constraint == null || isParam());  // only params have constraints
1296             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1297         }
1298 
1299         Name(MethodHandle function, Object... arguments) {
1300             this(new NamedFunction(function), arguments);
1301         }
1302         Name(MethodType functionType, Object... arguments) {
1303             this(new NamedFunction(functionType), arguments);
1304             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1305         }
1306         Name(MemberName function, Object... arguments) {
1307             this(new NamedFunction(function), arguments);
1308         }
1309         Name(NamedFunction function) {
1310             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1311         }
1312         Name(NamedFunction function, Object arg) {
1313             this(-1, function.returnType(), function, new Object[] { arg }, null);
1314         }
1315         Name(NamedFunction function, Object arg0, Object arg1) {
1316             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1317         }
1318         Name(NamedFunction function, Object... arguments) {
1319             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1320         }
1321         /** Create a raw parameter of the given type, with an expected index. */
1322         Name(int index, BasicType type) {
1323             this(index, type, null, null, null);
1324         }
1325         /** Create a raw parameter of the given type. */
1326         Name(BasicType type) { this(-1, type); }
1327 
1328         BasicType type() { return type; }
1329         int index() { return index; }
1330 
1331         char typeChar() {
1332             return type.btChar;
1333         }
1334 
1335         Name withIndex(int i) {
1336             if (i == this.index) return this;
1337             return new Name(i, type, function, arguments, constraint);
1338         }
1339 
1340         Name withConstraint(Object constraint) {
1341             if (constraint == this.constraint)  return this;
1342             return new Name(index, type, function, arguments, constraint);
1343         }
1344 
1345         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1346             if (oldName == newName)  return this;
1347             @SuppressWarnings("LocalVariableHidesMemberVariable")
1348             Object[] arguments = this.arguments;
1349             if (arguments == null)  return this;
1350             boolean replaced = false;
1351             for (int j = 0; j < arguments.length; j++) {
1352                 if (arguments[j] == oldName) {
1353                     if (!replaced) {
1354                         replaced = true;
1355                         arguments = arguments.clone();
1356                     }
1357                     arguments[j] = newName;
1358                 }
1359             }
1360             if (!replaced)  return this;
1361             return new Name(function, arguments);
1362         }
1363         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1364          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1365          */
1366         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1367             if (start >= end)  return this;
1368             @SuppressWarnings("LocalVariableHidesMemberVariable")
1369             Object[] arguments = this.arguments;
1370             boolean replaced = false;
1371         eachArg:
1372             for (int j = 0; j < arguments.length; j++) {
1373                 if (arguments[j] instanceof Name n) {
1374                     int check = n.index;
1375                     // harmless check to see if the thing is already in newNames:
1376                     if (check >= 0 && check < newNames.length && n == newNames[check])
1377                         continue eachArg;
1378                     // n might not have the correct index: n != oldNames[n.index].
1379                     for (int i = start; i < end; i++) {
1380                         if (n == oldNames[i]) {
1381                             if (n == newNames[i])
1382                                 continue eachArg;
1383                             if (!replaced) {
1384                                 replaced = true;
1385                                 arguments = arguments.clone();
1386                             }
1387                             arguments[j] = newNames[i];
1388                             continue eachArg;
1389                         }
1390                     }
1391                 }
1392             }
1393             if (!replaced)  return this;
1394             return new Name(function, arguments);
1395         }
1396         void internArguments() {
1397             @SuppressWarnings("LocalVariableHidesMemberVariable")
1398             Object[] arguments = this.arguments;
1399             for (int j = 0; j < arguments.length; j++) {
1400                 if (arguments[j] instanceof Name n) {
1401                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1402                         arguments[j] = internArgument(n);
1403                 }
1404             }
1405         }
1406         boolean isParam() {
1407             return function == null;
1408         }
1409 
1410         boolean refersTo(Class<?> declaringClass, String methodName) {
1411             return function != null &&
1412                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1413         }
1414 
1415         /**
1416          * Check if MemberName is a call to MethodHandle.invokeBasic.
1417          */
1418         boolean isInvokeBasic() {
1419             if (function == null)
1420                 return false;
1421             if (arguments.length < 1)
1422                 return false;  // must have MH argument
1423             MemberName member = function.member();
1424             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1425                     !member.isPublic() && !member.isStatic();
1426         }
1427 
1428         /**
1429          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1430          */
1431         boolean isLinkerMethodInvoke() {
1432             if (function == null)
1433                 return false;
1434             if (arguments.length < 1)
1435                 return false;  // must have MH argument
1436             MemberName member = function.member();
1437             return member != null &&
1438                     member.getDeclaringClass() == MethodHandle.class &&
1439                     !member.isPublic() && member.isStatic() &&
1440                     member.getName().startsWith("linkTo");
1441         }
1442 
1443         public String toString() {
1444             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1445         }
1446         public String debugString() {
1447             String s = paramString();
1448             return (function == null) ? s : s + "=" + exprString();
1449         }
1450         public String paramString() {
1451             String s = toString();
1452             Object c = constraint;
1453             if (c == null)
1454                 return s;
1455             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1456             return s + "/" + c;
1457         }
1458         public String exprString() {
1459             if (function == null)  return toString();
1460             StringBuilder buf = new StringBuilder(function.toString());
1461             buf.append("(");
1462             String cma = "";
1463             for (Object a : arguments) {
1464                 buf.append(cma); cma = ",";
1465                 if (a instanceof Name || a instanceof Integer)
1466                     buf.append(a);
1467                 else
1468                     buf.append("(").append(a).append(")");
1469             }
1470             buf.append(")");
1471             return buf.toString();
1472         }
1473 
1474         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1475             if (arguments == null) {
1476                 assert(function == null);
1477                 return true;
1478             }
1479             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1480             for (int i = 0; i < arguments.length; i++) {
1481                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1482             }
1483             return true;
1484         }
1485 
1486         private static boolean typesMatch(BasicType parameterType, Object object) {
1487             if (object instanceof Name name) {
1488                 return name.type == parameterType;
1489             }
1490             switch (parameterType) {
1491                 case I_TYPE:  return object instanceof Integer;
1492                 case J_TYPE:  return object instanceof Long;
1493                 case F_TYPE:  return object instanceof Float;
1494                 case D_TYPE:  return object instanceof Double;
1495             }
1496             assert(parameterType == L_TYPE);
1497             return true;
1498         }
1499 
1500         /** Return the index of the last occurrence of n in the argument array.
1501          *  Return -1 if the name is not used.
1502          */
1503         int lastUseIndex(Name n) {
1504             Object[] arguments = this.arguments;
1505             if (arguments == null)  return -1;
1506             for (int i = arguments.length; --i >= 0; ) {
1507                 if (arguments[i] == n)  return i;
1508             }
1509             return -1;
1510         }
1511 
1512         public boolean equals(Name that) {
1513             if (this == that)  return true;
1514             if (isParam())
1515                 // each parameter is a unique atom
1516                 return false;  // this != that
1517             return
1518                 //this.index == that.index &&
1519                 this.type == that.type &&
1520                 this.function.equals(that.function) &&
1521                 Arrays.equals(this.arguments, that.arguments);
1522         }
1523         @Override
1524         public boolean equals(Object x) {
1525             return x instanceof Name n && equals(n);
1526         }
1527         @Override
1528         public int hashCode() {
1529             if (isParam())
1530                 return index | (type.ordinal() << 8);
1531             return function.hashCode() ^ Arrays.hashCode(arguments);
1532         }
1533     }
1534 
1535     /** Return the index of the last name which contains n as an argument.
1536      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1537      */
1538     int lastUseIndex(Name n) {
1539         int ni = n.index, nmax = names.length;
1540         assert(names[ni] == n);
1541         if (result == ni)  return nmax;  // live all the way beyond the end
1542         for (int i = nmax; --i > ni; ) {
1543             if (names[i].lastUseIndex(n) >= 0)
1544                 return i;
1545         }
1546         return -1;
1547     }
1548 
1549     /** Return the number of times n is used as an argument or return value. */
1550     int useCount(Name n) {
1551         int count = (result == n.index) ? 1 : 0;
1552         int i = Math.max(n.index + 1, arity);
1553         Name[] names = this.names;
1554         while (i < names.length) {
1555             Object[] arguments = names[i++].arguments;
1556             if (arguments != null) {
1557                 for (Object argument : arguments) {
1558                     if (argument == n) {
1559                         count++;
1560                     }
1561                 }
1562             }
1563         }
1564         return count;
1565     }
1566 
1567     static Name argument(int which, BasicType type) {
1568         if (which >= INTERNED_ARGUMENT_LIMIT)
1569             return new Name(which, type);
1570         return INTERNED_ARGUMENTS[type.ordinal()][which];
1571     }
1572     static Name internArgument(Name n) {
1573         assert(n.isParam()) : "not param: " + n;
1574         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1575         if (n.constraint != null)  return n;
1576         return argument(n.index, n.type);
1577     }
1578     static Name[] arguments(int extra, MethodType types) {
1579         int length = types.parameterCount();
1580         Name[] names = new Name[length + extra];
1581         for (int i = 0; i < length; i++)
1582             names[i] = argument(i, basicType(types.parameterType(i)));
1583         return names;
1584     }
1585 
1586     static Name[] invokeArguments(int extra, MethodType types) {
1587         int length = types.parameterCount();
1588         Name[] names = new Name[length + extra + 1];
1589         names[0] = argument(0, L_TYPE);
1590         for (int i = 0; i < length; i++)
1591             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1592         return names;
1593     }
1594 
1595     static final int INTERNED_ARGUMENT_LIMIT = 10;
1596     private static final Name[][] INTERNED_ARGUMENTS
1597             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1598     static {
1599         for (BasicType type : BasicType.ARG_TYPES) {
1600             int ord = type.ordinal();
1601             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1602                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1603             }
1604         }
1605     }
1606 
1607     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1608 
1609     static LambdaForm identityForm(BasicType type) {
1610         int ord = type.ordinal();
1611         LambdaForm form = LF_identity[ord];
1612         if (form != null) {
1613             return form;
1614         }
1615         createIdentityForm(type);
1616         return LF_identity[ord];
1617     }
1618 
1619     static NamedFunction identity(BasicType type) {
1620         int ord = type.ordinal();
1621         NamedFunction function = NF_identity[ord];
1622         if (function != null) {
1623             return function;
1624         }
1625         createIdentityForm(type);
1626         return NF_identity[ord];
1627     }
1628 
1629     static LambdaForm constantForm(BasicType type) {
1630         assert type != null && type != V_TYPE : type;
1631         var cached = LF_constant[type.ordinal()];
1632         if (cached != null)
1633             return cached;
1634         return createConstantForm(type);
1635     }
1636 
1637     private static LambdaForm createConstantForm(BasicType type) {
1638         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1639         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1640         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1641         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1642         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1643     }
1644 
1645     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1646     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1647     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1648 
1649     private static final Object createIdentityFormLock = new Object();
1650     private static void createIdentityForm(BasicType type) {
1651         // Avoid racy initialization during bootstrap
1652         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1653         synchronized (createIdentityFormLock) {
1654             final int ord = type.ordinal();
1655             LambdaForm idForm = LF_identity[ord];
1656             if (idForm != null) {
1657                 return;
1658             }
1659             char btChar = type.basicTypeChar();
1660             boolean isVoid = (type == V_TYPE);
1661             Class<?> btClass = type.btClass;
1662             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1663 
1664             // Look up symbolic names.  It might not be necessary to have these,
1665             // but if we need to emit direct references to bytecodes, it helps.
1666             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1667             try {
1668                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1669             } catch (IllegalAccessException|NoSuchMethodException ex) {
1670                 throw newInternalError(ex);
1671             }
1672 
1673             NamedFunction idFun;
1674 
1675             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1676             // bootstrap dependency on this method in case we're interpreting LFs
1677             if (isVoid) {
1678                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1679                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1680                 idForm.compileToBytecode();
1681                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1682             } else {
1683                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1684                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1685                 idForm.compileToBytecode();
1686                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1687                             MethodHandleImpl.Intrinsic.IDENTITY));
1688             }
1689 
1690             LF_identity[ord] = idForm;
1691             NF_identity[ord] = idFun;
1692 
1693             assert(idFun.isIdentity());
1694         }
1695     }
1696 
1697     // Avoid appealing to ValueConversions at bootstrap time:
1698     private static int identity_I(int x) { return x; }
1699     private static long identity_J(long x) { return x; }
1700     private static float identity_F(float x) { return x; }
1701     private static double identity_D(double x) { return x; }
1702     private static Object identity_L(Object x) { return x; }
1703     private static void identity_V() { return; }
1704     /**
1705      * Internal marker for byte-compiled LambdaForms.
1706      */
1707     /*non-public*/
1708     @Target(ElementType.METHOD)
1709     @Retention(RetentionPolicy.RUNTIME)
1710     @interface Compiled {
1711     }
1712 
1713     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1714     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1715     static {
1716         if (debugEnabled()) {
1717             DEBUG_NAME_COUNTERS = new HashMap<>();
1718             DEBUG_NAMES = new HashMap<>();
1719         } else {
1720             DEBUG_NAME_COUNTERS = null;
1721             DEBUG_NAMES = null;
1722         }
1723     }
1724 
1725     static {
1726         // The Holder class will contain pre-generated forms resolved
1727         // using MemberName.getFactory(). However, that doesn't initialize the
1728         // class, which subtly breaks inlining etc. By forcing
1729         // initialization of the Holder class we avoid these issues.
1730         UNSAFE.ensureClassInitialized(Holder.class);
1731     }
1732 
1733     /* Placeholder class for identity and constant forms generated ahead of time */
1734     @AOTSafeClassInitializer
1735     final class Holder {}
1736 
1737     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1738     // during execution of the static initializes of this class.
1739     // Turning on TRACE_INTERPRETER too early will cause
1740     // stack overflows and other misbehavior during attempts to trace events
1741     // that occur during LambdaForm.<clinit>.
1742     // Therefore, do not move this line higher in this file, and do not remove.
1743     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1744 }