1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_FLAT_VALUE("getFlatValue"),
 271         PUT_FLAT_VALUE("putFlatValue"),
 272         GET_FLAT_VALUE_VOLATILE("getFlatValueVolatile"),
 273         PUT_FLAT_VALUE_VOLATILE("putFlatValueVolatile"),
 274         GET_INT("getInt"),
 275         PUT_INT("putInt"),
 276         GET_INT_VOLATILE("getIntVolatile"),
 277         PUT_INT_VOLATILE("putIntVolatile"),
 278         GET_BOOLEAN("getBoolean"),
 279         PUT_BOOLEAN("putBoolean"),
 280         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 281         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 282         GET_BYTE("getByte"),
 283         PUT_BYTE("putByte"),
 284         GET_BYTE_VOLATILE("getByteVolatile"),
 285         PUT_BYTE_VOLATILE("putByteVolatile"),
 286         GET_CHAR("getChar"),
 287         PUT_CHAR("putChar"),
 288         GET_CHAR_VOLATILE("getCharVolatile"),
 289         PUT_CHAR_VOLATILE("putCharVolatile"),
 290         GET_SHORT("getShort"),
 291         PUT_SHORT("putShort"),
 292         GET_SHORT_VOLATILE("getShortVolatile"),
 293         PUT_SHORT_VOLATILE("putShortVolatile"),
 294         GET_LONG("getLong"),
 295         PUT_LONG("putLong"),
 296         GET_LONG_VOLATILE("getLongVolatile"),
 297         PUT_LONG_VOLATILE("putLongVolatile"),
 298         GET_FLOAT("getFloat"),
 299         PUT_FLOAT("putFloat"),
 300         GET_FLOAT_VOLATILE("getFloatVolatile"),
 301         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 302         GET_DOUBLE("getDouble"),
 303         PUT_DOUBLE("putDouble"),
 304         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 305         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 306         TRY_FINALLY("tryFinally"),
 307         TABLE_SWITCH("tableSwitch"),
 308         COLLECTOR("collector"),
 309         LOOP("loop"),
 310         GUARD("guard"),
 311         GUARD_WITH_CATCH("guardWithCatch"),
 312         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 313         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 314         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 315 
 316         final String defaultLambdaName;
 317         final String methodName;
 318 
 319         private Kind(String defaultLambdaName) {
 320             this(defaultLambdaName, defaultLambdaName);
 321         }
 322 
 323         private Kind(String defaultLambdaName, String methodName) {
 324             this.defaultLambdaName = defaultLambdaName;
 325             this.methodName = methodName;
 326         }
 327     }
 328 
 329     // private version that doesn't do checks or defensive copies
 330     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 331         this.arity = arity;
 332         this.result = result;
 333         this.forceInline = forceInline;
 334         this.customized = customized;
 335         this.names = names;
 336         this.kind = kind;
 337         this.vmentry = null;
 338         this.isCompiled = false;
 339     }
 340 
 341     // root factory pre/post processing and calls simple constructor
 342     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 343         names = names.clone();
 344         assert(namesOK(arity, names));
 345         result = fixResult(result, names);
 346 
 347         boolean canInterpret = normalizeNames(arity, names);
 348         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 349         assert(form.nameRefsAreLegal());
 350         if (!canInterpret) {
 351             form.compileToBytecode();
 352         }
 353         return form;
 354     }
 355 
 356     // derived factories with defaults
 357     private static final int DEFAULT_RESULT = LAST_RESULT;
 358     private static final boolean DEFAULT_FORCE_INLINE = true;
 359     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 360     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 361 
 362     static LambdaForm create(int arity, Name[] names, int result) {
 363         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 364     }
 365     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 366         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 367     }
 368     static LambdaForm create(int arity, Name[] names) {
 369         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 370     }
 371     static LambdaForm create(int arity, Name[] names, Kind kind) {
 372         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 373     }
 374     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 375         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 376     }
 377 
 378     private static LambdaForm createBlankForType(MethodType mt) {
 379         // Make a dummy blank lambda form.
 380         // It is used as a template for managing the invocation of similar forms that are non-empty.
 381         // Called only from getPreparedForm.
 382         LambdaForm form = new LambdaForm(0, 0, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, new Name[0], Kind.GENERIC);
 383         return form;
 384     }
 385 
 386     private static int fixResult(int result, Name[] names) {
 387         if (result == LAST_RESULT)
 388             result = names.length - 1;  // might still be void
 389         if (result >= 0 && names[result].type == V_TYPE)
 390             result = VOID_RESULT;
 391         return result;
 392     }
 393 
 394     static boolean debugNames() {
 395         return DEBUG_NAME_COUNTERS != null;
 396     }
 397 
 398     static void associateWithDebugName(LambdaForm form, String name) {
 399         assert (debugNames());
 400         synchronized (DEBUG_NAMES) {
 401             DEBUG_NAMES.put(form, name);
 402         }
 403     }
 404 
 405     String lambdaName() {
 406         if (DEBUG_NAMES != null) {
 407             synchronized (DEBUG_NAMES) {
 408                 String name = DEBUG_NAMES.get(this);
 409                 if (name == null) {
 410                     name = generateDebugName();
 411                 }
 412                 return name;
 413             }
 414         }
 415         return kind.defaultLambdaName;
 416     }
 417 
 418     private String generateDebugName() {
 419         assert (debugNames());
 420         String debugNameStem = kind.defaultLambdaName;
 421         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 422         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 423         StringBuilder buf = new StringBuilder(debugNameStem);
 424         int leadingZero = buf.length();
 425         buf.append((int) ctr);
 426         for (int i = buf.length() - leadingZero; i < 3; i++) {
 427             buf.insert(leadingZero, '0');
 428         }
 429         buf.append('_');
 430         buf.append(basicTypeSignature());
 431         String name = buf.toString();
 432         associateWithDebugName(this, name);
 433         return name;
 434     }
 435 
 436     private static boolean namesOK(int arity, Name[] names) {
 437         for (int i = 0; i < names.length; i++) {
 438             Name n = names[i];
 439             assert(n != null) : "n is null";
 440             if (i < arity)
 441                 assert( n.isParam()) : n + " is not param at " + i;
 442             else
 443                 assert(!n.isParam()) : n + " is param at " + i;
 444         }
 445         return true;
 446     }
 447 
 448     /** Customize LambdaForm for a particular MethodHandle */
 449     LambdaForm customize(MethodHandle mh) {
 450         if (customized == mh) {
 451             return this;
 452         }
 453         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 454         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 455             // If shared LambdaForm has been compiled, compile customized version as well.
 456             customForm.compileToBytecode();
 457         }
 458         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 459         return customForm;
 460     }
 461 
 462     /** Get uncustomized flavor of the LambdaForm */
 463     LambdaForm uncustomize() {
 464         if (customized == null) {
 465             return this;
 466         }
 467         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 468         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 469         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 470             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 471             uncustomizedForm.compileToBytecode();
 472         }
 473         return uncustomizedForm;
 474     }
 475 
 476     /** Renumber and/or replace params so that they are interned and canonically numbered.
 477      *  @return true if we can interpret
 478      */
 479     private static boolean normalizeNames(int arity, Name[] names) {
 480         Name[] oldNames = names.clone();
 481         int maxOutArity = 0;
 482         for (int i = 0; i < names.length; i++) {
 483             Name n = names[i];
 484             names[i] = n.withIndex(i);
 485             if (n.arguments != null && maxOutArity < n.arguments.length)
 486                 maxOutArity = n.arguments.length;
 487         }
 488         if (oldNames != null) {
 489             for (int i = Math.max(1, arity); i < names.length; i++) {
 490                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 491                 names[i] = fixed.withIndex(i);
 492             }
 493         }
 494         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 495         boolean needIntern = false;
 496         for (int i = 0; i < maxInterned; i++) {
 497             Name n = names[i], n2 = internArgument(n);
 498             if (n != n2) {
 499                 names[i] = n2;
 500                 needIntern = true;
 501             }
 502         }
 503         if (needIntern) {
 504             for (int i = arity; i < names.length; i++) {
 505                 names[i].internArguments();
 506             }
 507         }
 508 
 509         // return true if we can interpret
 510         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 511             // Cannot use LF interpreter on very high arity expressions.
 512             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 513             return false;
 514         }
 515         return true;
 516     }
 517 
 518     /**
 519      * Check that all embedded Name references are localizable to this lambda,
 520      * and are properly ordered after their corresponding definitions.
 521      * <p>
 522      * Note that a Name can be local to multiple lambdas, as long as
 523      * it possesses the same index in each use site.
 524      * This allows Name references to be freely reused to construct
 525      * fresh lambdas, without confusion.
 526      */
 527     boolean nameRefsAreLegal() {
 528         assert(arity >= 0 && arity <= names.length);
 529         assert(result >= -1 && result < names.length);
 530         // Do all names possess an index consistent with their local definition order?
 531         for (int i = 0; i < arity; i++) {
 532             Name n = names[i];
 533             assert(n.index() == i) : Arrays.asList(n.index(), i);
 534             assert(n.isParam());
 535         }
 536         // Also, do all local name references
 537         for (int i = arity; i < names.length; i++) {
 538             Name n = names[i];
 539             assert(n.index() == i);
 540             for (Object arg : n.arguments) {
 541                 if (arg instanceof Name n2) {
 542                     int i2 = n2.index;
 543                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 544                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 545                     assert(i2 < i);  // ref must come after def!
 546                 }
 547             }
 548         }
 549         return true;
 550     }
 551 
 552     // /** Invoke this form on the given arguments. */
 553     // final Object invoke(Object... args) throws Throwable {
 554     //     // NYI: fit this into the fast path?
 555     //     return interpretWithArguments(args);
 556     // }
 557 
 558     /** Report the return type. */
 559     BasicType returnType() {
 560         if (result < 0)  return V_TYPE;
 561         Name n = names[result];
 562         return n.type;
 563     }
 564 
 565     /** Report the N-th argument type. */
 566     BasicType parameterType(int n) {
 567         return parameter(n).type;
 568     }
 569 
 570     /** Report the N-th argument name. */
 571     Name parameter(int n) {
 572         Name param = names[n];
 573         assert(n < arity && param.isParam());
 574         return param;
 575     }
 576 
 577     /** Report the N-th argument type constraint. */
 578     Object parameterConstraint(int n) {
 579         return parameter(n).constraint;
 580     }
 581 
 582     /** Report the arity. */
 583     int arity() {
 584         return arity;
 585     }
 586 
 587     /** Report the number of expressions (non-parameter names). */
 588     int expressionCount() {
 589         return names.length - arity;
 590     }
 591 
 592     /** Return the method type corresponding to my basic type signature. */
 593     MethodType methodType() {
 594         Class<?>[] ptypes = new Class<?>[arity];
 595         for (int i = 0; i < arity; ++i) {
 596             ptypes[i] = parameterType(i).btClass;
 597         }
 598         return MethodType.methodType(returnType().btClass, ptypes, true);
 599     }
 600 
 601     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 602     final String basicTypeSignature() {
 603         StringBuilder buf = new StringBuilder(arity() + 3);
 604         for (int i = 0, a = arity(); i < a; i++)
 605             buf.append(parameterType(i).basicTypeChar());
 606         return buf.append('_').append(returnType().basicTypeChar()).toString();
 607     }
 608     static int signatureArity(String sig) {
 609         assert(isValidSignature(sig));
 610         return sig.indexOf('_');
 611     }
 612     static boolean isValidSignature(String sig) {
 613         int arity = sig.indexOf('_');
 614         if (arity < 0)  return false;  // must be of the form *_*
 615         int siglen = sig.length();
 616         if (siglen != arity + 2)  return false;  // *_X
 617         for (int i = 0; i < siglen; i++) {
 618             if (i == arity)  continue;  // skip '_'
 619             char c = sig.charAt(i);
 620             if (c == 'V')
 621                 return (i == siglen - 1 && arity == siglen - 2);
 622             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 623         }
 624         return true;  // [LIJFD]*_[LIJFDV]
 625     }
 626 
 627     /**
 628      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 629      */
 630     boolean isSelectAlternative(int pos) {
 631         // selectAlternative idiom:
 632         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 633         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 634         if (pos+1 >= names.length)  return false;
 635         Name name0 = names[pos];
 636         Name name1 = names[pos+1];
 637         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 638                 name1.isInvokeBasic() &&
 639                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 640                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 641     }
 642 
 643     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 644         if (pos+2 >= names.length)  return false;
 645         Name name0 = names[pos];
 646         Name name1 = names[pos+1];
 647         Name name2 = names[pos+2];
 648         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 649                 name0.isInvokeBasic() &&
 650                 name2.isInvokeBasic() &&
 651                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 652                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 653                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 654                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 655     }
 656 
 657     /**
 658      * Check if i-th name is a start of GuardWithCatch idiom.
 659      */
 660     boolean isGuardWithCatch(int pos) {
 661         // GuardWithCatch idiom:
 662         //   t_{n}:L=MethodHandle.invokeBasic(...)
 663         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 664         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 665         return isMatchingIdiom(pos, "guardWithCatch", 3);
 666     }
 667 
 668     /**
 669      * Check if i-th name is a start of the tryFinally idiom.
 670      */
 671     boolean isTryFinally(int pos) {
 672         // tryFinally idiom:
 673         //   t_{n}:L=MethodHandle.invokeBasic(...)
 674         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 675         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 676         return isMatchingIdiom(pos, "tryFinally", 2);
 677     }
 678 
 679     /**
 680      * Check if i-th name is a start of the tableSwitch idiom.
 681      */
 682     boolean isTableSwitch(int pos) {
 683         // tableSwitch idiom:
 684         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 685         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 686         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 687         if (pos + 2 >= names.length)  return false;
 688 
 689         final int POS_COLLECT_ARGS = pos;
 690         final int POS_TABLE_SWITCH = pos + 1;
 691         final int POS_UNBOX_RESULT = pos + 2;
 692 
 693         Name collectArgs = names[POS_COLLECT_ARGS];
 694         Name tableSwitch = names[POS_TABLE_SWITCH];
 695         Name unboxResult = names[POS_UNBOX_RESULT];
 696         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 697                 collectArgs.isInvokeBasic() &&
 698                 unboxResult.isInvokeBasic() &&
 699                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 700                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 701                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 702                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 703     }
 704 
 705     /**
 706      * Check if i-th name is a start of the loop idiom.
 707      */
 708     boolean isLoop(int pos) {
 709         // loop idiom:
 710         //   t_{n}:L=MethodHandle.invokeBasic(...)
 711         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 712         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 713         return isMatchingIdiom(pos, "loop", 2);
 714     }
 715 
 716     /*
 717      * Code generation issues:
 718      *
 719      * Compiled LFs should be reusable in general.
 720      * The biggest issue is how to decide when to pull a name into
 721      * the bytecode, versus loading a reified form from the MH data.
 722      *
 723      * For example, an asType wrapper may require execution of a cast
 724      * after a call to a MH.  The target type of the cast can be placed
 725      * as a constant in the LF itself.  This will force the cast type
 726      * to be compiled into the bytecodes and native code for the MH.
 727      * Or, the target type of the cast can be erased in the LF, and
 728      * loaded from the MH data.  (Later on, if the MH as a whole is
 729      * inlined, the data will flow into the inlined instance of the LF,
 730      * as a constant, and the end result will be an optimal cast.)
 731      *
 732      * This erasure of cast types can be done with any use of
 733      * reference types.  It can also be done with whole method
 734      * handles.  Erasing a method handle might leave behind
 735      * LF code that executes correctly for any MH of a given
 736      * type, and load the required MH from the enclosing MH's data.
 737      * Or, the erasure might even erase the expected MT.
 738      *
 739      * Also, for direct MHs, the MemberName of the target
 740      * could be erased, and loaded from the containing direct MH.
 741      * As a simple case, a LF for all int-valued non-static
 742      * field getters would perform a cast on its input argument
 743      * (to non-constant base type derived from the MemberName)
 744      * and load an integer value from the input object
 745      * (at a non-constant offset also derived from the MemberName).
 746      * Such MN-erased LFs would be inlinable back to optimized
 747      * code, whenever a constant enclosing DMH is available
 748      * to supply a constant MN from its data.
 749      *
 750      * The main problem here is to keep LFs reasonably generic,
 751      * while ensuring that hot spots will inline good instances.
 752      * "Reasonably generic" means that we don't end up with
 753      * repeated versions of bytecode or machine code that do
 754      * not differ in their optimized form.  Repeated versions
 755      * of machine would have the undesirable overheads of
 756      * (a) redundant compilation work and (b) extra I$ pressure.
 757      * To control repeated versions, we need to be ready to
 758      * erase details from LFs and move them into MH data,
 759      * whenever those details are not relevant to significant
 760      * optimization.  "Significant" means optimization of
 761      * code that is actually hot.
 762      *
 763      * Achieving this may require dynamic splitting of MHs, by replacing
 764      * a generic LF with a more specialized one, on the same MH,
 765      * if (a) the MH is frequently executed and (b) the MH cannot
 766      * be inlined into a containing caller, such as an invokedynamic.
 767      *
 768      * Compiled LFs that are no longer used should be GC-able.
 769      * If they contain non-BCP references, they should be properly
 770      * interlinked with the class loader(s) that their embedded types
 771      * depend on.  This probably means that reusable compiled LFs
 772      * will be tabulated (indexed) on relevant class loaders,
 773      * or else that the tables that cache them will have weak links.
 774      */
 775 
 776     /**
 777      * Make this LF directly executable, as part of a MethodHandle.
 778      * Invariant:  Every MH which is invoked must prepare its LF
 779      * before invocation.
 780      * (In principle, the JVM could do this very lazily,
 781      * as a sort of pre-invocation linkage step.)
 782      */
 783     public void prepare() {
 784         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 785             compileToBytecode();
 786         }
 787         if (this.vmentry != null) {
 788             // already prepared (e.g., a primitive DMH invoker form)
 789             return;
 790         }
 791         MethodType mtype = methodType();
 792         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 793         if (prep == null) {
 794             assert (isValidSignature(basicTypeSignature()));
 795             prep = LambdaForm.createBlankForType(mtype);
 796             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 797             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 798         }
 799         this.vmentry = prep.vmentry;
 800         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 801     }
 802 
 803     private static @Stable PerfCounter LF_FAILED;
 804 
 805     private static PerfCounter failedCompilationCounter() {
 806         if (LF_FAILED == null) {
 807             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 808         }
 809         return LF_FAILED;
 810     }
 811 
 812     /** Generate optimizable bytecode for this form. */
 813     void compileToBytecode() {
 814         if (forceInterpretation()) {
 815             return; // this should not be compiled
 816         }
 817         if (vmentry != null && isCompiled) {
 818             return;  // already compiled somehow
 819         }
 820 
 821         // Obtain the invoker MethodType outside of the following try block.
 822         // This ensures that an IllegalArgumentException is directly thrown if the
 823         // type would have 256 or more parameters
 824         MethodType invokerType = methodType();
 825         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 826         try {
 827             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 828             if (TRACE_INTERPRETER)
 829                 traceInterpreter("compileToBytecode", this);
 830             isCompiled = true;
 831         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 832             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 833             invocationCounter = -1;
 834             failedCompilationCounter().increment();
 835             if (LOG_LF_COMPILATION_FAILURE) {
 836                 System.out.println("LambdaForm compilation failed: " + this);
 837                 bge.printStackTrace(System.out);
 838             }
 839         } catch (Error e) {
 840             // Pass through any error
 841             throw e;
 842         } catch (Exception e) {
 843             // Wrap any exception
 844             throw newInternalError(this.toString(), e);
 845         }
 846     }
 847 
 848     // The next few routines are called only from assert expressions
 849     // They verify that the built-in invokers process the correct raw data types.
 850     private static boolean argumentTypesMatch(String sig, Object[] av) {
 851         int arity = signatureArity(sig);
 852         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 853         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 854         MethodHandle mh = (MethodHandle) av[0];
 855         MethodType mt = mh.type();
 856         assert(mt.parameterCount() == arity-1);
 857         for (int i = 0; i < av.length; i++) {
 858             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 859             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 860         }
 861         return true;
 862     }
 863     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 864         // The following line is needed because (...)void method handles can use non-void invokers
 865         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 866         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 867         switch (tc) {
 868         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 869         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 870         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 871         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 872         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 873         case V_TYPE: break;  // allow anything here; will be dropped
 874         default:  assert(false);
 875         }
 876         return true;
 877     }
 878     private static boolean checkInt(Class<?> type, Object x) {
 879         assert(x instanceof Integer);
 880         if (type == int.class)  return true;
 881         Wrapper w = Wrapper.forBasicType(type);
 882         assert(w.isSubwordOrInt());
 883         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 884         return x.equals(x1);
 885     }
 886     private static boolean checkRef(Class<?> type, Object x) {
 887         assert(!type.isPrimitive());
 888         if (x == null)  return true;
 889         if (type.isInterface())  return true;
 890         return type.isInstance(x);
 891     }
 892 
 893     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 894     private static final int COMPILE_THRESHOLD;
 895     static {
 896         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 897     }
 898     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 899 
 900     private boolean forceInterpretation() {
 901         return invocationCounter == -1;
 902     }
 903 
 904     /** Interpretively invoke this form on the given arguments. */
 905     @Hidden
 906     @DontInline
 907     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 908         if (TRACE_INTERPRETER)
 909             return interpretWithArgumentsTracing(argumentValues);
 910         checkInvocationCounter();
 911         assert(arityCheck(argumentValues));
 912         Object[] values = Arrays.copyOf(argumentValues, names.length);
 913         for (int i = argumentValues.length; i < values.length; i++) {
 914             values[i] = interpretName(names[i], values);
 915         }
 916         Object rv = (result < 0) ? null : values[result];
 917         assert(resultCheck(argumentValues, rv));
 918         return rv;
 919     }
 920 
 921     /** Evaluate a single Name within this form, applying its function to its arguments. */
 922     @Hidden
 923     @DontInline
 924     Object interpretName(Name name, Object[] values) throws Throwable {
 925         if (TRACE_INTERPRETER)
 926             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 927         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 928         for (int i = 0; i < arguments.length; i++) {
 929             Object a = arguments[i];
 930             if (a instanceof Name n) {
 931                 int i2 = n.index();
 932                 assert(names[i2] == a);
 933                 a = values[i2];
 934                 arguments[i] = a;
 935             }
 936         }
 937         return name.function.invokeWithArguments(arguments);
 938     }
 939 
 940     private void checkInvocationCounter() {
 941         if (COMPILE_THRESHOLD != 0 &&
 942             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 943             invocationCounter++;  // benign race
 944             if (invocationCounter >= COMPILE_THRESHOLD) {
 945                 // Replace vmentry with a bytecode version of this LF.
 946                 compileToBytecode();
 947             }
 948         }
 949     }
 950     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 951         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 952         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 953             int ctr = invocationCounter++;  // benign race
 954             traceInterpreter("| invocationCounter", ctr);
 955             if (invocationCounter >= COMPILE_THRESHOLD) {
 956                 compileToBytecode();
 957             }
 958         }
 959         Object rval;
 960         try {
 961             assert(arityCheck(argumentValues));
 962             Object[] values = Arrays.copyOf(argumentValues, names.length);
 963             for (int i = argumentValues.length; i < values.length; i++) {
 964                 values[i] = interpretName(names[i], values);
 965             }
 966             rval = (result < 0) ? null : values[result];
 967         } catch (Throwable ex) {
 968             traceInterpreter("] throw =>", ex);
 969             throw ex;
 970         }
 971         traceInterpreter("] return =>", rval);
 972         return rval;
 973     }
 974 
 975     static void traceInterpreter(String event, Object obj, Object... args) {
 976         if (TRACE_INTERPRETER) {
 977             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 978         }
 979     }
 980     static void traceInterpreter(String event, Object obj) {
 981         traceInterpreter(event, obj, (Object[])null);
 982     }
 983     private boolean arityCheck(Object[] argumentValues) {
 984         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 985         // also check that the leading (receiver) argument is somehow bound to this LF:
 986         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 987         MethodHandle mh = (MethodHandle) argumentValues[0];
 988         assert(mh.internalForm() == this);
 989         // note:  argument #0 could also be an interface wrapper, in the future
 990         argumentTypesMatch(basicTypeSignature(), argumentValues);
 991         return true;
 992     }
 993     private boolean resultCheck(Object[] argumentValues, Object result) {
 994         MethodHandle mh = (MethodHandle) argumentValues[0];
 995         MethodType mt = mh.type();
 996         assert(valueMatches(returnType(), mt.returnType(), result));
 997         return true;
 998     }
 999 
1000     public String toString() {
1001         return debugString(-1);
1002     }
1003 
1004     String debugString(int indentLevel) {
1005         String prefix = MethodHandle.debugPrefix(indentLevel);
1006         String lambdaName = lambdaName();
1007         StringBuilder buf = new StringBuilder(lambdaName);
1008         buf.append("=Lambda(");
1009         for (int i = 0; i < names.length; i++) {
1010             if (i == arity)  buf.append(")=>{");
1011             Name n = names[i];
1012             if (i >= arity)  buf.append("\n    ").append(prefix);
1013             buf.append(n.paramString());
1014             if (i < arity) {
1015                 if (i+1 < arity)  buf.append(",");
1016                 continue;
1017             }
1018             buf.append("=").append(n.exprString());
1019             buf.append(";");
1020         }
1021         if (arity == names.length)  buf.append(")=>{");
1022         buf.append(result < 0 ? "void" : names[result]).append("}");
1023         if (TRACE_INTERPRETER) {
1024             // Extra verbosity:
1025             buf.append(":").append(basicTypeSignature());
1026             buf.append("/").append(vmentry);
1027         }
1028         return buf.toString();
1029     }
1030 
1031     @Override
1032     public boolean equals(Object obj) {
1033         return obj instanceof LambdaForm lf && equals(lf);
1034     }
1035     public boolean equals(LambdaForm that) {
1036         if (this.result != that.result)  return false;
1037         return Arrays.equals(this.names, that.names);
1038     }
1039     public int hashCode() {
1040         return result + 31 * Arrays.hashCode(names);
1041     }
1042     LambdaFormEditor editor() {
1043         return LambdaFormEditor.lambdaFormEditor(this);
1044     }
1045 
1046     boolean contains(Name name) {
1047         int pos = name.index();
1048         if (pos >= 0) {
1049             return pos < names.length && name.equals(names[pos]);
1050         }
1051         for (int i = arity; i < names.length; i++) {
1052             if (name.equals(names[i]))
1053                 return true;
1054         }
1055         return false;
1056     }
1057 
1058     static class NamedFunction {
1059         final MemberName member;
1060         private @Stable MethodHandle resolvedHandle;
1061         private @Stable MethodType type;
1062 
1063         NamedFunction(MethodHandle resolvedHandle) {
1064             this(resolvedHandle.internalMemberName(), resolvedHandle);
1065         }
1066         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1067             this.member = member;
1068             this.resolvedHandle = resolvedHandle;
1069              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1070              //assert(!isInvokeBasic(member));
1071         }
1072         NamedFunction(MethodType basicInvokerType) {
1073             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1074             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1075                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1076                 this.member = resolvedHandle.internalMemberName();
1077             } else {
1078                 // necessary to pass BigArityTest
1079                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1080             }
1081             assert(isInvokeBasic(member));
1082         }
1083 
1084         private static boolean isInvokeBasic(MemberName member) {
1085             return member != null &&
1086                    member.getDeclaringClass() == MethodHandle.class &&
1087                   "invokeBasic".equals(member.getName());
1088         }
1089 
1090         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1091         // Any LambdaForm containing such a member is not interpretable.
1092         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1093         // And even without the resolvedHandle, the name can still be compiled and optimized.
1094         NamedFunction(Method method) {
1095             this(new MemberName(method));
1096         }
1097         NamedFunction(MemberName member) {
1098             this(member, null);
1099         }
1100 
1101         MethodHandle resolvedHandle() {
1102             if (resolvedHandle == null)  resolve();
1103             return resolvedHandle;
1104         }
1105 
1106         synchronized void resolve() {
1107             if (resolvedHandle == null) {
1108                 resolvedHandle = DirectMethodHandle.make(member);
1109             }
1110         }
1111 
1112         @Override
1113         public boolean equals(Object other) {
1114             if (this == other) return true;
1115             if (other == null) return false;
1116             return (other instanceof NamedFunction that)
1117                     && this.member != null
1118                     && this.member.equals(that.member);
1119         }
1120 
1121         @Override
1122         public int hashCode() {
1123             if (member != null)
1124                 return member.hashCode();
1125             return super.hashCode();
1126         }
1127 
1128         static final MethodType INVOKER_METHOD_TYPE =
1129             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1130 
1131         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1132             typeForm = typeForm.basicType().form();  // normalize to basic type
1133             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1134             if (mh != null)  return mh;
1135             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1136             mh = DirectMethodHandle.make(invoker);
1137             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1138             if (mh2 != null)  return mh2;  // benign race
1139             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1140                 throw newInternalError(mh.debugString());
1141             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1142         }
1143 
1144         @Hidden
1145         Object invokeWithArguments(Object... arguments) throws Throwable {
1146             // If we have a cached invoker, call it right away.
1147             // NOTE: The invoker always returns a reference value.
1148             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1149             return invoker().invokeBasic(resolvedHandle(), arguments);
1150         }
1151 
1152         @Hidden
1153         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1154             Object rval;
1155             try {
1156                 traceInterpreter("[ call", this, arguments);
1157                 // resolvedHandle might be uninitialized, ok for tracing
1158                 if (resolvedHandle == null) {
1159                     traceInterpreter("| resolve", this);
1160                     resolvedHandle();
1161                 }
1162                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1163             } catch (Throwable ex) {
1164                 traceInterpreter("] throw =>", ex);
1165                 throw ex;
1166             }
1167             traceInterpreter("] return =>", rval);
1168             return rval;
1169         }
1170 
1171         private MethodHandle invoker() {
1172             return computeInvoker(methodType().form());
1173         }
1174 
1175         MethodType methodType() {
1176             MethodType type = this.type;
1177             if (type == null) {
1178                 this.type = type = calculateMethodType(member, resolvedHandle);
1179             }
1180             return type;
1181         }
1182 
1183         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1184             if (resolvedHandle != null) {
1185                 return resolvedHandle.type();
1186             } else {
1187                 // only for certain internal LFs during bootstrapping
1188                 return member.getInvocationType();
1189             }
1190         }
1191 
1192         MemberName member() {
1193             assert(assertMemberIsConsistent());
1194             return member;
1195         }
1196 
1197         // Called only from assert.
1198         private boolean assertMemberIsConsistent() {
1199             if (resolvedHandle instanceof DirectMethodHandle) {
1200                 MemberName m = resolvedHandle.internalMemberName();
1201                 assert(m.equals(member));
1202             }
1203             return true;
1204         }
1205 
1206         Class<?> memberDeclaringClassOrNull() {
1207             return (member == null) ? null : member.getDeclaringClass();
1208         }
1209 
1210         BasicType returnType() {
1211             return basicType(methodType().returnType());
1212         }
1213 
1214         BasicType parameterType(int n) {
1215             return basicType(methodType().parameterType(n));
1216         }
1217 
1218         int arity() {
1219             return methodType().parameterCount();
1220         }
1221 
1222         public String toString() {
1223             if (member == null)  return String.valueOf(resolvedHandle);
1224             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1225         }
1226 
1227         public boolean isIdentity() {
1228             return this.equals(identity(returnType()));
1229         }
1230 
1231         public MethodHandleImpl.Intrinsic intrinsicName() {
1232             return resolvedHandle != null
1233                 ? resolvedHandle.intrinsicName()
1234                 : MethodHandleImpl.Intrinsic.NONE;
1235         }
1236 
1237         public Object intrinsicData() {
1238             return resolvedHandle != null
1239                 ? resolvedHandle.intrinsicData()
1240                 : null;
1241         }
1242     }
1243 
1244     public static String basicTypeSignature(MethodType type) {
1245         int params = type.parameterCount();
1246         char[] sig = new char[params + 2];
1247         int sigp = 0;
1248         while (sigp < params) {
1249             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1250         }
1251         sig[sigp++] = '_';
1252         sig[sigp++] = basicTypeChar(type.returnType());
1253         assert(sigp == sig.length);
1254         return String.valueOf(sig);
1255     }
1256 
1257     /** Hack to make signatures more readable when they show up in method names.
1258      * Signature should start with a sequence of uppercase ASCII letters.
1259      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1260      * A tail of anything other than uppercase ASCII is passed through unchanged.
1261      * @param signature sequence of uppercase ASCII letters with possible repetitions
1262      * @return same sequence, with repetitions counted by decimal numerals
1263      */
1264     public static String shortenSignature(String signature) {
1265         final int NO_CHAR = -1, MIN_RUN = 3;
1266         int c0, c1 = NO_CHAR, c1reps = 0;
1267         StringBuilder buf = null;
1268         int len = signature.length();
1269         if (len < MIN_RUN)  return signature;
1270         for (int i = 0; i <= len; i++) {
1271             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1272                 // wrong kind of char; bail out here
1273                 if (buf != null) {
1274                     buf.append(signature, i - c1reps, len);
1275                 }
1276                 break;
1277             }
1278             // shift in the next char:
1279             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1280             if (c1 == c0) { ++c1reps; continue; }
1281             // shift in the next count:
1282             int c0reps = c1reps; c1reps = 1;
1283             // end of a  character run
1284             if (c0reps < MIN_RUN) {
1285                 if (buf != null) {
1286                     while (--c0reps >= 0)
1287                         buf.append((char)c0);
1288                 }
1289                 continue;
1290             }
1291             // found three or more in a row
1292             if (buf == null)
1293                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1294             buf.append((char)c0).append(c0reps);
1295         }
1296         return (buf == null) ? signature : buf.toString();
1297     }
1298 
1299     static final class Name {
1300         final BasicType type;
1301         final short index;
1302         final NamedFunction function;
1303         final Object constraint;  // additional type information, if not null
1304         @Stable final Object[] arguments;
1305 
1306         private static final Object[] EMPTY_ARGS = new Object[0];
1307 
1308         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1309             this.index = (short)index;
1310             this.type = type;
1311             this.function = function;
1312             this.arguments = arguments;
1313             this.constraint = constraint;
1314             assert(this.index == index && typesMatch(function, arguments));
1315             assert(constraint == null || isParam());  // only params have constraints
1316             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1317         }
1318 
1319         Name(MethodHandle function, Object... arguments) {
1320             this(new NamedFunction(function), arguments);
1321         }
1322         Name(MethodType functionType, Object... arguments) {
1323             this(new NamedFunction(functionType), arguments);
1324             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1325         }
1326         Name(MemberName function, Object... arguments) {
1327             this(new NamedFunction(function), arguments);
1328         }
1329         Name(NamedFunction function) {
1330             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1331         }
1332         Name(NamedFunction function, Object arg) {
1333             this(-1, function.returnType(), function, new Object[] { arg }, null);
1334         }
1335         Name(NamedFunction function, Object arg0, Object arg1) {
1336             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1337         }
1338         Name(NamedFunction function, Object... arguments) {
1339             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1340         }
1341         /** Create a raw parameter of the given type, with an expected index. */
1342         Name(int index, BasicType type) {
1343             this(index, type, null, null, null);
1344         }
1345         /** Create a raw parameter of the given type. */
1346         Name(BasicType type) { this(-1, type); }
1347 
1348         BasicType type() { return type; }
1349         int index() { return index; }
1350 
1351         char typeChar() {
1352             return type.btChar;
1353         }
1354 
1355         Name withIndex(int i) {
1356             if (i == this.index) return this;
1357             return new Name(i, type, function, arguments, constraint);
1358         }
1359 
1360         Name withConstraint(Object constraint) {
1361             if (constraint == this.constraint)  return this;
1362             return new Name(index, type, function, arguments, constraint);
1363         }
1364 
1365         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1366             if (oldName == newName)  return this;
1367             @SuppressWarnings("LocalVariableHidesMemberVariable")
1368             Object[] arguments = this.arguments;
1369             if (arguments == null)  return this;
1370             boolean replaced = false;
1371             for (int j = 0; j < arguments.length; j++) {
1372                 if (arguments[j] == oldName) {
1373                     if (!replaced) {
1374                         replaced = true;
1375                         arguments = arguments.clone();
1376                     }
1377                     arguments[j] = newName;
1378                 }
1379             }
1380             if (!replaced)  return this;
1381             return new Name(function, arguments);
1382         }
1383         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1384          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1385          */
1386         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1387             if (start >= end)  return this;
1388             @SuppressWarnings("LocalVariableHidesMemberVariable")
1389             Object[] arguments = this.arguments;
1390             boolean replaced = false;
1391         eachArg:
1392             for (int j = 0; j < arguments.length; j++) {
1393                 if (arguments[j] instanceof Name n) {
1394                     int check = n.index;
1395                     // harmless check to see if the thing is already in newNames:
1396                     if (check >= 0 && check < newNames.length && n == newNames[check])
1397                         continue eachArg;
1398                     // n might not have the correct index: n != oldNames[n.index].
1399                     for (int i = start; i < end; i++) {
1400                         if (n == oldNames[i]) {
1401                             if (n == newNames[i])
1402                                 continue eachArg;
1403                             if (!replaced) {
1404                                 replaced = true;
1405                                 arguments = arguments.clone();
1406                             }
1407                             arguments[j] = newNames[i];
1408                             continue eachArg;
1409                         }
1410                     }
1411                 }
1412             }
1413             if (!replaced)  return this;
1414             return new Name(function, arguments);
1415         }
1416         void internArguments() {
1417             @SuppressWarnings("LocalVariableHidesMemberVariable")
1418             Object[] arguments = this.arguments;
1419             for (int j = 0; j < arguments.length; j++) {
1420                 if (arguments[j] instanceof Name n) {
1421                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1422                         arguments[j] = internArgument(n);
1423                 }
1424             }
1425         }
1426         boolean isParam() {
1427             return function == null;
1428         }
1429 
1430         boolean refersTo(Class<?> declaringClass, String methodName) {
1431             return function != null &&
1432                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1433         }
1434 
1435         /**
1436          * Check if MemberName is a call to MethodHandle.invokeBasic.
1437          */
1438         boolean isInvokeBasic() {
1439             if (function == null)
1440                 return false;
1441             if (arguments.length < 1)
1442                 return false;  // must have MH argument
1443             MemberName member = function.member();
1444             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1445                     !member.isPublic() && !member.isStatic();
1446         }
1447 
1448         /**
1449          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1450          */
1451         boolean isLinkerMethodInvoke() {
1452             if (function == null)
1453                 return false;
1454             if (arguments.length < 1)
1455                 return false;  // must have MH argument
1456             MemberName member = function.member();
1457             return member != null &&
1458                     member.getDeclaringClass() == MethodHandle.class &&
1459                     !member.isPublic() && member.isStatic() &&
1460                     member.getName().startsWith("linkTo");
1461         }
1462 
1463         public String toString() {
1464             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1465         }
1466         public String debugString() {
1467             String s = paramString();
1468             return (function == null) ? s : s + "=" + exprString();
1469         }
1470         public String paramString() {
1471             String s = toString();
1472             Object c = constraint;
1473             if (c == null)
1474                 return s;
1475             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1476             return s + "/" + c;
1477         }
1478         public String exprString() {
1479             if (function == null)  return toString();
1480             StringBuilder buf = new StringBuilder(function.toString());
1481             buf.append("(");
1482             String cma = "";
1483             for (Object a : arguments) {
1484                 buf.append(cma); cma = ",";
1485                 if (a instanceof Name || a instanceof Integer)
1486                     buf.append(a);
1487                 else
1488                     buf.append("(").append(a).append(")");
1489             }
1490             buf.append(")");
1491             return buf.toString();
1492         }
1493 
1494         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1495             if (arguments == null) {
1496                 assert(function == null);
1497                 return true;
1498             }
1499             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1500             for (int i = 0; i < arguments.length; i++) {
1501                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1502             }
1503             return true;
1504         }
1505 
1506         private static boolean typesMatch(BasicType parameterType, Object object) {
1507             if (object instanceof Name name) {
1508                 return name.type == parameterType;
1509             }
1510             switch (parameterType) {
1511                 case I_TYPE:  return object instanceof Integer;
1512                 case J_TYPE:  return object instanceof Long;
1513                 case F_TYPE:  return object instanceof Float;
1514                 case D_TYPE:  return object instanceof Double;
1515             }
1516             assert(parameterType == L_TYPE);
1517             return true;
1518         }
1519 
1520         /** Return the index of the last occurrence of n in the argument array.
1521          *  Return -1 if the name is not used.
1522          */
1523         int lastUseIndex(Name n) {
1524             Object[] arguments = this.arguments;
1525             if (arguments == null)  return -1;
1526             for (int i = arguments.length; --i >= 0; ) {
1527                 if (arguments[i] == n)  return i;
1528             }
1529             return -1;
1530         }
1531 
1532         public boolean equals(Name that) {
1533             if (this == that)  return true;
1534             if (isParam())
1535                 // each parameter is a unique atom
1536                 return false;  // this != that
1537             return
1538                 //this.index == that.index &&
1539                 this.type == that.type &&
1540                 this.function.equals(that.function) &&
1541                 Arrays.equals(this.arguments, that.arguments);
1542         }
1543         @Override
1544         public boolean equals(Object x) {
1545             return x instanceof Name n && equals(n);
1546         }
1547         @Override
1548         public int hashCode() {
1549             if (isParam())
1550                 return index | (type.ordinal() << 8);
1551             return function.hashCode() ^ Arrays.hashCode(arguments);
1552         }
1553     }
1554 
1555     /** Return the index of the last name which contains n as an argument.
1556      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1557      */
1558     int lastUseIndex(Name n) {
1559         int ni = n.index, nmax = names.length;
1560         assert(names[ni] == n);
1561         if (result == ni)  return nmax;  // live all the way beyond the end
1562         for (int i = nmax; --i > ni; ) {
1563             if (names[i].lastUseIndex(n) >= 0)
1564                 return i;
1565         }
1566         return -1;
1567     }
1568 
1569     /** Return the number of times n is used as an argument or return value. */
1570     int useCount(Name n) {
1571         int count = (result == n.index) ? 1 : 0;
1572         int i = Math.max(n.index + 1, arity);
1573         Name[] names = this.names;
1574         while (i < names.length) {
1575             Object[] arguments = names[i++].arguments;
1576             if (arguments != null) {
1577                 for (Object argument : arguments) {
1578                     if (argument == n) {
1579                         count++;
1580                     }
1581                 }
1582             }
1583         }
1584         return count;
1585     }
1586 
1587     static Name argument(int which, BasicType type) {
1588         if (which >= INTERNED_ARGUMENT_LIMIT)
1589             return new Name(which, type);
1590         return INTERNED_ARGUMENTS[type.ordinal()][which];
1591     }
1592     static Name internArgument(Name n) {
1593         assert(n.isParam()) : "not param: " + n;
1594         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1595         if (n.constraint != null)  return n;
1596         return argument(n.index, n.type);
1597     }
1598     static Name[] arguments(int extra, MethodType types) {
1599         int length = types.parameterCount();
1600         Name[] names = new Name[length + extra];
1601         for (int i = 0; i < length; i++)
1602             names[i] = argument(i, basicType(types.parameterType(i)));
1603         return names;
1604     }
1605 
1606     static Name[] invokeArguments(int extra, MethodType types) {
1607         int length = types.parameterCount();
1608         Name[] names = new Name[length + extra + 1];
1609         names[0] = argument(0, L_TYPE);
1610         for (int i = 0; i < length; i++)
1611             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1612         return names;
1613     }
1614 
1615     static final int INTERNED_ARGUMENT_LIMIT = 10;
1616     private static final Name[][] INTERNED_ARGUMENTS
1617             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1618     static {
1619         for (BasicType type : BasicType.ARG_TYPES) {
1620             int ord = type.ordinal();
1621             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1622                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1623             }
1624         }
1625     }
1626 
1627     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1628 
1629     static LambdaForm identityForm(BasicType type) {
1630         int ord = type.ordinal();
1631         LambdaForm form = LF_identity[ord];
1632         if (form != null) {
1633             return form;
1634         }
1635         createIdentityForm(type);
1636         return LF_identity[ord];
1637     }
1638 
1639     static NamedFunction identity(BasicType type) {
1640         int ord = type.ordinal();
1641         NamedFunction function = NF_identity[ord];
1642         if (function != null) {
1643             return function;
1644         }
1645         createIdentityForm(type);
1646         return NF_identity[ord];
1647     }
1648 
1649     static LambdaForm constantForm(BasicType type) {
1650         assert type != null && type != V_TYPE : type;
1651         var cached = LF_constant[type.ordinal()];
1652         if (cached != null)
1653             return cached;
1654         return createConstantForm(type);
1655     }
1656 
1657     private static LambdaForm createConstantForm(BasicType type) {
1658         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1659         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1660         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1661         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1662         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1663     }
1664 
1665     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1666     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1667     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1668 
1669     private static final Object createIdentityFormLock = new Object();
1670     private static void createIdentityForm(BasicType type) {
1671         // Avoid racy initialization during bootstrap
1672         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1673         synchronized (createIdentityFormLock) {
1674             final int ord = type.ordinal();
1675             LambdaForm idForm = LF_identity[ord];
1676             if (idForm != null) {
1677                 return;
1678             }
1679             char btChar = type.basicTypeChar();
1680             boolean isVoid = (type == V_TYPE);
1681             Class<?> btClass = type.btClass;
1682             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1683 
1684             // Look up symbolic names.  It might not be necessary to have these,
1685             // but if we need to emit direct references to bytecodes, it helps.
1686             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1687             try {
1688                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1689             } catch (IllegalAccessException|NoSuchMethodException ex) {
1690                 throw newInternalError(ex);
1691             }
1692 
1693             NamedFunction idFun;
1694 
1695             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1696             // bootstrap dependency on this method in case we're interpreting LFs
1697             if (isVoid) {
1698                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1699                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1700                 idForm.compileToBytecode();
1701                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1702             } else {
1703                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1704                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1705                 idForm.compileToBytecode();
1706                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1707                             MethodHandleImpl.Intrinsic.IDENTITY));
1708             }
1709 
1710             LF_identity[ord] = idForm;
1711             NF_identity[ord] = idFun;
1712 
1713             assert(idFun.isIdentity());
1714         }
1715     }
1716 
1717     // Avoid appealing to ValueConversions at bootstrap time:
1718     private static int identity_I(int x) { return x; }
1719     private static long identity_J(long x) { return x; }
1720     private static float identity_F(float x) { return x; }
1721     private static double identity_D(double x) { return x; }
1722     private static Object identity_L(Object x) { return x; }
1723     private static void identity_V() { return; }
1724     /**
1725      * Internal marker for byte-compiled LambdaForms.
1726      */
1727     /*non-public*/
1728     @Target(ElementType.METHOD)
1729     @Retention(RetentionPolicy.RUNTIME)
1730     @interface Compiled {
1731     }
1732 
1733     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1734     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1735     static {
1736         if (debugEnabled()) {
1737             DEBUG_NAME_COUNTERS = new HashMap<>();
1738             DEBUG_NAMES = new HashMap<>();
1739         } else {
1740             DEBUG_NAME_COUNTERS = null;
1741             DEBUG_NAMES = null;
1742         }
1743     }
1744 
1745     static {
1746         // The Holder class will contain pre-generated forms resolved
1747         // using MemberName.getFactory(). However, that doesn't initialize the
1748         // class, which subtly breaks inlining etc. By forcing
1749         // initialization of the Holder class we avoid these issues.
1750         UNSAFE.ensureClassInitialized(Holder.class);
1751     }
1752 
1753     /* Placeholder class for identity and constant forms generated ahead of time */
1754     final class Holder {}
1755 
1756     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1757     // during execution of the static initializes of this class.
1758     // Turning on TRACE_INTERPRETER too early will cause
1759     // stack overflows and other misbehavior during attempts to trace events
1760     // that occur during LambdaForm.<clinit>.
1761     // Therefore, do not move this line higher in this file, and do not remove.
1762     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1763 }