1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         // Start field forms
 267         // IJFDL, instance/static differ in method type, can share form
 268         // init form only applicable to static
 269         FIELD_ACCESS("fieldAccess"),
 270         FIELD_ACCESS_INIT("fieldAccessInit"),
 271         VOLATILE_FIELD_ACCESS("volatileFieldAccess"),
 272         VOLATILE_FIELD_ACCESS_INIT("volatileFieldAccessInit"),
 273         // BCSZ need own forms to avoid clashing with basic type I, +-init/volatile
 274         FIELD_ACCESS_B("fieldAccessB"),
 275         FIELD_ACCESS_INIT_B("fieldAccessInitB"),
 276         VOLATILE_FIELD_ACCESS_B("volatileFieldAccessB"),
 277         VOLATILE_FIELD_ACCESS_INIT_B("volatileFieldAccessInitB"),
 278         FIELD_ACCESS_C("fieldAccessC"),
 279         FIELD_ACCESS_INIT_C("fieldAccessInitC"),
 280         VOLATILE_FIELD_ACCESS_C("volatileFieldAccessC"),
 281         VOLATILE_FIELD_ACCESS_INIT_C("volatileFieldAccessInitC"),
 282         FIELD_ACCESS_S("fieldAccessS"),
 283         FIELD_ACCESS_INIT_S("fieldAccessInitS"),
 284         VOLATILE_FIELD_ACCESS_S("volatileFieldAccessS"),
 285         VOLATILE_FIELD_ACCESS_INIT_S("volatileFieldAccessInitS"),
 286         FIELD_ACCESS_Z("fieldAccessZ"),
 287         FIELD_ACCESS_INIT_Z("fieldAccessInitZ"),
 288         VOLATILE_FIELD_ACCESS_Z("volatileFieldAccessZ"),
 289         VOLATILE_FIELD_ACCESS_INIT_Z("volatileFieldAccessInitZ"),
 290         // cast, nr, flat need their own forms to avoid clashing with L
 291         FIELD_ACCESS_CAST("fieldAccessCast"),
 292         FIELD_ACCESS_INIT_CAST("fieldAccessInitCast"),
 293         VOLATILE_FIELD_ACCESS_CAST("volatileFieldAccessCast"),
 294         VOLATILE_FIELD_ACCESS_INIT_CAST("volatileFieldAccessInitCast"),
 295         // null-check and put reference, +-cast, +-init/volatile
 296         // non-cast forms serve bytecode emulation purpose, which always enforces null checks
 297         PUT_NULL_RESTRICTED_REFERENCE("putNullRestrictedReference"),
 298         PUT_NULL_RESTRICTED_REFERENCE_INIT("putNullRestrictedReferenceInit"),
 299         VOLATILE_PUT_NULL_RESTRICTED_REFERENCE("volatilePutNullRestrictedReference"),
 300         VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_INIT("volatilePutNullRestrictedReferenceInit"),
 301         PUT_NULL_RESTRICTED_REFERENCE_CAST("putNullRestrictedReferenceCast"),
 302         PUT_NULL_RESTRICTED_REFERENCE_CAST_INIT("putNullRestrictedReferenceInitCast"),
 303         VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_CAST("volatilePutNullRestrictedReferenceCast"),
 304         VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_CAST_INIT("volatilePutNullRestrictedReferenceCastInit"),
 305         // flat implies cast, +-init/volatile
 306         FIELD_ACCESS_FLAT("fieldAccessFlat"),
 307         FIELD_ACCESS_INIT_FLAT("fieldAccessInitFlat"),
 308         VOLATILE_FIELD_ACCESS_FLAT("volatileFieldAccessFlat"),
 309         VOLATILE_FIELD_ACCESS_INIT_FLAT("volatileFieldAccessInitFlat"),
 310         // write guard NR flat, implies cast; +-volatile; no init forms - no flat in static fields yet
 311         PUT_NULL_RESTRICTED_FLAT_VALUE("putNullRestrictedFlatValue"),
 312         VOLATILE_PUT_NULL_RESTRICTED_FLAT_VALUE("volatilePutNullRestrictedFlatValue"),
 313         // End fields
 314         TRY_FINALLY("tryFinally"),
 315         TABLE_SWITCH("tableSwitch"),
 316         COLLECTOR("collector"),
 317         LOOP("loop"),
 318         GUARD("guard"),
 319         GUARD_WITH_CATCH("guardWithCatch"),
 320         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 321         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 322         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 323 
 324         final String defaultLambdaName;
 325         final String methodName;
 326 
 327         private Kind(String defaultLambdaName) {
 328             this(defaultLambdaName, defaultLambdaName);
 329         }
 330 
 331         private Kind(String defaultLambdaName, String methodName) {
 332             this.defaultLambdaName = defaultLambdaName;
 333             this.methodName = methodName;
 334         }
 335     }
 336 
 337     // private version that doesn't do checks or defensive copies
 338     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 339         this.arity = arity;
 340         this.result = result;
 341         this.forceInline = forceInline;
 342         this.customized = customized;
 343         this.names = names;
 344         this.kind = kind;
 345         this.vmentry = null;
 346         this.isCompiled = false;
 347     }
 348 
 349     // root factory pre/post processing and calls simple constructor
 350     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 351         names = names.clone();
 352         assert(namesOK(arity, names));
 353         result = fixResult(result, names);
 354 
 355         boolean canInterpret = normalizeNames(arity, names);
 356         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 357         assert(form.nameRefsAreLegal());
 358         if (!canInterpret) {
 359             form.compileToBytecode();
 360         }
 361         return form;
 362     }
 363 
 364     // derived factories with defaults
 365     private static final int DEFAULT_RESULT = LAST_RESULT;
 366     private static final boolean DEFAULT_FORCE_INLINE = true;
 367     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 368     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 369 
 370     static LambdaForm create(int arity, Name[] names, int result) {
 371         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 372     }
 373     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 374         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 375     }
 376     static LambdaForm create(int arity, Name[] names) {
 377         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 378     }
 379     static LambdaForm create(int arity, Name[] names, Kind kind) {
 380         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 381     }
 382     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 383         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 384     }
 385 
 386     private static int fixResult(int result, Name[] names) {
 387         if (result == LAST_RESULT)
 388             result = names.length - 1;  // might still be void
 389         if (result >= 0 && names[result].type == V_TYPE)
 390             result = VOID_RESULT;
 391         return result;
 392     }
 393 
 394     static boolean debugNames() {
 395         return DEBUG_NAME_COUNTERS != null;
 396     }
 397 
 398     static void associateWithDebugName(LambdaForm form, String name) {
 399         assert (debugNames());
 400         synchronized (DEBUG_NAMES) {
 401             DEBUG_NAMES.put(form, name);
 402         }
 403     }
 404 
 405     String lambdaName() {
 406         if (DEBUG_NAMES != null) {
 407             synchronized (DEBUG_NAMES) {
 408                 String name = DEBUG_NAMES.get(this);
 409                 if (name == null) {
 410                     name = generateDebugName();
 411                 }
 412                 return name;
 413             }
 414         }
 415         return kind.defaultLambdaName;
 416     }
 417 
 418     private String generateDebugName() {
 419         assert (debugNames());
 420         String debugNameStem = kind.defaultLambdaName;
 421         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 422         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 423         StringBuilder buf = new StringBuilder(debugNameStem);
 424         int leadingZero = buf.length();
 425         buf.append((int) ctr);
 426         for (int i = buf.length() - leadingZero; i < 3; i++) {
 427             buf.insert(leadingZero, '0');
 428         }
 429         buf.append('_');
 430         buf.append(basicTypeSignature());
 431         String name = buf.toString();
 432         associateWithDebugName(this, name);
 433         return name;
 434     }
 435 
 436     private static boolean namesOK(int arity, Name[] names) {
 437         for (int i = 0; i < names.length; i++) {
 438             Name n = names[i];
 439             assert(n != null) : "n is null";
 440             if (i < arity)
 441                 assert( n.isParam()) : n + " is not param at " + i;
 442             else
 443                 assert(!n.isParam()) : n + " is param at " + i;
 444         }
 445         return true;
 446     }
 447 
 448     /** Customize LambdaForm for a particular MethodHandle */
 449     LambdaForm customize(MethodHandle mh) {
 450         if (customized == mh) {
 451             return this;
 452         }
 453         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 454         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 455             // If shared LambdaForm has been compiled, compile customized version as well.
 456             customForm.compileToBytecode();
 457         }
 458         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 459         return customForm;
 460     }
 461 
 462     /** Get uncustomized flavor of the LambdaForm */
 463     LambdaForm uncustomize() {
 464         if (customized == null) {
 465             return this;
 466         }
 467         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 468         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 469         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 470             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 471             uncustomizedForm.compileToBytecode();
 472         }
 473         return uncustomizedForm;
 474     }
 475 
 476     /** Renumber and/or replace params so that they are interned and canonically numbered.
 477      *  @return true if we can interpret
 478      */
 479     private static boolean normalizeNames(int arity, Name[] names) {
 480         Name[] oldNames = names.clone();
 481         int maxOutArity = 0;
 482         for (int i = 0; i < names.length; i++) {
 483             Name n = names[i];
 484             names[i] = n.withIndex(i);
 485             if (n.arguments != null && maxOutArity < n.arguments.length)
 486                 maxOutArity = n.arguments.length;
 487         }
 488         if (oldNames != null) {
 489             for (int i = Math.max(1, arity); i < names.length; i++) {
 490                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 491                 names[i] = fixed.withIndex(i);
 492             }
 493         }
 494         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 495         boolean needIntern = false;
 496         for (int i = 0; i < maxInterned; i++) {
 497             Name n = names[i], n2 = internArgument(n);
 498             if (n != n2) {
 499                 names[i] = n2;
 500                 needIntern = true;
 501             }
 502         }
 503         if (needIntern) {
 504             for (int i = arity; i < names.length; i++) {
 505                 names[i].internArguments();
 506             }
 507         }
 508 
 509         // return true if we can interpret
 510         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 511             // Cannot use LF interpreter on very high arity expressions.
 512             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 513             return false;
 514         }
 515         return true;
 516     }
 517 
 518     /**
 519      * Check that all embedded Name references are localizable to this lambda,
 520      * and are properly ordered after their corresponding definitions.
 521      * <p>
 522      * Note that a Name can be local to multiple lambdas, as long as
 523      * it possesses the same index in each use site.
 524      * This allows Name references to be freely reused to construct
 525      * fresh lambdas, without confusion.
 526      */
 527     boolean nameRefsAreLegal() {
 528         assert(arity >= 0 && arity <= names.length);
 529         assert(result >= -1 && result < names.length);
 530         // Do all names possess an index consistent with their local definition order?
 531         for (int i = 0; i < arity; i++) {
 532             Name n = names[i];
 533             assert(n.index() == i) : Arrays.asList(n.index(), i);
 534             assert(n.isParam());
 535         }
 536         // Also, do all local name references
 537         for (int i = arity; i < names.length; i++) {
 538             Name n = names[i];
 539             assert(n.index() == i);
 540             for (Object arg : n.arguments) {
 541                 if (arg instanceof Name n2) {
 542                     int i2 = n2.index;
 543                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 544                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 545                     assert(i2 < i);  // ref must come after def!
 546                 }
 547             }
 548         }
 549         return true;
 550     }
 551 
 552     // /** Invoke this form on the given arguments. */
 553     // final Object invoke(Object... args) throws Throwable {
 554     //     // NYI: fit this into the fast path?
 555     //     return interpretWithArguments(args);
 556     // }
 557 
 558     /** Report the return type. */
 559     BasicType returnType() {
 560         if (result < 0)  return V_TYPE;
 561         Name n = names[result];
 562         return n.type;
 563     }
 564 
 565     /** Report the N-th argument type. */
 566     BasicType parameterType(int n) {
 567         return parameter(n).type;
 568     }
 569 
 570     /** Report the N-th argument name. */
 571     Name parameter(int n) {
 572         Name param = names[n];
 573         assert(n < arity && param.isParam());
 574         return param;
 575     }
 576 
 577     /** Report the N-th argument type constraint. */
 578     Object parameterConstraint(int n) {
 579         return parameter(n).constraint;
 580     }
 581 
 582     /** Report the arity. */
 583     int arity() {
 584         return arity;
 585     }
 586 
 587     /** Report the number of expressions (non-parameter names). */
 588     int expressionCount() {
 589         return names.length - arity;
 590     }
 591 
 592     /** Return the method type corresponding to my basic type signature. */
 593     MethodType methodType() {
 594         Class<?>[] ptypes = new Class<?>[arity];
 595         for (int i = 0; i < arity; ++i) {
 596             ptypes[i] = parameterType(i).btClass;
 597         }
 598         return MethodType.methodType(returnType().btClass, ptypes, true);
 599     }
 600 
 601     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 602     final String basicTypeSignature() {
 603         StringBuilder buf = new StringBuilder(arity() + 3);
 604         for (int i = 0, a = arity(); i < a; i++)
 605             buf.append(parameterType(i).basicTypeChar());
 606         return buf.append('_').append(returnType().basicTypeChar()).toString();
 607     }
 608     static int signatureArity(String sig) {
 609         assert(isValidSignature(sig));
 610         return sig.indexOf('_');
 611     }
 612     static boolean isValidSignature(String sig) {
 613         int arity = sig.indexOf('_');
 614         if (arity < 0)  return false;  // must be of the form *_*
 615         int siglen = sig.length();
 616         if (siglen != arity + 2)  return false;  // *_X
 617         for (int i = 0; i < siglen; i++) {
 618             if (i == arity)  continue;  // skip '_'
 619             char c = sig.charAt(i);
 620             if (c == 'V')
 621                 return (i == siglen - 1 && arity == siglen - 2);
 622             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 623         }
 624         return true;  // [LIJFD]*_[LIJFDV]
 625     }
 626 
 627     /**
 628      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 629      */
 630     boolean isSelectAlternative(int pos) {
 631         // selectAlternative idiom:
 632         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 633         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 634         if (pos+1 >= names.length)  return false;
 635         Name name0 = names[pos];
 636         Name name1 = names[pos+1];
 637         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 638                 name1.isInvokeBasic() &&
 639                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 640                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 641     }
 642 
 643     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 644         if (pos+2 >= names.length)  return false;
 645         Name name0 = names[pos];
 646         Name name1 = names[pos+1];
 647         Name name2 = names[pos+2];
 648         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 649                 name0.isInvokeBasic() &&
 650                 name2.isInvokeBasic() &&
 651                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 652                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 653                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 654                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 655     }
 656 
 657     /**
 658      * Check if i-th name is a start of GuardWithCatch idiom.
 659      */
 660     boolean isGuardWithCatch(int pos) {
 661         // GuardWithCatch idiom:
 662         //   t_{n}:L=MethodHandle.invokeBasic(...)
 663         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 664         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 665         return isMatchingIdiom(pos, "guardWithCatch", 3);
 666     }
 667 
 668     /**
 669      * Check if i-th name is a start of the tryFinally idiom.
 670      */
 671     boolean isTryFinally(int pos) {
 672         // tryFinally idiom:
 673         //   t_{n}:L=MethodHandle.invokeBasic(...)
 674         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 675         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 676         return isMatchingIdiom(pos, "tryFinally", 2);
 677     }
 678 
 679     /**
 680      * Check if i-th name is a start of the tableSwitch idiom.
 681      */
 682     boolean isTableSwitch(int pos) {
 683         // tableSwitch idiom:
 684         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 685         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 686         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 687         if (pos + 2 >= names.length)  return false;
 688 
 689         final int POS_COLLECT_ARGS = pos;
 690         final int POS_TABLE_SWITCH = pos + 1;
 691         final int POS_UNBOX_RESULT = pos + 2;
 692 
 693         Name collectArgs = names[POS_COLLECT_ARGS];
 694         Name tableSwitch = names[POS_TABLE_SWITCH];
 695         Name unboxResult = names[POS_UNBOX_RESULT];
 696         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 697                 collectArgs.isInvokeBasic() &&
 698                 unboxResult.isInvokeBasic() &&
 699                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 700                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 701                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 702                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 703     }
 704 
 705     /**
 706      * Check if i-th name is a start of the loop idiom.
 707      */
 708     boolean isLoop(int pos) {
 709         // loop idiom:
 710         //   t_{n}:L=MethodHandle.invokeBasic(...)
 711         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 712         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 713         return isMatchingIdiom(pos, "loop", 2);
 714     }
 715 
 716     /*
 717      * Code generation issues:
 718      *
 719      * Compiled LFs should be reusable in general.
 720      * The biggest issue is how to decide when to pull a name into
 721      * the bytecode, versus loading a reified form from the MH data.
 722      *
 723      * For example, an asType wrapper may require execution of a cast
 724      * after a call to a MH.  The target type of the cast can be placed
 725      * as a constant in the LF itself.  This will force the cast type
 726      * to be compiled into the bytecodes and native code for the MH.
 727      * Or, the target type of the cast can be erased in the LF, and
 728      * loaded from the MH data.  (Later on, if the MH as a whole is
 729      * inlined, the data will flow into the inlined instance of the LF,
 730      * as a constant, and the end result will be an optimal cast.)
 731      *
 732      * This erasure of cast types can be done with any use of
 733      * reference types.  It can also be done with whole method
 734      * handles.  Erasing a method handle might leave behind
 735      * LF code that executes correctly for any MH of a given
 736      * type, and load the required MH from the enclosing MH's data.
 737      * Or, the erasure might even erase the expected MT.
 738      *
 739      * Also, for direct MHs, the MemberName of the target
 740      * could be erased, and loaded from the containing direct MH.
 741      * As a simple case, a LF for all int-valued non-static
 742      * field getters would perform a cast on its input argument
 743      * (to non-constant base type derived from the MemberName)
 744      * and load an integer value from the input object
 745      * (at a non-constant offset also derived from the MemberName).
 746      * Such MN-erased LFs would be inlinable back to optimized
 747      * code, whenever a constant enclosing DMH is available
 748      * to supply a constant MN from its data.
 749      *
 750      * The main problem here is to keep LFs reasonably generic,
 751      * while ensuring that hot spots will inline good instances.
 752      * "Reasonably generic" means that we don't end up with
 753      * repeated versions of bytecode or machine code that do
 754      * not differ in their optimized form.  Repeated versions
 755      * of machine would have the undesirable overheads of
 756      * (a) redundant compilation work and (b) extra I$ pressure.
 757      * To control repeated versions, we need to be ready to
 758      * erase details from LFs and move them into MH data,
 759      * whenever those details are not relevant to significant
 760      * optimization.  "Significant" means optimization of
 761      * code that is actually hot.
 762      *
 763      * Achieving this may require dynamic splitting of MHs, by replacing
 764      * a generic LF with a more specialized one, on the same MH,
 765      * if (a) the MH is frequently executed and (b) the MH cannot
 766      * be inlined into a containing caller, such as an invokedynamic.
 767      *
 768      * Compiled LFs that are no longer used should be GC-able.
 769      * If they contain non-BCP references, they should be properly
 770      * interlinked with the class loader(s) that their embedded types
 771      * depend on.  This probably means that reusable compiled LFs
 772      * will be tabulated (indexed) on relevant class loaders,
 773      * or else that the tables that cache them will have weak links.
 774      */
 775 
 776     /**
 777      * Make this LF directly executable, as part of a MethodHandle.
 778      * Invariant:  Every MH which is invoked must prepare its LF
 779      * before invocation.
 780      * (In principle, the JVM could do this very lazily,
 781      * as a sort of pre-invocation linkage step.)
 782      */
 783     public void prepare() {
 784         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 785             compileToBytecode();
 786         }
 787         if (this.vmentry != null) {
 788             // already prepared (e.g., a primitive DMH invoker form)
 789             return;
 790         }
 791         MethodType mtype = methodType();
 792         MethodTypeForm form = mtype.form();
 793 
 794         MemberName entry = form.cachedInterpretEntry();
 795         if (entry == null) {
 796             assert (isValidSignature(basicTypeSignature()));
 797             entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 798             entry = form.setCachedInterpretEntry(entry);
 799         }
 800         this.vmentry = entry;
 801         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 802     }
 803 
 804     private static @Stable PerfCounter LF_FAILED;
 805 
 806     private static PerfCounter failedCompilationCounter() {
 807         if (LF_FAILED == null) {
 808             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 809         }
 810         return LF_FAILED;
 811     }
 812 
 813     /** Generate optimizable bytecode for this form. */
 814     void compileToBytecode() {
 815         if (forceInterpretation()) {
 816             return; // this should not be compiled
 817         }
 818         if (vmentry != null && isCompiled) {
 819             return;  // already compiled somehow
 820         }
 821 
 822         // Obtain the invoker MethodType outside of the following try block.
 823         // This ensures that an IllegalArgumentException is directly thrown if the
 824         // type would have 256 or more parameters
 825         MethodType invokerType = methodType();
 826         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 827         try {
 828             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 829             if (TRACE_INTERPRETER)
 830                 traceInterpreter("compileToBytecode", this);
 831             isCompiled = true;
 832         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 833             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 834             invocationCounter = -1;
 835             failedCompilationCounter().increment();
 836             if (LOG_LF_COMPILATION_FAILURE) {
 837                 System.out.println("LambdaForm compilation failed: " + this);
 838                 bge.printStackTrace(System.out);
 839             }
 840         } catch (Error e) {
 841             // Pass through any error
 842             throw e;
 843         } catch (Exception e) {
 844             // Wrap any exception
 845             throw newInternalError(this.toString(), e);
 846         }
 847     }
 848 
 849     // The next few routines are called only from assert expressions
 850     // They verify that the built-in invokers process the correct raw data types.
 851     private static boolean argumentTypesMatch(String sig, Object[] av) {
 852         int arity = signatureArity(sig);
 853         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 854         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 855         MethodHandle mh = (MethodHandle) av[0];
 856         MethodType mt = mh.type();
 857         assert(mt.parameterCount() == arity-1);
 858         for (int i = 0; i < av.length; i++) {
 859             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 860             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 861         }
 862         return true;
 863     }
 864     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 865         // The following line is needed because (...)void method handles can use non-void invokers
 866         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 867         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 868         switch (tc) {
 869         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 870         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 871         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 872         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 873         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 874         case V_TYPE: break;  // allow anything here; will be dropped
 875         default:  assert(false);
 876         }
 877         return true;
 878     }
 879     private static boolean checkInt(Class<?> type, Object x) {
 880         assert(x instanceof Integer);
 881         if (type == int.class)  return true;
 882         Wrapper w = Wrapper.forBasicType(type);
 883         assert(w.isSubwordOrInt());
 884         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 885         return x.equals(x1);
 886     }
 887     private static boolean checkRef(Class<?> type, Object x) {
 888         assert(!type.isPrimitive());
 889         if (x == null)  return true;
 890         if (type.isInterface())  return true;
 891         return type.isInstance(x);
 892     }
 893 
 894     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 895     private static final int COMPILE_THRESHOLD;
 896     static {
 897         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 898     }
 899     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 900 
 901     private boolean forceInterpretation() {
 902         return invocationCounter == -1;
 903     }
 904 
 905     /** Interpretively invoke this form on the given arguments. */
 906     @Hidden
 907     @DontInline
 908     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 909         if (TRACE_INTERPRETER)
 910             return interpretWithArgumentsTracing(argumentValues);
 911         checkInvocationCounter();
 912         assert(arityCheck(argumentValues));
 913         Object[] values = Arrays.copyOf(argumentValues, names.length);
 914         for (int i = argumentValues.length; i < values.length; i++) {
 915             values[i] = interpretName(names[i], values);
 916         }
 917         Object rv = (result < 0) ? null : values[result];
 918         assert(resultCheck(argumentValues, rv));
 919         return rv;
 920     }
 921 
 922     /** Evaluate a single Name within this form, applying its function to its arguments. */
 923     @Hidden
 924     @DontInline
 925     Object interpretName(Name name, Object[] values) throws Throwable {
 926         if (TRACE_INTERPRETER)
 927             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 928         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 929         for (int i = 0; i < arguments.length; i++) {
 930             Object a = arguments[i];
 931             if (a instanceof Name n) {
 932                 int i2 = n.index();
 933                 assert(names[i2] == a);
 934                 a = values[i2];
 935                 arguments[i] = a;
 936             }
 937         }
 938         return name.function.invokeWithArguments(arguments);
 939     }
 940 
 941     private void checkInvocationCounter() {
 942         if (COMPILE_THRESHOLD != 0 &&
 943             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 944             invocationCounter++;  // benign race
 945             if (invocationCounter >= COMPILE_THRESHOLD) {
 946                 // Replace vmentry with a bytecode version of this LF.
 947                 compileToBytecode();
 948             }
 949         }
 950     }
 951     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 952         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 953         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 954             int ctr = invocationCounter++;  // benign race
 955             traceInterpreter("| invocationCounter", ctr);
 956             if (invocationCounter >= COMPILE_THRESHOLD) {
 957                 compileToBytecode();
 958             }
 959         }
 960         Object rval;
 961         try {
 962             assert(arityCheck(argumentValues));
 963             Object[] values = Arrays.copyOf(argumentValues, names.length);
 964             for (int i = argumentValues.length; i < values.length; i++) {
 965                 values[i] = interpretName(names[i], values);
 966             }
 967             rval = (result < 0) ? null : values[result];
 968         } catch (Throwable ex) {
 969             traceInterpreter("] throw =>", ex);
 970             throw ex;
 971         }
 972         traceInterpreter("] return =>", rval);
 973         return rval;
 974     }
 975 
 976     static void traceInterpreter(String event, Object obj, Object... args) {
 977         if (TRACE_INTERPRETER) {
 978             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 979         }
 980     }
 981     static void traceInterpreter(String event, Object obj) {
 982         traceInterpreter(event, obj, (Object[])null);
 983     }
 984     private boolean arityCheck(Object[] argumentValues) {
 985         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 986         // also check that the leading (receiver) argument is somehow bound to this LF:
 987         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 988         MethodHandle mh = (MethodHandle) argumentValues[0];
 989         assert(mh.internalForm() == this);
 990         // note:  argument #0 could also be an interface wrapper, in the future
 991         argumentTypesMatch(basicTypeSignature(), argumentValues);
 992         return true;
 993     }
 994     private boolean resultCheck(Object[] argumentValues, Object result) {
 995         MethodHandle mh = (MethodHandle) argumentValues[0];
 996         MethodType mt = mh.type();
 997         assert(valueMatches(returnType(), mt.returnType(), result));
 998         return true;
 999     }
1000 
1001     public String toString() {
1002         return debugString(-1);
1003     }
1004 
1005     String debugString(int indentLevel) {
1006         String prefix = MethodHandle.debugPrefix(indentLevel);
1007         String lambdaName = lambdaName();
1008         StringBuilder buf = new StringBuilder(lambdaName);
1009         buf.append("=Lambda(");
1010         for (int i = 0; i < names.length; i++) {
1011             if (i == arity)  buf.append(")=>{");
1012             Name n = names[i];
1013             if (i >= arity)  buf.append("\n    ").append(prefix);
1014             buf.append(n.paramString());
1015             if (i < arity) {
1016                 if (i+1 < arity)  buf.append(",");
1017                 continue;
1018             }
1019             buf.append("=").append(n.exprString());
1020             buf.append(";");
1021         }
1022         if (arity == names.length)  buf.append(")=>{");
1023         buf.append(result < 0 ? "void" : names[result]).append("}");
1024         if (TRACE_INTERPRETER) {
1025             // Extra verbosity:
1026             buf.append(":").append(basicTypeSignature());
1027             buf.append("/").append(vmentry);
1028         }
1029         return buf.toString();
1030     }
1031 
1032     @Override
1033     public boolean equals(Object obj) {
1034         return obj instanceof LambdaForm lf && equals(lf);
1035     }
1036     public boolean equals(LambdaForm that) {
1037         if (this.result != that.result)  return false;
1038         return Arrays.equals(this.names, that.names);
1039     }
1040     public int hashCode() {
1041         return result + 31 * Arrays.hashCode(names);
1042     }
1043     LambdaFormEditor editor() {
1044         return LambdaFormEditor.lambdaFormEditor(this);
1045     }
1046 
1047     boolean contains(Name name) {
1048         int pos = name.index();
1049         if (pos >= 0) {
1050             return pos < names.length && name.equals(names[pos]);
1051         }
1052         for (int i = arity; i < names.length; i++) {
1053             if (name.equals(names[i]))
1054                 return true;
1055         }
1056         return false;
1057     }
1058 
1059     static class NamedFunction {
1060         final MemberName member;
1061         private @Stable MethodHandle resolvedHandle;
1062         private @Stable MethodType type;
1063 
1064         NamedFunction(MethodHandle resolvedHandle) {
1065             this(resolvedHandle.internalMemberName(), resolvedHandle);
1066         }
1067         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1068             this.member = member;
1069             this.resolvedHandle = resolvedHandle;
1070              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1071              //assert(!isInvokeBasic(member));
1072         }
1073         NamedFunction(MethodType basicInvokerType) {
1074             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1075             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1076                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1077                 this.member = resolvedHandle.internalMemberName();
1078             } else {
1079                 // necessary to pass BigArityTest
1080                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1081             }
1082             assert(isInvokeBasic(member));
1083         }
1084 
1085         private static boolean isInvokeBasic(MemberName member) {
1086             return member != null &&
1087                    member.getDeclaringClass() == MethodHandle.class &&
1088                   "invokeBasic".equals(member.getName());
1089         }
1090 
1091         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1092         // Any LambdaForm containing such a member is not interpretable.
1093         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1094         // And even without the resolvedHandle, the name can still be compiled and optimized.
1095         NamedFunction(Method method) {
1096             this(new MemberName(method));
1097         }
1098         NamedFunction(MemberName member) {
1099             this(member, null);
1100         }
1101 
1102         MethodHandle resolvedHandle() {
1103             if (resolvedHandle == null)  resolve();
1104             return resolvedHandle;
1105         }
1106 
1107         synchronized void resolve() {
1108             if (resolvedHandle == null) {
1109                 resolvedHandle = DirectMethodHandle.make(member);
1110             }
1111         }
1112 
1113         @Override
1114         public boolean equals(Object other) {
1115             if (this == other) return true;
1116             if (other == null) return false;
1117             return (other instanceof NamedFunction that)
1118                     && this.member != null
1119                     && this.member.equals(that.member);
1120         }
1121 
1122         @Override
1123         public int hashCode() {
1124             if (member != null)
1125                 return member.hashCode();
1126             return super.hashCode();
1127         }
1128 
1129         static final MethodType INVOKER_METHOD_TYPE =
1130             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1131 
1132         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1133             typeForm = typeForm.basicType().form();  // normalize to basic type
1134             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1135             if (mh != null)  return mh;
1136             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1137             mh = DirectMethodHandle.make(invoker);
1138             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1139             if (mh2 != null)  return mh2;  // benign race
1140             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1141                 throw newInternalError(mh.debugString());
1142             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1143         }
1144 
1145         @Hidden
1146         Object invokeWithArguments(Object... arguments) throws Throwable {
1147             // If we have a cached invoker, call it right away.
1148             // NOTE: The invoker always returns a reference value.
1149             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1150             return invoker().invokeBasic(resolvedHandle(), arguments);
1151         }
1152 
1153         @Hidden
1154         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1155             Object rval;
1156             try {
1157                 traceInterpreter("[ call", this, arguments);
1158                 // resolvedHandle might be uninitialized, ok for tracing
1159                 if (resolvedHandle == null) {
1160                     traceInterpreter("| resolve", this);
1161                     resolvedHandle();
1162                 }
1163                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1164             } catch (Throwable ex) {
1165                 traceInterpreter("] throw =>", ex);
1166                 throw ex;
1167             }
1168             traceInterpreter("] return =>", rval);
1169             return rval;
1170         }
1171 
1172         private MethodHandle invoker() {
1173             return computeInvoker(methodType().form());
1174         }
1175 
1176         MethodType methodType() {
1177             MethodType type = this.type;
1178             if (type == null) {
1179                 this.type = type = calculateMethodType(member, resolvedHandle);
1180             }
1181             return type;
1182         }
1183 
1184         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1185             if (resolvedHandle != null) {
1186                 return resolvedHandle.type();
1187             } else {
1188                 // only for certain internal LFs during bootstrapping
1189                 return member.getInvocationType();
1190             }
1191         }
1192 
1193         MemberName member() {
1194             assert(assertMemberIsConsistent());
1195             return member;
1196         }
1197 
1198         // Called only from assert.
1199         private boolean assertMemberIsConsistent() {
1200             if (resolvedHandle instanceof DirectMethodHandle) {
1201                 MemberName m = resolvedHandle.internalMemberName();
1202                 assert(m.equals(member));
1203             }
1204             return true;
1205         }
1206 
1207         Class<?> memberDeclaringClassOrNull() {
1208             return (member == null) ? null : member.getDeclaringClass();
1209         }
1210 
1211         BasicType returnType() {
1212             return basicType(methodType().returnType());
1213         }
1214 
1215         BasicType parameterType(int n) {
1216             return basicType(methodType().parameterType(n));
1217         }
1218 
1219         int arity() {
1220             return methodType().parameterCount();
1221         }
1222 
1223         public String toString() {
1224             if (member == null)  return String.valueOf(resolvedHandle);
1225             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1226         }
1227 
1228         public boolean isIdentity() {
1229             return this.equals(identity(returnType()));
1230         }
1231 
1232         public MethodHandleImpl.Intrinsic intrinsicName() {
1233             return resolvedHandle != null
1234                 ? resolvedHandle.intrinsicName()
1235                 : MethodHandleImpl.Intrinsic.NONE;
1236         }
1237 
1238         public Object intrinsicData() {
1239             return resolvedHandle != null
1240                 ? resolvedHandle.intrinsicData()
1241                 : null;
1242         }
1243     }
1244 
1245     public static String basicTypeSignature(MethodType type) {
1246         int params = type.parameterCount();
1247         char[] sig = new char[params + 2];
1248         int sigp = 0;
1249         while (sigp < params) {
1250             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1251         }
1252         sig[sigp++] = '_';
1253         sig[sigp++] = basicTypeChar(type.returnType());
1254         assert(sigp == sig.length);
1255         return String.valueOf(sig);
1256     }
1257 
1258     /** Hack to make signatures more readable when they show up in method names.
1259      * Signature should start with a sequence of uppercase ASCII letters.
1260      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1261      * A tail of anything other than uppercase ASCII is passed through unchanged.
1262      * @param signature sequence of uppercase ASCII letters with possible repetitions
1263      * @return same sequence, with repetitions counted by decimal numerals
1264      */
1265     public static String shortenSignature(String signature) {
1266         final int NO_CHAR = -1, MIN_RUN = 3;
1267         int c0, c1 = NO_CHAR, c1reps = 0;
1268         StringBuilder buf = null;
1269         int len = signature.length();
1270         if (len < MIN_RUN)  return signature;
1271         for (int i = 0; i <= len; i++) {
1272             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1273                 // wrong kind of char; bail out here
1274                 if (buf != null) {
1275                     buf.append(signature, i - c1reps, len);
1276                 }
1277                 break;
1278             }
1279             // shift in the next char:
1280             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1281             if (c1 == c0) { ++c1reps; continue; }
1282             // shift in the next count:
1283             int c0reps = c1reps; c1reps = 1;
1284             // end of a  character run
1285             if (c0reps < MIN_RUN) {
1286                 if (buf != null) {
1287                     while (--c0reps >= 0)
1288                         buf.append((char)c0);
1289                 }
1290                 continue;
1291             }
1292             // found three or more in a row
1293             if (buf == null)
1294                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1295             buf.append((char)c0).append(c0reps);
1296         }
1297         return (buf == null) ? signature : buf.toString();
1298     }
1299 
1300     static final class Name {
1301         final BasicType type;
1302         final short index;
1303         final NamedFunction function;
1304         final Object constraint;  // additional type information, if not null
1305         @Stable final Object[] arguments;
1306 
1307         private static final Object[] EMPTY_ARGS = new Object[0];
1308 
1309         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1310             this.index = (short)index;
1311             this.type = type;
1312             this.function = function;
1313             this.arguments = arguments;
1314             this.constraint = constraint;
1315             assert(this.index == index && typesMatch(function, arguments));
1316             assert(constraint == null || isParam());  // only params have constraints
1317             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1318         }
1319 
1320         Name(MethodHandle function, Object... arguments) {
1321             this(new NamedFunction(function), arguments);
1322         }
1323         Name(MethodType functionType, Object... arguments) {
1324             this(new NamedFunction(functionType), arguments);
1325             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1326         }
1327         Name(MemberName function, Object... arguments) {
1328             this(new NamedFunction(function), arguments);
1329         }
1330         Name(NamedFunction function) {
1331             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1332         }
1333         Name(NamedFunction function, Object arg) {
1334             this(-1, function.returnType(), function, new Object[] { arg }, null);
1335         }
1336         Name(NamedFunction function, Object arg0, Object arg1) {
1337             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1338         }
1339         Name(NamedFunction function, Object... arguments) {
1340             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1341         }
1342         /** Create a raw parameter of the given type, with an expected index. */
1343         Name(int index, BasicType type) {
1344             this(index, type, null, null, null);
1345         }
1346         /** Create a raw parameter of the given type. */
1347         Name(BasicType type) { this(-1, type); }
1348 
1349         BasicType type() { return type; }
1350         int index() { return index; }
1351 
1352         char typeChar() {
1353             return type.btChar;
1354         }
1355 
1356         Name withIndex(int i) {
1357             if (i == this.index) return this;
1358             return new Name(i, type, function, arguments, constraint);
1359         }
1360 
1361         Name withConstraint(Object constraint) {
1362             if (constraint == this.constraint)  return this;
1363             return new Name(index, type, function, arguments, constraint);
1364         }
1365 
1366         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1367             if (oldName == newName)  return this;
1368             @SuppressWarnings("LocalVariableHidesMemberVariable")
1369             Object[] arguments = this.arguments;
1370             if (arguments == null)  return this;
1371             boolean replaced = false;
1372             for (int j = 0; j < arguments.length; j++) {
1373                 if (arguments[j] == oldName) {
1374                     if (!replaced) {
1375                         replaced = true;
1376                         arguments = arguments.clone();
1377                     }
1378                     arguments[j] = newName;
1379                 }
1380             }
1381             if (!replaced)  return this;
1382             return new Name(function, arguments);
1383         }
1384         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1385          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1386          */
1387         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1388             if (start >= end)  return this;
1389             @SuppressWarnings("LocalVariableHidesMemberVariable")
1390             Object[] arguments = this.arguments;
1391             boolean replaced = false;
1392         eachArg:
1393             for (int j = 0; j < arguments.length; j++) {
1394                 if (arguments[j] instanceof Name n) {
1395                     int check = n.index;
1396                     // harmless check to see if the thing is already in newNames:
1397                     if (check >= 0 && check < newNames.length && n == newNames[check])
1398                         continue eachArg;
1399                     // n might not have the correct index: n != oldNames[n.index].
1400                     for (int i = start; i < end; i++) {
1401                         if (n == oldNames[i]) {
1402                             if (n == newNames[i])
1403                                 continue eachArg;
1404                             if (!replaced) {
1405                                 replaced = true;
1406                                 arguments = arguments.clone();
1407                             }
1408                             arguments[j] = newNames[i];
1409                             continue eachArg;
1410                         }
1411                     }
1412                 }
1413             }
1414             if (!replaced)  return this;
1415             return new Name(function, arguments);
1416         }
1417         void internArguments() {
1418             @SuppressWarnings("LocalVariableHidesMemberVariable")
1419             Object[] arguments = this.arguments;
1420             for (int j = 0; j < arguments.length; j++) {
1421                 if (arguments[j] instanceof Name n) {
1422                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1423                         arguments[j] = internArgument(n);
1424                 }
1425             }
1426         }
1427         boolean isParam() {
1428             return function == null;
1429         }
1430 
1431         boolean refersTo(Class<?> declaringClass, String methodName) {
1432             return function != null &&
1433                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1434         }
1435 
1436         /**
1437          * Check if MemberName is a call to MethodHandle.invokeBasic.
1438          */
1439         boolean isInvokeBasic() {
1440             if (function == null)
1441                 return false;
1442             if (arguments.length < 1)
1443                 return false;  // must have MH argument
1444             MemberName member = function.member();
1445             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1446                     !member.isPublic() && !member.isStatic();
1447         }
1448 
1449         /**
1450          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1451          */
1452         boolean isLinkerMethodInvoke() {
1453             if (function == null)
1454                 return false;
1455             if (arguments.length < 1)
1456                 return false;  // must have MH argument
1457             MemberName member = function.member();
1458             return member != null &&
1459                     member.getDeclaringClass() == MethodHandle.class &&
1460                     !member.isPublic() && member.isStatic() &&
1461                     member.getName().startsWith("linkTo");
1462         }
1463 
1464         public String toString() {
1465             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1466         }
1467         public String debugString() {
1468             String s = paramString();
1469             return (function == null) ? s : s + "=" + exprString();
1470         }
1471         public String paramString() {
1472             String s = toString();
1473             Object c = constraint;
1474             if (c == null)
1475                 return s;
1476             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1477             return s + "/" + c;
1478         }
1479         public String exprString() {
1480             if (function == null)  return toString();
1481             StringBuilder buf = new StringBuilder(function.toString());
1482             buf.append("(");
1483             String cma = "";
1484             for (Object a : arguments) {
1485                 buf.append(cma); cma = ",";
1486                 if (a instanceof Name || a instanceof Integer)
1487                     buf.append(a);
1488                 else
1489                     buf.append("(").append(a).append(")");
1490             }
1491             buf.append(")");
1492             return buf.toString();
1493         }
1494 
1495         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1496             if (arguments == null) {
1497                 assert(function == null);
1498                 return true;
1499             }
1500             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1501             for (int i = 0; i < arguments.length; i++) {
1502                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1503             }
1504             return true;
1505         }
1506 
1507         private static boolean typesMatch(BasicType parameterType, Object object) {
1508             if (object instanceof Name name) {
1509                 return name.type == parameterType;
1510             }
1511             switch (parameterType) {
1512                 case I_TYPE:  return object instanceof Integer;
1513                 case J_TYPE:  return object instanceof Long;
1514                 case F_TYPE:  return object instanceof Float;
1515                 case D_TYPE:  return object instanceof Double;
1516             }
1517             assert(parameterType == L_TYPE);
1518             return true;
1519         }
1520 
1521         /** Return the index of the last occurrence of n in the argument array.
1522          *  Return -1 if the name is not used.
1523          */
1524         int lastUseIndex(Name n) {
1525             Object[] arguments = this.arguments;
1526             if (arguments == null)  return -1;
1527             for (int i = arguments.length; --i >= 0; ) {
1528                 if (arguments[i] == n)  return i;
1529             }
1530             return -1;
1531         }
1532 
1533         public boolean equals(Name that) {
1534             if (this == that)  return true;
1535             if (isParam())
1536                 // each parameter is a unique atom
1537                 return false;  // this != that
1538             return
1539                 //this.index == that.index &&
1540                 this.type == that.type &&
1541                 this.function.equals(that.function) &&
1542                 Arrays.equals(this.arguments, that.arguments);
1543         }
1544         @Override
1545         public boolean equals(Object x) {
1546             return x instanceof Name n && equals(n);
1547         }
1548         @Override
1549         public int hashCode() {
1550             if (isParam())
1551                 return index | (type.ordinal() << 8);
1552             return function.hashCode() ^ Arrays.hashCode(arguments);
1553         }
1554     }
1555 
1556     /** Return the index of the last name which contains n as an argument.
1557      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1558      */
1559     int lastUseIndex(Name n) {
1560         int ni = n.index, nmax = names.length;
1561         assert(names[ni] == n);
1562         if (result == ni)  return nmax;  // live all the way beyond the end
1563         for (int i = nmax; --i > ni; ) {
1564             if (names[i].lastUseIndex(n) >= 0)
1565                 return i;
1566         }
1567         return -1;
1568     }
1569 
1570     /** Return the number of times n is used as an argument or return value. */
1571     int useCount(Name n) {
1572         int count = (result == n.index) ? 1 : 0;
1573         int i = Math.max(n.index + 1, arity);
1574         Name[] names = this.names;
1575         while (i < names.length) {
1576             Object[] arguments = names[i++].arguments;
1577             if (arguments != null) {
1578                 for (Object argument : arguments) {
1579                     if (argument == n) {
1580                         count++;
1581                     }
1582                 }
1583             }
1584         }
1585         return count;
1586     }
1587 
1588     static Name argument(int which, BasicType type) {
1589         if (which >= INTERNED_ARGUMENT_LIMIT)
1590             return new Name(which, type);
1591         return INTERNED_ARGUMENTS[type.ordinal()][which];
1592     }
1593     static Name internArgument(Name n) {
1594         assert(n.isParam()) : "not param: " + n;
1595         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1596         if (n.constraint != null)  return n;
1597         return argument(n.index, n.type);
1598     }
1599     static Name[] arguments(int extra, MethodType types) {
1600         int length = types.parameterCount();
1601         Name[] names = new Name[length + extra];
1602         for (int i = 0; i < length; i++)
1603             names[i] = argument(i, basicType(types.parameterType(i)));
1604         return names;
1605     }
1606 
1607     static Name[] invokeArguments(int extra, MethodType types) {
1608         int length = types.parameterCount();
1609         Name[] names = new Name[length + extra + 1];
1610         names[0] = argument(0, L_TYPE);
1611         for (int i = 0; i < length; i++)
1612             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1613         return names;
1614     }
1615 
1616     static final int INTERNED_ARGUMENT_LIMIT = 10;
1617     private static final Name[][] INTERNED_ARGUMENTS
1618             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1619     static {
1620         for (BasicType type : BasicType.ARG_TYPES) {
1621             int ord = type.ordinal();
1622             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1623                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1624             }
1625         }
1626     }
1627 
1628     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1629 
1630     static LambdaForm identityForm(BasicType type) {
1631         int ord = type.ordinal();
1632         LambdaForm form = LF_identity[ord];
1633         if (form != null) {
1634             return form;
1635         }
1636         createIdentityForm(type);
1637         return LF_identity[ord];
1638     }
1639 
1640     static NamedFunction identity(BasicType type) {
1641         int ord = type.ordinal();
1642         NamedFunction function = NF_identity[ord];
1643         if (function != null) {
1644             return function;
1645         }
1646         createIdentityForm(type);
1647         return NF_identity[ord];
1648     }
1649 
1650     static LambdaForm constantForm(BasicType type) {
1651         assert type != null && type != V_TYPE : type;
1652         var cached = LF_constant[type.ordinal()];
1653         if (cached != null)
1654             return cached;
1655         return createConstantForm(type);
1656     }
1657 
1658     private static LambdaForm createConstantForm(BasicType type) {
1659         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1660         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1661         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1662         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1663         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1664     }
1665 
1666     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1667     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1668     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1669 
1670     private static final Object createIdentityFormLock = new Object();
1671     private static void createIdentityForm(BasicType type) {
1672         // Avoid racy initialization during bootstrap
1673         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1674         synchronized (createIdentityFormLock) {
1675             final int ord = type.ordinal();
1676             LambdaForm idForm = LF_identity[ord];
1677             if (idForm != null) {
1678                 return;
1679             }
1680             char btChar = type.basicTypeChar();
1681             boolean isVoid = (type == V_TYPE);
1682             Class<?> btClass = type.btClass;
1683             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1684 
1685             // Look up symbolic names.  It might not be necessary to have these,
1686             // but if we need to emit direct references to bytecodes, it helps.
1687             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1688             try {
1689                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1690             } catch (IllegalAccessException|NoSuchMethodException ex) {
1691                 throw newInternalError(ex);
1692             }
1693 
1694             NamedFunction idFun;
1695 
1696             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1697             // bootstrap dependency on this method in case we're interpreting LFs
1698             if (isVoid) {
1699                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1700                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1701                 idForm.compileToBytecode();
1702                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1703             } else {
1704                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1705                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1706                 idForm.compileToBytecode();
1707                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1708                             MethodHandleImpl.Intrinsic.IDENTITY));
1709             }
1710 
1711             LF_identity[ord] = idForm;
1712             NF_identity[ord] = idFun;
1713 
1714             assert(idFun.isIdentity());
1715         }
1716     }
1717 
1718     // Avoid appealing to ValueConversions at bootstrap time:
1719     private static int identity_I(int x) { return x; }
1720     private static long identity_J(long x) { return x; }
1721     private static float identity_F(float x) { return x; }
1722     private static double identity_D(double x) { return x; }
1723     private static Object identity_L(Object x) { return x; }
1724     private static void identity_V() { return; }
1725     /**
1726      * Internal marker for byte-compiled LambdaForms.
1727      */
1728     /*non-public*/
1729     @Target(ElementType.METHOD)
1730     @Retention(RetentionPolicy.RUNTIME)
1731     @interface Compiled {
1732     }
1733 
1734     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1735     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1736     static {
1737         if (debugEnabled()) {
1738             DEBUG_NAME_COUNTERS = new HashMap<>();
1739             DEBUG_NAMES = new HashMap<>();
1740         } else {
1741             DEBUG_NAME_COUNTERS = null;
1742             DEBUG_NAMES = null;
1743         }
1744     }
1745 
1746     static {
1747         // The Holder class will contain pre-generated forms resolved
1748         // using MemberName.getFactory(). However, that doesn't initialize the
1749         // class, which subtly breaks inlining etc. By forcing
1750         // initialization of the Holder class we avoid these issues.
1751         UNSAFE.ensureClassInitialized(Holder.class);
1752     }
1753 
1754     /* Placeholder class for identity and constant forms generated ahead of time */
1755     final class Holder {}
1756 
1757     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1758     // during execution of the static initializes of this class.
1759     // Turning on TRACE_INTERPRETER too early will cause
1760     // stack overflows and other misbehavior during attempts to trace events
1761     // that occur during LambdaForm.<clinit>.
1762     // Therefore, do not move this line higher in this file, and do not remove.
1763     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1764 }