1 /*
   2  * Copyright (c) 2011, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         ZERO("zero"),
 249         IDENTITY("identity"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_VALUE("getValue"),
 271         PUT_VALUE("putValue"),
 272         GET_VALUE_VOLATILE("getValueVolatile"),
 273         PUT_VALUE_VOLATILE("putValueVolatile"),
 274         GET_INT("getInt"),
 275         PUT_INT("putInt"),
 276         GET_INT_VOLATILE("getIntVolatile"),
 277         PUT_INT_VOLATILE("putIntVolatile"),
 278         GET_BOOLEAN("getBoolean"),
 279         PUT_BOOLEAN("putBoolean"),
 280         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 281         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 282         GET_BYTE("getByte"),
 283         PUT_BYTE("putByte"),
 284         GET_BYTE_VOLATILE("getByteVolatile"),
 285         PUT_BYTE_VOLATILE("putByteVolatile"),
 286         GET_CHAR("getChar"),
 287         PUT_CHAR("putChar"),
 288         GET_CHAR_VOLATILE("getCharVolatile"),
 289         PUT_CHAR_VOLATILE("putCharVolatile"),
 290         GET_SHORT("getShort"),
 291         PUT_SHORT("putShort"),
 292         GET_SHORT_VOLATILE("getShortVolatile"),
 293         PUT_SHORT_VOLATILE("putShortVolatile"),
 294         GET_LONG("getLong"),
 295         PUT_LONG("putLong"),
 296         GET_LONG_VOLATILE("getLongVolatile"),
 297         PUT_LONG_VOLATILE("putLongVolatile"),
 298         GET_FLOAT("getFloat"),
 299         PUT_FLOAT("putFloat"),
 300         GET_FLOAT_VOLATILE("getFloatVolatile"),
 301         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 302         GET_DOUBLE("getDouble"),
 303         PUT_DOUBLE("putDouble"),
 304         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 305         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 306         TRY_FINALLY("tryFinally"),
 307         TABLE_SWITCH("tableSwitch"),
 308         COLLECT("collect"),
 309         COLLECTOR("collector"),
 310         CONVERT("convert"),
 311         SPREAD("spread"),
 312         LOOP("loop"),
 313         FIELD("field"),
 314         GUARD("guard"),
 315         GUARD_WITH_CATCH("guardWithCatch"),
 316         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 317         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 318         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 319 
 320         final String defaultLambdaName;
 321         final String methodName;
 322 
 323         private Kind(String defaultLambdaName) {
 324             this(defaultLambdaName, defaultLambdaName);
 325         }
 326 
 327         private Kind(String defaultLambdaName, String methodName) {
 328             this.defaultLambdaName = defaultLambdaName;
 329             this.methodName = methodName;
 330         }
 331     }
 332 
 333     // private version that doesn't do checks or defensive copies
 334     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 335         this.arity = arity;
 336         this.result = result;
 337         this.forceInline = forceInline;
 338         this.customized = customized;
 339         this.names = names;
 340         this.kind = kind;
 341         this.vmentry = null;
 342         this.isCompiled = false;
 343     }
 344 
 345     // root factory pre/post processing and calls simple constructor
 346     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 347         names = names.clone();
 348         assert(namesOK(arity, names));
 349         result = fixResult(result, names);
 350 
 351         boolean canInterpret = normalizeNames(arity, names);
 352         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 353         assert(form.nameRefsAreLegal());
 354         if (!canInterpret) {
 355             form.compileToBytecode();
 356         }
 357         return form;
 358     }
 359 
 360     // derived factories with defaults
 361     private static final int DEFAULT_RESULT = LAST_RESULT;
 362     private static final boolean DEFAULT_FORCE_INLINE = true;
 363     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 364     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 365 
 366     static LambdaForm create(int arity, Name[] names, int result) {
 367         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 368     }
 369     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 370         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 371     }
 372     static LambdaForm create(int arity, Name[] names) {
 373         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 374     }
 375     static LambdaForm create(int arity, Name[] names, Kind kind) {
 376         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 377     }
 378     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 379         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 380     }
 381 
 382     private static LambdaForm createBlankForType(MethodType mt) {
 383         // Make a blank lambda form, which returns a constant zero or null.
 384         // It is used as a template for managing the invocation of similar forms that are non-empty.
 385         // Called only from getPreparedForm.
 386         int arity = mt.parameterCount();
 387         int result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? VOID_RESULT : arity;
 388         Name[] names = buildEmptyNames(arity, mt, result == VOID_RESULT);
 389         boolean canInterpret = normalizeNames(arity, names);
 390         LambdaForm form = new LambdaForm(arity, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, names, Kind.ZERO);
 391         assert(form.nameRefsAreLegal() && form.isEmpty() && isValidSignature(form.basicTypeSignature()));
 392         if (!canInterpret) {
 393             form.compileToBytecode();
 394         }
 395         return form;
 396     }
 397 
 398     private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) {
 399         Name[] names = arguments(isVoid ? 0 : 1, mt);
 400         if (!isVoid) {
 401             Name zero = new Name(constantZero(basicType(mt.returnType())));
 402             names[arity] = zero.withIndex(arity);
 403         }
 404         assert(namesOK(arity, names));
 405         return names;
 406     }
 407 
 408     private static int fixResult(int result, Name[] names) {
 409         if (result == LAST_RESULT)
 410             result = names.length - 1;  // might still be void
 411         if (result >= 0 && names[result].type == V_TYPE)
 412             result = VOID_RESULT;
 413         return result;
 414     }
 415 
 416     static boolean debugNames() {
 417         return DEBUG_NAME_COUNTERS != null;
 418     }
 419 
 420     static void associateWithDebugName(LambdaForm form, String name) {
 421         assert (debugNames());
 422         synchronized (DEBUG_NAMES) {
 423             DEBUG_NAMES.put(form, name);
 424         }
 425     }
 426 
 427     String lambdaName() {
 428         if (DEBUG_NAMES != null) {
 429             synchronized (DEBUG_NAMES) {
 430                 String name = DEBUG_NAMES.get(this);
 431                 if (name == null) {
 432                     name = generateDebugName();
 433                 }
 434                 return name;
 435             }
 436         }
 437         return kind.defaultLambdaName;
 438     }
 439 
 440     private String generateDebugName() {
 441         assert (debugNames());
 442         String debugNameStem = kind.defaultLambdaName;
 443         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 444         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 445         StringBuilder buf = new StringBuilder(debugNameStem);
 446         int leadingZero = buf.length();
 447         buf.append((int) ctr);
 448         for (int i = buf.length() - leadingZero; i < 3; i++) {
 449             buf.insert(leadingZero, '0');
 450         }
 451         buf.append('_');
 452         buf.append(basicTypeSignature());
 453         String name = buf.toString();
 454         associateWithDebugName(this, name);
 455         return name;
 456     }
 457 
 458     private static boolean namesOK(int arity, Name[] names) {
 459         for (int i = 0; i < names.length; i++) {
 460             Name n = names[i];
 461             assert(n != null) : "n is null";
 462             if (i < arity)
 463                 assert( n.isParam()) : n + " is not param at " + i;
 464             else
 465                 assert(!n.isParam()) : n + " is param at " + i;
 466         }
 467         return true;
 468     }
 469 
 470     /** Customize LambdaForm for a particular MethodHandle */
 471     LambdaForm customize(MethodHandle mh) {
 472         if (customized == mh) {
 473             return this;
 474         }
 475         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 476         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 477             // If shared LambdaForm has been compiled, compile customized version as well.
 478             customForm.compileToBytecode();
 479         }
 480         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 481         return customForm;
 482     }
 483 
 484     /** Get uncustomized flavor of the LambdaForm */
 485     LambdaForm uncustomize() {
 486         if (customized == null) {
 487             return this;
 488         }
 489         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 490         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 491         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 492             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 493             uncustomizedForm.compileToBytecode();
 494         }
 495         return uncustomizedForm;
 496     }
 497 
 498     /** Renumber and/or replace params so that they are interned and canonically numbered.
 499      *  @return true if we can interpret
 500      */
 501     private static boolean normalizeNames(int arity, Name[] names) {
 502         Name[] oldNames = names.clone();
 503         int maxOutArity = 0;
 504         for (int i = 0; i < names.length; i++) {
 505             Name n = names[i];
 506             names[i] = n.withIndex(i);
 507             if (n.arguments != null && maxOutArity < n.arguments.length)
 508                 maxOutArity = n.arguments.length;
 509         }
 510         if (oldNames != null) {
 511             for (int i = Math.max(1, arity); i < names.length; i++) {
 512                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 513                 names[i] = fixed.withIndex(i);
 514             }
 515         }
 516         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 517         boolean needIntern = false;
 518         for (int i = 0; i < maxInterned; i++) {
 519             Name n = names[i], n2 = internArgument(n);
 520             if (n != n2) {
 521                 names[i] = n2;
 522                 needIntern = true;
 523             }
 524         }
 525         if (needIntern) {
 526             for (int i = arity; i < names.length; i++) {
 527                 names[i].internArguments();
 528             }
 529         }
 530 
 531         // return true if we can interpret
 532         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 533             // Cannot use LF interpreter on very high arity expressions.
 534             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 535             return false;
 536         }
 537         return true;
 538     }
 539 
 540     /**
 541      * Check that all embedded Name references are localizable to this lambda,
 542      * and are properly ordered after their corresponding definitions.
 543      * <p>
 544      * Note that a Name can be local to multiple lambdas, as long as
 545      * it possesses the same index in each use site.
 546      * This allows Name references to be freely reused to construct
 547      * fresh lambdas, without confusion.
 548      */
 549     boolean nameRefsAreLegal() {
 550         assert(arity >= 0 && arity <= names.length);
 551         assert(result >= -1 && result < names.length);
 552         // Do all names possess an index consistent with their local definition order?
 553         for (int i = 0; i < arity; i++) {
 554             Name n = names[i];
 555             assert(n.index() == i) : Arrays.asList(n.index(), i);
 556             assert(n.isParam());
 557         }
 558         // Also, do all local name references
 559         for (int i = arity; i < names.length; i++) {
 560             Name n = names[i];
 561             assert(n.index() == i);
 562             for (Object arg : n.arguments) {
 563                 if (arg instanceof Name n2) {
 564                     int i2 = n2.index;
 565                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 566                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 567                     assert(i2 < i);  // ref must come after def!
 568                 }
 569             }
 570         }
 571         return true;
 572     }
 573 
 574     // /** Invoke this form on the given arguments. */
 575     // final Object invoke(Object... args) throws Throwable {
 576     //     // NYI: fit this into the fast path?
 577     //     return interpretWithArguments(args);
 578     // }
 579 
 580     /** Report the return type. */
 581     BasicType returnType() {
 582         if (result < 0)  return V_TYPE;
 583         Name n = names[result];
 584         return n.type;
 585     }
 586 
 587     /** Report the N-th argument type. */
 588     BasicType parameterType(int n) {
 589         return parameter(n).type;
 590     }
 591 
 592     /** Report the N-th argument name. */
 593     Name parameter(int n) {
 594         Name param = names[n];
 595         assert(n < arity && param.isParam());
 596         return param;
 597     }
 598 
 599     /** Report the N-th argument type constraint. */
 600     Object parameterConstraint(int n) {
 601         return parameter(n).constraint;
 602     }
 603 
 604     /** Report the arity. */
 605     int arity() {
 606         return arity;
 607     }
 608 
 609     /** Report the number of expressions (non-parameter names). */
 610     int expressionCount() {
 611         return names.length - arity;
 612     }
 613 
 614     /** Return the method type corresponding to my basic type signature. */
 615     MethodType methodType() {
 616         Class<?>[] ptypes = new Class<?>[arity];
 617         for (int i = 0; i < arity; ++i) {
 618             ptypes[i] = parameterType(i).btClass;
 619         }
 620         return MethodType.methodType(returnType().btClass, ptypes, true);
 621     }
 622 
 623     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 624     final String basicTypeSignature() {
 625         StringBuilder buf = new StringBuilder(arity() + 3);
 626         for (int i = 0, a = arity(); i < a; i++)
 627             buf.append(parameterType(i).basicTypeChar());
 628         return buf.append('_').append(returnType().basicTypeChar()).toString();
 629     }
 630     static int signatureArity(String sig) {
 631         assert(isValidSignature(sig));
 632         return sig.indexOf('_');
 633     }
 634     static boolean isValidSignature(String sig) {
 635         int arity = sig.indexOf('_');
 636         if (arity < 0)  return false;  // must be of the form *_*
 637         int siglen = sig.length();
 638         if (siglen != arity + 2)  return false;  // *_X
 639         for (int i = 0; i < siglen; i++) {
 640             if (i == arity)  continue;  // skip '_'
 641             char c = sig.charAt(i);
 642             if (c == 'V')
 643                 return (i == siglen - 1 && arity == siglen - 2);
 644             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 645         }
 646         return true;  // [LIJFD]*_[LIJFDV]
 647     }
 648 
 649     /**
 650      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 651      */
 652     boolean isSelectAlternative(int pos) {
 653         // selectAlternative idiom:
 654         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 655         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 656         if (pos+1 >= names.length)  return false;
 657         Name name0 = names[pos];
 658         Name name1 = names[pos+1];
 659         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 660                 name1.isInvokeBasic() &&
 661                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 662                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 663     }
 664 
 665     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 666         if (pos+2 >= names.length)  return false;
 667         Name name0 = names[pos];
 668         Name name1 = names[pos+1];
 669         Name name2 = names[pos+2];
 670         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 671                 name0.isInvokeBasic() &&
 672                 name2.isInvokeBasic() &&
 673                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 674                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 675                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 676                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 677     }
 678 
 679     /**
 680      * Check if i-th name is a start of GuardWithCatch idiom.
 681      */
 682     boolean isGuardWithCatch(int pos) {
 683         // GuardWithCatch idiom:
 684         //   t_{n}:L=MethodHandle.invokeBasic(...)
 685         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 686         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 687         return isMatchingIdiom(pos, "guardWithCatch", 3);
 688     }
 689 
 690     /**
 691      * Check if i-th name is a start of the tryFinally idiom.
 692      */
 693     boolean isTryFinally(int pos) {
 694         // tryFinally idiom:
 695         //   t_{n}:L=MethodHandle.invokeBasic(...)
 696         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 697         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 698         return isMatchingIdiom(pos, "tryFinally", 2);
 699     }
 700 
 701     /**
 702      * Check if i-th name is a start of the tableSwitch idiom.
 703      */
 704     boolean isTableSwitch(int pos) {
 705         // tableSwitch idiom:
 706         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 707         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 708         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 709         if (pos + 2 >= names.length)  return false;
 710 
 711         final int POS_COLLECT_ARGS = pos;
 712         final int POS_TABLE_SWITCH = pos + 1;
 713         final int POS_UNBOX_RESULT = pos + 2;
 714 
 715         Name collectArgs = names[POS_COLLECT_ARGS];
 716         Name tableSwitch = names[POS_TABLE_SWITCH];
 717         Name unboxResult = names[POS_UNBOX_RESULT];
 718         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 719                 collectArgs.isInvokeBasic() &&
 720                 unboxResult.isInvokeBasic() &&
 721                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 722                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 723                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 724                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 725     }
 726 
 727     /**
 728      * Check if i-th name is a start of the loop idiom.
 729      */
 730     boolean isLoop(int pos) {
 731         // loop idiom:
 732         //   t_{n}:L=MethodHandle.invokeBasic(...)
 733         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 734         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 735         return isMatchingIdiom(pos, "loop", 2);
 736     }
 737 
 738     /*
 739      * Code generation issues:
 740      *
 741      * Compiled LFs should be reusable in general.
 742      * The biggest issue is how to decide when to pull a name into
 743      * the bytecode, versus loading a reified form from the MH data.
 744      *
 745      * For example, an asType wrapper may require execution of a cast
 746      * after a call to a MH.  The target type of the cast can be placed
 747      * as a constant in the LF itself.  This will force the cast type
 748      * to be compiled into the bytecodes and native code for the MH.
 749      * Or, the target type of the cast can be erased in the LF, and
 750      * loaded from the MH data.  (Later on, if the MH as a whole is
 751      * inlined, the data will flow into the inlined instance of the LF,
 752      * as a constant, and the end result will be an optimal cast.)
 753      *
 754      * This erasure of cast types can be done with any use of
 755      * reference types.  It can also be done with whole method
 756      * handles.  Erasing a method handle might leave behind
 757      * LF code that executes correctly for any MH of a given
 758      * type, and load the required MH from the enclosing MH's data.
 759      * Or, the erasure might even erase the expected MT.
 760      *
 761      * Also, for direct MHs, the MemberName of the target
 762      * could be erased, and loaded from the containing direct MH.
 763      * As a simple case, a LF for all int-valued non-static
 764      * field getters would perform a cast on its input argument
 765      * (to non-constant base type derived from the MemberName)
 766      * and load an integer value from the input object
 767      * (at a non-constant offset also derived from the MemberName).
 768      * Such MN-erased LFs would be inlinable back to optimized
 769      * code, whenever a constant enclosing DMH is available
 770      * to supply a constant MN from its data.
 771      *
 772      * The main problem here is to keep LFs reasonably generic,
 773      * while ensuring that hot spots will inline good instances.
 774      * "Reasonably generic" means that we don't end up with
 775      * repeated versions of bytecode or machine code that do
 776      * not differ in their optimized form.  Repeated versions
 777      * of machine would have the undesirable overheads of
 778      * (a) redundant compilation work and (b) extra I$ pressure.
 779      * To control repeated versions, we need to be ready to
 780      * erase details from LFs and move them into MH data,
 781      * whenever those details are not relevant to significant
 782      * optimization.  "Significant" means optimization of
 783      * code that is actually hot.
 784      *
 785      * Achieving this may require dynamic splitting of MHs, by replacing
 786      * a generic LF with a more specialized one, on the same MH,
 787      * if (a) the MH is frequently executed and (b) the MH cannot
 788      * be inlined into a containing caller, such as an invokedynamic.
 789      *
 790      * Compiled LFs that are no longer used should be GC-able.
 791      * If they contain non-BCP references, they should be properly
 792      * interlinked with the class loader(s) that their embedded types
 793      * depend on.  This probably means that reusable compiled LFs
 794      * will be tabulated (indexed) on relevant class loaders,
 795      * or else that the tables that cache them will have weak links.
 796      */
 797 
 798     /**
 799      * Make this LF directly executable, as part of a MethodHandle.
 800      * Invariant:  Every MH which is invoked must prepare its LF
 801      * before invocation.
 802      * (In principle, the JVM could do this very lazily,
 803      * as a sort of pre-invocation linkage step.)
 804      */
 805     public void prepare() {
 806         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 807             compileToBytecode();
 808         }
 809         if (this.vmentry != null) {
 810             // already prepared (e.g., a primitive DMH invoker form)
 811             return;
 812         }
 813         MethodType mtype = methodType();
 814         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 815         if (prep == null) {
 816             assert (isValidSignature(basicTypeSignature()));
 817             prep = LambdaForm.createBlankForType(mtype);
 818             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 819             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 820         }
 821         this.vmentry = prep.vmentry;
 822         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 823     }
 824 
 825     private static @Stable PerfCounter LF_FAILED;
 826 
 827     private static PerfCounter failedCompilationCounter() {
 828         if (LF_FAILED == null) {
 829             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 830         }
 831         return LF_FAILED;
 832     }
 833 
 834     /** Generate optimizable bytecode for this form. */
 835     void compileToBytecode() {
 836         if (forceInterpretation()) {
 837             return; // this should not be compiled
 838         }
 839         if (vmentry != null && isCompiled) {
 840             return;  // already compiled somehow
 841         }
 842 
 843         // Obtain the invoker MethodType outside of the following try block.
 844         // This ensures that an IllegalArgumentException is directly thrown if the
 845         // type would have 256 or more parameters
 846         MethodType invokerType = methodType();
 847         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 848         try {
 849             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 850             if (TRACE_INTERPRETER)
 851                 traceInterpreter("compileToBytecode", this);
 852             isCompiled = true;
 853         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 854             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 855             invocationCounter = -1;
 856             failedCompilationCounter().increment();
 857             if (LOG_LF_COMPILATION_FAILURE) {
 858                 System.out.println("LambdaForm compilation failed: " + this);
 859                 bge.printStackTrace(System.out);
 860             }
 861         } catch (Error e) {
 862             // Pass through any error
 863             throw e;
 864         } catch (Exception e) {
 865             // Wrap any exception
 866             throw newInternalError(this.toString(), e);
 867         }
 868     }
 869 
 870     // The next few routines are called only from assert expressions
 871     // They verify that the built-in invokers process the correct raw data types.
 872     private static boolean argumentTypesMatch(String sig, Object[] av) {
 873         int arity = signatureArity(sig);
 874         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 875         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 876         MethodHandle mh = (MethodHandle) av[0];
 877         MethodType mt = mh.type();
 878         assert(mt.parameterCount() == arity-1);
 879         for (int i = 0; i < av.length; i++) {
 880             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 881             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 882         }
 883         return true;
 884     }
 885     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 886         // The following line is needed because (...)void method handles can use non-void invokers
 887         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 888         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 889         switch (tc) {
 890         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 891         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 892         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 893         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 894         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 895         case V_TYPE: break;  // allow anything here; will be dropped
 896         default:  assert(false);
 897         }
 898         return true;
 899     }
 900     private static boolean checkInt(Class<?> type, Object x) {
 901         assert(x instanceof Integer);
 902         if (type == int.class)  return true;
 903         Wrapper w = Wrapper.forBasicType(type);
 904         assert(w.isSubwordOrInt());
 905         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 906         return x.equals(x1);
 907     }
 908     private static boolean checkRef(Class<?> type, Object x) {
 909         assert(!type.isPrimitive());
 910         if (x == null)  return true;
 911         if (type.isInterface())  return true;
 912         return type.isInstance(x);
 913     }
 914 
 915     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 916     private static final int COMPILE_THRESHOLD;
 917     static {
 918         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 919     }
 920     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 921 
 922     private boolean forceInterpretation() {
 923         return invocationCounter == -1;
 924     }
 925 
 926     /** Interpretively invoke this form on the given arguments. */
 927     @Hidden
 928     @DontInline
 929     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 930         if (TRACE_INTERPRETER)
 931             return interpretWithArgumentsTracing(argumentValues);
 932         checkInvocationCounter();
 933         assert(arityCheck(argumentValues));
 934         Object[] values = Arrays.copyOf(argumentValues, names.length);
 935         for (int i = argumentValues.length; i < values.length; i++) {
 936             values[i] = interpretName(names[i], values);
 937         }
 938         Object rv = (result < 0) ? null : values[result];
 939         assert(resultCheck(argumentValues, rv));
 940         return rv;
 941     }
 942 
 943     /** Evaluate a single Name within this form, applying its function to its arguments. */
 944     @Hidden
 945     @DontInline
 946     Object interpretName(Name name, Object[] values) throws Throwable {
 947         if (TRACE_INTERPRETER)
 948             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 949         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 950         for (int i = 0; i < arguments.length; i++) {
 951             Object a = arguments[i];
 952             if (a instanceof Name n) {
 953                 int i2 = n.index();
 954                 assert(names[i2] == a);
 955                 a = values[i2];
 956                 arguments[i] = a;
 957             }
 958         }
 959         return name.function.invokeWithArguments(arguments);
 960     }
 961 
 962     private void checkInvocationCounter() {
 963         if (COMPILE_THRESHOLD != 0 &&
 964             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 965             invocationCounter++;  // benign race
 966             if (invocationCounter >= COMPILE_THRESHOLD) {
 967                 // Replace vmentry with a bytecode version of this LF.
 968                 compileToBytecode();
 969             }
 970         }
 971     }
 972     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 973         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 974         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 975             int ctr = invocationCounter++;  // benign race
 976             traceInterpreter("| invocationCounter", ctr);
 977             if (invocationCounter >= COMPILE_THRESHOLD) {
 978                 compileToBytecode();
 979             }
 980         }
 981         Object rval;
 982         try {
 983             assert(arityCheck(argumentValues));
 984             Object[] values = Arrays.copyOf(argumentValues, names.length);
 985             for (int i = argumentValues.length; i < values.length; i++) {
 986                 values[i] = interpretName(names[i], values);
 987             }
 988             rval = (result < 0) ? null : values[result];
 989         } catch (Throwable ex) {
 990             traceInterpreter("] throw =>", ex);
 991             throw ex;
 992         }
 993         traceInterpreter("] return =>", rval);
 994         return rval;
 995     }
 996 
 997     static void traceInterpreter(String event, Object obj, Object... args) {
 998         if (TRACE_INTERPRETER) {
 999             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
1000         }
1001     }
1002     static void traceInterpreter(String event, Object obj) {
1003         traceInterpreter(event, obj, (Object[])null);
1004     }
1005     private boolean arityCheck(Object[] argumentValues) {
1006         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
1007         // also check that the leading (receiver) argument is somehow bound to this LF:
1008         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
1009         MethodHandle mh = (MethodHandle) argumentValues[0];
1010         assert(mh.internalForm() == this);
1011         // note:  argument #0 could also be an interface wrapper, in the future
1012         argumentTypesMatch(basicTypeSignature(), argumentValues);
1013         return true;
1014     }
1015     private boolean resultCheck(Object[] argumentValues, Object result) {
1016         MethodHandle mh = (MethodHandle) argumentValues[0];
1017         MethodType mt = mh.type();
1018         assert(valueMatches(returnType(), mt.returnType(), result));
1019         return true;
1020     }
1021 
1022     private boolean isEmpty() {
1023         if (result < 0)
1024             return (names.length == arity);
1025         else if (result == arity && names.length == arity + 1)
1026             return names[arity].isConstantZero();
1027         else
1028             return false;
1029     }
1030 
1031     public String toString() {
1032         return debugString(-1);
1033     }
1034 
1035     String debugString(int indentLevel) {
1036         String prefix = MethodHandle.debugPrefix(indentLevel);
1037         String lambdaName = lambdaName();
1038         StringBuilder buf = new StringBuilder(lambdaName);
1039         buf.append("=Lambda(");
1040         for (int i = 0; i < names.length; i++) {
1041             if (i == arity)  buf.append(")=>{");
1042             Name n = names[i];
1043             if (i >= arity)  buf.append("\n    ").append(prefix);
1044             buf.append(n.paramString());
1045             if (i < arity) {
1046                 if (i+1 < arity)  buf.append(",");
1047                 continue;
1048             }
1049             buf.append("=").append(n.exprString());
1050             buf.append(";");
1051         }
1052         if (arity == names.length)  buf.append(")=>{");
1053         buf.append(result < 0 ? "void" : names[result]).append("}");
1054         if (TRACE_INTERPRETER) {
1055             // Extra verbosity:
1056             buf.append(":").append(basicTypeSignature());
1057             buf.append("/").append(vmentry);
1058         }
1059         return buf.toString();
1060     }
1061 
1062     @Override
1063     public boolean equals(Object obj) {
1064         return obj instanceof LambdaForm lf && equals(lf);
1065     }
1066     public boolean equals(LambdaForm that) {
1067         if (this.result != that.result)  return false;
1068         return Arrays.equals(this.names, that.names);
1069     }
1070     public int hashCode() {
1071         return result + 31 * Arrays.hashCode(names);
1072     }
1073     LambdaFormEditor editor() {
1074         return LambdaFormEditor.lambdaFormEditor(this);
1075     }
1076 
1077     boolean contains(Name name) {
1078         int pos = name.index();
1079         if (pos >= 0) {
1080             return pos < names.length && name.equals(names[pos]);
1081         }
1082         for (int i = arity; i < names.length; i++) {
1083             if (name.equals(names[i]))
1084                 return true;
1085         }
1086         return false;
1087     }
1088 
1089     static class NamedFunction {
1090         final MemberName member;
1091         private @Stable MethodHandle resolvedHandle;
1092         private @Stable MethodType type;
1093 
1094         NamedFunction(MethodHandle resolvedHandle) {
1095             this(resolvedHandle.internalMemberName(), resolvedHandle);
1096         }
1097         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1098             this.member = member;
1099             this.resolvedHandle = resolvedHandle;
1100              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1101              //assert(!isInvokeBasic(member));
1102         }
1103         NamedFunction(MethodType basicInvokerType) {
1104             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1105             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1106                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1107                 this.member = resolvedHandle.internalMemberName();
1108             } else {
1109                 // necessary to pass BigArityTest
1110                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1111             }
1112             assert(isInvokeBasic(member));
1113         }
1114 
1115         private static boolean isInvokeBasic(MemberName member) {
1116             return member != null &&
1117                    member.getDeclaringClass() == MethodHandle.class &&
1118                   "invokeBasic".equals(member.getName());
1119         }
1120 
1121         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1122         // Any LambdaForm containing such a member is not interpretable.
1123         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1124         // And even without the resolvedHandle, the name can still be compiled and optimized.
1125         NamedFunction(Method method) {
1126             this(new MemberName(method));
1127         }
1128         NamedFunction(MemberName member) {
1129             this(member, null);
1130         }
1131 
1132         MethodHandle resolvedHandle() {
1133             if (resolvedHandle == null)  resolve();
1134             return resolvedHandle;
1135         }
1136 
1137         synchronized void resolve() {
1138             if (resolvedHandle == null) {
1139                 resolvedHandle = DirectMethodHandle.make(member);
1140             }
1141         }
1142 
1143         @Override
1144         public boolean equals(Object other) {
1145             if (this == other) return true;
1146             if (other == null) return false;
1147             return (other instanceof NamedFunction that)
1148                     && this.member != null
1149                     && this.member.equals(that.member);
1150         }
1151 
1152         @Override
1153         public int hashCode() {
1154             if (member != null)
1155                 return member.hashCode();
1156             return super.hashCode();
1157         }
1158 
1159         static final MethodType INVOKER_METHOD_TYPE =
1160             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1161 
1162         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1163             typeForm = typeForm.basicType().form();  // normalize to basic type
1164             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1165             if (mh != null)  return mh;
1166             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1167             mh = DirectMethodHandle.make(invoker);
1168             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1169             if (mh2 != null)  return mh2;  // benign race
1170             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1171                 throw newInternalError(mh.debugString());
1172             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1173         }
1174 
1175         @Hidden
1176         Object invokeWithArguments(Object... arguments) throws Throwable {
1177             // If we have a cached invoker, call it right away.
1178             // NOTE: The invoker always returns a reference value.
1179             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1180             return invoker().invokeBasic(resolvedHandle(), arguments);
1181         }
1182 
1183         @Hidden
1184         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1185             Object rval;
1186             try {
1187                 traceInterpreter("[ call", this, arguments);
1188                 // resolvedHandle might be uninitialized, ok for tracing
1189                 if (resolvedHandle == null) {
1190                     traceInterpreter("| resolve", this);
1191                     resolvedHandle();
1192                 }
1193                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1194             } catch (Throwable ex) {
1195                 traceInterpreter("] throw =>", ex);
1196                 throw ex;
1197             }
1198             traceInterpreter("] return =>", rval);
1199             return rval;
1200         }
1201 
1202         private MethodHandle invoker() {
1203             return computeInvoker(methodType().form());
1204         }
1205 
1206         MethodType methodType() {
1207             MethodType type = this.type;
1208             if (type == null) {
1209                 this.type = type = calculateMethodType(member, resolvedHandle);
1210             }
1211             return type;
1212         }
1213 
1214         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1215             if (resolvedHandle != null) {
1216                 return resolvedHandle.type();
1217             } else {
1218                 // only for certain internal LFs during bootstrapping
1219                 return member.getInvocationType();
1220             }
1221         }
1222 
1223         MemberName member() {
1224             assert(assertMemberIsConsistent());
1225             return member;
1226         }
1227 
1228         // Called only from assert.
1229         private boolean assertMemberIsConsistent() {
1230             if (resolvedHandle instanceof DirectMethodHandle) {
1231                 MemberName m = resolvedHandle.internalMemberName();
1232                 assert(m.equals(member));
1233             }
1234             return true;
1235         }
1236 
1237         Class<?> memberDeclaringClassOrNull() {
1238             return (member == null) ? null : member.getDeclaringClass();
1239         }
1240 
1241         BasicType returnType() {
1242             return basicType(methodType().returnType());
1243         }
1244 
1245         BasicType parameterType(int n) {
1246             return basicType(methodType().parameterType(n));
1247         }
1248 
1249         int arity() {
1250             return methodType().parameterCount();
1251         }
1252 
1253         public String toString() {
1254             if (member == null)  return String.valueOf(resolvedHandle);
1255             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1256         }
1257 
1258         public boolean isIdentity() {
1259             return this.equals(identity(returnType()));
1260         }
1261 
1262         public boolean isConstantZero() {
1263             return this.equals(constantZero(returnType()));
1264         }
1265 
1266         public MethodHandleImpl.Intrinsic intrinsicName() {
1267             return resolvedHandle != null
1268                 ? resolvedHandle.intrinsicName()
1269                 : MethodHandleImpl.Intrinsic.NONE;
1270         }
1271 
1272         public Object intrinsicData() {
1273             return resolvedHandle != null
1274                 ? resolvedHandle.intrinsicData()
1275                 : null;
1276         }
1277     }
1278 
1279     public static String basicTypeSignature(MethodType type) {
1280         int params = type.parameterCount();
1281         char[] sig = new char[params + 2];
1282         int sigp = 0;
1283         while (sigp < params) {
1284             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1285         }
1286         sig[sigp++] = '_';
1287         sig[sigp++] = basicTypeChar(type.returnType());
1288         assert(sigp == sig.length);
1289         return String.valueOf(sig);
1290     }
1291 
1292     /** Hack to make signatures more readable when they show up in method names.
1293      * Signature should start with a sequence of uppercase ASCII letters.
1294      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1295      * A tail of anything other than uppercase ASCII is passed through unchanged.
1296      * @param signature sequence of uppercase ASCII letters with possible repetitions
1297      * @return same sequence, with repetitions counted by decimal numerals
1298      */
1299     public static String shortenSignature(String signature) {
1300         final int NO_CHAR = -1, MIN_RUN = 3;
1301         int c0, c1 = NO_CHAR, c1reps = 0;
1302         StringBuilder buf = null;
1303         int len = signature.length();
1304         if (len < MIN_RUN)  return signature;
1305         for (int i = 0; i <= len; i++) {
1306             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1307                 // wrong kind of char; bail out here
1308                 if (buf != null) {
1309                     buf.append(signature, i - c1reps, len);
1310                 }
1311                 break;
1312             }
1313             // shift in the next char:
1314             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1315             if (c1 == c0) { ++c1reps; continue; }
1316             // shift in the next count:
1317             int c0reps = c1reps; c1reps = 1;
1318             // end of a  character run
1319             if (c0reps < MIN_RUN) {
1320                 if (buf != null) {
1321                     while (--c0reps >= 0)
1322                         buf.append((char)c0);
1323                 }
1324                 continue;
1325             }
1326             // found three or more in a row
1327             if (buf == null)
1328                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1329             buf.append((char)c0).append(c0reps);
1330         }
1331         return (buf == null) ? signature : buf.toString();
1332     }
1333 
1334     static final class Name {
1335         final BasicType type;
1336         final short index;
1337         final NamedFunction function;
1338         final Object constraint;  // additional type information, if not null
1339         @Stable final Object[] arguments;
1340 
1341         private static final Object[] EMPTY_ARGS = new Object[0];
1342 
1343         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1344             this.index = (short)index;
1345             this.type = type;
1346             this.function = function;
1347             this.arguments = arguments;
1348             this.constraint = constraint;
1349             assert(this.index == index && typesMatch(function, arguments));
1350             assert(constraint == null || isParam());  // only params have constraints
1351             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1352         }
1353 
1354         Name(MethodHandle function, Object... arguments) {
1355             this(new NamedFunction(function), arguments);
1356         }
1357         Name(MethodType functionType, Object... arguments) {
1358             this(new NamedFunction(functionType), arguments);
1359             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1360         }
1361         Name(MemberName function, Object... arguments) {
1362             this(new NamedFunction(function), arguments);
1363         }
1364         Name(NamedFunction function) {
1365             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1366         }
1367         Name(NamedFunction function, Object arg) {
1368             this(-1, function.returnType(), function, new Object[] { arg }, null);
1369         }
1370         Name(NamedFunction function, Object arg0, Object arg1) {
1371             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1372         }
1373         Name(NamedFunction function, Object... arguments) {
1374             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1375         }
1376         /** Create a raw parameter of the given type, with an expected index. */
1377         Name(int index, BasicType type) {
1378             this(index, type, null, null, null);
1379         }
1380         /** Create a raw parameter of the given type. */
1381         Name(BasicType type) { this(-1, type); }
1382 
1383         BasicType type() { return type; }
1384         int index() { return index; }
1385 
1386         char typeChar() {
1387             return type.btChar;
1388         }
1389 
1390         Name withIndex(int i) {
1391             if (i == this.index) return this;
1392             return new Name(i, type, function, arguments, constraint);
1393         }
1394 
1395         Name withConstraint(Object constraint) {
1396             if (constraint == this.constraint)  return this;
1397             return new Name(index, type, function, arguments, constraint);
1398         }
1399 
1400         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1401             if (oldName == newName)  return this;
1402             @SuppressWarnings("LocalVariableHidesMemberVariable")
1403             Object[] arguments = this.arguments;
1404             if (arguments == null)  return this;
1405             boolean replaced = false;
1406             for (int j = 0; j < arguments.length; j++) {
1407                 if (arguments[j] == oldName) {
1408                     if (!replaced) {
1409                         replaced = true;
1410                         arguments = arguments.clone();
1411                     }
1412                     arguments[j] = newName;
1413                 }
1414             }
1415             if (!replaced)  return this;
1416             return new Name(function, arguments);
1417         }
1418         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1419          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1420          */
1421         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1422             if (start >= end)  return this;
1423             @SuppressWarnings("LocalVariableHidesMemberVariable")
1424             Object[] arguments = this.arguments;
1425             boolean replaced = false;
1426         eachArg:
1427             for (int j = 0; j < arguments.length; j++) {
1428                 if (arguments[j] instanceof Name n) {
1429                     int check = n.index;
1430                     // harmless check to see if the thing is already in newNames:
1431                     if (check >= 0 && check < newNames.length && n == newNames[check])
1432                         continue eachArg;
1433                     // n might not have the correct index: n != oldNames[n.index].
1434                     for (int i = start; i < end; i++) {
1435                         if (n == oldNames[i]) {
1436                             if (n == newNames[i])
1437                                 continue eachArg;
1438                             if (!replaced) {
1439                                 replaced = true;
1440                                 arguments = arguments.clone();
1441                             }
1442                             arguments[j] = newNames[i];
1443                             continue eachArg;
1444                         }
1445                     }
1446                 }
1447             }
1448             if (!replaced)  return this;
1449             return new Name(function, arguments);
1450         }
1451         void internArguments() {
1452             @SuppressWarnings("LocalVariableHidesMemberVariable")
1453             Object[] arguments = this.arguments;
1454             for (int j = 0; j < arguments.length; j++) {
1455                 if (arguments[j] instanceof Name n) {
1456                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1457                         arguments[j] = internArgument(n);
1458                 }
1459             }
1460         }
1461         boolean isParam() {
1462             return function == null;
1463         }
1464         boolean isConstantZero() {
1465             return !isParam() && arguments.length == 0 && function.isConstantZero();
1466         }
1467 
1468         boolean refersTo(Class<?> declaringClass, String methodName) {
1469             return function != null &&
1470                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1471         }
1472 
1473         /**
1474          * Check if MemberName is a call to MethodHandle.invokeBasic.
1475          */
1476         boolean isInvokeBasic() {
1477             if (function == null)
1478                 return false;
1479             if (arguments.length < 1)
1480                 return false;  // must have MH argument
1481             MemberName member = function.member();
1482             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1483                     !member.isPublic() && !member.isStatic();
1484         }
1485 
1486         /**
1487          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1488          */
1489         boolean isLinkerMethodInvoke() {
1490             if (function == null)
1491                 return false;
1492             if (arguments.length < 1)
1493                 return false;  // must have MH argument
1494             MemberName member = function.member();
1495             return member != null &&
1496                     member.getDeclaringClass() == MethodHandle.class &&
1497                     !member.isPublic() && member.isStatic() &&
1498                     member.getName().startsWith("linkTo");
1499         }
1500 
1501         public String toString() {
1502             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1503         }
1504         public String debugString() {
1505             String s = paramString();
1506             return (function == null) ? s : s + "=" + exprString();
1507         }
1508         public String paramString() {
1509             String s = toString();
1510             Object c = constraint;
1511             if (c == null)
1512                 return s;
1513             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1514             return s + "/" + c;
1515         }
1516         public String exprString() {
1517             if (function == null)  return toString();
1518             StringBuilder buf = new StringBuilder(function.toString());
1519             buf.append("(");
1520             String cma = "";
1521             for (Object a : arguments) {
1522                 buf.append(cma); cma = ",";
1523                 if (a instanceof Name || a instanceof Integer)
1524                     buf.append(a);
1525                 else
1526                     buf.append("(").append(a).append(")");
1527             }
1528             buf.append(")");
1529             return buf.toString();
1530         }
1531 
1532         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1533             if (arguments == null) {
1534                 assert(function == null);
1535                 return true;
1536             }
1537             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1538             for (int i = 0; i < arguments.length; i++) {
1539                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1540             }
1541             return true;
1542         }
1543 
1544         private static boolean typesMatch(BasicType parameterType, Object object) {
1545             if (object instanceof Name name) {
1546                 return name.type == parameterType;
1547             }
1548             switch (parameterType) {
1549                 case I_TYPE:  return object instanceof Integer;
1550                 case J_TYPE:  return object instanceof Long;
1551                 case F_TYPE:  return object instanceof Float;
1552                 case D_TYPE:  return object instanceof Double;
1553             }
1554             assert(parameterType == L_TYPE);
1555             return true;
1556         }
1557 
1558         /** Return the index of the last occurrence of n in the argument array.
1559          *  Return -1 if the name is not used.
1560          */
1561         int lastUseIndex(Name n) {
1562             Object[] arguments = this.arguments;
1563             if (arguments == null)  return -1;
1564             for (int i = arguments.length; --i >= 0; ) {
1565                 if (arguments[i] == n)  return i;
1566             }
1567             return -1;
1568         }
1569 
1570         public boolean equals(Name that) {
1571             if (this == that)  return true;
1572             if (isParam())
1573                 // each parameter is a unique atom
1574                 return false;  // this != that
1575             return
1576                 //this.index == that.index &&
1577                 this.type == that.type &&
1578                 this.function.equals(that.function) &&
1579                 Arrays.equals(this.arguments, that.arguments);
1580         }
1581         @Override
1582         public boolean equals(Object x) {
1583             return x instanceof Name n && equals(n);
1584         }
1585         @Override
1586         public int hashCode() {
1587             if (isParam())
1588                 return index | (type.ordinal() << 8);
1589             return function.hashCode() ^ Arrays.hashCode(arguments);
1590         }
1591     }
1592 
1593     /** Return the index of the last name which contains n as an argument.
1594      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1595      */
1596     int lastUseIndex(Name n) {
1597         int ni = n.index, nmax = names.length;
1598         assert(names[ni] == n);
1599         if (result == ni)  return nmax;  // live all the way beyond the end
1600         for (int i = nmax; --i > ni; ) {
1601             if (names[i].lastUseIndex(n) >= 0)
1602                 return i;
1603         }
1604         return -1;
1605     }
1606 
1607     /** Return the number of times n is used as an argument or return value. */
1608     int useCount(Name n) {
1609         int count = (result == n.index) ? 1 : 0;
1610         int i = Math.max(n.index + 1, arity);
1611         Name[] names = this.names;
1612         while (i < names.length) {
1613             Object[] arguments = names[i++].arguments;
1614             if (arguments != null) {
1615                 for (Object argument : arguments) {
1616                     if (argument == n) {
1617                         count++;
1618                     }
1619                 }
1620             }
1621         }
1622         return count;
1623     }
1624 
1625     static Name argument(int which, BasicType type) {
1626         if (which >= INTERNED_ARGUMENT_LIMIT)
1627             return new Name(which, type);
1628         return INTERNED_ARGUMENTS[type.ordinal()][which];
1629     }
1630     static Name internArgument(Name n) {
1631         assert(n.isParam()) : "not param: " + n;
1632         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1633         if (n.constraint != null)  return n;
1634         return argument(n.index, n.type);
1635     }
1636     static Name[] arguments(int extra, MethodType types) {
1637         int length = types.parameterCount();
1638         Name[] names = new Name[length + extra];
1639         for (int i = 0; i < length; i++)
1640             names[i] = argument(i, basicType(types.parameterType(i)));
1641         return names;
1642     }
1643 
1644     static Name[] invokeArguments(int extra, MethodType types) {
1645         int length = types.parameterCount();
1646         Name[] names = new Name[length + extra + 1];
1647         names[0] = argument(0, L_TYPE);
1648         for (int i = 0; i < length; i++)
1649             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1650         return names;
1651     }
1652 
1653     static final int INTERNED_ARGUMENT_LIMIT = 10;
1654     private static final Name[][] INTERNED_ARGUMENTS
1655             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1656     static {
1657         for (BasicType type : BasicType.ARG_TYPES) {
1658             int ord = type.ordinal();
1659             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1660                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1661             }
1662         }
1663     }
1664 
1665     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1666 
1667     static LambdaForm identityForm(BasicType type) {
1668         int ord = type.ordinal();
1669         LambdaForm form = LF_identity[ord];
1670         if (form != null) {
1671             return form;
1672         }
1673         createFormsFor(type);
1674         return LF_identity[ord];
1675     }
1676 
1677     static LambdaForm zeroForm(BasicType type) {
1678         int ord = type.ordinal();
1679         LambdaForm form = LF_zero[ord];
1680         if (form != null) {
1681             return form;
1682         }
1683         createFormsFor(type);
1684         return LF_zero[ord];
1685     }
1686 
1687     static NamedFunction identity(BasicType type) {
1688         int ord = type.ordinal();
1689         NamedFunction function = NF_identity[ord];
1690         if (function != null) {
1691             return function;
1692         }
1693         createFormsFor(type);
1694         return NF_identity[ord];
1695     }
1696 
1697     static NamedFunction constantZero(BasicType type) {
1698         int ord = type.ordinal();
1699         NamedFunction function = NF_zero[ord];
1700         if (function != null) {
1701             return function;
1702         }
1703         createFormsFor(type);
1704         return NF_zero[ord];
1705     }
1706 
1707     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1708     private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT];
1709     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1710     private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1711 
1712     private static final Object createFormsLock = new Object();
1713     private static void createFormsFor(BasicType type) {
1714         // Avoid racy initialization during bootstrap
1715         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1716         synchronized (createFormsLock) {
1717             final int ord = type.ordinal();
1718             LambdaForm idForm = LF_identity[ord];
1719             if (idForm != null) {
1720                 return;
1721             }
1722             char btChar = type.basicTypeChar();
1723             boolean isVoid = (type == V_TYPE);
1724             Class<?> btClass = type.btClass;
1725             MethodType zeType = MethodType.methodType(btClass);
1726             MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass);
1727 
1728             // Look up symbolic names.  It might not be necessary to have these,
1729             // but if we need to emit direct references to bytecodes, it helps.
1730             // Zero is built from a call to an identity function with a constant zero input.
1731             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1732             MemberName zeMem = null;
1733             try {
1734                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1735                 if (!isVoid) {
1736                     zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1737                     zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, LM_TRUSTED, NoSuchMethodException.class);
1738                 }
1739             } catch (IllegalAccessException|NoSuchMethodException ex) {
1740                 throw newInternalError(ex);
1741             }
1742 
1743             NamedFunction idFun;
1744             LambdaForm zeForm;
1745             NamedFunction zeFun;
1746 
1747             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1748             // bootstrap dependency on this method in case we're interpreting LFs
1749             if (isVoid) {
1750                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1751                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1752                 idForm.compileToBytecode();
1753                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1754 
1755                 zeForm = idForm;
1756                 zeFun = idFun;
1757             } else {
1758                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1759                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1760                 idForm.compileToBytecode();
1761                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(idMem.getInvocationType(), idForm),
1762                             MethodHandleImpl.Intrinsic.IDENTITY));
1763 
1764                 Object zeValue = Wrapper.forBasicType(btChar).zero();
1765                 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1766                 zeForm = LambdaForm.create(1, zeNames, 1, Kind.ZERO);
1767                 zeForm.compileToBytecode();
1768                 zeFun = new NamedFunction(zeMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm),
1769                         MethodHandleImpl.Intrinsic.ZERO));
1770             }
1771 
1772             LF_zero[ord] = zeForm;
1773             NF_zero[ord] = zeFun;
1774             LF_identity[ord] = idForm;
1775             NF_identity[ord] = idFun;
1776 
1777             assert(idFun.isIdentity());
1778             assert(zeFun.isConstantZero());
1779             assert(new Name(zeFun).isConstantZero());
1780         }
1781     }
1782 
1783     // Avoid appealing to ValueConversions at bootstrap time:
1784     private static int identity_I(int x) { return x; }
1785     private static long identity_J(long x) { return x; }
1786     private static float identity_F(float x) { return x; }
1787     private static double identity_D(double x) { return x; }
1788     private static Object identity_L(Object x) { return x; }
1789     private static void identity_V() { return; }
1790     private static int zero_I() { return 0; }
1791     private static long zero_J() { return 0; }
1792     private static float zero_F() { return 0; }
1793     private static double zero_D() { return 0; }
1794     private static Object zero_L() { return null; }
1795 
1796     /**
1797      * Internal marker for byte-compiled LambdaForms.
1798      */
1799     /*non-public*/
1800     @Target(ElementType.METHOD)
1801     @Retention(RetentionPolicy.RUNTIME)
1802     @interface Compiled {
1803     }
1804 
1805     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1806     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1807     static {
1808         if (debugEnabled()) {
1809             DEBUG_NAME_COUNTERS = new HashMap<>();
1810             DEBUG_NAMES = new HashMap<>();
1811         } else {
1812             DEBUG_NAME_COUNTERS = null;
1813             DEBUG_NAMES = null;
1814         }
1815     }
1816 
1817     static {
1818         // The Holder class will contain pre-generated forms resolved
1819         // using MemberName.getFactory(). However, that doesn't initialize the
1820         // class, which subtly breaks inlining etc. By forcing
1821         // initialization of the Holder class we avoid these issues.
1822         UNSAFE.ensureClassInitialized(Holder.class);
1823     }
1824 
1825     /* Placeholder class for zero and identity forms generated ahead of time */
1826     final class Holder {}
1827 
1828     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1829     // during execution of the static initializes of this class.
1830     // Turning on TRACE_INTERPRETER too early will cause
1831     // stack overflows and other misbehavior during attempts to trace events
1832     // that occur during LambdaForm.<clinit>.
1833     // Therefore, do not move this line higher in this file, and do not remove.
1834     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1835 }