1 /*
   2  * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         IDENTITY("identity"),
 249         CONSTANT("constant"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_FLAT_VALUE("getFlatValue"),
 271         PUT_FLAT_VALUE("putFlatValue"),
 272         GET_FLAT_VALUE_VOLATILE("getFlatValueVolatile"),
 273         PUT_FLAT_VALUE_VOLATILE("putFlatValueVolatile"),
 274         GET_INT("getInt"),
 275         PUT_INT("putInt"),
 276         GET_INT_VOLATILE("getIntVolatile"),
 277         PUT_INT_VOLATILE("putIntVolatile"),
 278         GET_BOOLEAN("getBoolean"),
 279         PUT_BOOLEAN("putBoolean"),
 280         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 281         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 282         GET_BYTE("getByte"),
 283         PUT_BYTE("putByte"),
 284         GET_BYTE_VOLATILE("getByteVolatile"),
 285         PUT_BYTE_VOLATILE("putByteVolatile"),
 286         GET_CHAR("getChar"),
 287         PUT_CHAR("putChar"),
 288         GET_CHAR_VOLATILE("getCharVolatile"),
 289         PUT_CHAR_VOLATILE("putCharVolatile"),
 290         GET_SHORT("getShort"),
 291         PUT_SHORT("putShort"),
 292         GET_SHORT_VOLATILE("getShortVolatile"),
 293         PUT_SHORT_VOLATILE("putShortVolatile"),
 294         GET_LONG("getLong"),
 295         PUT_LONG("putLong"),
 296         GET_LONG_VOLATILE("getLongVolatile"),
 297         PUT_LONG_VOLATILE("putLongVolatile"),
 298         GET_FLOAT("getFloat"),
 299         PUT_FLOAT("putFloat"),
 300         GET_FLOAT_VOLATILE("getFloatVolatile"),
 301         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 302         GET_DOUBLE("getDouble"),
 303         PUT_DOUBLE("putDouble"),
 304         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 305         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 306         TRY_FINALLY("tryFinally"),
 307         TABLE_SWITCH("tableSwitch"),
 308         COLLECTOR("collector"),
 309         LOOP("loop"),
 310         GUARD("guard"),
 311         GUARD_WITH_CATCH("guardWithCatch"),
 312         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 313         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 314         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 315 
 316         final String defaultLambdaName;
 317         final String methodName;
 318 
 319         private Kind(String defaultLambdaName) {
 320             this(defaultLambdaName, defaultLambdaName);
 321         }
 322 
 323         private Kind(String defaultLambdaName, String methodName) {
 324             this.defaultLambdaName = defaultLambdaName;
 325             this.methodName = methodName;
 326         }
 327     }
 328 
 329     // private version that doesn't do checks or defensive copies
 330     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 331         this.arity = arity;
 332         this.result = result;
 333         this.forceInline = forceInline;
 334         this.customized = customized;
 335         this.names = names;
 336         this.kind = kind;
 337         this.vmentry = null;
 338         this.isCompiled = false;
 339     }
 340 
 341     // root factory pre/post processing and calls simple constructor
 342     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 343         names = names.clone();
 344         assert(namesOK(arity, names));
 345         result = fixResult(result, names);
 346 
 347         boolean canInterpret = normalizeNames(arity, names);
 348         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 349         assert(form.nameRefsAreLegal());
 350         if (!canInterpret) {
 351             form.compileToBytecode();
 352         }
 353         return form;
 354     }
 355 
 356     // derived factories with defaults
 357     private static final int DEFAULT_RESULT = LAST_RESULT;
 358     private static final boolean DEFAULT_FORCE_INLINE = true;
 359     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 360     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 361 
 362     static LambdaForm create(int arity, Name[] names, int result) {
 363         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 364     }
 365     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 366         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 367     }
 368     static LambdaForm create(int arity, Name[] names) {
 369         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 370     }
 371     static LambdaForm create(int arity, Name[] names, Kind kind) {
 372         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 373     }
 374     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 375         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 376     }
 377 
 378     private static int fixResult(int result, Name[] names) {
 379         if (result == LAST_RESULT)
 380             result = names.length - 1;  // might still be void
 381         if (result >= 0 && names[result].type == V_TYPE)
 382             result = VOID_RESULT;
 383         return result;
 384     }
 385 
 386     static boolean debugNames() {
 387         return DEBUG_NAME_COUNTERS != null;
 388     }
 389 
 390     static void associateWithDebugName(LambdaForm form, String name) {
 391         assert (debugNames());
 392         synchronized (DEBUG_NAMES) {
 393             DEBUG_NAMES.put(form, name);
 394         }
 395     }
 396 
 397     String lambdaName() {
 398         if (DEBUG_NAMES != null) {
 399             synchronized (DEBUG_NAMES) {
 400                 String name = DEBUG_NAMES.get(this);
 401                 if (name == null) {
 402                     name = generateDebugName();
 403                 }
 404                 return name;
 405             }
 406         }
 407         return kind.defaultLambdaName;
 408     }
 409 
 410     private String generateDebugName() {
 411         assert (debugNames());
 412         String debugNameStem = kind.defaultLambdaName;
 413         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 414         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 415         StringBuilder buf = new StringBuilder(debugNameStem);
 416         int leadingZero = buf.length();
 417         buf.append((int) ctr);
 418         for (int i = buf.length() - leadingZero; i < 3; i++) {
 419             buf.insert(leadingZero, '0');
 420         }
 421         buf.append('_');
 422         buf.append(basicTypeSignature());
 423         String name = buf.toString();
 424         associateWithDebugName(this, name);
 425         return name;
 426     }
 427 
 428     private static boolean namesOK(int arity, Name[] names) {
 429         for (int i = 0; i < names.length; i++) {
 430             Name n = names[i];
 431             assert(n != null) : "n is null";
 432             if (i < arity)
 433                 assert( n.isParam()) : n + " is not param at " + i;
 434             else
 435                 assert(!n.isParam()) : n + " is param at " + i;
 436         }
 437         return true;
 438     }
 439 
 440     /** Customize LambdaForm for a particular MethodHandle */
 441     LambdaForm customize(MethodHandle mh) {
 442         if (customized == mh) {
 443             return this;
 444         }
 445         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 446         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 447             // If shared LambdaForm has been compiled, compile customized version as well.
 448             customForm.compileToBytecode();
 449         }
 450         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 451         return customForm;
 452     }
 453 
 454     /** Get uncustomized flavor of the LambdaForm */
 455     LambdaForm uncustomize() {
 456         if (customized == null) {
 457             return this;
 458         }
 459         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 460         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 461         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 462             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 463             uncustomizedForm.compileToBytecode();
 464         }
 465         return uncustomizedForm;
 466     }
 467 
 468     /** Renumber and/or replace params so that they are interned and canonically numbered.
 469      *  @return true if we can interpret
 470      */
 471     private static boolean normalizeNames(int arity, Name[] names) {
 472         Name[] oldNames = names.clone();
 473         int maxOutArity = 0;
 474         for (int i = 0; i < names.length; i++) {
 475             Name n = names[i];
 476             names[i] = n.withIndex(i);
 477             if (n.arguments != null && maxOutArity < n.arguments.length)
 478                 maxOutArity = n.arguments.length;
 479         }
 480         if (oldNames != null) {
 481             for (int i = Math.max(1, arity); i < names.length; i++) {
 482                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 483                 names[i] = fixed.withIndex(i);
 484             }
 485         }
 486         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 487         boolean needIntern = false;
 488         for (int i = 0; i < maxInterned; i++) {
 489             Name n = names[i], n2 = internArgument(n);
 490             if (n != n2) {
 491                 names[i] = n2;
 492                 needIntern = true;
 493             }
 494         }
 495         if (needIntern) {
 496             for (int i = arity; i < names.length; i++) {
 497                 names[i].internArguments();
 498             }
 499         }
 500 
 501         // return true if we can interpret
 502         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 503             // Cannot use LF interpreter on very high arity expressions.
 504             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 505             return false;
 506         }
 507         return true;
 508     }
 509 
 510     /**
 511      * Check that all embedded Name references are localizable to this lambda,
 512      * and are properly ordered after their corresponding definitions.
 513      * <p>
 514      * Note that a Name can be local to multiple lambdas, as long as
 515      * it possesses the same index in each use site.
 516      * This allows Name references to be freely reused to construct
 517      * fresh lambdas, without confusion.
 518      */
 519     boolean nameRefsAreLegal() {
 520         assert(arity >= 0 && arity <= names.length);
 521         assert(result >= -1 && result < names.length);
 522         // Do all names possess an index consistent with their local definition order?
 523         for (int i = 0; i < arity; i++) {
 524             Name n = names[i];
 525             assert(n.index() == i) : Arrays.asList(n.index(), i);
 526             assert(n.isParam());
 527         }
 528         // Also, do all local name references
 529         for (int i = arity; i < names.length; i++) {
 530             Name n = names[i];
 531             assert(n.index() == i);
 532             for (Object arg : n.arguments) {
 533                 if (arg instanceof Name n2) {
 534                     int i2 = n2.index;
 535                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 536                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 537                     assert(i2 < i);  // ref must come after def!
 538                 }
 539             }
 540         }
 541         return true;
 542     }
 543 
 544     // /** Invoke this form on the given arguments. */
 545     // final Object invoke(Object... args) throws Throwable {
 546     //     // NYI: fit this into the fast path?
 547     //     return interpretWithArguments(args);
 548     // }
 549 
 550     /** Report the return type. */
 551     BasicType returnType() {
 552         if (result < 0)  return V_TYPE;
 553         Name n = names[result];
 554         return n.type;
 555     }
 556 
 557     /** Report the N-th argument type. */
 558     BasicType parameterType(int n) {
 559         return parameter(n).type;
 560     }
 561 
 562     /** Report the N-th argument name. */
 563     Name parameter(int n) {
 564         Name param = names[n];
 565         assert(n < arity && param.isParam());
 566         return param;
 567     }
 568 
 569     /** Report the N-th argument type constraint. */
 570     Object parameterConstraint(int n) {
 571         return parameter(n).constraint;
 572     }
 573 
 574     /** Report the arity. */
 575     int arity() {
 576         return arity;
 577     }
 578 
 579     /** Report the number of expressions (non-parameter names). */
 580     int expressionCount() {
 581         return names.length - arity;
 582     }
 583 
 584     /** Return the method type corresponding to my basic type signature. */
 585     MethodType methodType() {
 586         Class<?>[] ptypes = new Class<?>[arity];
 587         for (int i = 0; i < arity; ++i) {
 588             ptypes[i] = parameterType(i).btClass;
 589         }
 590         return MethodType.methodType(returnType().btClass, ptypes, true);
 591     }
 592 
 593     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 594     final String basicTypeSignature() {
 595         StringBuilder buf = new StringBuilder(arity() + 3);
 596         for (int i = 0, a = arity(); i < a; i++)
 597             buf.append(parameterType(i).basicTypeChar());
 598         return buf.append('_').append(returnType().basicTypeChar()).toString();
 599     }
 600     static int signatureArity(String sig) {
 601         assert(isValidSignature(sig));
 602         return sig.indexOf('_');
 603     }
 604     static boolean isValidSignature(String sig) {
 605         int arity = sig.indexOf('_');
 606         if (arity < 0)  return false;  // must be of the form *_*
 607         int siglen = sig.length();
 608         if (siglen != arity + 2)  return false;  // *_X
 609         for (int i = 0; i < siglen; i++) {
 610             if (i == arity)  continue;  // skip '_'
 611             char c = sig.charAt(i);
 612             if (c == 'V')
 613                 return (i == siglen - 1 && arity == siglen - 2);
 614             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 615         }
 616         return true;  // [LIJFD]*_[LIJFDV]
 617     }
 618 
 619     /**
 620      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 621      */
 622     boolean isSelectAlternative(int pos) {
 623         // selectAlternative idiom:
 624         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 625         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 626         if (pos+1 >= names.length)  return false;
 627         Name name0 = names[pos];
 628         Name name1 = names[pos+1];
 629         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 630                 name1.isInvokeBasic() &&
 631                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 632                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 633     }
 634 
 635     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 636         if (pos+2 >= names.length)  return false;
 637         Name name0 = names[pos];
 638         Name name1 = names[pos+1];
 639         Name name2 = names[pos+2];
 640         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 641                 name0.isInvokeBasic() &&
 642                 name2.isInvokeBasic() &&
 643                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 644                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 645                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 646                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 647     }
 648 
 649     /**
 650      * Check if i-th name is a start of GuardWithCatch idiom.
 651      */
 652     boolean isGuardWithCatch(int pos) {
 653         // GuardWithCatch idiom:
 654         //   t_{n}:L=MethodHandle.invokeBasic(...)
 655         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 656         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 657         return isMatchingIdiom(pos, "guardWithCatch", 3);
 658     }
 659 
 660     /**
 661      * Check if i-th name is a start of the tryFinally idiom.
 662      */
 663     boolean isTryFinally(int pos) {
 664         // tryFinally idiom:
 665         //   t_{n}:L=MethodHandle.invokeBasic(...)
 666         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 667         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 668         return isMatchingIdiom(pos, "tryFinally", 2);
 669     }
 670 
 671     /**
 672      * Check if i-th name is a start of the tableSwitch idiom.
 673      */
 674     boolean isTableSwitch(int pos) {
 675         // tableSwitch idiom:
 676         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 677         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 678         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 679         if (pos + 2 >= names.length)  return false;
 680 
 681         final int POS_COLLECT_ARGS = pos;
 682         final int POS_TABLE_SWITCH = pos + 1;
 683         final int POS_UNBOX_RESULT = pos + 2;
 684 
 685         Name collectArgs = names[POS_COLLECT_ARGS];
 686         Name tableSwitch = names[POS_TABLE_SWITCH];
 687         Name unboxResult = names[POS_UNBOX_RESULT];
 688         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 689                 collectArgs.isInvokeBasic() &&
 690                 unboxResult.isInvokeBasic() &&
 691                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 692                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 693                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 694                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 695     }
 696 
 697     /**
 698      * Check if i-th name is a start of the loop idiom.
 699      */
 700     boolean isLoop(int pos) {
 701         // loop idiom:
 702         //   t_{n}:L=MethodHandle.invokeBasic(...)
 703         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 704         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 705         return isMatchingIdiom(pos, "loop", 2);
 706     }
 707 
 708     /*
 709      * Code generation issues:
 710      *
 711      * Compiled LFs should be reusable in general.
 712      * The biggest issue is how to decide when to pull a name into
 713      * the bytecode, versus loading a reified form from the MH data.
 714      *
 715      * For example, an asType wrapper may require execution of a cast
 716      * after a call to a MH.  The target type of the cast can be placed
 717      * as a constant in the LF itself.  This will force the cast type
 718      * to be compiled into the bytecodes and native code for the MH.
 719      * Or, the target type of the cast can be erased in the LF, and
 720      * loaded from the MH data.  (Later on, if the MH as a whole is
 721      * inlined, the data will flow into the inlined instance of the LF,
 722      * as a constant, and the end result will be an optimal cast.)
 723      *
 724      * This erasure of cast types can be done with any use of
 725      * reference types.  It can also be done with whole method
 726      * handles.  Erasing a method handle might leave behind
 727      * LF code that executes correctly for any MH of a given
 728      * type, and load the required MH from the enclosing MH's data.
 729      * Or, the erasure might even erase the expected MT.
 730      *
 731      * Also, for direct MHs, the MemberName of the target
 732      * could be erased, and loaded from the containing direct MH.
 733      * As a simple case, a LF for all int-valued non-static
 734      * field getters would perform a cast on its input argument
 735      * (to non-constant base type derived from the MemberName)
 736      * and load an integer value from the input object
 737      * (at a non-constant offset also derived from the MemberName).
 738      * Such MN-erased LFs would be inlinable back to optimized
 739      * code, whenever a constant enclosing DMH is available
 740      * to supply a constant MN from its data.
 741      *
 742      * The main problem here is to keep LFs reasonably generic,
 743      * while ensuring that hot spots will inline good instances.
 744      * "Reasonably generic" means that we don't end up with
 745      * repeated versions of bytecode or machine code that do
 746      * not differ in their optimized form.  Repeated versions
 747      * of machine would have the undesirable overheads of
 748      * (a) redundant compilation work and (b) extra I$ pressure.
 749      * To control repeated versions, we need to be ready to
 750      * erase details from LFs and move them into MH data,
 751      * whenever those details are not relevant to significant
 752      * optimization.  "Significant" means optimization of
 753      * code that is actually hot.
 754      *
 755      * Achieving this may require dynamic splitting of MHs, by replacing
 756      * a generic LF with a more specialized one, on the same MH,
 757      * if (a) the MH is frequently executed and (b) the MH cannot
 758      * be inlined into a containing caller, such as an invokedynamic.
 759      *
 760      * Compiled LFs that are no longer used should be GC-able.
 761      * If they contain non-BCP references, they should be properly
 762      * interlinked with the class loader(s) that their embedded types
 763      * depend on.  This probably means that reusable compiled LFs
 764      * will be tabulated (indexed) on relevant class loaders,
 765      * or else that the tables that cache them will have weak links.
 766      */
 767 
 768     /**
 769      * Make this LF directly executable, as part of a MethodHandle.
 770      * Invariant:  Every MH which is invoked must prepare its LF
 771      * before invocation.
 772      * (In principle, the JVM could do this very lazily,
 773      * as a sort of pre-invocation linkage step.)
 774      */
 775     public void prepare() {
 776         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 777             compileToBytecode();
 778         }
 779         if (this.vmentry != null) {
 780             // already prepared (e.g., a primitive DMH invoker form)
 781             return;
 782         }
 783         MethodType mtype = methodType();
 784         MethodTypeForm form = mtype.form();
 785 
 786         MemberName entry = form.cachedInterpretEntry();
 787         if (entry == null) {
 788             assert (isValidSignature(basicTypeSignature()));
 789             entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 790             entry = form.setCachedInterpretEntry(entry);
 791         }
 792         this.vmentry = entry;
 793         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 794     }
 795 
 796     private static @Stable PerfCounter LF_FAILED;
 797 
 798     private static PerfCounter failedCompilationCounter() {
 799         if (LF_FAILED == null) {
 800             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 801         }
 802         return LF_FAILED;
 803     }
 804 
 805     /** Generate optimizable bytecode for this form. */
 806     void compileToBytecode() {
 807         if (forceInterpretation()) {
 808             return; // this should not be compiled
 809         }
 810         if (vmentry != null && isCompiled) {
 811             return;  // already compiled somehow
 812         }
 813 
 814         // Obtain the invoker MethodType outside of the following try block.
 815         // This ensures that an IllegalArgumentException is directly thrown if the
 816         // type would have 256 or more parameters
 817         MethodType invokerType = methodType();
 818         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 819         try {
 820             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 821             if (TRACE_INTERPRETER)
 822                 traceInterpreter("compileToBytecode", this);
 823             isCompiled = true;
 824         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 825             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 826             invocationCounter = -1;
 827             failedCompilationCounter().increment();
 828             if (LOG_LF_COMPILATION_FAILURE) {
 829                 System.out.println("LambdaForm compilation failed: " + this);
 830                 bge.printStackTrace(System.out);
 831             }
 832         } catch (Error e) {
 833             // Pass through any error
 834             throw e;
 835         } catch (Exception e) {
 836             // Wrap any exception
 837             throw newInternalError(this.toString(), e);
 838         }
 839     }
 840 
 841     // The next few routines are called only from assert expressions
 842     // They verify that the built-in invokers process the correct raw data types.
 843     private static boolean argumentTypesMatch(String sig, Object[] av) {
 844         int arity = signatureArity(sig);
 845         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 846         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 847         MethodHandle mh = (MethodHandle) av[0];
 848         MethodType mt = mh.type();
 849         assert(mt.parameterCount() == arity-1);
 850         for (int i = 0; i < av.length; i++) {
 851             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 852             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 853         }
 854         return true;
 855     }
 856     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 857         // The following line is needed because (...)void method handles can use non-void invokers
 858         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 859         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 860         switch (tc) {
 861         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 862         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 863         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 864         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 865         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 866         case V_TYPE: break;  // allow anything here; will be dropped
 867         default:  assert(false);
 868         }
 869         return true;
 870     }
 871     private static boolean checkInt(Class<?> type, Object x) {
 872         assert(x instanceof Integer);
 873         if (type == int.class)  return true;
 874         Wrapper w = Wrapper.forBasicType(type);
 875         assert(w.isSubwordOrInt());
 876         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 877         return x.equals(x1);
 878     }
 879     private static boolean checkRef(Class<?> type, Object x) {
 880         assert(!type.isPrimitive());
 881         if (x == null)  return true;
 882         if (type.isInterface())  return true;
 883         return type.isInstance(x);
 884     }
 885 
 886     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 887     private static final int COMPILE_THRESHOLD;
 888     static {
 889         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 890     }
 891     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 892 
 893     private boolean forceInterpretation() {
 894         return invocationCounter == -1;
 895     }
 896 
 897     /** Interpretively invoke this form on the given arguments. */
 898     @Hidden
 899     @DontInline
 900     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 901         if (TRACE_INTERPRETER)
 902             return interpretWithArgumentsTracing(argumentValues);
 903         checkInvocationCounter();
 904         assert(arityCheck(argumentValues));
 905         Object[] values = Arrays.copyOf(argumentValues, names.length);
 906         for (int i = argumentValues.length; i < values.length; i++) {
 907             values[i] = interpretName(names[i], values);
 908         }
 909         Object rv = (result < 0) ? null : values[result];
 910         assert(resultCheck(argumentValues, rv));
 911         return rv;
 912     }
 913 
 914     /** Evaluate a single Name within this form, applying its function to its arguments. */
 915     @Hidden
 916     @DontInline
 917     Object interpretName(Name name, Object[] values) throws Throwable {
 918         if (TRACE_INTERPRETER)
 919             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 920         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 921         for (int i = 0; i < arguments.length; i++) {
 922             Object a = arguments[i];
 923             if (a instanceof Name n) {
 924                 int i2 = n.index();
 925                 assert(names[i2] == a);
 926                 a = values[i2];
 927                 arguments[i] = a;
 928             }
 929         }
 930         return name.function.invokeWithArguments(arguments);
 931     }
 932 
 933     private void checkInvocationCounter() {
 934         if (COMPILE_THRESHOLD != 0 &&
 935             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 936             invocationCounter++;  // benign race
 937             if (invocationCounter >= COMPILE_THRESHOLD) {
 938                 // Replace vmentry with a bytecode version of this LF.
 939                 compileToBytecode();
 940             }
 941         }
 942     }
 943     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 944         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 945         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 946             int ctr = invocationCounter++;  // benign race
 947             traceInterpreter("| invocationCounter", ctr);
 948             if (invocationCounter >= COMPILE_THRESHOLD) {
 949                 compileToBytecode();
 950             }
 951         }
 952         Object rval;
 953         try {
 954             assert(arityCheck(argumentValues));
 955             Object[] values = Arrays.copyOf(argumentValues, names.length);
 956             for (int i = argumentValues.length; i < values.length; i++) {
 957                 values[i] = interpretName(names[i], values);
 958             }
 959             rval = (result < 0) ? null : values[result];
 960         } catch (Throwable ex) {
 961             traceInterpreter("] throw =>", ex);
 962             throw ex;
 963         }
 964         traceInterpreter("] return =>", rval);
 965         return rval;
 966     }
 967 
 968     static void traceInterpreter(String event, Object obj, Object... args) {
 969         if (TRACE_INTERPRETER) {
 970             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 971         }
 972     }
 973     static void traceInterpreter(String event, Object obj) {
 974         traceInterpreter(event, obj, (Object[])null);
 975     }
 976     private boolean arityCheck(Object[] argumentValues) {
 977         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 978         // also check that the leading (receiver) argument is somehow bound to this LF:
 979         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 980         MethodHandle mh = (MethodHandle) argumentValues[0];
 981         assert(mh.internalForm() == this);
 982         // note:  argument #0 could also be an interface wrapper, in the future
 983         argumentTypesMatch(basicTypeSignature(), argumentValues);
 984         return true;
 985     }
 986     private boolean resultCheck(Object[] argumentValues, Object result) {
 987         MethodHandle mh = (MethodHandle) argumentValues[0];
 988         MethodType mt = mh.type();
 989         assert(valueMatches(returnType(), mt.returnType(), result));
 990         return true;
 991     }
 992 
 993     public String toString() {
 994         return debugString(-1);
 995     }
 996 
 997     String debugString(int indentLevel) {
 998         String prefix = MethodHandle.debugPrefix(indentLevel);
 999         String lambdaName = lambdaName();
1000         StringBuilder buf = new StringBuilder(lambdaName);
1001         buf.append("=Lambda(");
1002         for (int i = 0; i < names.length; i++) {
1003             if (i == arity)  buf.append(")=>{");
1004             Name n = names[i];
1005             if (i >= arity)  buf.append("\n    ").append(prefix);
1006             buf.append(n.paramString());
1007             if (i < arity) {
1008                 if (i+1 < arity)  buf.append(",");
1009                 continue;
1010             }
1011             buf.append("=").append(n.exprString());
1012             buf.append(";");
1013         }
1014         if (arity == names.length)  buf.append(")=>{");
1015         buf.append(result < 0 ? "void" : names[result]).append("}");
1016         if (TRACE_INTERPRETER) {
1017             // Extra verbosity:
1018             buf.append(":").append(basicTypeSignature());
1019             buf.append("/").append(vmentry);
1020         }
1021         return buf.toString();
1022     }
1023 
1024     @Override
1025     public boolean equals(Object obj) {
1026         return obj instanceof LambdaForm lf && equals(lf);
1027     }
1028     public boolean equals(LambdaForm that) {
1029         if (this.result != that.result)  return false;
1030         return Arrays.equals(this.names, that.names);
1031     }
1032     public int hashCode() {
1033         return result + 31 * Arrays.hashCode(names);
1034     }
1035     LambdaFormEditor editor() {
1036         return LambdaFormEditor.lambdaFormEditor(this);
1037     }
1038 
1039     boolean contains(Name name) {
1040         int pos = name.index();
1041         if (pos >= 0) {
1042             return pos < names.length && name.equals(names[pos]);
1043         }
1044         for (int i = arity; i < names.length; i++) {
1045             if (name.equals(names[i]))
1046                 return true;
1047         }
1048         return false;
1049     }
1050 
1051     static class NamedFunction {
1052         final MemberName member;
1053         private @Stable MethodHandle resolvedHandle;
1054         private @Stable MethodType type;
1055 
1056         NamedFunction(MethodHandle resolvedHandle) {
1057             this(resolvedHandle.internalMemberName(), resolvedHandle);
1058         }
1059         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1060             this.member = member;
1061             this.resolvedHandle = resolvedHandle;
1062              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1063              //assert(!isInvokeBasic(member));
1064         }
1065         NamedFunction(MethodType basicInvokerType) {
1066             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1067             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1068                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1069                 this.member = resolvedHandle.internalMemberName();
1070             } else {
1071                 // necessary to pass BigArityTest
1072                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1073             }
1074             assert(isInvokeBasic(member));
1075         }
1076 
1077         private static boolean isInvokeBasic(MemberName member) {
1078             return member != null &&
1079                    member.getDeclaringClass() == MethodHandle.class &&
1080                   "invokeBasic".equals(member.getName());
1081         }
1082 
1083         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1084         // Any LambdaForm containing such a member is not interpretable.
1085         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1086         // And even without the resolvedHandle, the name can still be compiled and optimized.
1087         NamedFunction(Method method) {
1088             this(new MemberName(method));
1089         }
1090         NamedFunction(MemberName member) {
1091             this(member, null);
1092         }
1093 
1094         MethodHandle resolvedHandle() {
1095             if (resolvedHandle == null)  resolve();
1096             return resolvedHandle;
1097         }
1098 
1099         synchronized void resolve() {
1100             if (resolvedHandle == null) {
1101                 resolvedHandle = DirectMethodHandle.make(member);
1102             }
1103         }
1104 
1105         @Override
1106         public boolean equals(Object other) {
1107             if (this == other) return true;
1108             if (other == null) return false;
1109             return (other instanceof NamedFunction that)
1110                     && this.member != null
1111                     && this.member.equals(that.member);
1112         }
1113 
1114         @Override
1115         public int hashCode() {
1116             if (member != null)
1117                 return member.hashCode();
1118             return super.hashCode();
1119         }
1120 
1121         static final MethodType INVOKER_METHOD_TYPE =
1122             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1123 
1124         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1125             typeForm = typeForm.basicType().form();  // normalize to basic type
1126             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1127             if (mh != null)  return mh;
1128             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1129             mh = DirectMethodHandle.make(invoker);
1130             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1131             if (mh2 != null)  return mh2;  // benign race
1132             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1133                 throw newInternalError(mh.debugString());
1134             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1135         }
1136 
1137         @Hidden
1138         Object invokeWithArguments(Object... arguments) throws Throwable {
1139             // If we have a cached invoker, call it right away.
1140             // NOTE: The invoker always returns a reference value.
1141             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1142             return invoker().invokeBasic(resolvedHandle(), arguments);
1143         }
1144 
1145         @Hidden
1146         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1147             Object rval;
1148             try {
1149                 traceInterpreter("[ call", this, arguments);
1150                 // resolvedHandle might be uninitialized, ok for tracing
1151                 if (resolvedHandle == null) {
1152                     traceInterpreter("| resolve", this);
1153                     resolvedHandle();
1154                 }
1155                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1156             } catch (Throwable ex) {
1157                 traceInterpreter("] throw =>", ex);
1158                 throw ex;
1159             }
1160             traceInterpreter("] return =>", rval);
1161             return rval;
1162         }
1163 
1164         private MethodHandle invoker() {
1165             return computeInvoker(methodType().form());
1166         }
1167 
1168         MethodType methodType() {
1169             MethodType type = this.type;
1170             if (type == null) {
1171                 this.type = type = calculateMethodType(member, resolvedHandle);
1172             }
1173             return type;
1174         }
1175 
1176         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1177             if (resolvedHandle != null) {
1178                 return resolvedHandle.type();
1179             } else {
1180                 // only for certain internal LFs during bootstrapping
1181                 return member.getInvocationType();
1182             }
1183         }
1184 
1185         MemberName member() {
1186             assert(assertMemberIsConsistent());
1187             return member;
1188         }
1189 
1190         // Called only from assert.
1191         private boolean assertMemberIsConsistent() {
1192             if (resolvedHandle instanceof DirectMethodHandle) {
1193                 MemberName m = resolvedHandle.internalMemberName();
1194                 assert(m.equals(member));
1195             }
1196             return true;
1197         }
1198 
1199         Class<?> memberDeclaringClassOrNull() {
1200             return (member == null) ? null : member.getDeclaringClass();
1201         }
1202 
1203         BasicType returnType() {
1204             return basicType(methodType().returnType());
1205         }
1206 
1207         BasicType parameterType(int n) {
1208             return basicType(methodType().parameterType(n));
1209         }
1210 
1211         int arity() {
1212             return methodType().parameterCount();
1213         }
1214 
1215         public String toString() {
1216             if (member == null)  return String.valueOf(resolvedHandle);
1217             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1218         }
1219 
1220         public boolean isIdentity() {
1221             return this.equals(identity(returnType()));
1222         }
1223 
1224         public MethodHandleImpl.Intrinsic intrinsicName() {
1225             return resolvedHandle != null
1226                 ? resolvedHandle.intrinsicName()
1227                 : MethodHandleImpl.Intrinsic.NONE;
1228         }
1229 
1230         public Object intrinsicData() {
1231             return resolvedHandle != null
1232                 ? resolvedHandle.intrinsicData()
1233                 : null;
1234         }
1235     }
1236 
1237     public static String basicTypeSignature(MethodType type) {
1238         int params = type.parameterCount();
1239         char[] sig = new char[params + 2];
1240         int sigp = 0;
1241         while (sigp < params) {
1242             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1243         }
1244         sig[sigp++] = '_';
1245         sig[sigp++] = basicTypeChar(type.returnType());
1246         assert(sigp == sig.length);
1247         return String.valueOf(sig);
1248     }
1249 
1250     /** Hack to make signatures more readable when they show up in method names.
1251      * Signature should start with a sequence of uppercase ASCII letters.
1252      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1253      * A tail of anything other than uppercase ASCII is passed through unchanged.
1254      * @param signature sequence of uppercase ASCII letters with possible repetitions
1255      * @return same sequence, with repetitions counted by decimal numerals
1256      */
1257     public static String shortenSignature(String signature) {
1258         final int NO_CHAR = -1, MIN_RUN = 3;
1259         int c0, c1 = NO_CHAR, c1reps = 0;
1260         StringBuilder buf = null;
1261         int len = signature.length();
1262         if (len < MIN_RUN)  return signature;
1263         for (int i = 0; i <= len; i++) {
1264             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1265                 // wrong kind of char; bail out here
1266                 if (buf != null) {
1267                     buf.append(signature, i - c1reps, len);
1268                 }
1269                 break;
1270             }
1271             // shift in the next char:
1272             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1273             if (c1 == c0) { ++c1reps; continue; }
1274             // shift in the next count:
1275             int c0reps = c1reps; c1reps = 1;
1276             // end of a  character run
1277             if (c0reps < MIN_RUN) {
1278                 if (buf != null) {
1279                     while (--c0reps >= 0)
1280                         buf.append((char)c0);
1281                 }
1282                 continue;
1283             }
1284             // found three or more in a row
1285             if (buf == null)
1286                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1287             buf.append((char)c0).append(c0reps);
1288         }
1289         return (buf == null) ? signature : buf.toString();
1290     }
1291 
1292     static final class Name {
1293         final BasicType type;
1294         final short index;
1295         final NamedFunction function;
1296         final Object constraint;  // additional type information, if not null
1297         @Stable final Object[] arguments;
1298 
1299         private static final Object[] EMPTY_ARGS = new Object[0];
1300 
1301         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1302             this.index = (short)index;
1303             this.type = type;
1304             this.function = function;
1305             this.arguments = arguments;
1306             this.constraint = constraint;
1307             assert(this.index == index && typesMatch(function, arguments));
1308             assert(constraint == null || isParam());  // only params have constraints
1309             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1310         }
1311 
1312         Name(MethodHandle function, Object... arguments) {
1313             this(new NamedFunction(function), arguments);
1314         }
1315         Name(MethodType functionType, Object... arguments) {
1316             this(new NamedFunction(functionType), arguments);
1317             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1318         }
1319         Name(MemberName function, Object... arguments) {
1320             this(new NamedFunction(function), arguments);
1321         }
1322         Name(NamedFunction function) {
1323             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1324         }
1325         Name(NamedFunction function, Object arg) {
1326             this(-1, function.returnType(), function, new Object[] { arg }, null);
1327         }
1328         Name(NamedFunction function, Object arg0, Object arg1) {
1329             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1330         }
1331         Name(NamedFunction function, Object... arguments) {
1332             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1333         }
1334         /** Create a raw parameter of the given type, with an expected index. */
1335         Name(int index, BasicType type) {
1336             this(index, type, null, null, null);
1337         }
1338         /** Create a raw parameter of the given type. */
1339         Name(BasicType type) { this(-1, type); }
1340 
1341         BasicType type() { return type; }
1342         int index() { return index; }
1343 
1344         char typeChar() {
1345             return type.btChar;
1346         }
1347 
1348         Name withIndex(int i) {
1349             if (i == this.index) return this;
1350             return new Name(i, type, function, arguments, constraint);
1351         }
1352 
1353         Name withConstraint(Object constraint) {
1354             if (constraint == this.constraint)  return this;
1355             return new Name(index, type, function, arguments, constraint);
1356         }
1357 
1358         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1359             if (oldName == newName)  return this;
1360             @SuppressWarnings("LocalVariableHidesMemberVariable")
1361             Object[] arguments = this.arguments;
1362             if (arguments == null)  return this;
1363             boolean replaced = false;
1364             for (int j = 0; j < arguments.length; j++) {
1365                 if (arguments[j] == oldName) {
1366                     if (!replaced) {
1367                         replaced = true;
1368                         arguments = arguments.clone();
1369                     }
1370                     arguments[j] = newName;
1371                 }
1372             }
1373             if (!replaced)  return this;
1374             return new Name(function, arguments);
1375         }
1376         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1377          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1378          */
1379         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1380             if (start >= end)  return this;
1381             @SuppressWarnings("LocalVariableHidesMemberVariable")
1382             Object[] arguments = this.arguments;
1383             boolean replaced = false;
1384         eachArg:
1385             for (int j = 0; j < arguments.length; j++) {
1386                 if (arguments[j] instanceof Name n) {
1387                     int check = n.index;
1388                     // harmless check to see if the thing is already in newNames:
1389                     if (check >= 0 && check < newNames.length && n == newNames[check])
1390                         continue eachArg;
1391                     // n might not have the correct index: n != oldNames[n.index].
1392                     for (int i = start; i < end; i++) {
1393                         if (n == oldNames[i]) {
1394                             if (n == newNames[i])
1395                                 continue eachArg;
1396                             if (!replaced) {
1397                                 replaced = true;
1398                                 arguments = arguments.clone();
1399                             }
1400                             arguments[j] = newNames[i];
1401                             continue eachArg;
1402                         }
1403                     }
1404                 }
1405             }
1406             if (!replaced)  return this;
1407             return new Name(function, arguments);
1408         }
1409         void internArguments() {
1410             @SuppressWarnings("LocalVariableHidesMemberVariable")
1411             Object[] arguments = this.arguments;
1412             for (int j = 0; j < arguments.length; j++) {
1413                 if (arguments[j] instanceof Name n) {
1414                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1415                         arguments[j] = internArgument(n);
1416                 }
1417             }
1418         }
1419         boolean isParam() {
1420             return function == null;
1421         }
1422 
1423         boolean refersTo(Class<?> declaringClass, String methodName) {
1424             return function != null &&
1425                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1426         }
1427 
1428         /**
1429          * Check if MemberName is a call to MethodHandle.invokeBasic.
1430          */
1431         boolean isInvokeBasic() {
1432             if (function == null)
1433                 return false;
1434             if (arguments.length < 1)
1435                 return false;  // must have MH argument
1436             MemberName member = function.member();
1437             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1438                     !member.isPublic() && !member.isStatic();
1439         }
1440 
1441         /**
1442          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1443          */
1444         boolean isLinkerMethodInvoke() {
1445             if (function == null)
1446                 return false;
1447             if (arguments.length < 1)
1448                 return false;  // must have MH argument
1449             MemberName member = function.member();
1450             return member != null &&
1451                     member.getDeclaringClass() == MethodHandle.class &&
1452                     !member.isPublic() && member.isStatic() &&
1453                     member.getName().startsWith("linkTo");
1454         }
1455 
1456         public String toString() {
1457             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1458         }
1459         public String debugString() {
1460             String s = paramString();
1461             return (function == null) ? s : s + "=" + exprString();
1462         }
1463         public String paramString() {
1464             String s = toString();
1465             Object c = constraint;
1466             if (c == null)
1467                 return s;
1468             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1469             return s + "/" + c;
1470         }
1471         public String exprString() {
1472             if (function == null)  return toString();
1473             StringBuilder buf = new StringBuilder(function.toString());
1474             buf.append("(");
1475             String cma = "";
1476             for (Object a : arguments) {
1477                 buf.append(cma); cma = ",";
1478                 if (a instanceof Name || a instanceof Integer)
1479                     buf.append(a);
1480                 else
1481                     buf.append("(").append(a).append(")");
1482             }
1483             buf.append(")");
1484             return buf.toString();
1485         }
1486 
1487         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1488             if (arguments == null) {
1489                 assert(function == null);
1490                 return true;
1491             }
1492             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1493             for (int i = 0; i < arguments.length; i++) {
1494                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1495             }
1496             return true;
1497         }
1498 
1499         private static boolean typesMatch(BasicType parameterType, Object object) {
1500             if (object instanceof Name name) {
1501                 return name.type == parameterType;
1502             }
1503             switch (parameterType) {
1504                 case I_TYPE:  return object instanceof Integer;
1505                 case J_TYPE:  return object instanceof Long;
1506                 case F_TYPE:  return object instanceof Float;
1507                 case D_TYPE:  return object instanceof Double;
1508             }
1509             assert(parameterType == L_TYPE);
1510             return true;
1511         }
1512 
1513         /** Return the index of the last occurrence of n in the argument array.
1514          *  Return -1 if the name is not used.
1515          */
1516         int lastUseIndex(Name n) {
1517             Object[] arguments = this.arguments;
1518             if (arguments == null)  return -1;
1519             for (int i = arguments.length; --i >= 0; ) {
1520                 if (arguments[i] == n)  return i;
1521             }
1522             return -1;
1523         }
1524 
1525         public boolean equals(Name that) {
1526             if (this == that)  return true;
1527             if (isParam())
1528                 // each parameter is a unique atom
1529                 return false;  // this != that
1530             return
1531                 //this.index == that.index &&
1532                 this.type == that.type &&
1533                 this.function.equals(that.function) &&
1534                 Arrays.equals(this.arguments, that.arguments);
1535         }
1536         @Override
1537         public boolean equals(Object x) {
1538             return x instanceof Name n && equals(n);
1539         }
1540         @Override
1541         public int hashCode() {
1542             if (isParam())
1543                 return index | (type.ordinal() << 8);
1544             return function.hashCode() ^ Arrays.hashCode(arguments);
1545         }
1546     }
1547 
1548     /** Return the index of the last name which contains n as an argument.
1549      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1550      */
1551     int lastUseIndex(Name n) {
1552         int ni = n.index, nmax = names.length;
1553         assert(names[ni] == n);
1554         if (result == ni)  return nmax;  // live all the way beyond the end
1555         for (int i = nmax; --i > ni; ) {
1556             if (names[i].lastUseIndex(n) >= 0)
1557                 return i;
1558         }
1559         return -1;
1560     }
1561 
1562     /** Return the number of times n is used as an argument or return value. */
1563     int useCount(Name n) {
1564         int count = (result == n.index) ? 1 : 0;
1565         int i = Math.max(n.index + 1, arity);
1566         Name[] names = this.names;
1567         while (i < names.length) {
1568             Object[] arguments = names[i++].arguments;
1569             if (arguments != null) {
1570                 for (Object argument : arguments) {
1571                     if (argument == n) {
1572                         count++;
1573                     }
1574                 }
1575             }
1576         }
1577         return count;
1578     }
1579 
1580     static Name argument(int which, BasicType type) {
1581         if (which >= INTERNED_ARGUMENT_LIMIT)
1582             return new Name(which, type);
1583         return INTERNED_ARGUMENTS[type.ordinal()][which];
1584     }
1585     static Name internArgument(Name n) {
1586         assert(n.isParam()) : "not param: " + n;
1587         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1588         if (n.constraint != null)  return n;
1589         return argument(n.index, n.type);
1590     }
1591     static Name[] arguments(int extra, MethodType types) {
1592         int length = types.parameterCount();
1593         Name[] names = new Name[length + extra];
1594         for (int i = 0; i < length; i++)
1595             names[i] = argument(i, basicType(types.parameterType(i)));
1596         return names;
1597     }
1598 
1599     static Name[] invokeArguments(int extra, MethodType types) {
1600         int length = types.parameterCount();
1601         Name[] names = new Name[length + extra + 1];
1602         names[0] = argument(0, L_TYPE);
1603         for (int i = 0; i < length; i++)
1604             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1605         return names;
1606     }
1607 
1608     static final int INTERNED_ARGUMENT_LIMIT = 10;
1609     private static final Name[][] INTERNED_ARGUMENTS
1610             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1611     static {
1612         for (BasicType type : BasicType.ARG_TYPES) {
1613             int ord = type.ordinal();
1614             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1615                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1616             }
1617         }
1618     }
1619 
1620     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1621 
1622     static LambdaForm identityForm(BasicType type) {
1623         int ord = type.ordinal();
1624         LambdaForm form = LF_identity[ord];
1625         if (form != null) {
1626             return form;
1627         }
1628         createIdentityForm(type);
1629         return LF_identity[ord];
1630     }
1631 
1632     static NamedFunction identity(BasicType type) {
1633         int ord = type.ordinal();
1634         NamedFunction function = NF_identity[ord];
1635         if (function != null) {
1636             return function;
1637         }
1638         createIdentityForm(type);
1639         return NF_identity[ord];
1640     }
1641 
1642     static LambdaForm constantForm(BasicType type) {
1643         assert type != null && type != V_TYPE : type;
1644         var cached = LF_constant[type.ordinal()];
1645         if (cached != null)
1646             return cached;
1647         return createConstantForm(type);
1648     }
1649 
1650     private static LambdaForm createConstantForm(BasicType type) {
1651         UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle
1652         var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type);
1653         var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data
1654         Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) };
1655         return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT);
1656     }
1657 
1658     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1659     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1660     private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void
1661 
1662     private static final Object createIdentityFormLock = new Object();
1663     private static void createIdentityForm(BasicType type) {
1664         // Avoid racy initialization during bootstrap
1665         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1666         synchronized (createIdentityFormLock) {
1667             final int ord = type.ordinal();
1668             LambdaForm idForm = LF_identity[ord];
1669             if (idForm != null) {
1670                 return;
1671             }
1672             char btChar = type.basicTypeChar();
1673             boolean isVoid = (type == V_TYPE);
1674             Class<?> btClass = type.btClass;
1675             MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass);
1676 
1677             // Look up symbolic names.  It might not be necessary to have these,
1678             // but if we need to emit direct references to bytecodes, it helps.
1679             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1680             try {
1681                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1682             } catch (IllegalAccessException|NoSuchMethodException ex) {
1683                 throw newInternalError(ex);
1684             }
1685 
1686             NamedFunction idFun;
1687 
1688             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1689             // bootstrap dependency on this method in case we're interpreting LFs
1690             if (isVoid) {
1691                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1692                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1693                 idForm.compileToBytecode();
1694                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1695             } else {
1696                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1697                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1698                 idForm.compileToBytecode();
1699                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm,
1700                             MethodHandleImpl.Intrinsic.IDENTITY));
1701             }
1702 
1703             LF_identity[ord] = idForm;
1704             NF_identity[ord] = idFun;
1705 
1706             assert(idFun.isIdentity());
1707         }
1708     }
1709 
1710     // Avoid appealing to ValueConversions at bootstrap time:
1711     private static int identity_I(int x) { return x; }
1712     private static long identity_J(long x) { return x; }
1713     private static float identity_F(float x) { return x; }
1714     private static double identity_D(double x) { return x; }
1715     private static Object identity_L(Object x) { return x; }
1716     private static void identity_V() { return; }
1717     /**
1718      * Internal marker for byte-compiled LambdaForms.
1719      */
1720     /*non-public*/
1721     @Target(ElementType.METHOD)
1722     @Retention(RetentionPolicy.RUNTIME)
1723     @interface Compiled {
1724     }
1725 
1726     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1727     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1728     static {
1729         if (debugEnabled()) {
1730             DEBUG_NAME_COUNTERS = new HashMap<>();
1731             DEBUG_NAMES = new HashMap<>();
1732         } else {
1733             DEBUG_NAME_COUNTERS = null;
1734             DEBUG_NAMES = null;
1735         }
1736     }
1737 
1738     static {
1739         // The Holder class will contain pre-generated forms resolved
1740         // using MemberName.getFactory(). However, that doesn't initialize the
1741         // class, which subtly breaks inlining etc. By forcing
1742         // initialization of the Holder class we avoid these issues.
1743         UNSAFE.ensureClassInitialized(Holder.class);
1744     }
1745 
1746     /* Placeholder class for identity and constant forms generated ahead of time */
1747     final class Holder {}
1748 
1749     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1750     // during execution of the static initializes of this class.
1751     // Turning on TRACE_INTERPRETER too early will cause
1752     // stack overflows and other misbehavior during attempts to trace events
1753     // that occur during LambdaForm.<clinit>.
1754     // Therefore, do not move this line higher in this file, and do not remove.
1755     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1756 }