1 /*
   2  * Copyright (c) 2011, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.classfile.TypeKind;
  29 import jdk.internal.perf.PerfCounter;
  30 import jdk.internal.vm.annotation.DontInline;
  31 import jdk.internal.vm.annotation.Hidden;
  32 import jdk.internal.vm.annotation.Stable;
  33 import sun.invoke.util.Wrapper;
  34 
  35 import java.lang.annotation.ElementType;
  36 import java.lang.annotation.Retention;
  37 import java.lang.annotation.RetentionPolicy;
  38 import java.lang.annotation.Target;
  39 import java.lang.reflect.Method;
  40 import java.util.Arrays;
  41 import java.util.HashMap;
  42 
  43 import static java.lang.invoke.LambdaForm.BasicType.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import static java.lang.invoke.MethodHandleStatics.*;
  46 
  47 /**
  48  * The symbolic, non-executable form of a method handle's invocation semantics.
  49  * It consists of a series of names.
  50  * The first N (N=arity) names are parameters,
  51  * while any remaining names are temporary values.
  52  * Each temporary specifies the application of a function to some arguments.
  53  * The functions are method handles, while the arguments are mixes of
  54  * constant values and local names.
  55  * The result of the lambda is defined as one of the names, often the last one.
  56  * <p>
  57  * Here is an approximate grammar:
  58  * <blockquote><pre>{@code
  59  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  60  * ArgName = "a" N ":" T
  61  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  62  * Function = ConstantValue
  63  * Argument = NameRef | ConstantValue
  64  * Result = NameRef | "void"
  65  * NameRef = "a" N | "t" N
  66  * N = (any whole number)
  67  * T = "L" | "I" | "J" | "F" | "D" | "V"
  68  * }</pre></blockquote>
  69  * Names are numbered consecutively from left to right starting at zero.
  70  * (The letters are merely a taste of syntax sugar.)
  71  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  72  * Every occurrence of a name reference in an argument list must refer to
  73  * a name previously defined within the same lambda.
  74  * A lambda has a void result if and only if its result index is -1.
  75  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  76  * even though possesses a number.
  77  * Note that all reference types are erased to "L", which stands for {@code Object}.
  78  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  79  * The other types stand for the usual primitive types.
  80  * <p>
  81  * Function invocation closely follows the static rules of the Java verifier.
  82  * Arguments and return values must exactly match when their "Name" types are
  83  * considered.
  84  * Conversions are allowed only if they do not change the erased type.
  85  * <ul>
  86  * <li>L = Object: casts are used freely to convert into and out of reference types
  87  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  88  * <li>J = long: no implicit conversions
  89  * <li>F = float: no implicit conversions
  90  * <li>D = double: no implicit conversions
  91  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  92  * </ul>
  93  * Although implicit conversions are not allowed, explicit ones can easily be
  94  * encoded by using temporary expressions which call type-transformed identity functions.
  95  * <p>
  96  * Examples:
  97  * <blockquote><pre>{@code
  98  * (a0:J)=>{ a0 }
  99  *     == identity(long)
 100  * (a0:I)=>{ t1:V = System.out#println(a0); void }
 101  *     == System.out#println(int)
 102  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 103  *     == identity, with printing side-effect
 104  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 105  *                 t3:L = BoundMethodHandle#target(a0);
 106  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 107  *     == general invoker for unary insertArgument combination
 108  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 109  *                 t3:L = MethodHandle#invoke(t2, a1);
 110  *                 t4:L = FilterMethodHandle#target(a0);
 111  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 112  *     == general invoker for unary filterArgument combination
 113  * (a0:L, a1:L)=>{ ...(same as previous example)...
 114  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 115  *     == general invoker for unary/unary foldArgument combination
 116  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 117  *     == invoker for identity method handle which performs i2l
 118  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 119  *                 t3:L = Class#cast(t2,a1); t3 }
 120  *     == invoker for identity method handle which performs cast
 121  * }</pre></blockquote>
 122  * <p>
 123  * @author John Rose, JSR 292 EG
 124  */
 125 class LambdaForm {
 126     final int arity;
 127     final int result;
 128     final boolean forceInline;
 129     final MethodHandle customized;
 130     @Stable final Name[] names;
 131     final Kind kind;
 132     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 133     private boolean isCompiled;
 134 
 135     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 136     volatile Object transformCache;
 137 
 138     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 139 
 140     enum BasicType {
 141         L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types
 142         I_TYPE('I', int.class,    Wrapper.INT,    TypeKind.INT),
 143         J_TYPE('J', long.class,   Wrapper.LONG,   TypeKind.LONG),
 144         F_TYPE('F', float.class,  Wrapper.FLOAT,  TypeKind.FLOAT),
 145         D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE),  // all primitive types
 146         V_TYPE('V', void.class,   Wrapper.VOID,   TypeKind.VOID);    // not valid in all contexts
 147 
 148         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 149         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 150 
 151         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 152         static final int TYPE_LIMIT = ALL_TYPES.length;
 153 
 154         final char btChar;
 155         final Class<?> btClass;
 156         final Wrapper btWrapper;
 157         final TypeKind btKind;
 158 
 159         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) {
 160             this.btChar = btChar;
 161             this.btClass = btClass;
 162             this.btWrapper = wrapper;
 163             this.btKind = typeKind;
 164         }
 165 
 166         char basicTypeChar() {
 167             return btChar;
 168         }
 169         Class<?> basicTypeClass() {
 170             return btClass;
 171         }
 172         Wrapper basicTypeWrapper() {
 173             return btWrapper;
 174         }
 175         TypeKind basicTypeKind() {
 176             return btKind;
 177         }
 178         int basicTypeSlots() {
 179             return btWrapper.stackSlots();
 180         }
 181 
 182         static BasicType basicType(byte type) {
 183             return ALL_TYPES[type];
 184         }
 185         static BasicType basicType(char type) {
 186             return switch (type) {
 187                 case 'L' -> L_TYPE;
 188                 case 'I' -> I_TYPE;
 189                 case 'J' -> J_TYPE;
 190                 case 'F' -> F_TYPE;
 191                 case 'D' -> D_TYPE;
 192                 case 'V' -> V_TYPE;
 193                 // all subword types are represented as ints
 194                 case 'Z', 'B', 'S', 'C' -> I_TYPE;
 195                 default -> throw newInternalError("Unknown type char: '" + type + "'");
 196             };
 197         }
 198         static BasicType basicType(Class<?> type) {
 199             return basicType(Wrapper.basicTypeChar(type));
 200         }
 201         static int[] basicTypeOrds(BasicType[] types) {
 202             if (types == null) {
 203                 return null;
 204             }
 205             int[] a = new int[types.length];
 206             for(int i = 0; i < types.length; ++i) {
 207                 a[i] = types[i].ordinal();
 208             }
 209             return a;
 210         }
 211 
 212         static char basicTypeChar(Class<?> type) {
 213             return basicType(type).btChar;
 214         }
 215 
 216         static int[] basicTypesOrd(Class<?>[] types) {
 217             int[] ords = new int[types.length];
 218             for (int i = 0; i < ords.length; i++) {
 219                 ords[i] = basicType(types[i]).ordinal();
 220             }
 221             return ords;
 222         }
 223 
 224         static boolean isBasicTypeChar(char c) {
 225             return "LIJFDV".indexOf(c) >= 0;
 226         }
 227         static boolean isArgBasicTypeChar(char c) {
 228             return "LIJFD".indexOf(c) >= 0;
 229         }
 230 
 231         static { assert(checkBasicType()); }
 232         private static boolean checkBasicType() {
 233             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 234                 assert ARG_TYPES[i].ordinal() == i;
 235                 assert ARG_TYPES[i] == ALL_TYPES[i];
 236             }
 237             for (int i = 0; i < TYPE_LIMIT; i++) {
 238                 assert ALL_TYPES[i].ordinal() == i;
 239             }
 240             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 241             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 242             return true;
 243         }
 244     }
 245 
 246     enum Kind {
 247         GENERIC("invoke"),
 248         ZERO("zero"),
 249         IDENTITY("identity"),
 250         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 251         REINVOKER("MH.reinvoke", "reinvoke"),
 252         DELEGATE("MH.delegate", "delegate"),
 253         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 254         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 255         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 256         GENERIC_INVOKER("MH.invoker", "invoker"),
 257         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 258         LINK_TO_CALL_SITE("linkToCallSite"),
 259         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 260         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 261         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
 262         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 263         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 264         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 265         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 266         GET_REFERENCE("getReference"),
 267         PUT_REFERENCE("putReference"),
 268         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
 269         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
 270         GET_VALUE("getValue"),
 271         PUT_VALUE("putValue"),
 272         GET_VALUE_VOLATILE("getValueVolatile"),
 273         PUT_VALUE_VOLATILE("putValueVolatile"),
 274         GET_INT("getInt"),
 275         PUT_INT("putInt"),
 276         GET_INT_VOLATILE("getIntVolatile"),
 277         PUT_INT_VOLATILE("putIntVolatile"),
 278         GET_BOOLEAN("getBoolean"),
 279         PUT_BOOLEAN("putBoolean"),
 280         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 281         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 282         GET_BYTE("getByte"),
 283         PUT_BYTE("putByte"),
 284         GET_BYTE_VOLATILE("getByteVolatile"),
 285         PUT_BYTE_VOLATILE("putByteVolatile"),
 286         GET_CHAR("getChar"),
 287         PUT_CHAR("putChar"),
 288         GET_CHAR_VOLATILE("getCharVolatile"),
 289         PUT_CHAR_VOLATILE("putCharVolatile"),
 290         GET_SHORT("getShort"),
 291         PUT_SHORT("putShort"),
 292         GET_SHORT_VOLATILE("getShortVolatile"),
 293         PUT_SHORT_VOLATILE("putShortVolatile"),
 294         GET_LONG("getLong"),
 295         PUT_LONG("putLong"),
 296         GET_LONG_VOLATILE("getLongVolatile"),
 297         PUT_LONG_VOLATILE("putLongVolatile"),
 298         GET_FLOAT("getFloat"),
 299         PUT_FLOAT("putFloat"),
 300         GET_FLOAT_VOLATILE("getFloatVolatile"),
 301         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 302         GET_DOUBLE("getDouble"),
 303         PUT_DOUBLE("putDouble"),
 304         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 305         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 306         TRY_FINALLY("tryFinally"),
 307         TABLE_SWITCH("tableSwitch"),
 308         COLLECTOR("collector"),
 309         LOOP("loop"),
 310         GUARD("guard"),
 311         GUARD_WITH_CATCH("guardWithCatch"),
 312         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 313         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 314         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 315 
 316         final String defaultLambdaName;
 317         final String methodName;
 318 
 319         private Kind(String defaultLambdaName) {
 320             this(defaultLambdaName, defaultLambdaName);
 321         }
 322 
 323         private Kind(String defaultLambdaName, String methodName) {
 324             this.defaultLambdaName = defaultLambdaName;
 325             this.methodName = methodName;
 326         }
 327     }
 328 
 329     // private version that doesn't do checks or defensive copies
 330     private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) {
 331         this.arity = arity;
 332         this.result = result;
 333         this.forceInline = forceInline;
 334         this.customized = customized;
 335         this.names = names;
 336         this.kind = kind;
 337         this.vmentry = null;
 338         this.isCompiled = false;
 339     }
 340 
 341     // root factory pre/post processing and calls simple constructor
 342     private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 343         names = names.clone();
 344         assert(namesOK(arity, names));
 345         result = fixResult(result, names);
 346 
 347         boolean canInterpret = normalizeNames(arity, names);
 348         LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind);
 349         assert(form.nameRefsAreLegal());
 350         if (!canInterpret) {
 351             form.compileToBytecode();
 352         }
 353         return form;
 354     }
 355 
 356     // derived factories with defaults
 357     private static final int DEFAULT_RESULT = LAST_RESULT;
 358     private static final boolean DEFAULT_FORCE_INLINE = true;
 359     private static final MethodHandle DEFAULT_CUSTOMIZED = null;
 360     private static final Kind DEFAULT_KIND = Kind.GENERIC;
 361 
 362     static LambdaForm create(int arity, Name[] names, int result) {
 363         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 364     }
 365     static LambdaForm create(int arity, Name[] names, int result, Kind kind) {
 366         return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 367     }
 368     static LambdaForm create(int arity, Name[] names) {
 369         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND);
 370     }
 371     static LambdaForm create(int arity, Name[] names, Kind kind) {
 372         return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind);
 373     }
 374     static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) {
 375         return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind);
 376     }
 377 
 378     private static LambdaForm createBlankForType(MethodType mt) {
 379         // Make a blank lambda form, which returns a constant zero or null.
 380         // It is used as a template for managing the invocation of similar forms that are non-empty.
 381         // Called only from getPreparedForm.
 382         int arity = mt.parameterCount();
 383         int result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? VOID_RESULT : arity;
 384         Name[] names = buildEmptyNames(arity, mt, result == VOID_RESULT);
 385         boolean canInterpret = normalizeNames(arity, names);
 386         LambdaForm form = new LambdaForm(arity, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, names, Kind.ZERO);
 387         assert(form.nameRefsAreLegal() && form.isEmpty() && isValidSignature(form.basicTypeSignature()));
 388         if (!canInterpret) {
 389             form.compileToBytecode();
 390         }
 391         return form;
 392     }
 393 
 394     private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) {
 395         Name[] names = arguments(isVoid ? 0 : 1, mt);
 396         if (!isVoid) {
 397             Name zero = new Name(constantZero(basicType(mt.returnType())));
 398             names[arity] = zero.withIndex(arity);
 399         }
 400         assert(namesOK(arity, names));
 401         return names;
 402     }
 403 
 404     private static int fixResult(int result, Name[] names) {
 405         if (result == LAST_RESULT)
 406             result = names.length - 1;  // might still be void
 407         if (result >= 0 && names[result].type == V_TYPE)
 408             result = VOID_RESULT;
 409         return result;
 410     }
 411 
 412     static boolean debugNames() {
 413         return DEBUG_NAME_COUNTERS != null;
 414     }
 415 
 416     static void associateWithDebugName(LambdaForm form, String name) {
 417         assert (debugNames());
 418         synchronized (DEBUG_NAMES) {
 419             DEBUG_NAMES.put(form, name);
 420         }
 421     }
 422 
 423     String lambdaName() {
 424         if (DEBUG_NAMES != null) {
 425             synchronized (DEBUG_NAMES) {
 426                 String name = DEBUG_NAMES.get(this);
 427                 if (name == null) {
 428                     name = generateDebugName();
 429                 }
 430                 return name;
 431             }
 432         }
 433         return kind.defaultLambdaName;
 434     }
 435 
 436     private String generateDebugName() {
 437         assert (debugNames());
 438         String debugNameStem = kind.defaultLambdaName;
 439         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 440         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 441         StringBuilder buf = new StringBuilder(debugNameStem);
 442         int leadingZero = buf.length();
 443         buf.append((int) ctr);
 444         for (int i = buf.length() - leadingZero; i < 3; i++) {
 445             buf.insert(leadingZero, '0');
 446         }
 447         buf.append('_');
 448         buf.append(basicTypeSignature());
 449         String name = buf.toString();
 450         associateWithDebugName(this, name);
 451         return name;
 452     }
 453 
 454     private static boolean namesOK(int arity, Name[] names) {
 455         for (int i = 0; i < names.length; i++) {
 456             Name n = names[i];
 457             assert(n != null) : "n is null";
 458             if (i < arity)
 459                 assert( n.isParam()) : n + " is not param at " + i;
 460             else
 461                 assert(!n.isParam()) : n + " is param at " + i;
 462         }
 463         return true;
 464     }
 465 
 466     /** Customize LambdaForm for a particular MethodHandle */
 467     LambdaForm customize(MethodHandle mh) {
 468         if (customized == mh) {
 469             return this;
 470         }
 471         LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind);
 472         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 473             // If shared LambdaForm has been compiled, compile customized version as well.
 474             customForm.compileToBytecode();
 475         }
 476         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 477         return customForm;
 478     }
 479 
 480     /** Get uncustomized flavor of the LambdaForm */
 481     LambdaForm uncustomize() {
 482         if (customized == null) {
 483             return this;
 484         }
 485         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 486         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 487         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 488             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 489             uncustomizedForm.compileToBytecode();
 490         }
 491         return uncustomizedForm;
 492     }
 493 
 494     /** Renumber and/or replace params so that they are interned and canonically numbered.
 495      *  @return true if we can interpret
 496      */
 497     private static boolean normalizeNames(int arity, Name[] names) {
 498         Name[] oldNames = names.clone();
 499         int maxOutArity = 0;
 500         for (int i = 0; i < names.length; i++) {
 501             Name n = names[i];
 502             names[i] = n.withIndex(i);
 503             if (n.arguments != null && maxOutArity < n.arguments.length)
 504                 maxOutArity = n.arguments.length;
 505         }
 506         if (oldNames != null) {
 507             for (int i = Math.max(1, arity); i < names.length; i++) {
 508                 Name fixed = names[i].replaceNames(oldNames, names, 0, i);
 509                 names[i] = fixed.withIndex(i);
 510             }
 511         }
 512         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 513         boolean needIntern = false;
 514         for (int i = 0; i < maxInterned; i++) {
 515             Name n = names[i], n2 = internArgument(n);
 516             if (n != n2) {
 517                 names[i] = n2;
 518                 needIntern = true;
 519             }
 520         }
 521         if (needIntern) {
 522             for (int i = arity; i < names.length; i++) {
 523                 names[i].internArguments();
 524             }
 525         }
 526 
 527         // return true if we can interpret
 528         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 529             // Cannot use LF interpreter on very high arity expressions.
 530             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 531             return false;
 532         }
 533         return true;
 534     }
 535 
 536     /**
 537      * Check that all embedded Name references are localizable to this lambda,
 538      * and are properly ordered after their corresponding definitions.
 539      * <p>
 540      * Note that a Name can be local to multiple lambdas, as long as
 541      * it possesses the same index in each use site.
 542      * This allows Name references to be freely reused to construct
 543      * fresh lambdas, without confusion.
 544      */
 545     boolean nameRefsAreLegal() {
 546         assert(arity >= 0 && arity <= names.length);
 547         assert(result >= -1 && result < names.length);
 548         // Do all names possess an index consistent with their local definition order?
 549         for (int i = 0; i < arity; i++) {
 550             Name n = names[i];
 551             assert(n.index() == i) : Arrays.asList(n.index(), i);
 552             assert(n.isParam());
 553         }
 554         // Also, do all local name references
 555         for (int i = arity; i < names.length; i++) {
 556             Name n = names[i];
 557             assert(n.index() == i);
 558             for (Object arg : n.arguments) {
 559                 if (arg instanceof Name n2) {
 560                     int i2 = n2.index;
 561                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 562                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 563                     assert(i2 < i);  // ref must come after def!
 564                 }
 565             }
 566         }
 567         return true;
 568     }
 569 
 570     // /** Invoke this form on the given arguments. */
 571     // final Object invoke(Object... args) throws Throwable {
 572     //     // NYI: fit this into the fast path?
 573     //     return interpretWithArguments(args);
 574     // }
 575 
 576     /** Report the return type. */
 577     BasicType returnType() {
 578         if (result < 0)  return V_TYPE;
 579         Name n = names[result];
 580         return n.type;
 581     }
 582 
 583     /** Report the N-th argument type. */
 584     BasicType parameterType(int n) {
 585         return parameter(n).type;
 586     }
 587 
 588     /** Report the N-th argument name. */
 589     Name parameter(int n) {
 590         Name param = names[n];
 591         assert(n < arity && param.isParam());
 592         return param;
 593     }
 594 
 595     /** Report the N-th argument type constraint. */
 596     Object parameterConstraint(int n) {
 597         return parameter(n).constraint;
 598     }
 599 
 600     /** Report the arity. */
 601     int arity() {
 602         return arity;
 603     }
 604 
 605     /** Report the number of expressions (non-parameter names). */
 606     int expressionCount() {
 607         return names.length - arity;
 608     }
 609 
 610     /** Return the method type corresponding to my basic type signature. */
 611     MethodType methodType() {
 612         Class<?>[] ptypes = new Class<?>[arity];
 613         for (int i = 0; i < arity; ++i) {
 614             ptypes[i] = parameterType(i).btClass;
 615         }
 616         return MethodType.methodType(returnType().btClass, ptypes, true);
 617     }
 618 
 619     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 620     final String basicTypeSignature() {
 621         StringBuilder buf = new StringBuilder(arity() + 3);
 622         for (int i = 0, a = arity(); i < a; i++)
 623             buf.append(parameterType(i).basicTypeChar());
 624         return buf.append('_').append(returnType().basicTypeChar()).toString();
 625     }
 626     static int signatureArity(String sig) {
 627         assert(isValidSignature(sig));
 628         return sig.indexOf('_');
 629     }
 630     static boolean isValidSignature(String sig) {
 631         int arity = sig.indexOf('_');
 632         if (arity < 0)  return false;  // must be of the form *_*
 633         int siglen = sig.length();
 634         if (siglen != arity + 2)  return false;  // *_X
 635         for (int i = 0; i < siglen; i++) {
 636             if (i == arity)  continue;  // skip '_'
 637             char c = sig.charAt(i);
 638             if (c == 'V')
 639                 return (i == siglen - 1 && arity == siglen - 2);
 640             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 641         }
 642         return true;  // [LIJFD]*_[LIJFDV]
 643     }
 644 
 645     /**
 646      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 647      */
 648     boolean isSelectAlternative(int pos) {
 649         // selectAlternative idiom:
 650         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 651         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 652         if (pos+1 >= names.length)  return false;
 653         Name name0 = names[pos];
 654         Name name1 = names[pos+1];
 655         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 656                 name1.isInvokeBasic() &&
 657                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 658                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 659     }
 660 
 661     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 662         if (pos+2 >= names.length)  return false;
 663         Name name0 = names[pos];
 664         Name name1 = names[pos+1];
 665         Name name2 = names[pos+2];
 666         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 667                 name0.isInvokeBasic() &&
 668                 name2.isInvokeBasic() &&
 669                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 670                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 671                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 672                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 673     }
 674 
 675     /**
 676      * Check if i-th name is a start of GuardWithCatch idiom.
 677      */
 678     boolean isGuardWithCatch(int pos) {
 679         // GuardWithCatch idiom:
 680         //   t_{n}:L=MethodHandle.invokeBasic(...)
 681         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 682         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 683         return isMatchingIdiom(pos, "guardWithCatch", 3);
 684     }
 685 
 686     /**
 687      * Check if i-th name is a start of the tryFinally idiom.
 688      */
 689     boolean isTryFinally(int pos) {
 690         // tryFinally idiom:
 691         //   t_{n}:L=MethodHandle.invokeBasic(...)
 692         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 693         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 694         return isMatchingIdiom(pos, "tryFinally", 2);
 695     }
 696 
 697     /**
 698      * Check if i-th name is a start of the tableSwitch idiom.
 699      */
 700     boolean isTableSwitch(int pos) {
 701         // tableSwitch idiom:
 702         //   t_{n}:L=MethodHandle.invokeBasic(...)     // args
 703         //   t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n})
 704         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 705         if (pos + 2 >= names.length)  return false;
 706 
 707         final int POS_COLLECT_ARGS = pos;
 708         final int POS_TABLE_SWITCH = pos + 1;
 709         final int POS_UNBOX_RESULT = pos + 2;
 710 
 711         Name collectArgs = names[POS_COLLECT_ARGS];
 712         Name tableSwitch = names[POS_TABLE_SWITCH];
 713         Name unboxResult = names[POS_UNBOX_RESULT];
 714         return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") &&
 715                 collectArgs.isInvokeBasic() &&
 716                 unboxResult.isInvokeBasic() &&
 717                 tableSwitch.lastUseIndex(collectArgs) == 3 &&     // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n});
 718                 lastUseIndex(collectArgs) == POS_TABLE_SWITCH &&  // t_{n} is local: used only in t_{n+1}
 719                 unboxResult.lastUseIndex(tableSwitch) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 720                 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT;    // t_{n+1} is local: used only in t_{n+2}
 721     }
 722 
 723     /**
 724      * Check if i-th name is a start of the loop idiom.
 725      */
 726     boolean isLoop(int pos) {
 727         // loop idiom:
 728         //   t_{n}:L=MethodHandle.invokeBasic(...)
 729         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 730         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 731         return isMatchingIdiom(pos, "loop", 2);
 732     }
 733 
 734     /*
 735      * Code generation issues:
 736      *
 737      * Compiled LFs should be reusable in general.
 738      * The biggest issue is how to decide when to pull a name into
 739      * the bytecode, versus loading a reified form from the MH data.
 740      *
 741      * For example, an asType wrapper may require execution of a cast
 742      * after a call to a MH.  The target type of the cast can be placed
 743      * as a constant in the LF itself.  This will force the cast type
 744      * to be compiled into the bytecodes and native code for the MH.
 745      * Or, the target type of the cast can be erased in the LF, and
 746      * loaded from the MH data.  (Later on, if the MH as a whole is
 747      * inlined, the data will flow into the inlined instance of the LF,
 748      * as a constant, and the end result will be an optimal cast.)
 749      *
 750      * This erasure of cast types can be done with any use of
 751      * reference types.  It can also be done with whole method
 752      * handles.  Erasing a method handle might leave behind
 753      * LF code that executes correctly for any MH of a given
 754      * type, and load the required MH from the enclosing MH's data.
 755      * Or, the erasure might even erase the expected MT.
 756      *
 757      * Also, for direct MHs, the MemberName of the target
 758      * could be erased, and loaded from the containing direct MH.
 759      * As a simple case, a LF for all int-valued non-static
 760      * field getters would perform a cast on its input argument
 761      * (to non-constant base type derived from the MemberName)
 762      * and load an integer value from the input object
 763      * (at a non-constant offset also derived from the MemberName).
 764      * Such MN-erased LFs would be inlinable back to optimized
 765      * code, whenever a constant enclosing DMH is available
 766      * to supply a constant MN from its data.
 767      *
 768      * The main problem here is to keep LFs reasonably generic,
 769      * while ensuring that hot spots will inline good instances.
 770      * "Reasonably generic" means that we don't end up with
 771      * repeated versions of bytecode or machine code that do
 772      * not differ in their optimized form.  Repeated versions
 773      * of machine would have the undesirable overheads of
 774      * (a) redundant compilation work and (b) extra I$ pressure.
 775      * To control repeated versions, we need to be ready to
 776      * erase details from LFs and move them into MH data,
 777      * whenever those details are not relevant to significant
 778      * optimization.  "Significant" means optimization of
 779      * code that is actually hot.
 780      *
 781      * Achieving this may require dynamic splitting of MHs, by replacing
 782      * a generic LF with a more specialized one, on the same MH,
 783      * if (a) the MH is frequently executed and (b) the MH cannot
 784      * be inlined into a containing caller, such as an invokedynamic.
 785      *
 786      * Compiled LFs that are no longer used should be GC-able.
 787      * If they contain non-BCP references, they should be properly
 788      * interlinked with the class loader(s) that their embedded types
 789      * depend on.  This probably means that reusable compiled LFs
 790      * will be tabulated (indexed) on relevant class loaders,
 791      * or else that the tables that cache them will have weak links.
 792      */
 793 
 794     /**
 795      * Make this LF directly executable, as part of a MethodHandle.
 796      * Invariant:  Every MH which is invoked must prepare its LF
 797      * before invocation.
 798      * (In principle, the JVM could do this very lazily,
 799      * as a sort of pre-invocation linkage step.)
 800      */
 801     public void prepare() {
 802         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 803             compileToBytecode();
 804         }
 805         if (this.vmentry != null) {
 806             // already prepared (e.g., a primitive DMH invoker form)
 807             return;
 808         }
 809         MethodType mtype = methodType();
 810         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 811         if (prep == null) {
 812             assert (isValidSignature(basicTypeSignature()));
 813             prep = LambdaForm.createBlankForType(mtype);
 814             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 815             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 816         }
 817         this.vmentry = prep.vmentry;
 818         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 819     }
 820 
 821     private static @Stable PerfCounter LF_FAILED;
 822 
 823     private static PerfCounter failedCompilationCounter() {
 824         if (LF_FAILED == null) {
 825             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 826         }
 827         return LF_FAILED;
 828     }
 829 
 830     /** Generate optimizable bytecode for this form. */
 831     void compileToBytecode() {
 832         if (forceInterpretation()) {
 833             return; // this should not be compiled
 834         }
 835         if (vmentry != null && isCompiled) {
 836             return;  // already compiled somehow
 837         }
 838 
 839         // Obtain the invoker MethodType outside of the following try block.
 840         // This ensures that an IllegalArgumentException is directly thrown if the
 841         // type would have 256 or more parameters
 842         MethodType invokerType = methodType();
 843         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 844         try {
 845             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 846             if (TRACE_INTERPRETER)
 847                 traceInterpreter("compileToBytecode", this);
 848             isCompiled = true;
 849         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 850             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 851             invocationCounter = -1;
 852             failedCompilationCounter().increment();
 853             if (LOG_LF_COMPILATION_FAILURE) {
 854                 System.out.println("LambdaForm compilation failed: " + this);
 855                 bge.printStackTrace(System.out);
 856             }
 857         } catch (Error e) {
 858             // Pass through any error
 859             throw e;
 860         } catch (Exception e) {
 861             // Wrap any exception
 862             throw newInternalError(this.toString(), e);
 863         }
 864     }
 865 
 866     // The next few routines are called only from assert expressions
 867     // They verify that the built-in invokers process the correct raw data types.
 868     private static boolean argumentTypesMatch(String sig, Object[] av) {
 869         int arity = signatureArity(sig);
 870         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 871         assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0];
 872         MethodHandle mh = (MethodHandle) av[0];
 873         MethodType mt = mh.type();
 874         assert(mt.parameterCount() == arity-1);
 875         for (int i = 0; i < av.length; i++) {
 876             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 877             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 878         }
 879         return true;
 880     }
 881     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 882         // The following line is needed because (...)void method handles can use non-void invokers
 883         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 884         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 885         switch (tc) {
 886         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 887         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 888         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 889         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 890         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 891         case V_TYPE: break;  // allow anything here; will be dropped
 892         default:  assert(false);
 893         }
 894         return true;
 895     }
 896     private static boolean checkInt(Class<?> type, Object x) {
 897         assert(x instanceof Integer);
 898         if (type == int.class)  return true;
 899         Wrapper w = Wrapper.forBasicType(type);
 900         assert(w.isSubwordOrInt());
 901         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 902         return x.equals(x1);
 903     }
 904     private static boolean checkRef(Class<?> type, Object x) {
 905         assert(!type.isPrimitive());
 906         if (x == null)  return true;
 907         if (type.isInterface())  return true;
 908         return type.isInstance(x);
 909     }
 910 
 911     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 912     private static final int COMPILE_THRESHOLD;
 913     static {
 914         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 915     }
 916     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 917 
 918     private boolean forceInterpretation() {
 919         return invocationCounter == -1;
 920     }
 921 
 922     /** Interpretively invoke this form on the given arguments. */
 923     @Hidden
 924     @DontInline
 925     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 926         if (TRACE_INTERPRETER)
 927             return interpretWithArgumentsTracing(argumentValues);
 928         checkInvocationCounter();
 929         assert(arityCheck(argumentValues));
 930         Object[] values = Arrays.copyOf(argumentValues, names.length);
 931         for (int i = argumentValues.length; i < values.length; i++) {
 932             values[i] = interpretName(names[i], values);
 933         }
 934         Object rv = (result < 0) ? null : values[result];
 935         assert(resultCheck(argumentValues, rv));
 936         return rv;
 937     }
 938 
 939     /** Evaluate a single Name within this form, applying its function to its arguments. */
 940     @Hidden
 941     @DontInline
 942     Object interpretName(Name name, Object[] values) throws Throwable {
 943         if (TRACE_INTERPRETER)
 944             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 945         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 946         for (int i = 0; i < arguments.length; i++) {
 947             Object a = arguments[i];
 948             if (a instanceof Name n) {
 949                 int i2 = n.index();
 950                 assert(names[i2] == a);
 951                 a = values[i2];
 952                 arguments[i] = a;
 953             }
 954         }
 955         return name.function.invokeWithArguments(arguments);
 956     }
 957 
 958     private void checkInvocationCounter() {
 959         if (COMPILE_THRESHOLD != 0 &&
 960             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 961             invocationCounter++;  // benign race
 962             if (invocationCounter >= COMPILE_THRESHOLD) {
 963                 // Replace vmentry with a bytecode version of this LF.
 964                 compileToBytecode();
 965             }
 966         }
 967     }
 968     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 969         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 970         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 971             int ctr = invocationCounter++;  // benign race
 972             traceInterpreter("| invocationCounter", ctr);
 973             if (invocationCounter >= COMPILE_THRESHOLD) {
 974                 compileToBytecode();
 975             }
 976         }
 977         Object rval;
 978         try {
 979             assert(arityCheck(argumentValues));
 980             Object[] values = Arrays.copyOf(argumentValues, names.length);
 981             for (int i = argumentValues.length; i < values.length; i++) {
 982                 values[i] = interpretName(names[i], values);
 983             }
 984             rval = (result < 0) ? null : values[result];
 985         } catch (Throwable ex) {
 986             traceInterpreter("] throw =>", ex);
 987             throw ex;
 988         }
 989         traceInterpreter("] return =>", rval);
 990         return rval;
 991     }
 992 
 993     static void traceInterpreter(String event, Object obj, Object... args) {
 994         if (TRACE_INTERPRETER) {
 995             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 996         }
 997     }
 998     static void traceInterpreter(String event, Object obj) {
 999         traceInterpreter(event, obj, (Object[])null);
1000     }
1001     private boolean arityCheck(Object[] argumentValues) {
1002         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
1003         // also check that the leading (receiver) argument is somehow bound to this LF:
1004         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
1005         MethodHandle mh = (MethodHandle) argumentValues[0];
1006         assert(mh.internalForm() == this);
1007         // note:  argument #0 could also be an interface wrapper, in the future
1008         argumentTypesMatch(basicTypeSignature(), argumentValues);
1009         return true;
1010     }
1011     private boolean resultCheck(Object[] argumentValues, Object result) {
1012         MethodHandle mh = (MethodHandle) argumentValues[0];
1013         MethodType mt = mh.type();
1014         assert(valueMatches(returnType(), mt.returnType(), result));
1015         return true;
1016     }
1017 
1018     private boolean isEmpty() {
1019         if (result < 0)
1020             return (names.length == arity);
1021         else if (result == arity && names.length == arity + 1)
1022             return names[arity].isConstantZero();
1023         else
1024             return false;
1025     }
1026 
1027     public String toString() {
1028         return debugString(-1);
1029     }
1030 
1031     String debugString(int indentLevel) {
1032         String prefix = MethodHandle.debugPrefix(indentLevel);
1033         String lambdaName = lambdaName();
1034         StringBuilder buf = new StringBuilder(lambdaName);
1035         buf.append("=Lambda(");
1036         for (int i = 0; i < names.length; i++) {
1037             if (i == arity)  buf.append(")=>{");
1038             Name n = names[i];
1039             if (i >= arity)  buf.append("\n    ").append(prefix);
1040             buf.append(n.paramString());
1041             if (i < arity) {
1042                 if (i+1 < arity)  buf.append(",");
1043                 continue;
1044             }
1045             buf.append("=").append(n.exprString());
1046             buf.append(";");
1047         }
1048         if (arity == names.length)  buf.append(")=>{");
1049         buf.append(result < 0 ? "void" : names[result]).append("}");
1050         if (TRACE_INTERPRETER) {
1051             // Extra verbosity:
1052             buf.append(":").append(basicTypeSignature());
1053             buf.append("/").append(vmentry);
1054         }
1055         return buf.toString();
1056     }
1057 
1058     @Override
1059     public boolean equals(Object obj) {
1060         return obj instanceof LambdaForm lf && equals(lf);
1061     }
1062     public boolean equals(LambdaForm that) {
1063         if (this.result != that.result)  return false;
1064         return Arrays.equals(this.names, that.names);
1065     }
1066     public int hashCode() {
1067         return result + 31 * Arrays.hashCode(names);
1068     }
1069     LambdaFormEditor editor() {
1070         return LambdaFormEditor.lambdaFormEditor(this);
1071     }
1072 
1073     boolean contains(Name name) {
1074         int pos = name.index();
1075         if (pos >= 0) {
1076             return pos < names.length && name.equals(names[pos]);
1077         }
1078         for (int i = arity; i < names.length; i++) {
1079             if (name.equals(names[i]))
1080                 return true;
1081         }
1082         return false;
1083     }
1084 
1085     static class NamedFunction {
1086         final MemberName member;
1087         private @Stable MethodHandle resolvedHandle;
1088         private @Stable MethodType type;
1089 
1090         NamedFunction(MethodHandle resolvedHandle) {
1091             this(resolvedHandle.internalMemberName(), resolvedHandle);
1092         }
1093         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1094             this.member = member;
1095             this.resolvedHandle = resolvedHandle;
1096              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1097              //assert(!isInvokeBasic(member));
1098         }
1099         NamedFunction(MethodType basicInvokerType) {
1100             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1101             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1102                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1103                 this.member = resolvedHandle.internalMemberName();
1104             } else {
1105                 // necessary to pass BigArityTest
1106                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1107             }
1108             assert(isInvokeBasic(member));
1109         }
1110 
1111         private static boolean isInvokeBasic(MemberName member) {
1112             return member != null &&
1113                    member.getDeclaringClass() == MethodHandle.class &&
1114                   "invokeBasic".equals(member.getName());
1115         }
1116 
1117         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1118         // Any LambdaForm containing such a member is not interpretable.
1119         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1120         // And even without the resolvedHandle, the name can still be compiled and optimized.
1121         NamedFunction(Method method) {
1122             this(new MemberName(method));
1123         }
1124         NamedFunction(MemberName member) {
1125             this(member, null);
1126         }
1127 
1128         MethodHandle resolvedHandle() {
1129             if (resolvedHandle == null)  resolve();
1130             return resolvedHandle;
1131         }
1132 
1133         synchronized void resolve() {
1134             if (resolvedHandle == null) {
1135                 resolvedHandle = DirectMethodHandle.make(member);
1136             }
1137         }
1138 
1139         @Override
1140         public boolean equals(Object other) {
1141             if (this == other) return true;
1142             if (other == null) return false;
1143             return (other instanceof NamedFunction that)
1144                     && this.member != null
1145                     && this.member.equals(that.member);
1146         }
1147 
1148         @Override
1149         public int hashCode() {
1150             if (member != null)
1151                 return member.hashCode();
1152             return super.hashCode();
1153         }
1154 
1155         static final MethodType INVOKER_METHOD_TYPE =
1156             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1157 
1158         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1159             typeForm = typeForm.basicType().form();  // normalize to basic type
1160             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1161             if (mh != null)  return mh;
1162             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1163             mh = DirectMethodHandle.make(invoker);
1164             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1165             if (mh2 != null)  return mh2;  // benign race
1166             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1167                 throw newInternalError(mh.debugString());
1168             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1169         }
1170 
1171         @Hidden
1172         Object invokeWithArguments(Object... arguments) throws Throwable {
1173             // If we have a cached invoker, call it right away.
1174             // NOTE: The invoker always returns a reference value.
1175             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1176             return invoker().invokeBasic(resolvedHandle(), arguments);
1177         }
1178 
1179         @Hidden
1180         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1181             Object rval;
1182             try {
1183                 traceInterpreter("[ call", this, arguments);
1184                 // resolvedHandle might be uninitialized, ok for tracing
1185                 if (resolvedHandle == null) {
1186                     traceInterpreter("| resolve", this);
1187                     resolvedHandle();
1188                 }
1189                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1190             } catch (Throwable ex) {
1191                 traceInterpreter("] throw =>", ex);
1192                 throw ex;
1193             }
1194             traceInterpreter("] return =>", rval);
1195             return rval;
1196         }
1197 
1198         private MethodHandle invoker() {
1199             return computeInvoker(methodType().form());
1200         }
1201 
1202         MethodType methodType() {
1203             MethodType type = this.type;
1204             if (type == null) {
1205                 this.type = type = calculateMethodType(member, resolvedHandle);
1206             }
1207             return type;
1208         }
1209 
1210         private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) {
1211             if (resolvedHandle != null) {
1212                 return resolvedHandle.type();
1213             } else {
1214                 // only for certain internal LFs during bootstrapping
1215                 return member.getInvocationType();
1216             }
1217         }
1218 
1219         MemberName member() {
1220             assert(assertMemberIsConsistent());
1221             return member;
1222         }
1223 
1224         // Called only from assert.
1225         private boolean assertMemberIsConsistent() {
1226             if (resolvedHandle instanceof DirectMethodHandle) {
1227                 MemberName m = resolvedHandle.internalMemberName();
1228                 assert(m.equals(member));
1229             }
1230             return true;
1231         }
1232 
1233         Class<?> memberDeclaringClassOrNull() {
1234             return (member == null) ? null : member.getDeclaringClass();
1235         }
1236 
1237         BasicType returnType() {
1238             return basicType(methodType().returnType());
1239         }
1240 
1241         BasicType parameterType(int n) {
1242             return basicType(methodType().parameterType(n));
1243         }
1244 
1245         int arity() {
1246             return methodType().parameterCount();
1247         }
1248 
1249         public String toString() {
1250             if (member == null)  return String.valueOf(resolvedHandle);
1251             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1252         }
1253 
1254         public boolean isIdentity() {
1255             return this.equals(identity(returnType()));
1256         }
1257 
1258         public boolean isConstantZero() {
1259             return this.equals(constantZero(returnType()));
1260         }
1261 
1262         public MethodHandleImpl.Intrinsic intrinsicName() {
1263             return resolvedHandle != null
1264                 ? resolvedHandle.intrinsicName()
1265                 : MethodHandleImpl.Intrinsic.NONE;
1266         }
1267 
1268         public Object intrinsicData() {
1269             return resolvedHandle != null
1270                 ? resolvedHandle.intrinsicData()
1271                 : null;
1272         }
1273     }
1274 
1275     public static String basicTypeSignature(MethodType type) {
1276         int params = type.parameterCount();
1277         char[] sig = new char[params + 2];
1278         int sigp = 0;
1279         while (sigp < params) {
1280             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1281         }
1282         sig[sigp++] = '_';
1283         sig[sigp++] = basicTypeChar(type.returnType());
1284         assert(sigp == sig.length);
1285         return String.valueOf(sig);
1286     }
1287 
1288     /** Hack to make signatures more readable when they show up in method names.
1289      * Signature should start with a sequence of uppercase ASCII letters.
1290      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1291      * A tail of anything other than uppercase ASCII is passed through unchanged.
1292      * @param signature sequence of uppercase ASCII letters with possible repetitions
1293      * @return same sequence, with repetitions counted by decimal numerals
1294      */
1295     public static String shortenSignature(String signature) {
1296         final int NO_CHAR = -1, MIN_RUN = 3;
1297         int c0, c1 = NO_CHAR, c1reps = 0;
1298         StringBuilder buf = null;
1299         int len = signature.length();
1300         if (len < MIN_RUN)  return signature;
1301         for (int i = 0; i <= len; i++) {
1302             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1303                 // wrong kind of char; bail out here
1304                 if (buf != null) {
1305                     buf.append(signature, i - c1reps, len);
1306                 }
1307                 break;
1308             }
1309             // shift in the next char:
1310             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1311             if (c1 == c0) { ++c1reps; continue; }
1312             // shift in the next count:
1313             int c0reps = c1reps; c1reps = 1;
1314             // end of a  character run
1315             if (c0reps < MIN_RUN) {
1316                 if (buf != null) {
1317                     while (--c0reps >= 0)
1318                         buf.append((char)c0);
1319                 }
1320                 continue;
1321             }
1322             // found three or more in a row
1323             if (buf == null)
1324                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1325             buf.append((char)c0).append(c0reps);
1326         }
1327         return (buf == null) ? signature : buf.toString();
1328     }
1329 
1330     static final class Name {
1331         final BasicType type;
1332         final short index;
1333         final NamedFunction function;
1334         final Object constraint;  // additional type information, if not null
1335         @Stable final Object[] arguments;
1336 
1337         private static final Object[] EMPTY_ARGS = new Object[0];
1338 
1339         private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) {
1340             this.index = (short)index;
1341             this.type = type;
1342             this.function = function;
1343             this.arguments = arguments;
1344             this.constraint = constraint;
1345             assert(this.index == index && typesMatch(function, arguments));
1346             assert(constraint == null || isParam());  // only params have constraints
1347             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1348         }
1349 
1350         Name(MethodHandle function, Object... arguments) {
1351             this(new NamedFunction(function), arguments);
1352         }
1353         Name(MethodType functionType, Object... arguments) {
1354             this(new NamedFunction(functionType), arguments);
1355             assert(arguments[0] instanceof Name name && name.type == L_TYPE);
1356         }
1357         Name(MemberName function, Object... arguments) {
1358             this(new NamedFunction(function), arguments);
1359         }
1360         Name(NamedFunction function) {
1361             this(-1, function.returnType(), function, EMPTY_ARGS, null);
1362         }
1363         Name(NamedFunction function, Object arg) {
1364             this(-1, function.returnType(), function, new Object[] { arg }, null);
1365         }
1366         Name(NamedFunction function, Object arg0, Object arg1) {
1367             this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null);
1368         }
1369         Name(NamedFunction function, Object... arguments) {
1370             this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null);
1371         }
1372         /** Create a raw parameter of the given type, with an expected index. */
1373         Name(int index, BasicType type) {
1374             this(index, type, null, null, null);
1375         }
1376         /** Create a raw parameter of the given type. */
1377         Name(BasicType type) { this(-1, type); }
1378 
1379         BasicType type() { return type; }
1380         int index() { return index; }
1381 
1382         char typeChar() {
1383             return type.btChar;
1384         }
1385 
1386         Name withIndex(int i) {
1387             if (i == this.index) return this;
1388             return new Name(i, type, function, arguments, constraint);
1389         }
1390 
1391         Name withConstraint(Object constraint) {
1392             if (constraint == this.constraint)  return this;
1393             return new Name(index, type, function, arguments, constraint);
1394         }
1395 
1396         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1397             if (oldName == newName)  return this;
1398             @SuppressWarnings("LocalVariableHidesMemberVariable")
1399             Object[] arguments = this.arguments;
1400             if (arguments == null)  return this;
1401             boolean replaced = false;
1402             for (int j = 0; j < arguments.length; j++) {
1403                 if (arguments[j] == oldName) {
1404                     if (!replaced) {
1405                         replaced = true;
1406                         arguments = arguments.clone();
1407                     }
1408                     arguments[j] = newName;
1409                 }
1410             }
1411             if (!replaced)  return this;
1412             return new Name(function, arguments);
1413         }
1414         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1415          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1416          */
1417         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1418             if (start >= end)  return this;
1419             @SuppressWarnings("LocalVariableHidesMemberVariable")
1420             Object[] arguments = this.arguments;
1421             boolean replaced = false;
1422         eachArg:
1423             for (int j = 0; j < arguments.length; j++) {
1424                 if (arguments[j] instanceof Name n) {
1425                     int check = n.index;
1426                     // harmless check to see if the thing is already in newNames:
1427                     if (check >= 0 && check < newNames.length && n == newNames[check])
1428                         continue eachArg;
1429                     // n might not have the correct index: n != oldNames[n.index].
1430                     for (int i = start; i < end; i++) {
1431                         if (n == oldNames[i]) {
1432                             if (n == newNames[i])
1433                                 continue eachArg;
1434                             if (!replaced) {
1435                                 replaced = true;
1436                                 arguments = arguments.clone();
1437                             }
1438                             arguments[j] = newNames[i];
1439                             continue eachArg;
1440                         }
1441                     }
1442                 }
1443             }
1444             if (!replaced)  return this;
1445             return new Name(function, arguments);
1446         }
1447         void internArguments() {
1448             @SuppressWarnings("LocalVariableHidesMemberVariable")
1449             Object[] arguments = this.arguments;
1450             for (int j = 0; j < arguments.length; j++) {
1451                 if (arguments[j] instanceof Name n) {
1452                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1453                         arguments[j] = internArgument(n);
1454                 }
1455             }
1456         }
1457         boolean isParam() {
1458             return function == null;
1459         }
1460         boolean isConstantZero() {
1461             return !isParam() && arguments.length == 0 && function.isConstantZero();
1462         }
1463 
1464         boolean refersTo(Class<?> declaringClass, String methodName) {
1465             return function != null &&
1466                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1467         }
1468 
1469         /**
1470          * Check if MemberName is a call to MethodHandle.invokeBasic.
1471          */
1472         boolean isInvokeBasic() {
1473             if (function == null)
1474                 return false;
1475             if (arguments.length < 1)
1476                 return false;  // must have MH argument
1477             MemberName member = function.member();
1478             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1479                     !member.isPublic() && !member.isStatic();
1480         }
1481 
1482         /**
1483          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1484          */
1485         boolean isLinkerMethodInvoke() {
1486             if (function == null)
1487                 return false;
1488             if (arguments.length < 1)
1489                 return false;  // must have MH argument
1490             MemberName member = function.member();
1491             return member != null &&
1492                     member.getDeclaringClass() == MethodHandle.class &&
1493                     !member.isPublic() && member.isStatic() &&
1494                     member.getName().startsWith("linkTo");
1495         }
1496 
1497         public String toString() {
1498             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1499         }
1500         public String debugString() {
1501             String s = paramString();
1502             return (function == null) ? s : s + "=" + exprString();
1503         }
1504         public String paramString() {
1505             String s = toString();
1506             Object c = constraint;
1507             if (c == null)
1508                 return s;
1509             if (c instanceof Class<?> cl)  c = cl.getSimpleName();
1510             return s + "/" + c;
1511         }
1512         public String exprString() {
1513             if (function == null)  return toString();
1514             StringBuilder buf = new StringBuilder(function.toString());
1515             buf.append("(");
1516             String cma = "";
1517             for (Object a : arguments) {
1518                 buf.append(cma); cma = ",";
1519                 if (a instanceof Name || a instanceof Integer)
1520                     buf.append(a);
1521                 else
1522                     buf.append("(").append(a).append(")");
1523             }
1524             buf.append(")");
1525             return buf.toString();
1526         }
1527 
1528         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1529             if (arguments == null) {
1530                 assert(function == null);
1531                 return true;
1532             }
1533             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1534             for (int i = 0; i < arguments.length; i++) {
1535                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1536             }
1537             return true;
1538         }
1539 
1540         private static boolean typesMatch(BasicType parameterType, Object object) {
1541             if (object instanceof Name name) {
1542                 return name.type == parameterType;
1543             }
1544             switch (parameterType) {
1545                 case I_TYPE:  return object instanceof Integer;
1546                 case J_TYPE:  return object instanceof Long;
1547                 case F_TYPE:  return object instanceof Float;
1548                 case D_TYPE:  return object instanceof Double;
1549             }
1550             assert(parameterType == L_TYPE);
1551             return true;
1552         }
1553 
1554         /** Return the index of the last occurrence of n in the argument array.
1555          *  Return -1 if the name is not used.
1556          */
1557         int lastUseIndex(Name n) {
1558             Object[] arguments = this.arguments;
1559             if (arguments == null)  return -1;
1560             for (int i = arguments.length; --i >= 0; ) {
1561                 if (arguments[i] == n)  return i;
1562             }
1563             return -1;
1564         }
1565 
1566         public boolean equals(Name that) {
1567             if (this == that)  return true;
1568             if (isParam())
1569                 // each parameter is a unique atom
1570                 return false;  // this != that
1571             return
1572                 //this.index == that.index &&
1573                 this.type == that.type &&
1574                 this.function.equals(that.function) &&
1575                 Arrays.equals(this.arguments, that.arguments);
1576         }
1577         @Override
1578         public boolean equals(Object x) {
1579             return x instanceof Name n && equals(n);
1580         }
1581         @Override
1582         public int hashCode() {
1583             if (isParam())
1584                 return index | (type.ordinal() << 8);
1585             return function.hashCode() ^ Arrays.hashCode(arguments);
1586         }
1587     }
1588 
1589     /** Return the index of the last name which contains n as an argument.
1590      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1591      */
1592     int lastUseIndex(Name n) {
1593         int ni = n.index, nmax = names.length;
1594         assert(names[ni] == n);
1595         if (result == ni)  return nmax;  // live all the way beyond the end
1596         for (int i = nmax; --i > ni; ) {
1597             if (names[i].lastUseIndex(n) >= 0)
1598                 return i;
1599         }
1600         return -1;
1601     }
1602 
1603     /** Return the number of times n is used as an argument or return value. */
1604     int useCount(Name n) {
1605         int count = (result == n.index) ? 1 : 0;
1606         int i = Math.max(n.index + 1, arity);
1607         Name[] names = this.names;
1608         while (i < names.length) {
1609             Object[] arguments = names[i++].arguments;
1610             if (arguments != null) {
1611                 for (Object argument : arguments) {
1612                     if (argument == n) {
1613                         count++;
1614                     }
1615                 }
1616             }
1617         }
1618         return count;
1619     }
1620 
1621     static Name argument(int which, BasicType type) {
1622         if (which >= INTERNED_ARGUMENT_LIMIT)
1623             return new Name(which, type);
1624         return INTERNED_ARGUMENTS[type.ordinal()][which];
1625     }
1626     static Name internArgument(Name n) {
1627         assert(n.isParam()) : "not param: " + n;
1628         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1629         if (n.constraint != null)  return n;
1630         return argument(n.index, n.type);
1631     }
1632     static Name[] arguments(int extra, MethodType types) {
1633         int length = types.parameterCount();
1634         Name[] names = new Name[length + extra];
1635         for (int i = 0; i < length; i++)
1636             names[i] = argument(i, basicType(types.parameterType(i)));
1637         return names;
1638     }
1639 
1640     static Name[] invokeArguments(int extra, MethodType types) {
1641         int length = types.parameterCount();
1642         Name[] names = new Name[length + extra + 1];
1643         names[0] = argument(0, L_TYPE);
1644         for (int i = 0; i < length; i++)
1645             names[i + 1] = argument(i + 1, basicType(types.parameterType(i)));
1646         return names;
1647     }
1648 
1649     static final int INTERNED_ARGUMENT_LIMIT = 10;
1650     private static final Name[][] INTERNED_ARGUMENTS
1651             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1652     static {
1653         for (BasicType type : BasicType.ARG_TYPES) {
1654             int ord = type.ordinal();
1655             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1656                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1657             }
1658         }
1659     }
1660 
1661     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1662 
1663     static LambdaForm identityForm(BasicType type) {
1664         int ord = type.ordinal();
1665         LambdaForm form = LF_identity[ord];
1666         if (form != null) {
1667             return form;
1668         }
1669         createFormsFor(type);
1670         return LF_identity[ord];
1671     }
1672 
1673     static LambdaForm zeroForm(BasicType type) {
1674         int ord = type.ordinal();
1675         LambdaForm form = LF_zero[ord];
1676         if (form != null) {
1677             return form;
1678         }
1679         createFormsFor(type);
1680         return LF_zero[ord];
1681     }
1682 
1683     static NamedFunction identity(BasicType type) {
1684         int ord = type.ordinal();
1685         NamedFunction function = NF_identity[ord];
1686         if (function != null) {
1687             return function;
1688         }
1689         createFormsFor(type);
1690         return NF_identity[ord];
1691     }
1692 
1693     static NamedFunction constantZero(BasicType type) {
1694         int ord = type.ordinal();
1695         NamedFunction function = NF_zero[ord];
1696         if (function != null) {
1697             return function;
1698         }
1699         createFormsFor(type);
1700         return NF_zero[ord];
1701     }
1702 
1703     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1704     private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT];
1705     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1706     private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1707 
1708     private static final Object createFormsLock = new Object();
1709     private static void createFormsFor(BasicType type) {
1710         // Avoid racy initialization during bootstrap
1711         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1712         synchronized (createFormsLock) {
1713             final int ord = type.ordinal();
1714             LambdaForm idForm = LF_identity[ord];
1715             if (idForm != null) {
1716                 return;
1717             }
1718             char btChar = type.basicTypeChar();
1719             boolean isVoid = (type == V_TYPE);
1720             Class<?> btClass = type.btClass;
1721             MethodType zeType = MethodType.methodType(btClass);
1722             MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass);
1723 
1724             // Look up symbolic names.  It might not be necessary to have these,
1725             // but if we need to emit direct references to bytecodes, it helps.
1726             // Zero is built from a call to an identity function with a constant zero input.
1727             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1728             MemberName zeMem = null;
1729             try {
1730                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class);
1731                 if (!isVoid) {
1732                     zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1733                     zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, LM_TRUSTED, NoSuchMethodException.class);
1734                 }
1735             } catch (IllegalAccessException|NoSuchMethodException ex) {
1736                 throw newInternalError(ex);
1737             }
1738 
1739             NamedFunction idFun;
1740             LambdaForm zeForm;
1741             NamedFunction zeFun;
1742 
1743             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1744             // bootstrap dependency on this method in case we're interpreting LFs
1745             if (isVoid) {
1746                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1747                 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY);
1748                 idForm.compileToBytecode();
1749                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1750 
1751                 zeForm = idForm;
1752                 zeFun = idFun;
1753             } else {
1754                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1755                 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY);
1756                 idForm.compileToBytecode();
1757                 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(idMem.getInvocationType(), idForm),
1758                             MethodHandleImpl.Intrinsic.IDENTITY));
1759 
1760                 Object zeValue = Wrapper.forBasicType(btChar).zero();
1761                 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1762                 zeForm = LambdaForm.create(1, zeNames, 1, Kind.ZERO);
1763                 zeForm.compileToBytecode();
1764                 zeFun = new NamedFunction(zeMem, MethodHandleImpl.makeIntrinsic(SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm),
1765                         MethodHandleImpl.Intrinsic.ZERO));
1766             }
1767 
1768             LF_zero[ord] = zeForm;
1769             NF_zero[ord] = zeFun;
1770             LF_identity[ord] = idForm;
1771             NF_identity[ord] = idFun;
1772 
1773             assert(idFun.isIdentity());
1774             assert(zeFun.isConstantZero());
1775             assert(new Name(zeFun).isConstantZero());
1776         }
1777     }
1778 
1779     // Avoid appealing to ValueConversions at bootstrap time:
1780     private static int identity_I(int x) { return x; }
1781     private static long identity_J(long x) { return x; }
1782     private static float identity_F(float x) { return x; }
1783     private static double identity_D(double x) { return x; }
1784     private static Object identity_L(Object x) { return x; }
1785     private static void identity_V() { return; }
1786     private static int zero_I() { return 0; }
1787     private static long zero_J() { return 0; }
1788     private static float zero_F() { return 0; }
1789     private static double zero_D() { return 0; }
1790     private static Object zero_L() { return null; }
1791 
1792     /**
1793      * Internal marker for byte-compiled LambdaForms.
1794      */
1795     /*non-public*/
1796     @Target(ElementType.METHOD)
1797     @Retention(RetentionPolicy.RUNTIME)
1798     @interface Compiled {
1799     }
1800 
1801     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1802     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1803     static {
1804         if (debugEnabled()) {
1805             DEBUG_NAME_COUNTERS = new HashMap<>();
1806             DEBUG_NAMES = new HashMap<>();
1807         } else {
1808             DEBUG_NAME_COUNTERS = null;
1809             DEBUG_NAMES = null;
1810         }
1811     }
1812 
1813     static {
1814         // The Holder class will contain pre-generated forms resolved
1815         // using MemberName.getFactory(). However, that doesn't initialize the
1816         // class, which subtly breaks inlining etc. By forcing
1817         // initialization of the Holder class we avoid these issues.
1818         UNSAFE.ensureClassInitialized(Holder.class);
1819     }
1820 
1821     /* Placeholder class for zero and identity forms generated ahead of time */
1822     final class Holder {}
1823 
1824     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1825     // during execution of the static initializes of this class.
1826     // Turning on TRACE_INTERPRETER too early will cause
1827     // stack overflows and other misbehavior during attempts to trace events
1828     // that occur during LambdaForm.<clinit>.
1829     // Therefore, do not move this line higher in this file, and do not remove.
1830     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1831 }