1 /* 2 * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.lang.classfile.TypeKind; 29 import jdk.internal.perf.PerfCounter; 30 import jdk.internal.vm.annotation.DontInline; 31 import jdk.internal.vm.annotation.Hidden; 32 import jdk.internal.vm.annotation.Stable; 33 import sun.invoke.util.Wrapper; 34 35 import java.lang.annotation.ElementType; 36 import java.lang.annotation.Retention; 37 import java.lang.annotation.RetentionPolicy; 38 import java.lang.annotation.Target; 39 import java.lang.reflect.Method; 40 import java.util.Arrays; 41 import java.util.HashMap; 42 43 import static java.lang.invoke.LambdaForm.BasicType.*; 44 import static java.lang.invoke.MethodHandleNatives.Constants.*; 45 import static java.lang.invoke.MethodHandleStatics.*; 46 47 /** 48 * The symbolic, non-executable form of a method handle's invocation semantics. 49 * It consists of a series of names. 50 * The first N (N=arity) names are parameters, 51 * while any remaining names are temporary values. 52 * Each temporary specifies the application of a function to some arguments. 53 * The functions are method handles, while the arguments are mixes of 54 * constant values and local names. 55 * The result of the lambda is defined as one of the names, often the last one. 56 * <p> 57 * Here is an approximate grammar: 58 * <blockquote><pre>{@code 59 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}" 60 * ArgName = "a" N ":" T 61 * TempName = "t" N ":" T "=" Function "(" Argument* ");" 62 * Function = ConstantValue 63 * Argument = NameRef | ConstantValue 64 * Result = NameRef | "void" 65 * NameRef = "a" N | "t" N 66 * N = (any whole number) 67 * T = "L" | "I" | "J" | "F" | "D" | "V" 68 * }</pre></blockquote> 69 * Names are numbered consecutively from left to right starting at zero. 70 * (The letters are merely a taste of syntax sugar.) 71 * Thus, the first temporary (if any) is always numbered N (where N=arity). 72 * Every occurrence of a name reference in an argument list must refer to 73 * a name previously defined within the same lambda. 74 * A lambda has a void result if and only if its result index is -1. 75 * If a temporary has the type "V", it cannot be the subject of a NameRef, 76 * even though possesses a number. 77 * Note that all reference types are erased to "L", which stands for {@code Object}. 78 * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. 79 * The other types stand for the usual primitive types. 80 * <p> 81 * Function invocation closely follows the static rules of the Java verifier. 82 * Arguments and return values must exactly match when their "Name" types are 83 * considered. 84 * Conversions are allowed only if they do not change the erased type. 85 * <ul> 86 * <li>L = Object: casts are used freely to convert into and out of reference types 87 * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments}) 88 * <li>J = long: no implicit conversions 89 * <li>F = float: no implicit conversions 90 * <li>D = double: no implicit conversions 91 * <li>V = void: a function result may be void if and only if its Name is of type "V" 92 * </ul> 93 * Although implicit conversions are not allowed, explicit ones can easily be 94 * encoded by using temporary expressions which call type-transformed identity functions. 95 * <p> 96 * Examples: 97 * <blockquote><pre>{@code 98 * (a0:J)=>{ a0 } 99 * == identity(long) 100 * (a0:I)=>{ t1:V = System.out#println(a0); void } 101 * == System.out#println(int) 102 * (a0:L)=>{ t1:V = System.out#println(a0); a0 } 103 * == identity, with printing side-effect 104 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 105 * t3:L = BoundMethodHandle#target(a0); 106 * t4:L = MethodHandle#invoke(t3, t2, a1); t4 } 107 * == general invoker for unary insertArgument combination 108 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0); 109 * t3:L = MethodHandle#invoke(t2, a1); 110 * t4:L = FilterMethodHandle#target(a0); 111 * t5:L = MethodHandle#invoke(t4, t3); t5 } 112 * == general invoker for unary filterArgument combination 113 * (a0:L, a1:L)=>{ ...(same as previous example)... 114 * t5:L = MethodHandle#invoke(t4, t3, a1); t5 } 115 * == general invoker for unary/unary foldArgument combination 116 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 } 117 * == invoker for identity method handle which performs i2l 118 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 119 * t3:L = Class#cast(t2,a1); t3 } 120 * == invoker for identity method handle which performs cast 121 * }</pre></blockquote> 122 * <p> 123 * @author John Rose, JSR 292 EG 124 */ 125 class LambdaForm { 126 final int arity; 127 final int result; 128 final boolean forceInline; 129 final MethodHandle customized; 130 @Stable final Name[] names; 131 final Kind kind; 132 MemberName vmentry; // low-level behavior, or null if not yet prepared 133 private boolean isCompiled; 134 135 // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF) 136 volatile Object transformCache; 137 138 public static final int VOID_RESULT = -1, LAST_RESULT = -2; 139 140 enum BasicType { 141 L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types 142 I_TYPE('I', int.class, Wrapper.INT, TypeKind.INT), 143 J_TYPE('J', long.class, Wrapper.LONG, TypeKind.LONG), 144 F_TYPE('F', float.class, Wrapper.FLOAT, TypeKind.FLOAT), 145 D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE), // all primitive types 146 V_TYPE('V', void.class, Wrapper.VOID, TypeKind.VOID); // not valid in all contexts 147 148 static final @Stable BasicType[] ALL_TYPES = BasicType.values(); 149 static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1); 150 151 static final int ARG_TYPE_LIMIT = ARG_TYPES.length; 152 static final int TYPE_LIMIT = ALL_TYPES.length; 153 154 final char btChar; 155 final Class<?> btClass; 156 final Wrapper btWrapper; 157 final TypeKind btKind; 158 159 private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) { 160 this.btChar = btChar; 161 this.btClass = btClass; 162 this.btWrapper = wrapper; 163 this.btKind = typeKind; 164 } 165 166 char basicTypeChar() { 167 return btChar; 168 } 169 Class<?> basicTypeClass() { 170 return btClass; 171 } 172 Wrapper basicTypeWrapper() { 173 return btWrapper; 174 } 175 TypeKind basicTypeKind() { 176 return btKind; 177 } 178 int basicTypeSlots() { 179 return btWrapper.stackSlots(); 180 } 181 182 static BasicType basicType(byte type) { 183 return ALL_TYPES[type]; 184 } 185 static BasicType basicType(char type) { 186 return switch (type) { 187 case 'L' -> L_TYPE; 188 case 'I' -> I_TYPE; 189 case 'J' -> J_TYPE; 190 case 'F' -> F_TYPE; 191 case 'D' -> D_TYPE; 192 case 'V' -> V_TYPE; 193 // all subword types are represented as ints 194 case 'Z', 'B', 'S', 'C' -> I_TYPE; 195 default -> throw newInternalError("Unknown type char: '" + type + "'"); 196 }; 197 } 198 static BasicType basicType(Class<?> type) { 199 return basicType(Wrapper.basicTypeChar(type)); 200 } 201 static int[] basicTypeOrds(BasicType[] types) { 202 if (types == null) { 203 return null; 204 } 205 int[] a = new int[types.length]; 206 for(int i = 0; i < types.length; ++i) { 207 a[i] = types[i].ordinal(); 208 } 209 return a; 210 } 211 212 static char basicTypeChar(Class<?> type) { 213 return basicType(type).btChar; 214 } 215 216 static int[] basicTypesOrd(Class<?>[] types) { 217 int[] ords = new int[types.length]; 218 for (int i = 0; i < ords.length; i++) { 219 ords[i] = basicType(types[i]).ordinal(); 220 } 221 return ords; 222 } 223 224 static boolean isBasicTypeChar(char c) { 225 return "LIJFDV".indexOf(c) >= 0; 226 } 227 static boolean isArgBasicTypeChar(char c) { 228 return "LIJFD".indexOf(c) >= 0; 229 } 230 231 static { assert(checkBasicType()); } 232 private static boolean checkBasicType() { 233 for (int i = 0; i < ARG_TYPE_LIMIT; i++) { 234 assert ARG_TYPES[i].ordinal() == i; 235 assert ARG_TYPES[i] == ALL_TYPES[i]; 236 } 237 for (int i = 0; i < TYPE_LIMIT; i++) { 238 assert ALL_TYPES[i].ordinal() == i; 239 } 240 assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE; 241 assert !Arrays.asList(ARG_TYPES).contains(V_TYPE); 242 return true; 243 } 244 } 245 246 enum Kind { 247 GENERIC("invoke"), 248 IDENTITY("identity"), 249 CONSTANT("constant"), 250 BOUND_REINVOKER("BMH.reinvoke", "reinvoke"), 251 REINVOKER("MH.reinvoke", "reinvoke"), 252 DELEGATE("MH.delegate", "delegate"), 253 EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"), 254 EXACT_INVOKER("MH.exactInvoker", "exactInvoker"), 255 GENERIC_LINKER("MH.invoke_MT", "invoke_MT"), 256 GENERIC_INVOKER("MH.invoker", "invoker"), 257 LINK_TO_TARGET_METHOD("linkToTargetMethod"), 258 LINK_TO_CALL_SITE("linkToCallSite"), 259 DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"), 260 DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"), 261 DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"), 262 DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"), 263 DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"), 264 DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"), 265 DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"), 266 // Start field forms 267 // IJFDL, instance/static differ in method type, can share form 268 // init form only applicable to static 269 FIELD_ACCESS("fieldAccess"), 270 FIELD_ACCESS_INIT("fieldAccessInit"), 271 VOLATILE_FIELD_ACCESS("volatileFieldAccess"), 272 VOLATILE_FIELD_ACCESS_INIT("volatileFieldAccessInit"), 273 // BCSZ need own forms to avoid clashing with basic type I, +-init/volatile 274 FIELD_ACCESS_B("fieldAccessB"), 275 FIELD_ACCESS_INIT_B("fieldAccessInitB"), 276 VOLATILE_FIELD_ACCESS_B("volatileFieldAccessB"), 277 VOLATILE_FIELD_ACCESS_INIT_B("volatileFieldAccessInitB"), 278 FIELD_ACCESS_C("fieldAccessC"), 279 FIELD_ACCESS_INIT_C("fieldAccessInitC"), 280 VOLATILE_FIELD_ACCESS_C("volatileFieldAccessC"), 281 VOLATILE_FIELD_ACCESS_INIT_C("volatileFieldAccessInitC"), 282 FIELD_ACCESS_S("fieldAccessS"), 283 FIELD_ACCESS_INIT_S("fieldAccessInitS"), 284 VOLATILE_FIELD_ACCESS_S("volatileFieldAccessS"), 285 VOLATILE_FIELD_ACCESS_INIT_S("volatileFieldAccessInitS"), 286 FIELD_ACCESS_Z("fieldAccessZ"), 287 FIELD_ACCESS_INIT_Z("fieldAccessInitZ"), 288 VOLATILE_FIELD_ACCESS_Z("volatileFieldAccessZ"), 289 VOLATILE_FIELD_ACCESS_INIT_Z("volatileFieldAccessInitZ"), 290 // cast, nr, flat need their own forms to avoid clashing with L 291 FIELD_ACCESS_CAST("fieldAccessCast"), 292 FIELD_ACCESS_INIT_CAST("fieldAccessInitCast"), 293 VOLATILE_FIELD_ACCESS_CAST("volatileFieldAccessCast"), 294 VOLATILE_FIELD_ACCESS_INIT_CAST("volatileFieldAccessInitCast"), 295 // null-check and put reference, +-cast, +-init/volatile 296 // non-cast forms serve bytecode emulation purpose, which always enforces null checks 297 PUT_NULL_RESTRICTED_REFERENCE("putNullRestrictedReference"), 298 PUT_NULL_RESTRICTED_REFERENCE_INIT("putNullRestrictedReferenceInit"), 299 VOLATILE_PUT_NULL_RESTRICTED_REFERENCE("volatilePutNullRestrictedReference"), 300 VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_INIT("volatilePutNullRestrictedReferenceInit"), 301 PUT_NULL_RESTRICTED_REFERENCE_CAST("putNullRestrictedReferenceCast"), 302 PUT_NULL_RESTRICTED_REFERENCE_CAST_INIT("putNullRestrictedReferenceInitCast"), 303 VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_CAST("volatilePutNullRestrictedReferenceCast"), 304 VOLATILE_PUT_NULL_RESTRICTED_REFERENCE_CAST_INIT("volatilePutNullRestrictedReferenceCastInit"), 305 // flat implies cast, +-init/volatile 306 FIELD_ACCESS_FLAT("fieldAccessFlat"), 307 FIELD_ACCESS_INIT_FLAT("fieldAccessInitFlat"), 308 VOLATILE_FIELD_ACCESS_FLAT("volatileFieldAccessFlat"), 309 VOLATILE_FIELD_ACCESS_INIT_FLAT("volatileFieldAccessInitFlat"), 310 // write guard NR flat, implies cast; +-volatile; no init forms - no flat in static fields yet 311 PUT_NULL_RESTRICTED_FLAT_VALUE("putNullRestrictedFlatValue"), 312 VOLATILE_PUT_NULL_RESTRICTED_FLAT_VALUE("volatilePutNullRestrictedFlatValue"), 313 // End fields 314 TRY_FINALLY("tryFinally"), 315 TABLE_SWITCH("tableSwitch"), 316 COLLECTOR("collector"), 317 LOOP("loop"), 318 GUARD("guard"), 319 GUARD_WITH_CATCH("guardWithCatch"), 320 VARHANDLE_EXACT_INVOKER("VH.exactInvoker"), 321 VARHANDLE_INVOKER("VH.invoker", "invoker"), 322 VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT"); 323 324 final String defaultLambdaName; 325 final String methodName; 326 327 private Kind(String defaultLambdaName) { 328 this(defaultLambdaName, defaultLambdaName); 329 } 330 331 private Kind(String defaultLambdaName, String methodName) { 332 this.defaultLambdaName = defaultLambdaName; 333 this.methodName = methodName; 334 } 335 } 336 337 // private version that doesn't do checks or defensive copies 338 private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) { 339 this.arity = arity; 340 this.result = result; 341 this.forceInline = forceInline; 342 this.customized = customized; 343 this.names = names; 344 this.kind = kind; 345 this.vmentry = null; 346 this.isCompiled = false; 347 } 348 349 // root factory pre/post processing and calls simple constructor 350 private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) { 351 names = names.clone(); 352 assert(namesOK(arity, names)); 353 result = fixResult(result, names); 354 355 boolean canInterpret = normalizeNames(arity, names); 356 LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind); 357 assert(form.nameRefsAreLegal()); 358 if (!canInterpret) { 359 form.compileToBytecode(); 360 } 361 return form; 362 } 363 364 // derived factories with defaults 365 private static final int DEFAULT_RESULT = LAST_RESULT; 366 private static final boolean DEFAULT_FORCE_INLINE = true; 367 private static final MethodHandle DEFAULT_CUSTOMIZED = null; 368 private static final Kind DEFAULT_KIND = Kind.GENERIC; 369 370 static LambdaForm create(int arity, Name[] names, int result) { 371 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 372 } 373 static LambdaForm create(int arity, Name[] names, int result, Kind kind) { 374 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 375 } 376 static LambdaForm create(int arity, Name[] names) { 377 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 378 } 379 static LambdaForm create(int arity, Name[] names, Kind kind) { 380 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 381 } 382 static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) { 383 return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind); 384 } 385 386 private static int fixResult(int result, Name[] names) { 387 if (result == LAST_RESULT) 388 result = names.length - 1; // might still be void 389 if (result >= 0 && names[result].type == V_TYPE) 390 result = VOID_RESULT; 391 return result; 392 } 393 394 static boolean debugNames() { 395 return DEBUG_NAME_COUNTERS != null; 396 } 397 398 static void associateWithDebugName(LambdaForm form, String name) { 399 assert (debugNames()); 400 synchronized (DEBUG_NAMES) { 401 DEBUG_NAMES.put(form, name); 402 } 403 } 404 405 String lambdaName() { 406 if (DEBUG_NAMES != null) { 407 synchronized (DEBUG_NAMES) { 408 String name = DEBUG_NAMES.get(this); 409 if (name == null) { 410 name = generateDebugName(); 411 } 412 return name; 413 } 414 } 415 return kind.defaultLambdaName; 416 } 417 418 private String generateDebugName() { 419 assert (debugNames()); 420 String debugNameStem = kind.defaultLambdaName; 421 Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0); 422 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1); 423 StringBuilder buf = new StringBuilder(debugNameStem); 424 int leadingZero = buf.length(); 425 buf.append((int) ctr); 426 for (int i = buf.length() - leadingZero; i < 3; i++) { 427 buf.insert(leadingZero, '0'); 428 } 429 buf.append('_'); 430 buf.append(basicTypeSignature()); 431 String name = buf.toString(); 432 associateWithDebugName(this, name); 433 return name; 434 } 435 436 private static boolean namesOK(int arity, Name[] names) { 437 for (int i = 0; i < names.length; i++) { 438 Name n = names[i]; 439 assert(n != null) : "n is null"; 440 if (i < arity) 441 assert( n.isParam()) : n + " is not param at " + i; 442 else 443 assert(!n.isParam()) : n + " is param at " + i; 444 } 445 return true; 446 } 447 448 /** Customize LambdaForm for a particular MethodHandle */ 449 LambdaForm customize(MethodHandle mh) { 450 if (customized == mh) { 451 return this; 452 } 453 LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind); 454 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 455 // If shared LambdaForm has been compiled, compile customized version as well. 456 customForm.compileToBytecode(); 457 } 458 customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form. 459 return customForm; 460 } 461 462 /** Get uncustomized flavor of the LambdaForm */ 463 LambdaForm uncustomize() { 464 if (customized == null) { 465 return this; 466 } 467 assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version. 468 LambdaForm uncustomizedForm = (LambdaForm)transformCache; 469 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 470 // If customized LambdaForm has been compiled, compile uncustomized version as well. 471 uncustomizedForm.compileToBytecode(); 472 } 473 return uncustomizedForm; 474 } 475 476 /** Renumber and/or replace params so that they are interned and canonically numbered. 477 * @return true if we can interpret 478 */ 479 private static boolean normalizeNames(int arity, Name[] names) { 480 Name[] oldNames = names.clone(); 481 int maxOutArity = 0; 482 for (int i = 0; i < names.length; i++) { 483 Name n = names[i]; 484 names[i] = n.withIndex(i); 485 if (n.arguments != null && maxOutArity < n.arguments.length) 486 maxOutArity = n.arguments.length; 487 } 488 if (oldNames != null) { 489 for (int i = Math.max(1, arity); i < names.length; i++) { 490 Name fixed = names[i].replaceNames(oldNames, names, 0, i); 491 names[i] = fixed.withIndex(i); 492 } 493 } 494 int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); 495 boolean needIntern = false; 496 for (int i = 0; i < maxInterned; i++) { 497 Name n = names[i], n2 = internArgument(n); 498 if (n != n2) { 499 names[i] = n2; 500 needIntern = true; 501 } 502 } 503 if (needIntern) { 504 for (int i = arity; i < names.length; i++) { 505 names[i].internArguments(); 506 } 507 } 508 509 // return true if we can interpret 510 if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) { 511 // Cannot use LF interpreter on very high arity expressions. 512 assert(maxOutArity <= MethodType.MAX_JVM_ARITY); 513 return false; 514 } 515 return true; 516 } 517 518 /** 519 * Check that all embedded Name references are localizable to this lambda, 520 * and are properly ordered after their corresponding definitions. 521 * <p> 522 * Note that a Name can be local to multiple lambdas, as long as 523 * it possesses the same index in each use site. 524 * This allows Name references to be freely reused to construct 525 * fresh lambdas, without confusion. 526 */ 527 boolean nameRefsAreLegal() { 528 assert(arity >= 0 && arity <= names.length); 529 assert(result >= -1 && result < names.length); 530 // Do all names possess an index consistent with their local definition order? 531 for (int i = 0; i < arity; i++) { 532 Name n = names[i]; 533 assert(n.index() == i) : Arrays.asList(n.index(), i); 534 assert(n.isParam()); 535 } 536 // Also, do all local name references 537 for (int i = arity; i < names.length; i++) { 538 Name n = names[i]; 539 assert(n.index() == i); 540 for (Object arg : n.arguments) { 541 if (arg instanceof Name n2) { 542 int i2 = n2.index; 543 assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; 544 assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); 545 assert(i2 < i); // ref must come after def! 546 } 547 } 548 } 549 return true; 550 } 551 552 // /** Invoke this form on the given arguments. */ 553 // final Object invoke(Object... args) throws Throwable { 554 // // NYI: fit this into the fast path? 555 // return interpretWithArguments(args); 556 // } 557 558 /** Report the return type. */ 559 BasicType returnType() { 560 if (result < 0) return V_TYPE; 561 Name n = names[result]; 562 return n.type; 563 } 564 565 /** Report the N-th argument type. */ 566 BasicType parameterType(int n) { 567 return parameter(n).type; 568 } 569 570 /** Report the N-th argument name. */ 571 Name parameter(int n) { 572 Name param = names[n]; 573 assert(n < arity && param.isParam()); 574 return param; 575 } 576 577 /** Report the N-th argument type constraint. */ 578 Object parameterConstraint(int n) { 579 return parameter(n).constraint; 580 } 581 582 /** Report the arity. */ 583 int arity() { 584 return arity; 585 } 586 587 /** Report the number of expressions (non-parameter names). */ 588 int expressionCount() { 589 return names.length - arity; 590 } 591 592 /** Return the method type corresponding to my basic type signature. */ 593 MethodType methodType() { 594 Class<?>[] ptypes = new Class<?>[arity]; 595 for (int i = 0; i < arity; ++i) { 596 ptypes[i] = parameterType(i).btClass; 597 } 598 return MethodType.methodType(returnType().btClass, ptypes, true); 599 } 600 601 /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ 602 final String basicTypeSignature() { 603 StringBuilder buf = new StringBuilder(arity() + 3); 604 for (int i = 0, a = arity(); i < a; i++) 605 buf.append(parameterType(i).basicTypeChar()); 606 return buf.append('_').append(returnType().basicTypeChar()).toString(); 607 } 608 static int signatureArity(String sig) { 609 assert(isValidSignature(sig)); 610 return sig.indexOf('_'); 611 } 612 static boolean isValidSignature(String sig) { 613 int arity = sig.indexOf('_'); 614 if (arity < 0) return false; // must be of the form *_* 615 int siglen = sig.length(); 616 if (siglen != arity + 2) return false; // *_X 617 for (int i = 0; i < siglen; i++) { 618 if (i == arity) continue; // skip '_' 619 char c = sig.charAt(i); 620 if (c == 'V') 621 return (i == siglen - 1 && arity == siglen - 2); 622 if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] 623 } 624 return true; // [LIJFD]*_[LIJFDV] 625 } 626 627 /** 628 * Check if i-th name is a call to MethodHandleImpl.selectAlternative. 629 */ 630 boolean isSelectAlternative(int pos) { 631 // selectAlternative idiom: 632 // t_{n}:L=MethodHandleImpl.selectAlternative(...) 633 // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 634 if (pos+1 >= names.length) return false; 635 Name name0 = names[pos]; 636 Name name1 = names[pos+1]; 637 return name0.refersTo(MethodHandleImpl.class, "selectAlternative") && 638 name1.isInvokeBasic() && 639 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 640 lastUseIndex(name0) == pos+1; // t_{n} is local: used only in t_{n+1} 641 } 642 643 private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) { 644 if (pos+2 >= names.length) return false; 645 Name name0 = names[pos]; 646 Name name1 = names[pos+1]; 647 Name name2 = names[pos+2]; 648 return name1.refersTo(MethodHandleImpl.class, idiomName) && 649 name0.isInvokeBasic() && 650 name2.isInvokeBasic() && 651 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n}); 652 lastUseIndex(name0) == pos+1 && // t_{n} is local: used only in t_{n+1} 653 name2.lastUseIndex(name1) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 654 lastUseIndex(name1) == pos+2; // t_{n+1} is local: used only in t_{n+2} 655 } 656 657 /** 658 * Check if i-th name is a start of GuardWithCatch idiom. 659 */ 660 boolean isGuardWithCatch(int pos) { 661 // GuardWithCatch idiom: 662 // t_{n}:L=MethodHandle.invokeBasic(...) 663 // t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n}); 664 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 665 return isMatchingIdiom(pos, "guardWithCatch", 3); 666 } 667 668 /** 669 * Check if i-th name is a start of the tryFinally idiom. 670 */ 671 boolean isTryFinally(int pos) { 672 // tryFinally idiom: 673 // t_{n}:L=MethodHandle.invokeBasic(...) 674 // t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n}) 675 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 676 return isMatchingIdiom(pos, "tryFinally", 2); 677 } 678 679 /** 680 * Check if i-th name is a start of the tableSwitch idiom. 681 */ 682 boolean isTableSwitch(int pos) { 683 // tableSwitch idiom: 684 // t_{n}:L=MethodHandle.invokeBasic(...) // args 685 // t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n}) 686 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 687 if (pos + 2 >= names.length) return false; 688 689 final int POS_COLLECT_ARGS = pos; 690 final int POS_TABLE_SWITCH = pos + 1; 691 final int POS_UNBOX_RESULT = pos + 2; 692 693 Name collectArgs = names[POS_COLLECT_ARGS]; 694 Name tableSwitch = names[POS_TABLE_SWITCH]; 695 Name unboxResult = names[POS_UNBOX_RESULT]; 696 return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") && 697 collectArgs.isInvokeBasic() && 698 unboxResult.isInvokeBasic() && 699 tableSwitch.lastUseIndex(collectArgs) == 3 && // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n}); 700 lastUseIndex(collectArgs) == POS_TABLE_SWITCH && // t_{n} is local: used only in t_{n+1} 701 unboxResult.lastUseIndex(tableSwitch) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 702 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT; // t_{n+1} is local: used only in t_{n+2} 703 } 704 705 /** 706 * Check if i-th name is a start of the loop idiom. 707 */ 708 boolean isLoop(int pos) { 709 // loop idiom: 710 // t_{n}:L=MethodHandle.invokeBasic(...) 711 // t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n}) 712 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 713 return isMatchingIdiom(pos, "loop", 2); 714 } 715 716 /* 717 * Code generation issues: 718 * 719 * Compiled LFs should be reusable in general. 720 * The biggest issue is how to decide when to pull a name into 721 * the bytecode, versus loading a reified form from the MH data. 722 * 723 * For example, an asType wrapper may require execution of a cast 724 * after a call to a MH. The target type of the cast can be placed 725 * as a constant in the LF itself. This will force the cast type 726 * to be compiled into the bytecodes and native code for the MH. 727 * Or, the target type of the cast can be erased in the LF, and 728 * loaded from the MH data. (Later on, if the MH as a whole is 729 * inlined, the data will flow into the inlined instance of the LF, 730 * as a constant, and the end result will be an optimal cast.) 731 * 732 * This erasure of cast types can be done with any use of 733 * reference types. It can also be done with whole method 734 * handles. Erasing a method handle might leave behind 735 * LF code that executes correctly for any MH of a given 736 * type, and load the required MH from the enclosing MH's data. 737 * Or, the erasure might even erase the expected MT. 738 * 739 * Also, for direct MHs, the MemberName of the target 740 * could be erased, and loaded from the containing direct MH. 741 * As a simple case, a LF for all int-valued non-static 742 * field getters would perform a cast on its input argument 743 * (to non-constant base type derived from the MemberName) 744 * and load an integer value from the input object 745 * (at a non-constant offset also derived from the MemberName). 746 * Such MN-erased LFs would be inlinable back to optimized 747 * code, whenever a constant enclosing DMH is available 748 * to supply a constant MN from its data. 749 * 750 * The main problem here is to keep LFs reasonably generic, 751 * while ensuring that hot spots will inline good instances. 752 * "Reasonably generic" means that we don't end up with 753 * repeated versions of bytecode or machine code that do 754 * not differ in their optimized form. Repeated versions 755 * of machine would have the undesirable overheads of 756 * (a) redundant compilation work and (b) extra I$ pressure. 757 * To control repeated versions, we need to be ready to 758 * erase details from LFs and move them into MH data, 759 * whenever those details are not relevant to significant 760 * optimization. "Significant" means optimization of 761 * code that is actually hot. 762 * 763 * Achieving this may require dynamic splitting of MHs, by replacing 764 * a generic LF with a more specialized one, on the same MH, 765 * if (a) the MH is frequently executed and (b) the MH cannot 766 * be inlined into a containing caller, such as an invokedynamic. 767 * 768 * Compiled LFs that are no longer used should be GC-able. 769 * If they contain non-BCP references, they should be properly 770 * interlinked with the class loader(s) that their embedded types 771 * depend on. This probably means that reusable compiled LFs 772 * will be tabulated (indexed) on relevant class loaders, 773 * or else that the tables that cache them will have weak links. 774 */ 775 776 /** 777 * Make this LF directly executable, as part of a MethodHandle. 778 * Invariant: Every MH which is invoked must prepare its LF 779 * before invocation. 780 * (In principle, the JVM could do this very lazily, 781 * as a sort of pre-invocation linkage step.) 782 */ 783 public void prepare() { 784 if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) { 785 compileToBytecode(); 786 } 787 if (this.vmentry != null) { 788 // already prepared (e.g., a primitive DMH invoker form) 789 return; 790 } 791 MethodType mtype = methodType(); 792 MethodTypeForm form = mtype.form(); 793 794 MemberName entry = form.cachedInterpretEntry(); 795 if (entry == null) { 796 assert (isValidSignature(basicTypeSignature())); 797 entry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype); 798 entry = form.setCachedInterpretEntry(entry); 799 } 800 this.vmentry = entry; 801 // TO DO: Maybe add invokeGeneric, invokeWithArguments 802 } 803 804 private static @Stable PerfCounter LF_FAILED; 805 806 private static PerfCounter failedCompilationCounter() { 807 if (LF_FAILED == null) { 808 LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations"); 809 } 810 return LF_FAILED; 811 } 812 813 /** Generate optimizable bytecode for this form. */ 814 void compileToBytecode() { 815 if (forceInterpretation()) { 816 return; // this should not be compiled 817 } 818 if (vmentry != null && isCompiled) { 819 return; // already compiled somehow 820 } 821 822 // Obtain the invoker MethodType outside of the following try block. 823 // This ensures that an IllegalArgumentException is directly thrown if the 824 // type would have 256 or more parameters 825 MethodType invokerType = methodType(); 826 assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); 827 try { 828 vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); 829 if (TRACE_INTERPRETER) 830 traceInterpreter("compileToBytecode", this); 831 isCompiled = true; 832 } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) { 833 // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only 834 invocationCounter = -1; 835 failedCompilationCounter().increment(); 836 if (LOG_LF_COMPILATION_FAILURE) { 837 System.out.println("LambdaForm compilation failed: " + this); 838 bge.printStackTrace(System.out); 839 } 840 } catch (Error e) { 841 // Pass through any error 842 throw e; 843 } catch (Exception e) { 844 // Wrap any exception 845 throw newInternalError(this.toString(), e); 846 } 847 } 848 849 // The next few routines are called only from assert expressions 850 // They verify that the built-in invokers process the correct raw data types. 851 private static boolean argumentTypesMatch(String sig, Object[] av) { 852 int arity = signatureArity(sig); 853 assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; 854 assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0]; 855 MethodHandle mh = (MethodHandle) av[0]; 856 MethodType mt = mh.type(); 857 assert(mt.parameterCount() == arity-1); 858 for (int i = 0; i < av.length; i++) { 859 Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); 860 assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); 861 } 862 return true; 863 } 864 private static boolean valueMatches(BasicType tc, Class<?> type, Object x) { 865 // The following line is needed because (...)void method handles can use non-void invokers 866 if (type == void.class) tc = V_TYPE; // can drop any kind of value 867 assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); 868 switch (tc) { 869 case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; 870 case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; 871 case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; 872 case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; 873 case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; 874 case V_TYPE: break; // allow anything here; will be dropped 875 default: assert(false); 876 } 877 return true; 878 } 879 private static boolean checkInt(Class<?> type, Object x) { 880 assert(x instanceof Integer); 881 if (type == int.class) return true; 882 Wrapper w = Wrapper.forBasicType(type); 883 assert(w.isSubwordOrInt()); 884 Object x1 = Wrapper.INT.wrap(w.wrap(x)); 885 return x.equals(x1); 886 } 887 private static boolean checkRef(Class<?> type, Object x) { 888 assert(!type.isPrimitive()); 889 if (x == null) return true; 890 if (type.isInterface()) return true; 891 return type.isInstance(x); 892 } 893 894 /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ 895 private static final int COMPILE_THRESHOLD; 896 static { 897 COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD); 898 } 899 private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever 900 901 private boolean forceInterpretation() { 902 return invocationCounter == -1; 903 } 904 905 /** Interpretively invoke this form on the given arguments. */ 906 @Hidden 907 @DontInline 908 Object interpretWithArguments(Object... argumentValues) throws Throwable { 909 if (TRACE_INTERPRETER) 910 return interpretWithArgumentsTracing(argumentValues); 911 checkInvocationCounter(); 912 assert(arityCheck(argumentValues)); 913 Object[] values = Arrays.copyOf(argumentValues, names.length); 914 for (int i = argumentValues.length; i < values.length; i++) { 915 values[i] = interpretName(names[i], values); 916 } 917 Object rv = (result < 0) ? null : values[result]; 918 assert(resultCheck(argumentValues, rv)); 919 return rv; 920 } 921 922 /** Evaluate a single Name within this form, applying its function to its arguments. */ 923 @Hidden 924 @DontInline 925 Object interpretName(Name name, Object[] values) throws Throwable { 926 if (TRACE_INTERPRETER) 927 traceInterpreter("| interpretName", name.debugString(), (Object[]) null); 928 Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); 929 for (int i = 0; i < arguments.length; i++) { 930 Object a = arguments[i]; 931 if (a instanceof Name n) { 932 int i2 = n.index(); 933 assert(names[i2] == a); 934 a = values[i2]; 935 arguments[i] = a; 936 } 937 } 938 return name.function.invokeWithArguments(arguments); 939 } 940 941 private void checkInvocationCounter() { 942 if (COMPILE_THRESHOLD != 0 && 943 !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 944 invocationCounter++; // benign race 945 if (invocationCounter >= COMPILE_THRESHOLD) { 946 // Replace vmentry with a bytecode version of this LF. 947 compileToBytecode(); 948 } 949 } 950 } 951 Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { 952 traceInterpreter("[ interpretWithArguments", this, argumentValues); 953 if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 954 int ctr = invocationCounter++; // benign race 955 traceInterpreter("| invocationCounter", ctr); 956 if (invocationCounter >= COMPILE_THRESHOLD) { 957 compileToBytecode(); 958 } 959 } 960 Object rval; 961 try { 962 assert(arityCheck(argumentValues)); 963 Object[] values = Arrays.copyOf(argumentValues, names.length); 964 for (int i = argumentValues.length; i < values.length; i++) { 965 values[i] = interpretName(names[i], values); 966 } 967 rval = (result < 0) ? null : values[result]; 968 } catch (Throwable ex) { 969 traceInterpreter("] throw =>", ex); 970 throw ex; 971 } 972 traceInterpreter("] return =>", rval); 973 return rval; 974 } 975 976 static void traceInterpreter(String event, Object obj, Object... args) { 977 if (TRACE_INTERPRETER) { 978 System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); 979 } 980 } 981 static void traceInterpreter(String event, Object obj) { 982 traceInterpreter(event, obj, (Object[])null); 983 } 984 private boolean arityCheck(Object[] argumentValues) { 985 assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; 986 // also check that the leading (receiver) argument is somehow bound to this LF: 987 assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; 988 MethodHandle mh = (MethodHandle) argumentValues[0]; 989 assert(mh.internalForm() == this); 990 // note: argument #0 could also be an interface wrapper, in the future 991 argumentTypesMatch(basicTypeSignature(), argumentValues); 992 return true; 993 } 994 private boolean resultCheck(Object[] argumentValues, Object result) { 995 MethodHandle mh = (MethodHandle) argumentValues[0]; 996 MethodType mt = mh.type(); 997 assert(valueMatches(returnType(), mt.returnType(), result)); 998 return true; 999 } 1000 1001 public String toString() { 1002 return debugString(-1); 1003 } 1004 1005 String debugString(int indentLevel) { 1006 String prefix = MethodHandle.debugPrefix(indentLevel); 1007 String lambdaName = lambdaName(); 1008 StringBuilder buf = new StringBuilder(lambdaName); 1009 buf.append("=Lambda("); 1010 for (int i = 0; i < names.length; i++) { 1011 if (i == arity) buf.append(")=>{"); 1012 Name n = names[i]; 1013 if (i >= arity) buf.append("\n ").append(prefix); 1014 buf.append(n.paramString()); 1015 if (i < arity) { 1016 if (i+1 < arity) buf.append(","); 1017 continue; 1018 } 1019 buf.append("=").append(n.exprString()); 1020 buf.append(";"); 1021 } 1022 if (arity == names.length) buf.append(")=>{"); 1023 buf.append(result < 0 ? "void" : names[result]).append("}"); 1024 if (TRACE_INTERPRETER) { 1025 // Extra verbosity: 1026 buf.append(":").append(basicTypeSignature()); 1027 buf.append("/").append(vmentry); 1028 } 1029 return buf.toString(); 1030 } 1031 1032 @Override 1033 public boolean equals(Object obj) { 1034 return obj instanceof LambdaForm lf && equals(lf); 1035 } 1036 public boolean equals(LambdaForm that) { 1037 if (this.result != that.result) return false; 1038 return Arrays.equals(this.names, that.names); 1039 } 1040 public int hashCode() { 1041 return result + 31 * Arrays.hashCode(names); 1042 } 1043 LambdaFormEditor editor() { 1044 return LambdaFormEditor.lambdaFormEditor(this); 1045 } 1046 1047 boolean contains(Name name) { 1048 int pos = name.index(); 1049 if (pos >= 0) { 1050 return pos < names.length && name.equals(names[pos]); 1051 } 1052 for (int i = arity; i < names.length; i++) { 1053 if (name.equals(names[i])) 1054 return true; 1055 } 1056 return false; 1057 } 1058 1059 static class NamedFunction { 1060 final MemberName member; 1061 private @Stable MethodHandle resolvedHandle; 1062 private @Stable MethodType type; 1063 1064 NamedFunction(MethodHandle resolvedHandle) { 1065 this(resolvedHandle.internalMemberName(), resolvedHandle); 1066 } 1067 NamedFunction(MemberName member, MethodHandle resolvedHandle) { 1068 this.member = member; 1069 this.resolvedHandle = resolvedHandle; 1070 // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest. 1071 //assert(!isInvokeBasic(member)); 1072 } 1073 NamedFunction(MethodType basicInvokerType) { 1074 assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; 1075 if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { 1076 this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); 1077 this.member = resolvedHandle.internalMemberName(); 1078 } else { 1079 // necessary to pass BigArityTest 1080 this.member = Invokers.invokeBasicMethod(basicInvokerType); 1081 } 1082 assert(isInvokeBasic(member)); 1083 } 1084 1085 private static boolean isInvokeBasic(MemberName member) { 1086 return member != null && 1087 member.getDeclaringClass() == MethodHandle.class && 1088 "invokeBasic".equals(member.getName()); 1089 } 1090 1091 // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc. 1092 // Any LambdaForm containing such a member is not interpretable. 1093 // This is OK, since all such LFs are prepared with special primitive vmentry points. 1094 // And even without the resolvedHandle, the name can still be compiled and optimized. 1095 NamedFunction(Method method) { 1096 this(new MemberName(method)); 1097 } 1098 NamedFunction(MemberName member) { 1099 this(member, null); 1100 } 1101 1102 MethodHandle resolvedHandle() { 1103 if (resolvedHandle == null) resolve(); 1104 return resolvedHandle; 1105 } 1106 1107 synchronized void resolve() { 1108 if (resolvedHandle == null) { 1109 resolvedHandle = DirectMethodHandle.make(member); 1110 } 1111 } 1112 1113 @Override 1114 public boolean equals(Object other) { 1115 if (this == other) return true; 1116 if (other == null) return false; 1117 return (other instanceof NamedFunction that) 1118 && this.member != null 1119 && this.member.equals(that.member); 1120 } 1121 1122 @Override 1123 public int hashCode() { 1124 if (member != null) 1125 return member.hashCode(); 1126 return super.hashCode(); 1127 } 1128 1129 static final MethodType INVOKER_METHOD_TYPE = 1130 MethodType.methodType(Object.class, MethodHandle.class, Object[].class); 1131 1132 private static MethodHandle computeInvoker(MethodTypeForm typeForm) { 1133 typeForm = typeForm.basicType().form(); // normalize to basic type 1134 MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1135 if (mh != null) return mh; 1136 MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while 1137 mh = DirectMethodHandle.make(invoker); 1138 MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1139 if (mh2 != null) return mh2; // benign race 1140 if (!mh.type().equals(INVOKER_METHOD_TYPE)) 1141 throw newInternalError(mh.debugString()); 1142 return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh); 1143 } 1144 1145 @Hidden 1146 Object invokeWithArguments(Object... arguments) throws Throwable { 1147 // If we have a cached invoker, call it right away. 1148 // NOTE: The invoker always returns a reference value. 1149 if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); 1150 return invoker().invokeBasic(resolvedHandle(), arguments); 1151 } 1152 1153 @Hidden 1154 Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { 1155 Object rval; 1156 try { 1157 traceInterpreter("[ call", this, arguments); 1158 // resolvedHandle might be uninitialized, ok for tracing 1159 if (resolvedHandle == null) { 1160 traceInterpreter("| resolve", this); 1161 resolvedHandle(); 1162 } 1163 rval = invoker().invokeBasic(resolvedHandle(), arguments); 1164 } catch (Throwable ex) { 1165 traceInterpreter("] throw =>", ex); 1166 throw ex; 1167 } 1168 traceInterpreter("] return =>", rval); 1169 return rval; 1170 } 1171 1172 private MethodHandle invoker() { 1173 return computeInvoker(methodType().form()); 1174 } 1175 1176 MethodType methodType() { 1177 MethodType type = this.type; 1178 if (type == null) { 1179 this.type = type = calculateMethodType(member, resolvedHandle); 1180 } 1181 return type; 1182 } 1183 1184 private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) { 1185 if (resolvedHandle != null) { 1186 return resolvedHandle.type(); 1187 } else { 1188 // only for certain internal LFs during bootstrapping 1189 return member.getInvocationType(); 1190 } 1191 } 1192 1193 MemberName member() { 1194 assert(assertMemberIsConsistent()); 1195 return member; 1196 } 1197 1198 // Called only from assert. 1199 private boolean assertMemberIsConsistent() { 1200 if (resolvedHandle instanceof DirectMethodHandle) { 1201 MemberName m = resolvedHandle.internalMemberName(); 1202 assert(m.equals(member)); 1203 } 1204 return true; 1205 } 1206 1207 Class<?> memberDeclaringClassOrNull() { 1208 return (member == null) ? null : member.getDeclaringClass(); 1209 } 1210 1211 BasicType returnType() { 1212 return basicType(methodType().returnType()); 1213 } 1214 1215 BasicType parameterType(int n) { 1216 return basicType(methodType().parameterType(n)); 1217 } 1218 1219 int arity() { 1220 return methodType().parameterCount(); 1221 } 1222 1223 public String toString() { 1224 if (member == null) return String.valueOf(resolvedHandle); 1225 return member.getDeclaringClass().getSimpleName()+"."+member.getName(); 1226 } 1227 1228 public boolean isIdentity() { 1229 return this.equals(identity(returnType())); 1230 } 1231 1232 public MethodHandleImpl.Intrinsic intrinsicName() { 1233 return resolvedHandle != null 1234 ? resolvedHandle.intrinsicName() 1235 : MethodHandleImpl.Intrinsic.NONE; 1236 } 1237 1238 public Object intrinsicData() { 1239 return resolvedHandle != null 1240 ? resolvedHandle.intrinsicData() 1241 : null; 1242 } 1243 } 1244 1245 public static String basicTypeSignature(MethodType type) { 1246 int params = type.parameterCount(); 1247 char[] sig = new char[params + 2]; 1248 int sigp = 0; 1249 while (sigp < params) { 1250 sig[sigp] = basicTypeChar(type.parameterType(sigp++)); 1251 } 1252 sig[sigp++] = '_'; 1253 sig[sigp++] = basicTypeChar(type.returnType()); 1254 assert(sigp == sig.length); 1255 return String.valueOf(sig); 1256 } 1257 1258 /** Hack to make signatures more readable when they show up in method names. 1259 * Signature should start with a sequence of uppercase ASCII letters. 1260 * Runs of three or more are replaced by a single letter plus a decimal repeat count. 1261 * A tail of anything other than uppercase ASCII is passed through unchanged. 1262 * @param signature sequence of uppercase ASCII letters with possible repetitions 1263 * @return same sequence, with repetitions counted by decimal numerals 1264 */ 1265 public static String shortenSignature(String signature) { 1266 final int NO_CHAR = -1, MIN_RUN = 3; 1267 int c0, c1 = NO_CHAR, c1reps = 0; 1268 StringBuilder buf = null; 1269 int len = signature.length(); 1270 if (len < MIN_RUN) return signature; 1271 for (int i = 0; i <= len; i++) { 1272 if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) { 1273 // wrong kind of char; bail out here 1274 if (buf != null) { 1275 buf.append(signature, i - c1reps, len); 1276 } 1277 break; 1278 } 1279 // shift in the next char: 1280 c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); 1281 if (c1 == c0) { ++c1reps; continue; } 1282 // shift in the next count: 1283 int c0reps = c1reps; c1reps = 1; 1284 // end of a character run 1285 if (c0reps < MIN_RUN) { 1286 if (buf != null) { 1287 while (--c0reps >= 0) 1288 buf.append((char)c0); 1289 } 1290 continue; 1291 } 1292 // found three or more in a row 1293 if (buf == null) 1294 buf = new StringBuilder().append(signature, 0, i - c0reps); 1295 buf.append((char)c0).append(c0reps); 1296 } 1297 return (buf == null) ? signature : buf.toString(); 1298 } 1299 1300 static final class Name { 1301 final BasicType type; 1302 final short index; 1303 final NamedFunction function; 1304 final Object constraint; // additional type information, if not null 1305 @Stable final Object[] arguments; 1306 1307 private static final Object[] EMPTY_ARGS = new Object[0]; 1308 1309 private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) { 1310 this.index = (short)index; 1311 this.type = type; 1312 this.function = function; 1313 this.arguments = arguments; 1314 this.constraint = constraint; 1315 assert(this.index == index && typesMatch(function, arguments)); 1316 assert(constraint == null || isParam()); // only params have constraints 1317 assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class); 1318 } 1319 1320 Name(MethodHandle function, Object... arguments) { 1321 this(new NamedFunction(function), arguments); 1322 } 1323 Name(MethodType functionType, Object... arguments) { 1324 this(new NamedFunction(functionType), arguments); 1325 assert(arguments[0] instanceof Name name && name.type == L_TYPE); 1326 } 1327 Name(MemberName function, Object... arguments) { 1328 this(new NamedFunction(function), arguments); 1329 } 1330 Name(NamedFunction function) { 1331 this(-1, function.returnType(), function, EMPTY_ARGS, null); 1332 } 1333 Name(NamedFunction function, Object arg) { 1334 this(-1, function.returnType(), function, new Object[] { arg }, null); 1335 } 1336 Name(NamedFunction function, Object arg0, Object arg1) { 1337 this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null); 1338 } 1339 Name(NamedFunction function, Object... arguments) { 1340 this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null); 1341 } 1342 /** Create a raw parameter of the given type, with an expected index. */ 1343 Name(int index, BasicType type) { 1344 this(index, type, null, null, null); 1345 } 1346 /** Create a raw parameter of the given type. */ 1347 Name(BasicType type) { this(-1, type); } 1348 1349 BasicType type() { return type; } 1350 int index() { return index; } 1351 1352 char typeChar() { 1353 return type.btChar; 1354 } 1355 1356 Name withIndex(int i) { 1357 if (i == this.index) return this; 1358 return new Name(i, type, function, arguments, constraint); 1359 } 1360 1361 Name withConstraint(Object constraint) { 1362 if (constraint == this.constraint) return this; 1363 return new Name(index, type, function, arguments, constraint); 1364 } 1365 1366 Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly 1367 if (oldName == newName) return this; 1368 @SuppressWarnings("LocalVariableHidesMemberVariable") 1369 Object[] arguments = this.arguments; 1370 if (arguments == null) return this; 1371 boolean replaced = false; 1372 for (int j = 0; j < arguments.length; j++) { 1373 if (arguments[j] == oldName) { 1374 if (!replaced) { 1375 replaced = true; 1376 arguments = arguments.clone(); 1377 } 1378 arguments[j] = newName; 1379 } 1380 } 1381 if (!replaced) return this; 1382 return new Name(function, arguments); 1383 } 1384 /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i]. 1385 * Limit such replacements to {@code start<=i<end}. Return possibly changed self. 1386 */ 1387 Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) { 1388 if (start >= end) return this; 1389 @SuppressWarnings("LocalVariableHidesMemberVariable") 1390 Object[] arguments = this.arguments; 1391 boolean replaced = false; 1392 eachArg: 1393 for (int j = 0; j < arguments.length; j++) { 1394 if (arguments[j] instanceof Name n) { 1395 int check = n.index; 1396 // harmless check to see if the thing is already in newNames: 1397 if (check >= 0 && check < newNames.length && n == newNames[check]) 1398 continue eachArg; 1399 // n might not have the correct index: n != oldNames[n.index]. 1400 for (int i = start; i < end; i++) { 1401 if (n == oldNames[i]) { 1402 if (n == newNames[i]) 1403 continue eachArg; 1404 if (!replaced) { 1405 replaced = true; 1406 arguments = arguments.clone(); 1407 } 1408 arguments[j] = newNames[i]; 1409 continue eachArg; 1410 } 1411 } 1412 } 1413 } 1414 if (!replaced) return this; 1415 return new Name(function, arguments); 1416 } 1417 void internArguments() { 1418 @SuppressWarnings("LocalVariableHidesMemberVariable") 1419 Object[] arguments = this.arguments; 1420 for (int j = 0; j < arguments.length; j++) { 1421 if (arguments[j] instanceof Name n) { 1422 if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) 1423 arguments[j] = internArgument(n); 1424 } 1425 } 1426 } 1427 boolean isParam() { 1428 return function == null; 1429 } 1430 1431 boolean refersTo(Class<?> declaringClass, String methodName) { 1432 return function != null && 1433 function.member() != null && function.member().refersTo(declaringClass, methodName); 1434 } 1435 1436 /** 1437 * Check if MemberName is a call to MethodHandle.invokeBasic. 1438 */ 1439 boolean isInvokeBasic() { 1440 if (function == null) 1441 return false; 1442 if (arguments.length < 1) 1443 return false; // must have MH argument 1444 MemberName member = function.member(); 1445 return member != null && member.refersTo(MethodHandle.class, "invokeBasic") && 1446 !member.isPublic() && !member.isStatic(); 1447 } 1448 1449 /** 1450 * Check if MemberName is a call to MethodHandle.linkToStatic, etc. 1451 */ 1452 boolean isLinkerMethodInvoke() { 1453 if (function == null) 1454 return false; 1455 if (arguments.length < 1) 1456 return false; // must have MH argument 1457 MemberName member = function.member(); 1458 return member != null && 1459 member.getDeclaringClass() == MethodHandle.class && 1460 !member.isPublic() && member.isStatic() && 1461 member.getName().startsWith("linkTo"); 1462 } 1463 1464 public String toString() { 1465 return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); 1466 } 1467 public String debugString() { 1468 String s = paramString(); 1469 return (function == null) ? s : s + "=" + exprString(); 1470 } 1471 public String paramString() { 1472 String s = toString(); 1473 Object c = constraint; 1474 if (c == null) 1475 return s; 1476 if (c instanceof Class<?> cl) c = cl.getSimpleName(); 1477 return s + "/" + c; 1478 } 1479 public String exprString() { 1480 if (function == null) return toString(); 1481 StringBuilder buf = new StringBuilder(function.toString()); 1482 buf.append("("); 1483 String cma = ""; 1484 for (Object a : arguments) { 1485 buf.append(cma); cma = ","; 1486 if (a instanceof Name || a instanceof Integer) 1487 buf.append(a); 1488 else 1489 buf.append("(").append(a).append(")"); 1490 } 1491 buf.append(")"); 1492 return buf.toString(); 1493 } 1494 1495 private boolean typesMatch(NamedFunction function, Object ... arguments) { 1496 if (arguments == null) { 1497 assert(function == null); 1498 return true; 1499 } 1500 assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); 1501 for (int i = 0; i < arguments.length; i++) { 1502 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); 1503 } 1504 return true; 1505 } 1506 1507 private static boolean typesMatch(BasicType parameterType, Object object) { 1508 if (object instanceof Name name) { 1509 return name.type == parameterType; 1510 } 1511 switch (parameterType) { 1512 case I_TYPE: return object instanceof Integer; 1513 case J_TYPE: return object instanceof Long; 1514 case F_TYPE: return object instanceof Float; 1515 case D_TYPE: return object instanceof Double; 1516 } 1517 assert(parameterType == L_TYPE); 1518 return true; 1519 } 1520 1521 /** Return the index of the last occurrence of n in the argument array. 1522 * Return -1 if the name is not used. 1523 */ 1524 int lastUseIndex(Name n) { 1525 Object[] arguments = this.arguments; 1526 if (arguments == null) return -1; 1527 for (int i = arguments.length; --i >= 0; ) { 1528 if (arguments[i] == n) return i; 1529 } 1530 return -1; 1531 } 1532 1533 public boolean equals(Name that) { 1534 if (this == that) return true; 1535 if (isParam()) 1536 // each parameter is a unique atom 1537 return false; // this != that 1538 return 1539 //this.index == that.index && 1540 this.type == that.type && 1541 this.function.equals(that.function) && 1542 Arrays.equals(this.arguments, that.arguments); 1543 } 1544 @Override 1545 public boolean equals(Object x) { 1546 return x instanceof Name n && equals(n); 1547 } 1548 @Override 1549 public int hashCode() { 1550 if (isParam()) 1551 return index | (type.ordinal() << 8); 1552 return function.hashCode() ^ Arrays.hashCode(arguments); 1553 } 1554 } 1555 1556 /** Return the index of the last name which contains n as an argument. 1557 * Return -1 if the name is not used. Return names.length if it is the return value. 1558 */ 1559 int lastUseIndex(Name n) { 1560 int ni = n.index, nmax = names.length; 1561 assert(names[ni] == n); 1562 if (result == ni) return nmax; // live all the way beyond the end 1563 for (int i = nmax; --i > ni; ) { 1564 if (names[i].lastUseIndex(n) >= 0) 1565 return i; 1566 } 1567 return -1; 1568 } 1569 1570 /** Return the number of times n is used as an argument or return value. */ 1571 int useCount(Name n) { 1572 int count = (result == n.index) ? 1 : 0; 1573 int i = Math.max(n.index + 1, arity); 1574 Name[] names = this.names; 1575 while (i < names.length) { 1576 Object[] arguments = names[i++].arguments; 1577 if (arguments != null) { 1578 for (Object argument : arguments) { 1579 if (argument == n) { 1580 count++; 1581 } 1582 } 1583 } 1584 } 1585 return count; 1586 } 1587 1588 static Name argument(int which, BasicType type) { 1589 if (which >= INTERNED_ARGUMENT_LIMIT) 1590 return new Name(which, type); 1591 return INTERNED_ARGUMENTS[type.ordinal()][which]; 1592 } 1593 static Name internArgument(Name n) { 1594 assert(n.isParam()) : "not param: " + n; 1595 assert(n.index < INTERNED_ARGUMENT_LIMIT); 1596 if (n.constraint != null) return n; 1597 return argument(n.index, n.type); 1598 } 1599 static Name[] arguments(int extra, MethodType types) { 1600 int length = types.parameterCount(); 1601 Name[] names = new Name[length + extra]; 1602 for (int i = 0; i < length; i++) 1603 names[i] = argument(i, basicType(types.parameterType(i))); 1604 return names; 1605 } 1606 1607 static Name[] invokeArguments(int extra, MethodType types) { 1608 int length = types.parameterCount(); 1609 Name[] names = new Name[length + extra + 1]; 1610 names[0] = argument(0, L_TYPE); 1611 for (int i = 0; i < length; i++) 1612 names[i + 1] = argument(i + 1, basicType(types.parameterType(i))); 1613 return names; 1614 } 1615 1616 static final int INTERNED_ARGUMENT_LIMIT = 10; 1617 private static final Name[][] INTERNED_ARGUMENTS 1618 = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; 1619 static { 1620 for (BasicType type : BasicType.ARG_TYPES) { 1621 int ord = type.ordinal(); 1622 for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) { 1623 INTERNED_ARGUMENTS[ord][i] = new Name(i, type); 1624 } 1625 } 1626 } 1627 1628 private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 1629 1630 static LambdaForm identityForm(BasicType type) { 1631 int ord = type.ordinal(); 1632 LambdaForm form = LF_identity[ord]; 1633 if (form != null) { 1634 return form; 1635 } 1636 createIdentityForm(type); 1637 return LF_identity[ord]; 1638 } 1639 1640 static NamedFunction identity(BasicType type) { 1641 int ord = type.ordinal(); 1642 NamedFunction function = NF_identity[ord]; 1643 if (function != null) { 1644 return function; 1645 } 1646 createIdentityForm(type); 1647 return NF_identity[ord]; 1648 } 1649 1650 static LambdaForm constantForm(BasicType type) { 1651 assert type != null && type != V_TYPE : type; 1652 var cached = LF_constant[type.ordinal()]; 1653 if (cached != null) 1654 return cached; 1655 return createConstantForm(type); 1656 } 1657 1658 private static LambdaForm createConstantForm(BasicType type) { 1659 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle 1660 var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type); 1661 var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data 1662 Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) }; 1663 return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT); 1664 } 1665 1666 private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT]; 1667 private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; 1668 private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void 1669 1670 private static final Object createIdentityFormLock = new Object(); 1671 private static void createIdentityForm(BasicType type) { 1672 // Avoid racy initialization during bootstrap 1673 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); 1674 synchronized (createIdentityFormLock) { 1675 final int ord = type.ordinal(); 1676 LambdaForm idForm = LF_identity[ord]; 1677 if (idForm != null) { 1678 return; 1679 } 1680 char btChar = type.basicTypeChar(); 1681 boolean isVoid = (type == V_TYPE); 1682 Class<?> btClass = type.btClass; 1683 MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass); 1684 1685 // Look up symbolic names. It might not be necessary to have these, 1686 // but if we need to emit direct references to bytecodes, it helps. 1687 MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); 1688 try { 1689 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class); 1690 } catch (IllegalAccessException|NoSuchMethodException ex) { 1691 throw newInternalError(ex); 1692 } 1693 1694 NamedFunction idFun; 1695 1696 // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular 1697 // bootstrap dependency on this method in case we're interpreting LFs 1698 if (isVoid) { 1699 Name[] idNames = new Name[] { argument(0, L_TYPE) }; 1700 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY); 1701 idForm.compileToBytecode(); 1702 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm)); 1703 } else { 1704 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; 1705 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY); 1706 idForm.compileToBytecode(); 1707 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm, 1708 MethodHandleImpl.Intrinsic.IDENTITY)); 1709 } 1710 1711 LF_identity[ord] = idForm; 1712 NF_identity[ord] = idFun; 1713 1714 assert(idFun.isIdentity()); 1715 } 1716 } 1717 1718 // Avoid appealing to ValueConversions at bootstrap time: 1719 private static int identity_I(int x) { return x; } 1720 private static long identity_J(long x) { return x; } 1721 private static float identity_F(float x) { return x; } 1722 private static double identity_D(double x) { return x; } 1723 private static Object identity_L(Object x) { return x; } 1724 private static void identity_V() { return; } 1725 /** 1726 * Internal marker for byte-compiled LambdaForms. 1727 */ 1728 /*non-public*/ 1729 @Target(ElementType.METHOD) 1730 @Retention(RetentionPolicy.RUNTIME) 1731 @interface Compiled { 1732 } 1733 1734 private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS; 1735 private static final HashMap<LambdaForm,String> DEBUG_NAMES; 1736 static { 1737 if (debugEnabled()) { 1738 DEBUG_NAME_COUNTERS = new HashMap<>(); 1739 DEBUG_NAMES = new HashMap<>(); 1740 } else { 1741 DEBUG_NAME_COUNTERS = null; 1742 DEBUG_NAMES = null; 1743 } 1744 } 1745 1746 static { 1747 // The Holder class will contain pre-generated forms resolved 1748 // using MemberName.getFactory(). However, that doesn't initialize the 1749 // class, which subtly breaks inlining etc. By forcing 1750 // initialization of the Holder class we avoid these issues. 1751 UNSAFE.ensureClassInitialized(Holder.class); 1752 } 1753 1754 /* Placeholder class for identity and constant forms generated ahead of time */ 1755 final class Holder {} 1756 1757 // The following hack is necessary in order to suppress TRACE_INTERPRETER 1758 // during execution of the static initializes of this class. 1759 // Turning on TRACE_INTERPRETER too early will cause 1760 // stack overflows and other misbehavior during attempts to trace events 1761 // that occur during LambdaForm.<clinit>. 1762 // Therefore, do not move this line higher in this file, and do not remove. 1763 private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; 1764 }