1 /* 2 * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.io.Serializable; 29 import java.util.Arrays; 30 import java.lang.reflect.Array; 31 import java.util.Objects; 32 33 /** 34 * <p>Methods to facilitate the creation of simple "function objects" that 35 * implement one or more interfaces by delegation to a provided {@link MethodHandle}, 36 * possibly after type adaptation and partial evaluation of arguments. These 37 * methods are typically used as <em>bootstrap methods</em> for {@code invokedynamic} 38 * call sites, to support the <em>lambda expression</em> and <em>method 39 * reference expression</em> features of the Java Programming Language. 40 * 41 * <p>Indirect access to the behavior specified by the provided {@code MethodHandle} 42 * proceeds in order through three phases: 43 * <ul> 44 * <li><p><em>Linkage</em> occurs when the methods in this class are invoked. 45 * They take as arguments an interface to be implemented (typically a 46 * <em>functional interface</em>, one with a single abstract method), a 47 * name and signature of a method from that interface to be implemented, a 48 * {@linkplain MethodHandleInfo direct method handle} describing the desired 49 * implementation behavior for that method, and possibly other additional 50 * metadata, and produce a {@link CallSite} whose target can be used to 51 * create suitable function objects. 52 * 53 * <p>Linkage may involve dynamically loading a new class that implements 54 * the target interface, or re-using a suitable existing class. 55 * 56 * <p>The {@code CallSite} can be considered a "factory" for function 57 * objects and so these linkage methods are referred to as 58 * "metafactories".</li> 59 * 60 * <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is 61 * invoked, typically through an {@code invokedynamic} call site, 62 * producing a function object. This may occur many times for 63 * a single factory {@code CallSite}. 64 * 65 * <p>If the behavior {@code MethodHandle} has additional parameters beyond 66 * those of the specified interface method, these are referred to as 67 * <em>captured parameters</em>, which must be provided as arguments to the 68 * {@code CallSite} target. The expected number and types of captured 69 * parameters are determined during linkage. 70 * 71 * <p>Capture may involve allocation of a new function object, or may return 72 * a suitable existing function object. The identity of a function object 73 * produced by capture is unpredictable, and therefore identity-sensitive 74 * operations (such as reference equality, object locking, and {@code 75 * System.identityHashCode()}) may produce different results in different 76 * implementations, or even upon different invocations in the same 77 * implementation.</li> 78 * 79 * <li><p><em>Invocation</em> occurs when an implemented interface method is 80 * invoked on a function object. This may occur many times for a single 81 * function object. The method referenced by the implementation 82 * {@code MethodHandle} is invoked, passing to it the captured arguments and 83 * the invocation arguments. The result of the method is returned. 84 * </li> 85 * </ul> 86 * 87 * <p>It is sometimes useful to restrict the set of inputs or results permitted 88 * at invocation. For example, when the generic interface {@code Predicate<T>} 89 * is parameterized as {@code Predicate<String>}, the input must be a 90 * {@code String}, even though the method to implement allows any {@code Object}. 91 * At linkage time, an additional {@link MethodType} parameter describes the 92 * "dynamic" method type; on invocation, the arguments and eventual result 93 * are checked against this {@code MethodType}. 94 * 95 * <p>This class provides two forms of linkage methods: a standard version 96 * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}) 97 * using an optimized protocol, and an alternate version 98 * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}). 99 * The alternate version is a generalization of the standard version, providing 100 * additional control over the behavior of the generated function objects via 101 * flags and additional arguments. The alternate version adds the ability to 102 * manage the following attributes of function objects: 103 * 104 * <ul> 105 * <li><em>Multiple methods.</em> It is sometimes useful to implement multiple 106 * variations of the method signature, involving argument or return type 107 * adaptation. This occurs when multiple distinct VM signatures for a method 108 * are logically considered to be the same method by the language. The 109 * flag {@code FLAG_BRIDGES} indicates that a list of additional 110 * {@code MethodType}s will be provided, each of which will be implemented 111 * by the resulting function object. These methods will share the same 112 * name and instantiated type.</li> 113 * 114 * <li><em>Multiple interfaces.</em> If needed, more than one interface 115 * can be implemented by the function object. (These additional interfaces 116 * are typically marker interfaces with no methods.) The flag {@code FLAG_MARKERS} 117 * indicates that a list of additional interfaces will be provided, each of 118 * which should be implemented by the resulting function object.</li> 119 * 120 * <li><em>Serializability.</em> The generated function objects do not 121 * generally support serialization. If desired, {@code FLAG_SERIALIZABLE} 122 * can be used to indicate that the function objects should be serializable. 123 * Serializable function objects will use, as their serialized form, 124 * instances of the class {@code SerializedLambda}, which requires additional 125 * assistance from the capturing class (the class described by the 126 * {@link MethodHandles.Lookup} parameter {@code caller}); see 127 * {@link SerializedLambda} for details.</li> 128 * </ul> 129 * 130 * <p>Assume the linkage arguments are as follows: 131 * <ul> 132 * <li>{@code factoryType} (describing the {@code CallSite} signature) has 133 * K parameters of types (D1..Dk) and return type Rd;</li> 134 * <li>{@code interfaceMethodType} (describing the implemented method type) has N 135 * parameters, of types (U1..Un) and return type Ru;</li> 136 * <li>{@code implementation} (the {@code MethodHandle} providing the 137 * implementation) has M parameters, of types (A1..Am) and return type Ra 138 * (if the method describes an instance method, the method type of this 139 * method handle already includes an extra first argument corresponding to 140 * the receiver);</li> 141 * <li>{@code dynamicMethodType} (allowing restrictions on invocation) 142 * has N parameters, of types (T1..Tn) and return type Rt.</li> 143 * </ul> 144 * 145 * <p>Then the following linkage invariants must hold: 146 * <ul> 147 * <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same 148 * arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are 149 * both reference types and Ti is a subtype of Ui</li> 150 * <li>Either Rt and Ru are the same type, or both are reference types and 151 * Rt is a subtype of Ru</li> 152 * <li>K + N = M</li> 153 * <li>For i=1..K, Di = Ai</li> 154 * <li>For i=1..N, Ti is adaptable to Aj, where j=i+k</li> 155 * <li>The return type Rt is void, or the return type Ra is not void and is 156 * adaptable to Rt</li> 157 * </ul> 158 * 159 * <p>Further, at capture time, if {@code implementation} corresponds to an instance 160 * method, and there are any capture arguments ({@code K > 0}), then the first 161 * capture argument (corresponding to the receiver) must be non-null. 162 * 163 * <p>A type Q is considered adaptable to S as follows: 164 * <table class="striped"> 165 * <caption style="display:none">adaptable types</caption> 166 * <thead> 167 * <tr><th scope="col">Q</th><th scope="col">S</th><th scope="col">Link-time checks</th><th scope="col">Invocation-time checks</th></tr> 168 * </thead> 169 * <tbody> 170 * <tr> 171 * <th scope="row">Primitive</th><th scope="row">Primitive</th> 172 * <td>Q can be converted to S via a primitive widening conversion</td> 173 * <td>None</td> 174 * </tr> 175 * <tr> 176 * <th scope="row">Primitive</th><th scope="row">Reference</th> 177 * <td>S is a supertype of the Wrapper(Q)</td> 178 * <td>Cast from Wrapper(Q) to S</td> 179 * </tr> 180 * <tr> 181 * <th scope="row">Reference</th><th scope="row">Primitive</th> 182 * <td>for parameter types: Q is a primitive wrapper and Primitive(Q) 183 * can be widened to S 184 * <br>for return types: If Q is a primitive wrapper, check that 185 * Primitive(Q) can be widened to S</td> 186 * <td>If Q is not a primitive wrapper, cast Q to the base Wrapper(S); 187 * for example Number for numeric types</td> 188 * </tr> 189 * <tr> 190 * <th scope="row">Reference</th><th scope="row">Reference</th> 191 * <td>for parameter types: S is a supertype of Q 192 * <br>for return types: none</td> 193 * <td>Cast from Q to S</td> 194 * </tr> 195 * </tbody> 196 * </table> 197 * 198 * @apiNote These linkage methods are designed to support the evaluation 199 * of <em>lambda expressions</em> and <em>method references</em> in the Java 200 * Language. For every lambda expressions or method reference in the source code, 201 * there is a target type which is a functional interface. Evaluating a lambda 202 * expression produces an object of its target type. The recommended mechanism 203 * for evaluating lambda expressions is to desugar the lambda body to a method, 204 * invoke an invokedynamic call site whose static argument list describes the 205 * sole method of the functional interface and the desugared implementation 206 * method, and returns an object (the lambda object) that implements the target 207 * type. (For method references, the implementation method is simply the 208 * referenced method; no desugaring is needed.) 209 * 210 * <p>The argument list of the implementation method and the argument list of 211 * the interface method(s) may differ in several ways. The implementation 212 * methods may have additional arguments to accommodate arguments captured by 213 * the lambda expression; there may also be differences resulting from permitted 214 * adaptations of arguments, such as casting, boxing, unboxing, and primitive 215 * widening. (Varargs adaptations are not handled by the metafactories; these are 216 * expected to be handled by the caller.) 217 * 218 * <p>Invokedynamic call sites have two argument lists: a static argument list 219 * and a dynamic argument list. The static argument list is stored in the 220 * constant pool; the dynamic argument is pushed on the operand stack at capture 221 * time. The bootstrap method has access to the entire static argument list 222 * (which in this case, includes information describing the implementation method, 223 * the target interface, and the target interface method(s)), as well as a 224 * method signature describing the number and static types (but not the values) 225 * of the dynamic arguments and the static return type of the invokedynamic site. 226 * 227 * <p>The implementation method is described with a direct method handle 228 * referencing a method or constructor. In theory, any method handle could be 229 * used, but this is not compatible with some implementation techniques and 230 * would complicate the work implementations must do. 231 * 232 * @since 1.8 233 */ 234 public final class LambdaMetafactory { 235 236 private LambdaMetafactory() {} 237 238 /** Flag for {@link #altMetafactory} indicating the lambda object 239 * must be serializable */ 240 public static final int FLAG_SERIALIZABLE = 1 << 0; 241 242 /** 243 * Flag for {@link #altMetafactory} indicating the lambda object implements 244 * other interfaces besides {@code Serializable} 245 */ 246 public static final int FLAG_MARKERS = 1 << 1; 247 248 /** 249 * Flag for alternate metafactories indicating the lambda object requires 250 * additional methods that invoke the {@code implementation} 251 */ 252 public static final int FLAG_BRIDGES = 1 << 2; 253 254 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 255 private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0]; 256 257 // LambdaMetafactory bootstrap methods are startup sensitive, and may be 258 // special cased in java.lang.invoke.BootstrapMethodInvoker to ensure 259 // methods are invoked with exact type information to avoid generating 260 // code for runtime checks. Take care any changes or additions here are 261 // reflected there as appropriate. 262 263 /** 264 * Facilitates the creation of simple "function objects" that implement one 265 * or more interfaces by delegation to a provided {@link MethodHandle}, 266 * after appropriate type adaptation and partial evaluation of arguments. 267 * Typically used as a <em>bootstrap method</em> for {@code invokedynamic} 268 * call sites, to support the <em>lambda expression</em> and <em>method 269 * reference expression</em> features of the Java Programming Language. 270 * 271 * <p>This is the standard, streamlined metafactory; additional flexibility 272 * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}. 273 * A general description of the behavior of this method is provided 274 * {@link LambdaMetafactory above}. 275 * 276 * <p>When the target of the {@code CallSite} returned from this method is 277 * invoked, the resulting function objects are instances of a class which 278 * implements the interface named by the return type of {@code factoryType}, 279 * declares a method with the name given by {@code interfaceMethodName} and the 280 * signature given by {@code interfaceMethodType}. It may also override additional 281 * methods from {@code Object}. 282 * 283 * @param caller Represents a lookup context with the accessibility 284 * privileges of the caller. Specifically, the lookup context 285 * must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess() 286 * full privilege access}. 287 * When used with {@code invokedynamic}, this is stacked 288 * automatically by the VM. 289 * @param interfaceMethodName The name of the method to implement. When used with 290 * {@code invokedynamic}, this is provided by the 291 * {@code NameAndType} of the {@code InvokeDynamic} 292 * structure and is stacked automatically by the VM. 293 * @param factoryType The expected signature of the {@code CallSite}. The 294 * parameter types represent the types of capture variables; 295 * the return type is the interface to implement. When 296 * used with {@code invokedynamic}, this is provided by 297 * the {@code NameAndType} of the {@code InvokeDynamic} 298 * structure and is stacked automatically by the VM. 299 * @param interfaceMethodType Signature and return type of method to be 300 * implemented by the function object. 301 * @param implementation A direct method handle describing the implementation 302 * method which should be called (with suitable adaptation 303 * of argument types and return types, and with captured 304 * arguments prepended to the invocation arguments) at 305 * invocation time. 306 * @param dynamicMethodType The signature and return type that should 307 * be enforced dynamically at invocation time. 308 * In simple use cases this is the same as 309 * {@code interfaceMethodType}. 310 * @return a CallSite whose target can be used to perform capture, generating 311 * instances of the interface named by {@code factoryType} 312 * @throws LambdaConversionException If {@code caller} does not have full privilege 313 * access, or if {@code interfaceMethodName} is not a valid JVM 314 * method name, or if the return type of {@code factoryType} is not 315 * an interface, or if the return type of {@code factoryType} is a value 316 * interface, or if {@code implementation} is not a direct method 317 * handle referencing a method or constructor, or if the linkage 318 * invariants are violated, as defined {@link LambdaMetafactory above}. 319 * @throws NullPointerException If any argument is {@code null}. 320 * @throws SecurityException If a security manager is present, and it 321 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 322 * from {@code caller} to the package of {@code implementation}. 323 */ 324 public static CallSite metafactory(MethodHandles.Lookup caller, 325 String interfaceMethodName, 326 MethodType factoryType, 327 MethodType interfaceMethodType, 328 MethodHandle implementation, 329 MethodType dynamicMethodType) 330 throws LambdaConversionException { 331 AbstractValidatingLambdaMetafactory mf; 332 mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller), 333 Objects.requireNonNull(factoryType), 334 Objects.requireNonNull(interfaceMethodName), 335 Objects.requireNonNull(interfaceMethodType), 336 Objects.requireNonNull(implementation), 337 Objects.requireNonNull(dynamicMethodType), 338 false, 339 EMPTY_CLASS_ARRAY, 340 EMPTY_MT_ARRAY); 341 mf.validateMetafactoryArgs(); 342 return mf.buildCallSite(); 343 } 344 345 /** 346 * Facilitates the creation of simple "function objects" that implement one 347 * or more interfaces by delegation to a provided {@link MethodHandle}, 348 * after appropriate type adaptation and partial evaluation of arguments. 349 * Typically used as a <em>bootstrap method</em> for {@code invokedynamic} 350 * call sites, to support the <em>lambda expression</em> and <em>method 351 * reference expression</em> features of the Java Programming Language. 352 * 353 * <p>This is the general, more flexible metafactory; a streamlined version 354 * is provided by {@link #metafactory(java.lang.invoke.MethodHandles.Lookup, 355 * String, MethodType, MethodType, MethodHandle, MethodType)}. 356 * A general description of the behavior of this method is provided 357 * {@link LambdaMetafactory above}. 358 * 359 * <p>The argument list for this method includes three fixed parameters, 360 * corresponding to the parameters automatically stacked by the VM for the 361 * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]} 362 * parameter that contains additional parameters. The declared argument 363 * list for this method is: 364 * 365 * <pre>{@code 366 * CallSite altMetafactory(MethodHandles.Lookup caller, 367 * String interfaceMethodName, 368 * MethodType factoryType, 369 * Object... args) 370 * }</pre> 371 * 372 * <p>but it behaves as if the argument list is as follows: 373 * 374 * <pre>{@code 375 * CallSite altMetafactory(MethodHandles.Lookup caller, 376 * String interfaceMethodName, 377 * MethodType factoryType, 378 * MethodType interfaceMethodType, 379 * MethodHandle implementation, 380 * MethodType dynamicMethodType, 381 * int flags, 382 * int altInterfaceCount, // IF flags has MARKERS set 383 * Class... altInterfaces, // IF flags has MARKERS set 384 * int altMethodCount, // IF flags has BRIDGES set 385 * MethodType... altMethods // IF flags has BRIDGES set 386 * ) 387 * }</pre> 388 * 389 * <p>Arguments that appear in the argument list for 390 * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)} 391 * have the same specification as in that method. The additional arguments 392 * are interpreted as follows: 393 * <ul> 394 * <li>{@code flags} indicates additional options; this is a bitwise 395 * OR of desired flags. Defined flags are {@link #FLAG_BRIDGES}, 396 * {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li> 397 * <li>{@code altInterfaceCount} is the number of additional interfaces 398 * the function object should implement, and is present if and only if the 399 * {@code FLAG_MARKERS} flag is set.</li> 400 * <li>{@code altInterfaces} is a variable-length list of additional 401 * interfaces to implement, whose length equals {@code altInterfaceCount}, 402 * and is present if and only if the {@code FLAG_MARKERS} flag is set.</li> 403 * <li>{@code altMethodCount} is the number of additional method signatures 404 * the function object should implement, and is present if and only if 405 * the {@code FLAG_BRIDGES} flag is set.</li> 406 * <li>{@code altMethods} is a variable-length list of additional 407 * methods signatures to implement, whose length equals {@code altMethodCount}, 408 * and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li> 409 * </ul> 410 * 411 * <p>Each class named by {@code altInterfaces} is subject to the same 412 * restrictions as {@code Rd}, the return type of {@code factoryType}, 413 * as described {@link LambdaMetafactory above}. Each {@code MethodType} 414 * named by {@code altMethods} is subject to the same restrictions as 415 * {@code interfaceMethodType}, as described {@link LambdaMetafactory above}. 416 * 417 * <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects 418 * will implement {@code Serializable}, and will have a {@code writeReplace} 419 * method that returns an appropriate {@link SerializedLambda}. The 420 * {@code caller} class must have an appropriate {@code $deserializeLambda$} 421 * method, as described in {@link SerializedLambda}. 422 * 423 * <p>When the target of the {@code CallSite} returned from this method is 424 * invoked, the resulting function objects are instances of a class with 425 * the following properties: 426 * <ul> 427 * <li>The class implements the interface named by the return type 428 * of {@code factoryType} and any interfaces named by {@code altInterfaces}</li> 429 * <li>The class declares methods with the name given by {@code interfaceMethodName}, 430 * and the signature given by {@code interfaceMethodType} and additional signatures 431 * given by {@code altMethods}</li> 432 * <li>The class may override methods from {@code Object}, and may 433 * implement methods related to serialization.</li> 434 * </ul> 435 * 436 * @param caller Represents a lookup context with the accessibility 437 * privileges of the caller. Specifically, the lookup context 438 * must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess() 439 * full privilege access}. 440 * When used with {@code invokedynamic}, this is stacked 441 * automatically by the VM. 442 * @param interfaceMethodName The name of the method to implement. When used with 443 * {@code invokedynamic}, this is provided by the 444 * {@code NameAndType} of the {@code InvokeDynamic} 445 * structure and is stacked automatically by the VM. 446 * @param factoryType The expected signature of the {@code CallSite}. The 447 * parameter types represent the types of capture variables; 448 * the return type is the interface to implement. When 449 * used with {@code invokedynamic}, this is provided by 450 * the {@code NameAndType} of the {@code InvokeDynamic} 451 * structure and is stacked automatically by the VM. 452 * @param args An array of {@code Object} containing the required 453 * arguments {@code interfaceMethodType}, {@code implementation}, 454 * {@code dynamicMethodType}, {@code flags}, and any 455 * optional arguments, as described above 456 * @return a CallSite whose target can be used to perform capture, generating 457 * instances of the interface named by {@code factoryType} 458 * @throws LambdaConversionException If {@code caller} does not have full privilege 459 * access, or if {@code interfaceMethodName} is not a valid JVM 460 * method name, or if the return type of {@code factoryType} is not 461 * an interface, or if any of {@code altInterfaces} is not an 462 * interface, or if {@code implementation} is not a direct method 463 * handle referencing a method or constructor, or if the linkage 464 * invariants are violated, as defined {@link LambdaMetafactory above}. 465 * @throws NullPointerException If any argument, or any component of {@code args}, 466 * is {@code null}. 467 * @throws IllegalArgumentException If the number or types of the components 468 * of {@code args} do not follow the above rules, or if 469 * {@code altInterfaceCount} or {@code altMethodCount} are negative 470 * integers. 471 * @throws SecurityException If a security manager is present, and it 472 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 473 * from {@code caller} to the package of {@code implementation}. 474 */ 475 public static CallSite altMetafactory(MethodHandles.Lookup caller, 476 String interfaceMethodName, 477 MethodType factoryType, 478 Object... args) 479 throws LambdaConversionException { 480 Objects.requireNonNull(caller); 481 Objects.requireNonNull(interfaceMethodName); 482 Objects.requireNonNull(factoryType); 483 Objects.requireNonNull(args); 484 int argIndex = 0; 485 MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class); 486 MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class); 487 MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class); 488 int flags = extractArg(args, argIndex++, Integer.class); 489 Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY; 490 MethodType[] altMethods = EMPTY_MT_ARRAY; 491 if ((flags & FLAG_MARKERS) != 0) { 492 int altInterfaceCount = extractArg(args, argIndex++, Integer.class); 493 if (altInterfaceCount < 0) { 494 throw new IllegalArgumentException("negative argument count"); 495 } 496 if (altInterfaceCount > 0) { 497 altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount); 498 argIndex += altInterfaceCount; 499 } 500 } 501 if ((flags & FLAG_BRIDGES) != 0) { 502 int altMethodCount = extractArg(args, argIndex++, Integer.class); 503 if (altMethodCount < 0) { 504 throw new IllegalArgumentException("negative argument count"); 505 } 506 if (altMethodCount > 0) { 507 altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount); 508 argIndex += altMethodCount; 509 } 510 } 511 if (argIndex < args.length) { 512 throw new IllegalArgumentException("too many arguments"); 513 } 514 515 boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0); 516 if (isSerializable) { 517 boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType()); 518 for (Class<?> c : altInterfaces) 519 foundSerializableSupertype |= Serializable.class.isAssignableFrom(c); 520 if (!foundSerializableSupertype) { 521 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1); 522 altInterfaces[altInterfaces.length-1] = Serializable.class; 523 } 524 } 525 526 AbstractValidatingLambdaMetafactory mf 527 = new InnerClassLambdaMetafactory(caller, 528 factoryType, 529 interfaceMethodName, 530 interfaceMethodType, 531 implementation, 532 dynamicMethodType, 533 isSerializable, 534 altInterfaces, 535 altMethods); 536 mf.validateMetafactoryArgs(); 537 return mf.buildCallSite(); 538 } 539 540 private static <T> T extractArg(Object[] args, int index, Class<T> type) { 541 if (index >= args.length) { 542 throw new IllegalArgumentException("missing argument"); 543 } 544 Object result = Objects.requireNonNull(args[index]); 545 if (!type.isInstance(result)) { 546 throw new IllegalArgumentException("argument has wrong type"); 547 } 548 return type.cast(result); 549 } 550 551 private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) { 552 @SuppressWarnings("unchecked") 553 T[] result = (T[]) Array.newInstance(type, count); 554 for (int i = 0; i < count; i++) { 555 result[i] = extractArg(args, index + i, type); 556 } 557 return result; 558 } 559 560 }