1 /*
  2  * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 
 26 package java.lang.invoke;
 27 
 28 import java.io.Serializable;
 29 import java.util.Arrays;
 30 import java.lang.reflect.Array;
 31 import java.util.Objects;
 32 
 33 /**
 34  * <p>Methods to facilitate the creation of simple "function objects" that
 35  * implement one or more interfaces by delegation to a provided {@link MethodHandle},
 36  * possibly after type adaptation and partial evaluation of arguments.  These
 37  * methods are typically used as <em>bootstrap methods</em> for {@code invokedynamic}
 38  * call sites, to support the <em>lambda expression</em> and <em>method
 39  * reference expression</em> features of the Java Programming Language.
 40  *
 41  * <p>Indirect access to the behavior specified by the provided {@code MethodHandle}
 42  * proceeds in order through three phases:
 43  * <ul>
 44  *     <li><p><em>Linkage</em> occurs when the methods in this class are invoked.
 45  *     They take as arguments an interface to be implemented (typically a
 46  *     <em>functional interface</em>, one with a single abstract method), a
 47  *     name and signature of a method from that interface to be implemented, a
 48  *     {@linkplain MethodHandleInfo direct method handle} describing the desired
 49  *     implementation behavior for that method, and possibly other additional
 50  *     metadata, and produce a {@link CallSite} whose target can be used to
 51  *     create suitable function objects.
 52  *
 53  *     <p>Linkage may involve dynamically loading a new class that implements
 54  *     the target interface, or re-using a suitable existing class.
 55  *
 56  *     <p>The {@code CallSite} can be considered a "factory" for function
 57  *     objects and so these linkage methods are referred to as
 58  *     "metafactories".</li>
 59  *
 60  *     <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is
 61  *     invoked, typically through an {@code invokedynamic} call site,
 62  *     producing a function object. This may occur many times for
 63  *     a single factory {@code CallSite}.
 64  *
 65  *     <p>If the behavior {@code MethodHandle} has additional parameters beyond
 66  *     those of the specified interface method, these are referred to as
 67  *     <em>captured parameters</em>, which must be provided as arguments to the
 68  *     {@code CallSite} target. The expected number and types of captured
 69  *     parameters are determined during linkage.
 70  *
 71  *     <p>Capture may involve allocation of a new function object, or may return
 72  *     a suitable existing function object. The identity of a function object
 73  *     produced by capture is unpredictable, and therefore identity-sensitive
 74  *     operations (such as reference equality, object locking, and {@code
 75  *     System.identityHashCode()}) may produce different results in different
 76  *     implementations, or even upon different invocations in the same
 77  *     implementation.</li>
 78  *
 79  *     <li><p><em>Invocation</em> occurs when an implemented interface method is
 80  *     invoked on a function object. This may occur many times for a single
 81  *     function object. The method referenced by the implementation
 82  *     {@code MethodHandle} is invoked, passing to it the captured arguments and
 83  *     the invocation arguments. The result of the method is returned.
 84  *     </li>
 85  * </ul>
 86  *
 87  * <p>It is sometimes useful to restrict the set of inputs or results permitted
 88  * at invocation.  For example, when the generic interface {@code Predicate<T>}
 89  * is parameterized as {@code Predicate<String>}, the input must be a
 90  * {@code String}, even though the method to implement allows any {@code Object}.
 91  * At linkage time, an additional {@link MethodType} parameter describes the
 92  * "dynamic" method type; on invocation, the arguments and eventual result
 93  * are checked against this {@code MethodType}.
 94  *
 95  * <p>This class provides two forms of linkage methods: a standard version
 96  * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)})
 97  * using an optimized protocol, and an alternate version
 98  * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}).
 99  * The alternate version is a generalization of the standard version, providing
100  * additional control over the behavior of the generated function objects via
101  * flags and additional arguments.  The alternate version adds the ability to
102  * manage the following attributes of function objects:
103  *
104  * <ul>
105  *     <li><em>Multiple methods.</em>  It is sometimes useful to implement multiple
106  *     variations of the method signature, involving argument or return type
107  *     adaptation.  This occurs when multiple distinct VM signatures for a method
108  *     are logically considered to be the same method by the language.  The
109  *     flag {@code FLAG_BRIDGES} indicates that a list of additional
110  *     {@code MethodType}s will be provided, each of which will be implemented
111  *     by the resulting function object.  These methods will share the same
112  *     name and instantiated type.</li>
113  *
114  *     <li><em>Multiple interfaces.</em>  If needed, more than one interface
115  *     can be implemented by the function object.  (These additional interfaces
116  *     are typically marker interfaces with no methods.)  The flag {@code FLAG_MARKERS}
117  *     indicates that a list of additional interfaces will be provided, each of
118  *     which should be implemented by the resulting function object.</li>
119  *
120  *     <li><em>Serializability.</em>  The generated function objects do not
121  *     generally support serialization.  If desired, {@code FLAG_SERIALIZABLE}
122  *     can be used to indicate that the function objects should be serializable.
123  *     Serializable function objects will use, as their serialized form,
124  *     instances of the class {@code SerializedLambda}, which requires additional
125  *     assistance from the capturing class (the class described by the
126  *     {@link MethodHandles.Lookup} parameter {@code caller}); see
127  *     {@link SerializedLambda} for details.</li>
128  * </ul>
129  *
130  * <p>Assume the linkage arguments are as follows:
131  * <ul>
132  *      <li>{@code factoryType} (describing the {@code CallSite} signature) has
133  *      K parameters of types (D1..Dk) and return type Rd;</li>
134  *      <li>{@code interfaceMethodType} (describing the implemented method type) has N
135  *      parameters, of types (U1..Un) and return type Ru;</li>
136  *      <li>{@code implementation} (the {@code MethodHandle} providing the
137  *      implementation) has M parameters, of types (A1..Am) and return type Ra
138  *      (if the method describes an instance method, the method type of this
139  *      method handle already includes an extra first argument corresponding to
140  *      the receiver);</li>
141  *      <li>{@code dynamicMethodType} (allowing restrictions on invocation)
142  *      has N parameters, of types (T1..Tn) and return type Rt.</li>
143  * </ul>
144  *
145  * <p>Then the following linkage invariants must hold:
146  * <ul>
147  *     <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same
148  *     arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are
149  *     both reference types and Ti is a subtype of Ui</li>
150  *     <li>Either Rt and Ru are the same type, or both are reference types and
151  *     Rt is a subtype of Ru</li>
152  *     <li>K + N = M</li>
153  *     <li>For i=1..K, Di = Ai</li>
154  *     <li>For i=1..N, Ti is adaptable to Aj, where j=i+k</li>
155  *     <li>The return type Rt is void, or the return type Ra is not void and is
156  *     adaptable to Rt</li>
157  * </ul>
158  *
159  * <p>Further, at capture time, if {@code implementation} corresponds to an instance
160  * method, and there are any capture arguments ({@code K > 0}), then the first
161  * capture argument (corresponding to the receiver) must be non-null.
162  *
163  * <p>A type Q is considered adaptable to S as follows:
164  * <table class="striped">
165  *   <caption style="display:none">adaptable types</caption>
166  *   <thead>
167  *     <tr><th scope="col">Q</th><th scope="col">S</th><th scope="col">Link-time checks</th><th scope="col">Invocation-time checks</th></tr>
168  *   </thead>
169  *   <tbody>
170  *     <tr>
171  *         <th scope="row">Primitive</th><th scope="row">Primitive</th>
172  *         <td>Q can be converted to S via a primitive widening conversion</td>
173  *         <td>None</td>
174  *     </tr>
175  *     <tr>
176  *         <th scope="row">Primitive</th><th scope="row">Reference</th>
177  *         <td>S is a supertype of the Wrapper(Q)</td>
178  *         <td>Cast from Wrapper(Q) to S</td>
179  *     </tr>
180  *     <tr>
181  *         <th scope="row">Reference</th><th scope="row">Primitive</th>
182  *         <td>for parameter types: Q is a primitive wrapper and Primitive(Q)
183  *         can be widened to S
184  *         <br>for return types: If Q is a primitive wrapper, check that
185  *         Primitive(Q) can be widened to S</td>
186  *         <td>If Q is not a primitive wrapper, cast Q to the base Wrapper(S);
187  *         for example Number for numeric types</td>
188  *     </tr>
189  *     <tr>
190  *         <th scope="row">Reference</th><th scope="row">Reference</th>
191  *         <td>for parameter types: S is a supertype of Q
192  *         <br>for return types: none</td>
193  *         <td>Cast from Q to S</td>
194  *     </tr>
195  *   </tbody>
196  * </table>
197  *
198  * @apiNote These linkage methods are designed to support the evaluation
199  * of <em>lambda expressions</em> and <em>method references</em> in the Java
200  * Language.  For every lambda expressions or method reference in the source code,
201  * there is a target type which is a functional interface.  Evaluating a lambda
202  * expression produces an object of its target type. The recommended mechanism
203  * for evaluating lambda expressions is to desugar the lambda body to a method,
204  * invoke an invokedynamic call site whose static argument list describes the
205  * sole method of the functional interface and the desugared implementation
206  * method, and returns an object (the lambda object) that implements the target
207  * type. (For method references, the implementation method is simply the
208  * referenced method; no desugaring is needed.)
209  *
210  * <p>The argument list of the implementation method and the argument list of
211  * the interface method(s) may differ in several ways.  The implementation
212  * methods may have additional arguments to accommodate arguments captured by
213  * the lambda expression; there may also be differences resulting from permitted
214  * adaptations of arguments, such as casting, boxing, unboxing, and primitive
215  * widening. (Varargs adaptations are not handled by the metafactories; these are
216  * expected to be handled by the caller.)
217  *
218  * <p>Invokedynamic call sites have two argument lists: a static argument list
219  * and a dynamic argument list.  The static argument list is stored in the
220  * constant pool; the dynamic argument is pushed on the operand stack at capture
221  * time.  The bootstrap method has access to the entire static argument list
222  * (which in this case, includes information describing the implementation method,
223  * the target interface, and the target interface method(s)), as well as a
224  * method signature describing the number and static types (but not the values)
225  * of the dynamic arguments and the static return type of the invokedynamic site.
226  *
227  * <p>The implementation method is described with a direct method handle
228  * referencing a method or constructor. In theory, any method handle could be
229  * used, but this is not compatible with some implementation techniques and
230  * would complicate the work implementations must do.
231  *
232  * @since 1.8
233  */
234 public final class LambdaMetafactory {
235 
236     private LambdaMetafactory() {}
237 
238     /** Flag for {@link #altMetafactory} indicating the lambda object
239      * must be serializable */
240     public static final int FLAG_SERIALIZABLE = 1 << 0;
241 
242     /**
243      * Flag for {@link #altMetafactory} indicating the lambda object implements
244      * other interfaces besides {@code Serializable}
245      */
246     public static final int FLAG_MARKERS = 1 << 1;
247 
248     /**
249      * Flag for alternate metafactories indicating the lambda object requires
250      * additional methods that invoke the {@code implementation}
251      */
252     public static final int FLAG_BRIDGES = 1 << 2;
253 
254     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
255     private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0];
256 
257     // LambdaMetafactory bootstrap methods are startup sensitive, and may be
258     // special cased in java.lang.invoke.BootstrapMethodInvoker to ensure
259     // methods are invoked with exact type information to avoid generating
260     // code for runtime checks. Take care any changes or additions here are
261     // reflected there as appropriate.
262 
263     /**
264      * Facilitates the creation of simple "function objects" that implement one
265      * or more interfaces by delegation to a provided {@link MethodHandle},
266      * after appropriate type adaptation and partial evaluation of arguments.
267      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
268      * call sites, to support the <em>lambda expression</em> and <em>method
269      * reference expression</em> features of the Java Programming Language.
270      *
271      * <p>This is the standard, streamlined metafactory; additional flexibility
272      * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}.
273      * A general description of the behavior of this method is provided
274      * {@link LambdaMetafactory above}.
275      *
276      * <p>When the target of the {@code CallSite} returned from this method is
277      * invoked, the resulting function objects are instances of a class which
278      * implements the interface named by the return type of {@code factoryType},
279      * declares a method with the name given by {@code interfaceMethodName} and the
280      * signature given by {@code interfaceMethodType}.  It may also override additional
281      * methods from {@code Object}.
282      *
283      * @param caller Represents a lookup context with the accessibility
284      *               privileges of the caller.  Specifically, the lookup context
285      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
286      *               full privilege access}.
287      *               When used with {@code invokedynamic}, this is stacked
288      *               automatically by the VM.
289      * @param interfaceMethodName The name of the method to implement.  When used with
290      *                            {@code invokedynamic}, this is provided by the
291      *                            {@code NameAndType} of the {@code InvokeDynamic}
292      *                            structure and is stacked automatically by the VM.
293      * @param factoryType The expected signature of the {@code CallSite}.  The
294      *                    parameter types represent the types of capture variables;
295      *                    the return type is the interface to implement.   When
296      *                    used with {@code invokedynamic}, this is provided by
297      *                    the {@code NameAndType} of the {@code InvokeDynamic}
298      *                    structure and is stacked automatically by the VM.
299      * @param interfaceMethodType Signature and return type of method to be
300      *                            implemented by the function object.
301      * @param implementation A direct method handle describing the implementation
302      *                       method which should be called (with suitable adaptation
303      *                       of argument types and return types, and with captured
304      *                       arguments prepended to the invocation arguments) at
305      *                       invocation time.
306      * @param dynamicMethodType The signature and return type that should
307      *                          be enforced dynamically at invocation time.
308      *                          In simple use cases this is the same as
309      *                          {@code interfaceMethodType}.
310      * @return a CallSite whose target can be used to perform capture, generating
311      *         instances of the interface named by {@code factoryType}
312      * @throws LambdaConversionException If {@code caller} does not have full privilege
313      *         access, or if {@code interfaceMethodName} is not a valid JVM
314      *         method name, or if the return type of {@code factoryType} is not
315      *         an interface, or if the return type of {@code factoryType} is a value
316      *         interface, or if {@code implementation} is not a direct method
317      *         handle referencing a method or constructor, or if the linkage
318      *         invariants are violated, as defined {@link LambdaMetafactory above}.
319      * @throws NullPointerException If any argument is {@code null}.
320      * @throws SecurityException If a security manager is present, and it
321      *         <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
322      *         from {@code caller} to the package of {@code implementation}.
323      */
324     public static CallSite metafactory(MethodHandles.Lookup caller,
325                                        String interfaceMethodName,
326                                        MethodType factoryType,
327                                        MethodType interfaceMethodType,
328                                        MethodHandle implementation,
329                                        MethodType dynamicMethodType)
330             throws LambdaConversionException {
331         AbstractValidatingLambdaMetafactory mf;
332         mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller),
333                                              Objects.requireNonNull(factoryType),
334                                              Objects.requireNonNull(interfaceMethodName),
335                                              Objects.requireNonNull(interfaceMethodType),
336                                              Objects.requireNonNull(implementation),
337                                              Objects.requireNonNull(dynamicMethodType),
338                                              false,
339                                              EMPTY_CLASS_ARRAY,
340                                              EMPTY_MT_ARRAY);
341         mf.validateMetafactoryArgs();
342         return mf.buildCallSite();
343     }
344 
345     /**
346      * Facilitates the creation of simple "function objects" that implement one
347      * or more interfaces by delegation to a provided {@link MethodHandle},
348      * after appropriate type adaptation and partial evaluation of arguments.
349      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
350      * call sites, to support the <em>lambda expression</em> and <em>method
351      * reference expression</em> features of the Java Programming Language.
352      *
353      * <p>This is the general, more flexible metafactory; a streamlined version
354      * is provided by {@link #metafactory(java.lang.invoke.MethodHandles.Lookup,
355      * String, MethodType, MethodType, MethodHandle, MethodType)}.
356      * A general description of the behavior of this method is provided
357      * {@link LambdaMetafactory above}.
358      *
359      * <p>The argument list for this method includes three fixed parameters,
360      * corresponding to the parameters automatically stacked by the VM for the
361      * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]}
362      * parameter that contains additional parameters.  The declared argument
363      * list for this method is:
364      *
365      * <pre>{@code
366      *  CallSite altMetafactory(MethodHandles.Lookup caller,
367      *                          String interfaceMethodName,
368      *                          MethodType factoryType,
369      *                          Object... args)
370      * }</pre>
371      *
372      * <p>but it behaves as if the argument list is as follows:
373      *
374      * <pre>{@code
375      *  CallSite altMetafactory(MethodHandles.Lookup caller,
376      *                          String interfaceMethodName,
377      *                          MethodType factoryType,
378      *                          MethodType interfaceMethodType,
379      *                          MethodHandle implementation,
380      *                          MethodType dynamicMethodType,
381      *                          int flags,
382      *                          int altInterfaceCount,        // IF flags has MARKERS set
383      *                          Class... altInterfaces,       // IF flags has MARKERS set
384      *                          int altMethodCount,           // IF flags has BRIDGES set
385      *                          MethodType... altMethods      // IF flags has BRIDGES set
386      *                          )
387      * }</pre>
388      *
389      * <p>Arguments that appear in the argument list for
390      * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}
391      * have the same specification as in that method.  The additional arguments
392      * are interpreted as follows:
393      * <ul>
394      *     <li>{@code flags} indicates additional options; this is a bitwise
395      *     OR of desired flags.  Defined flags are {@link #FLAG_BRIDGES},
396      *     {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li>
397      *     <li>{@code altInterfaceCount} is the number of additional interfaces
398      *     the function object should implement, and is present if and only if the
399      *     {@code FLAG_MARKERS} flag is set.</li>
400      *     <li>{@code altInterfaces} is a variable-length list of additional
401      *     interfaces to implement, whose length equals {@code altInterfaceCount},
402      *     and is present if and only if the {@code FLAG_MARKERS} flag is set.</li>
403      *     <li>{@code altMethodCount} is the number of additional method signatures
404      *     the function object should implement, and is present if and only if
405      *     the {@code FLAG_BRIDGES} flag is set.</li>
406      *     <li>{@code altMethods} is a variable-length list of additional
407      *     methods signatures to implement, whose length equals {@code altMethodCount},
408      *     and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li>
409      * </ul>
410      *
411      * <p>Each class named by {@code altInterfaces} is subject to the same
412      * restrictions as {@code Rd}, the return type of {@code factoryType},
413      * as described {@link LambdaMetafactory above}.  Each {@code MethodType}
414      * named by {@code altMethods} is subject to the same restrictions as
415      * {@code interfaceMethodType}, as described {@link LambdaMetafactory above}.
416      *
417      * <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects
418      * will implement {@code Serializable}, and will have a {@code writeReplace}
419      * method that returns an appropriate {@link SerializedLambda}.  The
420      * {@code caller} class must have an appropriate {@code $deserializeLambda$}
421      * method, as described in {@link SerializedLambda}.
422      *
423      * <p>When the target of the {@code CallSite} returned from this method is
424      * invoked, the resulting function objects are instances of a class with
425      * the following properties:
426      * <ul>
427      *     <li>The class implements the interface named by the return type
428      *     of {@code factoryType} and any interfaces named by {@code altInterfaces}</li>
429      *     <li>The class declares methods with the name given by {@code interfaceMethodName},
430      *     and the signature given by {@code interfaceMethodType} and additional signatures
431      *     given by {@code altMethods}</li>
432      *     <li>The class may override methods from {@code Object}, and may
433      *     implement methods related to serialization.</li>
434      * </ul>
435      *
436      * @param caller Represents a lookup context with the accessibility
437      *               privileges of the caller.  Specifically, the lookup context
438      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
439      *               full privilege access}.
440      *               When used with {@code invokedynamic}, this is stacked
441      *               automatically by the VM.
442      * @param interfaceMethodName The name of the method to implement.  When used with
443      *                            {@code invokedynamic}, this is provided by the
444      *                            {@code NameAndType} of the {@code InvokeDynamic}
445      *                            structure and is stacked automatically by the VM.
446      * @param factoryType The expected signature of the {@code CallSite}.  The
447      *                    parameter types represent the types of capture variables;
448      *                    the return type is the interface to implement.   When
449      *                    used with {@code invokedynamic}, this is provided by
450      *                    the {@code NameAndType} of the {@code InvokeDynamic}
451      *                    structure and is stacked automatically by the VM.
452      * @param  args An array of {@code Object} containing the required
453      *              arguments {@code interfaceMethodType}, {@code implementation},
454      *              {@code dynamicMethodType}, {@code flags}, and any
455      *              optional arguments, as described above
456      * @return a CallSite whose target can be used to perform capture, generating
457      *         instances of the interface named by {@code factoryType}
458      * @throws LambdaConversionException If {@code caller} does not have full privilege
459      *         access, or if {@code interfaceMethodName} is not a valid JVM
460      *         method name, or if the return type of {@code factoryType} is not
461      *         an interface, or if any of {@code altInterfaces} is not an
462      *         interface, or if {@code implementation} is not a direct method
463      *         handle referencing a method or constructor, or if the linkage
464      *         invariants are violated, as defined {@link LambdaMetafactory above}.
465      * @throws NullPointerException If any argument, or any component of {@code args},
466      *         is {@code null}.
467      * @throws IllegalArgumentException If the number or types of the components
468      *         of {@code args} do not follow the above rules, or if
469      *         {@code altInterfaceCount} or {@code altMethodCount} are negative
470      *         integers.
471      * @throws SecurityException If a security manager is present, and it
472      *         <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
473      *         from {@code caller} to the package of {@code implementation}.
474      */
475     public static CallSite altMetafactory(MethodHandles.Lookup caller,
476                                           String interfaceMethodName,
477                                           MethodType factoryType,
478                                           Object... args)
479             throws LambdaConversionException {
480         Objects.requireNonNull(caller);
481         Objects.requireNonNull(interfaceMethodName);
482         Objects.requireNonNull(factoryType);
483         Objects.requireNonNull(args);
484         int argIndex = 0;
485         MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class);
486         MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class);
487         MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class);
488         int flags = extractArg(args, argIndex++, Integer.class);
489         Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY;
490         MethodType[] altMethods = EMPTY_MT_ARRAY;
491         if ((flags & FLAG_MARKERS) != 0) {
492             int altInterfaceCount = extractArg(args, argIndex++, Integer.class);
493             if (altInterfaceCount < 0) {
494                 throw new IllegalArgumentException("negative argument count");
495             }
496             if (altInterfaceCount > 0) {
497                 altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount);
498                 argIndex += altInterfaceCount;
499             }
500         }
501         if ((flags & FLAG_BRIDGES) != 0) {
502             int altMethodCount = extractArg(args, argIndex++, Integer.class);
503             if (altMethodCount < 0) {
504                 throw new IllegalArgumentException("negative argument count");
505             }
506             if (altMethodCount > 0) {
507                 altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount);
508                 argIndex += altMethodCount;
509             }
510         }
511         if (argIndex < args.length) {
512             throw new IllegalArgumentException("too many arguments");
513         }
514 
515         boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0);
516         if (isSerializable) {
517             boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType());
518             for (Class<?> c : altInterfaces)
519                 foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
520             if (!foundSerializableSupertype) {
521                 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
522                 altInterfaces[altInterfaces.length-1] = Serializable.class;
523             }
524         }
525 
526         AbstractValidatingLambdaMetafactory mf
527                 = new InnerClassLambdaMetafactory(caller,
528                                                   factoryType,
529                                                   interfaceMethodName,
530                                                   interfaceMethodType,
531                                                   implementation,
532                                                   dynamicMethodType,
533                                                   isSerializable,
534                                                   altInterfaces,
535                                                   altMethods);
536         mf.validateMetafactoryArgs();
537         return mf.buildCallSite();
538     }
539 
540     private static <T> T extractArg(Object[] args, int index, Class<T> type) {
541         if (index >= args.length) {
542             throw new IllegalArgumentException("missing argument");
543         }
544         Object result = Objects.requireNonNull(args[index]);
545         if (!type.isInstance(result)) {
546             throw new IllegalArgumentException("argument has wrong type");
547         }
548         return type.cast(result);
549     }
550 
551     private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) {
552         @SuppressWarnings("unchecked")
553         T[] result = (T[]) Array.newInstance(type, count);
554         for (int i = 0; i < count; i++) {
555             result[i] = extractArg(args, index + i, type);
556         }
557         return result;
558     }
559 
560 }