1 /*
   2  * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangInvokeAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.constant.MethodTypeDescImpl;
  31 import jdk.internal.constant.ReferenceClassDescImpl;
  32 import jdk.internal.foreign.abi.NativeEntryPoint;
  33 import jdk.internal.reflect.CallerSensitive;
  34 import jdk.internal.reflect.Reflection;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import jdk.internal.vm.annotation.Hidden;
  37 import jdk.internal.vm.annotation.Stable;
  38 import sun.invoke.empty.Empty;
  39 import sun.invoke.util.ValueConversions;
  40 import sun.invoke.util.VerifyType;
  41 import sun.invoke.util.Wrapper;
  42 
  43 import java.lang.classfile.ClassFile;
  44 import java.lang.constant.ClassDesc;
  45 import java.lang.invoke.MethodHandles.Lookup;
  46 import java.lang.reflect.Array;
  47 import java.lang.reflect.Constructor;
  48 import java.lang.reflect.Field;
  49 import java.nio.ByteOrder;
  50 import java.util.Arrays;
  51 import java.util.Collections;
  52 import java.util.HashMap;
  53 import java.util.Iterator;
  54 import java.util.List;
  55 import java.util.Map;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.function.Function;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.classfile.ClassFile.*;
  63 import static java.lang.constant.ConstantDescs.*;
  64 import static java.lang.invoke.LambdaForm.*;
  65 import static java.lang.invoke.MethodHandleNatives.Constants.MN_CALLER_SENSITIVE;
  66 import static java.lang.invoke.MethodHandleNatives.Constants.MN_HIDDEN_MEMBER;
  67 import static java.lang.invoke.MethodHandleStatics.*;
  68 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  69 import static java.lang.invoke.MethodHandles.Lookup.ClassOption.NESTMATE;
  70 
  71 /**
  72  * Trusted implementation code for MethodHandle.
  73  * @author jrose
  74  */
  75 /*non-public*/
  76 abstract class MethodHandleImpl {
  77 
  78     /// Factory methods to create method handles:
  79 
  80     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  81         if (arrayClass == Object[].class) {
  82             return ArrayAccess.objectAccessor(access);
  83         }
  84         if (!arrayClass.isArray())
  85             throw newIllegalArgumentException("not an array: "+arrayClass);
  86         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  87         int cacheIndex = ArrayAccess.cacheIndex(access);
  88         MethodHandle mh = cache[cacheIndex];
  89         if (mh != null)  return mh;
  90         mh = ArrayAccessor.getAccessor(arrayClass, access);
  91         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  92         if (mh.type() != correctType) {
  93             assert(mh.type().parameterType(0) == Object[].class);
  94             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  95             /* if access == GET */ assert(access != ArrayAccess.GET ||
  96                     (mh.type().returnType() == Object.class &&
  97                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
  98             // safe to view non-strictly, because element type follows from array type
  99             mh = mh.viewAsType(correctType, false);
 100         }
 101         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
 102         // Atomically update accessor cache.
 103         synchronized(cache) {
 104             if (cache[cacheIndex] == null) {
 105                 cache[cacheIndex] = mh;
 106             } else {
 107                 // Throw away newly constructed accessor and use cached version.
 108                 mh = cache[cacheIndex];
 109             }
 110         }
 111         return mh;
 112     }
 113 
 114     enum ArrayAccess {
 115         GET, SET, LENGTH;
 116 
 117         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 118         // final fields.
 119 
 120         static String opName(ArrayAccess a) {
 121             return switch (a) {
 122                 case GET    -> "getElement";
 123                 case SET    -> "setElement";
 124                 case LENGTH -> "length";
 125                 default -> throw unmatchedArrayAccess(a);
 126             };
 127         }
 128 
 129         static MethodHandle objectAccessor(ArrayAccess a) {
 130             return switch (a) {
 131                 case GET    -> ArrayAccessor.OBJECT_ARRAY_GETTER;
 132                 case SET    -> ArrayAccessor.OBJECT_ARRAY_SETTER;
 133                 case LENGTH -> ArrayAccessor.OBJECT_ARRAY_LENGTH;
 134                 default -> throw unmatchedArrayAccess(a);
 135             };
 136         }
 137 
 138         static int cacheIndex(ArrayAccess a) {
 139             return switch (a) {
 140                 case GET    -> ArrayAccessor.GETTER_INDEX;
 141                 case SET    -> ArrayAccessor.SETTER_INDEX;
 142                 case LENGTH -> ArrayAccessor.LENGTH_INDEX;
 143                 default -> throw unmatchedArrayAccess(a);
 144             };
 145         }
 146 
 147         static Intrinsic intrinsic(ArrayAccess a) {
 148             return switch (a) {
 149                 case GET    -> Intrinsic.ARRAY_LOAD;
 150                 case SET    -> Intrinsic.ARRAY_STORE;
 151                 case LENGTH -> Intrinsic.ARRAY_LENGTH;
 152                 default -> throw unmatchedArrayAccess(a);
 153             };
 154         }
 155     }
 156 
 157     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 158         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 159     }
 160 
 161     static final class ArrayAccessor {
 162         /// Support for array element and length access
 163         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 164         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 165                 = new ClassValue<MethodHandle[]>() {
 166                     @Override
 167                     protected MethodHandle[] computeValue(Class<?> type) {
 168                         return new MethodHandle[INDEX_LIMIT];
 169                     }
 170                 };
 171         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 172         static {
 173             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 174             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 175             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 176             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 177 
 178             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 179             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 180             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 181         }
 182 
 183         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 184         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 185         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 186         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 187         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 188         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 189         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 190         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 191         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 192 
 193         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 194         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 195         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 196         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 197         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 198         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 199         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 200         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 201         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 202 
 203         static int     lengthI(int[]     a)                       { return a.length; }
 204         static int     lengthJ(long[]    a)                       { return a.length; }
 205         static int     lengthF(float[]   a)                       { return a.length; }
 206         static int     lengthD(double[]  a)                       { return a.length; }
 207         static int     lengthZ(boolean[] a)                       { return a.length; }
 208         static int     lengthB(byte[]    a)                       { return a.length; }
 209         static int     lengthS(short[]   a)                       { return a.length; }
 210         static int     lengthC(char[]    a)                       { return a.length; }
 211         static int     lengthL(Object[]  a)                       { return a.length; }
 212 
 213         static String name(Class<?> arrayClass, ArrayAccess access) {
 214             Class<?> elemClass = arrayClass.getComponentType();
 215             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 216             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 217         }
 218         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 219             Class<?> elemClass = arrayClass.getComponentType();
 220             Class<?> arrayArgClass = arrayClass;
 221             if (!elemClass.isPrimitive()) {
 222                 arrayArgClass = Object[].class;
 223                 elemClass = Object.class;
 224             }
 225             return switch (access) {
 226                 case GET    -> MethodType.methodType(elemClass, arrayArgClass, int.class);
 227                 case SET    -> MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 228                 case LENGTH -> MethodType.methodType(int.class, arrayArgClass);
 229                 default -> throw unmatchedArrayAccess(access);
 230             };
 231         }
 232         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 233             Class<?> elemClass = arrayClass.getComponentType();
 234             return switch (access) {
 235                 case GET    -> MethodType.methodType(elemClass, arrayClass, int.class);
 236                 case SET    -> MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 237                 case LENGTH -> MethodType.methodType(int.class, arrayClass);
 238                 default -> throw unmatchedArrayAccess(access);
 239             };
 240         }
 241         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 242             String     name = name(arrayClass, access);
 243             MethodType type = type(arrayClass, access);
 244             try {
 245                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 246             } catch (ReflectiveOperationException ex) {
 247                 throw uncaughtException(ex);
 248             }
 249         }
 250     }
 251 
 252     /**
 253      * Create a JVM-level adapter method handle to conform the given method
 254      * handle to the similar newType, using only pairwise argument conversions.
 255      * For each argument, convert incoming argument to the exact type needed.
 256      * The argument conversions allowed are casting, boxing and unboxing,
 257      * integral widening or narrowing, and floating point widening or narrowing.
 258      * @param srcType required call type
 259      * @param target original method handle
 260      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 261      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 262      * @return an adapter to the original handle with the desired new type,
 263      *          or the original target if the types are already identical
 264      *          or null if the adaptation cannot be made
 265      */
 266     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 267                                             boolean strict, boolean monobox) {
 268         MethodType dstType = target.type();
 269         if (srcType == dstType)
 270             return target;
 271         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 272     }
 273 
 274     private static int countNonNull(Object[] array) {
 275         int count = 0;
 276         if (array != null) {
 277             for (Object x : array) {
 278                 if (x != null) ++count;
 279             }
 280         }
 281         return count;
 282     }
 283 
 284     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 285                                                     boolean strict, boolean monobox) {
 286         // In method types arguments start at index 0, while the LF
 287         // editor have the MH receiver at position 0 - adjust appropriately.
 288         final int MH_RECEIVER_OFFSET = 1;
 289         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 290         int convCount = countNonNull(convSpecs);
 291         if (convCount == 0)
 292             return target.viewAsType(srcType, strict);
 293         MethodType basicSrcType = srcType.basicType();
 294         MethodType midType = target.type().basicType();
 295         BoundMethodHandle mh = target.rebind();
 296 
 297         // Match each unique conversion to the positions at which it is to be applied
 298         HashMap<Object, int[]> convSpecMap = HashMap.newHashMap(convCount);
 299         for (int i = 0; i < convSpecs.length - MH_RECEIVER_OFFSET; i++) {
 300             Object convSpec = convSpecs[i];
 301             if (convSpec == null) continue;
 302             int[] positions = convSpecMap.get(convSpec);
 303             if (positions == null) {
 304                 positions = new int[] { i + MH_RECEIVER_OFFSET };
 305             } else {
 306                 positions = Arrays.copyOf(positions, positions.length + 1);
 307                 positions[positions.length - 1] = i + MH_RECEIVER_OFFSET;
 308             }
 309             convSpecMap.put(convSpec, positions);
 310         }
 311         for (var entry : convSpecMap.entrySet()) {
 312             Object convSpec = entry.getKey();
 313 
 314             MethodHandle fn;
 315             if (convSpec instanceof Class) {
 316                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 317             } else {
 318                 fn = (MethodHandle) convSpec;
 319             }
 320             int[] positions = entry.getValue();
 321             Class<?> newType = basicSrcType.parameterType(positions[0] - MH_RECEIVER_OFFSET);
 322             BasicType newBasicType = BasicType.basicType(newType);
 323             convCount -= positions.length;
 324             if (convCount == 0) {
 325                 midType = srcType;
 326             } else {
 327                 Class<?>[] ptypes = midType.ptypes().clone();
 328                 for (int pos : positions) {
 329                     ptypes[pos - 1] = newType;
 330                 }
 331                 midType = MethodType.methodType(midType.rtype(), ptypes, true);
 332             }
 333             LambdaForm form2;
 334             if (positions.length > 1) {
 335                 form2 = mh.editor().filterRepeatedArgumentForm(newBasicType, positions);
 336             } else {
 337                 form2 = mh.editor().filterArgumentForm(positions[0], newBasicType);
 338             }
 339             mh = mh.copyWithExtendL(midType, form2, fn);
 340         }
 341         Object convSpec = convSpecs[convSpecs.length - 1];
 342         if (convSpec != null) {
 343             MethodHandle fn;
 344             if (convSpec instanceof Class) {
 345                 if (convSpec == void.class)
 346                     fn = null;
 347                 else
 348                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 349             } else {
 350                 fn = (MethodHandle) convSpec;
 351             }
 352             Class<?> newType = basicSrcType.returnType();
 353             assert(--convCount == 0);
 354             midType = srcType;
 355             if (fn != null) {
 356                 mh = mh.rebind();  // rebind if too complex
 357                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 358                 mh = mh.copyWithExtendL(midType, form2, fn);
 359             } else {
 360                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 361                 mh = mh.copyWith(midType, form2);
 362             }
 363         }
 364         assert(convCount == 0);
 365         assert(mh.type().equals(srcType));
 366         return mh;
 367     }
 368 
 369     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 370                                             boolean strict, boolean monobox) {
 371         final int INARG_COUNT = srcType.parameterCount();
 372         Object[] convSpecs = null;
 373         for (int i = 0; i <= INARG_COUNT; i++) {
 374             boolean isRet = (i == INARG_COUNT);
 375             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 376             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 377             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 378                 if (convSpecs == null) {
 379                     convSpecs = new Object[INARG_COUNT + 1];
 380                 }
 381                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 382             }
 383         }
 384         return convSpecs;
 385     }
 386     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 387                                             boolean strict) {
 388         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 389     }
 390 
 391     /**
 392      * Find a conversion function from the given source to the given destination.
 393      * This conversion function will be used as a LF NamedFunction.
 394      * Return a Class object if a simple cast is needed.
 395      * Return void.class if void is involved.
 396      */
 397     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 398         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 399         if (dst == void.class)
 400             return dst;
 401         MethodHandle fn;
 402         if (src.isPrimitive()) {
 403             if (src == void.class) {
 404                 return void.class;  // caller must recognize this specially
 405             } else if (dst.isPrimitive()) {
 406                 // Examples: int->byte, byte->int, boolean->int (!strict)
 407                 fn = ValueConversions.convertPrimitive(src, dst);
 408             } else {
 409                 // Examples: int->Integer, boolean->Object, float->Number
 410                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 411                 fn = ValueConversions.boxExact(wsrc);
 412                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 413                 assert(fn.type().returnType() == wsrc.wrapperType());
 414                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 415                     // Corner case, such as int->Long, which will probably fail.
 416                     MethodType mt = MethodType.methodType(dst, src);
 417                     if (strict)
 418                         fn = fn.asType(mt);
 419                     else
 420                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 421                 }
 422             }
 423         } else if (dst.isPrimitive()) {
 424             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 425             if (monobox || src == wdst.wrapperType()) {
 426                 // Use a strongly-typed unboxer, if possible.
 427                 fn = ValueConversions.unboxExact(wdst, strict);
 428             } else {
 429                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 430                 // must include additional conversions
 431                 // src must be examined at runtime, to detect Byte, Character, etc.
 432                 fn = (strict
 433                         ? ValueConversions.unboxWiden(wdst)
 434                         : ValueConversions.unboxCast(wdst));
 435             }
 436         } else {
 437             // Simple reference conversion.
 438             // Note:  Do not check for a class hierarchy relation
 439             // between src and dst.  In all cases a 'null' argument
 440             // will pass the cast conversion.
 441             return dst;
 442         }
 443         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 444         return fn;
 445     }
 446 
 447     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 448         MethodType type = target.type();
 449         int last = type.parameterCount() - 1;
 450         if (type.parameterType(last) != arrayType)
 451             target = target.asType(type.changeParameterType(last, arrayType));
 452         target = target.asFixedArity();  // make sure this attribute is turned off
 453         return new AsVarargsCollector(target, arrayType);
 454     }
 455 
 456     static final class AsVarargsCollector extends DelegatingMethodHandle {
 457         private final MethodHandle target;
 458         private final Class<?> arrayType;
 459         private MethodHandle asCollectorCache;
 460 
 461         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 462             this(target.type(), target, arrayType);
 463         }
 464         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 465             super(type, target);
 466             this.target = target;
 467             this.arrayType = arrayType;
 468         }
 469 
 470         @Override
 471         public boolean isVarargsCollector() {
 472             return true;
 473         }
 474 
 475         @Override
 476         protected MethodHandle getTarget() {
 477             return target;
 478         }
 479 
 480         @Override
 481         public MethodHandle asFixedArity() {
 482             return target;
 483         }
 484 
 485         @Override
 486         MethodHandle setVarargs(MemberName member) {
 487             if (member.isVarargs())  return this;
 488             return asFixedArity();
 489         }
 490 
 491         @Override
 492         public MethodHandle withVarargs(boolean makeVarargs) {
 493             if (makeVarargs)  return this;
 494             return asFixedArity();
 495         }
 496 
 497         @Override
 498         public MethodHandle asTypeUncached(MethodType newType) {
 499             MethodType type = this.type();
 500             int collectArg = type.parameterCount() - 1;
 501             int newArity = newType.parameterCount();
 502             if (newArity == collectArg+1 &&
 503                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 504                 // if arity and trailing parameter are compatible, do normal thing
 505                 return asFixedArity().asType(newType);
 506             }
 507             // check cache
 508             MethodHandle acc = asCollectorCache;
 509             if (acc != null && acc.type().parameterCount() == newArity)
 510                 return acc.asType(newType);
 511             // build and cache a collector
 512             int arrayLength = newArity - collectArg;
 513             MethodHandle collector;
 514             try {
 515                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 516                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 517             } catch (IllegalArgumentException ex) {
 518                 throw new WrongMethodTypeException("cannot build collector", ex);
 519             }
 520             asCollectorCache = collector;
 521             return collector.asType(newType);
 522         }
 523 
 524         @Override
 525         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 526             super.viewAsTypeChecks(newType, true);
 527             if (strict) return true;
 528             // extra assertion for non-strict checks:
 529             assert (type().lastParameterType().getComponentType()
 530                     .isAssignableFrom(
 531                             newType.lastParameterType().getComponentType()))
 532                     : Arrays.asList(this, newType);
 533             return true;
 534         }
 535 
 536         @Override
 537         public Object invokeWithArguments(Object... arguments) throws Throwable {
 538             MethodType type = this.type();
 539             int argc;
 540             final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
 541             if (arguments == null
 542                     || (argc = arguments.length) <= MAX_SAFE
 543                     || argc < type.parameterCount()) {
 544                 return super.invokeWithArguments(arguments);
 545             }
 546 
 547             // a jumbo invocation requires more explicit reboxing of the trailing arguments
 548             int uncollected = type.parameterCount() - 1;
 549             Class<?> elemType = arrayType.getComponentType();
 550             int collected = argc - uncollected;
 551             Object collArgs = (elemType == Object.class)
 552                 ? new Object[collected] : Array.newInstance(elemType, collected);
 553             if (!elemType.isPrimitive()) {
 554                 // simple cast:  just do some casting
 555                 try {
 556                     System.arraycopy(arguments, uncollected, collArgs, 0, collected);
 557                 } catch (ArrayStoreException ex) {
 558                     return super.invokeWithArguments(arguments);
 559                 }
 560             } else {
 561                 // corner case of flat array requires reflection (or specialized copy loop)
 562                 MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 563                 try {
 564                     for (int i = 0; i < collected; i++) {
 565                         arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
 566                     }
 567                 } catch (WrongMethodTypeException|ClassCastException ex) {
 568                     return super.invokeWithArguments(arguments);
 569                 }
 570             }
 571 
 572             // chop the jumbo list down to size and call in non-varargs mode
 573             Object[] newArgs = new Object[uncollected + 1];
 574             System.arraycopy(arguments, 0, newArgs, 0, uncollected);
 575             newArgs[uncollected] = collArgs;
 576             return asFixedArity().invokeWithArguments(newArgs);
 577         }
 578     }
 579 
 580     static void checkSpreadArgument(Object av, int n) {
 581         if (av == null && n == 0) {
 582             return;
 583         } else if (av == null) {
 584             throw new NullPointerException("null array reference");
 585         } else if (av instanceof Object[] array) {
 586             int len = array.length;
 587             if (len == n)  return;
 588         } else {
 589             int len = java.lang.reflect.Array.getLength(av);
 590             if (len == n)  return;
 591         }
 592         // fall through to error:
 593         throw newIllegalArgumentException("array is not of length "+n);
 594     }
 595 
 596     @Hidden
 597     static MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 598         if (testResult) {
 599             return target;
 600         } else {
 601             return fallback;
 602         }
 603     }
 604 
 605     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 606     @Hidden
 607     @jdk.internal.vm.annotation.IntrinsicCandidate
 608     static boolean profileBoolean(boolean result, int[] counters) {
 609         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 610         int idx = result ? 1 : 0;
 611         try {
 612             counters[idx] = Math.addExact(counters[idx], 1);
 613         } catch (ArithmeticException e) {
 614             // Avoid continuous overflow by halving the problematic count.
 615             counters[idx] = counters[idx] / 2;
 616         }
 617         return result;
 618     }
 619 
 620     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 621     @Hidden
 622     @jdk.internal.vm.annotation.IntrinsicCandidate
 623     static boolean isCompileConstant(Object obj) {
 624         return false;
 625     }
 626 
 627     static MethodHandle makeGuardWithTest(MethodHandle test,
 628                                    MethodHandle target,
 629                                    MethodHandle fallback) {
 630         MethodType type = target.type();
 631         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 632         MethodType basicType = type.basicType();
 633         LambdaForm form = makeGuardWithTestForm(basicType);
 634         BoundMethodHandle mh;
 635         try {
 636             if (PROFILE_GWT) {
 637                 int[] counts = new int[2];
 638                 mh = (BoundMethodHandle)
 639                         BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
 640                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 641             } else {
 642                 mh = (BoundMethodHandle)
 643                         BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
 644                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 645             }
 646         } catch (Throwable ex) {
 647             throw uncaughtException(ex);
 648         }
 649         assert(mh.type() == type);
 650         return mh;
 651     }
 652 
 653 
 654     static MethodHandle profile(MethodHandle target) {
 655         if (DONT_INLINE_THRESHOLD >= 0) {
 656             return makeBlockInliningWrapper(target);
 657         } else {
 658             return target;
 659         }
 660     }
 661 
 662     /**
 663      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 664      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 665      */
 666     static MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 667         LambdaForm lform;
 668         if (DONT_INLINE_THRESHOLD > 0) {
 669             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 670         } else {
 671             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 672         }
 673         return new CountingWrapper(target, lform,
 674                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 675                                    DONT_INLINE_THRESHOLD);
 676     }
 677 
 678     private static final class Makers {
 679         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 680         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 681             @Override
 682             public LambdaForm apply(MethodHandle target) {
 683                 return DelegatingMethodHandle.makeReinvokerForm(target,
 684                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 685                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 686             }
 687         };
 688 
 689         /** Constructs simple reinvoker lambda form for a particular method handle */
 690         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 691             @Override
 692             public LambdaForm apply(MethodHandle target) {
 693                 return DelegatingMethodHandle.makeReinvokerForm(target,
 694                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 695             }
 696         };
 697 
 698         /** Maker of type-polymorphic varargs */
 699         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 700             @Override
 701             protected MethodHandle[] computeValue(Class<?> type) {
 702                 return new MethodHandle[MAX_JVM_ARITY + 1];
 703             }
 704         };
 705     }
 706 
 707     /**
 708      * Counting method handle. It has 2 states: counting and non-counting.
 709      * It is in counting state for the first n invocations and then transitions to non-counting state.
 710      * Behavior in counting and non-counting states is determined by lambda forms produced by
 711      * countingFormProducer & nonCountingFormProducer respectively.
 712      */
 713     static final class CountingWrapper extends DelegatingMethodHandle {
 714         private final MethodHandle target;
 715         private int count;
 716         private Function<MethodHandle, LambdaForm> countingFormProducer;
 717         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 718         private volatile boolean isCounting;
 719 
 720         private CountingWrapper(MethodHandle target, LambdaForm lform,
 721                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 722                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 723                                 int count) {
 724             super(target.type(), lform);
 725             this.target = target;
 726             this.count = count;
 727             this.countingFormProducer = countingFromProducer;
 728             this.nonCountingFormProducer = nonCountingFormProducer;
 729             this.isCounting = (count > 0);
 730         }
 731 
 732         @Hidden
 733         @Override
 734         protected MethodHandle getTarget() {
 735             return target;
 736         }
 737 
 738         @Override
 739         public MethodHandle asTypeUncached(MethodType newType) {
 740             MethodHandle newTarget = target.asType(newType);
 741             MethodHandle wrapper;
 742             if (isCounting) {
 743                 LambdaForm lform;
 744                 lform = countingFormProducer.apply(newTarget);
 745                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 746             } else {
 747                 wrapper = newTarget; // no need for a counting wrapper anymore
 748             }
 749             return wrapper;
 750         }
 751 
 752         boolean countDown() {
 753             int c = count;
 754             target.maybeCustomize(); // customize if counting happens for too long
 755             if (c <= 1) {
 756                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 757                 if (isCounting) {
 758                     isCounting = false;
 759                     return true;
 760                 } else {
 761                     return false;
 762                 }
 763             } else {
 764                 count = c - 1;
 765                 return false;
 766             }
 767         }
 768 
 769         @Hidden
 770         static void maybeStopCounting(Object o1) {
 771              final CountingWrapper wrapper = (CountingWrapper) o1;
 772              if (wrapper.countDown()) {
 773                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 774                  wrapper.updateForm(new Function<>() {
 775                      public LambdaForm apply(LambdaForm oldForm) {
 776                          LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 777                          lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 778                          return lform;
 779                      }});
 780              }
 781         }
 782 
 783         static final NamedFunction NF_maybeStopCounting;
 784         static {
 785             Class<?> THIS_CLASS = CountingWrapper.class;
 786             try {
 787                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 788             } catch (ReflectiveOperationException ex) {
 789                 throw newInternalError(ex);
 790             }
 791         }
 792     }
 793 
 794     static LambdaForm makeGuardWithTestForm(MethodType basicType) {
 795         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 796         if (lform != null)  return lform;
 797         final int THIS_MH      = 0;  // the BMH_LLL
 798         final int ARG_BASE     = 1;  // start of incoming arguments
 799         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 800         int nameCursor = ARG_LIMIT;
 801         final int GET_TEST     = nameCursor++;
 802         final int GET_TARGET   = nameCursor++;
 803         final int GET_FALLBACK = nameCursor++;
 804         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 805         final int CALL_TEST    = nameCursor++;
 806         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 807         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 808         final int SELECT_ALT   = nameCursor++;
 809         final int CALL_TARGET  = nameCursor++;
 810         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 811 
 812         MethodType lambdaType = basicType.invokerType();
 813         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 814 
 815         BoundMethodHandle.SpeciesData data =
 816                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 817                                      : BoundMethodHandle.speciesData_LLL();
 818         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 819         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 820         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 821         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 822         if (GET_COUNTERS != -1) {
 823             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 824         }
 825         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 826 
 827         // call test
 828         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 829         invokeArgs[0] = names[GET_TEST];
 830         names[CALL_TEST] = new Name(testType, invokeArgs);
 831 
 832         // profile branch
 833         if (PROFILE != -1) {
 834             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 835         }
 836         // call selectAlternative
 837         names[SELECT_ALT] = new Name(new NamedFunction(
 838                 makeIntrinsic(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE)),
 839                 names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 840 
 841         // call target or fallback
 842         invokeArgs[0] = names[SELECT_ALT];
 843         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 844 
 845         lform = LambdaForm.create(lambdaType.parameterCount(), names, /*forceInline=*/true, Kind.GUARD);
 846 
 847         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 848     }
 849 
 850     /**
 851      * The LambdaForm shape for catchException combinator is the following:
 852      * <blockquote><pre>{@code
 853      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
 854      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
 855      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
 856      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
 857      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
 858      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
 859      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
 860      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
 861      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
 862      * }</pre></blockquote>
 863      *
 864      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
 865      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
 866      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
 867      *
 868      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
 869      * among catchException combinators with the same basic type.
 870      */
 871     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
 872         MethodType lambdaType = basicType.invokerType();
 873 
 874         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
 875         if (lform != null) {
 876             return lform;
 877         }
 878         final int THIS_MH      = 0;  // the BMH_LLLLL
 879         final int ARG_BASE     = 1;  // start of incoming arguments
 880         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 881 
 882         int nameCursor = ARG_LIMIT;
 883         final int GET_TARGET       = nameCursor++;
 884         final int GET_CLASS        = nameCursor++;
 885         final int GET_CATCHER      = nameCursor++;
 886         final int GET_COLLECT_ARGS = nameCursor++;
 887         final int GET_UNBOX_RESULT = nameCursor++;
 888         final int BOXED_ARGS       = nameCursor++;
 889         final int TRY_CATCH        = nameCursor++;
 890         final int UNBOX_RESULT     = nameCursor++;
 891 
 892         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 893 
 894         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 895         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
 896         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
 897         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
 898         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
 899         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
 900         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
 901 
 902         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
 903 
 904         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
 905         MethodType collectArgsType = basicType.changeReturnType(Object.class);
 906         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
 907         Object[] args = new Object[invokeBasic.type().parameterCount()];
 908         args[0] = names[GET_COLLECT_ARGS];
 909         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
 910         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.GUARD_WITH_CATCH)), args);
 911 
 912         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
 913         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
 914         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
 915 
 916         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
 917         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
 918         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
 919         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
 920 
 921         lform = LambdaForm.create(lambdaType.parameterCount(), names, Kind.GUARD_WITH_CATCH);
 922 
 923         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
 924     }
 925 
 926     static MethodHandle makeGuardWithCatch(MethodHandle target,
 927                                     Class<? extends Throwable> exType,
 928                                     MethodHandle catcher) {
 929         MethodType type = target.type();
 930         LambdaForm form = makeGuardWithCatchForm(type.basicType());
 931 
 932         // Prepare auxiliary method handles used during LambdaForm interpretation.
 933         // Box arguments and wrap them into Object[]: ValueConversions.array().
 934         MethodType varargsType = type.changeReturnType(Object[].class);
 935         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
 936         MethodHandle unboxResult = unboxResultHandle(type.returnType());
 937 
 938         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 939         BoundMethodHandle mh;
 940         try {
 941             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType,
 942                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
 943         } catch (Throwable ex) {
 944             throw uncaughtException(ex);
 945         }
 946         assert(mh.type() == type);
 947         return mh;
 948     }
 949 
 950     /**
 951      * Intrinsified during LambdaForm compilation
 952      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
 953      */
 954     @Hidden
 955     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
 956                                  Object... av) throws Throwable {
 957         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
 958         try {
 959             return target.asFixedArity().invokeWithArguments(av);
 960         } catch (Throwable t) {
 961             if (!exType.isInstance(t)) throw t;
 962             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
 963         }
 964     }
 965 
 966     /** Prepend elements to an array. */
 967     @Hidden
 968     private static Object[] prepend(Object[] array, Object... elems) {
 969         int nArray = array.length;
 970         int nElems = elems.length;
 971         Object[] newArray = new Object[nArray + nElems];
 972         System.arraycopy(elems, 0, newArray, 0, nElems);
 973         System.arraycopy(array, 0, newArray, nElems, nArray);
 974         return newArray;
 975     }
 976 
 977     static MethodHandle throwException(MethodType type) {
 978         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
 979         int arity = type.parameterCount();
 980         if (arity > 1) {
 981             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
 982             mh = MethodHandles.dropArgumentsTrusted(mh, 1, Arrays.copyOfRange(type.ptypes(), 1, arity));
 983             return mh;
 984         }
 985         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
 986     }
 987 
 988     static <T extends Throwable> Empty throwException(T t) throws T { throw t; }
 989 
 990     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
 991     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
 992         assert(method.isMethodHandleInvoke());
 993         int idx = switch (method.getName()) {
 994             case "invoke"      -> 0;
 995             case "invokeExact" -> 1;
 996             default -> throw new InternalError(method.getName());
 997         };
 998         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
 999         if (mh != null)  return mh;
1000         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
1001                                                 MethodHandle.class, Object[].class);
1002         mh = throwException(type);
1003         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1004         if (!method.getInvocationType().equals(mh.type()))
1005             throw new InternalError(method.toString());
1006         mh = mh.withInternalMemberName(method, false);
1007         mh = mh.withVarargs(true);
1008         assert(method.isVarargs());
1009         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1010         return mh;
1011     }
1012     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1013         // TODO caching, is it necessary?
1014         MethodType type = MethodType.methodType(method.getMethodType().returnType(),
1015                                                 UnsupportedOperationException.class,
1016                                                 VarHandle.class, Object[].class);
1017         MethodHandle mh = throwException(type);
1018         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1019         if (!method.getInvocationType().equals(mh.type()))
1020             throw new InternalError(method.toString());
1021         mh = mh.withInternalMemberName(method, false);
1022         mh = mh.asVarargsCollector(Object[].class);
1023         assert(method.isVarargs());
1024         return mh;
1025     }
1026 
1027     /**
1028      * Create an alias for the method handle which, when called,
1029      * appears to be called from the same class loader and protection domain
1030      * as hostClass.
1031      * This is an expensive no-op unless the method which is called
1032      * is sensitive to its caller.  A small number of system methods
1033      * are in this category, including Class.forName and Method.invoke.
1034      */
1035     static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1036         return BindCaller.bindCaller(mh, hostClass);
1037     }
1038 
1039     // Put the whole mess into its own nested class.
1040     // That way we can lazily load the code and set up the constants.
1041     private static class BindCaller {
1042 
1043         private static final ClassDesc CD_Object_array = ReferenceClassDescImpl.ofValidated("[Ljava/lang/Object;");
1044         private static final MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1045         private static final MethodType REFLECT_INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object.class, Object[].class);
1046 
1047         static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1048             // Code in the boot layer should now be careful while creating method handles or
1049             // functional interface instances created from method references to @CallerSensitive  methods,
1050             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1051             // from the boot layer to untrusted code.
1052             if (hostClass == null
1053                 ||    (hostClass.isArray() ||
1054                        hostClass.isPrimitive() ||
1055                        hostClass.getName().startsWith("java.lang.invoke."))) {
1056                 throw new InternalError();  // does not happen, and should not anyway
1057             }
1058 
1059             MemberName member = mh.internalMemberName();
1060             if (member != null) {
1061                 // Look up the CSM adapter method with the same method name
1062                 // but with an additional caller class parameter.  If present,
1063                 // bind the adapter's method handle with the lookup class as
1064                 // the caller class argument
1065                 MemberName csmAdapter = IMPL_LOOKUP.resolveOrNull(member.getReferenceKind(),
1066                         new MemberName(member.getDeclaringClass(),
1067                                        member.getName(),
1068                                        member.getMethodType().appendParameterTypes(Class.class),
1069                                        member.getReferenceKind()));
1070                 if (csmAdapter != null) {
1071                     assert !csmAdapter.isCallerSensitive();
1072                     MethodHandle dmh = DirectMethodHandle.make(csmAdapter);
1073                     dmh = MethodHandles.insertArguments(dmh, dmh.type().parameterCount() - 1, hostClass);
1074                     dmh = new WrappedMember(dmh, mh.type(), member, mh.isInvokeSpecial(), hostClass);
1075                     return dmh;
1076                 }
1077             }
1078 
1079             // If no adapter method for CSM with an additional Class parameter
1080             // is present, then inject an invoker class that is the caller
1081             // invoking the method handle of the CSM
1082             try {
1083                 return bindCallerWithInjectedInvoker(mh, hostClass);
1084             } catch (ReflectiveOperationException ex) {
1085                 throw uncaughtException(ex);
1086             }
1087         }
1088 
1089         private static MethodHandle bindCallerWithInjectedInvoker(MethodHandle mh, Class<?> hostClass)
1090                 throws ReflectiveOperationException
1091         {
1092             // For simplicity, convert mh to a varargs-like method.
1093             MethodHandle vamh = prepareForInvoker(mh);
1094             // Cache the result of makeInjectedInvoker once per argument class.
1095             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass).invoker();
1096             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1097         }
1098 
1099         private static Class<?> makeInjectedInvoker(Class<?> targetClass) {
1100                 /*
1101                  * The invoker class defined to the same class loader as the lookup class
1102                  * but in an unnamed package so that the class bytes can be cached and
1103                  * reused for any @CSM.
1104                  *
1105                  * @CSM must be public and exported if called by any module.
1106                  */
1107                 String name = targetClass.getName() + "$$InjectedInvoker";
1108                 if (targetClass.isHidden()) {
1109                     // use the original class name
1110                     name = name.replace('/', '_');
1111                 }
1112                 name = name.replace('.', '/');
1113                 Class<?> invokerClass = new Lookup(targetClass)
1114                         .makeHiddenClassDefiner(name, INJECTED_INVOKER_TEMPLATE, Set.of(NESTMATE), dumper())
1115                         .defineClass(true, targetClass);
1116                 assert checkInjectedInvoker(targetClass, invokerClass);
1117                 return invokerClass;
1118         }
1119 
1120         private static ClassValue<InjectedInvokerHolder> CV_makeInjectedInvoker = new ClassValue<>() {
1121             @Override
1122             protected InjectedInvokerHolder computeValue(Class<?> hostClass) {
1123                 return new InjectedInvokerHolder(makeInjectedInvoker(hostClass));
1124             }
1125         };
1126 
1127         /*
1128          * Returns a method handle of an invoker class injected for reflection
1129          * implementation use with the following signature:
1130          *     reflect_invoke_V(MethodHandle mh, Object target, Object[] args)
1131          *
1132          * Method::invoke on a caller-sensitive method will call
1133          * MethodAccessorImpl::invoke(Object, Object[]) through reflect_invoke_V
1134          *     target.csm(args)
1135          *     NativeMethodAccessorImpl::invoke(target, args)
1136          *     MethodAccessImpl::invoke(target, args)
1137          *     InjectedInvoker::reflect_invoke_V(vamh, target, args);
1138          *     method::invoke(target, args)
1139          *     p.Foo::m
1140          *
1141          * An injected invoker class is a hidden class which has the same
1142          * defining class loader, runtime package, and protection domain
1143          * as the given caller class.
1144          */
1145         static MethodHandle reflectiveInvoker(Class<?> caller) {
1146             return BindCaller.CV_makeInjectedInvoker.get(caller).reflectInvoker();
1147         }
1148 
1149         private static final class InjectedInvokerHolder {
1150             private final Class<?> invokerClass;
1151             // lazily resolved and cached DMH(s) of invoke_V methods
1152             private MethodHandle invoker;
1153             private MethodHandle reflectInvoker;
1154 
1155             private InjectedInvokerHolder(Class<?> invokerClass) {
1156                 this.invokerClass = invokerClass;
1157             }
1158 
1159             private MethodHandle invoker() {
1160                 var mh = invoker;
1161                 if (mh == null) {
1162                     try {
1163                         invoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1164                     } catch (Error | RuntimeException ex) {
1165                         throw ex;
1166                     } catch (Throwable ex) {
1167                         throw new InternalError(ex);
1168                     }
1169                 }
1170                 return mh;
1171             }
1172 
1173             private MethodHandle reflectInvoker() {
1174                 var mh = reflectInvoker;
1175                 if (mh == null) {
1176                     try {
1177                         reflectInvoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "reflect_invoke_V", REFLECT_INVOKER_MT);
1178                     } catch (Error | RuntimeException ex) {
1179                         throw ex;
1180                     } catch (Throwable ex) {
1181                         throw new InternalError(ex);
1182                     }
1183                 }
1184                 return mh;
1185             }
1186         }
1187 
1188         // Adapt mh so that it can be called directly from an injected invoker:
1189         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1190             mh = mh.asFixedArity();
1191             MethodType mt = mh.type();
1192             int arity = mt.parameterCount();
1193             MethodHandle vamh = mh.asType(mt.generic());
1194             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1195             vamh = vamh.asSpreader(Object[].class, arity);
1196             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1197             return vamh;
1198         }
1199 
1200         // Undo the adapter effect of prepareForInvoker:
1201         private static MethodHandle restoreToType(MethodHandle vamh,
1202                                                   MethodHandle original,
1203                                                   Class<?> hostClass) {
1204             MethodType type = original.type();
1205             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1206             MemberName member = original.internalMemberName();
1207             mh = mh.asType(type);
1208             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1209             return mh;
1210         }
1211 
1212         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1213             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1214             try {
1215                 assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1216             } catch (SecurityException ex) {
1217                 // Self-check was blocked by security manager. This is OK.
1218             }
1219             try {
1220                 // Test the invoker to ensure that it really injects into the right place.
1221                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1222                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1223                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1224             } catch (Error|RuntimeException ex) {
1225                 throw ex;
1226             } catch (Throwable ex) {
1227                 throw new InternalError(ex);
1228             }
1229         }
1230 
1231         private static final MethodHandle MH_checkCallerClass;
1232         static {
1233             final Class<?> THIS_CLASS = BindCaller.class;
1234             assert(checkCallerClass(THIS_CLASS));
1235             try {
1236                 MH_checkCallerClass = IMPL_LOOKUP
1237                     .findStatic(THIS_CLASS, "checkCallerClass",
1238                                 MethodType.methodType(boolean.class, Class.class));
1239                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1240             } catch (Throwable ex) {
1241                 throw new InternalError(ex);
1242             }
1243         }
1244 
1245         @CallerSensitive
1246         @ForceInline // to ensure Reflection.getCallerClass optimization
1247         private static boolean checkCallerClass(Class<?> expected) {
1248             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1249             Class<?> actual = Reflection.getCallerClass();
1250             if (actual != expected)
1251                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1252             return true;
1253         }
1254 
1255         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1256 
1257         /** Produces byte code for a class that is used as an injected invoker. */
1258         private static byte[] generateInvokerTemplate() {
1259             // private static class InjectedInvoker {
1260             //     /* this is used to wrap DMH(s) of caller-sensitive methods */
1261             //     @Hidden
1262             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1263             //        return vamh.invokeExact(args);
1264             //     }
1265             //     /* this is used in caller-sensitive reflective method accessor */
1266             //     @Hidden
1267             //     static Object reflect_invoke_V(MethodHandle vamh, Object target, Object[] args) throws Throwable {
1268             //        return vamh.invokeExact(target, args);
1269             //     }
1270             // }
1271             // }
1272             return ClassFile.of().build(ReferenceClassDescImpl.ofValidated("LInjectedInvoker;"), clb -> clb
1273                     .withFlags(ACC_PRIVATE | ACC_SUPER)
1274                     .withMethodBody(
1275                         "invoke_V",
1276                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object_array),
1277                         ACC_STATIC,
1278                         cob -> cob.aload(0)
1279                                   .aload(1)
1280                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object_array))
1281                                   .areturn())
1282                     .withMethodBody(
1283                         "reflect_invoke_V",
1284                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object, CD_Object_array),
1285                         ACC_STATIC,
1286                         cob -> cob.aload(0)
1287                                   .aload(1)
1288                                   .aload(2)
1289                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object, CD_Object_array))
1290                                   .areturn()));
1291         }
1292     }
1293 
1294     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1295     static final class WrappedMember extends DelegatingMethodHandle {
1296         private final MethodHandle target;
1297         private final MemberName member;
1298         private final Class<?> callerClass;
1299         private final boolean isInvokeSpecial;
1300 
1301         private WrappedMember(MethodHandle target, MethodType type,
1302                               MemberName member, boolean isInvokeSpecial,
1303                               Class<?> callerClass) {
1304             super(type, target);
1305             this.target = target;
1306             this.member = member;
1307             this.callerClass = callerClass;
1308             this.isInvokeSpecial = isInvokeSpecial;
1309         }
1310 
1311         @Override
1312         MemberName internalMemberName() {
1313             return member;
1314         }
1315         @Override
1316         Class<?> internalCallerClass() {
1317             return callerClass;
1318         }
1319         @Override
1320         boolean isInvokeSpecial() {
1321             return isInvokeSpecial;
1322         }
1323         @Override
1324         protected MethodHandle getTarget() {
1325             return target;
1326         }
1327         @Override
1328         public MethodHandle asTypeUncached(MethodType newType) {
1329             // This MH is an alias for target, except for the MemberName
1330             // Drop the MemberName if there is any conversion.
1331             return target.asType(newType);
1332         }
1333     }
1334 
1335     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1336         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1337             return target;
1338         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1339     }
1340 
1341     /** Intrinsic IDs */
1342     /*non-public*/
1343     enum Intrinsic {
1344         SELECT_ALTERNATIVE,
1345         GUARD_WITH_CATCH,
1346         TRY_FINALLY,
1347         TABLE_SWITCH,
1348         LOOP,
1349         ARRAY_LOAD,
1350         ARRAY_STORE,
1351         ARRAY_LENGTH,
1352         IDENTITY,
1353         ZERO,
1354         NONE // no intrinsic associated
1355     }
1356 
1357     /** Mark arbitrary method handle as intrinsic.
1358      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1359     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1360         private final MethodHandle target;
1361         private final Intrinsic intrinsicName;
1362         private final Object intrinsicData;
1363 
1364         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1365            this(target, intrinsicName, null);
1366         }
1367 
1368         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1369             super(target.type(), target);
1370             this.target = target;
1371             this.intrinsicName = intrinsicName;
1372             this.intrinsicData = intrinsicData;
1373         }
1374 
1375         @Override
1376         protected MethodHandle getTarget() {
1377             return target;
1378         }
1379 
1380         @Override
1381         Intrinsic intrinsicName() {
1382             return intrinsicName;
1383         }
1384 
1385         @Override
1386         Object intrinsicData() {
1387             return intrinsicData;
1388         }
1389 
1390         @Override
1391         public MethodHandle asTypeUncached(MethodType newType) {
1392             // This MH is an alias for target, except for the intrinsic name
1393             // Drop the name if there is any conversion.
1394             return target.asType(newType);
1395         }
1396 
1397         @Override
1398         String internalProperties() {
1399             return super.internalProperties() +
1400                     "\n& Intrinsic="+intrinsicName;
1401         }
1402 
1403         @Override
1404         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1405             if (intrinsicName == Intrinsic.IDENTITY) {
1406                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1407                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1408                 return newArray.asType(resultType);
1409             }
1410             return super.asCollector(arrayType, arrayLength);
1411         }
1412     }
1413 
1414     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1415         return makeIntrinsic(target, intrinsicName, null);
1416     }
1417 
1418     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1419         if (intrinsicName == target.intrinsicName())
1420             return target;
1421         return new IntrinsicMethodHandle(target, intrinsicName, intrinsicData);
1422     }
1423 
1424     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1425         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1426     }
1427 
1428     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1429 
1430     /** Return a method handle that takes the indicated number of Object
1431      *  arguments and returns an Object array of them, as if for varargs.
1432      */
1433     static MethodHandle varargsArray(int nargs) {
1434         MethodHandle mh = ARRAYS[nargs];
1435         if (mh != null) {
1436             return mh;
1437         }
1438         mh = makeCollector(Object[].class, nargs);
1439         assert(assertCorrectArity(mh, nargs));
1440         return ARRAYS[nargs] = mh;
1441     }
1442 
1443     /** Return a method handle that takes the indicated number of
1444      *  typed arguments and returns an array of them.
1445      *  The type argument is the array type.
1446      */
1447     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1448         Class<?> elemType = arrayType.getComponentType();
1449         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1450         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1451             int slots = nargs;
1452             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1453             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1454                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1455             if (slots > MAX_ARRAY_SLOTS)
1456                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1457         }
1458         if (elemType == Object.class)
1459             return varargsArray(nargs);
1460         // other cases:  primitive arrays, subtypes of Object[]
1461         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1462         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1463         if (mh != null)  return mh;
1464         mh = makeCollector(arrayType, nargs);
1465         assert(assertCorrectArity(mh, nargs));
1466         if (nargs < cache.length)
1467             cache[nargs] = mh;
1468         return mh;
1469     }
1470 
1471     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1472         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1473         return true;
1474     }
1475 
1476     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1477 
1478     /*non-public*/
1479     static void assertSame(Object mh1, Object mh2) {
1480         if (mh1 != mh2) {
1481             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1482                     mh1, ((MethodHandle)mh1).form,
1483                     mh2, ((MethodHandle)mh2).form);
1484             throw newInternalError(msg);
1485         }
1486     }
1487 
1488     // Local constant functions:
1489 
1490     /* non-public */
1491     static final byte NF_checkSpreadArgument = 0,
1492             NF_guardWithCatch = 1,
1493             NF_throwException = 2,
1494             NF_tryFinally = 3,
1495             NF_loop = 4,
1496             NF_profileBoolean = 5,
1497             NF_tableSwitch = 6,
1498             NF_LIMIT = 7;
1499 
1500     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1501 
1502     static NamedFunction getFunction(byte func) {
1503         NamedFunction nf = NFS[func];
1504         if (nf != null) {
1505             return nf;
1506         }
1507         return NFS[func] = createFunction(func);
1508     }
1509 
1510     private static NamedFunction createFunction(byte func) {
1511         try {
1512             return switch (func) {
1513                 case NF_checkSpreadArgument -> new NamedFunction(MethodHandleImpl.class
1514                                                 .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1515                 case NF_guardWithCatch      -> new NamedFunction(MethodHandleImpl.class
1516                                                 .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1517                                                    MethodHandle.class, Object[].class));
1518                 case NF_tryFinally          -> new NamedFunction(MethodHandleImpl.class
1519                                                 .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1520                 case NF_loop                -> new NamedFunction(MethodHandleImpl.class
1521                                                 .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1522                 case NF_throwException      -> new NamedFunction(MethodHandleImpl.class
1523                                                 .getDeclaredMethod("throwException", Throwable.class));
1524                 case NF_profileBoolean      -> new NamedFunction(MethodHandleImpl.class
1525                                                 .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1526                 case NF_tableSwitch         -> new NamedFunction(MethodHandleImpl.class
1527                                                 .getDeclaredMethod("tableSwitch", int.class, MethodHandle.class, CasesHolder.class, Object[].class));
1528                 default -> throw new InternalError("Undefined function: " + func);
1529             };
1530         } catch (ReflectiveOperationException ex) {
1531             throw newInternalError(ex);
1532         }
1533     }
1534 
1535     static {
1536         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1537             @Override
1538             public Class<?> getDeclaringClass(Object rmname) {
1539                 ResolvedMethodName method = (ResolvedMethodName)rmname;
1540                 return method.declaringClass();
1541             }
1542 
1543             @Override
1544             public MethodType getMethodType(String descriptor, ClassLoader loader) {
1545                 return MethodType.fromDescriptor(descriptor, loader);
1546             }
1547 
1548             public boolean isCallerSensitive(int flags) {
1549                 return (flags & MN_CALLER_SENSITIVE) == MN_CALLER_SENSITIVE;
1550             }
1551 
1552             public boolean isHiddenMember(int flags) {
1553                 return (flags & MN_HIDDEN_MEMBER) == MN_HIDDEN_MEMBER;
1554             }
1555 
1556             @Override
1557             public Map<String, byte[]> generateHolderClasses(Stream<String> traces) {
1558                 return GenerateJLIClassesHelper.generateHolderClasses(traces);
1559             }
1560 
1561             @Override
1562             public VarHandle memorySegmentViewHandle(Class<?> carrier, long alignmentMask, ByteOrder order) {
1563                 return VarHandles.memorySegmentViewHandle(carrier, alignmentMask, order);
1564             }
1565 
1566             @Override
1567             public MethodHandle nativeMethodHandle(NativeEntryPoint nep) {
1568                 return NativeMethodHandle.make(nep);
1569             }
1570 
1571             @Override
1572             public VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
1573                 return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
1574             }
1575 
1576             @Override
1577             public VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
1578                 return VarHandles.filterCoordinates(target, pos, filters);
1579             }
1580 
1581             @Override
1582             public VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
1583                 return VarHandles.dropCoordinates(target, pos, valueTypes);
1584             }
1585 
1586             @Override
1587             public VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
1588                 return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
1589             }
1590 
1591             @Override
1592             public VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
1593                 return VarHandles.collectCoordinates(target, pos, filter);
1594             }
1595 
1596             @Override
1597             public VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
1598                 return VarHandles.insertCoordinates(target, pos, values);
1599             }
1600 
1601 
1602             @Override
1603             public MethodHandle unreflectConstructor(Constructor<?> ctor) throws IllegalAccessException {
1604                 return IMPL_LOOKUP.unreflectConstructor(ctor);
1605             }
1606 
1607             @Override
1608             public MethodHandle unreflectField(Field field, boolean isSetter) throws IllegalAccessException {
1609                 return isSetter ? IMPL_LOOKUP.unreflectSetter(field) : IMPL_LOOKUP.unreflectGetter(field);
1610             }
1611 
1612             @Override
1613             public MethodHandle findVirtual(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1614                 try {
1615                     return IMPL_LOOKUP.findVirtual(defc, name, type);
1616                 } catch (NoSuchMethodException e) {
1617                     return null;
1618                 }
1619             }
1620 
1621             @Override
1622             public MethodHandle findStatic(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1623                 try {
1624                     return IMPL_LOOKUP.findStatic(defc, name, type);
1625                 } catch (NoSuchMethodException e) {
1626                     return null;
1627                 }
1628             }
1629 
1630             @Override
1631             public MethodHandle reflectiveInvoker(Class<?> caller) {
1632                 Objects.requireNonNull(caller);
1633                 return BindCaller.reflectiveInvoker(caller);
1634             }
1635 
1636             @Override
1637             public Class<?>[] exceptionTypes(MethodHandle handle) {
1638                 return VarHandles.exceptionTypes(handle);
1639             }
1640 
1641             @Override
1642             public MethodHandle serializableConstructor(Class<?> decl, Constructor<?> ctorToCall) throws IllegalAccessException {
1643                 return IMPL_LOOKUP.serializableConstructor(decl, ctorToCall);
1644             }
1645 
1646         });
1647     }
1648 
1649     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1650     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1651         if (returnType.isPrimitive()) {
1652             if (returnType == void.class) {
1653                 return ValueConversions.ignore();
1654             } else {
1655                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1656                 return ValueConversions.unboxExact(w);
1657             }
1658         } else {
1659             return MethodHandles.identity(Object.class);
1660         }
1661     }
1662 
1663     /**
1664      * Assembles a loop method handle from the given handles and type information.
1665      *
1666      * @param tloop the return type of the loop.
1667      * @param targs types of the arguments to be passed to the loop.
1668      * @param init sanitized array of initializers for loop-local variables.
1669      * @param step sanitized array of loop bodies.
1670      * @param pred sanitized array of predicates.
1671      * @param fini sanitized array of loop finalizers.
1672      *
1673      * @return a handle that, when invoked, will execute the loop.
1674      */
1675     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1676                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1677         MethodType type = MethodType.methodType(tloop, targs);
1678         BasicType[] initClauseTypes =
1679                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1680         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1681 
1682         // Prepare auxiliary method handles used during LambdaForm interpretation.
1683         // Box arguments and wrap them into Object[]: ValueConversions.array().
1684         MethodType varargsType = type.changeReturnType(Object[].class);
1685         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1686         MethodHandle unboxResult = unboxResultHandle(tloop);
1687 
1688         LoopClauses clauseData =
1689                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1690         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1691         BoundMethodHandle mh;
1692         try {
1693             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData,
1694                     (Object) collectArgs, (Object) unboxResult);
1695         } catch (Throwable ex) {
1696             throw uncaughtException(ex);
1697         }
1698         assert(mh.type() == type);
1699         return mh;
1700     }
1701 
1702     private static MethodHandle[] toArray(List<MethodHandle> l) {
1703         return l.toArray(new MethodHandle[0]);
1704     }
1705 
1706     /**
1707      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1708      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1709      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1710      * {@code t12}):
1711      * <blockquote><pre>{@code
1712      *  loop=Lambda(a0:L,a1:L)=>{
1713      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1714      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1715      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1716      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1717      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1718      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1719      * }</pre></blockquote>
1720      * <p>
1721      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1722      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1723      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1724      * ({@code ValueConversions.unbox()}).
1725      * <p>
1726      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1727      * forms among loop combinators with the same basic type.
1728      * <p>
1729      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1730      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1731      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1732      * bytecode generation}.
1733      */
1734     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1735         MethodType lambdaType = basicType.invokerType();
1736 
1737         final int THIS_MH = 0;  // the BMH_LLL
1738         final int ARG_BASE = 1; // start of incoming arguments
1739         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1740 
1741         int nameCursor = ARG_LIMIT;
1742         final int GET_CLAUSE_DATA = nameCursor++;
1743         final int GET_COLLECT_ARGS = nameCursor++;
1744         final int GET_UNBOX_RESULT = nameCursor++;
1745         final int BOXED_ARGS = nameCursor++;
1746         final int LOOP = nameCursor++;
1747         final int UNBOX_RESULT = nameCursor++;
1748 
1749         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1750         if (lform == null) {
1751             Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1752 
1753             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1754             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1755             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1756             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1757             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1758 
1759             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1760             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1761             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1762             Object[] args = new Object[invokeBasic.type().parameterCount()];
1763             args[0] = names[GET_COLLECT_ARGS];
1764             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1765             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.LOOP)), args);
1766 
1767             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1768             Object[] lArgs =
1769                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1770                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1771             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1772 
1773             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1774             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1775             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1776             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1777 
1778             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1779                     LambdaForm.create(lambdaType.parameterCount(), names, Kind.LOOP));
1780         }
1781 
1782         // BOXED_ARGS is the index into the names array where the loop idiom starts
1783         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1784     }
1785 
1786     static class LoopClauses {
1787         @Stable final MethodHandle[][] clauses;
1788         LoopClauses(MethodHandle[][] clauses) {
1789             assert clauses.length == 4;
1790             this.clauses = clauses;
1791         }
1792         @Override
1793         public String toString() {
1794             StringBuilder sb = new StringBuilder("LoopClauses -- ");
1795             for (int i = 0; i < 4; ++i) {
1796                 if (i > 0) {
1797                     sb.append("       ");
1798                 }
1799                 sb.append('<').append(i).append(">: ");
1800                 MethodHandle[] hs = clauses[i];
1801                 for (int j = 0; j < hs.length; ++j) {
1802                     if (j > 0) {
1803                         sb.append("          ");
1804                     }
1805                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
1806                 }
1807             }
1808             sb.append(" --\n");
1809             return sb.toString();
1810         }
1811     }
1812 
1813     /**
1814      * Intrinsified during LambdaForm compilation
1815      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
1816      */
1817     @Hidden
1818     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
1819         final MethodHandle[] init = clauseData.clauses[0];
1820         final MethodHandle[] step = clauseData.clauses[1];
1821         final MethodHandle[] pred = clauseData.clauses[2];
1822         final MethodHandle[] fini = clauseData.clauses[3];
1823         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
1824         int nArgs = init[0].type().parameterCount();
1825         Object[] varsAndArgs = new Object[varSize + nArgs];
1826         for (int i = 0, v = 0; i < init.length; ++i) {
1827             MethodHandle ih = init[i];
1828             if (ih.type().returnType() == void.class) {
1829                 ih.invokeWithArguments(av);
1830             } else {
1831                 varsAndArgs[v++] = ih.invokeWithArguments(av);
1832             }
1833         }
1834         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
1835         final int nSteps = step.length;
1836         for (; ; ) {
1837             for (int i = 0, v = 0; i < nSteps; ++i) {
1838                 MethodHandle p = pred[i];
1839                 MethodHandle s = step[i];
1840                 MethodHandle f = fini[i];
1841                 if (s.type().returnType() == void.class) {
1842                     s.invokeWithArguments(varsAndArgs);
1843                 } else {
1844                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
1845                 }
1846                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
1847                     return f.invokeWithArguments(varsAndArgs);
1848                 }
1849             }
1850         }
1851     }
1852 
1853     /**
1854      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1855      * MethodHandle) counting loops}.
1856      *
1857      * @param limit the upper bound of the parameter, statically bound at loop creation time.
1858      * @param counter the counter parameter, passed in during loop execution.
1859      *
1860      * @return whether the counter has reached the limit.
1861      */
1862     static boolean countedLoopPredicate(int limit, int counter) {
1863         return counter < limit;
1864     }
1865 
1866     /**
1867      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1868      * MethodHandle) counting loops} to increment the counter.
1869      *
1870      * @param limit the upper bound of the loop counter (ignored).
1871      * @param counter the loop counter.
1872      *
1873      * @return the loop counter incremented by 1.
1874      */
1875     static int countedLoopStep(int limit, int counter) {
1876         return counter + 1;
1877     }
1878 
1879     /**
1880      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1881      *
1882      * @param it the {@link Iterable} over which the loop iterates.
1883      *
1884      * @return an {@link Iterator} over the argument's elements.
1885      */
1886     static Iterator<?> initIterator(Iterable<?> it) {
1887         return it.iterator();
1888     }
1889 
1890     /**
1891      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1892      *
1893      * @param it the iterator to be checked.
1894      *
1895      * @return {@code true} iff there are more elements to iterate over.
1896      */
1897     static boolean iteratePredicate(Iterator<?> it) {
1898         return it.hasNext();
1899     }
1900 
1901     /**
1902      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
1903      * MethodHandles#iteratedLoop iterating loops}.
1904      *
1905      * @param it the iterator.
1906      *
1907      * @return the next element from the iterator.
1908      */
1909     static Object iterateNext(Iterator<?> it) {
1910         return it.next();
1911     }
1912 
1913     /**
1914      * Makes a {@code try-finally} handle that conforms to the type constraints.
1915      *
1916      * @param target the target to execute in a {@code try-finally} block.
1917      * @param cleanup the cleanup to execute in the {@code finally} block.
1918      * @param rtype the result type of the entire construct.
1919      * @param argTypes the types of the arguments.
1920      *
1921      * @return a handle on the constructed {@code try-finally} block.
1922      */
1923     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, Class<?>[] argTypes) {
1924         MethodType type = MethodType.methodType(rtype, argTypes);
1925         LambdaForm form = makeTryFinallyForm(type.basicType());
1926 
1927         // Prepare auxiliary method handles used during LambdaForm interpretation.
1928         // Box arguments and wrap them into Object[]: ValueConversions.array().
1929         MethodType varargsType = type.changeReturnType(Object[].class);
1930         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1931         MethodHandle unboxResult = unboxResultHandle(rtype);
1932 
1933         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1934         BoundMethodHandle mh;
1935         try {
1936             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup,
1937                     (Object) collectArgs, (Object) unboxResult);
1938         } catch (Throwable ex) {
1939             throw uncaughtException(ex);
1940         }
1941         assert(mh.type() == type);
1942         return mh;
1943     }
1944 
1945     /**
1946      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
1947      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
1948      * <blockquote><pre>{@code
1949      *  tryFinally=Lambda(a0:L,a1:L)=>{
1950      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
1951      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
1952      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
1953      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
1954      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
1955      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
1956      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
1957      * }</pre></blockquote>
1958      * <p>
1959      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
1960      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
1961      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
1962      * ({@code ValueConversions.unbox()}).
1963      * <p>
1964      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1965      * forms among tryFinally combinators with the same basic type.
1966      */
1967     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
1968         MethodType lambdaType = basicType.invokerType();
1969 
1970         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
1971         if (lform != null) {
1972             return lform;
1973         }
1974         final int THIS_MH      = 0;  // the BMH_LLLL
1975         final int ARG_BASE     = 1;  // start of incoming arguments
1976         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
1977 
1978         int nameCursor = ARG_LIMIT;
1979         final int GET_TARGET       = nameCursor++;
1980         final int GET_CLEANUP      = nameCursor++;
1981         final int GET_COLLECT_ARGS = nameCursor++;
1982         final int GET_UNBOX_RESULT = nameCursor++;
1983         final int BOXED_ARGS       = nameCursor++;
1984         final int TRY_FINALLY      = nameCursor++;
1985         final int UNBOX_RESULT     = nameCursor++;
1986 
1987         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1988 
1989         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1990         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
1991         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
1992         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
1993         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
1994         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
1995 
1996         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1997         MethodType collectArgsType = basicType.changeReturnType(Object.class);
1998         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1999         Object[] args = new Object[invokeBasic.type().parameterCount()];
2000         args[0] = names[GET_COLLECT_ARGS];
2001         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2002         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TRY_FINALLY)), args);
2003 
2004         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2005         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2006         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2007 
2008         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2009         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2010         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2011         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2012 
2013         lform = LambdaForm.create(lambdaType.parameterCount(), names, Kind.TRY_FINALLY);
2014 
2015         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2016     }
2017 
2018     /**
2019      * Intrinsified during LambdaForm compilation
2020      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2021      */
2022     @Hidden
2023     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2024         Throwable t = null;
2025         Object r = null;
2026         try {
2027             r = target.invokeWithArguments(av);
2028         } catch (Throwable thrown) {
2029             t = thrown;
2030             throw t;
2031         } finally {
2032             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2033             r = cleanup.invokeWithArguments(args);
2034         }
2035         return r;
2036     }
2037 
2038     // see varargsArray method for chaching/package-private version of this
2039     private static MethodHandle makeCollector(Class<?> arrayType, int parameterCount) {
2040         MethodType type = MethodType.methodType(arrayType, Collections.nCopies(parameterCount, arrayType.componentType()));
2041         MethodHandle newArray = MethodHandles.arrayConstructor(arrayType);
2042 
2043         LambdaForm form = makeCollectorForm(type.basicType(), arrayType);
2044 
2045         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2046         BoundMethodHandle mh;
2047         try {
2048             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) newArray);
2049         } catch (Throwable ex) {
2050             throw uncaughtException(ex);
2051         }
2052         assert(mh.type() == type);
2053         return mh;
2054     }
2055 
2056     private static LambdaForm makeCollectorForm(MethodType basicType, Class<?> arrayType) {
2057         MethodType lambdaType = basicType.invokerType();
2058         int parameterCount = basicType.parameterCount();
2059 
2060         // Only share the lambda form for empty arrays and reference types.
2061         // Sharing based on the basic type alone doesn't work because
2062         // we need a separate lambda form for byte/short/char/int which
2063         // are all erased to int otherwise.
2064         // Other caching for primitive types happens at the MethodHandle level (see varargsArray).
2065         boolean isReferenceType = !arrayType.componentType().isPrimitive();
2066         boolean isSharedLambdaForm = parameterCount == 0 || isReferenceType;
2067         if (isSharedLambdaForm) {
2068             LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_COLLECTOR);
2069             if (lform != null) {
2070                 return lform;
2071             }
2072         }
2073 
2074         // use erased accessor for reference types
2075         MethodHandle storeFunc = isReferenceType
2076                 ? ArrayAccessor.OBJECT_ARRAY_SETTER
2077                 : makeArrayElementAccessor(arrayType, ArrayAccess.SET);
2078 
2079         final int THIS_MH      = 0;  // the BMH_L
2080         final int ARG_BASE     = 1;  // start of incoming arguments
2081         final int ARG_LIMIT    = ARG_BASE + parameterCount;
2082 
2083         int nameCursor = ARG_LIMIT;
2084         final int GET_NEW_ARRAY       = nameCursor++;
2085         final int CALL_NEW_ARRAY      = nameCursor++;
2086         final int STORE_ELEMENT_BASE  = nameCursor;
2087         final int STORE_ELEMENT_LIMIT = STORE_ELEMENT_BASE + parameterCount;
2088         nameCursor = STORE_ELEMENT_LIMIT;
2089 
2090         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
2091 
2092         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2093         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2094         names[GET_NEW_ARRAY]    = new Name(data.getterFunction(0), names[THIS_MH]);
2095 
2096         MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(Object.class, int.class));
2097         names[CALL_NEW_ARRAY] = new Name(new NamedFunction(invokeBasic), names[GET_NEW_ARRAY], parameterCount);
2098         for (int storeIndex = 0,
2099              storeNameCursor = STORE_ELEMENT_BASE,
2100              argCursor = ARG_BASE;
2101              storeNameCursor < STORE_ELEMENT_LIMIT;
2102              storeIndex++, storeNameCursor++, argCursor++){
2103 
2104             names[storeNameCursor] = new Name(new NamedFunction(makeIntrinsic(storeFunc, Intrinsic.ARRAY_STORE)),
2105                     names[CALL_NEW_ARRAY], storeIndex, names[argCursor]);
2106         }
2107 
2108         LambdaForm lform = LambdaForm.create(lambdaType.parameterCount(), names, CALL_NEW_ARRAY, Kind.COLLECTOR);
2109         if (isSharedLambdaForm) {
2110             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_COLLECTOR, lform);
2111         }
2112         return lform;
2113     }
2114 
2115     // use a wrapper because we need this array to be @Stable
2116     static class CasesHolder {
2117         @Stable
2118         final MethodHandle[] cases;
2119 
2120         public CasesHolder(MethodHandle[] cases) {
2121             this.cases = cases;
2122         }
2123     }
2124 
2125     static MethodHandle makeTableSwitch(MethodType type, MethodHandle defaultCase, MethodHandle[] caseActions) {
2126         MethodType varargsType = type.changeReturnType(Object[].class);
2127         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2128 
2129         MethodHandle unboxResult = unboxResultHandle(type.returnType());
2130 
2131         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2132         LambdaForm form = makeTableSwitchForm(type.basicType(), data, caseActions.length);
2133         BoundMethodHandle mh;
2134         CasesHolder caseHolder =  new CasesHolder(caseActions);
2135         try {
2136             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) defaultCase, (Object) collectArgs,
2137                                                                 (Object) unboxResult, (Object) caseHolder);
2138         } catch (Throwable ex) {
2139             throw uncaughtException(ex);
2140         }
2141         assert(mh.type() == type);
2142         return mh;
2143     }
2144 
2145     private static class TableSwitchCacheKey {
2146         private static final Map<TableSwitchCacheKey, LambdaForm> CACHE = new ConcurrentHashMap<>();
2147 
2148         private final MethodType basicType;
2149         private final int numberOfCases;
2150 
2151         public TableSwitchCacheKey(MethodType basicType, int numberOfCases) {
2152             this.basicType = basicType;
2153             this.numberOfCases = numberOfCases;
2154         }
2155 
2156         @Override
2157         public boolean equals(Object o) {
2158             if (this == o) return true;
2159             if (o == null || getClass() != o.getClass()) return false;
2160             TableSwitchCacheKey that = (TableSwitchCacheKey) o;
2161             return numberOfCases == that.numberOfCases && Objects.equals(basicType, that.basicType);
2162         }
2163         @Override
2164         public int hashCode() {
2165             return Objects.hash(basicType, numberOfCases);
2166         }
2167     }
2168 
2169     private static LambdaForm makeTableSwitchForm(MethodType basicType, BoundMethodHandle.SpeciesData data,
2170                                                   int numCases) {
2171         MethodType lambdaType = basicType.invokerType();
2172 
2173         // We need to cache based on the basic type X number of cases,
2174         // since the number of cases is used when generating bytecode.
2175         // This also means that we can't use the cache in MethodTypeForm,
2176         // which only uses the basic type as a key.
2177         TableSwitchCacheKey key = new TableSwitchCacheKey(basicType, numCases);
2178         LambdaForm lform = TableSwitchCacheKey.CACHE.get(key);
2179         if (lform != null) {
2180             return lform;
2181         }
2182 
2183         final int THIS_MH       = 0;
2184         final int ARG_BASE      = 1;  // start of incoming arguments
2185         final int ARG_LIMIT     = ARG_BASE + basicType.parameterCount();
2186         final int ARG_SWITCH_ON = ARG_BASE;
2187         assert ARG_SWITCH_ON < ARG_LIMIT;
2188 
2189         int nameCursor = ARG_LIMIT;
2190         final int GET_COLLECT_ARGS  = nameCursor++;
2191         final int GET_DEFAULT_CASE  = nameCursor++;
2192         final int GET_UNBOX_RESULT  = nameCursor++;
2193         final int GET_CASES         = nameCursor++;
2194         final int BOXED_ARGS        = nameCursor++;
2195         final int TABLE_SWITCH      = nameCursor++;
2196         final int UNBOXED_RESULT    = nameCursor++;
2197 
2198         int fieldCursor = 0;
2199         final int FIELD_DEFAULT_CASE  = fieldCursor++;
2200         final int FIELD_COLLECT_ARGS  = fieldCursor++;
2201         final int FIELD_UNBOX_RESULT  = fieldCursor++;
2202         final int FIELD_CASES         = fieldCursor++;
2203 
2204         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
2205 
2206         names[THIS_MH] = names[THIS_MH].withConstraint(data);
2207         names[GET_DEFAULT_CASE] = new Name(data.getterFunction(FIELD_DEFAULT_CASE), names[THIS_MH]);
2208         names[GET_COLLECT_ARGS]  = new Name(data.getterFunction(FIELD_COLLECT_ARGS), names[THIS_MH]);
2209         names[GET_UNBOX_RESULT]  = new Name(data.getterFunction(FIELD_UNBOX_RESULT), names[THIS_MH]);
2210         names[GET_CASES] = new Name(data.getterFunction(FIELD_CASES), names[THIS_MH]);
2211 
2212         {
2213             MethodType collectArgsType = basicType.changeReturnType(Object.class);
2214             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2215             Object[] args = new Object[invokeBasic.type().parameterCount()];
2216             args[0] = names[GET_COLLECT_ARGS];
2217             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
2218             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TABLE_SWITCH, numCases)), args);
2219         }
2220 
2221         {
2222             Object[] tfArgs = new Object[]{
2223                 names[ARG_SWITCH_ON], names[GET_DEFAULT_CASE], names[GET_CASES], names[BOXED_ARGS]};
2224             names[TABLE_SWITCH] = new Name(getFunction(NF_tableSwitch), tfArgs);
2225         }
2226 
2227         {
2228             MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2229             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[TABLE_SWITCH]};
2230             names[UNBOXED_RESULT] = new Name(invokeBasic, unboxArgs);
2231         }
2232 
2233         lform = LambdaForm.create(lambdaType.parameterCount(), names, Kind.TABLE_SWITCH);
2234         LambdaForm prev = TableSwitchCacheKey.CACHE.putIfAbsent(key, lform);
2235         return prev != null ? prev : lform;
2236     }
2237 
2238     @Hidden
2239     static Object tableSwitch(int input, MethodHandle defaultCase, CasesHolder holder, Object[] args) throws Throwable {
2240         MethodHandle[] caseActions = holder.cases;
2241         MethodHandle selectedCase;
2242         if (input < 0 || input >= caseActions.length) {
2243             selectedCase = defaultCase;
2244         } else {
2245             selectedCase = caseActions[input];
2246         }
2247         return selectedCase.invokeWithArguments(args);
2248     }
2249 
2250     // Indexes into constant method handles:
2251     static final int
2252             MH_cast                  =              0,
2253             MH_selectAlternative     =              1,
2254             MH_countedLoopPred       =              2,
2255             MH_countedLoopStep       =              3,
2256             MH_initIterator          =              4,
2257             MH_iteratePred           =              5,
2258             MH_iterateNext           =              6,
2259             MH_Array_newInstance     =              7,
2260             MH_VarHandles_handleCheckedExceptions = 8,
2261             MH_LIMIT                 =              9;
2262 
2263     static MethodHandle getConstantHandle(int idx) {
2264         MethodHandle handle = HANDLES[idx];
2265         if (handle != null) {
2266             return handle;
2267         }
2268         return setCachedHandle(idx, makeConstantHandle(idx));
2269     }
2270 
2271     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2272         // Simulate a CAS, to avoid racy duplication of results.
2273         MethodHandle prev = HANDLES[idx];
2274         if (prev != null) {
2275             return prev;
2276         }
2277         HANDLES[idx] = method;
2278         return method;
2279     }
2280 
2281     // Local constant method handles:
2282     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2283 
2284     private static MethodHandle makeConstantHandle(int idx) {
2285         try {
2286             switch (idx) {
2287                 case MH_cast:
2288                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2289                             MethodType.methodType(Object.class, Object.class));
2290                 case MH_selectAlternative:
2291                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2292                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
2293                 case MH_countedLoopPred:
2294                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2295                             MethodType.methodType(boolean.class, int.class, int.class));
2296                 case MH_countedLoopStep:
2297                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2298                             MethodType.methodType(int.class, int.class, int.class));
2299                 case MH_initIterator:
2300                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2301                             MethodType.methodType(Iterator.class, Iterable.class));
2302                 case MH_iteratePred:
2303                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2304                             MethodType.methodType(boolean.class, Iterator.class));
2305                 case MH_iterateNext:
2306                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2307                             MethodType.methodType(Object.class, Iterator.class));
2308                 case MH_Array_newInstance:
2309                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2310                             MethodType.methodType(Object.class, Class.class, int.class));
2311                 case MH_VarHandles_handleCheckedExceptions:
2312                     return IMPL_LOOKUP.findStatic(VarHandles.class, "handleCheckedExceptions",
2313                             MethodType.methodType(void.class, Throwable.class));
2314             }
2315         } catch (ReflectiveOperationException ex) {
2316             throw newInternalError(ex);
2317         }
2318         throw newInternalError("Unknown function index: " + idx);
2319     }
2320 }