1 /*
   2  * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangInvokeAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.constant.MethodTypeDescImpl;
  31 import jdk.internal.constant.ReferenceClassDescImpl;
  32 import jdk.internal.foreign.abi.NativeEntryPoint;
  33 import jdk.internal.reflect.CallerSensitive;
  34 import jdk.internal.reflect.Reflection;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import jdk.internal.vm.annotation.Hidden;
  37 import jdk.internal.vm.annotation.Stable;
  38 import sun.invoke.empty.Empty;
  39 import sun.invoke.util.ValueConversions;
  40 import sun.invoke.util.VerifyType;
  41 import sun.invoke.util.Wrapper;
  42 
  43 import java.lang.classfile.ClassFile;
  44 import java.lang.constant.ClassDesc;
  45 import java.lang.invoke.MethodHandles.Lookup;
  46 import java.lang.reflect.Array;
  47 import java.lang.reflect.Constructor;
  48 import java.lang.reflect.Field;
  49 import java.nio.ByteOrder;
  50 import java.util.Arrays;
  51 import java.util.Collections;
  52 import java.util.HashMap;
  53 import java.util.Iterator;
  54 import java.util.List;
  55 import java.util.Map;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.function.Function;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.classfile.ClassFile.*;
  63 import static java.lang.constant.ConstantDescs.*;
  64 import static java.lang.invoke.LambdaForm.*;
  65 import static java.lang.invoke.MethodHandleNatives.Constants.MN_CALLER_SENSITIVE;
  66 import static java.lang.invoke.MethodHandleNatives.Constants.MN_HIDDEN_MEMBER;
  67 import static java.lang.invoke.MethodHandleNatives.Constants.NESTMATE_CLASS;
  68 import static java.lang.invoke.MethodHandleStatics.*;
  69 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  70 import static java.lang.invoke.MethodHandles.Lookup.ClassOption.NESTMATE;
  71 
  72 /**
  73  * Trusted implementation code for MethodHandle.
  74  * @author jrose
  75  */
  76 /*non-public*/
  77 abstract class MethodHandleImpl {
  78 
  79     /// Factory methods to create method handles:
  80 
  81     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  82         if (arrayClass == Object[].class) {
  83             return ArrayAccess.objectAccessor(access);
  84         }
  85         if (!arrayClass.isArray())
  86             throw newIllegalArgumentException("not an array: "+arrayClass);
  87         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  88         int cacheIndex = ArrayAccess.cacheIndex(access);
  89         MethodHandle mh = cache[cacheIndex];
  90         if (mh != null)  return mh;
  91         mh = ArrayAccessor.getAccessor(arrayClass, access);
  92         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  93         if (mh.type() != correctType) {
  94             assert(mh.type().parameterType(0) == Object[].class);
  95             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  96             /* if access == GET */ assert(access != ArrayAccess.GET ||
  97                     (mh.type().returnType() == Object.class &&
  98                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
  99             // safe to view non-strictly, because element type follows from array type
 100             mh = mh.viewAsType(correctType, false);
 101         }
 102         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
 103         // Atomically update accessor cache.
 104         synchronized(cache) {
 105             if (cache[cacheIndex] == null) {
 106                 cache[cacheIndex] = mh;
 107             } else {
 108                 // Throw away newly constructed accessor and use cached version.
 109                 mh = cache[cacheIndex];
 110             }
 111         }
 112         return mh;
 113     }
 114 
 115     enum ArrayAccess {
 116         GET, SET, LENGTH;
 117 
 118         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 119         // final fields.
 120 
 121         static String opName(ArrayAccess a) {
 122             return switch (a) {
 123                 case GET    -> "getElement";
 124                 case SET    -> "setElement";
 125                 case LENGTH -> "length";
 126                 default -> throw unmatchedArrayAccess(a);
 127             };
 128         }
 129 
 130         static MethodHandle objectAccessor(ArrayAccess a) {
 131             return switch (a) {
 132                 case GET    -> ArrayAccessor.OBJECT_ARRAY_GETTER;
 133                 case SET    -> ArrayAccessor.OBJECT_ARRAY_SETTER;
 134                 case LENGTH -> ArrayAccessor.OBJECT_ARRAY_LENGTH;
 135                 default -> throw unmatchedArrayAccess(a);
 136             };
 137         }
 138 
 139         static int cacheIndex(ArrayAccess a) {
 140             return switch (a) {
 141                 case GET    -> ArrayAccessor.GETTER_INDEX;
 142                 case SET    -> ArrayAccessor.SETTER_INDEX;
 143                 case LENGTH -> ArrayAccessor.LENGTH_INDEX;
 144                 default -> throw unmatchedArrayAccess(a);
 145             };
 146         }
 147 
 148         static Intrinsic intrinsic(ArrayAccess a) {
 149             return switch (a) {
 150                 case GET    -> Intrinsic.ARRAY_LOAD;
 151                 case SET    -> Intrinsic.ARRAY_STORE;
 152                 case LENGTH -> Intrinsic.ARRAY_LENGTH;
 153                 default -> throw unmatchedArrayAccess(a);
 154             };
 155         }
 156     }
 157 
 158     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 159         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 160     }
 161 
 162     static final class ArrayAccessor {
 163         /// Support for array element and length access
 164         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 165         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 166                 = new ClassValue<MethodHandle[]>() {
 167                     @Override
 168                     protected MethodHandle[] computeValue(Class<?> type) {
 169                         return new MethodHandle[INDEX_LIMIT];
 170                     }
 171                 };
 172         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 173         static {
 174             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 175             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 176             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 177             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 178 
 179             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 180             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 181             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 182         }
 183 
 184         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 185         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 186         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 187         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 188         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 189         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 190         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 191         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 192         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 193 
 194         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 195         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 196         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 197         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 198         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 199         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 200         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 201         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 202         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 203 
 204         static int     lengthI(int[]     a)                       { return a.length; }
 205         static int     lengthJ(long[]    a)                       { return a.length; }
 206         static int     lengthF(float[]   a)                       { return a.length; }
 207         static int     lengthD(double[]  a)                       { return a.length; }
 208         static int     lengthZ(boolean[] a)                       { return a.length; }
 209         static int     lengthB(byte[]    a)                       { return a.length; }
 210         static int     lengthS(short[]   a)                       { return a.length; }
 211         static int     lengthC(char[]    a)                       { return a.length; }
 212         static int     lengthL(Object[]  a)                       { return a.length; }
 213 
 214         static String name(Class<?> arrayClass, ArrayAccess access) {
 215             Class<?> elemClass = arrayClass.getComponentType();
 216             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 217             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 218         }
 219         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 220             Class<?> elemClass = arrayClass.getComponentType();
 221             Class<?> arrayArgClass = arrayClass;
 222             if (!elemClass.isPrimitive()) {
 223                 arrayArgClass = Object[].class;
 224                 elemClass = Object.class;
 225             }
 226             return switch (access) {
 227                 case GET    -> MethodType.methodType(elemClass, arrayArgClass, int.class);
 228                 case SET    -> MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 229                 case LENGTH -> MethodType.methodType(int.class, arrayArgClass);
 230                 default -> throw unmatchedArrayAccess(access);
 231             };
 232         }
 233         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 234             Class<?> elemClass = arrayClass.getComponentType();
 235             return switch (access) {
 236                 case GET    -> MethodType.methodType(elemClass, arrayClass, int.class);
 237                 case SET    -> MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 238                 case LENGTH -> MethodType.methodType(int.class, arrayClass);
 239                 default -> throw unmatchedArrayAccess(access);
 240             };
 241         }
 242         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 243             String     name = name(arrayClass, access);
 244             MethodType type = type(arrayClass, access);
 245             try {
 246                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 247             } catch (ReflectiveOperationException ex) {
 248                 throw uncaughtException(ex);
 249             }
 250         }
 251     }
 252 
 253     /**
 254      * Create a JVM-level adapter method handle to conform the given method
 255      * handle to the similar newType, using only pairwise argument conversions.
 256      * For each argument, convert incoming argument to the exact type needed.
 257      * The argument conversions allowed are casting, boxing and unboxing,
 258      * integral widening or narrowing, and floating point widening or narrowing.
 259      * @param srcType required call type
 260      * @param target original method handle
 261      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 262      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 263      * @return an adapter to the original handle with the desired new type,
 264      *          or the original target if the types are already identical
 265      *          or null if the adaptation cannot be made
 266      */
 267     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 268                                             boolean strict, boolean monobox) {
 269         MethodType dstType = target.type();
 270         if (srcType == dstType)
 271             return target;
 272         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 273     }
 274 
 275     private static int countNonNull(Object[] array) {
 276         int count = 0;
 277         if (array != null) {
 278             for (Object x : array) {
 279                 if (x != null) ++count;
 280             }
 281         }
 282         return count;
 283     }
 284 
 285     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 286                                                     boolean strict, boolean monobox) {
 287         // In method types arguments start at index 0, while the LF
 288         // editor have the MH receiver at position 0 - adjust appropriately.
 289         final int MH_RECEIVER_OFFSET = 1;
 290         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 291         int convCount = countNonNull(convSpecs);
 292         if (convCount == 0)
 293             return target.viewAsType(srcType, strict);
 294         MethodType basicSrcType = srcType.basicType();
 295         MethodType midType = target.type().basicType();
 296         BoundMethodHandle mh = target.rebind();
 297 
 298         // Match each unique conversion to the positions at which it is to be applied
 299         HashMap<Object, int[]> convSpecMap = HashMap.newHashMap(convCount);
 300         for (int i = 0; i < convSpecs.length - MH_RECEIVER_OFFSET; i++) {
 301             Object convSpec = convSpecs[i];
 302             if (convSpec == null) continue;
 303             int[] positions = convSpecMap.get(convSpec);
 304             if (positions == null) {
 305                 positions = new int[] { i + MH_RECEIVER_OFFSET };
 306             } else {
 307                 positions = Arrays.copyOf(positions, positions.length + 1);
 308                 positions[positions.length - 1] = i + MH_RECEIVER_OFFSET;
 309             }
 310             convSpecMap.put(convSpec, positions);
 311         }
 312         for (var entry : convSpecMap.entrySet()) {
 313             Object convSpec = entry.getKey();
 314 
 315             MethodHandle fn;
 316             if (convSpec instanceof Class) {
 317                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 318             } else {
 319                 fn = (MethodHandle) convSpec;
 320             }
 321             int[] positions = entry.getValue();
 322             Class<?> newType = basicSrcType.parameterType(positions[0] - MH_RECEIVER_OFFSET);
 323             BasicType newBasicType = BasicType.basicType(newType);
 324             convCount -= positions.length;
 325             if (convCount == 0) {
 326                 midType = srcType;
 327             } else {
 328                 Class<?>[] ptypes = midType.ptypes().clone();
 329                 for (int pos : positions) {
 330                     ptypes[pos - 1] = newType;
 331                 }
 332                 midType = MethodType.methodType(midType.rtype(), ptypes, true);
 333             }
 334             LambdaForm form2;
 335             if (positions.length > 1) {
 336                 form2 = mh.editor().filterRepeatedArgumentForm(newBasicType, positions);
 337             } else {
 338                 form2 = mh.editor().filterArgumentForm(positions[0], newBasicType);
 339             }
 340             mh = mh.copyWithExtendL(midType, form2, fn);
 341         }
 342         Object convSpec = convSpecs[convSpecs.length - 1];
 343         if (convSpec != null) {
 344             MethodHandle fn;
 345             if (convSpec instanceof Class) {
 346                 if (convSpec == void.class)
 347                     fn = null;
 348                 else
 349                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 350             } else {
 351                 fn = (MethodHandle) convSpec;
 352             }
 353             Class<?> newType = basicSrcType.returnType();
 354             assert(--convCount == 0);
 355             midType = srcType;
 356             if (fn != null) {
 357                 mh = mh.rebind();  // rebind if too complex
 358                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 359                 mh = mh.copyWithExtendL(midType, form2, fn);
 360             } else {
 361                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 362                 mh = mh.copyWith(midType, form2);
 363             }
 364         }
 365         assert(convCount == 0);
 366         assert(mh.type().equals(srcType));
 367         return mh;
 368     }
 369 
 370     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 371                                             boolean strict, boolean monobox) {
 372         final int INARG_COUNT = srcType.parameterCount();
 373         Object[] convSpecs = null;
 374         for (int i = 0; i <= INARG_COUNT; i++) {
 375             boolean isRet = (i == INARG_COUNT);
 376             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 377             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 378             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 379                 if (convSpecs == null) {
 380                     convSpecs = new Object[INARG_COUNT + 1];
 381                 }
 382                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 383             }
 384         }
 385         return convSpecs;
 386     }
 387     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 388                                             boolean strict) {
 389         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 390     }
 391 
 392     /**
 393      * Find a conversion function from the given source to the given destination.
 394      * This conversion function will be used as a LF NamedFunction.
 395      * Return a Class object if a simple cast is needed.
 396      * Return void.class if void is involved.
 397      */
 398     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 399         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 400         if (dst == void.class)
 401             return dst;
 402         MethodHandle fn;
 403         if (src.isPrimitive()) {
 404             if (src == void.class) {
 405                 return void.class;  // caller must recognize this specially
 406             } else if (dst.isPrimitive()) {
 407                 // Examples: int->byte, byte->int, boolean->int (!strict)
 408                 fn = ValueConversions.convertPrimitive(src, dst);
 409             } else {
 410                 // Examples: int->Integer, boolean->Object, float->Number
 411                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 412                 fn = ValueConversions.boxExact(wsrc);
 413                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 414                 assert(fn.type().returnType() == wsrc.wrapperType());
 415                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 416                     // Corner case, such as int->Long, which will probably fail.
 417                     MethodType mt = MethodType.methodType(dst, src);
 418                     if (strict)
 419                         fn = fn.asType(mt);
 420                     else
 421                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 422                 }
 423             }
 424         } else if (dst.isPrimitive()) {
 425             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 426             if (monobox || src == wdst.wrapperType()) {
 427                 // Use a strongly-typed unboxer, if possible.
 428                 fn = ValueConversions.unboxExact(wdst, strict);
 429             } else {
 430                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 431                 // must include additional conversions
 432                 // src must be examined at runtime, to detect Byte, Character, etc.
 433                 fn = (strict
 434                         ? ValueConversions.unboxWiden(wdst)
 435                         : ValueConversions.unboxCast(wdst));
 436             }
 437         } else {
 438             // Simple reference conversion.
 439             // Note:  Do not check for a class hierarchy relation
 440             // between src and dst.  In all cases a 'null' argument
 441             // will pass the cast conversion.
 442             return dst;
 443         }
 444         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 445         return fn;
 446     }
 447 
 448     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 449         MethodType type = target.type();
 450         int last = type.parameterCount() - 1;
 451         if (type.parameterType(last) != arrayType)
 452             target = target.asType(type.changeParameterType(last, arrayType));
 453         target = target.asFixedArity();  // make sure this attribute is turned off
 454         return new AsVarargsCollector(target, arrayType);
 455     }
 456 
 457     static final class AsVarargsCollector extends DelegatingMethodHandle {
 458         private final MethodHandle target;
 459         private final Class<?> arrayType;
 460         private MethodHandle asCollectorCache;
 461 
 462         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 463             this(target.type(), target, arrayType);
 464         }
 465         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 466             super(type, target);
 467             this.target = target;
 468             this.arrayType = arrayType;
 469         }
 470 
 471         @Override
 472         public boolean isVarargsCollector() {
 473             return true;
 474         }
 475 
 476         @Override
 477         protected MethodHandle getTarget() {
 478             return target;
 479         }
 480 
 481         @Override
 482         public MethodHandle asFixedArity() {
 483             return target;
 484         }
 485 
 486         @Override
 487         MethodHandle setVarargs(MemberName member) {
 488             if (member.isVarargs())  return this;
 489             return asFixedArity();
 490         }
 491 
 492         @Override
 493         public MethodHandle withVarargs(boolean makeVarargs) {
 494             if (makeVarargs)  return this;
 495             return asFixedArity();
 496         }
 497 
 498         @Override
 499         public MethodHandle asTypeUncached(MethodType newType) {
 500             MethodType type = this.type();
 501             int collectArg = type.parameterCount() - 1;
 502             int newArity = newType.parameterCount();
 503             if (newArity == collectArg+1 &&
 504                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 505                 // if arity and trailing parameter are compatible, do normal thing
 506                 return asFixedArity().asType(newType);
 507             }
 508             // check cache
 509             MethodHandle acc = asCollectorCache;
 510             if (acc != null && acc.type().parameterCount() == newArity)
 511                 return acc.asType(newType);
 512             // build and cache a collector
 513             int arrayLength = newArity - collectArg;
 514             MethodHandle collector;
 515             try {
 516                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 517                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 518             } catch (IllegalArgumentException ex) {
 519                 throw new WrongMethodTypeException("cannot build collector", ex);
 520             }
 521             asCollectorCache = collector;
 522             return collector.asType(newType);
 523         }
 524 
 525         @Override
 526         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 527             super.viewAsTypeChecks(newType, true);
 528             if (strict) return true;
 529             // extra assertion for non-strict checks:
 530             assert (type().lastParameterType().getComponentType()
 531                     .isAssignableFrom(
 532                             newType.lastParameterType().getComponentType()))
 533                     : Arrays.asList(this, newType);
 534             return true;
 535         }
 536 
 537         @Override
 538         public Object invokeWithArguments(Object... arguments) throws Throwable {
 539             MethodType type = this.type();
 540             int argc;
 541             final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
 542             if (arguments == null
 543                     || (argc = arguments.length) <= MAX_SAFE
 544                     || argc < type.parameterCount()) {
 545                 return super.invokeWithArguments(arguments);
 546             }
 547 
 548             // a jumbo invocation requires more explicit reboxing of the trailing arguments
 549             int uncollected = type.parameterCount() - 1;
 550             Class<?> elemType = arrayType.getComponentType();
 551             int collected = argc - uncollected;
 552             Object collArgs = (elemType == Object.class)
 553                 ? new Object[collected] : Array.newInstance(elemType, collected);
 554             if (!elemType.isPrimitive()) {
 555                 // simple cast:  just do some casting
 556                 try {
 557                     System.arraycopy(arguments, uncollected, collArgs, 0, collected);
 558                 } catch (ArrayStoreException ex) {
 559                     return super.invokeWithArguments(arguments);
 560                 }
 561             } else {
 562                 // corner case of flat array requires reflection (or specialized copy loop)
 563                 MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 564                 try {
 565                     for (int i = 0; i < collected; i++) {
 566                         arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
 567                     }
 568                 } catch (WrongMethodTypeException|ClassCastException ex) {
 569                     return super.invokeWithArguments(arguments);
 570                 }
 571             }
 572 
 573             // chop the jumbo list down to size and call in non-varargs mode
 574             Object[] newArgs = new Object[uncollected + 1];
 575             System.arraycopy(arguments, 0, newArgs, 0, uncollected);
 576             newArgs[uncollected] = collArgs;
 577             return asFixedArity().invokeWithArguments(newArgs);
 578         }
 579     }
 580 
 581     static void checkSpreadArgument(Object av, int n) {
 582         if (av == null && n == 0) {
 583             return;
 584         } else if (av == null) {
 585             throw new NullPointerException("null array reference");
 586         } else if (av instanceof Object[] array) {
 587             int len = array.length;
 588             if (len == n)  return;
 589         } else {
 590             int len = java.lang.reflect.Array.getLength(av);
 591             if (len == n)  return;
 592         }
 593         // fall through to error:
 594         throw newIllegalArgumentException("array is not of length "+n);
 595     }
 596 
 597     @Hidden
 598     static MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 599         if (testResult) {
 600             return target;
 601         } else {
 602             return fallback;
 603         }
 604     }
 605 
 606     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 607     @Hidden
 608     @jdk.internal.vm.annotation.IntrinsicCandidate
 609     static boolean profileBoolean(boolean result, int[] counters) {
 610         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 611         int idx = result ? 1 : 0;
 612         try {
 613             counters[idx] = Math.addExact(counters[idx], 1);
 614         } catch (ArithmeticException e) {
 615             // Avoid continuous overflow by halving the problematic count.
 616             counters[idx] = counters[idx] / 2;
 617         }
 618         return result;
 619     }
 620 
 621     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 622     @Hidden
 623     @jdk.internal.vm.annotation.IntrinsicCandidate
 624     static boolean isCompileConstant(Object obj) {
 625         return false;
 626     }
 627 
 628     static MethodHandle makeGuardWithTest(MethodHandle test,
 629                                    MethodHandle target,
 630                                    MethodHandle fallback) {
 631         MethodType type = target.type();
 632         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 633         MethodType basicType = type.basicType();
 634         LambdaForm form = makeGuardWithTestForm(basicType);
 635         BoundMethodHandle mh;
 636         try {
 637             if (PROFILE_GWT) {
 638                 int[] counts = new int[2];
 639                 mh = (BoundMethodHandle)
 640                         BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
 641                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 642             } else {
 643                 mh = (BoundMethodHandle)
 644                         BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
 645                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 646             }
 647         } catch (Throwable ex) {
 648             throw uncaughtException(ex);
 649         }
 650         assert(mh.type() == type);
 651         return mh;
 652     }
 653 
 654 
 655     static MethodHandle profile(MethodHandle target) {
 656         if (DONT_INLINE_THRESHOLD >= 0) {
 657             return makeBlockInliningWrapper(target);
 658         } else {
 659             return target;
 660         }
 661     }
 662 
 663     /**
 664      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 665      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 666      */
 667     static MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 668         LambdaForm lform;
 669         if (DONT_INLINE_THRESHOLD > 0) {
 670             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 671         } else {
 672             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 673         }
 674         return new CountingWrapper(target, lform,
 675                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 676                                    DONT_INLINE_THRESHOLD);
 677     }
 678 
 679     private static final class Makers {
 680         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 681         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 682             @Override
 683             public LambdaForm apply(MethodHandle target) {
 684                 return DelegatingMethodHandle.makeReinvokerForm(target,
 685                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 686                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 687             }
 688         };
 689 
 690         /** Constructs simple reinvoker lambda form for a particular method handle */
 691         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 692             @Override
 693             public LambdaForm apply(MethodHandle target) {
 694                 return DelegatingMethodHandle.makeReinvokerForm(target,
 695                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 696             }
 697         };
 698 
 699         /** Maker of type-polymorphic varargs */
 700         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 701             @Override
 702             protected MethodHandle[] computeValue(Class<?> type) {
 703                 return new MethodHandle[MAX_JVM_ARITY + 1];
 704             }
 705         };
 706     }
 707 
 708     /**
 709      * Counting method handle. It has 2 states: counting and non-counting.
 710      * It is in counting state for the first n invocations and then transitions to non-counting state.
 711      * Behavior in counting and non-counting states is determined by lambda forms produced by
 712      * countingFormProducer & nonCountingFormProducer respectively.
 713      */
 714     static final class CountingWrapper extends DelegatingMethodHandle {
 715         private final MethodHandle target;
 716         private int count;
 717         private Function<MethodHandle, LambdaForm> countingFormProducer;
 718         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 719         private volatile boolean isCounting;
 720 
 721         private CountingWrapper(MethodHandle target, LambdaForm lform,
 722                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 723                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 724                                 int count) {
 725             super(target.type(), lform);
 726             this.target = target;
 727             this.count = count;
 728             this.countingFormProducer = countingFromProducer;
 729             this.nonCountingFormProducer = nonCountingFormProducer;
 730             this.isCounting = (count > 0);
 731         }
 732 
 733         @Hidden
 734         @Override
 735         protected MethodHandle getTarget() {
 736             return target;
 737         }
 738 
 739         @Override
 740         public MethodHandle asTypeUncached(MethodType newType) {
 741             MethodHandle newTarget = target.asType(newType);
 742             MethodHandle wrapper;
 743             if (isCounting) {
 744                 LambdaForm lform;
 745                 lform = countingFormProducer.apply(newTarget);
 746                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 747             } else {
 748                 wrapper = newTarget; // no need for a counting wrapper anymore
 749             }
 750             return wrapper;
 751         }
 752 
 753         boolean countDown() {
 754             int c = count;
 755             target.maybeCustomize(); // customize if counting happens for too long
 756             if (c <= 1) {
 757                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 758                 if (isCounting) {
 759                     isCounting = false;
 760                     return true;
 761                 } else {
 762                     return false;
 763                 }
 764             } else {
 765                 count = c - 1;
 766                 return false;
 767             }
 768         }
 769 
 770         @Hidden
 771         static void maybeStopCounting(Object o1) {
 772              final CountingWrapper wrapper = (CountingWrapper) o1;
 773              if (wrapper.countDown()) {
 774                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 775                  wrapper.updateForm(new Function<>() {
 776                      public LambdaForm apply(LambdaForm oldForm) {
 777                          LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 778                          lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 779                          return lform;
 780                      }});
 781              }
 782         }
 783 
 784         static final NamedFunction NF_maybeStopCounting;
 785         static {
 786             Class<?> THIS_CLASS = CountingWrapper.class;
 787             try {
 788                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 789             } catch (ReflectiveOperationException ex) {
 790                 throw newInternalError(ex);
 791             }
 792         }
 793     }
 794 
 795     static LambdaForm makeGuardWithTestForm(MethodType basicType) {
 796         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 797         if (lform != null)  return lform;
 798         final int THIS_MH      = 0;  // the BMH_LLL
 799         final int ARG_BASE     = 1;  // start of incoming arguments
 800         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 801         int nameCursor = ARG_LIMIT;
 802         final int GET_TEST     = nameCursor++;
 803         final int GET_TARGET   = nameCursor++;
 804         final int GET_FALLBACK = nameCursor++;
 805         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 806         final int CALL_TEST    = nameCursor++;
 807         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 808         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 809         final int SELECT_ALT   = nameCursor++;
 810         final int CALL_TARGET  = nameCursor++;
 811         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 812 
 813         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
 814 
 815         BoundMethodHandle.SpeciesData data =
 816                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 817                                      : BoundMethodHandle.speciesData_LLL();
 818         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 819         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 820         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 821         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 822         if (GET_COUNTERS != -1) {
 823             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 824         }
 825         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 826 
 827         // call test
 828         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 829         invokeArgs[0] = names[GET_TEST];
 830         names[CALL_TEST] = new Name(testType, invokeArgs);
 831 
 832         // profile branch
 833         if (PROFILE != -1) {
 834             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 835         }
 836         // call selectAlternative
 837         names[SELECT_ALT] = new Name(new NamedFunction(
 838                 makeIntrinsic(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE)),
 839                 names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 840 
 841         // call target or fallback
 842         invokeArgs[0] = names[SELECT_ALT];
 843         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 844 
 845         lform = LambdaForm.create(basicType.parameterCount() + 1, names, /*forceInline=*/true, Kind.GUARD);
 846 
 847         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 848     }
 849 
 850     /**
 851      * The LambdaForm shape for catchException combinator is the following:
 852      * <blockquote><pre>{@code
 853      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
 854      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
 855      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
 856      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
 857      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
 858      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
 859      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
 860      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
 861      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
 862      * }</pre></blockquote>
 863      *
 864      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
 865      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
 866      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
 867      *
 868      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
 869      * among catchException combinators with the same basic type.
 870      */
 871     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
 872         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
 873         if (lform != null) {
 874             return lform;
 875         }
 876         final int THIS_MH      = 0;  // the BMH_LLLLL
 877         final int ARG_BASE     = 1;  // start of incoming arguments
 878         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 879 
 880         int nameCursor = ARG_LIMIT;
 881         final int GET_TARGET       = nameCursor++;
 882         final int GET_CLASS        = nameCursor++;
 883         final int GET_CATCHER      = nameCursor++;
 884         final int GET_COLLECT_ARGS = nameCursor++;
 885         final int GET_UNBOX_RESULT = nameCursor++;
 886         final int BOXED_ARGS       = nameCursor++;
 887         final int TRY_CATCH        = nameCursor++;
 888         final int UNBOX_RESULT     = nameCursor++;
 889 
 890         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
 891 
 892         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 893         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
 894         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
 895         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
 896         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
 897         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
 898         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
 899 
 900         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
 901 
 902         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
 903         MethodType collectArgsType = basicType.changeReturnType(Object.class);
 904         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
 905         Object[] args = new Object[invokeBasic.type().parameterCount()];
 906         args[0] = names[GET_COLLECT_ARGS];
 907         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
 908         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.GUARD_WITH_CATCH)), args);
 909 
 910         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
 911         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
 912         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
 913 
 914         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
 915         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
 916         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
 917         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
 918 
 919         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.GUARD_WITH_CATCH);
 920 
 921         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
 922     }
 923 
 924     static MethodHandle makeGuardWithCatch(MethodHandle target,
 925                                     Class<? extends Throwable> exType,
 926                                     MethodHandle catcher) {
 927         MethodType type = target.type();
 928         LambdaForm form = makeGuardWithCatchForm(type.basicType());
 929 
 930         // Prepare auxiliary method handles used during LambdaForm interpretation.
 931         // Box arguments and wrap them into Object[]: ValueConversions.array().
 932         MethodType varargsType = type.changeReturnType(Object[].class);
 933         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
 934         MethodHandle unboxResult = unboxResultHandle(type.returnType());
 935 
 936         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 937         BoundMethodHandle mh;
 938         try {
 939             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType,
 940                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
 941         } catch (Throwable ex) {
 942             throw uncaughtException(ex);
 943         }
 944         assert(mh.type() == type);
 945         return mh;
 946     }
 947 
 948     /**
 949      * Intrinsified during LambdaForm compilation
 950      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
 951      */
 952     @Hidden
 953     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
 954                                  Object... av) throws Throwable {
 955         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
 956         try {
 957             return target.asFixedArity().invokeWithArguments(av);
 958         } catch (Throwable t) {
 959             if (!exType.isInstance(t)) throw t;
 960             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
 961         }
 962     }
 963 
 964     /** Prepend elements to an array. */
 965     @Hidden
 966     private static Object[] prepend(Object[] array, Object... elems) {
 967         int nArray = array.length;
 968         int nElems = elems.length;
 969         Object[] newArray = new Object[nArray + nElems];
 970         System.arraycopy(elems, 0, newArray, 0, nElems);
 971         System.arraycopy(array, 0, newArray, nElems, nArray);
 972         return newArray;
 973     }
 974 
 975     static MethodHandle throwException(MethodType type) {
 976         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
 977         int arity = type.parameterCount();
 978         if (arity > 1) {
 979             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
 980             mh = MethodHandles.dropArgumentsTrusted(mh, 1, Arrays.copyOfRange(type.ptypes(), 1, arity));
 981             return mh;
 982         }
 983         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
 984     }
 985 
 986     static <T extends Throwable> Empty throwException(T t) throws T { throw t; }
 987 
 988     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
 989     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
 990         assert(method.isMethodHandleInvoke());
 991         int idx = switch (method.getName()) {
 992             case "invoke"      -> 0;
 993             case "invokeExact" -> 1;
 994             default -> throw new InternalError(method.getName());
 995         };
 996         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
 997         if (mh != null)  return mh;
 998         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
 999                                                 MethodHandle.class, Object[].class);
1000         mh = throwException(type);
1001         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1002         if (!method.getInvocationType().equals(mh.type()))
1003             throw new InternalError(method.toString());
1004         mh = mh.withInternalMemberName(method, false);
1005         mh = mh.withVarargs(true);
1006         assert(method.isVarargs());
1007         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1008         return mh;
1009     }
1010     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1011         // TODO caching, is it necessary?
1012         MethodType type = MethodType.methodType(method.getMethodType().returnType(),
1013                                                 UnsupportedOperationException.class,
1014                                                 VarHandle.class, Object[].class);
1015         MethodHandle mh = throwException(type);
1016         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1017         if (!method.getInvocationType().equals(mh.type()))
1018             throw new InternalError(method.toString());
1019         mh = mh.withInternalMemberName(method, false);
1020         mh = mh.asVarargsCollector(Object[].class);
1021         assert(method.isVarargs());
1022         return mh;
1023     }
1024 
1025     /**
1026      * Create an alias for the method handle which, when called,
1027      * appears to be called from the same class loader and protection domain
1028      * as hostClass.
1029      * This is an expensive no-op unless the method which is called
1030      * is sensitive to its caller.  A small number of system methods
1031      * are in this category, including Class.forName and Method.invoke.
1032      */
1033     static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1034         return BindCaller.bindCaller(mh, hostClass);
1035     }
1036 
1037     // Put the whole mess into its own nested class.
1038     // That way we can lazily load the code and set up the constants.
1039     private static class BindCaller {
1040 
1041         private static final ClassDesc CD_Object_array = ReferenceClassDescImpl.ofValidated("[Ljava/lang/Object;");
1042         private static final MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1043         private static final MethodType REFLECT_INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object.class, Object[].class);
1044 
1045         static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1046             // Code in the boot layer should now be careful while creating method handles or
1047             // functional interface instances created from method references to @CallerSensitive  methods,
1048             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1049             // from the boot layer to untrusted code.
1050             if (hostClass == null
1051                 ||    (hostClass.isArray() ||
1052                        hostClass.isPrimitive() ||
1053                        hostClass.getName().startsWith("java.lang.invoke."))) {
1054                 throw new InternalError();  // does not happen, and should not anyway
1055             }
1056 
1057             MemberName member = mh.internalMemberName();
1058             if (member != null) {
1059                 // Look up the CSM adapter method with the same method name
1060                 // but with an additional caller class parameter.  If present,
1061                 // bind the adapter's method handle with the lookup class as
1062                 // the caller class argument
1063                 MemberName csmAdapter = IMPL_LOOKUP.resolveOrNull(member.getReferenceKind(),
1064                         new MemberName(member.getDeclaringClass(),
1065                                        member.getName(),
1066                                        member.getMethodType().appendParameterTypes(Class.class),
1067                                        member.getReferenceKind()));
1068                 if (csmAdapter != null) {
1069                     assert !csmAdapter.isCallerSensitive();
1070                     MethodHandle dmh = DirectMethodHandle.make(csmAdapter);
1071                     dmh = MethodHandles.insertArguments(dmh, dmh.type().parameterCount() - 1, hostClass);
1072                     dmh = new WrappedMember(dmh, mh.type(), member, mh.isInvokeSpecial(), hostClass);
1073                     return dmh;
1074                 }
1075             }
1076 
1077             // If no adapter method for CSM with an additional Class parameter
1078             // is present, then inject an invoker class that is the caller
1079             // invoking the method handle of the CSM
1080             try {
1081                 return bindCallerWithInjectedInvoker(mh, hostClass);
1082             } catch (ReflectiveOperationException ex) {
1083                 throw uncaughtException(ex);
1084             }
1085         }
1086 
1087         private static MethodHandle bindCallerWithInjectedInvoker(MethodHandle mh, Class<?> hostClass)
1088                 throws ReflectiveOperationException
1089         {
1090             // For simplicity, convert mh to a varargs-like method.
1091             MethodHandle vamh = prepareForInvoker(mh);
1092             // Cache the result of makeInjectedInvoker once per argument class.
1093             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass).invoker();
1094             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1095         }
1096 
1097         private static Class<?> makeInjectedInvoker(Class<?> targetClass) {
1098                 /*
1099                  * The invoker class defined to the same class loader as the lookup class
1100                  * but in an unnamed package so that the class bytes can be cached and
1101                  * reused for any @CSM.
1102                  *
1103                  * @CSM must be public and exported if called by any module.
1104                  */
1105                 String name = targetClass.getName() + "$$InjectedInvoker";
1106                 if (targetClass.isHidden()) {
1107                     // use the original class name
1108                     name = name.replace('/', '_');
1109                 }
1110                 name = name.replace('.', '/');
1111                 Class<?> invokerClass = new Lookup(targetClass)
1112                         .makeHiddenClassDefiner(name, INJECTED_INVOKER_TEMPLATE, dumper(), NESTMATE_CLASS)
1113                         .defineClass(true, targetClass);
1114                 assert checkInjectedInvoker(targetClass, invokerClass);
1115                 return invokerClass;
1116         }
1117 
1118         private static ClassValue<InjectedInvokerHolder> CV_makeInjectedInvoker = new ClassValue<>() {
1119             @Override
1120             protected InjectedInvokerHolder computeValue(Class<?> hostClass) {
1121                 return new InjectedInvokerHolder(makeInjectedInvoker(hostClass));
1122             }
1123         };
1124 
1125         /*
1126          * Returns a method handle of an invoker class injected for reflection
1127          * implementation use with the following signature:
1128          *     reflect_invoke_V(MethodHandle mh, Object target, Object[] args)
1129          *
1130          * Method::invoke on a caller-sensitive method will call
1131          * MethodAccessorImpl::invoke(Object, Object[]) through reflect_invoke_V
1132          *     target.csm(args)
1133          *     NativeMethodAccessorImpl::invoke(target, args)
1134          *     MethodAccessImpl::invoke(target, args)
1135          *     InjectedInvoker::reflect_invoke_V(vamh, target, args);
1136          *     method::invoke(target, args)
1137          *     p.Foo::m
1138          *
1139          * An injected invoker class is a hidden class which has the same
1140          * defining class loader, runtime package, and protection domain
1141          * as the given caller class.
1142          */
1143         static MethodHandle reflectiveInvoker(Class<?> caller) {
1144             return BindCaller.CV_makeInjectedInvoker.get(caller).reflectInvoker();
1145         }
1146 
1147         private static final class InjectedInvokerHolder {
1148             private final Class<?> invokerClass;
1149             // lazily resolved and cached DMH(s) of invoke_V methods
1150             private MethodHandle invoker;
1151             private MethodHandle reflectInvoker;
1152 
1153             private InjectedInvokerHolder(Class<?> invokerClass) {
1154                 this.invokerClass = invokerClass;
1155             }
1156 
1157             private MethodHandle invoker() {
1158                 var mh = invoker;
1159                 if (mh == null) {
1160                     try {
1161                         invoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1162                     } catch (Error | RuntimeException ex) {
1163                         throw ex;
1164                     } catch (Throwable ex) {
1165                         throw new InternalError(ex);
1166                     }
1167                 }
1168                 return mh;
1169             }
1170 
1171             private MethodHandle reflectInvoker() {
1172                 var mh = reflectInvoker;
1173                 if (mh == null) {
1174                     try {
1175                         reflectInvoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "reflect_invoke_V", REFLECT_INVOKER_MT);
1176                     } catch (Error | RuntimeException ex) {
1177                         throw ex;
1178                     } catch (Throwable ex) {
1179                         throw new InternalError(ex);
1180                     }
1181                 }
1182                 return mh;
1183             }
1184         }
1185 
1186         // Adapt mh so that it can be called directly from an injected invoker:
1187         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1188             mh = mh.asFixedArity();
1189             MethodType mt = mh.type();
1190             int arity = mt.parameterCount();
1191             MethodHandle vamh = mh.asType(mt.generic());
1192             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1193             vamh = vamh.asSpreader(Object[].class, arity);
1194             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1195             return vamh;
1196         }
1197 
1198         // Undo the adapter effect of prepareForInvoker:
1199         private static MethodHandle restoreToType(MethodHandle vamh,
1200                                                   MethodHandle original,
1201                                                   Class<?> hostClass) {
1202             MethodType type = original.type();
1203             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1204             MemberName member = original.internalMemberName();
1205             mh = mh.asType(type);
1206             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1207             return mh;
1208         }
1209 
1210         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1211             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1212             try {
1213                 assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1214             } catch (SecurityException ex) {
1215                 // Self-check was blocked by security manager. This is OK.
1216             }
1217             try {
1218                 // Test the invoker to ensure that it really injects into the right place.
1219                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1220                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1221                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1222             } catch (Error|RuntimeException ex) {
1223                 throw ex;
1224             } catch (Throwable ex) {
1225                 throw new InternalError(ex);
1226             }
1227         }
1228 
1229         private static final MethodHandle MH_checkCallerClass;
1230         static {
1231             final Class<?> THIS_CLASS = BindCaller.class;
1232             assert(checkCallerClass(THIS_CLASS));
1233             try {
1234                 MH_checkCallerClass = IMPL_LOOKUP
1235                     .findStatic(THIS_CLASS, "checkCallerClass",
1236                                 MethodType.methodType(boolean.class, Class.class));
1237                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1238             } catch (Throwable ex) {
1239                 throw new InternalError(ex);
1240             }
1241         }
1242 
1243         @CallerSensitive
1244         @ForceInline // to ensure Reflection.getCallerClass optimization
1245         private static boolean checkCallerClass(Class<?> expected) {
1246             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1247             Class<?> actual = Reflection.getCallerClass();
1248             if (actual != expected)
1249                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1250             return true;
1251         }
1252 
1253         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1254 
1255         /** Produces byte code for a class that is used as an injected invoker. */
1256         private static byte[] generateInvokerTemplate() {
1257             // private static class InjectedInvoker {
1258             //     /* this is used to wrap DMH(s) of caller-sensitive methods */
1259             //     @Hidden
1260             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1261             //        return vamh.invokeExact(args);
1262             //     }
1263             //     /* this is used in caller-sensitive reflective method accessor */
1264             //     @Hidden
1265             //     static Object reflect_invoke_V(MethodHandle vamh, Object target, Object[] args) throws Throwable {
1266             //        return vamh.invokeExact(target, args);
1267             //     }
1268             // }
1269             // }
1270             return ClassFile.of().build(ReferenceClassDescImpl.ofValidated("LInjectedInvoker;"), clb -> clb
1271                     .withFlags(ACC_PRIVATE | ACC_SUPER)
1272                     .withMethodBody(
1273                         "invoke_V",
1274                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object_array),
1275                         ACC_STATIC,
1276                         cob -> cob.aload(0)
1277                                   .aload(1)
1278                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object_array))
1279                                   .areturn())
1280                     .withMethodBody(
1281                         "reflect_invoke_V",
1282                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object, CD_Object_array),
1283                         ACC_STATIC,
1284                         cob -> cob.aload(0)
1285                                   .aload(1)
1286                                   .aload(2)
1287                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object, CD_Object_array))
1288                                   .areturn()));
1289         }
1290     }
1291 
1292     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1293     static final class WrappedMember extends DelegatingMethodHandle {
1294         private final MethodHandle target;
1295         private final MemberName member;
1296         private final Class<?> callerClass;
1297         private final boolean isInvokeSpecial;
1298 
1299         private WrappedMember(MethodHandle target, MethodType type,
1300                               MemberName member, boolean isInvokeSpecial,
1301                               Class<?> callerClass) {
1302             super(type, target);
1303             this.target = target;
1304             this.member = member;
1305             this.callerClass = callerClass;
1306             this.isInvokeSpecial = isInvokeSpecial;
1307         }
1308 
1309         @Override
1310         MemberName internalMemberName() {
1311             return member;
1312         }
1313         @Override
1314         Class<?> internalCallerClass() {
1315             return callerClass;
1316         }
1317         @Override
1318         boolean isInvokeSpecial() {
1319             return isInvokeSpecial;
1320         }
1321         @Override
1322         protected MethodHandle getTarget() {
1323             return target;
1324         }
1325         @Override
1326         public MethodHandle asTypeUncached(MethodType newType) {
1327             // This MH is an alias for target, except for the MemberName
1328             // Drop the MemberName if there is any conversion.
1329             return target.asType(newType);
1330         }
1331     }
1332 
1333     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1334         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1335             return target;
1336         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1337     }
1338 
1339     /** Intrinsic IDs */
1340     /*non-public*/
1341     enum Intrinsic {
1342         SELECT_ALTERNATIVE,
1343         GUARD_WITH_CATCH,
1344         TRY_FINALLY,
1345         TABLE_SWITCH,
1346         LOOP,
1347         ARRAY_LOAD,
1348         ARRAY_STORE,
1349         ARRAY_LENGTH,
1350         IDENTITY,
1351         ZERO,
1352         NONE // no intrinsic associated
1353     }
1354 
1355     /** Mark arbitrary method handle as intrinsic.
1356      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1357     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1358         private final MethodHandle target;
1359         private final Intrinsic intrinsicName;
1360         private final Object intrinsicData;
1361 
1362         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1363            this(target, intrinsicName, null);
1364         }
1365 
1366         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1367             super(target.type(), target);
1368             this.target = target;
1369             this.intrinsicName = intrinsicName;
1370             this.intrinsicData = intrinsicData;
1371         }
1372 
1373         @Override
1374         protected MethodHandle getTarget() {
1375             return target;
1376         }
1377 
1378         @Override
1379         Intrinsic intrinsicName() {
1380             return intrinsicName;
1381         }
1382 
1383         @Override
1384         Object intrinsicData() {
1385             return intrinsicData;
1386         }
1387 
1388         @Override
1389         public MethodHandle asTypeUncached(MethodType newType) {
1390             // This MH is an alias for target, except for the intrinsic name
1391             // Drop the name if there is any conversion.
1392             return target.asType(newType);
1393         }
1394 
1395         @Override
1396         String internalProperties() {
1397             return super.internalProperties() +
1398                     "\n& Intrinsic="+intrinsicName;
1399         }
1400 
1401         @Override
1402         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1403             if (intrinsicName == Intrinsic.IDENTITY) {
1404                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1405                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1406                 return newArray.asType(resultType);
1407             }
1408             return super.asCollector(arrayType, arrayLength);
1409         }
1410     }
1411 
1412     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1413         return makeIntrinsic(target, intrinsicName, null);
1414     }
1415 
1416     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1417         if (intrinsicName == target.intrinsicName())
1418             return target;
1419         return new IntrinsicMethodHandle(target, intrinsicName, intrinsicData);
1420     }
1421 
1422     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1423         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1424     }
1425 
1426     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1427 
1428     /** Return a method handle that takes the indicated number of Object
1429      *  arguments and returns an Object array of them, as if for varargs.
1430      */
1431     static MethodHandle varargsArray(int nargs) {
1432         MethodHandle mh = ARRAYS[nargs];
1433         if (mh != null) {
1434             return mh;
1435         }
1436         mh = makeCollector(Object[].class, nargs);
1437         assert(assertCorrectArity(mh, nargs));
1438         return ARRAYS[nargs] = mh;
1439     }
1440 
1441     /** Return a method handle that takes the indicated number of
1442      *  typed arguments and returns an array of them.
1443      *  The type argument is the array type.
1444      */
1445     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1446         Class<?> elemType = arrayType.getComponentType();
1447         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1448         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1449             int slots = nargs;
1450             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1451             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1452                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1453             if (slots > MAX_ARRAY_SLOTS)
1454                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1455         }
1456         if (elemType == Object.class)
1457             return varargsArray(nargs);
1458         // other cases:  primitive arrays, subtypes of Object[]
1459         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1460         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1461         if (mh != null)  return mh;
1462         mh = makeCollector(arrayType, nargs);
1463         assert(assertCorrectArity(mh, nargs));
1464         if (nargs < cache.length)
1465             cache[nargs] = mh;
1466         return mh;
1467     }
1468 
1469     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1470         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1471         return true;
1472     }
1473 
1474     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1475 
1476     /*non-public*/
1477     static void assertSame(Object mh1, Object mh2) {
1478         if (mh1 != mh2) {
1479             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1480                     mh1, ((MethodHandle)mh1).form,
1481                     mh2, ((MethodHandle)mh2).form);
1482             throw newInternalError(msg);
1483         }
1484     }
1485 
1486     // Local constant functions:
1487 
1488     /* non-public */
1489     static final byte NF_checkSpreadArgument = 0,
1490             NF_guardWithCatch = 1,
1491             NF_throwException = 2,
1492             NF_tryFinally = 3,
1493             NF_loop = 4,
1494             NF_profileBoolean = 5,
1495             NF_tableSwitch = 6,
1496             NF_LIMIT = 7;
1497 
1498     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1499 
1500     static NamedFunction getFunction(byte func) {
1501         NamedFunction nf = NFS[func];
1502         if (nf != null) {
1503             return nf;
1504         }
1505         return NFS[func] = createFunction(func);
1506     }
1507 
1508     private static NamedFunction createFunction(byte func) {
1509         try {
1510             return switch (func) {
1511                 case NF_checkSpreadArgument -> new NamedFunction(MethodHandleImpl.class
1512                                                 .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1513                 case NF_guardWithCatch      -> new NamedFunction(MethodHandleImpl.class
1514                                                 .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1515                                                    MethodHandle.class, Object[].class));
1516                 case NF_tryFinally          -> new NamedFunction(MethodHandleImpl.class
1517                                                 .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1518                 case NF_loop                -> new NamedFunction(MethodHandleImpl.class
1519                                                 .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1520                 case NF_throwException      -> new NamedFunction(MethodHandleImpl.class
1521                                                 .getDeclaredMethod("throwException", Throwable.class));
1522                 case NF_profileBoolean      -> new NamedFunction(MethodHandleImpl.class
1523                                                 .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1524                 case NF_tableSwitch         -> new NamedFunction(MethodHandleImpl.class
1525                                                 .getDeclaredMethod("tableSwitch", int.class, MethodHandle.class, CasesHolder.class, Object[].class));
1526                 default -> throw new InternalError("Undefined function: " + func);
1527             };
1528         } catch (ReflectiveOperationException ex) {
1529             throw newInternalError(ex);
1530         }
1531     }
1532 
1533     static {
1534         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1535             @Override
1536             public Class<?> getDeclaringClass(Object rmname) {
1537                 ResolvedMethodName method = (ResolvedMethodName)rmname;
1538                 return method.declaringClass();
1539             }
1540 
1541             @Override
1542             public MethodType getMethodType(String descriptor, ClassLoader loader) {
1543                 return MethodType.fromDescriptor(descriptor, loader);
1544             }
1545 
1546             public boolean isCallerSensitive(int flags) {
1547                 return (flags & MN_CALLER_SENSITIVE) == MN_CALLER_SENSITIVE;
1548             }
1549 
1550             public boolean isHiddenMember(int flags) {
1551                 return (flags & MN_HIDDEN_MEMBER) == MN_HIDDEN_MEMBER;
1552             }
1553 
1554             public boolean isNullRestrictedField(MethodHandle mh) {
1555                 var memberName = mh.internalMemberName();
1556                 assert memberName.isField();
1557                 return memberName.isNullRestricted();
1558             }
1559 
1560             @Override
1561             public Map<String, byte[]> generateHolderClasses(Stream<String> traces) {
1562                 return GenerateJLIClassesHelper.generateHolderClasses(traces);
1563             }
1564 
1565             @Override
1566             public VarHandle memorySegmentViewHandle(Class<?> carrier, long alignmentMask, ByteOrder order) {
1567                 return VarHandles.memorySegmentViewHandle(carrier, alignmentMask, order);
1568             }
1569 
1570             @Override
1571             public MethodHandle nativeMethodHandle(NativeEntryPoint nep) {
1572                 return NativeMethodHandle.make(nep);
1573             }
1574 
1575             @Override
1576             public VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
1577                 return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
1578             }
1579 
1580             @Override
1581             public VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
1582                 return VarHandles.filterCoordinates(target, pos, filters);
1583             }
1584 
1585             @Override
1586             public VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
1587                 return VarHandles.dropCoordinates(target, pos, valueTypes);
1588             }
1589 
1590             @Override
1591             public VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
1592                 return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
1593             }
1594 
1595             @Override
1596             public VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
1597                 return VarHandles.collectCoordinates(target, pos, filter);
1598             }
1599 
1600             @Override
1601             public VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
1602                 return VarHandles.insertCoordinates(target, pos, values);
1603             }
1604 
1605 
1606             @Override
1607             public MethodHandle unreflectConstructor(Constructor<?> ctor) throws IllegalAccessException {
1608                 return IMPL_LOOKUP.unreflectConstructor(ctor);
1609             }
1610 
1611             @Override
1612             public MethodHandle unreflectField(Field field, boolean isSetter) throws IllegalAccessException {
1613                 return isSetter ? IMPL_LOOKUP.unreflectSetter(field) : IMPL_LOOKUP.unreflectGetter(field);
1614             }
1615 
1616             @Override
1617             public MethodHandle findVirtual(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1618                 try {
1619                     return IMPL_LOOKUP.findVirtual(defc, name, type);
1620                 } catch (NoSuchMethodException e) {
1621                     return null;
1622                 }
1623             }
1624 
1625             @Override
1626             public MethodHandle findStatic(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1627                 try {
1628                     return IMPL_LOOKUP.findStatic(defc, name, type);
1629                 } catch (NoSuchMethodException e) {
1630                     return null;
1631                 }
1632             }
1633 
1634             @Override
1635             public MethodHandle reflectiveInvoker(Class<?> caller) {
1636                 Objects.requireNonNull(caller);
1637                 return BindCaller.reflectiveInvoker(caller);
1638             }
1639 
1640             @Override
1641             public Class<?>[] exceptionTypes(MethodHandle handle) {
1642                 return VarHandles.exceptionTypes(handle);
1643             }
1644 
1645             @Override
1646             public MethodHandle serializableConstructor(Class<?> decl, Constructor<?> ctorToCall) throws IllegalAccessException {
1647                 return IMPL_LOOKUP.serializableConstructor(decl, ctorToCall);
1648             }
1649 
1650         });
1651     }
1652 
1653     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1654     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1655         if (returnType.isPrimitive()) {
1656             if (returnType == void.class) {
1657                 return ValueConversions.ignore();
1658             } else {
1659                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1660                 return ValueConversions.unboxExact(w);
1661             }
1662         } else {
1663             return MethodHandles.identity(Object.class);
1664         }
1665     }
1666 
1667     /**
1668      * Assembles a loop method handle from the given handles and type information.
1669      *
1670      * @param tloop the return type of the loop.
1671      * @param targs types of the arguments to be passed to the loop.
1672      * @param init sanitized array of initializers for loop-local variables.
1673      * @param step sanitized array of loop bodies.
1674      * @param pred sanitized array of predicates.
1675      * @param fini sanitized array of loop finalizers.
1676      *
1677      * @return a handle that, when invoked, will execute the loop.
1678      */
1679     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1680                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1681         MethodType type = MethodType.methodType(tloop, targs);
1682         BasicType[] initClauseTypes =
1683                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1684         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1685 
1686         // Prepare auxiliary method handles used during LambdaForm interpretation.
1687         // Box arguments and wrap them into Object[]: ValueConversions.array().
1688         MethodType varargsType = type.changeReturnType(Object[].class);
1689         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1690         MethodHandle unboxResult = unboxResultHandle(tloop);
1691 
1692         LoopClauses clauseData =
1693                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1694         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1695         BoundMethodHandle mh;
1696         try {
1697             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData,
1698                     (Object) collectArgs, (Object) unboxResult);
1699         } catch (Throwable ex) {
1700             throw uncaughtException(ex);
1701         }
1702         assert(mh.type() == type);
1703         return mh;
1704     }
1705 
1706     private static MethodHandle[] toArray(List<MethodHandle> l) {
1707         return l.toArray(new MethodHandle[0]);
1708     }
1709 
1710     /**
1711      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1712      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1713      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1714      * {@code t12}):
1715      * <blockquote><pre>{@code
1716      *  loop=Lambda(a0:L,a1:L)=>{
1717      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1718      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1719      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1720      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1721      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1722      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1723      * }</pre></blockquote>
1724      * <p>
1725      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1726      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1727      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1728      * ({@code ValueConversions.unbox()}).
1729      * <p>
1730      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1731      * forms among loop combinators with the same basic type.
1732      * <p>
1733      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1734      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1735      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1736      * bytecode generation}.
1737      */
1738     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1739         final int THIS_MH = 0;  // the BMH_LLL
1740         final int ARG_BASE = 1; // start of incoming arguments
1741         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1742 
1743         int nameCursor = ARG_LIMIT;
1744         final int GET_CLAUSE_DATA = nameCursor++;
1745         final int GET_COLLECT_ARGS = nameCursor++;
1746         final int GET_UNBOX_RESULT = nameCursor++;
1747         final int BOXED_ARGS = nameCursor++;
1748         final int LOOP = nameCursor++;
1749         final int UNBOX_RESULT = nameCursor++;
1750 
1751         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1752         if (lform == null) {
1753             Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
1754 
1755             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1756             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1757             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1758             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1759             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1760 
1761             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1762             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1763             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1764             Object[] args = new Object[invokeBasic.type().parameterCount()];
1765             args[0] = names[GET_COLLECT_ARGS];
1766             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1767             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.LOOP)), args);
1768 
1769             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1770             Object[] lArgs =
1771                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1772                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1773             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1774 
1775             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1776             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1777             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1778             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1779 
1780             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1781                     LambdaForm.create(basicType.parameterCount() + 1, names, Kind.LOOP));
1782         }
1783 
1784         // BOXED_ARGS is the index into the names array where the loop idiom starts
1785         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1786     }
1787 
1788     static class LoopClauses {
1789         @Stable final MethodHandle[][] clauses;
1790         LoopClauses(MethodHandle[][] clauses) {
1791             assert clauses.length == 4;
1792             this.clauses = clauses;
1793         }
1794         @Override
1795         public String toString() {
1796             StringBuilder sb = new StringBuilder("LoopClauses -- ");
1797             for (int i = 0; i < 4; ++i) {
1798                 if (i > 0) {
1799                     sb.append("       ");
1800                 }
1801                 sb.append('<').append(i).append(">: ");
1802                 MethodHandle[] hs = clauses[i];
1803                 for (int j = 0; j < hs.length; ++j) {
1804                     if (j > 0) {
1805                         sb.append("          ");
1806                     }
1807                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
1808                 }
1809             }
1810             sb.append(" --\n");
1811             return sb.toString();
1812         }
1813     }
1814 
1815     /**
1816      * Intrinsified during LambdaForm compilation
1817      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
1818      */
1819     @Hidden
1820     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
1821         final MethodHandle[] init = clauseData.clauses[0];
1822         final MethodHandle[] step = clauseData.clauses[1];
1823         final MethodHandle[] pred = clauseData.clauses[2];
1824         final MethodHandle[] fini = clauseData.clauses[3];
1825         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
1826         int nArgs = init[0].type().parameterCount();
1827         Object[] varsAndArgs = new Object[varSize + nArgs];
1828         for (int i = 0, v = 0; i < init.length; ++i) {
1829             MethodHandle ih = init[i];
1830             if (ih.type().returnType() == void.class) {
1831                 ih.invokeWithArguments(av);
1832             } else {
1833                 varsAndArgs[v++] = ih.invokeWithArguments(av);
1834             }
1835         }
1836         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
1837         final int nSteps = step.length;
1838         for (; ; ) {
1839             for (int i = 0, v = 0; i < nSteps; ++i) {
1840                 MethodHandle p = pred[i];
1841                 MethodHandle s = step[i];
1842                 MethodHandle f = fini[i];
1843                 if (s.type().returnType() == void.class) {
1844                     s.invokeWithArguments(varsAndArgs);
1845                 } else {
1846                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
1847                 }
1848                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
1849                     return f.invokeWithArguments(varsAndArgs);
1850                 }
1851             }
1852         }
1853     }
1854 
1855     /**
1856      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1857      * MethodHandle) counting loops}.
1858      *
1859      * @param limit the upper bound of the parameter, statically bound at loop creation time.
1860      * @param counter the counter parameter, passed in during loop execution.
1861      *
1862      * @return whether the counter has reached the limit.
1863      */
1864     static boolean countedLoopPredicate(int limit, int counter) {
1865         return counter < limit;
1866     }
1867 
1868     /**
1869      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1870      * MethodHandle) counting loops} to increment the counter.
1871      *
1872      * @param limit the upper bound of the loop counter (ignored).
1873      * @param counter the loop counter.
1874      *
1875      * @return the loop counter incremented by 1.
1876      */
1877     static int countedLoopStep(int limit, int counter) {
1878         return counter + 1;
1879     }
1880 
1881     /**
1882      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1883      *
1884      * @param it the {@link Iterable} over which the loop iterates.
1885      *
1886      * @return an {@link Iterator} over the argument's elements.
1887      */
1888     static Iterator<?> initIterator(Iterable<?> it) {
1889         return it.iterator();
1890     }
1891 
1892     /**
1893      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1894      *
1895      * @param it the iterator to be checked.
1896      *
1897      * @return {@code true} iff there are more elements to iterate over.
1898      */
1899     static boolean iteratePredicate(Iterator<?> it) {
1900         return it.hasNext();
1901     }
1902 
1903     /**
1904      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
1905      * MethodHandles#iteratedLoop iterating loops}.
1906      *
1907      * @param it the iterator.
1908      *
1909      * @return the next element from the iterator.
1910      */
1911     static Object iterateNext(Iterator<?> it) {
1912         return it.next();
1913     }
1914 
1915     /**
1916      * Makes a {@code try-finally} handle that conforms to the type constraints.
1917      *
1918      * @param target the target to execute in a {@code try-finally} block.
1919      * @param cleanup the cleanup to execute in the {@code finally} block.
1920      * @param rtype the result type of the entire construct.
1921      * @param argTypes the types of the arguments.
1922      *
1923      * @return a handle on the constructed {@code try-finally} block.
1924      */
1925     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, Class<?>[] argTypes) {
1926         MethodType type = MethodType.methodType(rtype, argTypes);
1927         LambdaForm form = makeTryFinallyForm(type.basicType());
1928 
1929         // Prepare auxiliary method handles used during LambdaForm interpretation.
1930         // Box arguments and wrap them into Object[]: ValueConversions.array().
1931         MethodType varargsType = type.changeReturnType(Object[].class);
1932         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1933         MethodHandle unboxResult = unboxResultHandle(rtype);
1934 
1935         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1936         BoundMethodHandle mh;
1937         try {
1938             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup,
1939                     (Object) collectArgs, (Object) unboxResult);
1940         } catch (Throwable ex) {
1941             throw uncaughtException(ex);
1942         }
1943         assert(mh.type() == type);
1944         return mh;
1945     }
1946 
1947     /**
1948      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
1949      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
1950      * <blockquote><pre>{@code
1951      *  tryFinally=Lambda(a0:L,a1:L)=>{
1952      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
1953      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
1954      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
1955      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
1956      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
1957      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
1958      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
1959      * }</pre></blockquote>
1960      * <p>
1961      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
1962      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
1963      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
1964      * ({@code ValueConversions.unbox()}).
1965      * <p>
1966      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1967      * forms among tryFinally combinators with the same basic type.
1968      */
1969     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
1970         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
1971         if (lform != null) {
1972             return lform;
1973         }
1974         final int THIS_MH      = 0;  // the BMH_LLLL
1975         final int ARG_BASE     = 1;  // start of incoming arguments
1976         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
1977 
1978         int nameCursor = ARG_LIMIT;
1979         final int GET_TARGET       = nameCursor++;
1980         final int GET_CLEANUP      = nameCursor++;
1981         final int GET_COLLECT_ARGS = nameCursor++;
1982         final int GET_UNBOX_RESULT = nameCursor++;
1983         final int BOXED_ARGS       = nameCursor++;
1984         final int TRY_FINALLY      = nameCursor++;
1985         final int UNBOX_RESULT     = nameCursor++;
1986 
1987         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
1988 
1989         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1990         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
1991         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
1992         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
1993         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
1994         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
1995 
1996         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1997         MethodType collectArgsType = basicType.changeReturnType(Object.class);
1998         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1999         Object[] args = new Object[invokeBasic.type().parameterCount()];
2000         args[0] = names[GET_COLLECT_ARGS];
2001         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2002         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TRY_FINALLY)), args);
2003 
2004         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2005         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2006         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2007 
2008         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2009         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2010         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2011         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2012 
2013         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.TRY_FINALLY);
2014 
2015         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2016     }
2017 
2018     /**
2019      * Intrinsified during LambdaForm compilation
2020      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2021      */
2022     @Hidden
2023     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2024         Throwable t = null;
2025         Object r = null;
2026         try {
2027             r = target.invokeWithArguments(av);
2028         } catch (Throwable thrown) {
2029             t = thrown;
2030             throw t;
2031         } finally {
2032             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2033             r = cleanup.invokeWithArguments(args);
2034         }
2035         return r;
2036     }
2037 
2038     // see varargsArray method for chaching/package-private version of this
2039     private static MethodHandle makeCollector(Class<?> arrayType, int parameterCount) {
2040         MethodType type = MethodType.methodType(arrayType, Collections.nCopies(parameterCount, arrayType.componentType()));
2041         MethodHandle newArray = MethodHandles.arrayConstructor(arrayType);
2042 
2043         LambdaForm form = makeCollectorForm(type.basicType(), arrayType);
2044 
2045         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2046         BoundMethodHandle mh;
2047         try {
2048             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) newArray);
2049         } catch (Throwable ex) {
2050             throw uncaughtException(ex);
2051         }
2052         assert(mh.type() == type);
2053         return mh;
2054     }
2055 
2056     private static LambdaForm makeCollectorForm(MethodType basicType, Class<?> arrayType) {
2057         int parameterCount = basicType.parameterCount();
2058 
2059         // Only share the lambda form for empty arrays and reference types.
2060         // Sharing based on the basic type alone doesn't work because
2061         // we need a separate lambda form for byte/short/char/int which
2062         // are all erased to int otherwise.
2063         // Other caching for primitive types happens at the MethodHandle level (see varargsArray).
2064         boolean isReferenceType = !arrayType.componentType().isPrimitive();
2065         boolean isSharedLambdaForm = parameterCount == 0 || isReferenceType;
2066         if (isSharedLambdaForm) {
2067             LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_COLLECTOR);
2068             if (lform != null) {
2069                 return lform;
2070             }
2071         }
2072 
2073         // use erased accessor for reference types
2074         MethodHandle storeFunc = isReferenceType
2075                 ? ArrayAccessor.OBJECT_ARRAY_SETTER
2076                 : makeArrayElementAccessor(arrayType, ArrayAccess.SET);
2077 
2078         final int THIS_MH      = 0;  // the BMH_L
2079         final int ARG_BASE     = 1;  // start of incoming arguments
2080         final int ARG_LIMIT    = ARG_BASE + parameterCount;
2081 
2082         int nameCursor = ARG_LIMIT;
2083         final int GET_NEW_ARRAY       = nameCursor++;
2084         final int CALL_NEW_ARRAY      = nameCursor++;
2085         final int STORE_ELEMENT_BASE  = nameCursor;
2086         final int STORE_ELEMENT_LIMIT = STORE_ELEMENT_BASE + parameterCount;
2087         nameCursor = STORE_ELEMENT_LIMIT;
2088 
2089         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
2090 
2091         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2092         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2093         names[GET_NEW_ARRAY]    = new Name(data.getterFunction(0), names[THIS_MH]);
2094 
2095         MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(Object.class, int.class));
2096         names[CALL_NEW_ARRAY] = new Name(new NamedFunction(invokeBasic), names[GET_NEW_ARRAY], parameterCount);
2097         for (int storeIndex = 0,
2098              storeNameCursor = STORE_ELEMENT_BASE,
2099              argCursor = ARG_BASE;
2100              storeNameCursor < STORE_ELEMENT_LIMIT;
2101              storeIndex++, storeNameCursor++, argCursor++){
2102 
2103             names[storeNameCursor] = new Name(new NamedFunction(makeIntrinsic(storeFunc, Intrinsic.ARRAY_STORE)),
2104                     names[CALL_NEW_ARRAY], storeIndex, names[argCursor]);
2105         }
2106 
2107         LambdaForm lform = LambdaForm.create(basicType.parameterCount() + 1, names, CALL_NEW_ARRAY, Kind.COLLECTOR);
2108         if (isSharedLambdaForm) {
2109             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_COLLECTOR, lform);
2110         }
2111         return lform;
2112     }
2113 
2114     // use a wrapper because we need this array to be @Stable
2115     static class CasesHolder {
2116         @Stable
2117         final MethodHandle[] cases;
2118 
2119         public CasesHolder(MethodHandle[] cases) {
2120             this.cases = cases;
2121         }
2122     }
2123 
2124     static MethodHandle makeTableSwitch(MethodType type, MethodHandle defaultCase, MethodHandle[] caseActions) {
2125         MethodType varargsType = type.changeReturnType(Object[].class);
2126         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2127 
2128         MethodHandle unboxResult = unboxResultHandle(type.returnType());
2129 
2130         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2131         LambdaForm form = makeTableSwitchForm(type.basicType(), data, caseActions.length);
2132         BoundMethodHandle mh;
2133         CasesHolder caseHolder =  new CasesHolder(caseActions);
2134         try {
2135             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) defaultCase, (Object) collectArgs,
2136                                                                 (Object) unboxResult, (Object) caseHolder);
2137         } catch (Throwable ex) {
2138             throw uncaughtException(ex);
2139         }
2140         assert(mh.type() == type);
2141         return mh;
2142     }
2143 
2144     private static class TableSwitchCacheKey {
2145         private static final Map<TableSwitchCacheKey, LambdaForm> CACHE = new ConcurrentHashMap<>();
2146 
2147         private final MethodType basicType;
2148         private final int numberOfCases;
2149 
2150         public TableSwitchCacheKey(MethodType basicType, int numberOfCases) {
2151             this.basicType = basicType;
2152             this.numberOfCases = numberOfCases;
2153         }
2154 
2155         @Override
2156         public boolean equals(Object o) {
2157             if (this == o) return true;
2158             if (o == null || getClass() != o.getClass()) return false;
2159             TableSwitchCacheKey that = (TableSwitchCacheKey) o;
2160             return numberOfCases == that.numberOfCases && Objects.equals(basicType, that.basicType);
2161         }
2162         @Override
2163         public int hashCode() {
2164             return Objects.hash(basicType, numberOfCases);
2165         }
2166     }
2167 
2168     private static LambdaForm makeTableSwitchForm(MethodType basicType, BoundMethodHandle.SpeciesData data,
2169                                                   int numCases) {
2170         // We need to cache based on the basic type X number of cases,
2171         // since the number of cases is used when generating bytecode.
2172         // This also means that we can't use the cache in MethodTypeForm,
2173         // which only uses the basic type as a key.
2174         TableSwitchCacheKey key = new TableSwitchCacheKey(basicType, numCases);
2175         LambdaForm lform = TableSwitchCacheKey.CACHE.get(key);
2176         if (lform != null) {
2177             return lform;
2178         }
2179 
2180         final int THIS_MH       = 0;
2181         final int ARG_BASE      = 1;  // start of incoming arguments
2182         final int ARG_LIMIT     = ARG_BASE + basicType.parameterCount();
2183         final int ARG_SWITCH_ON = ARG_BASE;
2184         assert ARG_SWITCH_ON < ARG_LIMIT;
2185 
2186         int nameCursor = ARG_LIMIT;
2187         final int GET_COLLECT_ARGS  = nameCursor++;
2188         final int GET_DEFAULT_CASE  = nameCursor++;
2189         final int GET_UNBOX_RESULT  = nameCursor++;
2190         final int GET_CASES         = nameCursor++;
2191         final int BOXED_ARGS        = nameCursor++;
2192         final int TABLE_SWITCH      = nameCursor++;
2193         final int UNBOXED_RESULT    = nameCursor++;
2194 
2195         int fieldCursor = 0;
2196         final int FIELD_DEFAULT_CASE  = fieldCursor++;
2197         final int FIELD_COLLECT_ARGS  = fieldCursor++;
2198         final int FIELD_UNBOX_RESULT  = fieldCursor++;
2199         final int FIELD_CASES         = fieldCursor++;
2200 
2201         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
2202 
2203         names[THIS_MH] = names[THIS_MH].withConstraint(data);
2204         names[GET_DEFAULT_CASE] = new Name(data.getterFunction(FIELD_DEFAULT_CASE), names[THIS_MH]);
2205         names[GET_COLLECT_ARGS]  = new Name(data.getterFunction(FIELD_COLLECT_ARGS), names[THIS_MH]);
2206         names[GET_UNBOX_RESULT]  = new Name(data.getterFunction(FIELD_UNBOX_RESULT), names[THIS_MH]);
2207         names[GET_CASES] = new Name(data.getterFunction(FIELD_CASES), names[THIS_MH]);
2208 
2209         {
2210             MethodType collectArgsType = basicType.changeReturnType(Object.class);
2211             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2212             Object[] args = new Object[invokeBasic.type().parameterCount()];
2213             args[0] = names[GET_COLLECT_ARGS];
2214             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
2215             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TABLE_SWITCH, numCases)), args);
2216         }
2217 
2218         {
2219             Object[] tfArgs = new Object[]{
2220                 names[ARG_SWITCH_ON], names[GET_DEFAULT_CASE], names[GET_CASES], names[BOXED_ARGS]};
2221             names[TABLE_SWITCH] = new Name(getFunction(NF_tableSwitch), tfArgs);
2222         }
2223 
2224         {
2225             MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2226             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[TABLE_SWITCH]};
2227             names[UNBOXED_RESULT] = new Name(invokeBasic, unboxArgs);
2228         }
2229 
2230         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.TABLE_SWITCH);
2231         LambdaForm prev = TableSwitchCacheKey.CACHE.putIfAbsent(key, lform);
2232         return prev != null ? prev : lform;
2233     }
2234 
2235     @Hidden
2236     static Object tableSwitch(int input, MethodHandle defaultCase, CasesHolder holder, Object[] args) throws Throwable {
2237         MethodHandle[] caseActions = holder.cases;
2238         MethodHandle selectedCase;
2239         if (input < 0 || input >= caseActions.length) {
2240             selectedCase = defaultCase;
2241         } else {
2242             selectedCase = caseActions[input];
2243         }
2244         return selectedCase.invokeWithArguments(args);
2245     }
2246 
2247     // Indexes into constant method handles:
2248     static final int
2249             MH_cast                  =              0,
2250             MH_selectAlternative     =              1,
2251             MH_countedLoopPred       =              2,
2252             MH_countedLoopStep       =              3,
2253             MH_initIterator          =              4,
2254             MH_iteratePred           =              5,
2255             MH_iterateNext           =              6,
2256             MH_Array_newInstance     =              7,
2257             MH_VarHandles_handleCheckedExceptions = 8,
2258             MH_LIMIT                 =              9;
2259 
2260     static MethodHandle getConstantHandle(int idx) {
2261         MethodHandle handle = HANDLES[idx];
2262         if (handle != null) {
2263             return handle;
2264         }
2265         return setCachedHandle(idx, makeConstantHandle(idx));
2266     }
2267 
2268     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2269         // Simulate a CAS, to avoid racy duplication of results.
2270         MethodHandle prev = HANDLES[idx];
2271         if (prev != null) {
2272             return prev;
2273         }
2274         HANDLES[idx] = method;
2275         return method;
2276     }
2277 
2278     // Local constant method handles:
2279     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2280 
2281     private static MethodHandle makeConstantHandle(int idx) {
2282         try {
2283             switch (idx) {
2284                 case MH_cast:
2285                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2286                             MethodType.methodType(Object.class, Object.class));
2287                 case MH_selectAlternative:
2288                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2289                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
2290                 case MH_countedLoopPred:
2291                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2292                             MethodType.methodType(boolean.class, int.class, int.class));
2293                 case MH_countedLoopStep:
2294                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2295                             MethodType.methodType(int.class, int.class, int.class));
2296                 case MH_initIterator:
2297                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2298                             MethodType.methodType(Iterator.class, Iterable.class));
2299                 case MH_iteratePred:
2300                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2301                             MethodType.methodType(boolean.class, Iterator.class));
2302                 case MH_iterateNext:
2303                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2304                             MethodType.methodType(Object.class, Iterator.class));
2305                 case MH_Array_newInstance:
2306                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2307                             MethodType.methodType(Object.class, Class.class, int.class));
2308                 case MH_VarHandles_handleCheckedExceptions:
2309                     return IMPL_LOOKUP.findStatic(VarHandles.class, "handleCheckedExceptions",
2310                             MethodType.methodType(void.class, Throwable.class));
2311             }
2312         } catch (ReflectiveOperationException ex) {
2313             throw newInternalError(ex);
2314         }
2315         throw newInternalError("Unknown function index: " + idx);
2316     }
2317 }