1 /*
   2  * Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangInvokeAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.constant.ClassOrInterfaceDescImpl;
  31 import jdk.internal.constant.ConstantUtils;
  32 import jdk.internal.constant.MethodTypeDescImpl;
  33 import jdk.internal.foreign.abi.NativeEntryPoint;
  34 import jdk.internal.reflect.CallerSensitive;
  35 import jdk.internal.reflect.Reflection;
  36 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  37 import jdk.internal.vm.annotation.ForceInline;
  38 import jdk.internal.vm.annotation.Hidden;
  39 import jdk.internal.vm.annotation.Stable;
  40 import sun.invoke.util.ValueConversions;
  41 import sun.invoke.util.VerifyType;
  42 import sun.invoke.util.Wrapper;
  43 
  44 import java.lang.classfile.ClassFile;
  45 import java.lang.constant.ClassDesc;
  46 import java.lang.foreign.MemoryLayout;
  47 import java.lang.invoke.MethodHandles.Lookup;
  48 import java.lang.reflect.Array;
  49 import java.lang.reflect.Constructor;
  50 import java.lang.reflect.Field;
  51 import java.nio.ByteOrder;
  52 import java.util.Arrays;
  53 import java.util.Collections;
  54 import java.util.HashMap;
  55 import java.util.Iterator;
  56 import java.util.List;
  57 import java.util.Map;
  58 import java.util.Objects;
  59 import java.util.concurrent.ConcurrentHashMap;
  60 import java.util.function.Function;
  61 import java.util.stream.Stream;
  62 
  63 import static java.lang.classfile.ClassFile.*;
  64 import static java.lang.constant.ConstantDescs.*;
  65 import static java.lang.invoke.LambdaForm.*;
  66 import static java.lang.invoke.MethodHandleNatives.Constants.MN_CALLER_SENSITIVE;
  67 import static java.lang.invoke.MethodHandleNatives.Constants.MN_HIDDEN_MEMBER;
  68 import static java.lang.invoke.MethodHandleNatives.Constants.NESTMATE_CLASS;
  69 import static java.lang.invoke.MethodHandleStatics.*;
  70 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  71 
  72 /**
  73  * Trusted implementation code for MethodHandle.
  74  * @author jrose
  75  */
  76 @AOTSafeClassInitializer
  77 /*non-public*/
  78 abstract class MethodHandleImpl {
  79 
  80     /// Factory methods to create method handles:
  81 
  82     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  83         if (arrayClass == Object[].class) {
  84             return ArrayAccess.objectAccessor(access);
  85         }
  86         if (!arrayClass.isArray())
  87             throw newIllegalArgumentException("not an array: "+arrayClass);
  88         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  89         int cacheIndex = ArrayAccess.cacheIndex(access);
  90         MethodHandle mh = cache[cacheIndex];
  91         if (mh != null)  return mh;
  92         mh = ArrayAccessor.getAccessor(arrayClass, access);
  93         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  94         if (mh.type() != correctType) {
  95             assert(mh.type().parameterType(0) == Object[].class);
  96             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  97             /* if access == GET */ assert(access != ArrayAccess.GET ||
  98                     (mh.type().returnType() == Object.class &&
  99                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
 100             // safe to view non-strictly, because element type follows from array type
 101             mh = mh.viewAsType(correctType, false);
 102         }
 103         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
 104         // Atomically update accessor cache.
 105         synchronized(cache) {
 106             if (cache[cacheIndex] == null) {
 107                 cache[cacheIndex] = mh;
 108             } else {
 109                 // Throw away newly constructed accessor and use cached version.
 110                 mh = cache[cacheIndex];
 111             }
 112         }
 113         return mh;
 114     }
 115 
 116     enum ArrayAccess {
 117         GET, SET, LENGTH;
 118 
 119         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 120         // final fields.
 121 
 122         static String opName(ArrayAccess a) {
 123             return switch (a) {
 124                 case GET    -> "getElement";
 125                 case SET    -> "setElement";
 126                 case LENGTH -> "length";
 127                 default -> throw unmatchedArrayAccess(a);
 128             };
 129         }
 130 
 131         static MethodHandle objectAccessor(ArrayAccess a) {
 132             return switch (a) {
 133                 case GET    -> ArrayAccessor.OBJECT_ARRAY_GETTER;
 134                 case SET    -> ArrayAccessor.OBJECT_ARRAY_SETTER;
 135                 case LENGTH -> ArrayAccessor.OBJECT_ARRAY_LENGTH;
 136                 default -> throw unmatchedArrayAccess(a);
 137             };
 138         }
 139 
 140         static int cacheIndex(ArrayAccess a) {
 141             return switch (a) {
 142                 case GET    -> ArrayAccessor.GETTER_INDEX;
 143                 case SET    -> ArrayAccessor.SETTER_INDEX;
 144                 case LENGTH -> ArrayAccessor.LENGTH_INDEX;
 145                 default -> throw unmatchedArrayAccess(a);
 146             };
 147         }
 148 
 149         static Intrinsic intrinsic(ArrayAccess a) {
 150             return switch (a) {
 151                 case GET    -> Intrinsic.ARRAY_LOAD;
 152                 case SET    -> Intrinsic.ARRAY_STORE;
 153                 case LENGTH -> Intrinsic.ARRAY_LENGTH;
 154                 default -> throw unmatchedArrayAccess(a);
 155             };
 156         }
 157     }
 158 
 159     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 160         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 161     }
 162 
 163     @AOTSafeClassInitializer
 164     static final class ArrayAccessor {
 165         /// Support for array element and length access
 166         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 167         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 168                 = new ClassValue<MethodHandle[]>() {
 169                     @Override
 170                     protected MethodHandle[] computeValue(Class<?> type) {
 171                         return new MethodHandle[INDEX_LIMIT];
 172                     }
 173                 };
 174         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 175         static {
 176             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 177             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 178             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 179             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 180 
 181             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 182             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 183             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 184         }
 185 
 186         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 187         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 188         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 189         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 190         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 191         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 192         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 193         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 194         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 195 
 196         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 197         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 198         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 199         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 200         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 201         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 202         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 203         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 204         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 205 
 206         static int     lengthI(int[]     a)                       { return a.length; }
 207         static int     lengthJ(long[]    a)                       { return a.length; }
 208         static int     lengthF(float[]   a)                       { return a.length; }
 209         static int     lengthD(double[]  a)                       { return a.length; }
 210         static int     lengthZ(boolean[] a)                       { return a.length; }
 211         static int     lengthB(byte[]    a)                       { return a.length; }
 212         static int     lengthS(short[]   a)                       { return a.length; }
 213         static int     lengthC(char[]    a)                       { return a.length; }
 214         static int     lengthL(Object[]  a)                       { return a.length; }
 215 
 216         static String name(Class<?> arrayClass, ArrayAccess access) {
 217             Class<?> elemClass = arrayClass.getComponentType();
 218             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 219             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 220         }
 221         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 222             Class<?> elemClass = arrayClass.getComponentType();
 223             Class<?> arrayArgClass = arrayClass;
 224             if (!elemClass.isPrimitive()) {
 225                 arrayArgClass = Object[].class;
 226                 elemClass = Object.class;
 227             }
 228             return switch (access) {
 229                 case GET    -> MethodType.methodType(elemClass, arrayArgClass, int.class);
 230                 case SET    -> MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 231                 case LENGTH -> MethodType.methodType(int.class, arrayArgClass);
 232                 default -> throw unmatchedArrayAccess(access);
 233             };
 234         }
 235         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 236             Class<?> elemClass = arrayClass.getComponentType();
 237             return switch (access) {
 238                 case GET    -> MethodType.methodType(elemClass, arrayClass, int.class);
 239                 case SET    -> MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 240                 case LENGTH -> MethodType.methodType(int.class, arrayClass);
 241                 default -> throw unmatchedArrayAccess(access);
 242             };
 243         }
 244         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 245             String     name = name(arrayClass, access);
 246             MethodType type = type(arrayClass, access);
 247             try {
 248                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 249             } catch (ReflectiveOperationException ex) {
 250                 throw uncaughtException(ex);
 251             }
 252         }
 253     }
 254 
 255     /**
 256      * Create a JVM-level adapter method handle to conform the given method
 257      * handle to the similar newType, using only pairwise argument conversions.
 258      * For each argument, convert incoming argument to the exact type needed.
 259      * The argument conversions allowed are casting, boxing and unboxing,
 260      * integral widening or narrowing, and floating point widening or narrowing.
 261      * @param srcType required call type
 262      * @param target original method handle
 263      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 264      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 265      * @return an adapter to the original handle with the desired new type,
 266      *          or the original target if the types are already identical
 267      *          or null if the adaptation cannot be made
 268      */
 269     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 270                                             boolean strict, boolean monobox) {
 271         MethodType dstType = target.type();
 272         if (srcType == dstType)
 273             return target;
 274         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 275     }
 276 
 277     private static int countNonNull(Object[] array) {
 278         int count = 0;
 279         if (array != null) {
 280             for (Object x : array) {
 281                 if (x != null) ++count;
 282             }
 283         }
 284         return count;
 285     }
 286 
 287     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 288                                                     boolean strict, boolean monobox) {
 289         // In method types arguments start at index 0, while the LF
 290         // editor have the MH receiver at position 0 - adjust appropriately.
 291         final int MH_RECEIVER_OFFSET = 1;
 292         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 293         int convCount = countNonNull(convSpecs);
 294         if (convCount == 0)
 295             return target.viewAsType(srcType, strict);
 296         MethodType basicSrcType = srcType.basicType();
 297         MethodType midType = target.type().basicType();
 298         BoundMethodHandle mh = target.rebind();
 299 
 300         // Match each unique conversion to the positions at which it is to be applied
 301         HashMap<Object, int[]> convSpecMap = HashMap.newHashMap(convCount);
 302         for (int i = 0; i < convSpecs.length - MH_RECEIVER_OFFSET; i++) {
 303             Object convSpec = convSpecs[i];
 304             if (convSpec == null) continue;
 305             int[] positions = convSpecMap.get(convSpec);
 306             if (positions == null) {
 307                 positions = new int[] { i + MH_RECEIVER_OFFSET };
 308             } else {
 309                 positions = Arrays.copyOf(positions, positions.length + 1);
 310                 positions[positions.length - 1] = i + MH_RECEIVER_OFFSET;
 311             }
 312             convSpecMap.put(convSpec, positions);
 313         }
 314         for (var entry : convSpecMap.entrySet()) {
 315             Object convSpec = entry.getKey();
 316 
 317             MethodHandle fn;
 318             if (convSpec instanceof Class) {
 319                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 320             } else {
 321                 fn = (MethodHandle) convSpec;
 322             }
 323             int[] positions = entry.getValue();
 324             Class<?> newType = basicSrcType.parameterType(positions[0] - MH_RECEIVER_OFFSET);
 325             BasicType newBasicType = BasicType.basicType(newType);
 326             convCount -= positions.length;
 327             if (convCount == 0) {
 328                 midType = srcType;
 329             } else {
 330                 Class<?>[] ptypes = midType.ptypes().clone();
 331                 for (int pos : positions) {
 332                     ptypes[pos - 1] = newType;
 333                 }
 334                 midType = MethodType.methodType(midType.rtype(), ptypes, true);
 335             }
 336             LambdaForm form2;
 337             if (positions.length > 1) {
 338                 form2 = mh.editor().filterRepeatedArgumentForm(newBasicType, positions);
 339             } else {
 340                 form2 = mh.editor().filterArgumentForm(positions[0], newBasicType);
 341             }
 342             mh = mh.copyWithExtendL(midType, form2, fn);
 343         }
 344         Object convSpec = convSpecs[convSpecs.length - 1];
 345         if (convSpec != null) {
 346             MethodHandle fn;
 347             if (convSpec instanceof Class) {
 348                 if (convSpec == void.class)
 349                     fn = null;
 350                 else
 351                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 352             } else {
 353                 fn = (MethodHandle) convSpec;
 354             }
 355             Class<?> newType = basicSrcType.returnType();
 356             assert(--convCount == 0);
 357             midType = srcType;
 358             if (fn != null) {
 359                 mh = mh.rebind();  // rebind if too complex
 360                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 361                 mh = mh.copyWithExtendL(midType, form2, fn);
 362             } else {
 363                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 364                 mh = mh.copyWith(midType, form2);
 365             }
 366         }
 367         assert(convCount == 0);
 368         assert(mh.type().equals(srcType));
 369         return mh;
 370     }
 371 
 372     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 373                                             boolean strict, boolean monobox) {
 374         final int INARG_COUNT = srcType.parameterCount();
 375         Object[] convSpecs = null;
 376         for (int i = 0; i <= INARG_COUNT; i++) {
 377             boolean isRet = (i == INARG_COUNT);
 378             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 379             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 380             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 381                 if (convSpecs == null) {
 382                     convSpecs = new Object[INARG_COUNT + 1];
 383                 }
 384                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 385             }
 386         }
 387         return convSpecs;
 388     }
 389     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 390                                             boolean strict) {
 391         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 392     }
 393 
 394     /**
 395      * Find a conversion function from the given source to the given destination.
 396      * This conversion function will be used as a LF NamedFunction.
 397      * Return a Class object if a simple cast is needed.
 398      * Return void.class if void is involved.
 399      */
 400     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 401         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 402         if (dst == void.class)
 403             return dst;
 404         MethodHandle fn;
 405         if (src.isPrimitive()) {
 406             if (src == void.class) {
 407                 return void.class;  // caller must recognize this specially
 408             } else if (dst.isPrimitive()) {
 409                 // Examples: int->byte, byte->int, boolean->int (!strict)
 410                 fn = ValueConversions.convertPrimitive(src, dst);
 411             } else {
 412                 // Examples: int->Integer, boolean->Object, float->Number
 413                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 414                 fn = ValueConversions.boxExact(wsrc);
 415                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 416                 assert(fn.type().returnType() == wsrc.wrapperType());
 417                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 418                     // Corner case, such as int->Long, which will probably fail.
 419                     MethodType mt = MethodType.methodType(dst, src);
 420                     if (strict)
 421                         fn = fn.asType(mt);
 422                     else
 423                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 424                 }
 425             }
 426         } else if (dst.isPrimitive()) {
 427             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 428             if (monobox || src == wdst.wrapperType()) {
 429                 // Use a strongly-typed unboxer, if possible.
 430                 fn = ValueConversions.unboxExact(wdst, strict);
 431             } else {
 432                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 433                 // must include additional conversions
 434                 // src must be examined at runtime, to detect Byte, Character, etc.
 435                 fn = (strict
 436                         ? ValueConversions.unboxWiden(wdst)
 437                         : ValueConversions.unboxCast(wdst));
 438             }
 439         } else {
 440             // Simple reference conversion.
 441             // Note:  Do not check for a class hierarchy relation
 442             // between src and dst.  In all cases a 'null' argument
 443             // will pass the cast conversion.
 444             return dst;
 445         }
 446         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 447         return fn;
 448     }
 449 
 450     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 451         MethodType type = target.type();
 452         int last = type.parameterCount() - 1;
 453         if (type.parameterType(last) != arrayType)
 454             target = target.asType(type.changeParameterType(last, arrayType));
 455         target = target.asFixedArity();  // make sure this attribute is turned off
 456         return new AsVarargsCollector(target, arrayType);
 457     }
 458 
 459     @AOTSafeClassInitializer
 460     static final class AsVarargsCollector extends DelegatingMethodHandle {
 461         private final MethodHandle target;
 462         private final Class<?> arrayType;
 463         private MethodHandle asCollectorCache;
 464 
 465         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 466             this(target.type(), target, arrayType);
 467         }
 468         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 469             super(type, target);
 470             this.target = target;
 471             this.arrayType = arrayType;
 472         }
 473 
 474         @Override
 475         public boolean isVarargsCollector() {
 476             return true;
 477         }
 478 
 479         @Override
 480         protected MethodHandle getTarget() {
 481             return target;
 482         }
 483 
 484         @Override
 485         public MethodHandle asFixedArity() {
 486             return target;
 487         }
 488 
 489         @Override
 490         MethodHandle setVarargs(MemberName member) {
 491             if (member.isVarargs())  return this;
 492             return asFixedArity();
 493         }
 494 
 495         @Override
 496         public MethodHandle withVarargs(boolean makeVarargs) {
 497             if (makeVarargs)  return this;
 498             return asFixedArity();
 499         }
 500 
 501         @Override
 502         public MethodHandle asTypeUncached(MethodType newType) {
 503             MethodType type = this.type();
 504             int collectArg = type.parameterCount() - 1;
 505             int newArity = newType.parameterCount();
 506             if (newArity == collectArg+1 &&
 507                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 508                 // if arity and trailing parameter are compatible, do normal thing
 509                 return asFixedArity().asType(newType);
 510             }
 511             // check cache
 512             MethodHandle acc = asCollectorCache;
 513             if (acc != null && acc.type().parameterCount() == newArity)
 514                 return acc.asType(newType);
 515             // build and cache a collector
 516             int arrayLength = newArity - collectArg;
 517             MethodHandle collector;
 518             try {
 519                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 520                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 521             } catch (IllegalArgumentException ex) {
 522                 throw new WrongMethodTypeException("cannot build collector", ex);
 523             }
 524             asCollectorCache = collector;
 525             return collector.asType(newType);
 526         }
 527 
 528         @Override
 529         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 530             super.viewAsTypeChecks(newType, true);
 531             if (strict) return true;
 532             // extra assertion for non-strict checks:
 533             assert (type().lastParameterType().getComponentType()
 534                     .isAssignableFrom(
 535                             newType.lastParameterType().getComponentType()))
 536                     : Arrays.asList(this, newType);
 537             return true;
 538         }
 539 
 540         @Override
 541         public Object invokeWithArguments(Object... arguments) throws Throwable {
 542             MethodType type = this.type();
 543             int argc;
 544             final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
 545             if (arguments == null
 546                     || (argc = arguments.length) <= MAX_SAFE
 547                     || argc < type.parameterCount()) {
 548                 return super.invokeWithArguments(arguments);
 549             }
 550 
 551             // a jumbo invocation requires more explicit reboxing of the trailing arguments
 552             int uncollected = type.parameterCount() - 1;
 553             Class<?> elemType = arrayType.getComponentType();
 554             int collected = argc - uncollected;
 555             Object collArgs = (elemType == Object.class)
 556                 ? new Object[collected] : Array.newInstance(elemType, collected);
 557             if (!elemType.isPrimitive()) {
 558                 // simple cast:  just do some casting
 559                 try {
 560                     System.arraycopy(arguments, uncollected, collArgs, 0, collected);
 561                 } catch (ArrayStoreException ex) {
 562                     return super.invokeWithArguments(arguments);
 563                 }
 564             } else {
 565                 // corner case of flat array requires reflection (or specialized copy loop)
 566                 MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 567                 try {
 568                     for (int i = 0; i < collected; i++) {
 569                         arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
 570                     }
 571                 } catch (WrongMethodTypeException|ClassCastException ex) {
 572                     return super.invokeWithArguments(arguments);
 573                 }
 574             }
 575 
 576             // chop the jumbo list down to size and call in non-varargs mode
 577             Object[] newArgs = new Object[uncollected + 1];
 578             System.arraycopy(arguments, 0, newArgs, 0, uncollected);
 579             newArgs[uncollected] = collArgs;
 580             return asFixedArity().invokeWithArguments(newArgs);
 581         }
 582     }
 583 
 584     static void checkSpreadArgument(Object av, int n) {
 585         if (av == null && n == 0) {
 586             return;
 587         } else if (av == null) {
 588             throw new NullPointerException("null array reference");
 589         } else if (av instanceof Object[] array) {
 590             int len = array.length;
 591             if (len == n)  return;
 592         } else {
 593             int len = java.lang.reflect.Array.getLength(av);
 594             if (len == n)  return;
 595         }
 596         // fall through to error:
 597         throw newIllegalArgumentException("array is not of length "+n);
 598     }
 599 
 600     @Hidden
 601     static MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 602         if (testResult) {
 603             return target;
 604         } else {
 605             return fallback;
 606         }
 607     }
 608 
 609     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 610     @Hidden
 611     @jdk.internal.vm.annotation.IntrinsicCandidate
 612     static boolean profileBoolean(boolean result, int[] counters) {
 613         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 614         int idx = result ? 1 : 0;
 615         try {
 616             counters[idx] = Math.addExact(counters[idx], 1);
 617         } catch (ArithmeticException e) {
 618             // Avoid continuous overflow by halving the problematic count.
 619             counters[idx] = counters[idx] / 2;
 620         }
 621         return result;
 622     }
 623 
 624     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 625     @Hidden
 626     @jdk.internal.vm.annotation.IntrinsicCandidate
 627     static boolean isCompileConstant(Object obj) {
 628         return false;
 629     }
 630 
 631     static MethodHandle makeGuardWithTest(MethodHandle test,
 632                                    MethodHandle target,
 633                                    MethodHandle fallback) {
 634         MethodType type = target.type();
 635         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 636         MethodType basicType = type.basicType();
 637         LambdaForm form = makeGuardWithTestForm(basicType);
 638         BoundMethodHandle mh;
 639         try {
 640             if (PROFILE_GWT) {
 641                 int[] counts = new int[2];
 642                 mh = (BoundMethodHandle)
 643                         BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
 644                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 645             } else {
 646                 mh = (BoundMethodHandle)
 647                         BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
 648                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 649             }
 650         } catch (Throwable ex) {
 651             throw uncaughtException(ex);
 652         }
 653         assert(mh.type() == type);
 654         return mh;
 655     }
 656 
 657 
 658     static MethodHandle profile(MethodHandle target) {
 659         if (DONT_INLINE_THRESHOLD >= 0) {
 660             return makeBlockInliningWrapper(target);
 661         } else {
 662             return target;
 663         }
 664     }
 665 
 666     /**
 667      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 668      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 669      */
 670     static MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 671         LambdaForm lform;
 672         if (DONT_INLINE_THRESHOLD > 0) {
 673             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 674         } else {
 675             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 676         }
 677         return new CountingWrapper(target, lform,
 678                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 679                                    DONT_INLINE_THRESHOLD);
 680     }
 681 
 682     @AOTSafeClassInitializer
 683     private static final class Makers {
 684         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 685         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 686             @Override
 687             public LambdaForm apply(MethodHandle target) {
 688                 return DelegatingMethodHandle.makeReinvokerForm(target,
 689                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 690                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 691             }
 692         };
 693 
 694         /** Constructs simple reinvoker lambda form for a particular method handle */
 695         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 696             @Override
 697             public LambdaForm apply(MethodHandle target) {
 698                 return DelegatingMethodHandle.makeReinvokerForm(target,
 699                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 700             }
 701         };
 702 
 703         /** Maker of type-polymorphic varargs */
 704         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 705             @Override
 706             protected MethodHandle[] computeValue(Class<?> type) {
 707                 return new MethodHandle[MAX_JVM_ARITY + 1];
 708             }
 709         };
 710     }
 711 
 712     /**
 713      * Counting method handle. It has 2 states: counting and non-counting.
 714      * It is in counting state for the first n invocations and then transitions to non-counting state.
 715      * Behavior in counting and non-counting states is determined by lambda forms produced by
 716      * countingFormProducer & nonCountingFormProducer respectively.
 717      */
 718     @AOTSafeClassInitializer
 719     static final class CountingWrapper extends DelegatingMethodHandle {
 720         private final MethodHandle target;
 721         private int count;
 722         private Function<MethodHandle, LambdaForm> countingFormProducer;
 723         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 724         private volatile boolean isCounting;
 725 
 726         private CountingWrapper(MethodHandle target, LambdaForm lform,
 727                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 728                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 729                                 int count) {
 730             super(target.type(), lform);
 731             this.target = target;
 732             this.count = count;
 733             this.countingFormProducer = countingFromProducer;
 734             this.nonCountingFormProducer = nonCountingFormProducer;
 735             this.isCounting = (count > 0);
 736         }
 737 
 738         @Hidden
 739         @Override
 740         protected MethodHandle getTarget() {
 741             return target;
 742         }
 743 
 744         @Override
 745         public MethodHandle asTypeUncached(MethodType newType) {
 746             MethodHandle newTarget = target.asType(newType);
 747             MethodHandle wrapper;
 748             if (isCounting) {
 749                 LambdaForm lform;
 750                 lform = countingFormProducer.apply(newTarget);
 751                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 752             } else {
 753                 wrapper = newTarget; // no need for a counting wrapper anymore
 754             }
 755             return wrapper;
 756         }
 757 
 758         boolean countDown() {
 759             int c = count;
 760             target.maybeCustomize(); // customize if counting happens for too long
 761             if (c <= 1) {
 762                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 763                 if (isCounting) {
 764                     isCounting = false;
 765                     return true;
 766                 } else {
 767                     return false;
 768                 }
 769             } else {
 770                 count = c - 1;
 771                 return false;
 772             }
 773         }
 774 
 775         @Hidden
 776         static void maybeStopCounting(Object o1) {
 777              final CountingWrapper wrapper = (CountingWrapper) o1;
 778              if (wrapper.countDown()) {
 779                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 780                  wrapper.updateForm(new Function<>() {
 781                      public LambdaForm apply(LambdaForm oldForm) {
 782                          LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 783                          lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 784                          return lform;
 785                      }});
 786              }
 787         }
 788 
 789         static final NamedFunction NF_maybeStopCounting;
 790         static {
 791             Class<?> THIS_CLASS = CountingWrapper.class;
 792             try {
 793                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 794             } catch (ReflectiveOperationException ex) {
 795                 throw newInternalError(ex);
 796             }
 797         }
 798     }
 799 
 800     static LambdaForm makeGuardWithTestForm(MethodType basicType) {
 801         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 802         if (lform != null)  return lform;
 803         final int THIS_MH      = 0;  // the BMH_LLL
 804         final int ARG_BASE     = 1;  // start of incoming arguments
 805         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 806         int nameCursor = ARG_LIMIT;
 807         final int GET_TEST     = nameCursor++;
 808         final int GET_TARGET   = nameCursor++;
 809         final int GET_FALLBACK = nameCursor++;
 810         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 811         final int CALL_TEST    = nameCursor++;
 812         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 813         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 814         final int SELECT_ALT   = nameCursor++;
 815         final int CALL_TARGET  = nameCursor++;
 816         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 817 
 818         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
 819 
 820         BoundMethodHandle.SpeciesData data =
 821                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 822                                      : BoundMethodHandle.speciesData_LLL();
 823         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 824         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 825         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 826         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 827         if (GET_COUNTERS != -1) {
 828             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 829         }
 830         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 831 
 832         // call test
 833         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 834         invokeArgs[0] = names[GET_TEST];
 835         names[CALL_TEST] = new Name(testType, invokeArgs);
 836 
 837         // profile branch
 838         if (PROFILE != -1) {
 839             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 840         }
 841         // call selectAlternative
 842         names[SELECT_ALT] = new Name(new NamedFunction(
 843                 makeIntrinsic(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE)),
 844                 names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 845 
 846         // call target or fallback
 847         invokeArgs[0] = names[SELECT_ALT];
 848         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 849 
 850         lform = LambdaForm.create(basicType.parameterCount() + 1, names, /*forceInline=*/true, Kind.GUARD);
 851 
 852         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 853     }
 854 
 855     /**
 856      * The LambdaForm shape for catchException combinator is the following:
 857      * <blockquote><pre>{@code
 858      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
 859      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
 860      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
 861      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
 862      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
 863      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
 864      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
 865      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
 866      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
 867      * }</pre></blockquote>
 868      *
 869      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
 870      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
 871      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
 872      *
 873      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
 874      * among catchException combinators with the same basic type.
 875      */
 876     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
 877         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
 878         if (lform != null) {
 879             return lform;
 880         }
 881         final int THIS_MH      = 0;  // the BMH_LLLLL
 882         final int ARG_BASE     = 1;  // start of incoming arguments
 883         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 884 
 885         int nameCursor = ARG_LIMIT;
 886         final int GET_TARGET       = nameCursor++;
 887         final int GET_CLASS        = nameCursor++;
 888         final int GET_CATCHER      = nameCursor++;
 889         final int GET_COLLECT_ARGS = nameCursor++;
 890         final int GET_UNBOX_RESULT = nameCursor++;
 891         final int BOXED_ARGS       = nameCursor++;
 892         final int TRY_CATCH        = nameCursor++;
 893         final int UNBOX_RESULT     = nameCursor++;
 894 
 895         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
 896 
 897         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 898         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
 899         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
 900         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
 901         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
 902         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
 903         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
 904 
 905         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
 906 
 907         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
 908         MethodType collectArgsType = basicType.changeReturnType(Object.class);
 909         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
 910         Object[] args = new Object[invokeBasic.type().parameterCount()];
 911         args[0] = names[GET_COLLECT_ARGS];
 912         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
 913         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.GUARD_WITH_CATCH)), args);
 914 
 915         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
 916         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
 917         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
 918 
 919         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
 920         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
 921         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
 922         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
 923 
 924         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.GUARD_WITH_CATCH);
 925 
 926         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
 927     }
 928 
 929     static MethodHandle makeGuardWithCatch(MethodHandle target,
 930                                     Class<? extends Throwable> exType,
 931                                     MethodHandle catcher) {
 932         MethodType type = target.type();
 933         LambdaForm form = makeGuardWithCatchForm(type.basicType());
 934 
 935         // Prepare auxiliary method handles used during LambdaForm interpretation.
 936         // Box arguments and wrap them into Object[]: ValueConversions.array().
 937         MethodType varargsType = type.changeReturnType(Object[].class);
 938         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
 939         MethodHandle unboxResult = unboxResultHandle(type.returnType());
 940 
 941         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 942         BoundMethodHandle mh;
 943         try {
 944             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType,
 945                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
 946         } catch (Throwable ex) {
 947             throw uncaughtException(ex);
 948         }
 949         assert(mh.type() == type);
 950         return mh;
 951     }
 952 
 953     /**
 954      * Intrinsified during LambdaForm compilation
 955      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
 956      */
 957     @Hidden
 958     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
 959                                  Object... av) throws Throwable {
 960         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
 961         try {
 962             return target.asFixedArity().invokeWithArguments(av);
 963         } catch (Throwable t) {
 964             if (!exType.isInstance(t)) throw t;
 965             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
 966         }
 967     }
 968 
 969     /** Prepend elements to an array. */
 970     @Hidden
 971     private static Object[] prepend(Object[] array, Object... elems) {
 972         int nArray = array.length;
 973         int nElems = elems.length;
 974         Object[] newArray = new Object[nArray + nElems];
 975         System.arraycopy(elems, 0, newArray, 0, nElems);
 976         System.arraycopy(array, 0, newArray, nElems, nArray);
 977         return newArray;
 978     }
 979 
 980     static MethodHandle throwException(MethodType type) {
 981         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
 982         int arity = type.parameterCount();
 983         if (arity > 1) {
 984             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
 985             mh = MethodHandles.dropArgumentsTrusted(mh, 1, Arrays.copyOfRange(type.ptypes(), 1, arity));
 986             return mh;
 987         }
 988         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
 989     }
 990 
 991     static <T extends Throwable> Void throwException(T t) throws T { throw t; }
 992 
 993     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
 994     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
 995         assert(method.isMethodHandleInvoke());
 996         int idx = switch (method.getName()) {
 997             case "invoke"      -> 0;
 998             case "invokeExact" -> 1;
 999             default -> throw new InternalError(method.getName());
1000         };
1001         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
1002         if (mh != null)  return mh;
1003         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
1004                                                 MethodHandle.class, Object[].class);
1005         mh = throwException(type);
1006         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1007         if (!method.getInvocationType().equals(mh.type()))
1008             throw new InternalError(method.toString());
1009         mh = mh.withInternalMemberName(method, false);
1010         mh = mh.withVarargs(true);
1011         assert(method.isVarargs());
1012         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1013         return mh;
1014     }
1015     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1016         // TODO caching, is it necessary?
1017         MethodType type = MethodType.methodType(method.getMethodType().returnType(),
1018                                                 UnsupportedOperationException.class,
1019                                                 VarHandle.class, Object[].class);
1020         MethodHandle mh = throwException(type);
1021         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1022         if (!method.getInvocationType().equals(mh.type()))
1023             throw new InternalError(method.toString());
1024         mh = mh.withInternalMemberName(method, false);
1025         mh = mh.asVarargsCollector(Object[].class);
1026         assert(method.isVarargs());
1027         return mh;
1028     }
1029 
1030     /**
1031      * Create an alias for the method handle which, when called,
1032      * appears to be called from the same class loader and protection domain
1033      * as hostClass.
1034      * This is an expensive no-op unless the method which is called
1035      * is sensitive to its caller.  A small number of system methods
1036      * are in this category, including Class.forName and Method.invoke.
1037      */
1038     static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1039         return BindCaller.bindCaller(mh, hostClass);
1040     }
1041 
1042     // Put the whole mess into its own nested class.
1043     // That way we can lazily load the code and set up the constants.
1044     @AOTSafeClassInitializer
1045     private static class BindCaller {
1046 
1047         private static final ClassDesc CD_Object_array = ConstantUtils.CD_Object_array;
1048         private static final MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1049         private static final MethodType REFLECT_INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object.class, Object[].class);
1050 
1051         static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1052             // Code in the boot layer should now be careful while creating method handles or
1053             // functional interface instances created from method references to @CallerSensitive  methods,
1054             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1055             // from the boot layer to untrusted code.
1056             if (hostClass == null
1057                 ||    (hostClass.isArray() ||
1058                        hostClass.isPrimitive() ||
1059                        hostClass.getName().startsWith("java.lang.invoke."))) {
1060                 throw new InternalError();  // does not happen, and should not anyway
1061             }
1062 
1063             MemberName member = mh.internalMemberName();
1064             if (member != null) {
1065                 // Look up the CSM adapter method with the same method name
1066                 // but with an additional caller class parameter.  If present,
1067                 // bind the adapter's method handle with the lookup class as
1068                 // the caller class argument
1069                 MemberName csmAdapter = IMPL_LOOKUP.resolveOrNull(member.getReferenceKind(),
1070                         new MemberName(member.getDeclaringClass(),
1071                                        member.getName(),
1072                                        member.getMethodType().appendParameterTypes(Class.class),
1073                                        member.getReferenceKind()));
1074                 if (csmAdapter != null) {
1075                     assert !csmAdapter.isCallerSensitive();
1076                     MethodHandle dmh = DirectMethodHandle.make(csmAdapter);
1077                     dmh = MethodHandles.insertArguments(dmh, dmh.type().parameterCount() - 1, hostClass);
1078                     dmh = new WrappedMember(dmh, mh.type(), member, mh.isInvokeSpecial(), hostClass);
1079                     return dmh;
1080                 }
1081             }
1082 
1083             // If no adapter method for CSM with an additional Class parameter
1084             // is present, then inject an invoker class that is the caller
1085             // invoking the method handle of the CSM
1086             try {
1087                 return bindCallerWithInjectedInvoker(mh, hostClass);
1088             } catch (ReflectiveOperationException ex) {
1089                 throw uncaughtException(ex);
1090             }
1091         }
1092 
1093         private static MethodHandle bindCallerWithInjectedInvoker(MethodHandle mh, Class<?> hostClass)
1094                 throws ReflectiveOperationException
1095         {
1096             // For simplicity, convert mh to a varargs-like method.
1097             MethodHandle vamh = prepareForInvoker(mh);
1098             // Cache the result of makeInjectedInvoker once per argument class.
1099             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass).invoker();
1100             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1101         }
1102 
1103         private static Class<?> makeInjectedInvoker(Class<?> targetClass) {
1104                 /*
1105                  * The invoker class defined to the same class loader as the lookup class
1106                  * but in an unnamed package so that the class bytes can be cached and
1107                  * reused for any @CSM.
1108                  *
1109                  * @CSM must be public and exported if called by any module.
1110                  */
1111                 String name = targetClass.getName() + "$$InjectedInvoker";
1112                 if (targetClass.isHidden()) {
1113                     // use the original class name
1114                     name = name.replace('/', '_');
1115                 }
1116                 name = name.replace('.', '/');
1117                 Class<?> invokerClass = new Lookup(targetClass)
1118                         .makeHiddenClassDefiner(name, INJECTED_INVOKER_TEMPLATE, dumper(), NESTMATE_CLASS)
1119                         .defineClass(true, targetClass);
1120                 assert checkInjectedInvoker(targetClass, invokerClass);
1121                 return invokerClass;
1122         }
1123 
1124         private static ClassValue<InjectedInvokerHolder> CV_makeInjectedInvoker = new ClassValue<>() {
1125             @Override
1126             protected InjectedInvokerHolder computeValue(Class<?> hostClass) {
1127                 return new InjectedInvokerHolder(makeInjectedInvoker(hostClass));
1128             }
1129         };
1130 
1131         /*
1132          * Returns a method handle of an invoker class injected for reflection
1133          * implementation use with the following signature:
1134          *     reflect_invoke_V(MethodHandle mh, Object target, Object[] args)
1135          *
1136          * Method::invoke on a caller-sensitive method will call
1137          * MethodAccessorImpl::invoke(Object, Object[]) through reflect_invoke_V
1138          *     target.csm(args)
1139          *     NativeMethodAccessorImpl::invoke(target, args)
1140          *     MethodAccessImpl::invoke(target, args)
1141          *     InjectedInvoker::reflect_invoke_V(vamh, target, args);
1142          *     method::invoke(target, args)
1143          *     p.Foo::m
1144          *
1145          * An injected invoker class is a hidden class which has the same
1146          * defining class loader, runtime package, and protection domain
1147          * as the given caller class.
1148          */
1149         static MethodHandle reflectiveInvoker(Class<?> caller) {
1150             return BindCaller.CV_makeInjectedInvoker.get(caller).reflectInvoker();
1151         }
1152 
1153         @AOTSafeClassInitializer
1154         private static final class InjectedInvokerHolder {
1155             private final Class<?> invokerClass;
1156             // lazily resolved and cached DMH(s) of invoke_V methods
1157             private MethodHandle invoker;
1158             private MethodHandle reflectInvoker;
1159 
1160             private InjectedInvokerHolder(Class<?> invokerClass) {
1161                 this.invokerClass = invokerClass;
1162             }
1163 
1164             private MethodHandle invoker() {
1165                 var mh = invoker;
1166                 if (mh == null) {
1167                     try {
1168                         invoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1169                     } catch (Error | RuntimeException ex) {
1170                         throw ex;
1171                     } catch (Throwable ex) {
1172                         throw new InternalError(ex);
1173                     }
1174                 }
1175                 return mh;
1176             }
1177 
1178             private MethodHandle reflectInvoker() {
1179                 var mh = reflectInvoker;
1180                 if (mh == null) {
1181                     try {
1182                         reflectInvoker = mh = IMPL_LOOKUP.findStatic(invokerClass, "reflect_invoke_V", REFLECT_INVOKER_MT);
1183                     } catch (Error | RuntimeException ex) {
1184                         throw ex;
1185                     } catch (Throwable ex) {
1186                         throw new InternalError(ex);
1187                     }
1188                 }
1189                 return mh;
1190             }
1191         }
1192 
1193         // Adapt mh so that it can be called directly from an injected invoker:
1194         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1195             mh = mh.asFixedArity();
1196             MethodType mt = mh.type();
1197             int arity = mt.parameterCount();
1198             MethodHandle vamh = mh.asType(mt.generic());
1199             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1200             vamh = vamh.asSpreader(Object[].class, arity);
1201             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1202             return vamh;
1203         }
1204 
1205         // Undo the adapter effect of prepareForInvoker:
1206         private static MethodHandle restoreToType(MethodHandle vamh,
1207                                                   MethodHandle original,
1208                                                   Class<?> hostClass) {
1209             MethodType type = original.type();
1210             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1211             MemberName member = original.internalMemberName();
1212             mh = mh.asType(type);
1213             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1214             return mh;
1215         }
1216 
1217         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1218             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1219             assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1220             try {
1221                 // Test the invoker to ensure that it really injects into the right place.
1222                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1223                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1224                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1225             } catch (Error|RuntimeException ex) {
1226                 throw ex;
1227             } catch (Throwable ex) {
1228                 throw new InternalError(ex);
1229             }
1230         }
1231 
1232         private static final MethodHandle MH_checkCallerClass;
1233         static {
1234             final Class<?> THIS_CLASS = BindCaller.class;
1235             assert(checkCallerClass(THIS_CLASS));
1236             try {
1237                 MH_checkCallerClass = IMPL_LOOKUP
1238                     .findStatic(THIS_CLASS, "checkCallerClass",
1239                                 MethodType.methodType(boolean.class, Class.class));
1240                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1241             } catch (Throwable ex) {
1242                 throw new InternalError(ex);
1243             }
1244         }
1245 
1246         @CallerSensitive
1247         @ForceInline // to ensure Reflection.getCallerClass optimization
1248         private static boolean checkCallerClass(Class<?> expected) {
1249             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1250             Class<?> actual = Reflection.getCallerClass();
1251             if (actual != expected)
1252                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1253             return true;
1254         }
1255 
1256         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1257 
1258         /** Produces byte code for a class that is used as an injected invoker. */
1259         private static byte[] generateInvokerTemplate() {
1260             // private static class InjectedInvoker {
1261             //     /* this is used to wrap DMH(s) of caller-sensitive methods */
1262             //     @Hidden
1263             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1264             //        return vamh.invokeExact(args);
1265             //     }
1266             //     /* this is used in caller-sensitive reflective method accessor */
1267             //     @Hidden
1268             //     static Object reflect_invoke_V(MethodHandle vamh, Object target, Object[] args) throws Throwable {
1269             //        return vamh.invokeExact(target, args);
1270             //     }
1271             // }
1272             // }
1273             return ClassFile.of().build(ClassOrInterfaceDescImpl.ofValidated("LInjectedInvoker;"), clb -> clb
1274                     .withFlags(ACC_PRIVATE | ACC_SUPER)
1275                     .withMethodBody(
1276                         "invoke_V",
1277                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object_array),
1278                         ACC_STATIC,
1279                         cob -> cob.aload(0)
1280                                   .aload(1)
1281                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object_array))
1282                                   .areturn())
1283                     .withMethodBody(
1284                         "reflect_invoke_V",
1285                         MethodTypeDescImpl.ofValidated(CD_Object, CD_MethodHandle, CD_Object, CD_Object_array),
1286                         ACC_STATIC,
1287                         cob -> cob.aload(0)
1288                                   .aload(1)
1289                                   .aload(2)
1290                                   .invokevirtual(CD_MethodHandle, "invokeExact", MethodTypeDescImpl.ofValidated(CD_Object, CD_Object, CD_Object_array))
1291                                   .areturn()));
1292         }
1293     }
1294 
1295     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1296     @AOTSafeClassInitializer
1297     static final class WrappedMember extends DelegatingMethodHandle {
1298         private final MethodHandle target;
1299         private final MemberName member;
1300         private final Class<?> callerClass;
1301         private final boolean isInvokeSpecial;
1302 
1303         private WrappedMember(MethodHandle target, MethodType type,
1304                               MemberName member, boolean isInvokeSpecial,
1305                               Class<?> callerClass) {
1306             super(type, target);
1307             this.target = target;
1308             this.member = member;
1309             this.callerClass = callerClass;
1310             this.isInvokeSpecial = isInvokeSpecial;
1311         }
1312 
1313         @Override
1314         MemberName internalMemberName() {
1315             return member;
1316         }
1317         @Override
1318         Class<?> internalCallerClass() {
1319             return callerClass;
1320         }
1321         @Override
1322         boolean isInvokeSpecial() {
1323             return isInvokeSpecial;
1324         }
1325         @Override
1326         protected MethodHandle getTarget() {
1327             return target;
1328         }
1329         @Override
1330         public MethodHandle asTypeUncached(MethodType newType) {
1331             // This MH is an alias for target, except for the MemberName
1332             // Drop the MemberName if there is any conversion.
1333             return target.asType(newType);
1334         }
1335     }
1336 
1337     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1338         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1339             return target;
1340         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1341     }
1342 
1343     /** Intrinsic IDs */
1344     /*non-public*/
1345     enum Intrinsic {
1346         SELECT_ALTERNATIVE,
1347         GUARD_WITH_CATCH,
1348         TRY_FINALLY,
1349         TABLE_SWITCH,
1350         LOOP,
1351         ARRAY_LOAD,
1352         ARRAY_STORE,
1353         ARRAY_LENGTH,
1354         IDENTITY,
1355         NONE // no intrinsic associated
1356     }
1357 
1358     /** Mark arbitrary method handle as intrinsic.
1359      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1360     @AOTSafeClassInitializer
1361     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1362         private final MethodHandle target;
1363         private final Intrinsic intrinsicName;
1364         private final Object intrinsicData;
1365 
1366         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1367            this(target, intrinsicName, null);
1368         }
1369 
1370         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1371             super(target.type(), target);
1372             this.target = target;
1373             this.intrinsicName = intrinsicName;
1374             this.intrinsicData = intrinsicData;
1375         }
1376 
1377         @Override
1378         protected MethodHandle getTarget() {
1379             return target;
1380         }
1381 
1382         @Override
1383         Intrinsic intrinsicName() {
1384             return intrinsicName;
1385         }
1386 
1387         @Override
1388         Object intrinsicData() {
1389             return intrinsicData;
1390         }
1391 
1392         @Override
1393         public MethodHandle asTypeUncached(MethodType newType) {
1394             // This MH is an alias for target, except for the intrinsic name
1395             // Drop the name if there is any conversion.
1396             return target.asType(newType);
1397         }
1398 
1399         @Override
1400         String internalProperties() {
1401             return super.internalProperties() +
1402                     "\n& Intrinsic="+intrinsicName;
1403         }
1404 
1405         @Override
1406         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1407             if (intrinsicName == Intrinsic.IDENTITY) {
1408                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1409                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1410                 return newArray.asType(resultType);
1411             }
1412             return super.asCollector(arrayType, arrayLength);
1413         }
1414     }
1415 
1416     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1417         return makeIntrinsic(target, intrinsicName, null);
1418     }
1419 
1420     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName, Object intrinsicData) {
1421         if (intrinsicName == target.intrinsicName())
1422             return target;
1423         return new IntrinsicMethodHandle(target, intrinsicName, intrinsicData);
1424     }
1425 
1426     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1427         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1428     }
1429 
1430     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1431 
1432     /** Return a method handle that takes the indicated number of Object
1433      *  arguments and returns an Object array of them, as if for varargs.
1434      */
1435     static MethodHandle varargsArray(int nargs) {
1436         MethodHandle mh = ARRAYS[nargs];
1437         if (mh != null) {
1438             return mh;
1439         }
1440         mh = makeCollector(Object[].class, nargs);
1441         assert(assertCorrectArity(mh, nargs));
1442         return ARRAYS[nargs] = mh;
1443     }
1444 
1445     /** Return a method handle that takes the indicated number of
1446      *  typed arguments and returns an array of them.
1447      *  The type argument is the array type.
1448      */
1449     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1450         Class<?> elemType = arrayType.getComponentType();
1451         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1452         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1453             int slots = nargs;
1454             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1455             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1456                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1457             if (slots > MAX_ARRAY_SLOTS)
1458                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1459         }
1460         if (elemType == Object.class)
1461             return varargsArray(nargs);
1462         // other cases:  primitive arrays, subtypes of Object[]
1463         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1464         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1465         if (mh != null)  return mh;
1466         mh = makeCollector(arrayType, nargs);
1467         assert(assertCorrectArity(mh, nargs));
1468         if (nargs < cache.length)
1469             cache[nargs] = mh;
1470         return mh;
1471     }
1472 
1473     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1474         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1475         return true;
1476     }
1477 
1478     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1479 
1480     /*non-public*/
1481     static void assertSame(Object mh1, Object mh2) {
1482         if (mh1 != mh2) {
1483             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1484                     mh1, ((MethodHandle)mh1).form,
1485                     mh2, ((MethodHandle)mh2).form);
1486             throw newInternalError(msg);
1487         }
1488     }
1489 
1490     // Local constant functions:
1491 
1492     /* non-public */
1493     static final byte NF_checkSpreadArgument = 0,
1494             NF_guardWithCatch = 1,
1495             NF_throwException = 2,
1496             NF_tryFinally = 3,
1497             NF_loop = 4,
1498             NF_profileBoolean = 5,
1499             NF_tableSwitch = 6,
1500             NF_LIMIT = 7;
1501 
1502     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1503 
1504     static NamedFunction getFunction(byte func) {
1505         NamedFunction nf = NFS[func];
1506         if (nf != null) {
1507             return nf;
1508         }
1509         return NFS[func] = createFunction(func);
1510     }
1511 
1512     private static NamedFunction createFunction(byte func) {
1513         try {
1514             return switch (func) {
1515                 case NF_checkSpreadArgument -> new NamedFunction(MethodHandleImpl.class
1516                                                 .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1517                 case NF_guardWithCatch      -> new NamedFunction(MethodHandleImpl.class
1518                                                 .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1519                                                    MethodHandle.class, Object[].class));
1520                 case NF_tryFinally          -> new NamedFunction(MethodHandleImpl.class
1521                                                 .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1522                 case NF_loop                -> new NamedFunction(MethodHandleImpl.class
1523                                                 .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1524                 case NF_throwException      -> new NamedFunction(MethodHandleImpl.class
1525                                                 .getDeclaredMethod("throwException", Throwable.class));
1526                 case NF_profileBoolean      -> new NamedFunction(MethodHandleImpl.class
1527                                                 .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1528                 case NF_tableSwitch         -> new NamedFunction(MethodHandleImpl.class
1529                                                 .getDeclaredMethod("tableSwitch", int.class, MethodHandle.class, CasesHolder.class, Object[].class));
1530                 default -> throw new InternalError("Undefined function: " + func);
1531             };
1532         } catch (ReflectiveOperationException ex) {
1533             throw newInternalError(ex);
1534         }
1535     }
1536 
1537     static {
1538         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1539             @Override
1540             public Class<?> getDeclaringClass(Object rmname) {
1541                 ResolvedMethodName method = (ResolvedMethodName)rmname;
1542                 return method.declaringClass();
1543             }
1544 
1545             @Override
1546             public MethodType getMethodType(String descriptor, ClassLoader loader) {
1547                 return MethodType.fromDescriptor(descriptor, loader);
1548             }
1549 
1550             public boolean isCallerSensitive(int flags) {
1551                 return (flags & MN_CALLER_SENSITIVE) == MN_CALLER_SENSITIVE;
1552             }
1553 
1554             public boolean isHiddenMember(int flags) {
1555                 return (flags & MN_HIDDEN_MEMBER) == MN_HIDDEN_MEMBER;
1556             }
1557 
1558             public boolean isNullRestrictedField(MethodHandle mh) {
1559                 var memberName = mh.internalMemberName();
1560                 return memberName.isNullRestricted();
1561             }
1562 
1563             @Override
1564             public Map<String, byte[]> generateHolderClasses(Stream<String> traces) {
1565                 return GenerateJLIClassesHelper.generateHolderClasses(traces);
1566             }
1567 
1568             @Override
1569             public VarHandle memorySegmentViewHandle(Class<?> carrier, MemoryLayout enclosing, long alignmentMask, ByteOrder order, boolean constantOffset, long offset) {
1570                 return VarHandles.memorySegmentViewHandle(carrier, enclosing, alignmentMask, constantOffset, offset, order);
1571             }
1572 
1573             @Override
1574             public MethodHandle nativeMethodHandle(NativeEntryPoint nep) {
1575                 return NativeMethodHandle.make(nep);
1576             }
1577 
1578             @Override
1579             public VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
1580                 return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
1581             }
1582 
1583             @Override
1584             public VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
1585                 return VarHandles.filterCoordinates(target, pos, filters);
1586             }
1587 
1588             @Override
1589             public VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
1590                 return VarHandles.dropCoordinates(target, pos, valueTypes);
1591             }
1592 
1593             @Override
1594             public VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
1595                 return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
1596             }
1597 
1598             @Override
1599             public VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
1600                 return VarHandles.collectCoordinates(target, pos, filter);
1601             }
1602 
1603             @Override
1604             public VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
1605                 return VarHandles.insertCoordinates(target, pos, values);
1606             }
1607 
1608 
1609             @Override
1610             public MethodHandle unreflectConstructor(Constructor<?> ctor) throws IllegalAccessException {
1611                 return IMPL_LOOKUP.unreflectConstructor(ctor);
1612             }
1613 
1614             @Override
1615             public MethodHandle unreflectField(Field field, boolean isSetter) throws IllegalAccessException {
1616                 return isSetter ? IMPL_LOOKUP.unreflectSetter(field) : IMPL_LOOKUP.unreflectGetter(field);
1617             }
1618 
1619             @Override
1620             public MethodHandle findVirtual(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1621                 try {
1622                     return IMPL_LOOKUP.findVirtual(defc, name, type);
1623                 } catch (NoSuchMethodException e) {
1624                     return null;
1625                 }
1626             }
1627 
1628             @Override
1629             public MethodHandle findStatic(Class<?> defc, String name, MethodType type) throws IllegalAccessException {
1630                 try {
1631                     return IMPL_LOOKUP.findStatic(defc, name, type);
1632                 } catch (NoSuchMethodException e) {
1633                     return null;
1634                 }
1635             }
1636 
1637             @Override
1638             public MethodHandle reflectiveInvoker(Class<?> caller) {
1639                 Objects.requireNonNull(caller);
1640                 return BindCaller.reflectiveInvoker(caller);
1641             }
1642 
1643             @Override
1644             public Class<?>[] exceptionTypes(MethodHandle handle) {
1645                 return VarHandles.exceptionTypes(handle);
1646             }
1647 
1648             @Override
1649             public MethodHandle serializableConstructor(Class<?> decl, Constructor<?> ctorToCall) throws IllegalAccessException {
1650                 return IMPL_LOOKUP.serializableConstructor(decl, ctorToCall);
1651             }
1652 
1653             @Override
1654             public MethodHandle assertAsType(MethodHandle original, MethodType assertedType) {
1655                 return original.viewAsType(assertedType, false);
1656             }
1657         });
1658     }
1659 
1660     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1661     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1662         if (returnType.isPrimitive()) {
1663             if (returnType == void.class) {
1664                 return ValueConversions.ignore();
1665             } else {
1666                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1667                 return ValueConversions.unboxExact(w);
1668             }
1669         } else {
1670             return MethodHandles.identity(Object.class);
1671         }
1672     }
1673 
1674     /**
1675      * Assembles a loop method handle from the given handles and type information.
1676      *
1677      * @param tloop the return type of the loop.
1678      * @param targs types of the arguments to be passed to the loop.
1679      * @param init sanitized array of initializers for loop-local variables.
1680      * @param step sanitized array of loop bodies.
1681      * @param pred sanitized array of predicates.
1682      * @param fini sanitized array of loop finalizers.
1683      *
1684      * @return a handle that, when invoked, will execute the loop.
1685      */
1686     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1687                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1688         MethodType type = MethodType.methodType(tloop, targs);
1689         BasicType[] initClauseTypes =
1690                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1691         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1692 
1693         // Prepare auxiliary method handles used during LambdaForm interpretation.
1694         // Box arguments and wrap them into Object[]: ValueConversions.array().
1695         MethodType varargsType = type.changeReturnType(Object[].class);
1696         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1697         MethodHandle unboxResult = unboxResultHandle(tloop);
1698 
1699         LoopClauses clauseData =
1700                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1701         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1702         BoundMethodHandle mh;
1703         try {
1704             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData,
1705                     (Object) collectArgs, (Object) unboxResult);
1706         } catch (Throwable ex) {
1707             throw uncaughtException(ex);
1708         }
1709         assert(mh.type() == type);
1710         return mh;
1711     }
1712 
1713     private static MethodHandle[] toArray(List<MethodHandle> l) {
1714         return l.toArray(new MethodHandle[0]);
1715     }
1716 
1717     /**
1718      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1719      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1720      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1721      * {@code t12}):
1722      * <blockquote><pre>{@code
1723      *  loop=Lambda(a0:L,a1:L)=>{
1724      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1725      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1726      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1727      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1728      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1729      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1730      * }</pre></blockquote>
1731      * <p>
1732      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1733      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1734      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1735      * ({@code ValueConversions.unbox()}).
1736      * <p>
1737      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1738      * forms among loop combinators with the same basic type.
1739      * <p>
1740      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1741      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1742      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1743      * bytecode generation}.
1744      */
1745     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1746         final int THIS_MH = 0;  // the BMH_LLL
1747         final int ARG_BASE = 1; // start of incoming arguments
1748         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1749 
1750         int nameCursor = ARG_LIMIT;
1751         final int GET_CLAUSE_DATA = nameCursor++;
1752         final int GET_COLLECT_ARGS = nameCursor++;
1753         final int GET_UNBOX_RESULT = nameCursor++;
1754         final int BOXED_ARGS = nameCursor++;
1755         final int LOOP = nameCursor++;
1756         final int UNBOX_RESULT = nameCursor++;
1757 
1758         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1759         if (lform == null) {
1760             Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
1761 
1762             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1763             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1764             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1765             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1766             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1767 
1768             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1769             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1770             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1771             Object[] args = new Object[invokeBasic.type().parameterCount()];
1772             args[0] = names[GET_COLLECT_ARGS];
1773             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1774             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.LOOP)), args);
1775 
1776             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1777             Object[] lArgs =
1778                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1779                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1780             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1781 
1782             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1783             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1784             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1785             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1786 
1787             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1788                     LambdaForm.create(basicType.parameterCount() + 1, names, Kind.LOOP));
1789         }
1790 
1791         // BOXED_ARGS is the index into the names array where the loop idiom starts
1792         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1793     }
1794 
1795     @AOTSafeClassInitializer
1796     static class LoopClauses {
1797         @Stable final MethodHandle[][] clauses;
1798         LoopClauses(MethodHandle[][] clauses) {
1799             assert clauses.length == 4;
1800             this.clauses = clauses;
1801         }
1802         @Override
1803         public String toString() {
1804             StringBuilder sb = new StringBuilder("LoopClauses -- ");
1805             for (int i = 0; i < 4; ++i) {
1806                 if (i > 0) {
1807                     sb.append("       ");
1808                 }
1809                 sb.append('<').append(i).append(">: ");
1810                 MethodHandle[] hs = clauses[i];
1811                 for (int j = 0; j < hs.length; ++j) {
1812                     if (j > 0) {
1813                         sb.append("          ");
1814                     }
1815                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
1816                 }
1817             }
1818             sb.append(" --\n");
1819             return sb.toString();
1820         }
1821     }
1822 
1823     /**
1824      * Intrinsified during LambdaForm compilation
1825      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
1826      */
1827     @Hidden
1828     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
1829         final MethodHandle[] init = clauseData.clauses[0];
1830         final MethodHandle[] step = clauseData.clauses[1];
1831         final MethodHandle[] pred = clauseData.clauses[2];
1832         final MethodHandle[] fini = clauseData.clauses[3];
1833         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
1834         int nArgs = init[0].type().parameterCount();
1835         Object[] varsAndArgs = new Object[varSize + nArgs];
1836         for (int i = 0, v = 0; i < init.length; ++i) {
1837             MethodHandle ih = init[i];
1838             if (ih.type().returnType() == void.class) {
1839                 ih.invokeWithArguments(av);
1840             } else {
1841                 varsAndArgs[v++] = ih.invokeWithArguments(av);
1842             }
1843         }
1844         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
1845         final int nSteps = step.length;
1846         for (; ; ) {
1847             for (int i = 0, v = 0; i < nSteps; ++i) {
1848                 MethodHandle p = pred[i];
1849                 MethodHandle s = step[i];
1850                 MethodHandle f = fini[i];
1851                 if (s.type().returnType() == void.class) {
1852                     s.invokeWithArguments(varsAndArgs);
1853                 } else {
1854                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
1855                 }
1856                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
1857                     return f.invokeWithArguments(varsAndArgs);
1858                 }
1859             }
1860         }
1861     }
1862 
1863     /**
1864      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1865      * MethodHandle) counting loops}.
1866      *
1867      * @param limit the upper bound of the parameter, statically bound at loop creation time.
1868      * @param counter the counter parameter, passed in during loop execution.
1869      *
1870      * @return whether the counter has reached the limit.
1871      */
1872     static boolean countedLoopPredicate(int limit, int counter) {
1873         return counter < limit;
1874     }
1875 
1876     /**
1877      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
1878      * MethodHandle) counting loops} to increment the counter.
1879      *
1880      * @param limit the upper bound of the loop counter (ignored).
1881      * @param counter the loop counter.
1882      *
1883      * @return the loop counter incremented by 1.
1884      */
1885     static int countedLoopStep(int limit, int counter) {
1886         return counter + 1;
1887     }
1888 
1889     /**
1890      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1891      *
1892      * @param it the {@link Iterable} over which the loop iterates.
1893      *
1894      * @return an {@link Iterator} over the argument's elements.
1895      */
1896     static Iterator<?> initIterator(Iterable<?> it) {
1897         return it.iterator();
1898     }
1899 
1900     /**
1901      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
1902      *
1903      * @param it the iterator to be checked.
1904      *
1905      * @return {@code true} iff there are more elements to iterate over.
1906      */
1907     static boolean iteratePredicate(Iterator<?> it) {
1908         return it.hasNext();
1909     }
1910 
1911     /**
1912      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
1913      * MethodHandles#iteratedLoop iterating loops}.
1914      *
1915      * @param it the iterator.
1916      *
1917      * @return the next element from the iterator.
1918      */
1919     static Object iterateNext(Iterator<?> it) {
1920         return it.next();
1921     }
1922 
1923     /**
1924      * Makes a {@code try-finally} handle that conforms to the type constraints.
1925      *
1926      * @param target the target to execute in a {@code try-finally} block.
1927      * @param cleanup the cleanup to execute in the {@code finally} block.
1928      * @param rtype the result type of the entire construct.
1929      * @param argTypes the types of the arguments.
1930      *
1931      * @return a handle on the constructed {@code try-finally} block.
1932      */
1933     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, Class<?>[] argTypes) {
1934         MethodType type = MethodType.methodType(rtype, argTypes);
1935         LambdaForm form = makeTryFinallyForm(type.basicType());
1936 
1937         // Prepare auxiliary method handles used during LambdaForm interpretation.
1938         // Box arguments and wrap them into Object[]: ValueConversions.array().
1939         MethodType varargsType = type.changeReturnType(Object[].class);
1940         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1941         MethodHandle unboxResult = unboxResultHandle(rtype);
1942 
1943         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1944         BoundMethodHandle mh;
1945         try {
1946             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup,
1947                     (Object) collectArgs, (Object) unboxResult);
1948         } catch (Throwable ex) {
1949             throw uncaughtException(ex);
1950         }
1951         assert(mh.type() == type);
1952         return mh;
1953     }
1954 
1955     /**
1956      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
1957      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
1958      * <blockquote><pre>{@code
1959      *  tryFinally=Lambda(a0:L,a1:L)=>{
1960      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
1961      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
1962      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
1963      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
1964      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
1965      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
1966      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
1967      * }</pre></blockquote>
1968      * <p>
1969      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
1970      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
1971      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
1972      * ({@code ValueConversions.unbox()}).
1973      * <p>
1974      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1975      * forms among tryFinally combinators with the same basic type.
1976      */
1977     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
1978         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
1979         if (lform != null) {
1980             return lform;
1981         }
1982         final int THIS_MH      = 0;  // the BMH_LLLL
1983         final int ARG_BASE     = 1;  // start of incoming arguments
1984         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
1985 
1986         int nameCursor = ARG_LIMIT;
1987         final int GET_TARGET       = nameCursor++;
1988         final int GET_CLEANUP      = nameCursor++;
1989         final int GET_COLLECT_ARGS = nameCursor++;
1990         final int GET_UNBOX_RESULT = nameCursor++;
1991         final int BOXED_ARGS       = nameCursor++;
1992         final int TRY_FINALLY      = nameCursor++;
1993         final int UNBOX_RESULT     = nameCursor++;
1994 
1995         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
1996 
1997         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
1998         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
1999         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
2000         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
2001         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
2002         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
2003 
2004         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
2005         MethodType collectArgsType = basicType.changeReturnType(Object.class);
2006         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2007         Object[] args = new Object[invokeBasic.type().parameterCount()];
2008         args[0] = names[GET_COLLECT_ARGS];
2009         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2010         names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TRY_FINALLY)), args);
2011 
2012         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2013         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2014         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2015 
2016         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2017         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2018         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2019         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2020 
2021         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.TRY_FINALLY);
2022 
2023         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2024     }
2025 
2026     /**
2027      * Intrinsified during LambdaForm compilation
2028      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2029      */
2030     @Hidden
2031     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2032         Throwable t = null;
2033         Object r = null;
2034         try {
2035             r = target.invokeWithArguments(av);
2036         } catch (Throwable thrown) {
2037             t = thrown;
2038             throw t;
2039         } finally {
2040             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2041             r = cleanup.invokeWithArguments(args);
2042         }
2043         return r;
2044     }
2045 
2046     // see varargsArray method for chaching/package-private version of this
2047     private static MethodHandle makeCollector(Class<?> arrayType, int parameterCount) {
2048         MethodType type = MethodType.methodType(arrayType, Collections.nCopies(parameterCount, arrayType.componentType()));
2049         MethodHandle newArray = MethodHandles.arrayConstructor(arrayType);
2050 
2051         LambdaForm form = makeCollectorForm(type.basicType(), arrayType);
2052 
2053         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2054         BoundMethodHandle mh;
2055         try {
2056             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) newArray);
2057         } catch (Throwable ex) {
2058             throw uncaughtException(ex);
2059         }
2060         assert(mh.type() == type);
2061         return mh;
2062     }
2063 
2064     private static LambdaForm makeCollectorForm(MethodType basicType, Class<?> arrayType) {
2065         int parameterCount = basicType.parameterCount();
2066 
2067         // Only share the lambda form for empty arrays and reference types.
2068         // Sharing based on the basic type alone doesn't work because
2069         // we need a separate lambda form for byte/short/char/int which
2070         // are all erased to int otherwise.
2071         // Other caching for primitive types happens at the MethodHandle level (see varargsArray).
2072         boolean isReferenceType = !arrayType.componentType().isPrimitive();
2073         boolean isSharedLambdaForm = parameterCount == 0 || isReferenceType;
2074         if (isSharedLambdaForm) {
2075             LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_COLLECTOR);
2076             if (lform != null) {
2077                 return lform;
2078             }
2079         }
2080 
2081         // use erased accessor for reference types
2082         MethodHandle storeFunc = isReferenceType
2083                 ? ArrayAccessor.OBJECT_ARRAY_SETTER
2084                 : makeArrayElementAccessor(arrayType, ArrayAccess.SET);
2085 
2086         final int THIS_MH      = 0;  // the BMH_L
2087         final int ARG_BASE     = 1;  // start of incoming arguments
2088         final int ARG_LIMIT    = ARG_BASE + parameterCount;
2089 
2090         int nameCursor = ARG_LIMIT;
2091         final int GET_NEW_ARRAY       = nameCursor++;
2092         final int CALL_NEW_ARRAY      = nameCursor++;
2093         final int STORE_ELEMENT_BASE  = nameCursor;
2094         final int STORE_ELEMENT_LIMIT = STORE_ELEMENT_BASE + parameterCount;
2095         nameCursor = STORE_ELEMENT_LIMIT;
2096 
2097         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
2098 
2099         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_L();
2100         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2101         names[GET_NEW_ARRAY]    = new Name(data.getterFunction(0), names[THIS_MH]);
2102 
2103         MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(Object.class, int.class));
2104         names[CALL_NEW_ARRAY] = new Name(new NamedFunction(invokeBasic), names[GET_NEW_ARRAY], parameterCount);
2105         for (int storeIndex = 0,
2106              storeNameCursor = STORE_ELEMENT_BASE,
2107              argCursor = ARG_BASE;
2108              storeNameCursor < STORE_ELEMENT_LIMIT;
2109              storeIndex++, storeNameCursor++, argCursor++){
2110 
2111             names[storeNameCursor] = new Name(new NamedFunction(makeIntrinsic(storeFunc, Intrinsic.ARRAY_STORE)),
2112                     names[CALL_NEW_ARRAY], storeIndex, names[argCursor]);
2113         }
2114 
2115         LambdaForm lform = LambdaForm.create(basicType.parameterCount() + 1, names, CALL_NEW_ARRAY, Kind.COLLECTOR);
2116         if (isSharedLambdaForm) {
2117             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_COLLECTOR, lform);
2118         }
2119         return lform;
2120     }
2121 
2122     // use a wrapper because we need this array to be @Stable
2123     @AOTSafeClassInitializer
2124     static class CasesHolder {
2125         @Stable
2126         final MethodHandle[] cases;
2127 
2128         public CasesHolder(MethodHandle[] cases) {
2129             this.cases = cases;
2130         }
2131     }
2132 
2133     static MethodHandle makeTableSwitch(MethodType type, MethodHandle defaultCase, MethodHandle[] caseActions) {
2134         MethodType varargsType = type.changeReturnType(Object[].class);
2135         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2136 
2137         MethodHandle unboxResult = unboxResultHandle(type.returnType());
2138 
2139         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2140         LambdaForm form = makeTableSwitchForm(type.basicType(), data, caseActions.length);
2141         BoundMethodHandle mh;
2142         CasesHolder caseHolder =  new CasesHolder(caseActions);
2143         try {
2144             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) defaultCase, (Object) collectArgs,
2145                                                                 (Object) unboxResult, (Object) caseHolder);
2146         } catch (Throwable ex) {
2147             throw uncaughtException(ex);
2148         }
2149         assert(mh.type() == type);
2150         return mh;
2151     }
2152 
2153     @AOTSafeClassInitializer
2154     private static class TableSwitchCacheKey {
2155         private static final Map<TableSwitchCacheKey, LambdaForm> CACHE = new ConcurrentHashMap<>();
2156 
2157         private final MethodType basicType;
2158         private final int numberOfCases;
2159 
2160         public TableSwitchCacheKey(MethodType basicType, int numberOfCases) {
2161             this.basicType = basicType;
2162             this.numberOfCases = numberOfCases;
2163         }
2164 
2165         @Override
2166         public boolean equals(Object o) {
2167             if (this == o) return true;
2168             if (o == null || getClass() != o.getClass()) return false;
2169             TableSwitchCacheKey that = (TableSwitchCacheKey) o;
2170             return numberOfCases == that.numberOfCases && Objects.equals(basicType, that.basicType);
2171         }
2172         @Override
2173         public int hashCode() {
2174             return Objects.hash(basicType, numberOfCases);
2175         }
2176     }
2177 
2178     private static LambdaForm makeTableSwitchForm(MethodType basicType, BoundMethodHandle.SpeciesData data,
2179                                                   int numCases) {
2180         // We need to cache based on the basic type X number of cases,
2181         // since the number of cases is used when generating bytecode.
2182         // This also means that we can't use the cache in MethodTypeForm,
2183         // which only uses the basic type as a key.
2184         TableSwitchCacheKey key = new TableSwitchCacheKey(basicType, numCases);
2185         LambdaForm lform = TableSwitchCacheKey.CACHE.get(key);
2186         if (lform != null) {
2187             return lform;
2188         }
2189 
2190         final int THIS_MH       = 0;
2191         final int ARG_BASE      = 1;  // start of incoming arguments
2192         final int ARG_LIMIT     = ARG_BASE + basicType.parameterCount();
2193         final int ARG_SWITCH_ON = ARG_BASE;
2194         assert ARG_SWITCH_ON < ARG_LIMIT;
2195 
2196         int nameCursor = ARG_LIMIT;
2197         final int GET_COLLECT_ARGS  = nameCursor++;
2198         final int GET_DEFAULT_CASE  = nameCursor++;
2199         final int GET_UNBOX_RESULT  = nameCursor++;
2200         final int GET_CASES         = nameCursor++;
2201         final int BOXED_ARGS        = nameCursor++;
2202         final int TABLE_SWITCH      = nameCursor++;
2203         final int UNBOXED_RESULT    = nameCursor++;
2204 
2205         int fieldCursor = 0;
2206         final int FIELD_DEFAULT_CASE  = fieldCursor++;
2207         final int FIELD_COLLECT_ARGS  = fieldCursor++;
2208         final int FIELD_UNBOX_RESULT  = fieldCursor++;
2209         final int FIELD_CASES         = fieldCursor++;
2210 
2211         Name[] names = invokeArguments(nameCursor - ARG_LIMIT, basicType);
2212 
2213         names[THIS_MH] = names[THIS_MH].withConstraint(data);
2214         names[GET_DEFAULT_CASE] = new Name(data.getterFunction(FIELD_DEFAULT_CASE), names[THIS_MH]);
2215         names[GET_COLLECT_ARGS]  = new Name(data.getterFunction(FIELD_COLLECT_ARGS), names[THIS_MH]);
2216         names[GET_UNBOX_RESULT]  = new Name(data.getterFunction(FIELD_UNBOX_RESULT), names[THIS_MH]);
2217         names[GET_CASES] = new Name(data.getterFunction(FIELD_CASES), names[THIS_MH]);
2218 
2219         {
2220             MethodType collectArgsType = basicType.changeReturnType(Object.class);
2221             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2222             Object[] args = new Object[invokeBasic.type().parameterCount()];
2223             args[0] = names[GET_COLLECT_ARGS];
2224             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
2225             names[BOXED_ARGS] = new Name(new NamedFunction(makeIntrinsic(invokeBasic, Intrinsic.TABLE_SWITCH, numCases)), args);
2226         }
2227 
2228         {
2229             Object[] tfArgs = new Object[]{
2230                 names[ARG_SWITCH_ON], names[GET_DEFAULT_CASE], names[GET_CASES], names[BOXED_ARGS]};
2231             names[TABLE_SWITCH] = new Name(getFunction(NF_tableSwitch), tfArgs);
2232         }
2233 
2234         {
2235             MethodHandle invokeBasic = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2236             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[TABLE_SWITCH]};
2237             names[UNBOXED_RESULT] = new Name(invokeBasic, unboxArgs);
2238         }
2239 
2240         lform = LambdaForm.create(basicType.parameterCount() + 1, names, Kind.TABLE_SWITCH);
2241         LambdaForm prev = TableSwitchCacheKey.CACHE.putIfAbsent(key, lform);
2242         return prev != null ? prev : lform;
2243     }
2244 
2245     @Hidden
2246     static Object tableSwitch(int input, MethodHandle defaultCase, CasesHolder holder, Object[] args) throws Throwable {
2247         MethodHandle[] caseActions = holder.cases;
2248         MethodHandle selectedCase;
2249         if (input < 0 || input >= caseActions.length) {
2250             selectedCase = defaultCase;
2251         } else {
2252             selectedCase = caseActions[input];
2253         }
2254         return selectedCase.invokeWithArguments(args);
2255     }
2256 
2257     // type is validated, value is not
2258     static MethodHandle makeConstantReturning(Class<?> type, Object value) {
2259         var callType = MethodType.methodType(type);
2260         var basicType = BasicType.basicType(type);
2261         var form = constantForm(basicType);
2262 
2263         if (type.isPrimitive()) {
2264             assert type != void.class;
2265             var wrapper = Wrapper.forPrimitiveType(type);
2266             var v = wrapper.convert(value, type); // throws CCE
2267             return switch (wrapper) {
2268                 case INT    -> BoundMethodHandle.bindSingleI(callType, form, (int) v);
2269                 case LONG   -> BoundMethodHandle.bindSingleJ(callType, form, (long) v);
2270                 case FLOAT  -> BoundMethodHandle.bindSingleF(callType, form, (float) v);
2271                 case DOUBLE -> BoundMethodHandle.bindSingleD(callType, form, (double) v);
2272                 default -> BoundMethodHandle.bindSingleI(callType, form, ValueConversions.widenSubword(v));
2273             };
2274         }
2275 
2276         var v = type.cast(value); // throws CCE
2277         return BoundMethodHandle.bindSingleL(callType, form, v);
2278     }
2279 
2280     // Indexes into constant method handles:
2281     static final int
2282             MH_cast                  =              0,
2283             MH_selectAlternative     =              1,
2284             MH_countedLoopPred       =              2,
2285             MH_countedLoopStep       =              3,
2286             MH_initIterator          =              4,
2287             MH_iteratePred           =              5,
2288             MH_iterateNext           =              6,
2289             MH_Array_newInstance     =              7,
2290             MH_VarHandles_handleCheckedExceptions = 8,
2291             MH_LIMIT                 =              9;
2292 
2293     static MethodHandle getConstantHandle(int idx) {
2294         MethodHandle handle = HANDLES[idx];
2295         if (handle != null) {
2296             return handle;
2297         }
2298         return setCachedHandle(idx, makeConstantHandle(idx));
2299     }
2300 
2301     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2302         // Simulate a CAS, to avoid racy duplication of results.
2303         MethodHandle prev = HANDLES[idx];
2304         if (prev != null) {
2305             return prev;
2306         }
2307         HANDLES[idx] = method;
2308         return method;
2309     }
2310 
2311     // Local constant method handles:
2312     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2313 
2314     private static MethodHandle makeConstantHandle(int idx) {
2315         try {
2316             switch (idx) {
2317                 case MH_cast:
2318                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2319                             MethodType.methodType(Object.class, Object.class));
2320                 case MH_selectAlternative:
2321                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2322                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
2323                 case MH_countedLoopPred:
2324                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2325                             MethodType.methodType(boolean.class, int.class, int.class));
2326                 case MH_countedLoopStep:
2327                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2328                             MethodType.methodType(int.class, int.class, int.class));
2329                 case MH_initIterator:
2330                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2331                             MethodType.methodType(Iterator.class, Iterable.class));
2332                 case MH_iteratePred:
2333                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2334                             MethodType.methodType(boolean.class, Iterator.class));
2335                 case MH_iterateNext:
2336                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2337                             MethodType.methodType(Object.class, Iterator.class));
2338                 case MH_Array_newInstance:
2339                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2340                             MethodType.methodType(Object.class, Class.class, int.class));
2341                 case MH_VarHandles_handleCheckedExceptions:
2342                     return IMPL_LOOKUP.findStatic(VarHandles.class, "handleCheckedExceptions",
2343                             MethodType.methodType(void.class, Throwable.class));
2344             }
2345         } catch (ReflectiveOperationException ex) {
2346             throw newInternalError(ex);
2347         }
2348         throw newInternalError("Unknown function index: " + idx);
2349     }
2350 }
--- EOF ---