1 /*
   2  * Copyright (c) 2008, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.misc.Unsafe;
  30 import jdk.internal.misc.VM;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.CallerSensitiveAdapter;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.util.ClassFileDumper;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import sun.invoke.util.ValueConversions;
  37 import sun.invoke.util.VerifyAccess;
  38 import sun.invoke.util.Wrapper;
  39 import sun.reflect.misc.ReflectUtil;
  40 import sun.security.util.SecurityConstants;
  41 
  42 import java.lang.classfile.ClassModel;
  43 import java.lang.constant.ConstantDescs;
  44 import java.lang.invoke.LambdaForm.BasicType;
  45 import java.lang.invoke.MethodHandleImpl.Intrinsic;
  46 import java.lang.reflect.Constructor;
  47 import java.lang.reflect.Field;
  48 import java.lang.reflect.Member;
  49 import java.lang.reflect.Method;
  50 import java.lang.reflect.Modifier;
  51 import java.nio.ByteOrder;
  52 import java.security.ProtectionDomain;
  53 import java.util.ArrayList;
  54 import java.util.Arrays;
  55 import java.util.BitSet;
  56 import java.util.Comparator;
  57 import java.util.Iterator;
  58 import java.util.List;
  59 import java.util.Objects;
  60 import java.util.Set;
  61 import java.util.concurrent.ConcurrentHashMap;
  62 import java.util.stream.Stream;
  63 
  64 import static java.lang.classfile.ClassFile.*;
  65 import static java.lang.invoke.LambdaForm.BasicType.V_TYPE;
  66 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  67 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  68 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  69 import static java.lang.invoke.MethodHandleStatics.newInternalError;
  70 import static java.lang.invoke.MethodType.methodType;
  71 
  72 /**
  73  * This class consists exclusively of static methods that operate on or return
  74  * method handles. They fall into several categories:
  75  * <ul>
  76  * <li>Lookup methods which help create method handles for methods and fields.
  77  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  78  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  79  * </ul>
  80  * A lookup, combinator, or factory method will fail and throw an
  81  * {@code IllegalArgumentException} if the created method handle's type
  82  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  83  *
  84  * @author John Rose, JSR 292 EG
  85  * @since 1.7
  86  */
  87 public class MethodHandles {
  88 
  89     private MethodHandles() { }  // do not instantiate
  90 
  91     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  92 
  93     // See IMPL_LOOKUP below.
  94 
  95     //--- Method handle creation from ordinary methods.
  96 
  97     /**
  98      * Returns a {@link Lookup lookup object} with
  99      * full capabilities to emulate all supported bytecode behaviors of the caller.
 100      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
 101      * Factory methods on the lookup object can create
 102      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
 103      * for any member that the caller has access to via bytecodes,
 104      * including protected and private fields and methods.
 105      * This lookup object is created by the original lookup class
 106      * and has the {@link Lookup#ORIGINAL ORIGINAL} bit set.
 107      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 108      * Do not store it in place where untrusted code can access it.
 109      * <p>
 110      * This method is caller sensitive, which means that it may return different
 111      * values to different callers.
 112      * In cases where {@code MethodHandles.lookup} is called from a context where
 113      * there is no caller frame on the stack (e.g. when called directly
 114      * from a JNI attached thread), {@code IllegalCallerException} is thrown.
 115      * To obtain a {@link Lookup lookup object} in such a context, use an auxiliary class that will
 116      * implicitly be identified as the caller, or use {@link MethodHandles#publicLookup()}
 117      * to obtain a low-privileged lookup instead.
 118      * @return a lookup object for the caller of this method, with
 119      * {@linkplain Lookup#ORIGINAL original} and
 120      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}.
 121      * @throws IllegalCallerException if there is no caller frame on the stack.
 122      */
 123     @CallerSensitive
 124     @ForceInline // to ensure Reflection.getCallerClass optimization
 125     public static Lookup lookup() {
 126         final Class<?> c = Reflection.getCallerClass();
 127         if (c == null) {
 128             throw new IllegalCallerException("no caller frame");
 129         }
 130         return new Lookup(c);
 131     }
 132 
 133     /**
 134      * This lookup method is the alternate implementation of
 135      * the lookup method with a leading caller class argument which is
 136      * non-caller-sensitive.  This method is only invoked by reflection
 137      * and method handle.
 138      */
 139     @CallerSensitiveAdapter
 140     private static Lookup lookup(Class<?> caller) {
 141         if (caller.getClassLoader() == null) {
 142             throw newInternalError("calling lookup() reflectively is not supported: "+caller);
 143         }
 144         return new Lookup(caller);
 145     }
 146 
 147     /**
 148      * Returns a {@link Lookup lookup object} which is trusted minimally.
 149      * The lookup has the {@code UNCONDITIONAL} mode.
 150      * It can only be used to create method handles to public members of
 151      * public classes in packages that are exported unconditionally.
 152      * <p>
 153      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 154      * of this lookup object will be {@link java.lang.Object}.
 155      *
 156      * @apiNote The use of Object is conventional, and because the lookup modes are
 157      * limited, there is no special access provided to the internals of Object, its package
 158      * or its module.  This public lookup object or other lookup object with
 159      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 160      * is not used to determine the lookup context.
 161      *
 162      * <p style="font-size:smaller;">
 163      * <em>Discussion:</em>
 164      * The lookup class can be changed to any other class {@code C} using an expression of the form
 165      * {@link Lookup#in publicLookup().in(C.class)}.
 166      * A public lookup object is always subject to
 167      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 168      * Also, it cannot access
 169      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 170      * @return a lookup object which is trusted minimally
 171      */
 172     public static Lookup publicLookup() {
 173         return Lookup.PUBLIC_LOOKUP;
 174     }
 175 
 176     /**
 177      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 178      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 179      * The returned lookup object can provide access to classes in modules and packages,
 180      * and members of those classes, outside the normal rules of Java access control,
 181      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 182      * <p>
 183      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 184      * allowed to do deep reflection on module {@code M2} and package of the target class
 185      * if and only if all of the following conditions are {@code true}:
 186      * <ul>
 187      * <li>If there is a security manager, its {@code checkPermission} method is
 188      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 189      * that must return normally.
 190      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 191      * full privilege access}.  Specifically:
 192      *   <ul>
 193      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 194      *         (This is because otherwise there would be no way to ensure the original lookup
 195      *         creator was a member of any particular module, and so any subsequent checks
 196      *         for readability and qualified exports would become ineffective.)
 197      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 198      *         (This is because an application intending to share intra-module access
 199      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 200      *         deep reflection to its own module.)
 201      *   </ul>
 202      * <li>The target class must be a proper class, not a primitive or array class.
 203      * (Thus, {@code M2} is well-defined.)
 204      * <li>If the caller module {@code M1} differs from
 205      * the target module {@code M2} then both of the following must be true:
 206      *   <ul>
 207      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 208      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 209      *         containing the target class to at least {@code M1}.</li>
 210      *   </ul>
 211      * </ul>
 212      * <p>
 213      * If any of the above checks is violated, this method fails with an
 214      * exception.
 215      * <p>
 216      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 217      * returns a {@code Lookup} on {@code targetClass} with
 218      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 219      * with {@code null} previous lookup class.
 220      * <p>
 221      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 222      * returns a {@code Lookup} on {@code targetClass} that records
 223      * the lookup class of the caller as the new previous lookup class with
 224      * {@code PRIVATE} access but no {@code MODULE} access.
 225      * <p>
 226      * The resulting {@code Lookup} object has no {@code ORIGINAL} access.
 227      *
 228      * @apiNote The {@code Lookup} object returned by this method is allowed to
 229      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 230      * of {@code targetClass}. Extreme caution should be taken when opening a package
 231      * to another module as such defined classes have the same full privilege
 232      * access as other members in {@code targetClass}'s module.
 233      *
 234      * @param targetClass the target class
 235      * @param caller the caller lookup object
 236      * @return a lookup object for the target class, with private access
 237      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 238      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 239      * @throws SecurityException if denied by the security manager
 240      * @throws IllegalAccessException if any of the other access checks specified above fails
 241      * @since 9
 242      * @see Lookup#dropLookupMode
 243      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 244      */
 245     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 246         if (caller.allowedModes == Lookup.TRUSTED) {
 247             return new Lookup(targetClass);
 248         }
 249 
 250         @SuppressWarnings("removal")
 251         SecurityManager sm = System.getSecurityManager();
 252         if (sm != null) sm.checkPermission(SecurityConstants.ACCESS_PERMISSION);
 253         if (targetClass.isPrimitive())
 254             throw new IllegalArgumentException(targetClass + " is a primitive class");
 255         if (targetClass.isArray())
 256             throw new IllegalArgumentException(targetClass + " is an array class");
 257         // Ensure that we can reason accurately about private and module access.
 258         int requireAccess = Lookup.PRIVATE|Lookup.MODULE;
 259         if ((caller.lookupModes() & requireAccess) != requireAccess)
 260             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 261 
 262         // previous lookup class is never set if it has MODULE access
 263         assert caller.previousLookupClass() == null;
 264 
 265         Class<?> callerClass = caller.lookupClass();
 266         Module callerModule = callerClass.getModule();  // M1
 267         Module targetModule = targetClass.getModule();  // M2
 268         Class<?> newPreviousClass = null;
 269         int newModes = Lookup.FULL_POWER_MODES & ~Lookup.ORIGINAL;
 270 
 271         if (targetModule != callerModule) {
 272             if (!callerModule.canRead(targetModule))
 273                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 274             if (targetModule.isNamed()) {
 275                 String pn = targetClass.getPackageName();
 276                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 277                 if (!targetModule.isOpen(pn, callerModule))
 278                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 279             }
 280 
 281             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 282             newPreviousClass = callerClass;
 283             newModes &= ~Lookup.MODULE;
 284         }
 285         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 286     }
 287 
 288     /**
 289      * Returns the <em>class data</em> associated with the lookup class
 290      * of the given {@code caller} lookup object, or {@code null}.
 291      *
 292      * <p> A hidden class with class data can be created by calling
 293      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 294      * Lookup::defineHiddenClassWithClassData}.
 295      * This method will cause the static class initializer of the lookup
 296      * class of the given {@code caller} lookup object be executed if
 297      * it has not been initialized.
 298      *
 299      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 300      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 301      * {@code null} is returned if this method is called on the lookup object
 302      * on these classes.
 303      *
 304      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 305      * must have {@linkplain Lookup#ORIGINAL original access}
 306      * in order to retrieve the class data.
 307      *
 308      * @apiNote
 309      * This method can be called as a bootstrap method for a dynamically computed
 310      * constant.  A framework can create a hidden class with class data, for
 311      * example that can be {@code Class} or {@code MethodHandle} object.
 312      * The class data is accessible only to the lookup object
 313      * created by the original caller but inaccessible to other members
 314      * in the same nest.  If a framework passes security sensitive objects
 315      * to a hidden class via class data, it is recommended to load the value
 316      * of class data as a dynamically computed constant instead of storing
 317      * the class data in private static field(s) which are accessible to
 318      * other nestmates.
 319      *
 320      * @param <T> the type to cast the class data object to
 321      * @param caller the lookup context describing the class performing the
 322      * operation (normally stacked by the JVM)
 323      * @param name must be {@link ConstantDescs#DEFAULT_NAME}
 324      *             ({@code "_"})
 325      * @param type the type of the class data
 326      * @return the value of the class data if present in the lookup class;
 327      * otherwise {@code null}
 328      * @throws IllegalArgumentException if name is not {@code "_"}
 329      * @throws IllegalAccessException if the lookup context does not have
 330      * {@linkplain Lookup#ORIGINAL original} access
 331      * @throws ClassCastException if the class data cannot be converted to
 332      * the given {@code type}
 333      * @throws NullPointerException if {@code caller} or {@code type} argument
 334      * is {@code null}
 335      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 336      * @see MethodHandles#classDataAt(Lookup, String, Class, int)
 337      * @since 16
 338      * @jvms 5.5 Initialization
 339      */
 340      public static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException {
 341          Objects.requireNonNull(caller);
 342          Objects.requireNonNull(type);
 343          if (!ConstantDescs.DEFAULT_NAME.equals(name)) {
 344              throw new IllegalArgumentException("name must be \"_\": " + name);
 345          }
 346 
 347          if ((caller.lookupModes() & Lookup.ORIGINAL) != Lookup.ORIGINAL)  {
 348              throw new IllegalAccessException(caller + " does not have ORIGINAL access");
 349          }
 350 
 351          Object classdata = classData(caller.lookupClass());
 352          if (classdata == null) return null;
 353 
 354          try {
 355              return BootstrapMethodInvoker.widenAndCast(classdata, type);
 356          } catch (RuntimeException|Error e) {
 357              throw e; // let CCE and other runtime exceptions through
 358          } catch (Throwable e) {
 359              throw new InternalError(e);
 360          }
 361     }
 362 
 363     /*
 364      * Returns the class data set by the VM in the Class::classData field.
 365      *
 366      * This is also invoked by LambdaForms as it cannot use condy via
 367      * MethodHandles::classData due to bootstrapping issue.
 368      */
 369     static Object classData(Class<?> c) {
 370         UNSAFE.ensureClassInitialized(c);
 371         return SharedSecrets.getJavaLangAccess().classData(c);
 372     }
 373 
 374     /**
 375      * Returns the element at the specified index in the
 376      * {@linkplain #classData(Lookup, String, Class) class data},
 377      * if the class data associated with the lookup class
 378      * of the given {@code caller} lookup object is a {@code List}.
 379      * If the class data is not present in this lookup class, this method
 380      * returns {@code null}.
 381      *
 382      * <p> A hidden class with class data can be created by calling
 383      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 384      * Lookup::defineHiddenClassWithClassData}.
 385      * This method will cause the static class initializer of the lookup
 386      * class of the given {@code caller} lookup object be executed if
 387      * it has not been initialized.
 388      *
 389      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 390      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 391      * {@code null} is returned if this method is called on the lookup object
 392      * on these classes.
 393      *
 394      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 395      * must have {@linkplain Lookup#ORIGINAL original access}
 396      * in order to retrieve the class data.
 397      *
 398      * @apiNote
 399      * This method can be called as a bootstrap method for a dynamically computed
 400      * constant.  A framework can create a hidden class with class data, for
 401      * example that can be {@code List.of(o1, o2, o3....)} containing more than
 402      * one object and use this method to load one element at a specific index.
 403      * The class data is accessible only to the lookup object
 404      * created by the original caller but inaccessible to other members
 405      * in the same nest.  If a framework passes security sensitive objects
 406      * to a hidden class via class data, it is recommended to load the value
 407      * of class data as a dynamically computed constant instead of storing
 408      * the class data in private static field(s) which are accessible to other
 409      * nestmates.
 410      *
 411      * @param <T> the type to cast the result object to
 412      * @param caller the lookup context describing the class performing the
 413      * operation (normally stacked by the JVM)
 414      * @param name must be {@link java.lang.constant.ConstantDescs#DEFAULT_NAME}
 415      *             ({@code "_"})
 416      * @param type the type of the element at the given index in the class data
 417      * @param index index of the element in the class data
 418      * @return the element at the given index in the class data
 419      * if the class data is present; otherwise {@code null}
 420      * @throws IllegalArgumentException if name is not {@code "_"}
 421      * @throws IllegalAccessException if the lookup context does not have
 422      * {@linkplain Lookup#ORIGINAL original} access
 423      * @throws ClassCastException if the class data cannot be converted to {@code List}
 424      * or the element at the specified index cannot be converted to the given type
 425      * @throws IndexOutOfBoundsException if the index is out of range
 426      * @throws NullPointerException if {@code caller} or {@code type} argument is
 427      * {@code null}; or if unboxing operation fails because
 428      * the element at the given index is {@code null}
 429      *
 430      * @since 16
 431      * @see #classData(Lookup, String, Class)
 432      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 433      */
 434     public static <T> T classDataAt(Lookup caller, String name, Class<T> type, int index)
 435             throws IllegalAccessException
 436     {
 437         @SuppressWarnings("unchecked")
 438         List<Object> classdata = (List<Object>)classData(caller, name, List.class);
 439         if (classdata == null) return null;
 440 
 441         try {
 442             Object element = classdata.get(index);
 443             return BootstrapMethodInvoker.widenAndCast(element, type);
 444         } catch (RuntimeException|Error e) {
 445             throw e; // let specified exceptions and other runtime exceptions/errors through
 446         } catch (Throwable e) {
 447             throw new InternalError(e);
 448         }
 449     }
 450 
 451     /**
 452      * Performs an unchecked "crack" of a
 453      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 454      * The result is as if the user had obtained a lookup object capable enough
 455      * to crack the target method handle, called
 456      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 457      * on the target to obtain its symbolic reference, and then called
 458      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 459      * to resolve the symbolic reference to a member.
 460      * <p>
 461      * If there is a security manager, its {@code checkPermission} method
 462      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 463      * @param <T> the desired type of the result, either {@link Member} or a subtype
 464      * @param target a direct method handle to crack into symbolic reference components
 465      * @param expected a class object representing the desired result type {@code T}
 466      * @return a reference to the method, constructor, or field object
 467      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 468      * @throws    NullPointerException if either argument is {@code null}
 469      * @throws    IllegalArgumentException if the target is not a direct method handle
 470      * @throws    ClassCastException if the member is not of the expected type
 471      * @since 1.8
 472      */
 473     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 474         @SuppressWarnings("removal")
 475         SecurityManager smgr = System.getSecurityManager();
 476         if (smgr != null)  smgr.checkPermission(SecurityConstants.ACCESS_PERMISSION);
 477         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 478         return lookup.revealDirect(target).reflectAs(expected, lookup);
 479     }
 480 
 481     /**
 482      * A <em>lookup object</em> is a factory for creating method handles,
 483      * when the creation requires access checking.
 484      * Method handles do not perform
 485      * access checks when they are called, but rather when they are created.
 486      * Therefore, method handle access
 487      * restrictions must be enforced when a method handle is created.
 488      * The caller class against which those restrictions are enforced
 489      * is known as the {@linkplain #lookupClass() lookup class}.
 490      * <p>
 491      * A lookup class which needs to create method handles will call
 492      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 493      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 494      * determined, and securely stored in the {@code Lookup} object.
 495      * The lookup class (or its delegates) may then use factory methods
 496      * on the {@code Lookup} object to create method handles for access-checked members.
 497      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 498      * even private ones.
 499      *
 500      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 501      * The factory methods on a {@code Lookup} object correspond to all major
 502      * use cases for methods, constructors, and fields.
 503      * Each method handle created by a factory method is the functional
 504      * equivalent of a particular <em>bytecode behavior</em>.
 505      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
 506      * the Java Virtual Machine Specification.)
 507      * Here is a summary of the correspondence between these factory methods and
 508      * the behavior of the resulting method handles:
 509      * <table class="striped">
 510      * <caption style="display:none">lookup method behaviors</caption>
 511      * <thead>
 512      * <tr>
 513      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 514      *     <th scope="col">member</th>
 515      *     <th scope="col">bytecode behavior</th>
 516      * </tr>
 517      * </thead>
 518      * <tbody>
 519      * <tr>
 520      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 521      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 522      * </tr>
 523      * <tr>
 524      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 525      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 526      * </tr>
 527      * <tr>
 528      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 529      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 530      * </tr>
 531      * <tr>
 532      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 533      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 534      * </tr>
 535      * <tr>
 536      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 537      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 538      * </tr>
 539      * <tr>
 540      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 541      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 542      * </tr>
 543      * <tr>
 544      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 545      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 546      * </tr>
 547      * <tr>
 548      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 549      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 550      * </tr>
 551      * <tr>
 552      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 553      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 554      * </tr>
 555      * <tr>
 556      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 557      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 558      * </tr>
 559      * <tr>
 560      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 561      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 562      * </tr>
 563      * <tr>
 564      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 565      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 566      * </tr>
 567      * <tr>
 568      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 569      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 570      * </tr>
 571      * <tr>
 572      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 573      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 574      * </tr>
 575      * </tbody>
 576      * </table>
 577      *
 578      * Here, the type {@code C} is the class or interface being searched for a member,
 579      * documented as a parameter named {@code refc} in the lookup methods.
 580      * The method type {@code MT} is composed from the return type {@code T}
 581      * and the sequence of argument types {@code A*}.
 582      * The constructor also has a sequence of argument types {@code A*} and
 583      * is deemed to return the newly-created object of type {@code C}.
 584      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 585      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 586      * if it is present, it is always the leading argument to the method handle invocation.
 587      * (In the case of some {@code protected} members, {@code this} may be
 588      * restricted in type to the lookup class; see below.)
 589      * The name {@code arg} stands for all the other method handle arguments.
 590      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 591      * stands for a null reference if the accessed method or field is static,
 592      * and {@code this} otherwise.
 593      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 594      * for reflective objects corresponding to the given members declared in type {@code C}.
 595      * <p>
 596      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 597      * as if by {@code ldc CONSTANT_Class}.
 598      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 599      * <p>
 600      * In cases where the given member is of variable arity (i.e., a method or constructor)
 601      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 602      * In all other cases, the returned method handle will be of fixed arity.
 603      * <p style="font-size:smaller;">
 604      * <em>Discussion:</em>
 605      * The equivalence between looked-up method handles and underlying
 606      * class members and bytecode behaviors
 607      * can break down in a few ways:
 608      * <ul style="font-size:smaller;">
 609      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 610      * the lookup can still succeed, even when there is no equivalent
 611      * Java expression or bytecoded constant.
 612      * <li>Likewise, if {@code T} or {@code MT}
 613      * is not symbolically accessible from the lookup class's loader,
 614      * the lookup can still succeed.
 615      * For example, lookups for {@code MethodHandle.invokeExact} and
 616      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 617      * <li>If there is a security manager installed, it can forbid the lookup
 618      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 619      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 620      * constant is not subject to security manager checks.
 621      * <li>If the looked-up method has a
 622      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 623      * the method handle creation may fail with an
 624      * {@code IllegalArgumentException}, due to the method handle type having
 625      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 626      * </ul>
 627      *
 628      * <h2><a id="access"></a>Access checking</h2>
 629      * Access checks are applied in the factory methods of {@code Lookup},
 630      * when a method handle is created.
 631      * This is a key difference from the Core Reflection API, since
 632      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 633      * performs access checking against every caller, on every call.
 634      * <p>
 635      * All access checks start from a {@code Lookup} object, which
 636      * compares its recorded lookup class against all requests to
 637      * create method handles.
 638      * A single {@code Lookup} object can be used to create any number
 639      * of access-checked method handles, all checked against a single
 640      * lookup class.
 641      * <p>
 642      * A {@code Lookup} object can be shared with other trusted code,
 643      * such as a metaobject protocol.
 644      * A shared {@code Lookup} object delegates the capability
 645      * to create method handles on private members of the lookup class.
 646      * Even if privileged code uses the {@code Lookup} object,
 647      * the access checking is confined to the privileges of the
 648      * original lookup class.
 649      * <p>
 650      * A lookup can fail, because
 651      * the containing class is not accessible to the lookup class, or
 652      * because the desired class member is missing, or because the
 653      * desired class member is not accessible to the lookup class, or
 654      * because the lookup object is not trusted enough to access the member.
 655      * In the case of a field setter function on a {@code final} field,
 656      * finality enforcement is treated as a kind of access control,
 657      * and the lookup will fail, except in special cases of
 658      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 659      * In any of these cases, a {@code ReflectiveOperationException} will be
 660      * thrown from the attempted lookup.  The exact class will be one of
 661      * the following:
 662      * <ul>
 663      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 664      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 665      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 666      * </ul>
 667      * <p>
 668      * In general, the conditions under which a method handle may be
 669      * looked up for a method {@code M} are no more restrictive than the conditions
 670      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 671      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 672      * a method handle lookup will generally raise a corresponding
 673      * checked exception, such as {@code NoSuchMethodException}.
 674      * And the effect of invoking the method handle resulting from the lookup
 675      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 676      * to executing the compiled, verified, and resolved call to {@code M}.
 677      * The same point is true of fields and constructors.
 678      * <p style="font-size:smaller;">
 679      * <em>Discussion:</em>
 680      * Access checks only apply to named and reflected methods,
 681      * constructors, and fields.
 682      * Other method handle creation methods, such as
 683      * {@link MethodHandle#asType MethodHandle.asType},
 684      * do not require any access checks, and are used
 685      * independently of any {@code Lookup} object.
 686      * <p>
 687      * If the desired member is {@code protected}, the usual JVM rules apply,
 688      * including the requirement that the lookup class must either be in the
 689      * same package as the desired member, or must inherit that member.
 690      * (See the Java Virtual Machine Specification, sections {@jvms
 691      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 692      * In addition, if the desired member is a non-static field or method
 693      * in a different package, the resulting method handle may only be applied
 694      * to objects of the lookup class or one of its subclasses.
 695      * This requirement is enforced by narrowing the type of the leading
 696      * {@code this} parameter from {@code C}
 697      * (which will necessarily be a superclass of the lookup class)
 698      * to the lookup class itself.
 699      * <p>
 700      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 701      * that the receiver argument must match both the resolved method <em>and</em>
 702      * the current class.  Again, this requirement is enforced by narrowing the
 703      * type of the leading parameter to the resulting method handle.
 704      * (See the Java Virtual Machine Specification, section {@jvms 4.10.1.9}.)
 705      * <p>
 706      * The JVM represents constructors and static initializer blocks as internal methods
 707      * with special names ({@value ConstantDescs#INIT_NAME} and {@value
 708      * ConstantDescs#CLASS_INIT_NAME}).
 709      * The internal syntax of invocation instructions allows them to refer to such internal
 710      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 711      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 712      * <p>
 713      * If the relationship between nested types is expressed directly through the
 714      * {@code NestHost} and {@code NestMembers} attributes
 715      * (see the Java Virtual Machine Specification, sections {@jvms
 716      * 4.7.28} and {@jvms 4.7.29}),
 717      * then the associated {@code Lookup} object provides direct access to
 718      * the lookup class and all of its nestmates
 719      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 720      * Otherwise, access between nested classes is obtained by the Java compiler creating
 721      * a wrapper method to access a private method of another class in the same nest.
 722      * For example, a nested class {@code C.D}
 723      * can access private members within other related classes such as
 724      * {@code C}, {@code C.D.E}, or {@code C.B},
 725      * but the Java compiler may need to generate wrapper methods in
 726      * those related classes.  In such cases, a {@code Lookup} object on
 727      * {@code C.E} would be unable to access those private members.
 728      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 729      * which can transform a lookup on {@code C.E} into one on any of those other
 730      * classes, without special elevation of privilege.
 731      * <p>
 732      * The accesses permitted to a given lookup object may be limited,
 733      * according to its set of {@link #lookupModes lookupModes},
 734      * to a subset of members normally accessible to the lookup class.
 735      * For example, the {@link MethodHandles#publicLookup publicLookup}
 736      * method produces a lookup object which is only allowed to access
 737      * public members in public classes of exported packages.
 738      * The caller sensitive method {@link MethodHandles#lookup lookup}
 739      * produces a lookup object with full capabilities relative to
 740      * its caller class, to emulate all supported bytecode behaviors.
 741      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 742      * with fewer access modes than the original lookup object.
 743      *
 744      * <p style="font-size:smaller;">
 745      * <a id="privacc"></a>
 746      * <em>Discussion of private and module access:</em>
 747      * We say that a lookup has <em>private access</em>
 748      * if its {@linkplain #lookupModes lookup modes}
 749      * include the possibility of accessing {@code private} members
 750      * (which includes the private members of nestmates).
 751      * As documented in the relevant methods elsewhere,
 752      * only lookups with private access possess the following capabilities:
 753      * <ul style="font-size:smaller;">
 754      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 755      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 756      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 757      *     for classes accessible to the lookup class
 758      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 759      *     within the same package member
 760      * </ul>
 761      * <p style="font-size:smaller;">
 762      * Similarly, a lookup with module access ensures that the original lookup creator was
 763      * a member in the same module as the lookup class.
 764      * <p style="font-size:smaller;">
 765      * Private and module access are independently determined modes; a lookup may have
 766      * either or both or neither.  A lookup which possesses both access modes is said to
 767      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.
 768      * <p style="font-size:smaller;">
 769      * A lookup with <em>original access</em> ensures that this lookup is created by
 770      * the original lookup class and the bootstrap method invoked by the VM.
 771      * Such a lookup with original access also has private and module access
 772      * which has the following additional capability:
 773      * <ul style="font-size:smaller;">
 774      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 775      *     such as {@code Class.forName}
 776      * <li>obtain the {@linkplain MethodHandles#classData(Lookup, String, Class)
 777      * class data} associated with the lookup class</li>
 778      * </ul>
 779      * <p style="font-size:smaller;">
 780      * Each of these permissions is a consequence of the fact that a lookup object
 781      * with private access can be securely traced back to an originating class,
 782      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 783      * can be reliably determined and emulated by method handles.
 784      *
 785      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 786      * When a lookup class in one module {@code M1} accesses a class in another module
 787      * {@code M2}, extra access checking is performed beyond the access mode bits.
 788      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 789      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 790      * and when the type is in a package of {@code M2} that is exported to
 791      * at least {@code M1}.
 792      * <p>
 793      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 794      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 795      * MethodHandles.privateLookupIn} methods.
 796      * Teleporting across modules will always record the original lookup class as
 797      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 798      * and drops {@link Lookup#MODULE MODULE} access.
 799      * If the target class is in the same module as the lookup class {@code C},
 800      * then the target class becomes the new lookup class
 801      * and there is no change to the previous lookup class.
 802      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 803      * {@code C} becomes the new previous lookup class
 804      * and the target class becomes the new lookup class.
 805      * In that case, if there was already a previous lookup class in {@code M0},
 806      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 807      * drops all privileges.
 808      * For example,
 809      * {@snippet lang="java" :
 810      * Lookup lookup = MethodHandles.lookup();   // in class C
 811      * Lookup lookup2 = lookup.in(D.class);
 812      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 813      * }
 814      * <p>
 815      * The {@link #lookup()} factory method produces a {@code Lookup} object
 816      * with {@code null} previous lookup class.
 817      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 818      * to class {@code D} without elevation of privileges.
 819      * If {@code C} and {@code D} are in the same module,
 820      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 821      * same previous lookup class as the original {@code lookup}, or
 822      * {@code null} if not present.
 823      * <p>
 824      * When a {@code Lookup} teleports from a class
 825      * in one nest to another nest, {@code PRIVATE} access is dropped.
 826      * When a {@code Lookup} teleports from a class in one package to
 827      * another package, {@code PACKAGE} access is dropped.
 828      * When a {@code Lookup} teleports from a class in one module to another module,
 829      * {@code MODULE} access is dropped.
 830      * Teleporting across modules drops the ability to access non-exported classes
 831      * in both the module of the new lookup class and the module of the old lookup class
 832      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 833      * A {@code Lookup} can teleport back and forth to a class in the module of
 834      * the lookup class and the module of the previous class lookup.
 835      * Teleporting across modules can only decrease access but cannot increase it.
 836      * Teleporting to some third module drops all accesses.
 837      * <p>
 838      * In the above example, if {@code C} and {@code D} are in different modules,
 839      * {@code lookup2} records {@code D} as its lookup class and
 840      * {@code C} as its previous lookup class and {@code lookup2} has only
 841      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 842      * {@code C}'s module and {@code D}'s module.
 843      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 844      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 845      * class {@code D} is recorded as its previous lookup class.
 846      * <p>
 847      * Teleporting across modules restricts access to the public types that
 848      * both the lookup class and the previous lookup class can equally access
 849      * (see below).
 850      * <p>
 851      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 852      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 853      * and produce a new {@code Lookup} with <a href="#privacc">private access</a>
 854      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 855      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 856      * to call {@code privateLookupIn}.
 857      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 858      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 859      * produces a new {@code Lookup} on {@code T} with full capabilities.
 860      * A {@code lookup} on {@code C} is also allowed
 861      * to do deep reflection on {@code T} in another module {@code M2} if
 862      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 863      * the package containing {@code T} to at least {@code M1}.
 864      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 865      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 866      * The resulting {@code Lookup} can be used to do member lookup or teleport
 867      * to another lookup class by calling {@link #in Lookup::in}.  But
 868      * it cannot be used to obtain another private {@code Lookup} by calling
 869      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 870      * because it has no {@code MODULE} access.
 871      * <p>
 872      * The {@code Lookup} object returned by {@code privateLookupIn} is allowed to
 873      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 874      * of {@code T}. Extreme caution should be taken when opening a package
 875      * to another module as such defined classes have the same full privilege
 876      * access as other members in {@code M2}.
 877      *
 878      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 879      *
 880      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 881      * allows cross-module access. The access checking is performed with respect
 882      * to both the lookup class and the previous lookup class if present.
 883      * <p>
 884      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 885      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 886      * exported unconditionally}.
 887      * <p>
 888      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 889      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 890      * that are readable to {@code M1} and the type is in a package that is exported
 891      * at least to {@code M1}.
 892      * <p>
 893      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 894      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 895      * the intersection of all public types that are accessible to {@code M1}
 896      * with all public types that are accessible to {@code M0}. {@code M0}
 897      * reads {@code M1} and hence the set of accessible types includes:
 898      *
 899      * <ul>
 900      * <li>unconditional-exported packages from {@code M1}</li>
 901      * <li>unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</li>
 902      * <li>
 903      *     unconditional-exported packages from a third module {@code M2}if both {@code M0}
 904      *     and {@code M1} read {@code M2}
 905      * </li>
 906      * <li>qualified-exported packages from {@code M1} to {@code M0}</li>
 907      * <li>qualified-exported packages from {@code M0} to {@code M1} if {@code M1} reads {@code M0}</li>
 908      * <li>
 909      *     qualified-exported packages from a third module {@code M2} to both {@code M0} and
 910      *     {@code M1} if both {@code M0} and {@code M1} read {@code M2}
 911      * </li>
 912      * </ul>
 913      *
 914      * <h2><a id="access-modes"></a>Access modes</h2>
 915      *
 916      * The table below shows the access modes of a {@code Lookup} produced by
 917      * any of the following factory or transformation methods:
 918      * <ul>
 919      * <li>{@link #lookup() MethodHandles::lookup}</li>
 920      * <li>{@link #publicLookup() MethodHandles::publicLookup}</li>
 921      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li>
 922      * <li>{@link Lookup#in Lookup::in}</li>
 923      * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li>
 924      * </ul>
 925      *
 926      * <table class="striped">
 927      * <caption style="display:none">
 928      * Access mode summary
 929      * </caption>
 930      * <thead>
 931      * <tr>
 932      * <th scope="col">Lookup object</th>
 933      * <th style="text-align:center">original</th>
 934      * <th style="text-align:center">protected</th>
 935      * <th style="text-align:center">private</th>
 936      * <th style="text-align:center">package</th>
 937      * <th style="text-align:center">module</th>
 938      * <th style="text-align:center">public</th>
 939      * </tr>
 940      * </thead>
 941      * <tbody>
 942      * <tr>
 943      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 944      * <td style="text-align:center">ORI</td>
 945      * <td style="text-align:center">PRO</td>
 946      * <td style="text-align:center">PRI</td>
 947      * <td style="text-align:center">PAC</td>
 948      * <td style="text-align:center">MOD</td>
 949      * <td style="text-align:center">1R</td>
 950      * </tr>
 951      * <tr>
 952      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 953      * <td></td>
 954      * <td></td>
 955      * <td></td>
 956      * <td style="text-align:center">PAC</td>
 957      * <td style="text-align:center">MOD</td>
 958      * <td style="text-align:center">1R</td>
 959      * </tr>
 960      * <tr>
 961      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 962      * <td></td>
 963      * <td></td>
 964      * <td></td>
 965      * <td></td>
 966      * <td style="text-align:center">MOD</td>
 967      * <td style="text-align:center">1R</td>
 968      * </tr>
 969      * <tr>
 970      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 971      * <td></td>
 972      * <td></td>
 973      * <td></td>
 974      * <td></td>
 975      * <td></td>
 976      * <td style="text-align:center">2R</td>
 977      * </tr>
 978      * <tr>
 979      * <th scope="row" style="text-align:left">{@code CL.in(D).in(C)} hop back to module</th>
 980      * <td></td>
 981      * <td></td>
 982      * <td></td>
 983      * <td></td>
 984      * <td></td>
 985      * <td style="text-align:center">2R</td>
 986      * </tr>
 987      * <tr>
 988      * <th scope="row" style="text-align:left">{@code PRI1 = privateLookupIn(C1,CL)}</th>
 989      * <td></td>
 990      * <td style="text-align:center">PRO</td>
 991      * <td style="text-align:center">PRI</td>
 992      * <td style="text-align:center">PAC</td>
 993      * <td style="text-align:center">MOD</td>
 994      * <td style="text-align:center">1R</td>
 995      * </tr>
 996      * <tr>
 997      * <th scope="row" style="text-align:left">{@code PRI1a = privateLookupIn(C,PRI1)}</th>
 998      * <td></td>
 999      * <td style="text-align:center">PRO</td>
1000      * <td style="text-align:center">PRI</td>
1001      * <td style="text-align:center">PAC</td>
1002      * <td style="text-align:center">MOD</td>
1003      * <td style="text-align:center">1R</td>
1004      * </tr>
1005      * <tr>
1006      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} same package</th>
1007      * <td></td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">PAC</td>
1011      * <td style="text-align:center">MOD</td>
1012      * <td style="text-align:center">1R</td>
1013      * </tr>
1014      * <tr>
1015      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} different package</th>
1016      * <td></td>
1017      * <td></td>
1018      * <td></td>
1019      * <td></td>
1020      * <td style="text-align:center">MOD</td>
1021      * <td style="text-align:center">1R</td>
1022      * </tr>
1023      * <tr>
1024      * <th scope="row" style="text-align:left">{@code PRI1.in(D)} different module</th>
1025      * <td></td>
1026      * <td></td>
1027      * <td></td>
1028      * <td></td>
1029      * <td></td>
1030      * <td style="text-align:center">2R</td>
1031      * </tr>
1032      * <tr>
1033      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PROTECTED)}</th>
1034      * <td></td>
1035      * <td></td>
1036      * <td style="text-align:center">PRI</td>
1037      * <td style="text-align:center">PAC</td>
1038      * <td style="text-align:center">MOD</td>
1039      * <td style="text-align:center">1R</td>
1040      * </tr>
1041      * <tr>
1042      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PRIVATE)}</th>
1043      * <td></td>
1044      * <td></td>
1045      * <td></td>
1046      * <td style="text-align:center">PAC</td>
1047      * <td style="text-align:center">MOD</td>
1048      * <td style="text-align:center">1R</td>
1049      * </tr>
1050      * <tr>
1051      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PACKAGE)}</th>
1052      * <td></td>
1053      * <td></td>
1054      * <td></td>
1055      * <td></td>
1056      * <td style="text-align:center">MOD</td>
1057      * <td style="text-align:center">1R</td>
1058      * </tr>
1059      * <tr>
1060      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(MODULE)}</th>
1061      * <td></td>
1062      * <td></td>
1063      * <td></td>
1064      * <td></td>
1065      * <td></td>
1066      * <td style="text-align:center">1R</td>
1067      * </tr>
1068      * <tr>
1069      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PUBLIC)}</th>
1070      * <td></td>
1071      * <td></td>
1072      * <td></td>
1073      * <td></td>
1074      * <td></td>
1075      * <td style="text-align:center">none</td>
1076      * <tr>
1077      * <th scope="row" style="text-align:left">{@code PRI2 = privateLookupIn(D,CL)}</th>
1078      * <td></td>
1079      * <td style="text-align:center">PRO</td>
1080      * <td style="text-align:center">PRI</td>
1081      * <td style="text-align:center">PAC</td>
1082      * <td></td>
1083      * <td style="text-align:center">2R</td>
1084      * </tr>
1085      * <tr>
1086      * <th scope="row" style="text-align:left">{@code privateLookupIn(D,PRI1)}</th>
1087      * <td></td>
1088      * <td style="text-align:center">PRO</td>
1089      * <td style="text-align:center">PRI</td>
1090      * <td style="text-align:center">PAC</td>
1091      * <td></td>
1092      * <td style="text-align:center">2R</td>
1093      * </tr>
1094      * <tr>
1095      * <th scope="row" style="text-align:left">{@code privateLookupIn(C,PRI2)} fails</th>
1096      * <td></td>
1097      * <td></td>
1098      * <td></td>
1099      * <td></td>
1100      * <td></td>
1101      * <td style="text-align:center">IAE</td>
1102      * </tr>
1103      * <tr>
1104      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} same package</th>
1105      * <td></td>
1106      * <td></td>
1107      * <td></td>
1108      * <td style="text-align:center">PAC</td>
1109      * <td></td>
1110      * <td style="text-align:center">2R</td>
1111      * </tr>
1112      * <tr>
1113      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} different package</th>
1114      * <td></td>
1115      * <td></td>
1116      * <td></td>
1117      * <td></td>
1118      * <td></td>
1119      * <td style="text-align:center">2R</td>
1120      * </tr>
1121      * <tr>
1122      * <th scope="row" style="text-align:left">{@code PRI2.in(C1)} hop back to module</th>
1123      * <td></td>
1124      * <td></td>
1125      * <td></td>
1126      * <td></td>
1127      * <td></td>
1128      * <td style="text-align:center">2R</td>
1129      * </tr>
1130      * <tr>
1131      * <th scope="row" style="text-align:left">{@code PRI2.in(E)} hop to third module</th>
1132      * <td></td>
1133      * <td></td>
1134      * <td></td>
1135      * <td></td>
1136      * <td></td>
1137      * <td style="text-align:center">none</td>
1138      * </tr>
1139      * <tr>
1140      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PROTECTED)}</th>
1141      * <td></td>
1142      * <td></td>
1143      * <td style="text-align:center">PRI</td>
1144      * <td style="text-align:center">PAC</td>
1145      * <td></td>
1146      * <td style="text-align:center">2R</td>
1147      * </tr>
1148      * <tr>
1149      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PRIVATE)}</th>
1150      * <td></td>
1151      * <td></td>
1152      * <td></td>
1153      * <td style="text-align:center">PAC</td>
1154      * <td></td>
1155      * <td style="text-align:center">2R</td>
1156      * </tr>
1157      * <tr>
1158      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PACKAGE)}</th>
1159      * <td></td>
1160      * <td></td>
1161      * <td></td>
1162      * <td></td>
1163      * <td></td>
1164      * <td style="text-align:center">2R</td>
1165      * </tr>
1166      * <tr>
1167      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(MODULE)}</th>
1168      * <td></td>
1169      * <td></td>
1170      * <td></td>
1171      * <td></td>
1172      * <td></td>
1173      * <td style="text-align:center">2R</td>
1174      * </tr>
1175      * <tr>
1176      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PUBLIC)}</th>
1177      * <td></td>
1178      * <td></td>
1179      * <td></td>
1180      * <td></td>
1181      * <td></td>
1182      * <td style="text-align:center">none</td>
1183      * </tr>
1184      * <tr>
1185      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PROTECTED)}</th>
1186      * <td></td>
1187      * <td></td>
1188      * <td style="text-align:center">PRI</td>
1189      * <td style="text-align:center">PAC</td>
1190      * <td style="text-align:center">MOD</td>
1191      * <td style="text-align:center">1R</td>
1192      * </tr>
1193      * <tr>
1194      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PRIVATE)}</th>
1195      * <td></td>
1196      * <td></td>
1197      * <td></td>
1198      * <td style="text-align:center">PAC</td>
1199      * <td style="text-align:center">MOD</td>
1200      * <td style="text-align:center">1R</td>
1201      * </tr>
1202      * <tr>
1203      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PACKAGE)}</th>
1204      * <td></td>
1205      * <td></td>
1206      * <td></td>
1207      * <td></td>
1208      * <td style="text-align:center">MOD</td>
1209      * <td style="text-align:center">1R</td>
1210      * </tr>
1211      * <tr>
1212      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(MODULE)}</th>
1213      * <td></td>
1214      * <td></td>
1215      * <td></td>
1216      * <td></td>
1217      * <td></td>
1218      * <td style="text-align:center">1R</td>
1219      * </tr>
1220      * <tr>
1221      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PUBLIC)}</th>
1222      * <td></td>
1223      * <td></td>
1224      * <td></td>
1225      * <td></td>
1226      * <td></td>
1227      * <td style="text-align:center">none</td>
1228      * </tr>
1229      * <tr>
1230      * <th scope="row" style="text-align:left">{@code PUB = publicLookup()}</th>
1231      * <td></td>
1232      * <td></td>
1233      * <td></td>
1234      * <td></td>
1235      * <td></td>
1236      * <td style="text-align:center">U</td>
1237      * </tr>
1238      * <tr>
1239      * <th scope="row" style="text-align:left">{@code PUB.in(D)} different module</th>
1240      * <td></td>
1241      * <td></td>
1242      * <td></td>
1243      * <td></td>
1244      * <td></td>
1245      * <td style="text-align:center">U</td>
1246      * </tr>
1247      * <tr>
1248      * <th scope="row" style="text-align:left">{@code PUB.in(D).in(E)} third module</th>
1249      * <td></td>
1250      * <td></td>
1251      * <td></td>
1252      * <td></td>
1253      * <td></td>
1254      * <td style="text-align:center">U</td>
1255      * </tr>
1256      * <tr>
1257      * <th scope="row" style="text-align:left">{@code PUB.dropLookupMode(UNCONDITIONAL)}</th>
1258      * <td></td>
1259      * <td></td>
1260      * <td></td>
1261      * <td></td>
1262      * <td></td>
1263      * <td style="text-align:center">none</td>
1264      * </tr>
1265      * <tr>
1266      * <th scope="row" style="text-align:left">{@code privateLookupIn(C1,PUB)} fails</th>
1267      * <td></td>
1268      * <td></td>
1269      * <td></td>
1270      * <td></td>
1271      * <td></td>
1272      * <td style="text-align:center">IAE</td>
1273      * </tr>
1274      * <tr>
1275      * <th scope="row" style="text-align:left">{@code ANY.in(X)}, for inaccessible {@code X}</th>
1276      * <td></td>
1277      * <td></td>
1278      * <td></td>
1279      * <td></td>
1280      * <td></td>
1281      * <td style="text-align:center">none</td>
1282      * </tr>
1283      * </tbody>
1284      * </table>
1285      *
1286      * <p>
1287      * Notes:
1288      * <ul>
1289      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1290      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1291      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1292      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1293      * <li>{@code ORI} indicates {@link #ORIGINAL} bit set,
1294      *     {@code PRO} indicates {@link #PROTECTED} bit set,
1295      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1296      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1297      *     {@code MOD} indicates {@link #MODULE} bit set,
1298      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1299      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1300      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1301      * <li>Public access comes in three kinds:
1302      * <ul>
1303      * <li>unconditional ({@code U}): the lookup assumes readability.
1304      *     The lookup has {@code null} previous lookup class.
1305      * <li>one-module-reads ({@code 1R}): the module access checking is
1306      *     performed with respect to the lookup class.  The lookup has {@code null}
1307      *     previous lookup class.
1308      * <li>two-module-reads ({@code 2R}): the module access checking is
1309      *     performed with respect to the lookup class and the previous lookup class.
1310      *     The lookup has a non-null previous lookup class which is in a
1311      *     different module from the current lookup class.
1312      * </ul>
1313      * <li>Any attempt to reach a third module loses all access.</li>
1314      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1315      * all access modes are dropped.</li>
1316      * </ul>
1317      *
1318      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1319      * Although bytecode instructions can only refer to classes in
1320      * a related class loader, this API can search for methods in any
1321      * class, as long as a reference to its {@code Class} object is
1322      * available.  Such cross-loader references are also possible with the
1323      * Core Reflection API, and are impossible to bytecode instructions
1324      * such as {@code invokestatic} or {@code getfield}.
1325      * There is a {@linkplain java.lang.SecurityManager security manager API}
1326      * to allow applications to check such cross-loader references.
1327      * These checks apply to both the {@code MethodHandles.Lookup} API
1328      * and the Core Reflection API
1329      * (as found on {@link java.lang.Class Class}).
1330      * <p>
1331      * If a security manager is present, member and class lookups are subject to
1332      * additional checks.
1333      * From one to three calls are made to the security manager.
1334      * Any of these calls can refuse access by throwing a
1335      * {@link java.lang.SecurityException SecurityException}.
1336      * Define {@code smgr} as the security manager,
1337      * {@code lookc} as the lookup class of the current lookup object,
1338      * {@code refc} as the containing class in which the member
1339      * is being sought, and {@code defc} as the class in which the
1340      * member is actually defined.
1341      * (If a class or other type is being accessed,
1342      * the {@code refc} and {@code defc} values are the class itself.)
1343      * The value {@code lookc} is defined as <em>not present</em>
1344      * if the current lookup object does not have
1345      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1346      * The calls are made according to the following rules:
1347      * <ul>
1348      * <li><b>Step 1:</b>
1349      *     If {@code lookc} is not present, or if its class loader is not
1350      *     the same as or an ancestor of the class loader of {@code refc},
1351      *     then {@link SecurityManager#checkPackageAccess
1352      *     smgr.checkPackageAccess(refcPkg)} is called,
1353      *     where {@code refcPkg} is the package of {@code refc}.
1354      * <li><b>Step 2a:</b>
1355      *     If the retrieved member is not public and
1356      *     {@code lookc} is not present, then
1357      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1358      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1359      * <li><b>Step 2b:</b>
1360      *     If the retrieved class has a {@code null} class loader,
1361      *     and {@code lookc} is not present, then
1362      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1363      *     with {@code RuntimePermission("getClassLoader")} is called.
1364      * <li><b>Step 3:</b>
1365      *     If the retrieved member is not public,
1366      *     and if {@code lookc} is not present,
1367      *     and if {@code defc} and {@code refc} are different,
1368      *     then {@link SecurityManager#checkPackageAccess
1369      *     smgr.checkPackageAccess(defcPkg)} is called,
1370      *     where {@code defcPkg} is the package of {@code defc}.
1371      * </ul>
1372      * Security checks are performed after other access checks have passed.
1373      * Therefore, the above rules presuppose a member or class that is public,
1374      * or else that is being accessed from a lookup class that has
1375      * rights to access the member or class.
1376      * <p>
1377      * If a security manager is present and the current lookup object does not have
1378      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1379      * {@link #defineClass(byte[]) defineClass},
1380      * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass},
1381      * {@link #defineHiddenClassWithClassData(byte[], Object, boolean, ClassOption...)
1382      * defineHiddenClassWithClassData}
1383      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1384      * with {@code RuntimePermission("defineClass")}.
1385      *
1386      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1387      * A small number of Java methods have a special property called caller sensitivity.
1388      * A <em>caller-sensitive</em> method can behave differently depending on the
1389      * identity of its immediate caller.
1390      * <p>
1391      * If a method handle for a caller-sensitive method is requested,
1392      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1393      * but they take account of the lookup class in a special way.
1394      * The resulting method handle behaves as if it were called
1395      * from an instruction contained in the lookup class,
1396      * so that the caller-sensitive method detects the lookup class.
1397      * (By contrast, the invoker of the method handle is disregarded.)
1398      * Thus, in the case of caller-sensitive methods,
1399      * different lookup classes may give rise to
1400      * differently behaving method handles.
1401      * <p>
1402      * In cases where the lookup object is
1403      * {@link MethodHandles#publicLookup() publicLookup()},
1404      * or some other lookup object without the
1405      * {@linkplain #ORIGINAL original access},
1406      * the lookup class is disregarded.
1407      * In such cases, no caller-sensitive method handle can be created,
1408      * access is forbidden, and the lookup fails with an
1409      * {@code IllegalAccessException}.
1410      * <p style="font-size:smaller;">
1411      * <em>Discussion:</em>
1412      * For example, the caller-sensitive method
1413      * {@link java.lang.Class#forName(String) Class.forName(x)}
1414      * can return varying classes or throw varying exceptions,
1415      * depending on the class loader of the class that calls it.
1416      * A public lookup of {@code Class.forName} will fail, because
1417      * there is no reasonable way to determine its bytecode behavior.
1418      * <p style="font-size:smaller;">
1419      * If an application caches method handles for broad sharing,
1420      * it should use {@code publicLookup()} to create them.
1421      * If there is a lookup of {@code Class.forName}, it will fail,
1422      * and the application must take appropriate action in that case.
1423      * It may be that a later lookup, perhaps during the invocation of a
1424      * bootstrap method, can incorporate the specific identity
1425      * of the caller, making the method accessible.
1426      * <p style="font-size:smaller;">
1427      * The function {@code MethodHandles.lookup} is caller sensitive
1428      * so that there can be a secure foundation for lookups.
1429      * Nearly all other methods in the JSR 292 API rely on lookup
1430      * objects to check access requests.
1431      */
1432     public static final
1433     class Lookup {
1434         /** The class on behalf of whom the lookup is being performed. */
1435         private final Class<?> lookupClass;
1436 
1437         /** previous lookup class */
1438         private final Class<?> prevLookupClass;
1439 
1440         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1441         private final int allowedModes;
1442 
1443         static {
1444             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1445         }
1446 
1447         /** A single-bit mask representing {@code public} access,
1448          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1449          *  The value, {@code 0x01}, happens to be the same as the value of the
1450          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1451          *  <p>
1452          *  A {@code Lookup} with this lookup mode performs cross-module access check
1453          *  with respect to the {@linkplain #lookupClass() lookup class} and
1454          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1455          */
1456         public static final int PUBLIC = Modifier.PUBLIC;
1457 
1458         /** A single-bit mask representing {@code private} access,
1459          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1460          *  The value, {@code 0x02}, happens to be the same as the value of the
1461          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1462          */
1463         public static final int PRIVATE = Modifier.PRIVATE;
1464 
1465         /** A single-bit mask representing {@code protected} access,
1466          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1467          *  The value, {@code 0x04}, happens to be the same as the value of the
1468          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1469          */
1470         public static final int PROTECTED = Modifier.PROTECTED;
1471 
1472         /** A single-bit mask representing {@code package} access (default access),
1473          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1474          *  The value is {@code 0x08}, which does not correspond meaningfully to
1475          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1476          */
1477         public static final int PACKAGE = Modifier.STATIC;
1478 
1479         /** A single-bit mask representing {@code module} access,
1480          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1481          *  The value is {@code 0x10}, which does not correspond meaningfully to
1482          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1483          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1484          *  with this lookup mode can access all public types in the module of the
1485          *  lookup class and public types in packages exported by other modules
1486          *  to the module of the lookup class.
1487          *  <p>
1488          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1489          *  previous lookup class} is always {@code null}.
1490          *
1491          *  @since 9
1492          */
1493         public static final int MODULE = PACKAGE << 1;
1494 
1495         /** A single-bit mask representing {@code unconditional} access
1496          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1497          *  The value is {@code 0x20}, which does not correspond meaningfully to
1498          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1499          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1500          *  java.lang.Module#canRead(java.lang.Module) readability}.
1501          *  This lookup mode can access all public members of public types
1502          *  of all modules when the type is in a package that is {@link
1503          *  java.lang.Module#isExported(String) exported unconditionally}.
1504          *
1505          *  <p>
1506          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1507          *  previous lookup class} is always {@code null}.
1508          *
1509          *  @since 9
1510          *  @see #publicLookup()
1511          */
1512         public static final int UNCONDITIONAL = PACKAGE << 2;
1513 
1514         /** A single-bit mask representing {@code original} access
1515          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1516          *  The value is {@code 0x40}, which does not correspond meaningfully to
1517          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1518          *
1519          *  <p>
1520          *  If this lookup mode is set, the {@code Lookup} object must be
1521          *  created by the original lookup class by calling
1522          *  {@link MethodHandles#lookup()} method or by a bootstrap method
1523          *  invoked by the VM.  The {@code Lookup} object with this lookup
1524          *  mode has {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1525          *
1526          *  @since 16
1527          */
1528         public static final int ORIGINAL = PACKAGE << 3;
1529 
1530         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL | ORIGINAL);
1531         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);   // with original access
1532         private static final int TRUSTED   = -1;
1533 
1534         /*
1535          * Adjust PUBLIC => PUBLIC|MODULE|ORIGINAL|UNCONDITIONAL
1536          * Adjust 0 => PACKAGE
1537          */
1538         private static int fixmods(int mods) {
1539             mods &= (ALL_MODES - PACKAGE - MODULE - ORIGINAL - UNCONDITIONAL);
1540             if (Modifier.isPublic(mods))
1541                 mods |= UNCONDITIONAL;
1542             return (mods != 0) ? mods : PACKAGE;
1543         }
1544 
1545         /** Tells which class is performing the lookup.  It is this class against
1546          *  which checks are performed for visibility and access permissions.
1547          *  <p>
1548          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1549          *  access checks are performed against both the lookup class and the previous lookup class.
1550          *  <p>
1551          *  The class implies a maximum level of access permission,
1552          *  but the permissions may be additionally limited by the bitmask
1553          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1554          *  can be accessed.
1555          *  @return the lookup class, on behalf of which this lookup object finds members
1556          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1557          */
1558         public Class<?> lookupClass() {
1559             return lookupClass;
1560         }
1561 
1562         /** Reports a lookup class in another module that this lookup object
1563          * was previously teleported from, or {@code null}.
1564          * <p>
1565          * A {@code Lookup} object produced by the factory methods, such as the
1566          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1567          * has {@code null} previous lookup class.
1568          * A {@code Lookup} object has a non-null previous lookup class
1569          * when this lookup was teleported from an old lookup class
1570          * in one module to a new lookup class in another module.
1571          *
1572          * @return the lookup class in another module that this lookup object was
1573          *         previously teleported from, or {@code null}
1574          * @since 14
1575          * @see #in(Class)
1576          * @see MethodHandles#privateLookupIn(Class, Lookup)
1577          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1578          */
1579         public Class<?> previousLookupClass() {
1580             return prevLookupClass;
1581         }
1582 
1583         // This is just for calling out to MethodHandleImpl.
1584         private Class<?> lookupClassOrNull() {
1585             return (allowedModes == TRUSTED) ? null : lookupClass;
1586         }
1587 
1588         /** Tells which access-protection classes of members this lookup object can produce.
1589          *  The result is a bit-mask of the bits
1590          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1591          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1592          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1593          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1594          *  {@linkplain #MODULE MODULE (0x10)},
1595          *  {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)},
1596          *  and {@linkplain #ORIGINAL ORIGINAL (0x40)}.
1597          *  <p>
1598          *  A freshly-created lookup object
1599          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1600          *  all possible bits set, except {@code UNCONDITIONAL}.
1601          *  A lookup object on a new lookup class
1602          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1603          *  may have some mode bits set to zero.
1604          *  Mode bits can also be
1605          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1606          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1607          *  The purpose of this is to restrict access via the new lookup object,
1608          *  so that it can access only names which can be reached by the original
1609          *  lookup object, and also by the new lookup class.
1610          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1611          *  @see #in
1612          *  @see #dropLookupMode
1613          */
1614         public int lookupModes() {
1615             return allowedModes & ALL_MODES;
1616         }
1617 
1618         /** Embody the current class (the lookupClass) as a lookup class
1619          * for method handle creation.
1620          * Must be called by from a method in this package,
1621          * which in turn is called by a method not in this package.
1622          */
1623         Lookup(Class<?> lookupClass) {
1624             this(lookupClass, null, FULL_POWER_MODES);
1625         }
1626 
1627         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1628             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1629                     && prevLookupClass.getModule() != lookupClass.getModule());
1630             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1631             this.lookupClass = lookupClass;
1632             this.prevLookupClass = prevLookupClass;
1633             this.allowedModes = allowedModes;
1634         }
1635 
1636         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1637             // make sure we haven't accidentally picked up a privileged class:
1638             checkUnprivilegedlookupClass(lookupClass);
1639             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1640         }
1641 
1642         /**
1643          * Creates a lookup on the specified new lookup class.
1644          * The resulting object will report the specified
1645          * class as its own {@link #lookupClass() lookupClass}.
1646          *
1647          * <p>
1648          * However, the resulting {@code Lookup} object is guaranteed
1649          * to have no more access capabilities than the original.
1650          * In particular, access capabilities can be lost as follows:<ul>
1651          * <li>If the new lookup class is different from the old lookup class,
1652          * i.e. {@link #ORIGINAL ORIGINAL} access is lost.
1653          * <li>If the new lookup class is in a different module from the old one,
1654          * i.e. {@link #MODULE MODULE} access is lost.
1655          * <li>If the new lookup class is in a different package
1656          * than the old one, protected and default (package) members will not be accessible,
1657          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1658          * <li>If the new lookup class is not within the same package member
1659          * as the old one, private members will not be accessible, and protected members
1660          * will not be accessible by virtue of inheritance,
1661          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1662          * (Protected members may continue to be accessible because of package sharing.)
1663          * <li>If the new lookup class is not
1664          * {@linkplain #accessClass(Class) accessible} to this lookup,
1665          * then no members, not even public members, will be accessible
1666          * i.e. all access modes are lost.
1667          * <li>If the new lookup class, the old lookup class and the previous lookup class
1668          * are all in different modules i.e. teleporting to a third module,
1669          * all access modes are lost.
1670          * </ul>
1671          * <p>
1672          * The new previous lookup class is chosen as follows:
1673          * <ul>
1674          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1675          * the new previous lookup class is {@code null}.
1676          * <li>If the new lookup class is in the same module as the old lookup class,
1677          * the new previous lookup class is the old previous lookup class.
1678          * <li>If the new lookup class is in a different module from the old lookup class,
1679          * the new previous lookup class is the old lookup class.
1680          *</ul>
1681          * <p>
1682          * The resulting lookup's capabilities for loading classes
1683          * (used during {@link #findClass} invocations)
1684          * are determined by the lookup class' loader,
1685          * which may change due to this operation.
1686          *
1687          * @param requestedLookupClass the desired lookup class for the new lookup object
1688          * @return a lookup object which reports the desired lookup class, or the same object
1689          * if there is no change
1690          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1691          * @throws NullPointerException if the argument is null
1692          *
1693          * @see #accessClass(Class)
1694          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1695          */
1696         public Lookup in(Class<?> requestedLookupClass) {
1697             Objects.requireNonNull(requestedLookupClass);
1698             if (requestedLookupClass.isPrimitive())
1699                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1700             if (requestedLookupClass.isArray())
1701                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1702 
1703             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1704                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1705             if (requestedLookupClass == this.lookupClass)
1706                 return this;  // keep same capabilities
1707             int newModes = (allowedModes & FULL_POWER_MODES) & ~ORIGINAL;
1708             Module fromModule = this.lookupClass.getModule();
1709             Module targetModule = requestedLookupClass.getModule();
1710             Class<?> plc = this.previousLookupClass();
1711             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1712                 assert plc == null;
1713                 newModes = UNCONDITIONAL;
1714             } else if (fromModule != targetModule) {
1715                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1716                     // allow hopping back and forth between fromModule and plc's module
1717                     // but not the third module
1718                     newModes = 0;
1719                 }
1720                 // drop MODULE access
1721                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1722                 // teleport from this lookup class
1723                 plc = this.lookupClass;
1724             }
1725             if ((newModes & PACKAGE) != 0
1726                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1727                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1728             }
1729             // Allow nestmate lookups to be created without special privilege:
1730             if ((newModes & PRIVATE) != 0
1731                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1732                 newModes &= ~(PRIVATE|PROTECTED);
1733             }
1734             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1735                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1736                 // The requested class it not accessible from the lookup class.
1737                 // No permissions.
1738                 newModes = 0;
1739             }
1740             return newLookup(requestedLookupClass, plc, newModes);
1741         }
1742 
1743         /**
1744          * Creates a lookup on the same lookup class which this lookup object
1745          * finds members, but with a lookup mode that has lost the given lookup mode.
1746          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1747          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED},
1748          * {@link #PRIVATE PRIVATE}, {@link #ORIGINAL ORIGINAL}, or
1749          * {@link #UNCONDITIONAL UNCONDITIONAL}.
1750          *
1751          * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup},
1752          * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set.
1753          * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting
1754          * lookup has no access.
1755          *
1756          * <p> If this lookup is not a public lookup, then the following applies
1757          * regardless of its {@linkplain #lookupModes() lookup modes}.
1758          * {@link #PROTECTED PROTECTED} and {@link #ORIGINAL ORIGINAL} are always
1759          * dropped and so the resulting lookup mode will never have these access
1760          * capabilities. When dropping {@code PACKAGE}
1761          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
1762          * access. When dropping {@code MODULE} then the resulting lookup will not
1763          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access.
1764          * When dropping {@code PUBLIC} then the resulting lookup has no access.
1765          *
1766          * @apiNote
1767          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1768          * delegate non-public access within the package of the lookup class without
1769          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1770          * A lookup with {@code MODULE} but not
1771          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1772          * the module of the lookup class without conferring package access.
1773          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1774          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1775          * to public classes accessible to both the module of the lookup class
1776          * and the module of the previous lookup class.
1777          *
1778          * @param modeToDrop the lookup mode to drop
1779          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1780          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1781          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE}, {@code ORIGINAL}
1782          * or {@code UNCONDITIONAL}
1783          * @see MethodHandles#privateLookupIn
1784          * @since 9
1785          */
1786         public Lookup dropLookupMode(int modeToDrop) {
1787             int oldModes = lookupModes();
1788             int newModes = oldModes & ~(modeToDrop | PROTECTED | ORIGINAL);
1789             switch (modeToDrop) {
1790                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1791                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1792                 case PACKAGE: newModes &= ~(PRIVATE); break;
1793                 case PROTECTED:
1794                 case PRIVATE:
1795                 case ORIGINAL:
1796                 case UNCONDITIONAL: break;
1797                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1798             }
1799             if (newModes == oldModes) return this;  // return self if no change
1800             return newLookup(lookupClass(), previousLookupClass(), newModes);
1801         }
1802 
1803         /**
1804          * Creates and links a class or interface from {@code bytes}
1805          * with the same class loader and in the same runtime package and
1806          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1807          * {@linkplain #lookupClass() lookup class} as if calling
1808          * {@link ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1809          * ClassLoader::defineClass}.
1810          *
1811          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1812          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1813          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1814          * that the lookup object was created by a caller in the runtime package (or derived
1815          * from a lookup originally created by suitably privileged code to a target class in
1816          * the runtime package). </p>
1817          *
1818          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1819          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1820          * same package as the lookup class. </p>
1821          *
1822          * <p> This method does not run the class initializer. The class initializer may
1823          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1824          * Specification</em>. </p>
1825          *
1826          * <p> If there is a security manager and this lookup does not have {@linkplain
1827          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1828          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1829          *
1830          * @param bytes the class bytes
1831          * @return the {@code Class} object for the class
1832          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1833          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1834          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1835          * than the lookup class or {@code bytes} is not a class or interface
1836          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1837          * @throws VerifyError if the newly created class cannot be verified
1838          * @throws LinkageError if the newly created class cannot be linked for any other reason
1839          * @throws SecurityException if a security manager is present and it
1840          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1841          * @throws NullPointerException if {@code bytes} is {@code null}
1842          * @since 9
1843          * @see MethodHandles#privateLookupIn
1844          * @see Lookup#dropLookupMode
1845          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1846          */
1847         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1848             ensureDefineClassPermission();
1849             if ((lookupModes() & PACKAGE) == 0)
1850                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1851             return makeClassDefiner(bytes.clone()).defineClass(false);
1852         }
1853 
1854         private void ensureDefineClassPermission() {
1855             if (allowedModes == TRUSTED)  return;
1856 
1857             if (!hasFullPrivilegeAccess()) {
1858                 @SuppressWarnings("removal")
1859                 SecurityManager sm = System.getSecurityManager();
1860                 if (sm != null)
1861                     sm.checkPermission(new RuntimePermission("defineClass"));
1862             }
1863         }
1864 
1865         /**
1866          * The set of class options that specify whether a hidden class created by
1867          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
1868          * Lookup::defineHiddenClass} method is dynamically added as a new member
1869          * to the nest of a lookup class and/or whether a hidden class has
1870          * a strong relationship with the class loader marked as its defining loader.
1871          *
1872          * @since 15
1873          */
1874         public enum ClassOption {
1875             /**
1876              * Specifies that a hidden class be added to {@linkplain Class#getNestHost nest}
1877              * of a lookup class as a nestmate.
1878              *
1879              * <p> A hidden nestmate class has access to the private members of all
1880              * classes and interfaces in the same nest.
1881              *
1882              * @see Class#getNestHost()
1883              */
1884             NESTMATE(NESTMATE_CLASS),
1885 
1886             /**
1887              * Specifies that a hidden class has a <em>strong</em>
1888              * relationship with the class loader marked as its defining loader,
1889              * as a normal class or interface has with its own defining loader.
1890              * This means that the hidden class may be unloaded if and only if
1891              * its defining loader is not reachable and thus may be reclaimed
1892              * by a garbage collector (JLS {@jls 12.7}).
1893              *
1894              * <p> By default, a hidden class or interface may be unloaded
1895              * even if the class loader that is marked as its defining loader is
1896              * <a href="../ref/package-summary.html#reachability">reachable</a>.
1897 
1898              *
1899              * @jls 12.7 Unloading of Classes and Interfaces
1900              */
1901             STRONG(STRONG_LOADER_LINK);
1902 
1903             /* the flag value is used by VM at define class time */
1904             private final int flag;
1905             ClassOption(int flag) {
1906                 this.flag = flag;
1907             }
1908 
1909             static int optionsToFlag(Set<ClassOption> options) {
1910                 int flags = 0;
1911                 for (ClassOption cp : options) {
1912                     flags |= cp.flag;
1913                 }
1914                 return flags;
1915             }
1916         }
1917 
1918         /**
1919          * Creates a <em>hidden</em> class or interface from {@code bytes},
1920          * returning a {@code Lookup} on the newly created class or interface.
1921          *
1922          * <p> Ordinarily, a class or interface {@code C} is created by a class loader,
1923          * which either defines {@code C} directly or delegates to another class loader.
1924          * A class loader defines {@code C} directly by invoking
1925          * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1926          * ClassLoader::defineClass}, which causes the Java Virtual Machine
1927          * to derive {@code C} from a purported representation in {@code class} file format.
1928          * In situations where use of a class loader is undesirable, a class or interface
1929          * {@code C} can be created by this method instead. This method is capable of
1930          * defining {@code C}, and thereby creating it, without invoking
1931          * {@code ClassLoader::defineClass}.
1932          * Instead, this method defines {@code C} as if by arranging for
1933          * the Java Virtual Machine to derive a nonarray class or interface {@code C}
1934          * from a purported representation in {@code class} file format
1935          * using the following rules:
1936          *
1937          * <ol>
1938          * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup}
1939          * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access.
1940          * This level of access is needed to create {@code C} in the module
1941          * of the lookup class of this {@code Lookup}.</li>
1942          *
1943          * <li> The purported representation in {@code bytes} must be a {@code ClassFile}
1944          * structure (JVMS {@jvms 4.1}) of a supported major and minor version.
1945          * The major and minor version may differ from the {@code class} file version
1946          * of the lookup class of this {@code Lookup}.</li>
1947          *
1948          * <li> The value of {@code this_class} must be a valid index in the
1949          * {@code constant_pool} table, and the entry at that index must be a valid
1950          * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name
1951          * encoded in internal form that is specified by this structure. {@code N} must
1952          * denote a class or interface in the same package as the lookup class.</li>
1953          *
1954          * <li> Let {@code CN} be the string {@code N + "." + <suffix>},
1955          * where {@code <suffix>} is an unqualified name.
1956          *
1957          * <p> Let {@code newBytes} be the {@code ClassFile} structure given by
1958          * {@code bytes} with an additional entry in the {@code constant_pool} table,
1959          * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and
1960          * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class}
1961          * refers to the new {@code CONSTANT_Utf8_info} structure.
1962          *
1963          * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}.
1964          *
1965          * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and
1966          * purported representation {@code newBytes} as if by the rules of JVMS {@jvms 5.3.5},
1967          * with the following adjustments:
1968          * <ul>
1969          * <li> The constant indicated by {@code this_class} is permitted to specify a name
1970          * that includes a single {@code "."} character, even though this is not a valid
1971          * binary class or interface name in internal form.</li>
1972          *
1973          * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C},
1974          * but no class loader is recorded as an initiating class loader of {@code C}.</li>
1975          *
1976          * <li> {@code C} is considered to have the same runtime
1977          * {@linkplain Class#getPackage() package}, {@linkplain Class#getModule() module}
1978          * and {@linkplain java.security.ProtectionDomain protection domain}
1979          * as the lookup class of this {@code Lookup}.
1980          * <li> Let {@code GN} be the binary name obtained by taking {@code N}
1981          * (a binary name encoded in internal form) and replacing ASCII forward slashes with
1982          * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C}:
1983          * <ul>
1984          * <li> {@link Class#getName()} returns the string {@code GN + "/" + <suffix>},
1985          *      even though this is not a valid binary class or interface name.</li>
1986          * <li> {@link Class#descriptorString()} returns the string
1987          *      {@code "L" + N + "." + <suffix> + ";"},
1988          *      even though this is not a valid type descriptor name.</li>
1989          * <li> {@link Class#describeConstable()} returns an empty optional as {@code C}
1990          *      cannot be described in {@linkplain java.lang.constant.ClassDesc nominal form}.</li>
1991          * </ul>
1992          * </ul>
1993          * </li>
1994          * </ol>
1995          *
1996          * <p> After {@code C} is derived, it is linked by the Java Virtual Machine.
1997          * Linkage occurs as specified in JVMS {@jvms 5.4.3}, with the following adjustments:
1998          * <ul>
1999          * <li> During verification, whenever it is necessary to load the class named
2000          * {@code CN}, the attempt succeeds, producing class {@code C}. No request is
2001          * made of any class loader.</li>
2002          *
2003          * <li> On any attempt to resolve the entry in the run-time constant pool indicated
2004          * by {@code this_class}, the symbolic reference is considered to be resolved to
2005          * {@code C} and resolution always succeeds immediately.</li>
2006          * </ul>
2007          *
2008          * <p> If the {@code initialize} parameter is {@code true},
2009          * then {@code C} is initialized by the Java Virtual Machine.
2010          *
2011          * <p> The newly created class or interface {@code C} serves as the
2012          * {@linkplain #lookupClass() lookup class} of the {@code Lookup} object
2013          * returned by this method. {@code C} is <em>hidden</em> in the sense that
2014          * no other class or interface can refer to {@code C} via a constant pool entry.
2015          * That is, a hidden class or interface cannot be named as a supertype, a field type,
2016          * a method parameter type, or a method return type by any other class.
2017          * This is because a hidden class or interface does not have a binary name, so
2018          * there is no internal form available to record in any class's constant pool.
2019          * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)},
2020          * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and
2021          * is not {@linkplain java.instrument/java.lang.instrument.Instrumentation#isModifiableClass(Class)
2022          * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html">
2023          * JVM Tool Interface</a>.
2024          *
2025          * <p> A class or interface created by
2026          * {@linkplain ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
2027          * a class loader} has a strong relationship with that class loader.
2028          * That is, every {@code Class} object contains a reference to the {@code ClassLoader}
2029          * that {@linkplain Class#getClassLoader() defined it}.
2030          * This means that a class created by a class loader may be unloaded if and
2031          * only if its defining loader is not reachable and thus may be reclaimed
2032          * by a garbage collector (JLS {@jls 12.7}).
2033          *
2034          * By default, however, a hidden class or interface may be unloaded even if
2035          * the class loader that is marked as its defining loader is
2036          * <a href="../ref/package-summary.html#reachability">reachable</a>.
2037          * This behavior is useful when a hidden class or interface serves multiple
2038          * classes defined by arbitrary class loaders.  In other cases, a hidden
2039          * class or interface may be linked to a single class (or a small number of classes)
2040          * with the same defining loader as the hidden class or interface.
2041          * In such cases, where the hidden class or interface must be coterminous
2042          * with a normal class or interface, the {@link ClassOption#STRONG STRONG}
2043          * option may be passed in {@code options}.
2044          * This arranges for a hidden class to have the same strong relationship
2045          * with the class loader marked as its defining loader,
2046          * as a normal class or interface has with its own defining loader.
2047          *
2048          * If {@code STRONG} is not used, then the invoker of {@code defineHiddenClass}
2049          * may still prevent a hidden class or interface from being
2050          * unloaded by ensuring that the {@code Class} object is reachable.
2051          *
2052          * <p> The unloading characteristics are set for each hidden class when it is
2053          * defined, and cannot be changed later.  An advantage of allowing hidden classes
2054          * to be unloaded independently of the class loader marked as their defining loader
2055          * is that a very large number of hidden classes may be created by an application.
2056          * In contrast, if {@code STRONG} is used, then the JVM may run out of memory,
2057          * just as if normal classes were created by class loaders.
2058          *
2059          * <p> Classes and interfaces in a nest are allowed to have mutual access to
2060          * their private members.  The nest relationship is determined by
2061          * the {@code NestHost} attribute (JVMS {@jvms 4.7.28}) and
2062          * the {@code NestMembers} attribute (JVMS {@jvms 4.7.29}) in a {@code class} file.
2063          * By default, a hidden class belongs to a nest consisting only of itself
2064          * because a hidden class has no binary name.
2065          * The {@link ClassOption#NESTMATE NESTMATE} option can be passed in {@code options}
2066          * to create a hidden class or interface {@code C} as a member of a nest.
2067          * The nest to which {@code C} belongs is not based on any {@code NestHost} attribute
2068          * in the {@code ClassFile} structure from which {@code C} was derived.
2069          * Instead, the following rules determine the nest host of {@code C}:
2070          * <ul>
2071          * <li>If the nest host of the lookup class of this {@code Lookup} has previously
2072          *     been determined, then let {@code H} be the nest host of the lookup class.
2073          *     Otherwise, the nest host of the lookup class is determined using the
2074          *     algorithm in JVMS {@jvms 5.4.4}, yielding {@code H}.</li>
2075          * <li>The nest host of {@code C} is determined to be {@code H},
2076          *     the nest host of the lookup class.</li>
2077          * </ul>
2078          *
2079          * <p> A hidden class or interface may be serializable, but this requires a custom
2080          * serialization mechanism in order to ensure that instances are properly serialized
2081          * and deserialized. The default serialization mechanism supports only classes and
2082          * interfaces that are discoverable by their class name.
2083          *
2084          * @param bytes the bytes that make up the class data,
2085          * in the format of a valid {@code class} file as defined by
2086          * <cite>The Java Virtual Machine Specification</cite>.
2087          * @param initialize if {@code true} the class will be initialized.
2088          * @param options {@linkplain ClassOption class options}
2089          * @return the {@code Lookup} object on the hidden class,
2090          * with {@linkplain #ORIGINAL original} and
2091          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
2092          *
2093          * @throws IllegalAccessException if this {@code Lookup} does not have
2094          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
2095          * @throws SecurityException if a security manager is present and it
2096          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2097          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
2098          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
2099          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
2100          * than the lookup class or {@code bytes} is not a class or interface
2101          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
2102          * @throws IncompatibleClassChangeError if the class or interface named as
2103          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
2104          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2105          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2106          * {@code C} is {@code C} itself
2107          * @throws VerifyError if the newly created class cannot be verified
2108          * @throws LinkageError if the newly created class cannot be linked for any other reason
2109          * @throws NullPointerException if any parameter is {@code null}
2110          *
2111          * @since 15
2112          * @see Class#isHidden()
2113          * @jvms 4.2.1 Binary Class and Interface Names
2114          * @jvms 4.2.2 Unqualified Names
2115          * @jvms 4.7.28 The {@code NestHost} Attribute
2116          * @jvms 4.7.29 The {@code NestMembers} Attribute
2117          * @jvms 5.4.3.1 Class and Interface Resolution
2118          * @jvms 5.4.4 Access Control
2119          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2120          * @jvms 5.4 Linking
2121          * @jvms 5.5 Initialization
2122          * @jls 12.7 Unloading of Classes and Interfaces
2123          */
2124         @SuppressWarnings("doclint:reference") // cross-module links
2125         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
2126                 throws IllegalAccessException
2127         {
2128             Objects.requireNonNull(bytes);
2129             Objects.requireNonNull(options);
2130 
2131             ensureDefineClassPermission();
2132             if (!hasFullPrivilegeAccess()) {
2133                 throw new IllegalAccessException(this + " does not have full privilege access");
2134             }
2135 
2136             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false).defineClassAsLookup(initialize);
2137         }
2138 
2139         /**
2140          * Creates a <em>hidden</em> class or interface from {@code bytes} with associated
2141          * {@linkplain MethodHandles#classData(Lookup, String, Class) class data},
2142          * returning a {@code Lookup} on the newly created class or interface.
2143          *
2144          * <p> This method is equivalent to calling
2145          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)}
2146          * as if the hidden class is injected with a private static final <i>unnamed</i>
2147          * field which is initialized with the given {@code classData} at
2148          * the first instruction of the class initializer.
2149          * The newly created class is linked by the Java Virtual Machine.
2150          *
2151          * <p> The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData}
2152          * and {@link MethodHandles#classDataAt(Lookup, String, Class, int) MethodHandles::classDataAt}
2153          * methods can be used to retrieve the {@code classData}.
2154          *
2155          * @apiNote
2156          * A framework can create a hidden class with class data with one or more
2157          * objects and load the class data as dynamically-computed constant(s)
2158          * via a bootstrap method.  {@link MethodHandles#classData(Lookup, String, Class)
2159          * Class data} is accessible only to the lookup object created by the newly
2160          * defined hidden class but inaccessible to other members in the same nest
2161          * (unlike private static fields that are accessible to nestmates).
2162          * Care should be taken w.r.t. mutability for example when passing
2163          * an array or other mutable structure through the class data.
2164          * Changing any value stored in the class data at runtime may lead to
2165          * unpredictable behavior.
2166          * If the class data is a {@code List}, it is good practice to make it
2167          * unmodifiable for example via {@link List#of List::of}.
2168          *
2169          * @param bytes     the class bytes
2170          * @param classData pre-initialized class data
2171          * @param initialize if {@code true} the class will be initialized.
2172          * @param options   {@linkplain ClassOption class options}
2173          * @return the {@code Lookup} object on the hidden class,
2174          * with {@linkplain #ORIGINAL original} and
2175          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
2176          *
2177          * @throws IllegalAccessException if this {@code Lookup} does not have
2178          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
2179          * @throws SecurityException if a security manager is present and it
2180          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2181          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
2182          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
2183          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
2184          * than the lookup class or {@code bytes} is not a class or interface
2185          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
2186          * @throws IncompatibleClassChangeError if the class or interface named as
2187          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
2188          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2189          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2190          * {@code C} is {@code C} itself
2191          * @throws VerifyError if the newly created class cannot be verified
2192          * @throws LinkageError if the newly created class cannot be linked for any other reason
2193          * @throws NullPointerException if any parameter is {@code null}
2194          *
2195          * @since 16
2196          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
2197          * @see Class#isHidden()
2198          * @see MethodHandles#classData(Lookup, String, Class)
2199          * @see MethodHandles#classDataAt(Lookup, String, Class, int)
2200          * @jvms 4.2.1 Binary Class and Interface Names
2201          * @jvms 4.2.2 Unqualified Names
2202          * @jvms 4.7.28 The {@code NestHost} Attribute
2203          * @jvms 4.7.29 The {@code NestMembers} Attribute
2204          * @jvms 5.4.3.1 Class and Interface Resolution
2205          * @jvms 5.4.4 Access Control
2206          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2207          * @jvms 5.4 Linking
2208          * @jvms 5.5 Initialization
2209          * @jls 12.7 Unloading of Classes and Interface
2210          */
2211         public Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options)
2212                 throws IllegalAccessException
2213         {
2214             Objects.requireNonNull(bytes);
2215             Objects.requireNonNull(classData);
2216             Objects.requireNonNull(options);
2217 
2218             ensureDefineClassPermission();
2219             if (!hasFullPrivilegeAccess()) {
2220                 throw new IllegalAccessException(this + " does not have full privilege access");
2221             }
2222 
2223             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false)
2224                        .defineClassAsLookup(initialize, classData);
2225         }
2226 
2227         // A default dumper for writing class files passed to Lookup::defineClass
2228         // and Lookup::defineHiddenClass to disk for debugging purposes.  To enable,
2229         // set -Djdk.invoke.MethodHandle.dumpHiddenClassFiles or
2230         //     -Djdk.invoke.MethodHandle.dumpHiddenClassFiles=true
2231         //
2232         // This default dumper does not dump hidden classes defined by LambdaMetafactory
2233         // and LambdaForms and method handle internals.  They are dumped via
2234         // different ClassFileDumpers.
2235         private static ClassFileDumper defaultDumper() {
2236             return DEFAULT_DUMPER;
2237         }
2238 
2239         private static final ClassFileDumper DEFAULT_DUMPER = ClassFileDumper.getInstance(
2240                 "jdk.invoke.MethodHandle.dumpClassFiles", "DUMP_CLASS_FILES");
2241 
2242         static class ClassFile {
2243             final String name;  // internal name
2244             final int accessFlags;
2245             final byte[] bytes;
2246             ClassFile(String name, int accessFlags, byte[] bytes) {
2247                 this.name = name;
2248                 this.accessFlags = accessFlags;
2249                 this.bytes = bytes;
2250             }
2251 
2252             static ClassFile newInstanceNoCheck(String name, byte[] bytes) {
2253                 return new ClassFile(name, 0, bytes);
2254             }
2255 
2256             /**
2257              * This method checks the class file version and the structure of `this_class`.
2258              * and checks if the bytes is a class or interface (ACC_MODULE flag not set)
2259              * that is in the named package.
2260              *
2261              * @throws IllegalArgumentException if ACC_MODULE flag is set in access flags
2262              * or the class is not in the given package name.
2263              */
2264             static ClassFile newInstance(byte[] bytes, String pkgName) {
2265                 var cf = readClassFile(bytes);
2266 
2267                 // check if it's in the named package
2268                 int index = cf.name.lastIndexOf('/');
2269                 String pn = (index == -1) ? "" : cf.name.substring(0, index).replace('/', '.');
2270                 if (!pn.equals(pkgName)) {
2271                     throw newIllegalArgumentException(cf.name + " not in same package as lookup class");
2272                 }
2273                 return cf;
2274             }
2275 
2276             private static ClassFile readClassFile(byte[] bytes) {
2277                 int magic = readInt(bytes, 0);
2278                 if (magic != 0xCAFEBABE) {
2279                     throw new ClassFormatError("Incompatible magic value: " + magic);
2280                 }
2281                 int minor = readUnsignedShort(bytes, 4);
2282                 int major = readUnsignedShort(bytes, 6);
2283                 if (!VM.isSupportedClassFileVersion(major, minor)) {
2284                     throw new UnsupportedClassVersionError("Unsupported class file version " + major + "." + minor);
2285                 }
2286 
2287                 String name;
2288                 int accessFlags;
2289                 try {
2290                     ClassModel cm = java.lang.classfile.ClassFile.of().parse(bytes);
2291                     name = cm.thisClass().asInternalName();
2292                     accessFlags = cm.flags().flagsMask();
2293                 } catch (IllegalArgumentException e) {
2294                     ClassFormatError cfe = new ClassFormatError();
2295                     cfe.initCause(e);
2296                     throw cfe;
2297                 }
2298                 // must be a class or interface
2299                 if ((accessFlags & ACC_MODULE) != 0) {
2300                     throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set");
2301                 }
2302                 return new ClassFile(name, accessFlags, bytes);
2303             }
2304 
2305             private static int readInt(byte[] bytes, int offset) {
2306                 if ((offset+4) > bytes.length) {
2307                     throw new ClassFormatError("Invalid ClassFile structure");
2308                 }
2309                 return ((bytes[offset] & 0xFF) << 24)
2310                         | ((bytes[offset + 1] & 0xFF) << 16)
2311                         | ((bytes[offset + 2] & 0xFF) << 8)
2312                         | (bytes[offset + 3] & 0xFF);
2313             }
2314 
2315             private static int readUnsignedShort(byte[] bytes, int offset) {
2316                 if ((offset+2) > bytes.length) {
2317                     throw new ClassFormatError("Invalid ClassFile structure");
2318                 }
2319                 return ((bytes[offset] & 0xFF) << 8) | (bytes[offset + 1] & 0xFF);
2320             }
2321         }
2322 
2323         /*
2324          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2325          * from the given bytes.
2326          *
2327          * Caller should make a defensive copy of the arguments if needed
2328          * before calling this factory method.
2329          *
2330          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2331          * {@code bytes} denotes a class in a different package than the lookup class
2332          */
2333         private ClassDefiner makeClassDefiner(byte[] bytes) {
2334             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2335             return new ClassDefiner(this, cf, STRONG_LOADER_LINK, defaultDumper());
2336         }
2337 
2338         /**
2339          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2340          * from the given bytes.  No package name check on the given bytes.
2341          *
2342          * @param name    internal name
2343          * @param bytes   class bytes
2344          * @param dumper  dumper to write the given bytes to the dumper's output directory
2345          * @return ClassDefiner that defines a normal class of the given bytes.
2346          */
2347         ClassDefiner makeClassDefiner(String name, byte[] bytes, ClassFileDumper dumper) {
2348             // skip package name validation
2349             ClassFile cf = ClassFile.newInstanceNoCheck(name, bytes);
2350             return new ClassDefiner(this, cf, STRONG_LOADER_LINK, dumper);
2351         }
2352 
2353         /**
2354          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2355          * from the given bytes.  The name must be in the same package as the lookup class.
2356          *
2357          * Caller should make a defensive copy of the arguments if needed
2358          * before calling this factory method.
2359          *
2360          * @param bytes   class bytes
2361          * @param dumper dumper to write the given bytes to the dumper's output directory
2362          * @return ClassDefiner that defines a hidden class of the given bytes.
2363          *
2364          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2365          * {@code bytes} denotes a class in a different package than the lookup class
2366          */
2367         ClassDefiner makeHiddenClassDefiner(byte[] bytes, ClassFileDumper dumper) {
2368             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2369             return makeHiddenClassDefiner(cf, Set.of(), false, dumper);
2370         }
2371 
2372         /**
2373          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2374          * from the given bytes and options.
2375          * The name must be in the same package as the lookup class.
2376          *
2377          * Caller should make a defensive copy of the arguments if needed
2378          * before calling this factory method.
2379          *
2380          * @param bytes   class bytes
2381          * @param options class options
2382          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2383          * @return ClassDefiner that defines a hidden class of the given bytes and options
2384          *
2385          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2386          * {@code bytes} denotes a class in a different package than the lookup class
2387          */
2388         private ClassDefiner makeHiddenClassDefiner(byte[] bytes,
2389                                                     Set<ClassOption> options,
2390                                                     boolean accessVmAnnotations) {
2391             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2392             return makeHiddenClassDefiner(cf, options, accessVmAnnotations, defaultDumper());
2393         }
2394 
2395         /**
2396          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2397          * from the given bytes and the given options.  No package name check on the given bytes.
2398          *
2399          * @param name    internal name that specifies the prefix of the hidden class
2400          * @param bytes   class bytes
2401          * @param options class options
2402          * @param dumper  dumper to write the given bytes to the dumper's output directory
2403          * @return ClassDefiner that defines a hidden class of the given bytes and options.
2404          */
2405         ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes, Set<ClassOption> options, ClassFileDumper dumper) {
2406             Objects.requireNonNull(dumper);
2407             // skip name and access flags validation
2408             return makeHiddenClassDefiner(ClassFile.newInstanceNoCheck(name, bytes), options, false, dumper);
2409         }
2410 
2411         /**
2412          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2413          * from the given class file and options.
2414          *
2415          * @param cf ClassFile
2416          * @param options class options
2417          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2418          * @param dumper dumper to write the given bytes to the dumper's output directory
2419          */
2420         private ClassDefiner makeHiddenClassDefiner(ClassFile cf,
2421                                                     Set<ClassOption> options,
2422                                                     boolean accessVmAnnotations,
2423                                                     ClassFileDumper dumper) {
2424             int flags = HIDDEN_CLASS | ClassOption.optionsToFlag(options);
2425             if (accessVmAnnotations | VM.isSystemDomainLoader(lookupClass.getClassLoader())) {
2426                 // jdk.internal.vm.annotations are permitted for classes
2427                 // defined to boot loader and platform loader
2428                 flags |= ACCESS_VM_ANNOTATIONS;
2429             }
2430 
2431             return new ClassDefiner(this, cf, flags, dumper);
2432         }
2433 
2434         static class ClassDefiner {
2435             private final Lookup lookup;
2436             private final String name;  // internal name
2437             private final byte[] bytes;
2438             private final int classFlags;
2439             private final ClassFileDumper dumper;
2440 
2441             private ClassDefiner(Lookup lookup, ClassFile cf, int flags, ClassFileDumper dumper) {
2442                 assert ((flags & HIDDEN_CLASS) != 0 || (flags & STRONG_LOADER_LINK) == STRONG_LOADER_LINK);
2443                 this.lookup = lookup;
2444                 this.bytes = cf.bytes;
2445                 this.name = cf.name;
2446                 this.classFlags = flags;
2447                 this.dumper = dumper;
2448             }
2449 
2450             String internalName() {
2451                 return name;
2452             }
2453 
2454             Class<?> defineClass(boolean initialize) {
2455                 return defineClass(initialize, null);
2456             }
2457 
2458             Lookup defineClassAsLookup(boolean initialize) {
2459                 Class<?> c = defineClass(initialize, null);
2460                 return new Lookup(c, null, FULL_POWER_MODES);
2461             }
2462 
2463             /**
2464              * Defines the class of the given bytes and the given classData.
2465              * If {@code initialize} parameter is true, then the class will be initialized.
2466              *
2467              * @param initialize true if the class to be initialized
2468              * @param classData classData or null
2469              * @return the class
2470              *
2471              * @throws LinkageError linkage error
2472              */
2473             Class<?> defineClass(boolean initialize, Object classData) {
2474                 Class<?> lookupClass = lookup.lookupClass();
2475                 ClassLoader loader = lookupClass.getClassLoader();
2476                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
2477                 Class<?> c = null;
2478                 try {
2479                     c = SharedSecrets.getJavaLangAccess()
2480                             .defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData);
2481                     assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
2482                     return c;
2483                 } finally {
2484                     // dump the classfile for debugging
2485                     if (dumper.isEnabled()) {
2486                         String name = internalName();
2487                         if (c != null) {
2488                             dumper.dumpClass(name, c, bytes);
2489                         } else {
2490                             dumper.dumpFailedClass(name, bytes);
2491                         }
2492                     }
2493                 }
2494             }
2495 
2496             /**
2497              * Defines the class of the given bytes and the given classData.
2498              * If {@code initialize} parameter is true, then the class will be initialized.
2499              *
2500              * @param initialize true if the class to be initialized
2501              * @param classData classData or null
2502              * @return a Lookup for the defined class
2503              *
2504              * @throws LinkageError linkage error
2505              */
2506             Lookup defineClassAsLookup(boolean initialize, Object classData) {
2507                 Class<?> c = defineClass(initialize, classData);
2508                 return new Lookup(c, null, FULL_POWER_MODES);
2509             }
2510 
2511             private boolean isNestmate() {
2512                 return (classFlags & NESTMATE_CLASS) != 0;
2513             }
2514         }
2515 
2516         private ProtectionDomain lookupClassProtectionDomain() {
2517             ProtectionDomain pd = cachedProtectionDomain;
2518             if (pd == null) {
2519                 cachedProtectionDomain = pd = SharedSecrets.getJavaLangAccess().protectionDomain(lookupClass);
2520             }
2521             return pd;
2522         }
2523 
2524         // cached protection domain
2525         private volatile ProtectionDomain cachedProtectionDomain;
2526 
2527         // Make sure outer class is initialized first.
2528         static { IMPL_NAMES.getClass(); }
2529 
2530         /** Package-private version of lookup which is trusted. */
2531         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
2532 
2533         /** Version of lookup which is trusted minimally.
2534          *  It can only be used to create method handles to publicly accessible
2535          *  members in packages that are exported unconditionally.
2536          */
2537         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
2538 
2539         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
2540             String name = lookupClass.getName();
2541             if (name.startsWith("java.lang.invoke."))
2542                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
2543         }
2544 
2545         /**
2546          * Displays the name of the class from which lookups are to be made,
2547          * followed by "/" and the name of the {@linkplain #previousLookupClass()
2548          * previous lookup class} if present.
2549          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
2550          * If there are restrictions on the access permitted to this lookup,
2551          * this is indicated by adding a suffix to the class name, consisting
2552          * of a slash and a keyword.  The keyword represents the strongest
2553          * allowed access, and is chosen as follows:
2554          * <ul>
2555          * <li>If no access is allowed, the suffix is "/noaccess".
2556          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
2557          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
2558          * <li>If only public and module access are allowed, the suffix is "/module".
2559          * <li>If public and package access are allowed, the suffix is "/package".
2560          * <li>If public, package, and private access are allowed, the suffix is "/private".
2561          * </ul>
2562          * If none of the above cases apply, it is the case that
2563          * {@linkplain #hasFullPrivilegeAccess() full privilege access}
2564          * (public, module, package, private, and protected) is allowed.
2565          * In this case, no suffix is added.
2566          * This is true only of an object obtained originally from
2567          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
2568          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
2569          * always have restricted access, and will display a suffix.
2570          * <p>
2571          * (It may seem strange that protected access should be
2572          * stronger than private access.  Viewed independently from
2573          * package access, protected access is the first to be lost,
2574          * because it requires a direct subclass relationship between
2575          * caller and callee.)
2576          * @see #in
2577          */
2578         @Override
2579         public String toString() {
2580             String cname = lookupClass.getName();
2581             if (prevLookupClass != null)
2582                 cname += "/" + prevLookupClass.getName();
2583             switch (allowedModes) {
2584             case 0:  // no privileges
2585                 return cname + "/noaccess";
2586             case UNCONDITIONAL:
2587                 return cname + "/publicLookup";
2588             case PUBLIC:
2589                 return cname + "/public";
2590             case PUBLIC|MODULE:
2591                 return cname + "/module";
2592             case PUBLIC|PACKAGE:
2593             case PUBLIC|MODULE|PACKAGE:
2594                 return cname + "/package";
2595             case PUBLIC|PACKAGE|PRIVATE:
2596             case PUBLIC|MODULE|PACKAGE|PRIVATE:
2597                     return cname + "/private";
2598             case PUBLIC|PACKAGE|PRIVATE|PROTECTED:
2599             case PUBLIC|MODULE|PACKAGE|PRIVATE|PROTECTED:
2600             case FULL_POWER_MODES:
2601                     return cname;
2602             case TRUSTED:
2603                 return "/trusted";  // internal only; not exported
2604             default:  // Should not happen, but it's a bitfield...
2605                 cname = cname + "/" + Integer.toHexString(allowedModes);
2606                 assert(false) : cname;
2607                 return cname;
2608             }
2609         }
2610 
2611         /**
2612          * Produces a method handle for a static method.
2613          * The type of the method handle will be that of the method.
2614          * (Since static methods do not take receivers, there is no
2615          * additional receiver argument inserted into the method handle type,
2616          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
2617          * The method and all its argument types must be accessible to the lookup object.
2618          * <p>
2619          * The returned method handle will have
2620          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2621          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2622          * <p>
2623          * If the returned method handle is invoked, the method's class will
2624          * be initialized, if it has not already been initialized.
2625          * <p><b>Example:</b>
2626          * {@snippet lang="java" :
2627 import static java.lang.invoke.MethodHandles.*;
2628 import static java.lang.invoke.MethodType.*;
2629 ...
2630 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
2631   "asList", methodType(List.class, Object[].class));
2632 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
2633          * }
2634          * @param refc the class from which the method is accessed
2635          * @param name the name of the method
2636          * @param type the type of the method
2637          * @return the desired method handle
2638          * @throws NoSuchMethodException if the method does not exist
2639          * @throws IllegalAccessException if access checking fails,
2640          *                                or if the method is not {@code static},
2641          *                                or if the method's variable arity modifier bit
2642          *                                is set and {@code asVarargsCollector} fails
2643          * @throws    SecurityException if a security manager is present and it
2644          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2645          * @throws NullPointerException if any argument is null
2646          */
2647         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2648             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
2649             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
2650         }
2651 
2652         /**
2653          * Produces a method handle for a virtual method.
2654          * The type of the method handle will be that of the method,
2655          * with the receiver type (usually {@code refc}) prepended.
2656          * The method and all its argument types must be accessible to the lookup object.
2657          * <p>
2658          * When called, the handle will treat the first argument as a receiver
2659          * and, for non-private methods, dispatch on the receiver's type to determine which method
2660          * implementation to enter.
2661          * For private methods the named method in {@code refc} will be invoked on the receiver.
2662          * (The dispatching action is identical with that performed by an
2663          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2664          * <p>
2665          * The first argument will be of type {@code refc} if the lookup
2666          * class has full privileges to access the member.  Otherwise
2667          * the member must be {@code protected} and the first argument
2668          * will be restricted in type to the lookup class.
2669          * <p>
2670          * The returned method handle will have
2671          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2672          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2673          * <p>
2674          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2675          * instructions and method handles produced by {@code findVirtual},
2676          * if the class is {@code MethodHandle} and the name string is
2677          * {@code invokeExact} or {@code invoke}, the resulting
2678          * method handle is equivalent to one produced by
2679          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2680          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2681          * with the same {@code type} argument.
2682          * <p>
2683          * If the class is {@code VarHandle} and the name string corresponds to
2684          * the name of a signature-polymorphic access mode method, the resulting
2685          * method handle is equivalent to one produced by
2686          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2687          * the access mode corresponding to the name string and with the same
2688          * {@code type} arguments.
2689          * <p>
2690          * <b>Example:</b>
2691          * {@snippet lang="java" :
2692 import static java.lang.invoke.MethodHandles.*;
2693 import static java.lang.invoke.MethodType.*;
2694 ...
2695 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2696   "concat", methodType(String.class, String.class));
2697 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2698   "hashCode", methodType(int.class));
2699 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2700   "hashCode", methodType(int.class));
2701 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2702 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2703 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2704 // interface method:
2705 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2706   "subSequence", methodType(CharSequence.class, int.class, int.class));
2707 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2708 // constructor "internal method" must be accessed differently:
2709 MethodType MT_newString = methodType(void.class); //()V for new String()
2710 try { assertEquals("impossible", lookup()
2711         .findVirtual(String.class, "<init>", MT_newString));
2712  } catch (NoSuchMethodException ex) { } // OK
2713 MethodHandle MH_newString = publicLookup()
2714   .findConstructor(String.class, MT_newString);
2715 assertEquals("", (String) MH_newString.invokeExact());
2716          * }
2717          *
2718          * @param refc the class or interface from which the method is accessed
2719          * @param name the name of the method
2720          * @param type the type of the method, with the receiver argument omitted
2721          * @return the desired method handle
2722          * @throws NoSuchMethodException if the method does not exist
2723          * @throws IllegalAccessException if access checking fails,
2724          *                                or if the method is {@code static},
2725          *                                or if the method's variable arity modifier bit
2726          *                                is set and {@code asVarargsCollector} fails
2727          * @throws    SecurityException if a security manager is present and it
2728          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2729          * @throws NullPointerException if any argument is null
2730          */
2731         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2732             if (refc == MethodHandle.class) {
2733                 MethodHandle mh = findVirtualForMH(name, type);
2734                 if (mh != null)  return mh;
2735             } else if (refc == VarHandle.class) {
2736                 MethodHandle mh = findVirtualForVH(name, type);
2737                 if (mh != null)  return mh;
2738             }
2739             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2740             MemberName method = resolveOrFail(refKind, refc, name, type);
2741             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
2742         }
2743         private MethodHandle findVirtualForMH(String name, MethodType type) {
2744             // these names require special lookups because of the implicit MethodType argument
2745             if ("invoke".equals(name))
2746                 return invoker(type);
2747             if ("invokeExact".equals(name))
2748                 return exactInvoker(type);
2749             assert(!MemberName.isMethodHandleInvokeName(name));
2750             return null;
2751         }
2752         private MethodHandle findVirtualForVH(String name, MethodType type) {
2753             try {
2754                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2755             } catch (IllegalArgumentException e) {
2756                 return null;
2757             }
2758         }
2759 
2760         /**
2761          * Produces a method handle which creates an object and initializes it, using
2762          * the constructor of the specified type.
2763          * The parameter types of the method handle will be those of the constructor,
2764          * while the return type will be a reference to the constructor's class.
2765          * The constructor and all its argument types must be accessible to the lookup object.
2766          * <p>
2767          * The requested type must have a return type of {@code void}.
2768          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2769          * <p>
2770          * The returned method handle will have
2771          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2772          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2773          * <p>
2774          * If the returned method handle is invoked, the constructor's class will
2775          * be initialized, if it has not already been initialized.
2776          * <p><b>Example:</b>
2777          * {@snippet lang="java" :
2778 import static java.lang.invoke.MethodHandles.*;
2779 import static java.lang.invoke.MethodType.*;
2780 ...
2781 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2782   ArrayList.class, methodType(void.class, Collection.class));
2783 Collection orig = Arrays.asList("x", "y");
2784 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2785 assert(orig != copy);
2786 assertEquals(orig, copy);
2787 // a variable-arity constructor:
2788 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2789   ProcessBuilder.class, methodType(void.class, String[].class));
2790 ProcessBuilder pb = (ProcessBuilder)
2791   MH_newProcessBuilder.invoke("x", "y", "z");
2792 assertEquals("[x, y, z]", pb.command().toString());
2793          * }
2794          * @param refc the class or interface from which the method is accessed
2795          * @param type the type of the method, with the receiver argument omitted, and a void return type
2796          * @return the desired method handle
2797          * @throws NoSuchMethodException if the constructor does not exist
2798          * @throws IllegalAccessException if access checking fails
2799          *                                or if the method's variable arity modifier bit
2800          *                                is set and {@code asVarargsCollector} fails
2801          * @throws    SecurityException if a security manager is present and it
2802          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2803          * @throws NullPointerException if any argument is null
2804          */
2805         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2806             if (refc.isArray()) {
2807                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2808             }
2809             String name = ConstantDescs.INIT_NAME;
2810             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2811             return getDirectConstructor(refc, ctor);
2812         }
2813 
2814         /**
2815          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
2816          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
2817          * Such a resolution, as specified in JVMS {@jvms 5.4.3.1}, attempts to locate and load the class,
2818          * and then determines whether the class is accessible to this lookup object.
2819          * <p>
2820          * For a class or an interface, the name is the {@linkplain ClassLoader##binary-name binary name}.
2821          * For an array class of {@code n} dimensions, the name begins with {@code n} occurrences
2822          * of {@code '['} and followed by the element type as encoded in the
2823          * {@linkplain Class##nameFormat table} specified in {@link Class#getName}.
2824          * <p>
2825          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
2826          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
2827          *
2828          * @param targetName the {@linkplain ClassLoader##binary-name binary name} of the class
2829          *                   or the string representing an array class
2830          * @return the requested class.
2831          * @throws SecurityException if a security manager is present and it
2832          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2833          * @throws LinkageError if the linkage fails
2834          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2835          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2836          * modes.
2837          * @throws NullPointerException if {@code targetName} is null
2838          * @since 9
2839          * @jvms 5.4.3.1 Class and Interface Resolution
2840          */
2841         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2842             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2843             return accessClass(targetClass);
2844         }
2845 
2846         /**
2847          * Ensures that {@code targetClass} has been initialized. The class
2848          * to be initialized must be {@linkplain #accessClass accessible}
2849          * to this {@code Lookup} object.  This method causes {@code targetClass}
2850          * to be initialized if it has not been already initialized,
2851          * as specified in JVMS {@jvms 5.5}.
2852          *
2853          * <p>
2854          * This method returns when {@code targetClass} is fully initialized, or
2855          * when {@code targetClass} is being initialized by the current thread.
2856          *
2857          * @param <T> the type of the class to be initialized
2858          * @param targetClass the class to be initialized
2859          * @return {@code targetClass} that has been initialized, or that is being
2860          *         initialized by the current thread.
2861          *
2862          * @throws  IllegalArgumentException if {@code targetClass} is a primitive type or {@code void}
2863          *          or array class
2864          * @throws  IllegalAccessException if {@code targetClass} is not
2865          *          {@linkplain #accessClass accessible} to this lookup
2866          * @throws  ExceptionInInitializerError if the class initialization provoked
2867          *          by this method fails
2868          * @throws  SecurityException if a security manager is present and it
2869          *          <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2870          * @since 15
2871          * @jvms 5.5 Initialization
2872          */
2873         public <T> Class<T> ensureInitialized(Class<T> targetClass) throws IllegalAccessException {
2874             if (targetClass.isPrimitive())
2875                 throw new IllegalArgumentException(targetClass + " is a primitive class");
2876             if (targetClass.isArray())
2877                 throw new IllegalArgumentException(targetClass + " is an array class");
2878 
2879             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2880                 throw makeAccessException(targetClass);
2881             }
2882             checkSecurityManager(targetClass);
2883 
2884             // ensure class initialization
2885             Unsafe.getUnsafe().ensureClassInitialized(targetClass);
2886             return targetClass;
2887         }
2888 
2889         /*
2890          * Returns IllegalAccessException due to access violation to the given targetClass.
2891          *
2892          * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized}
2893          * which verifies access to a class rather a member.
2894          */
2895         private IllegalAccessException makeAccessException(Class<?> targetClass) {
2896             String message = "access violation: "+ targetClass;
2897             if (this == MethodHandles.publicLookup()) {
2898                 message += ", from public Lookup";
2899             } else {
2900                 Module m = lookupClass().getModule();
2901                 message += ", from " + lookupClass() + " (" + m + ")";
2902                 if (prevLookupClass != null) {
2903                     message += ", previous lookup " +
2904                             prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")";
2905                 }
2906             }
2907             return new IllegalAccessException(message);
2908         }
2909 
2910         /**
2911          * Determines if a class can be accessed from the lookup context defined by
2912          * this {@code Lookup} object. The static initializer of the class is not run.
2913          * If {@code targetClass} is an array class, {@code targetClass} is accessible
2914          * if the element type of the array class is accessible.  Otherwise,
2915          * {@code targetClass} is determined as accessible as follows.
2916          *
2917          * <p>
2918          * If {@code targetClass} is in the same module as the lookup class,
2919          * the lookup class is {@code LC} in module {@code M1} and
2920          * the previous lookup class is in module {@code M0} or
2921          * {@code null} if not present,
2922          * {@code targetClass} is accessible if and only if one of the following is true:
2923          * <ul>
2924          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2925          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2926          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2927          *     in the same runtime package of {@code LC}.</li>
2928          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2929          *     a public type in {@code M1}.</li>
2930          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2931          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2932          *     if the previous lookup class is present; otherwise, {@code targetClass}
2933          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2934          * </ul>
2935          *
2936          * <p>
2937          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2938          * can access public types in all modules when the type is in a package
2939          * that is exported unconditionally.
2940          * <p>
2941          * Otherwise, {@code targetClass} is in a different module from {@code lookupClass},
2942          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2943          * is inaccessible.
2944          * <p>
2945          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2946          * {@code M1} is the module containing {@code lookupClass} and
2947          * {@code M2} is the module containing {@code targetClass},
2948          * then {@code targetClass} is accessible if and only if
2949          * <ul>
2950          * <li>{@code M1} reads {@code M2}, and
2951          * <li>{@code targetClass} is public and in a package exported by
2952          *     {@code M2} at least to {@code M1}.
2953          * </ul>
2954          * <p>
2955          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2956          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2957          * containing the previous lookup class, then {@code targetClass} is accessible
2958          * if and only if one of the following is true:
2959          * <ul>
2960          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2961          *     {@linkplain Module#reads reads} {@code M0} and the type is
2962          *     in a package that is exported to at least {@code M1}.
2963          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2964          *     {@linkplain Module#reads reads} {@code M1} and the type is
2965          *     in a package that is exported to at least {@code M0}.
2966          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2967          *     and {@code M1} reads {@code M2} and the type is in a package
2968          *     that is exported to at least both {@code M0} and {@code M2}.
2969          * </ul>
2970          * <p>
2971          * Otherwise, {@code targetClass} is not accessible.
2972          *
2973          * @param <T> the type of the class to be access-checked
2974          * @param targetClass the class to be access-checked
2975          * @return {@code targetClass} that has been access-checked
2976          * @throws IllegalAccessException if the class is not accessible from the lookup class
2977          * and previous lookup class, if present, using the allowed access modes.
2978          * @throws SecurityException if a security manager is present and it
2979          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2980          * @throws NullPointerException if {@code targetClass} is {@code null}
2981          * @since 9
2982          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2983          */
2984         public <T> Class<T> accessClass(Class<T> targetClass) throws IllegalAccessException {
2985             if (!isClassAccessible(targetClass)) {
2986                 throw makeAccessException(targetClass);
2987             }
2988             checkSecurityManager(targetClass);
2989             return targetClass;
2990         }
2991 
2992         /**
2993          * Produces an early-bound method handle for a virtual method.
2994          * It will bypass checks for overriding methods on the receiver,
2995          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2996          * instruction from within the explicitly specified {@code specialCaller}.
2997          * The type of the method handle will be that of the method,
2998          * with a suitably restricted receiver type prepended.
2999          * (The receiver type will be {@code specialCaller} or a subtype.)
3000          * The method and all its argument types must be accessible
3001          * to the lookup object.
3002          * <p>
3003          * Before method resolution,
3004          * if the explicitly specified caller class is not identical with the
3005          * lookup class, or if this lookup object does not have
3006          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3007          * privileges, the access fails.
3008          * <p>
3009          * The returned method handle will have
3010          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3011          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3012          * <p style="font-size:smaller;">
3013          * <em>(Note:  JVM internal methods named {@value ConstantDescs#INIT_NAME}
3014          * are not visible to this API,
3015          * even though the {@code invokespecial} instruction can refer to them
3016          * in special circumstances.  Use {@link #findConstructor findConstructor}
3017          * to access instance initialization methods in a safe manner.)</em>
3018          * <p><b>Example:</b>
3019          * {@snippet lang="java" :
3020 import static java.lang.invoke.MethodHandles.*;
3021 import static java.lang.invoke.MethodType.*;
3022 ...
3023 static class Listie extends ArrayList {
3024   public String toString() { return "[wee Listie]"; }
3025   static Lookup lookup() { return MethodHandles.lookup(); }
3026 }
3027 ...
3028 // no access to constructor via invokeSpecial:
3029 MethodHandle MH_newListie = Listie.lookup()
3030   .findConstructor(Listie.class, methodType(void.class));
3031 Listie l = (Listie) MH_newListie.invokeExact();
3032 try { assertEquals("impossible", Listie.lookup().findSpecial(
3033         Listie.class, "<init>", methodType(void.class), Listie.class));
3034  } catch (NoSuchMethodException ex) { } // OK
3035 // access to super and self methods via invokeSpecial:
3036 MethodHandle MH_super = Listie.lookup().findSpecial(
3037   ArrayList.class, "toString" , methodType(String.class), Listie.class);
3038 MethodHandle MH_this = Listie.lookup().findSpecial(
3039   Listie.class, "toString" , methodType(String.class), Listie.class);
3040 MethodHandle MH_duper = Listie.lookup().findSpecial(
3041   Object.class, "toString" , methodType(String.class), Listie.class);
3042 assertEquals("[]", (String) MH_super.invokeExact(l));
3043 assertEquals(""+l, (String) MH_this.invokeExact(l));
3044 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
3045 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
3046         String.class, "toString", methodType(String.class), Listie.class));
3047  } catch (IllegalAccessException ex) { } // OK
3048 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
3049 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
3050          * }
3051          *
3052          * @param refc the class or interface from which the method is accessed
3053          * @param name the name of the method (which must not be "&lt;init&gt;")
3054          * @param type the type of the method, with the receiver argument omitted
3055          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
3056          * @return the desired method handle
3057          * @throws NoSuchMethodException if the method does not exist
3058          * @throws IllegalAccessException if access checking fails,
3059          *                                or if the method is {@code static},
3060          *                                or if the method's variable arity modifier bit
3061          *                                is set and {@code asVarargsCollector} fails
3062          * @throws    SecurityException if a security manager is present and it
3063          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3064          * @throws NullPointerException if any argument is null
3065          */
3066         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
3067                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
3068             checkSpecialCaller(specialCaller, refc);
3069             Lookup specialLookup = this.in(specialCaller);
3070             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
3071             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
3072         }
3073 
3074         /**
3075          * Produces a method handle giving read access to a non-static field.
3076          * The type of the method handle will have a return type of the field's
3077          * value type.
3078          * The method handle's single argument will be the instance containing
3079          * the field.
3080          * Access checking is performed immediately on behalf of the lookup class.
3081          * @param refc the class or interface from which the method is accessed
3082          * @param name the field's name
3083          * @param type the field's type
3084          * @return a method handle which can load values from the field
3085          * @throws NoSuchFieldException if the field does not exist
3086          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3087          * @throws    SecurityException if a security manager is present and it
3088          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3089          * @throws NullPointerException if any argument is null
3090          * @see #findVarHandle(Class, String, Class)
3091          */
3092         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3093             MemberName field = resolveOrFail(REF_getField, refc, name, type);
3094             return getDirectField(REF_getField, refc, field);
3095         }
3096 
3097         /**
3098          * Produces a method handle giving write access to a non-static field.
3099          * The type of the method handle will have a void return type.
3100          * The method handle will take two arguments, the instance containing
3101          * the field, and the value to be stored.
3102          * The second argument will be of the field's value type.
3103          * Access checking is performed immediately on behalf of the lookup class.
3104          * @param refc the class or interface from which the method is accessed
3105          * @param name the field's name
3106          * @param type the field's type
3107          * @return a method handle which can store values into the field
3108          * @throws NoSuchFieldException if the field does not exist
3109          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3110          *                                or {@code final}
3111          * @throws    SecurityException if a security manager is present and it
3112          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3113          * @throws NullPointerException if any argument is null
3114          * @see #findVarHandle(Class, String, Class)
3115          */
3116         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3117             MemberName field = resolveOrFail(REF_putField, refc, name, type);
3118             return getDirectField(REF_putField, refc, field);
3119         }
3120 
3121         /**
3122          * Produces a VarHandle giving access to a non-static field {@code name}
3123          * of type {@code type} declared in a class of type {@code recv}.
3124          * The VarHandle's variable type is {@code type} and it has one
3125          * coordinate type, {@code recv}.
3126          * <p>
3127          * Access checking is performed immediately on behalf of the lookup
3128          * class.
3129          * <p>
3130          * Certain access modes of the returned VarHandle are unsupported under
3131          * the following conditions:
3132          * <ul>
3133          * <li>if the field is declared {@code final}, then the write, atomic
3134          *     update, numeric atomic update, and bitwise atomic update access
3135          *     modes are unsupported.
3136          * <li>if the field type is anything other than {@code byte},
3137          *     {@code short}, {@code char}, {@code int}, {@code long},
3138          *     {@code float}, or {@code double} then numeric atomic update
3139          *     access modes are unsupported.
3140          * <li>if the field type is anything other than {@code boolean},
3141          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3142          *     {@code long} then bitwise atomic update access modes are
3143          *     unsupported.
3144          * </ul>
3145          * <p>
3146          * If the field is declared {@code volatile} then the returned VarHandle
3147          * will override access to the field (effectively ignore the
3148          * {@code volatile} declaration) in accordance to its specified
3149          * access modes.
3150          * <p>
3151          * If the field type is {@code float} or {@code double} then numeric
3152          * and atomic update access modes compare values using their bitwise
3153          * representation (see {@link Float#floatToRawIntBits} and
3154          * {@link Double#doubleToRawLongBits}, respectively).
3155          * @apiNote
3156          * Bitwise comparison of {@code float} values or {@code double} values,
3157          * as performed by the numeric and atomic update access modes, differ
3158          * from the primitive {@code ==} operator and the {@link Float#equals}
3159          * and {@link Double#equals} methods, specifically with respect to
3160          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3161          * Care should be taken when performing a compare and set or a compare
3162          * and exchange operation with such values since the operation may
3163          * unexpectedly fail.
3164          * There are many possible NaN values that are considered to be
3165          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3166          * provided by Java can distinguish between them.  Operation failure can
3167          * occur if the expected or witness value is a NaN value and it is
3168          * transformed (perhaps in a platform specific manner) into another NaN
3169          * value, and thus has a different bitwise representation (see
3170          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3171          * details).
3172          * The values {@code -0.0} and {@code +0.0} have different bitwise
3173          * representations but are considered equal when using the primitive
3174          * {@code ==} operator.  Operation failure can occur if, for example, a
3175          * numeric algorithm computes an expected value to be say {@code -0.0}
3176          * and previously computed the witness value to be say {@code +0.0}.
3177          * @param recv the receiver class, of type {@code R}, that declares the
3178          * non-static field
3179          * @param name the field's name
3180          * @param type the field's type, of type {@code T}
3181          * @return a VarHandle giving access to non-static fields.
3182          * @throws NoSuchFieldException if the field does not exist
3183          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3184          * @throws    SecurityException if a security manager is present and it
3185          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3186          * @throws NullPointerException if any argument is null
3187          * @since 9
3188          */
3189         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3190             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
3191             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
3192             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
3193         }
3194 
3195         /**
3196          * Produces a method handle giving read access to a static field.
3197          * The type of the method handle will have a return type of the field's
3198          * value type.
3199          * The method handle will take no arguments.
3200          * Access checking is performed immediately on behalf of the lookup class.
3201          * <p>
3202          * If the returned method handle is invoked, the field's class will
3203          * be initialized, if it has not already been initialized.
3204          * @param refc the class or interface from which the method is accessed
3205          * @param name the field's name
3206          * @param type the field's type
3207          * @return a method handle which can load values from the field
3208          * @throws NoSuchFieldException if the field does not exist
3209          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3210          * @throws    SecurityException if a security manager is present and it
3211          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3212          * @throws NullPointerException if any argument is null
3213          */
3214         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3215             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
3216             return getDirectField(REF_getStatic, refc, field);
3217         }
3218 
3219         /**
3220          * Produces a method handle giving write access to a static field.
3221          * The type of the method handle will have a void return type.
3222          * The method handle will take a single
3223          * argument, of the field's value type, the value to be stored.
3224          * Access checking is performed immediately on behalf of the lookup class.
3225          * <p>
3226          * If the returned method handle is invoked, the field's class will
3227          * be initialized, if it has not already been initialized.
3228          * @param refc the class or interface from which the method is accessed
3229          * @param name the field's name
3230          * @param type the field's type
3231          * @return a method handle which can store values into the field
3232          * @throws NoSuchFieldException if the field does not exist
3233          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3234          *                                or is {@code final}
3235          * @throws    SecurityException if a security manager is present and it
3236          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3237          * @throws NullPointerException if any argument is null
3238          */
3239         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3240             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
3241             return getDirectField(REF_putStatic, refc, field);
3242         }
3243 
3244         /**
3245          * Produces a VarHandle giving access to a static field {@code name} of
3246          * type {@code type} declared in a class of type {@code decl}.
3247          * The VarHandle's variable type is {@code type} and it has no
3248          * coordinate types.
3249          * <p>
3250          * Access checking is performed immediately on behalf of the lookup
3251          * class.
3252          * <p>
3253          * If the returned VarHandle is operated on, the declaring class will be
3254          * initialized, if it has not already been initialized.
3255          * <p>
3256          * Certain access modes of the returned VarHandle are unsupported under
3257          * the following conditions:
3258          * <ul>
3259          * <li>if the field is declared {@code final}, then the write, atomic
3260          *     update, numeric atomic update, and bitwise atomic update access
3261          *     modes are unsupported.
3262          * <li>if the field type is anything other than {@code byte},
3263          *     {@code short}, {@code char}, {@code int}, {@code long},
3264          *     {@code float}, or {@code double}, then numeric atomic update
3265          *     access modes are unsupported.
3266          * <li>if the field type is anything other than {@code boolean},
3267          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3268          *     {@code long} then bitwise atomic update access modes are
3269          *     unsupported.
3270          * </ul>
3271          * <p>
3272          * If the field is declared {@code volatile} then the returned VarHandle
3273          * will override access to the field (effectively ignore the
3274          * {@code volatile} declaration) in accordance to its specified
3275          * access modes.
3276          * <p>
3277          * If the field type is {@code float} or {@code double} then numeric
3278          * and atomic update access modes compare values using their bitwise
3279          * representation (see {@link Float#floatToRawIntBits} and
3280          * {@link Double#doubleToRawLongBits}, respectively).
3281          * @apiNote
3282          * Bitwise comparison of {@code float} values or {@code double} values,
3283          * as performed by the numeric and atomic update access modes, differ
3284          * from the primitive {@code ==} operator and the {@link Float#equals}
3285          * and {@link Double#equals} methods, specifically with respect to
3286          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3287          * Care should be taken when performing a compare and set or a compare
3288          * and exchange operation with such values since the operation may
3289          * unexpectedly fail.
3290          * There are many possible NaN values that are considered to be
3291          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3292          * provided by Java can distinguish between them.  Operation failure can
3293          * occur if the expected or witness value is a NaN value and it is
3294          * transformed (perhaps in a platform specific manner) into another NaN
3295          * value, and thus has a different bitwise representation (see
3296          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3297          * details).
3298          * The values {@code -0.0} and {@code +0.0} have different bitwise
3299          * representations but are considered equal when using the primitive
3300          * {@code ==} operator.  Operation failure can occur if, for example, a
3301          * numeric algorithm computes an expected value to be say {@code -0.0}
3302          * and previously computed the witness value to be say {@code +0.0}.
3303          * @param decl the class that declares the static field
3304          * @param name the field's name
3305          * @param type the field's type, of type {@code T}
3306          * @return a VarHandle giving access to a static field
3307          * @throws NoSuchFieldException if the field does not exist
3308          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3309          * @throws    SecurityException if a security manager is present and it
3310          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3311          * @throws NullPointerException if any argument is null
3312          * @since 9
3313          */
3314         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3315             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
3316             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
3317             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
3318         }
3319 
3320         /**
3321          * Produces an early-bound method handle for a non-static method.
3322          * The receiver must have a supertype {@code defc} in which a method
3323          * of the given name and type is accessible to the lookup class.
3324          * The method and all its argument types must be accessible to the lookup object.
3325          * The type of the method handle will be that of the method,
3326          * without any insertion of an additional receiver parameter.
3327          * The given receiver will be bound into the method handle,
3328          * so that every call to the method handle will invoke the
3329          * requested method on the given receiver.
3330          * <p>
3331          * The returned method handle will have
3332          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3333          * the method's variable arity modifier bit ({@code 0x0080}) is set
3334          * <em>and</em> the trailing array argument is not the only argument.
3335          * (If the trailing array argument is the only argument,
3336          * the given receiver value will be bound to it.)
3337          * <p>
3338          * This is almost equivalent to the following code, with some differences noted below:
3339          * {@snippet lang="java" :
3340 import static java.lang.invoke.MethodHandles.*;
3341 import static java.lang.invoke.MethodType.*;
3342 ...
3343 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
3344 MethodHandle mh1 = mh0.bindTo(receiver);
3345 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
3346 return mh1;
3347          * }
3348          * where {@code defc} is either {@code receiver.getClass()} or a super
3349          * type of that class, in which the requested method is accessible
3350          * to the lookup class.
3351          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
3352          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
3353          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
3354          * the receiver is restricted by {@code findVirtual} to the lookup class.)
3355          * @param receiver the object from which the method is accessed
3356          * @param name the name of the method
3357          * @param type the type of the method, with the receiver argument omitted
3358          * @return the desired method handle
3359          * @throws NoSuchMethodException if the method does not exist
3360          * @throws IllegalAccessException if access checking fails
3361          *                                or if the method's variable arity modifier bit
3362          *                                is set and {@code asVarargsCollector} fails
3363          * @throws    SecurityException if a security manager is present and it
3364          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3365          * @throws NullPointerException if any argument is null
3366          * @see MethodHandle#bindTo
3367          * @see #findVirtual
3368          */
3369         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3370             Class<? extends Object> refc = receiver.getClass(); // may get NPE
3371             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
3372             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
3373             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
3374                 throw new IllegalAccessException("The restricted defining class " +
3375                                                  mh.type().leadingReferenceParameter().getName() +
3376                                                  " is not assignable from receiver class " +
3377                                                  receiver.getClass().getName());
3378             }
3379             return mh.bindArgumentL(0, receiver).setVarargs(method);
3380         }
3381 
3382         /**
3383          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3384          * to <i>m</i>, if the lookup class has permission.
3385          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
3386          * If <i>m</i> is virtual, overriding is respected on every call.
3387          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
3388          * The type of the method handle will be that of the method,
3389          * with the receiver type prepended (but only if it is non-static).
3390          * If the method's {@code accessible} flag is not set,
3391          * access checking is performed immediately on behalf of the lookup class.
3392          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
3393          * <p>
3394          * The returned method handle will have
3395          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3396          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3397          * <p>
3398          * If <i>m</i> is static, and
3399          * if the returned method handle is invoked, the method's class will
3400          * be initialized, if it has not already been initialized.
3401          * @param m the reflected method
3402          * @return a method handle which can invoke the reflected method
3403          * @throws IllegalAccessException if access checking fails
3404          *                                or if the method's variable arity modifier bit
3405          *                                is set and {@code asVarargsCollector} fails
3406          * @throws NullPointerException if the argument is null
3407          */
3408         public MethodHandle unreflect(Method m) throws IllegalAccessException {
3409             if (m.getDeclaringClass() == MethodHandle.class) {
3410                 MethodHandle mh = unreflectForMH(m);
3411                 if (mh != null)  return mh;
3412             }
3413             if (m.getDeclaringClass() == VarHandle.class) {
3414                 MethodHandle mh = unreflectForVH(m);
3415                 if (mh != null)  return mh;
3416             }
3417             MemberName method = new MemberName(m);
3418             byte refKind = method.getReferenceKind();
3419             if (refKind == REF_invokeSpecial)
3420                 refKind = REF_invokeVirtual;
3421             assert(method.isMethod());
3422             @SuppressWarnings("deprecation")
3423             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
3424             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3425         }
3426         private MethodHandle unreflectForMH(Method m) {
3427             // these names require special lookups because they throw UnsupportedOperationException
3428             if (MemberName.isMethodHandleInvokeName(m.getName()))
3429                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
3430             return null;
3431         }
3432         private MethodHandle unreflectForVH(Method m) {
3433             // these names require special lookups because they throw UnsupportedOperationException
3434             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
3435                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
3436             return null;
3437         }
3438 
3439         /**
3440          * Produces a method handle for a reflected method.
3441          * It will bypass checks for overriding methods on the receiver,
3442          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
3443          * instruction from within the explicitly specified {@code specialCaller}.
3444          * The type of the method handle will be that of the method,
3445          * with a suitably restricted receiver type prepended.
3446          * (The receiver type will be {@code specialCaller} or a subtype.)
3447          * If the method's {@code accessible} flag is not set,
3448          * access checking is performed immediately on behalf of the lookup class,
3449          * as if {@code invokespecial} instruction were being linked.
3450          * <p>
3451          * Before method resolution,
3452          * if the explicitly specified caller class is not identical with the
3453          * lookup class, or if this lookup object does not have
3454          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3455          * privileges, the access fails.
3456          * <p>
3457          * The returned method handle will have
3458          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3459          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3460          * @param m the reflected method
3461          * @param specialCaller the class nominally calling the method
3462          * @return a method handle which can invoke the reflected method
3463          * @throws IllegalAccessException if access checking fails,
3464          *                                or if the method is {@code static},
3465          *                                or if the method's variable arity modifier bit
3466          *                                is set and {@code asVarargsCollector} fails
3467          * @throws NullPointerException if any argument is null
3468          */
3469         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
3470             checkSpecialCaller(specialCaller, m.getDeclaringClass());
3471             Lookup specialLookup = this.in(specialCaller);
3472             MemberName method = new MemberName(m, true);
3473             assert(method.isMethod());
3474             // ignore m.isAccessible:  this is a new kind of access
3475             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3476         }
3477 
3478         /**
3479          * Produces a method handle for a reflected constructor.
3480          * The type of the method handle will be that of the constructor,
3481          * with the return type changed to the declaring class.
3482          * The method handle will perform a {@code newInstance} operation,
3483          * creating a new instance of the constructor's class on the
3484          * arguments passed to the method handle.
3485          * <p>
3486          * If the constructor's {@code accessible} flag is not set,
3487          * access checking is performed immediately on behalf of the lookup class.
3488          * <p>
3489          * The returned method handle will have
3490          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3491          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
3492          * <p>
3493          * If the returned method handle is invoked, the constructor's class will
3494          * be initialized, if it has not already been initialized.
3495          * @param c the reflected constructor
3496          * @return a method handle which can invoke the reflected constructor
3497          * @throws IllegalAccessException if access checking fails
3498          *                                or if the method's variable arity modifier bit
3499          *                                is set and {@code asVarargsCollector} fails
3500          * @throws NullPointerException if the argument is null
3501          */
3502         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
3503             MemberName ctor = new MemberName(c);
3504             assert(ctor.isConstructor());
3505             @SuppressWarnings("deprecation")
3506             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
3507             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
3508         }
3509 
3510         /*
3511          * Produces a method handle that is capable of creating instances of the given class
3512          * and instantiated by the given constructor.  No security manager check.
3513          *
3514          * This method should only be used by ReflectionFactory::newConstructorForSerialization.
3515          */
3516         /* package-private */ MethodHandle serializableConstructor(Class<?> decl, Constructor<?> c) throws IllegalAccessException {
3517             MemberName ctor = new MemberName(c);
3518             assert(ctor.isConstructor() && constructorInSuperclass(decl, c));
3519             checkAccess(REF_newInvokeSpecial, decl, ctor);
3520             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3521             return DirectMethodHandle.makeAllocator(decl, ctor).setVarargs(ctor);
3522         }
3523 
3524         private static boolean constructorInSuperclass(Class<?> decl, Constructor<?> ctor) {
3525             if (decl == ctor.getDeclaringClass())
3526                 return true;
3527 
3528             Class<?> cl = decl;
3529             while ((cl = cl.getSuperclass()) != null) {
3530                 if (cl == ctor.getDeclaringClass()) {
3531                     return true;
3532                 }
3533             }
3534             return false;
3535         }
3536 
3537         /**
3538          * Produces a method handle giving read access to a reflected field.
3539          * The type of the method handle will have a return type of the field's
3540          * value type.
3541          * If the field is {@code static}, the method handle will take no arguments.
3542          * Otherwise, its single argument will be the instance containing
3543          * the field.
3544          * If the {@code Field} object's {@code accessible} flag is not set,
3545          * access checking is performed immediately on behalf of the lookup class.
3546          * <p>
3547          * If the field is static, and
3548          * if the returned method handle is invoked, the field's class will
3549          * be initialized, if it has not already been initialized.
3550          * @param f the reflected field
3551          * @return a method handle which can load values from the reflected field
3552          * @throws IllegalAccessException if access checking fails
3553          * @throws NullPointerException if the argument is null
3554          */
3555         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
3556             return unreflectField(f, false);
3557         }
3558 
3559         /**
3560          * Produces a method handle giving write access to a reflected field.
3561          * The type of the method handle will have a void return type.
3562          * If the field is {@code static}, the method handle will take a single
3563          * argument, of the field's value type, the value to be stored.
3564          * Otherwise, the two arguments will be the instance containing
3565          * the field, and the value to be stored.
3566          * If the {@code Field} object's {@code accessible} flag is not set,
3567          * access checking is performed immediately on behalf of the lookup class.
3568          * <p>
3569          * If the field is {@code final}, write access will not be
3570          * allowed and access checking will fail, except under certain
3571          * narrow circumstances documented for {@link Field#set Field.set}.
3572          * A method handle is returned only if a corresponding call to
3573          * the {@code Field} object's {@code set} method could return
3574          * normally.  In particular, fields which are both {@code static}
3575          * and {@code final} may never be set.
3576          * <p>
3577          * If the field is {@code static}, and
3578          * if the returned method handle is invoked, the field's class will
3579          * be initialized, if it has not already been initialized.
3580          * @param f the reflected field
3581          * @return a method handle which can store values into the reflected field
3582          * @throws IllegalAccessException if access checking fails,
3583          *         or if the field is {@code final} and write access
3584          *         is not enabled on the {@code Field} object
3585          * @throws NullPointerException if the argument is null
3586          */
3587         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
3588             return unreflectField(f, true);
3589         }
3590 
3591         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
3592             MemberName field = new MemberName(f, isSetter);
3593             if (isSetter && field.isFinal()) {
3594                 if (field.isTrustedFinalField()) {
3595                     String msg = field.isStatic() ? "static final field has no write access"
3596                                                   : "final field has no write access";
3597                     throw field.makeAccessException(msg, this);
3598                 }
3599             }
3600             assert(isSetter
3601                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
3602                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
3603             @SuppressWarnings("deprecation")
3604             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
3605             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
3606         }
3607 
3608         /**
3609          * Produces a VarHandle giving access to a reflected field {@code f}
3610          * of type {@code T} declared in a class of type {@code R}.
3611          * The VarHandle's variable type is {@code T}.
3612          * If the field is non-static the VarHandle has one coordinate type,
3613          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
3614          * coordinate types.
3615          * <p>
3616          * Access checking is performed immediately on behalf of the lookup
3617          * class, regardless of the value of the field's {@code accessible}
3618          * flag.
3619          * <p>
3620          * If the field is static, and if the returned VarHandle is operated
3621          * on, the field's declaring class will be initialized, if it has not
3622          * already been initialized.
3623          * <p>
3624          * Certain access modes of the returned VarHandle are unsupported under
3625          * the following conditions:
3626          * <ul>
3627          * <li>if the field is declared {@code final}, then the write, atomic
3628          *     update, numeric atomic update, and bitwise atomic update access
3629          *     modes are unsupported.
3630          * <li>if the field type is anything other than {@code byte},
3631          *     {@code short}, {@code char}, {@code int}, {@code long},
3632          *     {@code float}, or {@code double} then numeric atomic update
3633          *     access modes are unsupported.
3634          * <li>if the field type is anything other than {@code boolean},
3635          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3636          *     {@code long} then bitwise atomic update access modes are
3637          *     unsupported.
3638          * </ul>
3639          * <p>
3640          * If the field is declared {@code volatile} then the returned VarHandle
3641          * will override access to the field (effectively ignore the
3642          * {@code volatile} declaration) in accordance to its specified
3643          * access modes.
3644          * <p>
3645          * If the field type is {@code float} or {@code double} then numeric
3646          * and atomic update access modes compare values using their bitwise
3647          * representation (see {@link Float#floatToRawIntBits} and
3648          * {@link Double#doubleToRawLongBits}, respectively).
3649          * @apiNote
3650          * Bitwise comparison of {@code float} values or {@code double} values,
3651          * as performed by the numeric and atomic update access modes, differ
3652          * from the primitive {@code ==} operator and the {@link Float#equals}
3653          * and {@link Double#equals} methods, specifically with respect to
3654          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3655          * Care should be taken when performing a compare and set or a compare
3656          * and exchange operation with such values since the operation may
3657          * unexpectedly fail.
3658          * There are many possible NaN values that are considered to be
3659          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3660          * provided by Java can distinguish between them.  Operation failure can
3661          * occur if the expected or witness value is a NaN value and it is
3662          * transformed (perhaps in a platform specific manner) into another NaN
3663          * value, and thus has a different bitwise representation (see
3664          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3665          * details).
3666          * The values {@code -0.0} and {@code +0.0} have different bitwise
3667          * representations but are considered equal when using the primitive
3668          * {@code ==} operator.  Operation failure can occur if, for example, a
3669          * numeric algorithm computes an expected value to be say {@code -0.0}
3670          * and previously computed the witness value to be say {@code +0.0}.
3671          * @param f the reflected field, with a field of type {@code T}, and
3672          * a declaring class of type {@code R}
3673          * @return a VarHandle giving access to non-static fields or a static
3674          * field
3675          * @throws IllegalAccessException if access checking fails
3676          * @throws NullPointerException if the argument is null
3677          * @since 9
3678          */
3679         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
3680             MemberName getField = new MemberName(f, false);
3681             MemberName putField = new MemberName(f, true);
3682             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
3683                                                       f.getDeclaringClass(), getField, putField);
3684         }
3685 
3686         /**
3687          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3688          * created by this lookup object or a similar one.
3689          * Security and access checks are performed to ensure that this lookup object
3690          * is capable of reproducing the target method handle.
3691          * This means that the cracking may fail if target is a direct method handle
3692          * but was created by an unrelated lookup object.
3693          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
3694          * and was created by a lookup object for a different class.
3695          * @param target a direct method handle to crack into symbolic reference components
3696          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
3697          * @throws    SecurityException if a security manager is present and it
3698          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3699          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
3700          * @throws    NullPointerException if the target is {@code null}
3701          * @see MethodHandleInfo
3702          * @since 1.8
3703          */
3704         public MethodHandleInfo revealDirect(MethodHandle target) {
3705             if (!target.isCrackable()) {
3706                 throw newIllegalArgumentException("not a direct method handle");
3707             }
3708             MemberName member = target.internalMemberName();
3709             Class<?> defc = member.getDeclaringClass();
3710             byte refKind = member.getReferenceKind();
3711             assert(MethodHandleNatives.refKindIsValid(refKind));
3712             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
3713                 // Devirtualized method invocation is usually formally virtual.
3714                 // To avoid creating extra MemberName objects for this common case,
3715                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
3716                 refKind = REF_invokeVirtual;
3717             if (refKind == REF_invokeVirtual && defc.isInterface())
3718                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
3719                 refKind = REF_invokeInterface;
3720             // Check SM permissions and member access before cracking.
3721             try {
3722                 checkAccess(refKind, defc, member);
3723                 checkSecurityManager(defc, member);
3724             } catch (IllegalAccessException ex) {
3725                 throw new IllegalArgumentException(ex);
3726             }
3727             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
3728                 Class<?> callerClass = target.internalCallerClass();
3729                 if ((lookupModes() & ORIGINAL) == 0 || callerClass != lookupClass())
3730                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
3731             }
3732             // Produce the handle to the results.
3733             return new InfoFromMemberName(this, member, refKind);
3734         }
3735 
3736         //--- Helper methods, all package-private.
3737 
3738         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3739             checkSymbolicClass(refc);  // do this before attempting to resolve
3740             Objects.requireNonNull(name);
3741             Objects.requireNonNull(type);
3742             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3743                                             NoSuchFieldException.class);
3744         }
3745 
3746         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3747             checkSymbolicClass(refc);  // do this before attempting to resolve
3748             Objects.requireNonNull(type);
3749             checkMethodName(refKind, name);  // implicit null-check of name
3750             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3751                                             NoSuchMethodException.class);
3752         }
3753 
3754         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
3755             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
3756             Objects.requireNonNull(member.getName());
3757             Objects.requireNonNull(member.getType());
3758             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), allowedModes,
3759                                             ReflectiveOperationException.class);
3760         }
3761 
3762         MemberName resolveOrNull(byte refKind, MemberName member) {
3763             // do this before attempting to resolve
3764             if (!isClassAccessible(member.getDeclaringClass())) {
3765                 return null;
3766             }
3767             Objects.requireNonNull(member.getName());
3768             Objects.requireNonNull(member.getType());
3769             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull(), allowedModes);
3770         }
3771 
3772         MemberName resolveOrNull(byte refKind, Class<?> refc, String name, MethodType type) {
3773             // do this before attempting to resolve
3774             if (!isClassAccessible(refc)) {
3775                 return null;
3776             }
3777             Objects.requireNonNull(type);
3778             // implicit null-check of name
3779             if (name.startsWith("<") && refKind != REF_newInvokeSpecial) {
3780                 return null;
3781             }
3782             return IMPL_NAMES.resolveOrNull(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes);
3783         }
3784 
3785         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3786             if (!isClassAccessible(refc)) {
3787                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3788             }
3789         }
3790 
3791         boolean isClassAccessible(Class<?> refc) {
3792             Objects.requireNonNull(refc);
3793             Class<?> caller = lookupClassOrNull();
3794             Class<?> type = refc;
3795             while (type.isArray()) {
3796                 type = type.getComponentType();
3797             }
3798             return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes);
3799         }
3800 
3801         /** Check name for an illegal leading "&lt;" character. */
3802         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3803             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3804                 throw new NoSuchMethodException("illegal method name: "+name);
3805         }
3806 
3807         /**
3808          * Find my trustable caller class if m is a caller sensitive method.
3809          * If this lookup object has original full privilege access, then the caller class is the lookupClass.
3810          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3811          */
3812         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
3813             if (MethodHandleNatives.isCallerSensitive(m) && (lookupModes() & ORIGINAL) == 0) {
3814                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
3815                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3816             }
3817             return this;
3818         }
3819 
3820         /**
3821          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3822          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3823          *
3824          * @deprecated This method was originally designed to test {@code PRIVATE} access
3825          * that implies full privilege access but {@code MODULE} access has since become
3826          * independent of {@code PRIVATE} access.  It is recommended to call
3827          * {@link #hasFullPrivilegeAccess()} instead.
3828          * @since 9
3829          */
3830         @Deprecated(since="14")
3831         public boolean hasPrivateAccess() {
3832             return hasFullPrivilegeAccess();
3833         }
3834 
3835         /**
3836          * Returns {@code true} if this lookup has <em>full privilege access</em>,
3837          * i.e. {@code PRIVATE} and {@code MODULE} access.
3838          * A {@code Lookup} object must have full privilege access in order to
3839          * access all members that are allowed to the
3840          * {@linkplain #lookupClass() lookup class}.
3841          *
3842          * @return {@code true} if this lookup has full privilege access.
3843          * @since 14
3844          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
3845          */
3846         public boolean hasFullPrivilegeAccess() {
3847             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
3848         }
3849 
3850         /**
3851          * Perform steps 1 and 2b <a href="MethodHandles.Lookup.html#secmgr">access checks</a>
3852          * for ensureInitialized, findClass or accessClass.
3853          */
3854         void checkSecurityManager(Class<?> refc) {
3855             if (allowedModes == TRUSTED)  return;
3856 
3857             @SuppressWarnings("removal")
3858             SecurityManager smgr = System.getSecurityManager();
3859             if (smgr == null)  return;
3860 
3861             // Step 1:
3862             boolean fullPrivilegeLookup = hasFullPrivilegeAccess();
3863             if (!fullPrivilegeLookup ||
3864                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3865                 ReflectUtil.checkPackageAccess(refc);
3866             }
3867 
3868             // Step 2b:
3869             if (!fullPrivilegeLookup) {
3870                 smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
3871             }
3872         }
3873 
3874         /**
3875          * Perform steps 1, 2a and 3 <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
3876          * Determines a trustable caller class to compare with refc, the symbolic reference class.
3877          * If this lookup object has full privilege access except original access,
3878          * then the caller class is the lookupClass.
3879          *
3880          * Lookup object created by {@link MethodHandles#privateLookupIn(Class, Lookup)}
3881          * from the same module skips the security permission check.
3882          */
3883         void checkSecurityManager(Class<?> refc, MemberName m) {
3884             Objects.requireNonNull(refc);
3885             Objects.requireNonNull(m);
3886 
3887             if (allowedModes == TRUSTED)  return;
3888 
3889             @SuppressWarnings("removal")
3890             SecurityManager smgr = System.getSecurityManager();
3891             if (smgr == null)  return;
3892 
3893             // Step 1:
3894             boolean fullPrivilegeLookup = hasFullPrivilegeAccess();
3895             if (!fullPrivilegeLookup ||
3896                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3897                 ReflectUtil.checkPackageAccess(refc);
3898             }
3899 
3900             // Step 2a:
3901             if (m.isPublic()) return;
3902             if (!fullPrivilegeLookup) {
3903                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
3904             }
3905 
3906             // Step 3:
3907             Class<?> defc = m.getDeclaringClass();
3908             if (!fullPrivilegeLookup && defc != refc) {
3909                 ReflectUtil.checkPackageAccess(defc);
3910             }
3911         }
3912 
3913         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3914             boolean wantStatic = (refKind == REF_invokeStatic);
3915             String message;
3916             if (m.isConstructor())
3917                 message = "expected a method, not a constructor";
3918             else if (!m.isMethod())
3919                 message = "expected a method";
3920             else if (wantStatic != m.isStatic())
3921                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3922             else
3923                 { checkAccess(refKind, refc, m); return; }
3924             throw m.makeAccessException(message, this);
3925         }
3926 
3927         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3928             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3929             String message;
3930             if (wantStatic != m.isStatic())
3931                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3932             else
3933                 { checkAccess(refKind, refc, m); return; }
3934             throw m.makeAccessException(message, this);
3935         }
3936 
3937         private boolean isArrayClone(byte refKind, Class<?> refc, MemberName m) {
3938             return Modifier.isProtected(m.getModifiers()) &&
3939                     refKind == REF_invokeVirtual &&
3940                     m.getDeclaringClass() == Object.class &&
3941                     m.getName().equals("clone") &&
3942                     refc.isArray();
3943         }
3944 
3945         /** Check public/protected/private bits on the symbolic reference class and its member. */
3946         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3947             assert(m.referenceKindIsConsistentWith(refKind) &&
3948                    MethodHandleNatives.refKindIsValid(refKind) &&
3949                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3950             int allowedModes = this.allowedModes;
3951             if (allowedModes == TRUSTED)  return;
3952             int mods = m.getModifiers();
3953             if (isArrayClone(refKind, refc, m)) {
3954                 // The JVM does this hack also.
3955                 // (See ClassVerifier::verify_invoke_instructions
3956                 // and LinkResolver::check_method_accessability.)
3957                 // Because the JVM does not allow separate methods on array types,
3958                 // there is no separate method for int[].clone.
3959                 // All arrays simply inherit Object.clone.
3960                 // But for access checking logic, we make Object.clone
3961                 // (normally protected) appear to be public.
3962                 // Later on, when the DirectMethodHandle is created,
3963                 // its leading argument will be restricted to the
3964                 // requested array type.
3965                 // N.B. The return type is not adjusted, because
3966                 // that is *not* the bytecode behavior.
3967                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3968             }
3969             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3970                 // cannot "new" a protected ctor in a different package
3971                 mods ^= Modifier.PROTECTED;
3972             }
3973             if (Modifier.isFinal(mods) &&
3974                     MethodHandleNatives.refKindIsSetter(refKind))
3975                 throw m.makeAccessException("unexpected set of a final field", this);
3976             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3977             if ((requestedModes & allowedModes) != 0) {
3978                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3979                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3980                     return;
3981             } else {
3982                 // Protected members can also be checked as if they were package-private.
3983                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3984                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3985                     return;
3986             }
3987             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3988         }
3989 
3990         String accessFailedMessage(Class<?> refc, MemberName m) {
3991             Class<?> defc = m.getDeclaringClass();
3992             int mods = m.getModifiers();
3993             // check the class first:
3994             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
3995                                (defc == refc ||
3996                                 Modifier.isPublic(refc.getModifiers())));
3997             if (!classOK && (allowedModes & PACKAGE) != 0) {
3998                 // ignore previous lookup class to check if default package access
3999                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
4000                            (defc == refc ||
4001                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
4002             }
4003             if (!classOK)
4004                 return "class is not public";
4005             if (Modifier.isPublic(mods))
4006                 return "access to public member failed";  // (how?, module not readable?)
4007             if (Modifier.isPrivate(mods))
4008                 return "member is private";
4009             if (Modifier.isProtected(mods))
4010                 return "member is protected";
4011             return "member is private to package";
4012         }
4013 
4014         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
4015             int allowedModes = this.allowedModes;
4016             if (allowedModes == TRUSTED)  return;
4017             if ((lookupModes() & PRIVATE) == 0
4018                 || (specialCaller != lookupClass()
4019                        // ensure non-abstract methods in superinterfaces can be special-invoked
4020                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
4021                 throw new MemberName(specialCaller).
4022                     makeAccessException("no private access for invokespecial", this);
4023         }
4024 
4025         private boolean restrictProtectedReceiver(MemberName method) {
4026             // The accessing class only has the right to use a protected member
4027             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
4028             if (!method.isProtected() || method.isStatic()
4029                 || allowedModes == TRUSTED
4030                 || method.getDeclaringClass() == lookupClass()
4031                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
4032                 return false;
4033             return true;
4034         }
4035         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
4036             assert(!method.isStatic());
4037             // receiver type of mh is too wide; narrow to caller
4038             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
4039                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
4040             }
4041             MethodType rawType = mh.type();
4042             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
4043             MethodType narrowType = rawType.changeParameterType(0, caller);
4044             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
4045             assert(mh.viewAsTypeChecks(narrowType, true));
4046             return mh.copyWith(narrowType, mh.form);
4047         }
4048 
4049         /** Check access and get the requested method. */
4050         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4051             final boolean doRestrict    = true;
4052             final boolean checkSecurity = true;
4053             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
4054         }
4055         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
4056         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4057             final boolean doRestrict    = false;
4058             final boolean checkSecurity = true;
4059             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
4060         }
4061         /** Check access and get the requested method, eliding security manager checks. */
4062         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4063             final boolean doRestrict    = true;
4064             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4065             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
4066         }
4067         /** Common code for all methods; do not call directly except from immediately above. */
4068         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
4069                                                    boolean checkSecurity,
4070                                                    boolean doRestrict,
4071                                                    Lookup boundCaller) throws IllegalAccessException {
4072             checkMethod(refKind, refc, method);
4073             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4074             if (checkSecurity)
4075                 checkSecurityManager(refc, method);
4076             assert(!method.isMethodHandleInvoke());
4077 
4078             if (refKind == REF_invokeSpecial &&
4079                 refc != lookupClass() &&
4080                 !refc.isInterface() && !lookupClass().isInterface() &&
4081                 refc != lookupClass().getSuperclass() &&
4082                 refc.isAssignableFrom(lookupClass())) {
4083                 assert(!method.getName().equals(ConstantDescs.INIT_NAME));  // not this code path
4084 
4085                 // Per JVMS 6.5, desc. of invokespecial instruction:
4086                 // If the method is in a superclass of the LC,
4087                 // and if our original search was above LC.super,
4088                 // repeat the search (symbolic lookup) from LC.super
4089                 // and continue with the direct superclass of that class,
4090                 // and so forth, until a match is found or no further superclasses exist.
4091                 // FIXME: MemberName.resolve should handle this instead.
4092                 Class<?> refcAsSuper = lookupClass();
4093                 MemberName m2;
4094                 do {
4095                     refcAsSuper = refcAsSuper.getSuperclass();
4096                     m2 = new MemberName(refcAsSuper,
4097                                         method.getName(),
4098                                         method.getMethodType(),
4099                                         REF_invokeSpecial);
4100                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull(), allowedModes);
4101                 } while (m2 == null &&         // no method is found yet
4102                          refc != refcAsSuper); // search up to refc
4103                 if (m2 == null)  throw new InternalError(method.toString());
4104                 method = m2;
4105                 refc = refcAsSuper;
4106                 // redo basic checks
4107                 checkMethod(refKind, refc, method);
4108             }
4109             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
4110             MethodHandle mh = dmh;
4111             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
4112             if ((doRestrict && refKind == REF_invokeSpecial) ||
4113                     (MethodHandleNatives.refKindHasReceiver(refKind) &&
4114                             restrictProtectedReceiver(method) &&
4115                             // All arrays simply inherit the protected Object.clone method.
4116                             // The leading argument is already restricted to the requested
4117                             // array type (not the lookup class).
4118                             !isArrayClone(refKind, refc, method))) {
4119                 mh = restrictReceiver(method, dmh, lookupClass());
4120             }
4121             mh = maybeBindCaller(method, mh, boundCaller);
4122             mh = mh.setVarargs(method);
4123             return mh;
4124         }
4125         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
4126                                              throws IllegalAccessException {
4127             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
4128                 return mh;
4129 
4130             // boundCaller must have full privilege access.
4131             // It should have been checked by findBoundCallerLookup. Safe to check this again.
4132             if ((boundCaller.lookupModes() & ORIGINAL) == 0)
4133                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
4134 
4135             assert boundCaller.hasFullPrivilegeAccess();
4136 
4137             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
4138             // Note: caller will apply varargs after this step happens.
4139             return cbmh;
4140         }
4141 
4142         /** Check access and get the requested field. */
4143         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
4144             final boolean checkSecurity = true;
4145             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
4146         }
4147         /** Check access and get the requested field, eliding security manager checks. */
4148         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
4149             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4150             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
4151         }
4152         /** Common code for all fields; do not call directly except from immediately above. */
4153         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
4154                                                   boolean checkSecurity) throws IllegalAccessException {
4155             checkField(refKind, refc, field);
4156             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4157             if (checkSecurity)
4158                 checkSecurityManager(refc, field);
4159             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
4160             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
4161                                     restrictProtectedReceiver(field));
4162             if (doRestrict)
4163                 return restrictReceiver(field, dmh, lookupClass());
4164             return dmh;
4165         }
4166         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
4167                                             Class<?> refc, MemberName getField, MemberName putField)
4168                 throws IllegalAccessException {
4169             final boolean checkSecurity = true;
4170             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
4171         }
4172         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
4173                                                              Class<?> refc, MemberName getField, MemberName putField)
4174                 throws IllegalAccessException {
4175             final boolean checkSecurity = false;
4176             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
4177         }
4178         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
4179                                                   Class<?> refc, MemberName getField, MemberName putField,
4180                                                   boolean checkSecurity) throws IllegalAccessException {
4181             assert getField.isStatic() == putField.isStatic();
4182             assert getField.isGetter() && putField.isSetter();
4183             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
4184             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
4185 
4186             checkField(getRefKind, refc, getField);
4187             if (checkSecurity)
4188                 checkSecurityManager(refc, getField);
4189 
4190             if (!putField.isFinal()) {
4191                 // A VarHandle does not support updates to final fields, any
4192                 // such VarHandle to a final field will be read-only and
4193                 // therefore the following write-based accessibility checks are
4194                 // only required for non-final fields
4195                 checkField(putRefKind, refc, putField);
4196                 if (checkSecurity)
4197                     checkSecurityManager(refc, putField);
4198             }
4199 
4200             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
4201                                   restrictProtectedReceiver(getField));
4202             if (doRestrict) {
4203                 assert !getField.isStatic();
4204                 // receiver type of VarHandle is too wide; narrow to caller
4205                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
4206                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
4207                 }
4208                 refc = lookupClass();
4209             }
4210             return VarHandles.makeFieldHandle(getField, refc,
4211                                               this.allowedModes == TRUSTED && !getField.isTrustedFinalField());
4212         }
4213         /** Check access and get the requested constructor. */
4214         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
4215             final boolean checkSecurity = true;
4216             return getDirectConstructorCommon(refc, ctor, checkSecurity);
4217         }
4218         /** Check access and get the requested constructor, eliding security manager checks. */
4219         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
4220             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4221             return getDirectConstructorCommon(refc, ctor, checkSecurity);
4222         }
4223         /** Common code for all constructors; do not call directly except from immediately above. */
4224         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
4225                                                   boolean checkSecurity) throws IllegalAccessException {
4226             assert(ctor.isConstructor());
4227             checkAccess(REF_newInvokeSpecial, refc, ctor);
4228             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4229             if (checkSecurity)
4230                 checkSecurityManager(refc, ctor);
4231             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
4232             return DirectMethodHandle.make(ctor).setVarargs(ctor);
4233         }
4234 
4235         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
4236          */
4237         /*non-public*/
4238         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
4239                 throws ReflectiveOperationException {
4240             if (!(type instanceof Class || type instanceof MethodType))
4241                 throw new InternalError("unresolved MemberName");
4242             MemberName member = new MemberName(refKind, defc, name, type);
4243             MethodHandle mh = LOOKASIDE_TABLE.get(member);
4244             if (mh != null) {
4245                 checkSymbolicClass(defc);
4246                 return mh;
4247             }
4248             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
4249                 // Treat MethodHandle.invoke and invokeExact specially.
4250                 mh = findVirtualForMH(member.getName(), member.getMethodType());
4251                 if (mh != null) {
4252                     return mh;
4253                 }
4254             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
4255                 // Treat signature-polymorphic methods on VarHandle specially.
4256                 mh = findVirtualForVH(member.getName(), member.getMethodType());
4257                 if (mh != null) {
4258                     return mh;
4259                 }
4260             }
4261             MemberName resolved = resolveOrFail(refKind, member);
4262             mh = getDirectMethodForConstant(refKind, defc, resolved);
4263             if (mh instanceof DirectMethodHandle dmh
4264                     && canBeCached(refKind, defc, resolved)) {
4265                 MemberName key = mh.internalMemberName();
4266                 if (key != null) {
4267                     key = key.asNormalOriginal();
4268                 }
4269                 if (member.equals(key)) {  // better safe than sorry
4270                     LOOKASIDE_TABLE.put(key, dmh);
4271                 }
4272             }
4273             return mh;
4274         }
4275         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
4276             if (refKind == REF_invokeSpecial) {
4277                 return false;
4278             }
4279             if (!Modifier.isPublic(defc.getModifiers()) ||
4280                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
4281                     !member.isPublic() ||
4282                     member.isCallerSensitive()) {
4283                 return false;
4284             }
4285             ClassLoader loader = defc.getClassLoader();
4286             if (loader != null) {
4287                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
4288                 boolean found = false;
4289                 while (sysl != null) {
4290                     if (loader == sysl) { found = true; break; }
4291                     sysl = sysl.getParent();
4292                 }
4293                 if (!found) {
4294                     return false;
4295                 }
4296             }
4297             try {
4298                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
4299                     new MemberName(refKind, defc, member.getName(), member.getType()));
4300                 if (resolved2 == null) {
4301                     return false;
4302                 }
4303                 checkSecurityManager(defc, resolved2);
4304             } catch (SecurityException ex) {
4305                 return false;
4306             }
4307             return true;
4308         }
4309         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
4310                 throws ReflectiveOperationException {
4311             if (MethodHandleNatives.refKindIsField(refKind)) {
4312                 return getDirectFieldNoSecurityManager(refKind, defc, member);
4313             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
4314                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
4315             } else if (refKind == REF_newInvokeSpecial) {
4316                 return getDirectConstructorNoSecurityManager(defc, member);
4317             }
4318             // oops
4319             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
4320         }
4321 
4322         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
4323     }
4324 
4325     /**
4326      * Produces a method handle constructing arrays of a desired type,
4327      * as if by the {@code anewarray} bytecode.
4328      * The return type of the method handle will be the array type.
4329      * The type of its sole argument will be {@code int}, which specifies the size of the array.
4330      *
4331      * <p> If the returned method handle is invoked with a negative
4332      * array size, a {@code NegativeArraySizeException} will be thrown.
4333      *
4334      * @param arrayClass an array type
4335      * @return a method handle which can create arrays of the given type
4336      * @throws NullPointerException if the argument is {@code null}
4337      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
4338      * @see java.lang.reflect.Array#newInstance(Class, int)
4339      * @jvms 6.5 {@code anewarray} Instruction
4340      * @since 9
4341      */
4342     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
4343         if (!arrayClass.isArray()) {
4344             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
4345         }
4346         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
4347                 bindTo(arrayClass.getComponentType());
4348         return ani.asType(ani.type().changeReturnType(arrayClass));
4349     }
4350 
4351     /**
4352      * Produces a method handle returning the length of an array,
4353      * as if by the {@code arraylength} bytecode.
4354      * The type of the method handle will have {@code int} as return type,
4355      * and its sole argument will be the array type.
4356      *
4357      * <p> If the returned method handle is invoked with a {@code null}
4358      * array reference, a {@code NullPointerException} will be thrown.
4359      *
4360      * @param arrayClass an array type
4361      * @return a method handle which can retrieve the length of an array of the given array type
4362      * @throws NullPointerException if the argument is {@code null}
4363      * @throws IllegalArgumentException if arrayClass is not an array type
4364      * @jvms 6.5 {@code arraylength} Instruction
4365      * @since 9
4366      */
4367     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
4368         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
4369     }
4370 
4371     /**
4372      * Produces a method handle giving read access to elements of an array,
4373      * as if by the {@code aaload} bytecode.
4374      * The type of the method handle will have a return type of the array's
4375      * element type.  Its first argument will be the array type,
4376      * and the second will be {@code int}.
4377      *
4378      * <p> When the returned method handle is invoked,
4379      * the array reference and array index are checked.
4380      * A {@code NullPointerException} will be thrown if the array reference
4381      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4382      * thrown if the index is negative or if it is greater than or equal to
4383      * the length of the array.
4384      *
4385      * @param arrayClass an array type
4386      * @return a method handle which can load values from the given array type
4387      * @throws NullPointerException if the argument is null
4388      * @throws  IllegalArgumentException if arrayClass is not an array type
4389      * @jvms 6.5 {@code aaload} Instruction
4390      */
4391     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
4392         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
4393     }
4394 
4395     /**
4396      * Produces a method handle giving write access to elements of an array,
4397      * as if by the {@code astore} bytecode.
4398      * The type of the method handle will have a void return type.
4399      * Its last argument will be the array's element type.
4400      * The first and second arguments will be the array type and int.
4401      *
4402      * <p> When the returned method handle is invoked,
4403      * the array reference and array index are checked.
4404      * A {@code NullPointerException} will be thrown if the array reference
4405      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4406      * thrown if the index is negative or if it is greater than or equal to
4407      * the length of the array.
4408      *
4409      * @param arrayClass the class of an array
4410      * @return a method handle which can store values into the array type
4411      * @throws NullPointerException if the argument is null
4412      * @throws IllegalArgumentException if arrayClass is not an array type
4413      * @jvms 6.5 {@code aastore} Instruction
4414      */
4415     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
4416         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
4417     }
4418 
4419     /**
4420      * Produces a VarHandle giving access to elements of an array of type
4421      * {@code arrayClass}.  The VarHandle's variable type is the component type
4422      * of {@code arrayClass} and the list of coordinate types is
4423      * {@code (arrayClass, int)}, where the {@code int} coordinate type
4424      * corresponds to an argument that is an index into an array.
4425      * <p>
4426      * Certain access modes of the returned VarHandle are unsupported under
4427      * the following conditions:
4428      * <ul>
4429      * <li>if the component type is anything other than {@code byte},
4430      *     {@code short}, {@code char}, {@code int}, {@code long},
4431      *     {@code float}, or {@code double} then numeric atomic update access
4432      *     modes are unsupported.
4433      * <li>if the component type is anything other than {@code boolean},
4434      *     {@code byte}, {@code short}, {@code char}, {@code int} or
4435      *     {@code long} then bitwise atomic update access modes are
4436      *     unsupported.
4437      * </ul>
4438      * <p>
4439      * If the component type is {@code float} or {@code double} then numeric
4440      * and atomic update access modes compare values using their bitwise
4441      * representation (see {@link Float#floatToRawIntBits} and
4442      * {@link Double#doubleToRawLongBits}, respectively).
4443      *
4444      * <p> When the returned {@code VarHandle} is invoked,
4445      * the array reference and array index are checked.
4446      * A {@code NullPointerException} will be thrown if the array reference
4447      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4448      * thrown if the index is negative or if it is greater than or equal to
4449      * the length of the array.
4450      *
4451      * @apiNote
4452      * Bitwise comparison of {@code float} values or {@code double} values,
4453      * as performed by the numeric and atomic update access modes, differ
4454      * from the primitive {@code ==} operator and the {@link Float#equals}
4455      * and {@link Double#equals} methods, specifically with respect to
4456      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
4457      * Care should be taken when performing a compare and set or a compare
4458      * and exchange operation with such values since the operation may
4459      * unexpectedly fail.
4460      * There are many possible NaN values that are considered to be
4461      * {@code NaN} in Java, although no IEEE 754 floating-point operation
4462      * provided by Java can distinguish between them.  Operation failure can
4463      * occur if the expected or witness value is a NaN value and it is
4464      * transformed (perhaps in a platform specific manner) into another NaN
4465      * value, and thus has a different bitwise representation (see
4466      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
4467      * details).
4468      * The values {@code -0.0} and {@code +0.0} have different bitwise
4469      * representations but are considered equal when using the primitive
4470      * {@code ==} operator.  Operation failure can occur if, for example, a
4471      * numeric algorithm computes an expected value to be say {@code -0.0}
4472      * and previously computed the witness value to be say {@code +0.0}.
4473      * @param arrayClass the class of an array, of type {@code T[]}
4474      * @return a VarHandle giving access to elements of an array
4475      * @throws NullPointerException if the arrayClass is null
4476      * @throws IllegalArgumentException if arrayClass is not an array type
4477      * @since 9
4478      */
4479     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
4480         return VarHandles.makeArrayElementHandle(arrayClass);
4481     }
4482 
4483     /**
4484      * Produces a VarHandle giving access to elements of a {@code byte[]} array
4485      * viewed as if it were a different primitive array type, such as
4486      * {@code int[]} or {@code long[]}.
4487      * The VarHandle's variable type is the component type of
4488      * {@code viewArrayClass} and the list of coordinate types is
4489      * {@code (byte[], int)}, where the {@code int} coordinate type
4490      * corresponds to an argument that is an index into a {@code byte[]} array.
4491      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
4492      * array, composing bytes to or from a value of the component type of
4493      * {@code viewArrayClass} according to the given endianness.
4494      * <p>
4495      * The supported component types (variables types) are {@code short},
4496      * {@code char}, {@code int}, {@code long}, {@code float} and
4497      * {@code double}.
4498      * <p>
4499      * Access of bytes at a given index will result in an
4500      * {@code ArrayIndexOutOfBoundsException} if the index is less than {@code 0}
4501      * or greater than the {@code byte[]} array length minus the size (in bytes)
4502      * of {@code T}.
4503      * <p>
4504      * Only plain {@linkplain VarHandle.AccessMode#GET get} and {@linkplain VarHandle.AccessMode#SET set}
4505      * access modes are supported by the returned var handle. For all other access modes, an
4506      * {@link UnsupportedOperationException} will be thrown.
4507      *
4508      * @apiNote if access modes other than plain access are required, clients should
4509      * consider using off-heap memory through
4510      * {@linkplain java.nio.ByteBuffer#allocateDirect(int) direct byte buffers} or
4511      * off-heap {@linkplain java.lang.foreign.MemorySegment memory segments},
4512      * or memory segments backed by a
4513      * {@linkplain java.lang.foreign.MemorySegment#ofArray(long[]) {@code long[]}},
4514      * for which stronger alignment guarantees can be made.
4515      *
4516      * @param viewArrayClass the view array class, with a component type of
4517      * type {@code T}
4518      * @param byteOrder the endianness of the view array elements, as
4519      * stored in the underlying {@code byte} array
4520      * @return a VarHandle giving access to elements of a {@code byte[]} array
4521      * viewed as if elements corresponding to the components type of the view
4522      * array class
4523      * @throws NullPointerException if viewArrayClass or byteOrder is null
4524      * @throws IllegalArgumentException if viewArrayClass is not an array type
4525      * @throws UnsupportedOperationException if the component type of
4526      * viewArrayClass is not supported as a variable type
4527      * @since 9
4528      */
4529     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
4530                                      ByteOrder byteOrder) throws IllegalArgumentException {
4531         Objects.requireNonNull(byteOrder);
4532         return VarHandles.byteArrayViewHandle(viewArrayClass,
4533                                               byteOrder == ByteOrder.BIG_ENDIAN);
4534     }
4535 
4536     /**
4537      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
4538      * viewed as if it were an array of elements of a different primitive
4539      * component type to that of {@code byte}, such as {@code int[]} or
4540      * {@code long[]}.
4541      * The VarHandle's variable type is the component type of
4542      * {@code viewArrayClass} and the list of coordinate types is
4543      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
4544      * corresponds to an argument that is an index into a {@code byte[]} array.
4545      * The returned VarHandle accesses bytes at an index in a
4546      * {@code ByteBuffer}, composing bytes to or from a value of the component
4547      * type of {@code viewArrayClass} according to the given endianness.
4548      * <p>
4549      * The supported component types (variables types) are {@code short},
4550      * {@code char}, {@code int}, {@code long}, {@code float} and
4551      * {@code double}.
4552      * <p>
4553      * Access will result in a {@code ReadOnlyBufferException} for anything
4554      * other than the read access modes if the {@code ByteBuffer} is read-only.
4555      * <p>
4556      * Access of bytes at a given index will result in an
4557      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4558      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
4559      * {@code T}.
4560      * <p>
4561      * For heap byte buffers, access is always unaligned. As a result, only the plain
4562      * {@linkplain VarHandle.AccessMode#GET get}
4563      * and {@linkplain VarHandle.AccessMode#SET set} access modes are supported by the
4564      * returned var handle. For all other access modes, an {@link IllegalStateException}
4565      * will be thrown.
4566      * <p>
4567      * For direct buffers only, access of bytes at an index may be aligned or misaligned for {@code T},
4568      * with respect to the underlying memory address, {@code A} say, associated
4569      * with the {@code ByteBuffer} and index.
4570      * If access is misaligned then access for anything other than the
4571      * {@code get} and {@code set} access modes will result in an
4572      * {@code IllegalStateException}.  In such cases atomic access is only
4573      * guaranteed with respect to the largest power of two that divides the GCD
4574      * of {@code A} and the size (in bytes) of {@code T}.
4575      * If access is aligned then following access modes are supported and are
4576      * guaranteed to support atomic access:
4577      * <ul>
4578      * <li>read write access modes for all {@code T}, with the exception of
4579      *     access modes {@code get} and {@code set} for {@code long} and
4580      *     {@code double} on 32-bit platforms.
4581      * <li>atomic update access modes for {@code int}, {@code long},
4582      *     {@code float} or {@code double}.
4583      *     (Future major platform releases of the JDK may support additional
4584      *     types for certain currently unsupported access modes.)
4585      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4586      *     (Future major platform releases of the JDK may support additional
4587      *     numeric types for certain currently unsupported access modes.)
4588      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4589      *     (Future major platform releases of the JDK may support additional
4590      *     numeric types for certain currently unsupported access modes.)
4591      * </ul>
4592      * <p>
4593      * Misaligned access, and therefore atomicity guarantees, may be determined
4594      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
4595      * {@code index}, {@code T} and its corresponding boxed type,
4596      * {@code T_BOX}, as follows:
4597      * <pre>{@code
4598      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4599      * ByteBuffer bb = ...
4600      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
4601      * boolean isMisaligned = misalignedAtIndex != 0;
4602      * }</pre>
4603      * <p>
4604      * If the variable type is {@code float} or {@code double} then atomic
4605      * update access modes compare values using their bitwise representation
4606      * (see {@link Float#floatToRawIntBits} and
4607      * {@link Double#doubleToRawLongBits}, respectively).
4608      * @param viewArrayClass the view array class, with a component type of
4609      * type {@code T}
4610      * @param byteOrder the endianness of the view array elements, as
4611      * stored in the underlying {@code ByteBuffer} (Note this overrides the
4612      * endianness of a {@code ByteBuffer})
4613      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
4614      * viewed as if elements corresponding to the components type of the view
4615      * array class
4616      * @throws NullPointerException if viewArrayClass or byteOrder is null
4617      * @throws IllegalArgumentException if viewArrayClass is not an array type
4618      * @throws UnsupportedOperationException if the component type of
4619      * viewArrayClass is not supported as a variable type
4620      * @since 9
4621      */
4622     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
4623                                       ByteOrder byteOrder) throws IllegalArgumentException {
4624         Objects.requireNonNull(byteOrder);
4625         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
4626                                                    byteOrder == ByteOrder.BIG_ENDIAN);
4627     }
4628 
4629 
4630     //--- method handle invocation (reflective style)
4631 
4632     /**
4633      * Produces a method handle which will invoke any method handle of the
4634      * given {@code type}, with a given number of trailing arguments replaced by
4635      * a single trailing {@code Object[]} array.
4636      * The resulting invoker will be a method handle with the following
4637      * arguments:
4638      * <ul>
4639      * <li>a single {@code MethodHandle} target
4640      * <li>zero or more leading values (counted by {@code leadingArgCount})
4641      * <li>an {@code Object[]} array containing trailing arguments
4642      * </ul>
4643      * <p>
4644      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
4645      * the indicated {@code type}.
4646      * That is, if the target is exactly of the given {@code type}, it will behave
4647      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
4648      * is used to convert the target to the required {@code type}.
4649      * <p>
4650      * The type of the returned invoker will not be the given {@code type}, but rather
4651      * will have all parameters except the first {@code leadingArgCount}
4652      * replaced by a single array of type {@code Object[]}, which will be
4653      * the final parameter.
4654      * <p>
4655      * Before invoking its target, the invoker will spread the final array, apply
4656      * reference casts as necessary, and unbox and widen primitive arguments.
4657      * If, when the invoker is called, the supplied array argument does
4658      * not have the correct number of elements, the invoker will throw
4659      * an {@link IllegalArgumentException} instead of invoking the target.
4660      * <p>
4661      * This method is equivalent to the following code (though it may be more efficient):
4662      * {@snippet lang="java" :
4663 MethodHandle invoker = MethodHandles.invoker(type);
4664 int spreadArgCount = type.parameterCount() - leadingArgCount;
4665 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
4666 return invoker;
4667      * }
4668      * This method throws no reflective or security exceptions.
4669      * @param type the desired target type
4670      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
4671      * @return a method handle suitable for invoking any method handle of the given type
4672      * @throws NullPointerException if {@code type} is null
4673      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
4674      *                  the range from 0 to {@code type.parameterCount()} inclusive,
4675      *                  or if the resulting method handle's type would have
4676      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4677      */
4678     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
4679         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
4680             throw newIllegalArgumentException("bad argument count", leadingArgCount);
4681         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
4682         return type.invokers().spreadInvoker(leadingArgCount);
4683     }
4684 
4685     /**
4686      * Produces a special <em>invoker method handle</em> which can be used to
4687      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
4688      * The resulting invoker will have a type which is
4689      * exactly equal to the desired type, except that it will accept
4690      * an additional leading argument of type {@code MethodHandle}.
4691      * <p>
4692      * This method is equivalent to the following code (though it may be more efficient):
4693      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
4694      *
4695      * <p style="font-size:smaller;">
4696      * <em>Discussion:</em>
4697      * Invoker method handles can be useful when working with variable method handles
4698      * of unknown types.
4699      * For example, to emulate an {@code invokeExact} call to a variable method
4700      * handle {@code M}, extract its type {@code T},
4701      * look up the invoker method {@code X} for {@code T},
4702      * and call the invoker method, as {@code X.invoke(T, A...)}.
4703      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
4704      * is unknown.)
4705      * If spreading, collecting, or other argument transformations are required,
4706      * they can be applied once to the invoker {@code X} and reused on many {@code M}
4707      * method handle values, as long as they are compatible with the type of {@code X}.
4708      * <p style="font-size:smaller;">
4709      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4710      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4711      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4712      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4713      * <p>
4714      * This method throws no reflective or security exceptions.
4715      * @param type the desired target type
4716      * @return a method handle suitable for invoking any method handle of the given type
4717      * @throws IllegalArgumentException if the resulting method handle's type would have
4718      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4719      */
4720     public static MethodHandle exactInvoker(MethodType type) {
4721         return type.invokers().exactInvoker();
4722     }
4723 
4724     /**
4725      * Produces a special <em>invoker method handle</em> which can be used to
4726      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
4727      * The resulting invoker will have a type which is
4728      * exactly equal to the desired type, except that it will accept
4729      * an additional leading argument of type {@code MethodHandle}.
4730      * <p>
4731      * Before invoking its target, if the target differs from the expected type,
4732      * the invoker will apply reference casts as
4733      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
4734      * Similarly, the return value will be converted as necessary.
4735      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
4736      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
4737      * <p>
4738      * This method is equivalent to the following code (though it may be more efficient):
4739      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
4740      * <p style="font-size:smaller;">
4741      * <em>Discussion:</em>
4742      * A {@linkplain MethodType#genericMethodType general method type} is one which
4743      * mentions only {@code Object} arguments and return values.
4744      * An invoker for such a type is capable of calling any method handle
4745      * of the same arity as the general type.
4746      * <p style="font-size:smaller;">
4747      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4748      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4749      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4750      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4751      * <p>
4752      * This method throws no reflective or security exceptions.
4753      * @param type the desired target type
4754      * @return a method handle suitable for invoking any method handle convertible to the given type
4755      * @throws IllegalArgumentException if the resulting method handle's type would have
4756      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4757      */
4758     public static MethodHandle invoker(MethodType type) {
4759         return type.invokers().genericInvoker();
4760     }
4761 
4762     /**
4763      * Produces a special <em>invoker method handle</em> which can be used to
4764      * invoke a signature-polymorphic access mode method on any VarHandle whose
4765      * associated access mode type is compatible with the given type.
4766      * The resulting invoker will have a type which is exactly equal to the
4767      * desired given type, except that it will accept an additional leading
4768      * argument of type {@code VarHandle}.
4769      *
4770      * @param accessMode the VarHandle access mode
4771      * @param type the desired target type
4772      * @return a method handle suitable for invoking an access mode method of
4773      *         any VarHandle whose access mode type is of the given type.
4774      * @since 9
4775      */
4776     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4777         return type.invokers().varHandleMethodExactInvoker(accessMode);
4778     }
4779 
4780     /**
4781      * Produces a special <em>invoker method handle</em> which can be used to
4782      * invoke a signature-polymorphic access mode method on any VarHandle whose
4783      * associated access mode type is compatible with the given type.
4784      * The resulting invoker will have a type which is exactly equal to the
4785      * desired given type, except that it will accept an additional leading
4786      * argument of type {@code VarHandle}.
4787      * <p>
4788      * Before invoking its target, if the access mode type differs from the
4789      * desired given type, the invoker will apply reference casts as necessary
4790      * and box, unbox, or widen primitive values, as if by
4791      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4792      * converted as necessary.
4793      * <p>
4794      * This method is equivalent to the following code (though it may be more
4795      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4796      *
4797      * @param accessMode the VarHandle access mode
4798      * @param type the desired target type
4799      * @return a method handle suitable for invoking an access mode method of
4800      *         any VarHandle whose access mode type is convertible to the given
4801      *         type.
4802      * @since 9
4803      */
4804     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4805         return type.invokers().varHandleMethodInvoker(accessMode);
4806     }
4807 
4808     /*non-public*/
4809     static MethodHandle basicInvoker(MethodType type) {
4810         return type.invokers().basicInvoker();
4811     }
4812 
4813      //--- method handle modification (creation from other method handles)
4814 
4815     /**
4816      * Produces a method handle which adapts the type of the
4817      * given method handle to a new type by pairwise argument and return type conversion.
4818      * The original type and new type must have the same number of arguments.
4819      * The resulting method handle is guaranteed to report a type
4820      * which is equal to the desired new type.
4821      * <p>
4822      * If the original type and new type are equal, returns target.
4823      * <p>
4824      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4825      * and some additional conversions are also applied if those conversions fail.
4826      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4827      * if possible, before or instead of any conversions done by {@code asType}:
4828      * <ul>
4829      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4830      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4831      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4832      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4833      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4834      *     (This treatment follows the usage of the bytecode verifier.)
4835      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4836      *     <em>T0</em> is converted to byte via Java casting conversion (JLS {@jls 5.5}),
4837      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4838      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4839      *     then a Java casting conversion (JLS {@jls 5.5}) is applied.
4840      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4841      *     widening and/or narrowing.)
4842      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4843      *     conversion will be applied at runtime, possibly followed
4844      *     by a Java casting conversion (JLS {@jls 5.5}) on the primitive value,
4845      *     possibly followed by a conversion from byte to boolean by testing
4846      *     the low-order bit.
4847      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4848      *     and if the reference is null at runtime, a zero value is introduced.
4849      * </ul>
4850      * @param target the method handle to invoke after arguments are retyped
4851      * @param newType the expected type of the new method handle
4852      * @return a method handle which delegates to the target after performing
4853      *           any necessary argument conversions, and arranges for any
4854      *           necessary return value conversions
4855      * @throws NullPointerException if either argument is null
4856      * @throws WrongMethodTypeException if the conversion cannot be made
4857      * @see MethodHandle#asType
4858      */
4859     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4860         explicitCastArgumentsChecks(target, newType);
4861         // use the asTypeCache when possible:
4862         MethodType oldType = target.type();
4863         if (oldType == newType)  return target;
4864         if (oldType.explicitCastEquivalentToAsType(newType)) {
4865             return target.asFixedArity().asType(newType);
4866         }
4867         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4868     }
4869 
4870     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4871         if (target.type().parameterCount() != newType.parameterCount()) {
4872             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4873         }
4874     }
4875 
4876     /**
4877      * Produces a method handle which adapts the calling sequence of the
4878      * given method handle to a new type, by reordering the arguments.
4879      * The resulting method handle is guaranteed to report a type
4880      * which is equal to the desired new type.
4881      * <p>
4882      * The given array controls the reordering.
4883      * Call {@code #I} the number of incoming parameters (the value
4884      * {@code newType.parameterCount()}, and call {@code #O} the number
4885      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4886      * Then the length of the reordering array must be {@code #O},
4887      * and each element must be a non-negative number less than {@code #I}.
4888      * For every {@code N} less than {@code #O}, the {@code N}-th
4889      * outgoing argument will be taken from the {@code I}-th incoming
4890      * argument, where {@code I} is {@code reorder[N]}.
4891      * <p>
4892      * No argument or return value conversions are applied.
4893      * The type of each incoming argument, as determined by {@code newType},
4894      * must be identical to the type of the corresponding outgoing parameter
4895      * or parameters in the target method handle.
4896      * The return type of {@code newType} must be identical to the return
4897      * type of the original target.
4898      * <p>
4899      * The reordering array need not specify an actual permutation.
4900      * An incoming argument will be duplicated if its index appears
4901      * more than once in the array, and an incoming argument will be dropped
4902      * if its index does not appear in the array.
4903      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4904      * incoming arguments which are not mentioned in the reordering array
4905      * may be of any type, as determined only by {@code newType}.
4906      * {@snippet lang="java" :
4907 import static java.lang.invoke.MethodHandles.*;
4908 import static java.lang.invoke.MethodType.*;
4909 ...
4910 MethodType intfn1 = methodType(int.class, int.class);
4911 MethodType intfn2 = methodType(int.class, int.class, int.class);
4912 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4913 assert(sub.type().equals(intfn2));
4914 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4915 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4916 assert((int)rsub.invokeExact(1, 100) == 99);
4917 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4918 assert(add.type().equals(intfn2));
4919 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4920 assert(twice.type().equals(intfn1));
4921 assert((int)twice.invokeExact(21) == 42);
4922      * }
4923      * <p>
4924      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4925      * variable-arity method handle}, even if the original target method handle was.
4926      * @param target the method handle to invoke after arguments are reordered
4927      * @param newType the expected type of the new method handle
4928      * @param reorder an index array which controls the reordering
4929      * @return a method handle which delegates to the target after it
4930      *           drops unused arguments and moves and/or duplicates the other arguments
4931      * @throws NullPointerException if any argument is null
4932      * @throws IllegalArgumentException if the index array length is not equal to
4933      *                  the arity of the target, or if any index array element
4934      *                  not a valid index for a parameter of {@code newType},
4935      *                  or if two corresponding parameter types in
4936      *                  {@code target.type()} and {@code newType} are not identical,
4937      */
4938     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4939         reorder = reorder.clone();  // get a private copy
4940         MethodType oldType = target.type();
4941         permuteArgumentChecks(reorder, newType, oldType);
4942         // first detect dropped arguments and handle them separately
4943         int[] originalReorder = reorder;
4944         BoundMethodHandle result = target.rebind();
4945         LambdaForm form = result.form;
4946         int newArity = newType.parameterCount();
4947         // Normalize the reordering into a real permutation,
4948         // by removing duplicates and adding dropped elements.
4949         // This somewhat improves lambda form caching, as well
4950         // as simplifying the transform by breaking it up into steps.
4951         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4952             if (ddIdx > 0) {
4953                 // We found a duplicated entry at reorder[ddIdx].
4954                 // Example:  (x,y,z)->asList(x,y,z)
4955                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4956                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4957                 // The starred element corresponds to the argument
4958                 // deleted by the dupArgumentForm transform.
4959                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4960                 boolean killFirst = false;
4961                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4962                     // Set killFirst if the dup is larger than an intervening position.
4963                     // This will remove at least one inversion from the permutation.
4964                     if (dupVal > val) killFirst = true;
4965                 }
4966                 if (!killFirst) {
4967                     srcPos = dstPos;
4968                     dstPos = ddIdx;
4969                 }
4970                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4971                 assert (reorder[srcPos] == reorder[dstPos]);
4972                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4973                 // contract the reordering by removing the element at dstPos
4974                 int tailPos = dstPos + 1;
4975                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4976                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4977             } else {
4978                 int dropVal = ~ddIdx, insPos = 0;
4979                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4980                     // Find first element of reorder larger than dropVal.
4981                     // This is where we will insert the dropVal.
4982                     insPos += 1;
4983                 }
4984                 Class<?> ptype = newType.parameterType(dropVal);
4985                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4986                 oldType = oldType.insertParameterTypes(insPos, ptype);
4987                 // expand the reordering by inserting an element at insPos
4988                 int tailPos = insPos + 1;
4989                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4990                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4991                 reorder[insPos] = dropVal;
4992             }
4993             assert (permuteArgumentChecks(reorder, newType, oldType));
4994         }
4995         assert (reorder.length == newArity);  // a perfect permutation
4996         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4997         form = form.editor().permuteArgumentsForm(1, reorder);
4998         if (newType == result.type() && form == result.internalForm())
4999             return result;
5000         return result.copyWith(newType, form);
5001     }
5002 
5003     /**
5004      * Return an indication of any duplicate or omission in reorder.
5005      * If the reorder contains a duplicate entry, return the index of the second occurrence.
5006      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
5007      * Otherwise, return zero.
5008      * If an element not in [0..newArity-1] is encountered, return reorder.length.
5009      */
5010     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
5011         final int BIT_LIMIT = 63;  // max number of bits in bit mask
5012         if (newArity < BIT_LIMIT) {
5013             long mask = 0;
5014             for (int i = 0; i < reorder.length; i++) {
5015                 int arg = reorder[i];
5016                 if (arg >= newArity) {
5017                     return reorder.length;
5018                 }
5019                 long bit = 1L << arg;
5020                 if ((mask & bit) != 0) {
5021                     return i;  // >0 indicates a dup
5022                 }
5023                 mask |= bit;
5024             }
5025             if (mask == (1L << newArity) - 1) {
5026                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
5027                 return 0;
5028             }
5029             // find first zero
5030             long zeroBit = Long.lowestOneBit(~mask);
5031             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
5032             assert(zeroPos <= newArity);
5033             if (zeroPos == newArity) {
5034                 return 0;
5035             }
5036             return ~zeroPos;
5037         } else {
5038             // same algorithm, different bit set
5039             BitSet mask = new BitSet(newArity);
5040             for (int i = 0; i < reorder.length; i++) {
5041                 int arg = reorder[i];
5042                 if (arg >= newArity) {
5043                     return reorder.length;
5044                 }
5045                 if (mask.get(arg)) {
5046                     return i;  // >0 indicates a dup
5047                 }
5048                 mask.set(arg);
5049             }
5050             int zeroPos = mask.nextClearBit(0);
5051             assert(zeroPos <= newArity);
5052             if (zeroPos == newArity) {
5053                 return 0;
5054             }
5055             return ~zeroPos;
5056         }
5057     }
5058 
5059     static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
5060         if (newType.returnType() != oldType.returnType())
5061             throw newIllegalArgumentException("return types do not match",
5062                     oldType, newType);
5063         if (reorder.length != oldType.parameterCount())
5064             throw newIllegalArgumentException("old type parameter count and reorder array length do not match",
5065                     oldType, Arrays.toString(reorder));
5066 
5067         int limit = newType.parameterCount();
5068         for (int j = 0; j < reorder.length; j++) {
5069             int i = reorder[j];
5070             if (i < 0 || i >= limit) {
5071                 throw newIllegalArgumentException("index is out of bounds for new type",
5072                         i, newType);
5073             }
5074             Class<?> src = newType.parameterType(i);
5075             Class<?> dst = oldType.parameterType(j);
5076             if (src != dst)
5077                 throw newIllegalArgumentException("parameter types do not match after reorder",
5078                         oldType, newType);
5079         }
5080         return true;
5081     }
5082 
5083     /**
5084      * Produces a method handle of the requested return type which returns the given
5085      * constant value every time it is invoked.
5086      * <p>
5087      * Before the method handle is returned, the passed-in value is converted to the requested type.
5088      * If the requested type is primitive, widening primitive conversions are attempted,
5089      * else reference conversions are attempted.
5090      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
5091      * @param type the return type of the desired method handle
5092      * @param value the value to return
5093      * @return a method handle of the given return type and no arguments, which always returns the given value
5094      * @throws NullPointerException if the {@code type} argument is null
5095      * @throws ClassCastException if the value cannot be converted to the required return type
5096      * @throws IllegalArgumentException if the given type is {@code void.class}
5097      */
5098     public static MethodHandle constant(Class<?> type, Object value) {
5099         if (type.isPrimitive()) {
5100             if (type == void.class)
5101                 throw newIllegalArgumentException("void type");
5102             Wrapper w = Wrapper.forPrimitiveType(type);
5103             value = w.convert(value, type);
5104             if (w.zero().equals(value))
5105                 return zero(w, type);
5106             return insertArguments(identity(type), 0, value);
5107         } else {
5108             if (value == null)
5109                 return zero(Wrapper.OBJECT, type);
5110             return identity(type).bindTo(value);
5111         }
5112     }
5113 
5114     /**
5115      * Produces a method handle which returns its sole argument when invoked.
5116      * @param type the type of the sole parameter and return value of the desired method handle
5117      * @return a unary method handle which accepts and returns the given type
5118      * @throws NullPointerException if the argument is null
5119      * @throws IllegalArgumentException if the given type is {@code void.class}
5120      */
5121     public static MethodHandle identity(Class<?> type) {
5122         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
5123         int pos = btw.ordinal();
5124         MethodHandle ident = IDENTITY_MHS[pos];
5125         if (ident == null) {
5126             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
5127         }
5128         if (ident.type().returnType() == type)
5129             return ident;
5130         // something like identity(Foo.class); do not bother to intern these
5131         assert (btw == Wrapper.OBJECT);
5132         return makeIdentity(type);
5133     }
5134 
5135     /**
5136      * Produces a constant method handle of the requested return type which
5137      * returns the default value for that type every time it is invoked.
5138      * The resulting constant method handle will have no side effects.
5139      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
5140      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
5141      * since {@code explicitCastArguments} converts {@code null} to default values.
5142      * @param type the expected return type of the desired method handle
5143      * @return a constant method handle that takes no arguments
5144      *         and returns the default value of the given type (or void, if the type is void)
5145      * @throws NullPointerException if the argument is null
5146      * @see MethodHandles#constant
5147      * @see MethodHandles#empty
5148      * @see MethodHandles#explicitCastArguments
5149      * @since 9
5150      */
5151     public static MethodHandle zero(Class<?> type) {
5152         Objects.requireNonNull(type);
5153         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
5154     }
5155 
5156     private static MethodHandle identityOrVoid(Class<?> type) {
5157         return type == void.class ? zero(type) : identity(type);
5158     }
5159 
5160     /**
5161      * Produces a method handle of the requested type which ignores any arguments, does nothing,
5162      * and returns a suitable default depending on the return type.
5163      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
5164      * <p>The returned method handle is equivalent to
5165      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
5166      *
5167      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
5168      * {@code guardWithTest(pred, target, empty(target.type())}.
5169      * @param type the type of the desired method handle
5170      * @return a constant method handle of the given type, which returns a default value of the given return type
5171      * @throws NullPointerException if the argument is null
5172      * @see MethodHandles#zero
5173      * @see MethodHandles#constant
5174      * @since 9
5175      */
5176     public static  MethodHandle empty(MethodType type) {
5177         Objects.requireNonNull(type);
5178         return dropArgumentsTrusted(zero(type.returnType()), 0, type.ptypes());
5179     }
5180 
5181     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
5182     private static MethodHandle makeIdentity(Class<?> ptype) {
5183         MethodType mtype = methodType(ptype, ptype);
5184         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
5185         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
5186     }
5187 
5188     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
5189         int pos = btw.ordinal();
5190         MethodHandle zero = ZERO_MHS[pos];
5191         if (zero == null) {
5192             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
5193         }
5194         if (zero.type().returnType() == rtype)
5195             return zero;
5196         assert(btw == Wrapper.OBJECT);
5197         return makeZero(rtype);
5198     }
5199     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
5200     private static MethodHandle makeZero(Class<?> rtype) {
5201         MethodType mtype = methodType(rtype);
5202         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
5203         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
5204     }
5205 
5206     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
5207         // Simulate a CAS, to avoid racy duplication of results.
5208         MethodHandle prev = cache[pos];
5209         if (prev != null) return prev;
5210         return cache[pos] = value;
5211     }
5212 
5213     /**
5214      * Provides a target method handle with one or more <em>bound arguments</em>
5215      * in advance of the method handle's invocation.
5216      * The formal parameters to the target corresponding to the bound
5217      * arguments are called <em>bound parameters</em>.
5218      * Returns a new method handle which saves away the bound arguments.
5219      * When it is invoked, it receives arguments for any non-bound parameters,
5220      * binds the saved arguments to their corresponding parameters,
5221      * and calls the original target.
5222      * <p>
5223      * The type of the new method handle will drop the types for the bound
5224      * parameters from the original target type, since the new method handle
5225      * will no longer require those arguments to be supplied by its callers.
5226      * <p>
5227      * Each given argument object must match the corresponding bound parameter type.
5228      * If a bound parameter type is a primitive, the argument object
5229      * must be a wrapper, and will be unboxed to produce the primitive value.
5230      * <p>
5231      * The {@code pos} argument selects which parameters are to be bound.
5232      * It may range between zero and <i>N-L</i> (inclusively),
5233      * where <i>N</i> is the arity of the target method handle
5234      * and <i>L</i> is the length of the values array.
5235      * <p>
5236      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5237      * variable-arity method handle}, even if the original target method handle was.
5238      * @param target the method handle to invoke after the argument is inserted
5239      * @param pos where to insert the argument (zero for the first)
5240      * @param values the series of arguments to insert
5241      * @return a method handle which inserts an additional argument,
5242      *         before calling the original method handle
5243      * @throws NullPointerException if the target or the {@code values} array is null
5244      * @throws IllegalArgumentException if {@code pos} is less than {@code 0} or greater than
5245      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
5246      *         is the length of the values array.
5247      * @throws ClassCastException if an argument does not match the corresponding bound parameter
5248      *         type.
5249      * @see MethodHandle#bindTo
5250      */
5251     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
5252         int insCount = values.length;
5253         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
5254         if (insCount == 0)  return target;
5255         BoundMethodHandle result = target.rebind();
5256         for (int i = 0; i < insCount; i++) {
5257             Object value = values[i];
5258             Class<?> ptype = ptypes[pos+i];
5259             if (ptype.isPrimitive()) {
5260                 result = insertArgumentPrimitive(result, pos, ptype, value);
5261             } else {
5262                 value = ptype.cast(value);  // throw CCE if needed
5263                 result = result.bindArgumentL(pos, value);
5264             }
5265         }
5266         return result;
5267     }
5268 
5269     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
5270                                                              Class<?> ptype, Object value) {
5271         Wrapper w = Wrapper.forPrimitiveType(ptype);
5272         // perform unboxing and/or primitive conversion
5273         value = w.convert(value, ptype);
5274         return switch (w) {
5275             case INT    -> result.bindArgumentI(pos, (int) value);
5276             case LONG   -> result.bindArgumentJ(pos, (long) value);
5277             case FLOAT  -> result.bindArgumentF(pos, (float) value);
5278             case DOUBLE -> result.bindArgumentD(pos, (double) value);
5279             default -> result.bindArgumentI(pos, ValueConversions.widenSubword(value));
5280         };
5281     }
5282 
5283     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
5284         MethodType oldType = target.type();
5285         int outargs = oldType.parameterCount();
5286         int inargs  = outargs - insCount;
5287         if (inargs < 0)
5288             throw newIllegalArgumentException("too many values to insert");
5289         if (pos < 0 || pos > inargs)
5290             throw newIllegalArgumentException("no argument type to append");
5291         return oldType.ptypes();
5292     }
5293 
5294     /**
5295      * Produces a method handle which will discard some dummy arguments
5296      * before calling some other specified <i>target</i> method handle.
5297      * The type of the new method handle will be the same as the target's type,
5298      * except it will also include the dummy argument types,
5299      * at some given position.
5300      * <p>
5301      * The {@code pos} argument may range between zero and <i>N</i>,
5302      * where <i>N</i> is the arity of the target.
5303      * If {@code pos} is zero, the dummy arguments will precede
5304      * the target's real arguments; if {@code pos} is <i>N</i>
5305      * they will come after.
5306      * <p>
5307      * <b>Example:</b>
5308      * {@snippet lang="java" :
5309 import static java.lang.invoke.MethodHandles.*;
5310 import static java.lang.invoke.MethodType.*;
5311 ...
5312 MethodHandle cat = lookup().findVirtual(String.class,
5313   "concat", methodType(String.class, String.class));
5314 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5315 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
5316 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
5317 assertEquals(bigType, d0.type());
5318 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
5319      * }
5320      * <p>
5321      * This method is also equivalent to the following code:
5322      * <blockquote><pre>
5323      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
5324      * </pre></blockquote>
5325      * @param target the method handle to invoke after the arguments are dropped
5326      * @param pos position of first argument to drop (zero for the leftmost)
5327      * @param valueTypes the type(s) of the argument(s) to drop
5328      * @return a method handle which drops arguments of the given types,
5329      *         before calling the original method handle
5330      * @throws NullPointerException if the target is null,
5331      *                              or if the {@code valueTypes} list or any of its elements is null
5332      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5333      *                  or if {@code pos} is negative or greater than the arity of the target,
5334      *                  or if the new method handle's type would have too many parameters
5335      */
5336     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
5337         return dropArgumentsTrusted(target, pos, valueTypes.toArray(new Class<?>[0]).clone());
5338     }
5339 
5340     static MethodHandle dropArgumentsTrusted(MethodHandle target, int pos, Class<?>[] valueTypes) {
5341         MethodType oldType = target.type();  // get NPE
5342         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
5343         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
5344         if (dropped == 0)  return target;
5345         BoundMethodHandle result = target.rebind();
5346         LambdaForm lform = result.form;
5347         int insertFormArg = 1 + pos;
5348         for (Class<?> ptype : valueTypes) {
5349             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
5350         }
5351         result = result.copyWith(newType, lform);
5352         return result;
5353     }
5354 
5355     private static int dropArgumentChecks(MethodType oldType, int pos, Class<?>[] valueTypes) {
5356         int dropped = valueTypes.length;
5357         MethodType.checkSlotCount(dropped);
5358         int outargs = oldType.parameterCount();
5359         int inargs  = outargs + dropped;
5360         if (pos < 0 || pos > outargs)
5361             throw newIllegalArgumentException("no argument type to remove"
5362                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
5363                     );
5364         return dropped;
5365     }
5366 
5367     /**
5368      * Produces a method handle which will discard some dummy arguments
5369      * before calling some other specified <i>target</i> method handle.
5370      * The type of the new method handle will be the same as the target's type,
5371      * except it will also include the dummy argument types,
5372      * at some given position.
5373      * <p>
5374      * The {@code pos} argument may range between zero and <i>N</i>,
5375      * where <i>N</i> is the arity of the target.
5376      * If {@code pos} is zero, the dummy arguments will precede
5377      * the target's real arguments; if {@code pos} is <i>N</i>
5378      * they will come after.
5379      * @apiNote
5380      * {@snippet lang="java" :
5381 import static java.lang.invoke.MethodHandles.*;
5382 import static java.lang.invoke.MethodType.*;
5383 ...
5384 MethodHandle cat = lookup().findVirtual(String.class,
5385   "concat", methodType(String.class, String.class));
5386 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5387 MethodHandle d0 = dropArguments(cat, 0, String.class);
5388 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
5389 MethodHandle d1 = dropArguments(cat, 1, String.class);
5390 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
5391 MethodHandle d2 = dropArguments(cat, 2, String.class);
5392 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
5393 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
5394 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
5395      * }
5396      * <p>
5397      * This method is also equivalent to the following code:
5398      * <blockquote><pre>
5399      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
5400      * </pre></blockquote>
5401      * @param target the method handle to invoke after the arguments are dropped
5402      * @param pos position of first argument to drop (zero for the leftmost)
5403      * @param valueTypes the type(s) of the argument(s) to drop
5404      * @return a method handle which drops arguments of the given types,
5405      *         before calling the original method handle
5406      * @throws NullPointerException if the target is null,
5407      *                              or if the {@code valueTypes} array or any of its elements is null
5408      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5409      *                  or if {@code pos} is negative or greater than the arity of the target,
5410      *                  or if the new method handle's type would have
5411      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
5412      */
5413     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
5414         return dropArgumentsTrusted(target, pos, valueTypes.clone());
5415     }
5416 
5417     /* Convenience overloads for trusting internal low-arity call-sites */
5418     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1) {
5419         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1 });
5420     }
5421     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1, Class<?> valueType2) {
5422         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1, valueType2 });
5423     }
5424 
5425     // private version which allows caller some freedom with error handling
5426     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, Class<?>[] newTypes, int pos,
5427                                       boolean nullOnFailure) {
5428         Class<?>[] oldTypes = target.type().ptypes();
5429         int match = oldTypes.length;
5430         if (skip != 0) {
5431             if (skip < 0 || skip > match) {
5432                 throw newIllegalArgumentException("illegal skip", skip, target);
5433             }
5434             oldTypes = Arrays.copyOfRange(oldTypes, skip, match);
5435             match -= skip;
5436         }
5437         Class<?>[] addTypes = newTypes;
5438         int add = addTypes.length;
5439         if (pos != 0) {
5440             if (pos < 0 || pos > add) {
5441                 throw newIllegalArgumentException("illegal pos", pos, Arrays.toString(newTypes));
5442             }
5443             addTypes = Arrays.copyOfRange(addTypes, pos, add);
5444             add -= pos;
5445             assert(addTypes.length == add);
5446         }
5447         // Do not add types which already match the existing arguments.
5448         if (match > add || !Arrays.equals(oldTypes, 0, oldTypes.length, addTypes, 0, match)) {
5449             if (nullOnFailure) {
5450                 return null;
5451             }
5452             throw newIllegalArgumentException("argument lists do not match",
5453                 Arrays.toString(oldTypes), Arrays.toString(newTypes));
5454         }
5455         addTypes = Arrays.copyOfRange(addTypes, match, add);
5456         add -= match;
5457         assert(addTypes.length == add);
5458         // newTypes:     (   P*[pos], M*[match], A*[add] )
5459         // target: ( S*[skip],        M*[match]  )
5460         MethodHandle adapter = target;
5461         if (add > 0) {
5462             adapter = dropArgumentsTrusted(adapter, skip+ match, addTypes);
5463         }
5464         // adapter: (S*[skip],        M*[match], A*[add] )
5465         if (pos > 0) {
5466             adapter = dropArgumentsTrusted(adapter, skip, Arrays.copyOfRange(newTypes, 0, pos));
5467         }
5468         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
5469         return adapter;
5470     }
5471 
5472     /**
5473      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
5474      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
5475      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
5476      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
5477      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
5478      * {@link #dropArguments(MethodHandle, int, Class[])}.
5479      * <p>
5480      * The resulting handle will have the same return type as the target handle.
5481      * <p>
5482      * In more formal terms, assume these two type lists:<ul>
5483      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
5484      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
5485      * {@code newTypes}.
5486      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
5487      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
5488      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
5489      * sub-list.
5490      * </ul>
5491      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
5492      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
5493      * {@link #dropArguments(MethodHandle, int, Class[])}.
5494      *
5495      * @apiNote
5496      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
5497      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
5498      * {@snippet lang="java" :
5499 import static java.lang.invoke.MethodHandles.*;
5500 import static java.lang.invoke.MethodType.*;
5501 ...
5502 ...
5503 MethodHandle h0 = constant(boolean.class, true);
5504 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
5505 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
5506 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
5507 if (h1.type().parameterCount() < h2.type().parameterCount())
5508     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
5509 else
5510     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
5511 MethodHandle h3 = guardWithTest(h0, h1, h2);
5512 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
5513      * }
5514      * @param target the method handle to adapt
5515      * @param skip number of targets parameters to disregard (they will be unchanged)
5516      * @param newTypes the list of types to match {@code target}'s parameter type list to
5517      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
5518      * @return a possibly adapted method handle
5519      * @throws NullPointerException if either argument is null
5520      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
5521      *         or if {@code skip} is negative or greater than the arity of the target,
5522      *         or if {@code pos} is negative or greater than the newTypes list size,
5523      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
5524      *         {@code pos}.
5525      * @since 9
5526      */
5527     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
5528         Objects.requireNonNull(target);
5529         Objects.requireNonNull(newTypes);
5530         return dropArgumentsToMatch(target, skip, newTypes.toArray(new Class<?>[0]).clone(), pos, false);
5531     }
5532 
5533     /**
5534      * Drop the return value of the target handle (if any).
5535      * The returned method handle will have a {@code void} return type.
5536      *
5537      * @param target the method handle to adapt
5538      * @return a possibly adapted method handle
5539      * @throws NullPointerException if {@code target} is null
5540      * @since 16
5541      */
5542     public static MethodHandle dropReturn(MethodHandle target) {
5543         Objects.requireNonNull(target);
5544         MethodType oldType = target.type();
5545         Class<?> oldReturnType = oldType.returnType();
5546         if (oldReturnType == void.class)
5547             return target;
5548         MethodType newType = oldType.changeReturnType(void.class);
5549         BoundMethodHandle result = target.rebind();
5550         LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true);
5551         result = result.copyWith(newType, lform);
5552         return result;
5553     }
5554 
5555     /**
5556      * Adapts a target method handle by pre-processing
5557      * one or more of its arguments, each with its own unary filter function,
5558      * and then calling the target with each pre-processed argument
5559      * replaced by the result of its corresponding filter function.
5560      * <p>
5561      * The pre-processing is performed by one or more method handles,
5562      * specified in the elements of the {@code filters} array.
5563      * The first element of the filter array corresponds to the {@code pos}
5564      * argument of the target, and so on in sequence.
5565      * The filter functions are invoked in left to right order.
5566      * <p>
5567      * Null arguments in the array are treated as identity functions,
5568      * and the corresponding arguments left unchanged.
5569      * (If there are no non-null elements in the array, the original target is returned.)
5570      * Each filter is applied to the corresponding argument of the adapter.
5571      * <p>
5572      * If a filter {@code F} applies to the {@code N}th argument of
5573      * the target, then {@code F} must be a method handle which
5574      * takes exactly one argument.  The type of {@code F}'s sole argument
5575      * replaces the corresponding argument type of the target
5576      * in the resulting adapted method handle.
5577      * The return type of {@code F} must be identical to the corresponding
5578      * parameter type of the target.
5579      * <p>
5580      * It is an error if there are elements of {@code filters}
5581      * (null or not)
5582      * which do not correspond to argument positions in the target.
5583      * <p><b>Example:</b>
5584      * {@snippet lang="java" :
5585 import static java.lang.invoke.MethodHandles.*;
5586 import static java.lang.invoke.MethodType.*;
5587 ...
5588 MethodHandle cat = lookup().findVirtual(String.class,
5589   "concat", methodType(String.class, String.class));
5590 MethodHandle upcase = lookup().findVirtual(String.class,
5591   "toUpperCase", methodType(String.class));
5592 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5593 MethodHandle f0 = filterArguments(cat, 0, upcase);
5594 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
5595 MethodHandle f1 = filterArguments(cat, 1, upcase);
5596 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
5597 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
5598 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
5599      * }
5600      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5601      * denotes the return type of both the {@code target} and resulting adapter.
5602      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
5603      * of the parameters and arguments that precede and follow the filter position
5604      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
5605      * values of the filtered parameters and arguments; they also represent the
5606      * return types of the {@code filter[i]} handles. The latter accept arguments
5607      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
5608      * the resulting adapter.
5609      * {@snippet lang="java" :
5610      * T target(P... p, A[i]... a[i], B... b);
5611      * A[i] filter[i](V[i]);
5612      * T adapter(P... p, V[i]... v[i], B... b) {
5613      *   return target(p..., filter[i](v[i])..., b...);
5614      * }
5615      * }
5616      * <p>
5617      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5618      * variable-arity method handle}, even if the original target method handle was.
5619      *
5620      * @param target the method handle to invoke after arguments are filtered
5621      * @param pos the position of the first argument to filter
5622      * @param filters method handles to call initially on filtered arguments
5623      * @return method handle which incorporates the specified argument filtering logic
5624      * @throws NullPointerException if the target is null
5625      *                              or if the {@code filters} array is null
5626      * @throws IllegalArgumentException if a non-null element of {@code filters}
5627      *          does not match a corresponding argument type of target as described above,
5628      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
5629      *          or if the resulting method handle's type would have
5630      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5631      */
5632     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
5633         // In method types arguments start at index 0, while the LF
5634         // editor have the MH receiver at position 0 - adjust appropriately.
5635         final int MH_RECEIVER_OFFSET = 1;
5636         filterArgumentsCheckArity(target, pos, filters);
5637         MethodHandle adapter = target;
5638 
5639         // keep track of currently matched filters, as to optimize repeated filters
5640         int index = 0;
5641         int[] positions = new int[filters.length];
5642         MethodHandle filter = null;
5643 
5644         // process filters in reverse order so that the invocation of
5645         // the resulting adapter will invoke the filters in left-to-right order
5646         for (int i = filters.length - 1; i >= 0; --i) {
5647             MethodHandle newFilter = filters[i];
5648             if (newFilter == null) continue;  // ignore null elements of filters
5649 
5650             // flush changes on update
5651             if (filter != newFilter) {
5652                 if (filter != null) {
5653                     if (index > 1) {
5654                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5655                     } else {
5656                         adapter = filterArgument(adapter, positions[0] - 1, filter);
5657                     }
5658                 }
5659                 filter = newFilter;
5660                 index = 0;
5661             }
5662 
5663             filterArgumentChecks(target, pos + i, newFilter);
5664             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
5665         }
5666         if (index > 1) {
5667             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5668         } else if (index == 1) {
5669             adapter = filterArgument(adapter, positions[0] - 1, filter);
5670         }
5671         return adapter;
5672     }
5673 
5674     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
5675         MethodType targetType = adapter.type();
5676         MethodType filterType = filter.type();
5677         BoundMethodHandle result = adapter.rebind();
5678         Class<?> newParamType = filterType.parameterType(0);
5679 
5680         Class<?>[] ptypes = targetType.ptypes().clone();
5681         for (int pos : positions) {
5682             ptypes[pos - 1] = newParamType;
5683         }
5684         MethodType newType = MethodType.methodType(targetType.rtype(), ptypes, true);
5685 
5686         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
5687         return result.copyWithExtendL(newType, lform, filter);
5688     }
5689 
5690     /*non-public*/
5691     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
5692         filterArgumentChecks(target, pos, filter);
5693         MethodType targetType = target.type();
5694         MethodType filterType = filter.type();
5695         BoundMethodHandle result = target.rebind();
5696         Class<?> newParamType = filterType.parameterType(0);
5697         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
5698         MethodType newType = targetType.changeParameterType(pos, newParamType);
5699         result = result.copyWithExtendL(newType, lform, filter);
5700         return result;
5701     }
5702 
5703     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
5704         MethodType targetType = target.type();
5705         int maxPos = targetType.parameterCount();
5706         if (pos + filters.length > maxPos)
5707             throw newIllegalArgumentException("too many filters");
5708     }
5709 
5710     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5711         MethodType targetType = target.type();
5712         MethodType filterType = filter.type();
5713         if (filterType.parameterCount() != 1
5714             || filterType.returnType() != targetType.parameterType(pos))
5715             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5716     }
5717 
5718     /**
5719      * Adapts a target method handle by pre-processing
5720      * a sub-sequence of its arguments with a filter (another method handle).
5721      * The pre-processed arguments are replaced by the result (if any) of the
5722      * filter function.
5723      * The target is then called on the modified (usually shortened) argument list.
5724      * <p>
5725      * If the filter returns a value, the target must accept that value as
5726      * its argument in position {@code pos}, preceded and/or followed by
5727      * any arguments not passed to the filter.
5728      * If the filter returns void, the target must accept all arguments
5729      * not passed to the filter.
5730      * No arguments are reordered, and a result returned from the filter
5731      * replaces (in order) the whole subsequence of arguments originally
5732      * passed to the adapter.
5733      * <p>
5734      * The argument types (if any) of the filter
5735      * replace zero or one argument types of the target, at position {@code pos},
5736      * in the resulting adapted method handle.
5737      * The return type of the filter (if any) must be identical to the
5738      * argument type of the target at position {@code pos}, and that target argument
5739      * is supplied by the return value of the filter.
5740      * <p>
5741      * In all cases, {@code pos} must be greater than or equal to zero, and
5742      * {@code pos} must also be less than or equal to the target's arity.
5743      * <p><b>Example:</b>
5744      * {@snippet lang="java" :
5745 import static java.lang.invoke.MethodHandles.*;
5746 import static java.lang.invoke.MethodType.*;
5747 ...
5748 MethodHandle deepToString = publicLookup()
5749   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
5750 
5751 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
5752 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
5753 
5754 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
5755 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
5756 
5757 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
5758 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
5759 assertEquals("[top, [up, down], strange]",
5760              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
5761 
5762 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
5763 assertEquals("[top, [up, down], [strange]]",
5764              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
5765 
5766 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
5767 assertEquals("[top, [[up, down, strange], charm], bottom]",
5768              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
5769      * }
5770      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5771      * represents the return type of the {@code target} and resulting adapter.
5772      * {@code V}/{@code v} stand for the return type and value of the
5773      * {@code filter}, which are also found in the signature and arguments of
5774      * the {@code target}, respectively, unless {@code V} is {@code void}.
5775      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
5776      * and values preceding and following the collection position, {@code pos},
5777      * in the {@code target}'s signature. They also turn up in the resulting
5778      * adapter's signature and arguments, where they surround
5779      * {@code B}/{@code b}, which represent the parameter types and arguments
5780      * to the {@code filter} (if any).
5781      * {@snippet lang="java" :
5782      * T target(A...,V,C...);
5783      * V filter(B...);
5784      * T adapter(A... a,B... b,C... c) {
5785      *   V v = filter(b...);
5786      *   return target(a...,v,c...);
5787      * }
5788      * // and if the filter has no arguments:
5789      * T target2(A...,V,C...);
5790      * V filter2();
5791      * T adapter2(A... a,C... c) {
5792      *   V v = filter2();
5793      *   return target2(a...,v,c...);
5794      * }
5795      * // and if the filter has a void return:
5796      * T target3(A...,C...);
5797      * void filter3(B...);
5798      * T adapter3(A... a,B... b,C... c) {
5799      *   filter3(b...);
5800      *   return target3(a...,c...);
5801      * }
5802      * }
5803      * <p>
5804      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5805      * one which first "folds" the affected arguments, and then drops them, in separate
5806      * steps as follows:
5807      * {@snippet lang="java" :
5808      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5809      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5810      * }
5811      * If the target method handle consumes no arguments besides than the result
5812      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5813      * is equivalent to {@code filterReturnValue(coll, mh)}.
5814      * If the filter method handle {@code coll} consumes one argument and produces
5815      * a non-void result, then {@code collectArguments(mh, N, coll)}
5816      * is equivalent to {@code filterArguments(mh, N, coll)}.
5817      * Other equivalences are possible but would require argument permutation.
5818      * <p>
5819      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5820      * variable-arity method handle}, even if the original target method handle was.
5821      *
5822      * @param target the method handle to invoke after filtering the subsequence of arguments
5823      * @param pos the position of the first adapter argument to pass to the filter,
5824      *            and/or the target argument which receives the result of the filter
5825      * @param filter method handle to call on the subsequence of arguments
5826      * @return method handle which incorporates the specified argument subsequence filtering logic
5827      * @throws NullPointerException if either argument is null
5828      * @throws IllegalArgumentException if the return type of {@code filter}
5829      *          is non-void and is not the same as the {@code pos} argument of the target,
5830      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5831      *          or if the resulting method handle's type would have
5832      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5833      * @see MethodHandles#foldArguments
5834      * @see MethodHandles#filterArguments
5835      * @see MethodHandles#filterReturnValue
5836      */
5837     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5838         MethodType newType = collectArgumentsChecks(target, pos, filter);
5839         MethodType collectorType = filter.type();
5840         BoundMethodHandle result = target.rebind();
5841         LambdaForm lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5842         return result.copyWithExtendL(newType, lform, filter);
5843     }
5844 
5845     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5846         MethodType targetType = target.type();
5847         MethodType filterType = filter.type();
5848         Class<?> rtype = filterType.returnType();
5849         Class<?>[] filterArgs = filterType.ptypes();
5850         if (pos < 0 || (rtype == void.class && pos > targetType.parameterCount()) ||
5851                        (rtype != void.class && pos >= targetType.parameterCount())) {
5852             throw newIllegalArgumentException("position is out of range for target", target, pos);
5853         }
5854         if (rtype == void.class) {
5855             return targetType.insertParameterTypes(pos, filterArgs);
5856         }
5857         if (rtype != targetType.parameterType(pos)) {
5858             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5859         }
5860         return targetType.dropParameterTypes(pos, pos + 1).insertParameterTypes(pos, filterArgs);
5861     }
5862 
5863     /**
5864      * Adapts a target method handle by post-processing
5865      * its return value (if any) with a filter (another method handle).
5866      * The result of the filter is returned from the adapter.
5867      * <p>
5868      * If the target returns a value, the filter must accept that value as
5869      * its only argument.
5870      * If the target returns void, the filter must accept no arguments.
5871      * <p>
5872      * The return type of the filter
5873      * replaces the return type of the target
5874      * in the resulting adapted method handle.
5875      * The argument type of the filter (if any) must be identical to the
5876      * return type of the target.
5877      * <p><b>Example:</b>
5878      * {@snippet lang="java" :
5879 import static java.lang.invoke.MethodHandles.*;
5880 import static java.lang.invoke.MethodType.*;
5881 ...
5882 MethodHandle cat = lookup().findVirtual(String.class,
5883   "concat", methodType(String.class, String.class));
5884 MethodHandle length = lookup().findVirtual(String.class,
5885   "length", methodType(int.class));
5886 System.out.println((String) cat.invokeExact("x", "y")); // xy
5887 MethodHandle f0 = filterReturnValue(cat, length);
5888 System.out.println((int) f0.invokeExact("x", "y")); // 2
5889      * }
5890      * <p>Here is pseudocode for the resulting adapter. In the code,
5891      * {@code T}/{@code t} represent the result type and value of the
5892      * {@code target}; {@code V}, the result type of the {@code filter}; and
5893      * {@code A}/{@code a}, the types and values of the parameters and arguments
5894      * of the {@code target} as well as the resulting adapter.
5895      * {@snippet lang="java" :
5896      * T target(A...);
5897      * V filter(T);
5898      * V adapter(A... a) {
5899      *   T t = target(a...);
5900      *   return filter(t);
5901      * }
5902      * // and if the target has a void return:
5903      * void target2(A...);
5904      * V filter2();
5905      * V adapter2(A... a) {
5906      *   target2(a...);
5907      *   return filter2();
5908      * }
5909      * // and if the filter has a void return:
5910      * T target3(A...);
5911      * void filter3(V);
5912      * void adapter3(A... a) {
5913      *   T t = target3(a...);
5914      *   filter3(t);
5915      * }
5916      * }
5917      * <p>
5918      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5919      * variable-arity method handle}, even if the original target method handle was.
5920      * @param target the method handle to invoke before filtering the return value
5921      * @param filter method handle to call on the return value
5922      * @return method handle which incorporates the specified return value filtering logic
5923      * @throws NullPointerException if either argument is null
5924      * @throws IllegalArgumentException if the argument list of {@code filter}
5925      *          does not match the return type of target as described above
5926      */
5927     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5928         MethodType targetType = target.type();
5929         MethodType filterType = filter.type();
5930         filterReturnValueChecks(targetType, filterType);
5931         BoundMethodHandle result = target.rebind();
5932         BasicType rtype = BasicType.basicType(filterType.returnType());
5933         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5934         MethodType newType = targetType.changeReturnType(filterType.returnType());
5935         result = result.copyWithExtendL(newType, lform, filter);
5936         return result;
5937     }
5938 
5939     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5940         Class<?> rtype = targetType.returnType();
5941         int filterValues = filterType.parameterCount();
5942         if (filterValues == 0
5943                 ? (rtype != void.class)
5944                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5945             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5946     }
5947 
5948     /**
5949      * Filter the return value of a target method handle with a filter function. The filter function is
5950      * applied to the return value of the original handle; if the filter specifies more than one parameters,
5951      * then any remaining parameter is appended to the adapter handle. In other words, the adaptation works
5952      * as follows:
5953      * {@snippet lang="java" :
5954      * T target(A...)
5955      * V filter(B... , T)
5956      * V adapter(A... a, B... b) {
5957      *     T t = target(a...);
5958      *     return filter(b..., t);
5959      * }
5960      * }
5961      * <p>
5962      * If the filter handle is a unary function, then this method behaves like {@link #filterReturnValue(MethodHandle, MethodHandle)}.
5963      *
5964      * @param target the target method handle
5965      * @param filter the filter method handle
5966      * @return the adapter method handle
5967      */
5968     /* package */ static MethodHandle collectReturnValue(MethodHandle target, MethodHandle filter) {
5969         MethodType targetType = target.type();
5970         MethodType filterType = filter.type();
5971         BoundMethodHandle result = target.rebind();
5972         LambdaForm lform = result.editor().collectReturnValueForm(filterType.basicType());
5973         MethodType newType = targetType.changeReturnType(filterType.returnType());
5974         if (filterType.parameterCount() > 1) {
5975             for (int i = 0 ; i < filterType.parameterCount() - 1 ; i++) {
5976                 newType = newType.appendParameterTypes(filterType.parameterType(i));
5977             }
5978         }
5979         result = result.copyWithExtendL(newType, lform, filter);
5980         return result;
5981     }
5982 
5983     /**
5984      * Adapts a target method handle by pre-processing
5985      * some of its arguments, and then calling the target with
5986      * the result of the pre-processing, inserted into the original
5987      * sequence of arguments.
5988      * <p>
5989      * The pre-processing is performed by {@code combiner}, a second method handle.
5990      * Of the arguments passed to the adapter, the first {@code N} arguments
5991      * are copied to the combiner, which is then called.
5992      * (Here, {@code N} is defined as the parameter count of the combiner.)
5993      * After this, control passes to the target, with any result
5994      * from the combiner inserted before the original {@code N} incoming
5995      * arguments.
5996      * <p>
5997      * If the combiner returns a value, the first parameter type of the target
5998      * must be identical with the return type of the combiner, and the next
5999      * {@code N} parameter types of the target must exactly match the parameters
6000      * of the combiner.
6001      * <p>
6002      * If the combiner has a void return, no result will be inserted,
6003      * and the first {@code N} parameter types of the target
6004      * must exactly match the parameters of the combiner.
6005      * <p>
6006      * The resulting adapter is the same type as the target, except that the
6007      * first parameter type is dropped,
6008      * if it corresponds to the result of the combiner.
6009      * <p>
6010      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
6011      * that either the combiner or the target does not wish to receive.
6012      * If some of the incoming arguments are destined only for the combiner,
6013      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
6014      * arguments will not need to be live on the stack on entry to the
6015      * target.)
6016      * <p><b>Example:</b>
6017      * {@snippet lang="java" :
6018 import static java.lang.invoke.MethodHandles.*;
6019 import static java.lang.invoke.MethodType.*;
6020 ...
6021 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
6022   "println", methodType(void.class, String.class))
6023     .bindTo(System.out);
6024 MethodHandle cat = lookup().findVirtual(String.class,
6025   "concat", methodType(String.class, String.class));
6026 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
6027 MethodHandle catTrace = foldArguments(cat, trace);
6028 // also prints "boo":
6029 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
6030      * }
6031      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
6032      * represents the result type of the {@code target} and resulting adapter.
6033      * {@code V}/{@code v} represent the type and value of the parameter and argument
6034      * of {@code target} that precedes the folding position; {@code V} also is
6035      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
6036      * types and values of the {@code N} parameters and arguments at the folding
6037      * position. {@code B}/{@code b} represent the types and values of the
6038      * {@code target} parameters and arguments that follow the folded parameters
6039      * and arguments.
6040      * {@snippet lang="java" :
6041      * // there are N arguments in A...
6042      * T target(V, A[N]..., B...);
6043      * V combiner(A...);
6044      * T adapter(A... a, B... b) {
6045      *   V v = combiner(a...);
6046      *   return target(v, a..., b...);
6047      * }
6048      * // and if the combiner has a void return:
6049      * T target2(A[N]..., B...);
6050      * void combiner2(A...);
6051      * T adapter2(A... a, B... b) {
6052      *   combiner2(a...);
6053      *   return target2(a..., b...);
6054      * }
6055      * }
6056      * <p>
6057      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
6058      * variable-arity method handle}, even if the original target method handle was.
6059      * @param target the method handle to invoke after arguments are combined
6060      * @param combiner method handle to call initially on the incoming arguments
6061      * @return method handle which incorporates the specified argument folding logic
6062      * @throws NullPointerException if either argument is null
6063      * @throws IllegalArgumentException if {@code combiner}'s return type
6064      *          is non-void and not the same as the first argument type of
6065      *          the target, or if the initial {@code N} argument types
6066      *          of the target
6067      *          (skipping one matching the {@code combiner}'s return type)
6068      *          are not identical with the argument types of {@code combiner}
6069      */
6070     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
6071         return foldArguments(target, 0, combiner);
6072     }
6073 
6074     /**
6075      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
6076      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
6077      * before the folded arguments.
6078      * <p>
6079      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
6080      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
6081      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
6082      * 0.
6083      *
6084      * @apiNote Example:
6085      * {@snippet lang="java" :
6086     import static java.lang.invoke.MethodHandles.*;
6087     import static java.lang.invoke.MethodType.*;
6088     ...
6089     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
6090     "println", methodType(void.class, String.class))
6091     .bindTo(System.out);
6092     MethodHandle cat = lookup().findVirtual(String.class,
6093     "concat", methodType(String.class, String.class));
6094     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
6095     MethodHandle catTrace = foldArguments(cat, 1, trace);
6096     // also prints "jum":
6097     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
6098      * }
6099      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
6100      * represents the result type of the {@code target} and resulting adapter.
6101      * {@code V}/{@code v} represent the type and value of the parameter and argument
6102      * of {@code target} that precedes the folding position; {@code V} also is
6103      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
6104      * types and values of the {@code N} parameters and arguments at the folding
6105      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
6106      * and values of the {@code target} parameters and arguments that precede and
6107      * follow the folded parameters and arguments starting at {@code pos},
6108      * respectively.
6109      * {@snippet lang="java" :
6110      * // there are N arguments in A...
6111      * T target(Z..., V, A[N]..., B...);
6112      * V combiner(A...);
6113      * T adapter(Z... z, A... a, B... b) {
6114      *   V v = combiner(a...);
6115      *   return target(z..., v, a..., b...);
6116      * }
6117      * // and if the combiner has a void return:
6118      * T target2(Z..., A[N]..., B...);
6119      * void combiner2(A...);
6120      * T adapter2(Z... z, A... a, B... b) {
6121      *   combiner2(a...);
6122      *   return target2(z..., a..., b...);
6123      * }
6124      * }
6125      * <p>
6126      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
6127      * variable-arity method handle}, even if the original target method handle was.
6128      *
6129      * @param target the method handle to invoke after arguments are combined
6130      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
6131      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6132      * @param combiner method handle to call initially on the incoming arguments
6133      * @return method handle which incorporates the specified argument folding logic
6134      * @throws NullPointerException if either argument is null
6135      * @throws IllegalArgumentException if either of the following two conditions holds:
6136      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
6137      *              {@code pos} of the target signature;
6138      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
6139      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
6140      *
6141      * @see #foldArguments(MethodHandle, MethodHandle)
6142      * @since 9
6143      */
6144     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
6145         MethodType targetType = target.type();
6146         MethodType combinerType = combiner.type();
6147         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
6148         BoundMethodHandle result = target.rebind();
6149         boolean dropResult = rtype == void.class;
6150         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
6151         MethodType newType = targetType;
6152         if (!dropResult) {
6153             newType = newType.dropParameterTypes(pos, pos + 1);
6154         }
6155         result = result.copyWithExtendL(newType, lform, combiner);
6156         return result;
6157     }
6158 
6159     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
6160         int foldArgs   = combinerType.parameterCount();
6161         Class<?> rtype = combinerType.returnType();
6162         int foldVals = rtype == void.class ? 0 : 1;
6163         int afterInsertPos = foldPos + foldVals;
6164         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
6165         if (ok) {
6166             for (int i = 0; i < foldArgs; i++) {
6167                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
6168                     ok = false;
6169                     break;
6170                 }
6171             }
6172         }
6173         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
6174             ok = false;
6175         if (!ok)
6176             throw misMatchedTypes("target and combiner types", targetType, combinerType);
6177         return rtype;
6178     }
6179 
6180     /**
6181      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
6182      * of the pre-processing replacing the argument at the given position.
6183      *
6184      * @param target the method handle to invoke after arguments are combined
6185      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
6186      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6187      * @param combiner method handle to call initially on the incoming arguments
6188      * @param argPositions indexes of the target to pick arguments sent to the combiner from
6189      * @return method handle which incorporates the specified argument folding logic
6190      * @throws NullPointerException if either argument is null
6191      * @throws IllegalArgumentException if either of the following two conditions holds:
6192      *          (1) {@code combiner}'s return type is not the same as the argument type at position
6193      *              {@code pos} of the target signature;
6194      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
6195      *              not identical with the argument types of {@code combiner}.
6196      */
6197     /*non-public*/
6198     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6199         return argumentsWithCombiner(true, target, position, combiner, argPositions);
6200     }
6201 
6202     /**
6203      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
6204      * the pre-processing inserted into the original sequence of arguments at the given position.
6205      *
6206      * @param target the method handle to invoke after arguments are combined
6207      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
6208      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6209      * @param combiner method handle to call initially on the incoming arguments
6210      * @param argPositions indexes of the target to pick arguments sent to the combiner from
6211      * @return method handle which incorporates the specified argument folding logic
6212      * @throws NullPointerException if either argument is null
6213      * @throws IllegalArgumentException if either of the following two conditions holds:
6214      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
6215      *              {@code pos} of the target signature;
6216      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
6217      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
6218      *              with the argument types of {@code combiner}.
6219      */
6220     /*non-public*/
6221     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6222         return argumentsWithCombiner(false, target, position, combiner, argPositions);
6223     }
6224 
6225     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6226         MethodType targetType = target.type();
6227         MethodType combinerType = combiner.type();
6228         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
6229         BoundMethodHandle result = target.rebind();
6230 
6231         MethodType newType = targetType;
6232         LambdaForm lform;
6233         if (filter) {
6234             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
6235         } else {
6236             boolean dropResult = rtype == void.class;
6237             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
6238             if (!dropResult) {
6239                 newType = newType.dropParameterTypes(position, position + 1);
6240             }
6241         }
6242         result = result.copyWithExtendL(newType, lform, combiner);
6243         return result;
6244     }
6245 
6246     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
6247         int combinerArgs = combinerType.parameterCount();
6248         if (argPos.length != combinerArgs) {
6249             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
6250         }
6251         Class<?> rtype = combinerType.returnType();
6252 
6253         for (int i = 0; i < combinerArgs; i++) {
6254             int arg = argPos[i];
6255             if (arg < 0 || arg > targetType.parameterCount()) {
6256                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
6257             }
6258             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
6259                 throw newIllegalArgumentException("target argument type at position " + arg
6260                         + " must match combiner argument type at index " + i + ": " + targetType
6261                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
6262             }
6263         }
6264         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
6265             throw misMatchedTypes("target and combiner types", targetType, combinerType);
6266         }
6267         return rtype;
6268     }
6269 
6270     /**
6271      * Makes a method handle which adapts a target method handle,
6272      * by guarding it with a test, a boolean-valued method handle.
6273      * If the guard fails, a fallback handle is called instead.
6274      * All three method handles must have the same corresponding
6275      * argument and return types, except that the return type
6276      * of the test must be boolean, and the test is allowed
6277      * to have fewer arguments than the other two method handles.
6278      * <p>
6279      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6280      * represents the uniform result type of the three involved handles;
6281      * {@code A}/{@code a}, the types and values of the {@code target}
6282      * parameters and arguments that are consumed by the {@code test}; and
6283      * {@code B}/{@code b}, those types and values of the {@code target}
6284      * parameters and arguments that are not consumed by the {@code test}.
6285      * {@snippet lang="java" :
6286      * boolean test(A...);
6287      * T target(A...,B...);
6288      * T fallback(A...,B...);
6289      * T adapter(A... a,B... b) {
6290      *   if (test(a...))
6291      *     return target(a..., b...);
6292      *   else
6293      *     return fallback(a..., b...);
6294      * }
6295      * }
6296      * Note that the test arguments ({@code a...} in the pseudocode) cannot
6297      * be modified by execution of the test, and so are passed unchanged
6298      * from the caller to the target or fallback as appropriate.
6299      * @param test method handle used for test, must return boolean
6300      * @param target method handle to call if test passes
6301      * @param fallback method handle to call if test fails
6302      * @return method handle which incorporates the specified if/then/else logic
6303      * @throws NullPointerException if any argument is null
6304      * @throws IllegalArgumentException if {@code test} does not return boolean,
6305      *          or if all three method types do not match (with the return
6306      *          type of {@code test} changed to match that of the target).
6307      */
6308     public static MethodHandle guardWithTest(MethodHandle test,
6309                                MethodHandle target,
6310                                MethodHandle fallback) {
6311         MethodType gtype = test.type();
6312         MethodType ttype = target.type();
6313         MethodType ftype = fallback.type();
6314         if (!ttype.equals(ftype))
6315             throw misMatchedTypes("target and fallback types", ttype, ftype);
6316         if (gtype.returnType() != boolean.class)
6317             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
6318 
6319         test = dropArgumentsToMatch(test, 0, ttype.ptypes(), 0, true);
6320         if (test == null) {
6321             throw misMatchedTypes("target and test types", ttype, gtype);
6322         }
6323         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
6324     }
6325 
6326     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
6327         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
6328     }
6329 
6330     /**
6331      * Makes a method handle which adapts a target method handle,
6332      * by running it inside an exception handler.
6333      * If the target returns normally, the adapter returns that value.
6334      * If an exception matching the specified type is thrown, the fallback
6335      * handle is called instead on the exception, plus the original arguments.
6336      * <p>
6337      * The target and handler must have the same corresponding
6338      * argument and return types, except that handler may omit trailing arguments
6339      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
6340      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
6341      * <p>
6342      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6343      * represents the return type of the {@code target} and {@code handler},
6344      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
6345      * the types and values of arguments to the resulting handle consumed by
6346      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
6347      * resulting handle discarded by {@code handler}.
6348      * {@snippet lang="java" :
6349      * T target(A..., B...);
6350      * T handler(ExType, A...);
6351      * T adapter(A... a, B... b) {
6352      *   try {
6353      *     return target(a..., b...);
6354      *   } catch (ExType ex) {
6355      *     return handler(ex, a...);
6356      *   }
6357      * }
6358      * }
6359      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6360      * be modified by execution of the target, and so are passed unchanged
6361      * from the caller to the handler, if the handler is invoked.
6362      * <p>
6363      * The target and handler must return the same type, even if the handler
6364      * always throws.  (This might happen, for instance, because the handler
6365      * is simulating a {@code finally} clause).
6366      * To create such a throwing handler, compose the handler creation logic
6367      * with {@link #throwException throwException},
6368      * in order to create a method handle of the correct return type.
6369      * @param target method handle to call
6370      * @param exType the type of exception which the handler will catch
6371      * @param handler method handle to call if a matching exception is thrown
6372      * @return method handle which incorporates the specified try/catch logic
6373      * @throws NullPointerException if any argument is null
6374      * @throws IllegalArgumentException if {@code handler} does not accept
6375      *          the given exception type, or if the method handle types do
6376      *          not match in their return types and their
6377      *          corresponding parameters
6378      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
6379      */
6380     public static MethodHandle catchException(MethodHandle target,
6381                                 Class<? extends Throwable> exType,
6382                                 MethodHandle handler) {
6383         MethodType ttype = target.type();
6384         MethodType htype = handler.type();
6385         if (!Throwable.class.isAssignableFrom(exType))
6386             throw new ClassCastException(exType.getName());
6387         if (htype.parameterCount() < 1 ||
6388             !htype.parameterType(0).isAssignableFrom(exType))
6389             throw newIllegalArgumentException("handler does not accept exception type "+exType);
6390         if (htype.returnType() != ttype.returnType())
6391             throw misMatchedTypes("target and handler return types", ttype, htype);
6392         handler = dropArgumentsToMatch(handler, 1, ttype.ptypes(), 0, true);
6393         if (handler == null) {
6394             throw misMatchedTypes("target and handler types", ttype, htype);
6395         }
6396         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
6397     }
6398 
6399     /**
6400      * Produces a method handle which will throw exceptions of the given {@code exType}.
6401      * The method handle will accept a single argument of {@code exType},
6402      * and immediately throw it as an exception.
6403      * The method type will nominally specify a return of {@code returnType}.
6404      * The return type may be anything convenient:  It doesn't matter to the
6405      * method handle's behavior, since it will never return normally.
6406      * @param returnType the return type of the desired method handle
6407      * @param exType the parameter type of the desired method handle
6408      * @return method handle which can throw the given exceptions
6409      * @throws NullPointerException if either argument is null
6410      */
6411     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
6412         if (!Throwable.class.isAssignableFrom(exType))
6413             throw new ClassCastException(exType.getName());
6414         return MethodHandleImpl.throwException(methodType(returnType, exType));
6415     }
6416 
6417     /**
6418      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
6419      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
6420      * delivers the loop's result, which is the return value of the resulting handle.
6421      * <p>
6422      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
6423      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
6424      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
6425      * terms of method handles, each clause will specify up to four independent actions:<ul>
6426      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
6427      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
6428      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
6429      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
6430      * </ul>
6431      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
6432      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
6433      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
6434      * <p>
6435      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
6436      * this case. See below for a detailed description.
6437      * <p>
6438      * <em>Parameters optional everywhere:</em>
6439      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
6440      * As an exception, the init functions cannot take any {@code v} parameters,
6441      * because those values are not yet computed when the init functions are executed.
6442      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
6443      * In fact, any clause function may take no arguments at all.
6444      * <p>
6445      * <em>Loop parameters:</em>
6446      * A clause function may take all the iteration variable values it is entitled to, in which case
6447      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
6448      * with their types and values notated as {@code (A...)} and {@code (a...)}.
6449      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
6450      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
6451      * init function is automatically a loop parameter {@code a}.)
6452      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
6453      * These loop parameters act as loop-invariant values visible across the whole loop.
6454      * <p>
6455      * <em>Parameters visible everywhere:</em>
6456      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
6457      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
6458      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
6459      * Most clause functions will not need all of this information, but they will be formally connected to it
6460      * as if by {@link #dropArguments}.
6461      * <a id="astar"></a>
6462      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
6463      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
6464      * In that notation, the general form of an init function parameter list
6465      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
6466      * <p>
6467      * <em>Checking clause structure:</em>
6468      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
6469      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
6470      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
6471      * met by the inputs to the loop combinator.
6472      * <p>
6473      * <em>Effectively identical sequences:</em>
6474      * <a id="effid"></a>
6475      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
6476      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
6477      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
6478      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
6479      * that longest list.
6480      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
6481      * and the same is true if more sequences of the form {@code (V... A*)} are added.
6482      * <p>
6483      * <em>Step 0: Determine clause structure.</em><ol type="a">
6484      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
6485      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
6486      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
6487      * four. Padding takes place by appending elements to the array.
6488      * <li>Clauses with all {@code null}s are disregarded.
6489      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
6490      * </ol>
6491      * <p>
6492      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
6493      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
6494      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
6495      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
6496      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
6497      * iteration variable type.
6498      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
6499      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
6500      * </ol>
6501      * <p>
6502      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
6503      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
6504      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
6505      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
6506      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
6507      * (These types will be checked in step 2, along with all the clause function types.)
6508      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
6509      * <li>All of the collected parameter lists must be effectively identical.
6510      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
6511      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
6512      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
6513      * the "internal parameter list".
6514      * </ul>
6515      * <p>
6516      * <em>Step 1C: Determine loop return type.</em><ol type="a">
6517      * <li>Examine fini function return types, disregarding omitted fini functions.
6518      * <li>If there are no fini functions, the loop return type is {@code void}.
6519      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
6520      * type.
6521      * </ol>
6522      * <p>
6523      * <em>Step 1D: Check other types.</em><ol type="a">
6524      * <li>There must be at least one non-omitted pred function.
6525      * <li>Every non-omitted pred function must have a {@code boolean} return type.
6526      * </ol>
6527      * <p>
6528      * <em>Step 2: Determine parameter lists.</em><ol type="a">
6529      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
6530      * <li>The parameter list for init functions will be adjusted to the external parameter list.
6531      * (Note that their parameter lists are already effectively identical to this list.)
6532      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
6533      * effectively identical to the internal parameter list {@code (V... A...)}.
6534      * </ol>
6535      * <p>
6536      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
6537      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
6538      * type.
6539      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
6540      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
6541      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
6542      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
6543      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
6544      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
6545      * loop return type.
6546      * </ol>
6547      * <p>
6548      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
6549      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
6550      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
6551      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
6552      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
6553      * pad out the end of the list.
6554      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
6555      * </ol>
6556      * <p>
6557      * <em>Final observations.</em><ol type="a">
6558      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
6559      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
6560      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
6561      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
6562      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
6563      * <li>Each pair of init and step functions agrees in their return type {@code V}.
6564      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
6565      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
6566      * </ol>
6567      * <p>
6568      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
6569      * <ul>
6570      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
6571      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
6572      * (Only one {@code Pn} has to be non-{@code null}.)
6573      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
6574      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
6575      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
6576      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
6577      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
6578      * the resulting loop handle's parameter types {@code (A...)}.
6579      * </ul>
6580      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
6581      * which is natural if most of the loop computation happens in the steps.  For some loops,
6582      * the burden of computation might be heaviest in the pred functions, and so the pred functions
6583      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
6584      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
6585      * where the init functions will need the extra parameters.  For such reasons, the rules for
6586      * determining these parameters are as symmetric as possible, across all clause parts.
6587      * In general, the loop parameters function as common invariant values across the whole
6588      * loop, while the iteration variables function as common variant values, or (if there is
6589      * no step function) as internal loop invariant temporaries.
6590      * <p>
6591      * <em>Loop execution.</em><ol type="a">
6592      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
6593      * every clause function. These locals are loop invariant.
6594      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
6595      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
6596      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
6597      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
6598      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
6599      * (in argument order).
6600      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
6601      * returns {@code false}.
6602      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
6603      * sequence {@code (v...)} of loop variables.
6604      * The updated value is immediately visible to all subsequent function calls.
6605      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
6606      * (of type {@code R}) is returned from the loop as a whole.
6607      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
6608      * except by throwing an exception.
6609      * </ol>
6610      * <p>
6611      * <em>Usage tips.</em>
6612      * <ul>
6613      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
6614      * sometimes a step function only needs to observe the current value of its own variable.
6615      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
6616      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
6617      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
6618      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
6619      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
6620      * <li>If some of the clause functions are virtual methods on an instance, the instance
6621      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
6622      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
6623      * will be the first iteration variable value, and it will be easy to use virtual
6624      * methods as clause parts, since all of them will take a leading instance reference matching that value.
6625      * </ul>
6626      * <p>
6627      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
6628      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
6629      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
6630      * {@snippet lang="java" :
6631      * V... init...(A...);
6632      * boolean pred...(V..., A...);
6633      * V... step...(V..., A...);
6634      * R fini...(V..., A...);
6635      * R loop(A... a) {
6636      *   V... v... = init...(a...);
6637      *   for (;;) {
6638      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
6639      *       v = s(v..., a...);
6640      *       if (!p(v..., a...)) {
6641      *         return f(v..., a...);
6642      *       }
6643      *     }
6644      *   }
6645      * }
6646      * }
6647      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
6648      * to their full length, even though individual clause functions may neglect to take them all.
6649      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
6650      *
6651      * @apiNote Example:
6652      * {@snippet lang="java" :
6653      * // iterative implementation of the factorial function as a loop handle
6654      * static int one(int k) { return 1; }
6655      * static int inc(int i, int acc, int k) { return i + 1; }
6656      * static int mult(int i, int acc, int k) { return i * acc; }
6657      * static boolean pred(int i, int acc, int k) { return i < k; }
6658      * static int fin(int i, int acc, int k) { return acc; }
6659      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6660      * // null initializer for counter, should initialize to 0
6661      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6662      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6663      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6664      * assertEquals(120, loop.invoke(5));
6665      * }
6666      * The same example, dropping arguments and using combinators:
6667      * {@snippet lang="java" :
6668      * // simplified implementation of the factorial function as a loop handle
6669      * static int inc(int i) { return i + 1; } // drop acc, k
6670      * static int mult(int i, int acc) { return i * acc; } //drop k
6671      * static boolean cmp(int i, int k) { return i < k; }
6672      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
6673      * // null initializer for counter, should initialize to 0
6674      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6675      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
6676      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
6677      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6678      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6679      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6680      * assertEquals(720, loop.invoke(6));
6681      * }
6682      * A similar example, using a helper object to hold a loop parameter:
6683      * {@snippet lang="java" :
6684      * // instance-based implementation of the factorial function as a loop handle
6685      * static class FacLoop {
6686      *   final int k;
6687      *   FacLoop(int k) { this.k = k; }
6688      *   int inc(int i) { return i + 1; }
6689      *   int mult(int i, int acc) { return i * acc; }
6690      *   boolean pred(int i) { return i < k; }
6691      *   int fin(int i, int acc) { return acc; }
6692      * }
6693      * // assume MH_FacLoop is a handle to the constructor
6694      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6695      * // null initializer for counter, should initialize to 0
6696      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6697      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
6698      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6699      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6700      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
6701      * assertEquals(5040, loop.invoke(7));
6702      * }
6703      *
6704      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
6705      *
6706      * @return a method handle embodying the looping behavior as defined by the arguments.
6707      *
6708      * @throws IllegalArgumentException in case any of the constraints described above is violated.
6709      *
6710      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
6711      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6712      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
6713      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
6714      * @since 9
6715      */
6716     public static MethodHandle loop(MethodHandle[]... clauses) {
6717         // Step 0: determine clause structure.
6718         loopChecks0(clauses);
6719 
6720         List<MethodHandle> init = new ArrayList<>();
6721         List<MethodHandle> step = new ArrayList<>();
6722         List<MethodHandle> pred = new ArrayList<>();
6723         List<MethodHandle> fini = new ArrayList<>();
6724 
6725         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
6726             init.add(clause[0]); // all clauses have at least length 1
6727             step.add(clause.length <= 1 ? null : clause[1]);
6728             pred.add(clause.length <= 2 ? null : clause[2]);
6729             fini.add(clause.length <= 3 ? null : clause[3]);
6730         });
6731 
6732         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
6733         final int nclauses = init.size();
6734 
6735         // Step 1A: determine iteration variables (V...).
6736         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
6737         for (int i = 0; i < nclauses; ++i) {
6738             MethodHandle in = init.get(i);
6739             MethodHandle st = step.get(i);
6740             if (in == null && st == null) {
6741                 iterationVariableTypes.add(void.class);
6742             } else if (in != null && st != null) {
6743                 loopChecks1a(i, in, st);
6744                 iterationVariableTypes.add(in.type().returnType());
6745             } else {
6746                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
6747             }
6748         }
6749         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).toList();
6750 
6751         // Step 1B: determine loop parameters (A...).
6752         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
6753         loopChecks1b(init, commonSuffix);
6754 
6755         // Step 1C: determine loop return type.
6756         // Step 1D: check other types.
6757         // local variable required here; see JDK-8223553
6758         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
6759                 .map(MethodType::returnType);
6760         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
6761         loopChecks1cd(pred, fini, loopReturnType);
6762 
6763         // Step 2: determine parameter lists.
6764         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
6765         commonParameterSequence.addAll(commonSuffix);
6766         loopChecks2(step, pred, fini, commonParameterSequence);
6767         // Step 3: fill in omitted functions.
6768         for (int i = 0; i < nclauses; ++i) {
6769             Class<?> t = iterationVariableTypes.get(i);
6770             if (init.get(i) == null) {
6771                 init.set(i, empty(methodType(t, commonSuffix)));
6772             }
6773             if (step.get(i) == null) {
6774                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
6775             }
6776             if (pred.get(i) == null) {
6777                 pred.set(i, dropArguments(constant(boolean.class, true), 0, commonParameterSequence));
6778             }
6779             if (fini.get(i) == null) {
6780                 fini.set(i, empty(methodType(t, commonParameterSequence)));
6781             }
6782         }
6783 
6784         // Step 4: fill in missing parameter types.
6785         // Also convert all handles to fixed-arity handles.
6786         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
6787         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
6788         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
6789         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
6790 
6791         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
6792                 allMatch(pl -> pl.equals(commonSuffix));
6793         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
6794                 allMatch(pl -> pl.equals(commonParameterSequence));
6795 
6796         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
6797     }
6798 
6799     private static void loopChecks0(MethodHandle[][] clauses) {
6800         if (clauses == null || clauses.length == 0) {
6801             throw newIllegalArgumentException("null or no clauses passed");
6802         }
6803         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
6804             throw newIllegalArgumentException("null clauses are not allowed");
6805         }
6806         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
6807             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
6808         }
6809     }
6810 
6811     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
6812         if (in.type().returnType() != st.type().returnType()) {
6813             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
6814                     st.type().returnType());
6815         }
6816     }
6817 
6818     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6819         return mhs.filter(Objects::nonNull)
6820                 // take only those that can contribute to a common suffix because they are longer than the prefix
6821                 .map(MethodHandle::type)
6822                 .filter(t -> t.parameterCount() > skipSize)
6823                 .max(Comparator.comparingInt(MethodType::parameterCount))
6824                 .map(methodType -> List.of(Arrays.copyOfRange(methodType.ptypes(), skipSize, methodType.parameterCount())))
6825                 .orElse(List.of());
6826     }
6827 
6828     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6829         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6830         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6831         return longest1.size() >= longest2.size() ? longest1 : longest2;
6832     }
6833 
6834     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6835         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6836                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6837             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6838                     " (common suffix: " + commonSuffix + ")");
6839         }
6840     }
6841 
6842     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6843         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6844                 anyMatch(t -> t != loopReturnType)) {
6845             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6846                     loopReturnType + ")");
6847         }
6848 
6849         if (pred.stream().noneMatch(Objects::nonNull)) {
6850             throw newIllegalArgumentException("no predicate found", pred);
6851         }
6852         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6853                 anyMatch(t -> t != boolean.class)) {
6854             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6855         }
6856     }
6857 
6858     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6859         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6860                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6861             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6862                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6863         }
6864     }
6865 
6866     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6867         return hs.stream().map(h -> {
6868             int pc = h.type().parameterCount();
6869             int tpsize = targetParams.size();
6870             return pc < tpsize ? dropArguments(h, pc, targetParams.subList(pc, tpsize)) : h;
6871         }).toList();
6872     }
6873 
6874     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6875         return hs.stream().map(MethodHandle::asFixedArity).toList();
6876     }
6877 
6878     /**
6879      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6880      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6881      * <p>
6882      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6883      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6884      * evaluates to {@code true}).
6885      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6886      * <p>
6887      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6888      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6889      * and updated with the value returned from its invocation. The result of loop execution will be
6890      * the final value of the additional loop-local variable (if present).
6891      * <p>
6892      * The following rules hold for these argument handles:<ul>
6893      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6894      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6895      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6896      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6897      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6898      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6899      * It will constrain the parameter lists of the other loop parts.
6900      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6901      * list {@code (A...)} is called the <em>external parameter list</em>.
6902      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6903      * additional state variable of the loop.
6904      * The body must both accept and return a value of this type {@code V}.
6905      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6906      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6907      * <a href="MethodHandles.html#effid">effectively identical</a>
6908      * to the external parameter list {@code (A...)}.
6909      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6910      * {@linkplain #empty default value}.
6911      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6912      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6913      * effectively identical to the internal parameter list.
6914      * </ul>
6915      * <p>
6916      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6917      * <li>The loop handle's result type is the result type {@code V} of the body.
6918      * <li>The loop handle's parameter types are the types {@code (A...)},
6919      * from the external parameter list.
6920      * </ul>
6921      * <p>
6922      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6923      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6924      * passed to the loop.
6925      * {@snippet lang="java" :
6926      * V init(A...);
6927      * boolean pred(V, A...);
6928      * V body(V, A...);
6929      * V whileLoop(A... a...) {
6930      *   V v = init(a...);
6931      *   while (pred(v, a...)) {
6932      *     v = body(v, a...);
6933      *   }
6934      *   return v;
6935      * }
6936      * }
6937      *
6938      * @apiNote Example:
6939      * {@snippet lang="java" :
6940      * // implement the zip function for lists as a loop handle
6941      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6942      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6943      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6944      *   zip.add(a.next());
6945      *   zip.add(b.next());
6946      *   return zip;
6947      * }
6948      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6949      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6950      * List<String> a = Arrays.asList("a", "b", "c", "d");
6951      * List<String> b = Arrays.asList("e", "f", "g", "h");
6952      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6953      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6954      * }
6955      *
6956      *
6957      * @apiNote The implementation of this method can be expressed as follows:
6958      * {@snippet lang="java" :
6959      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6960      *     MethodHandle fini = (body.type().returnType() == void.class
6961      *                         ? null : identity(body.type().returnType()));
6962      *     MethodHandle[]
6963      *         checkExit = { null, null, pred, fini },
6964      *         varBody   = { init, body };
6965      *     return loop(checkExit, varBody);
6966      * }
6967      * }
6968      *
6969      * @param init optional initializer, providing the initial value of the loop variable.
6970      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6971      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6972      *             above for other constraints.
6973      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6974      *             See above for other constraints.
6975      *
6976      * @return a method handle implementing the {@code while} loop as described by the arguments.
6977      * @throws IllegalArgumentException if the rules for the arguments are violated.
6978      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6979      *
6980      * @see #loop(MethodHandle[][])
6981      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6982      * @since 9
6983      */
6984     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6985         whileLoopChecks(init, pred, body);
6986         MethodHandle fini = identityOrVoid(body.type().returnType());
6987         MethodHandle[] checkExit = { null, null, pred, fini };
6988         MethodHandle[] varBody = { init, body };
6989         return loop(checkExit, varBody);
6990     }
6991 
6992     /**
6993      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6994      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6995      * <p>
6996      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6997      * method will, in each iteration, first execute its body and then evaluate the predicate.
6998      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
6999      * <p>
7000      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
7001      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
7002      * and updated with the value returned from its invocation. The result of loop execution will be
7003      * the final value of the additional loop-local variable (if present).
7004      * <p>
7005      * The following rules hold for these argument handles:<ul>
7006      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7007      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
7008      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7009      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
7010      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
7011      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
7012      * It will constrain the parameter lists of the other loop parts.
7013      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
7014      * list {@code (A...)} is called the <em>external parameter list</em>.
7015      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7016      * additional state variable of the loop.
7017      * The body must both accept and return a value of this type {@code V}.
7018      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7019      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7020      * <a href="MethodHandles.html#effid">effectively identical</a>
7021      * to the external parameter list {@code (A...)}.
7022      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7023      * {@linkplain #empty default value}.
7024      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
7025      * Its parameter list (either empty or of the form {@code (V A*)}) must be
7026      * effectively identical to the internal parameter list.
7027      * </ul>
7028      * <p>
7029      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7030      * <li>The loop handle's result type is the result type {@code V} of the body.
7031      * <li>The loop handle's parameter types are the types {@code (A...)},
7032      * from the external parameter list.
7033      * </ul>
7034      * <p>
7035      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7036      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
7037      * passed to the loop.
7038      * {@snippet lang="java" :
7039      * V init(A...);
7040      * boolean pred(V, A...);
7041      * V body(V, A...);
7042      * V doWhileLoop(A... a...) {
7043      *   V v = init(a...);
7044      *   do {
7045      *     v = body(v, a...);
7046      *   } while (pred(v, a...));
7047      *   return v;
7048      * }
7049      * }
7050      *
7051      * @apiNote Example:
7052      * {@snippet lang="java" :
7053      * // int i = 0; while (i < limit) { ++i; } return i; => limit
7054      * static int zero(int limit) { return 0; }
7055      * static int step(int i, int limit) { return i + 1; }
7056      * static boolean pred(int i, int limit) { return i < limit; }
7057      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
7058      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
7059      * assertEquals(23, loop.invoke(23));
7060      * }
7061      *
7062      *
7063      * @apiNote The implementation of this method can be expressed as follows:
7064      * {@snippet lang="java" :
7065      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
7066      *     MethodHandle fini = (body.type().returnType() == void.class
7067      *                         ? null : identity(body.type().returnType()));
7068      *     MethodHandle[] clause = { init, body, pred, fini };
7069      *     return loop(clause);
7070      * }
7071      * }
7072      *
7073      * @param init optional initializer, providing the initial value of the loop variable.
7074      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7075      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
7076      *             See above for other constraints.
7077      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
7078      *             above for other constraints.
7079      *
7080      * @return a method handle implementing the {@code while} loop as described by the arguments.
7081      * @throws IllegalArgumentException if the rules for the arguments are violated.
7082      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
7083      *
7084      * @see #loop(MethodHandle[][])
7085      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
7086      * @since 9
7087      */
7088     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
7089         whileLoopChecks(init, pred, body);
7090         MethodHandle fini = identityOrVoid(body.type().returnType());
7091         MethodHandle[] clause = {init, body, pred, fini };
7092         return loop(clause);
7093     }
7094 
7095     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
7096         Objects.requireNonNull(pred);
7097         Objects.requireNonNull(body);
7098         MethodType bodyType = body.type();
7099         Class<?> returnType = bodyType.returnType();
7100         List<Class<?>> innerList = bodyType.parameterList();
7101         List<Class<?>> outerList = innerList;
7102         if (returnType == void.class) {
7103             // OK
7104         } else if (innerList.isEmpty() || innerList.get(0) != returnType) {
7105             // leading V argument missing => error
7106             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7107             throw misMatchedTypes("body function", bodyType, expected);
7108         } else {
7109             outerList = innerList.subList(1, innerList.size());
7110         }
7111         MethodType predType = pred.type();
7112         if (predType.returnType() != boolean.class ||
7113                 !predType.effectivelyIdenticalParameters(0, innerList)) {
7114             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
7115         }
7116         if (init != null) {
7117             MethodType initType = init.type();
7118             if (initType.returnType() != returnType ||
7119                     !initType.effectivelyIdenticalParameters(0, outerList)) {
7120                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7121             }
7122         }
7123     }
7124 
7125     /**
7126      * Constructs a loop that runs a given number of iterations.
7127      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7128      * <p>
7129      * The number of iterations is determined by the {@code iterations} handle evaluation result.
7130      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
7131      * It will be initialized to 0 and incremented by 1 in each iteration.
7132      * <p>
7133      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7134      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7135      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7136      * <p>
7137      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7138      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7139      * iteration variable.
7140      * The result of the loop handle execution will be the final {@code V} value of that variable
7141      * (or {@code void} if there is no {@code V} variable).
7142      * <p>
7143      * The following rules hold for the argument handles:<ul>
7144      * <li>The {@code iterations} handle must not be {@code null}, and must return
7145      * the type {@code int}, referred to here as {@code I} in parameter type lists.
7146      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7147      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
7148      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7149      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
7150      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
7151      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
7152      * of types called the <em>internal parameter list</em>.
7153      * It will constrain the parameter lists of the other loop parts.
7154      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
7155      * with no additional {@code A} types, then the internal parameter list is extended by
7156      * the argument types {@code A...} of the {@code iterations} handle.
7157      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
7158      * list {@code (A...)} is called the <em>external parameter list</em>.
7159      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7160      * additional state variable of the loop.
7161      * The body must both accept a leading parameter and return a value of this type {@code V}.
7162      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7163      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7164      * <a href="MethodHandles.html#effid">effectively identical</a>
7165      * to the external parameter list {@code (A...)}.
7166      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7167      * {@linkplain #empty default value}.
7168      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
7169      * effectively identical to the external parameter list {@code (A...)}.
7170      * </ul>
7171      * <p>
7172      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7173      * <li>The loop handle's result type is the result type {@code V} of the body.
7174      * <li>The loop handle's parameter types are the types {@code (A...)},
7175      * from the external parameter list.
7176      * </ul>
7177      * <p>
7178      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7179      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
7180      * arguments passed to the loop.
7181      * {@snippet lang="java" :
7182      * int iterations(A...);
7183      * V init(A...);
7184      * V body(V, int, A...);
7185      * V countedLoop(A... a...) {
7186      *   int end = iterations(a...);
7187      *   V v = init(a...);
7188      *   for (int i = 0; i < end; ++i) {
7189      *     v = body(v, i, a...);
7190      *   }
7191      *   return v;
7192      * }
7193      * }
7194      *
7195      * @apiNote Example with a fully conformant body method:
7196      * {@snippet lang="java" :
7197      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
7198      * // => a variation on a well known theme
7199      * static String step(String v, int counter, String init) { return "na " + v; }
7200      * // assume MH_step is a handle to the method above
7201      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
7202      * MethodHandle start = MethodHandles.identity(String.class);
7203      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
7204      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
7205      * }
7206      *
7207      * @apiNote Example with the simplest possible body method type,
7208      * and passing the number of iterations to the loop invocation:
7209      * {@snippet lang="java" :
7210      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
7211      * // => a variation on a well known theme
7212      * static String step(String v, int counter ) { return "na " + v; }
7213      * // assume MH_step is a handle to the method above
7214      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
7215      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
7216      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
7217      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
7218      * }
7219      *
7220      * @apiNote Example that treats the number of iterations, string to append to, and string to append
7221      * as loop parameters:
7222      * {@snippet lang="java" :
7223      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
7224      * // => a variation on a well known theme
7225      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
7226      * // assume MH_step is a handle to the method above
7227      * MethodHandle count = MethodHandles.identity(int.class);
7228      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
7229      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
7230      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
7231      * }
7232      *
7233      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
7234      * to enforce a loop type:
7235      * {@snippet lang="java" :
7236      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
7237      * // => a variation on a well known theme
7238      * static String step(String v, int counter, String pre) { return pre + " " + v; }
7239      * // assume MH_step is a handle to the method above
7240      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
7241      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
7242      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
7243      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
7244      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
7245      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
7246      * }
7247      *
7248      * @apiNote The implementation of this method can be expressed as follows:
7249      * {@snippet lang="java" :
7250      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
7251      *     return countedLoop(empty(iterations.type()), iterations, init, body);
7252      * }
7253      * }
7254      *
7255      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
7256      *                   result type must be {@code int}. See above for other constraints.
7257      * @param init optional initializer, providing the initial value of the loop variable.
7258      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7259      * @param body body of the loop, which may not be {@code null}.
7260      *             It controls the loop parameters and result type in the standard case (see above for details).
7261      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7262      *             and may accept any number of additional types.
7263      *             See above for other constraints.
7264      *
7265      * @return a method handle representing the loop.
7266      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
7267      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7268      *
7269      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
7270      * @since 9
7271      */
7272     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
7273         return countedLoop(empty(iterations.type()), iterations, init, body);
7274     }
7275 
7276     /**
7277      * Constructs a loop that counts over a range of numbers.
7278      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7279      * <p>
7280      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
7281      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
7282      * values of the loop counter.
7283      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
7284      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
7285      * <p>
7286      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7287      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7288      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7289      * <p>
7290      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7291      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7292      * iteration variable.
7293      * The result of the loop handle execution will be the final {@code V} value of that variable
7294      * (or {@code void} if there is no {@code V} variable).
7295      * <p>
7296      * The following rules hold for the argument handles:<ul>
7297      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
7298      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
7299      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7300      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
7301      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7302      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
7303      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
7304      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
7305      * of types called the <em>internal parameter list</em>.
7306      * It will constrain the parameter lists of the other loop parts.
7307      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
7308      * with no additional {@code A} types, then the internal parameter list is extended by
7309      * the argument types {@code A...} of the {@code end} handle.
7310      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
7311      * list {@code (A...)} is called the <em>external parameter list</em>.
7312      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7313      * additional state variable of the loop.
7314      * The body must both accept a leading parameter and return a value of this type {@code V}.
7315      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7316      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7317      * <a href="MethodHandles.html#effid">effectively identical</a>
7318      * to the external parameter list {@code (A...)}.
7319      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7320      * {@linkplain #empty default value}.
7321      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
7322      * effectively identical to the external parameter list {@code (A...)}.
7323      * <li>Likewise, the parameter list of {@code end} must be effectively identical
7324      * to the external parameter list.
7325      * </ul>
7326      * <p>
7327      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7328      * <li>The loop handle's result type is the result type {@code V} of the body.
7329      * <li>The loop handle's parameter types are the types {@code (A...)},
7330      * from the external parameter list.
7331      * </ul>
7332      * <p>
7333      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7334      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
7335      * arguments passed to the loop.
7336      * {@snippet lang="java" :
7337      * int start(A...);
7338      * int end(A...);
7339      * V init(A...);
7340      * V body(V, int, A...);
7341      * V countedLoop(A... a...) {
7342      *   int e = end(a...);
7343      *   int s = start(a...);
7344      *   V v = init(a...);
7345      *   for (int i = s; i < e; ++i) {
7346      *     v = body(v, i, a...);
7347      *   }
7348      *   return v;
7349      * }
7350      * }
7351      *
7352      * @apiNote The implementation of this method can be expressed as follows:
7353      * {@snippet lang="java" :
7354      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7355      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
7356      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
7357      *     // the following semantics:
7358      *     // MH_increment: (int limit, int counter) -> counter + 1
7359      *     // MH_predicate: (int limit, int counter) -> counter < limit
7360      *     Class<?> counterType = start.type().returnType();  // int
7361      *     Class<?> returnType = body.type().returnType();
7362      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
7363      *     if (returnType != void.class) {  // ignore the V variable
7364      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7365      *         pred = dropArguments(pred, 1, returnType);  // ditto
7366      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
7367      *     }
7368      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
7369      *     MethodHandle[]
7370      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7371      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
7372      *         indexVar   = { start, incr };           // i = start(); i = i + 1
7373      *     return loop(loopLimit, bodyClause, indexVar);
7374      * }
7375      * }
7376      *
7377      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
7378      *              See above for other constraints.
7379      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
7380      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
7381      * @param init optional initializer, providing the initial value of the loop variable.
7382      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7383      * @param body body of the loop, which may not be {@code null}.
7384      *             It controls the loop parameters and result type in the standard case (see above for details).
7385      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7386      *             and may accept any number of additional types.
7387      *             See above for other constraints.
7388      *
7389      * @return a method handle representing the loop.
7390      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
7391      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7392      *
7393      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
7394      * @since 9
7395      */
7396     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7397         countedLoopChecks(start, end, init, body);
7398         Class<?> counterType = start.type().returnType();  // int, but who's counting?
7399         Class<?> limitType   = end.type().returnType();    // yes, int again
7400         Class<?> returnType  = body.type().returnType();
7401         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
7402         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
7403         MethodHandle retv = null;
7404         if (returnType != void.class) {
7405             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7406             pred = dropArguments(pred, 1, returnType);  // ditto
7407             retv = dropArguments(identity(returnType), 0, counterType);
7408         }
7409         body = dropArguments(body, 0, counterType);  // ignore the limit variable
7410         MethodHandle[]
7411             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7412             bodyClause = { init, body },            // v = init(); v = body(v, i)
7413             indexVar   = { start, incr };           // i = start(); i = i + 1
7414         return loop(loopLimit, bodyClause, indexVar);
7415     }
7416 
7417     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7418         Objects.requireNonNull(start);
7419         Objects.requireNonNull(end);
7420         Objects.requireNonNull(body);
7421         Class<?> counterType = start.type().returnType();
7422         if (counterType != int.class) {
7423             MethodType expected = start.type().changeReturnType(int.class);
7424             throw misMatchedTypes("start function", start.type(), expected);
7425         } else if (end.type().returnType() != counterType) {
7426             MethodType expected = end.type().changeReturnType(counterType);
7427             throw misMatchedTypes("end function", end.type(), expected);
7428         }
7429         MethodType bodyType = body.type();
7430         Class<?> returnType = bodyType.returnType();
7431         List<Class<?>> innerList = bodyType.parameterList();
7432         // strip leading V value if present
7433         int vsize = (returnType == void.class ? 0 : 1);
7434         if (vsize != 0 && (innerList.isEmpty() || innerList.get(0) != returnType)) {
7435             // argument list has no "V" => error
7436             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7437             throw misMatchedTypes("body function", bodyType, expected);
7438         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
7439             // missing I type => error
7440             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
7441             throw misMatchedTypes("body function", bodyType, expected);
7442         }
7443         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
7444         if (outerList.isEmpty()) {
7445             // special case; take lists from end handle
7446             outerList = end.type().parameterList();
7447             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
7448         }
7449         MethodType expected = methodType(counterType, outerList);
7450         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
7451             throw misMatchedTypes("start parameter types", start.type(), expected);
7452         }
7453         if (end.type() != start.type() &&
7454             !end.type().effectivelyIdenticalParameters(0, outerList)) {
7455             throw misMatchedTypes("end parameter types", end.type(), expected);
7456         }
7457         if (init != null) {
7458             MethodType initType = init.type();
7459             if (initType.returnType() != returnType ||
7460                 !initType.effectivelyIdenticalParameters(0, outerList)) {
7461                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7462             }
7463         }
7464     }
7465 
7466     /**
7467      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
7468      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7469      * <p>
7470      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
7471      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
7472      * <p>
7473      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7474      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7475      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7476      * <p>
7477      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7478      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7479      * iteration variable.
7480      * The result of the loop handle execution will be the final {@code V} value of that variable
7481      * (or {@code void} if there is no {@code V} variable).
7482      * <p>
7483      * The following rules hold for the argument handles:<ul>
7484      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7485      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
7486      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7487      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
7488      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
7489      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
7490      * of types called the <em>internal parameter list</em>.
7491      * It will constrain the parameter lists of the other loop parts.
7492      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
7493      * with no additional {@code A} types, then the internal parameter list is extended by
7494      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
7495      * single type {@code Iterable} is added and constitutes the {@code A...} list.
7496      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
7497      * list {@code (A...)} is called the <em>external parameter list</em>.
7498      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7499      * additional state variable of the loop.
7500      * The body must both accept a leading parameter and return a value of this type {@code V}.
7501      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7502      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7503      * <a href="MethodHandles.html#effid">effectively identical</a>
7504      * to the external parameter list {@code (A...)}.
7505      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7506      * {@linkplain #empty default value}.
7507      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
7508      * type {@code java.util.Iterator} or a subtype thereof.
7509      * The iterator it produces when the loop is executed will be assumed
7510      * to yield values which can be converted to type {@code T}.
7511      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
7512      * effectively identical to the external parameter list {@code (A...)}.
7513      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
7514      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
7515      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
7516      * handle parameter is adjusted to accept the leading {@code A} type, as if by
7517      * the {@link MethodHandle#asType asType} conversion method.
7518      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
7519      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
7520      * </ul>
7521      * <p>
7522      * The type {@code T} may be either a primitive or reference.
7523      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
7524      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
7525      * as if by the {@link MethodHandle#asType asType} conversion method.
7526      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
7527      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
7528      * <p>
7529      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7530      * <li>The loop handle's result type is the result type {@code V} of the body.
7531      * <li>The loop handle's parameter types are the types {@code (A...)},
7532      * from the external parameter list.
7533      * </ul>
7534      * <p>
7535      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7536      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
7537      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
7538      * {@snippet lang="java" :
7539      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
7540      * V init(A...);
7541      * V body(V,T,A...);
7542      * V iteratedLoop(A... a...) {
7543      *   Iterator<T> it = iterator(a...);
7544      *   V v = init(a...);
7545      *   while (it.hasNext()) {
7546      *     T t = it.next();
7547      *     v = body(v, t, a...);
7548      *   }
7549      *   return v;
7550      * }
7551      * }
7552      *
7553      * @apiNote Example:
7554      * {@snippet lang="java" :
7555      * // get an iterator from a list
7556      * static List<String> reverseStep(List<String> r, String e) {
7557      *   r.add(0, e);
7558      *   return r;
7559      * }
7560      * static List<String> newArrayList() { return new ArrayList<>(); }
7561      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
7562      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
7563      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
7564      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
7565      * assertEquals(reversedList, (List<String>) loop.invoke(list));
7566      * }
7567      *
7568      * @apiNote The implementation of this method can be expressed approximately as follows:
7569      * {@snippet lang="java" :
7570      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7571      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
7572      *     Class<?> returnType = body.type().returnType();
7573      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7574      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
7575      *     MethodHandle retv = null, step = body, startIter = iterator;
7576      *     if (returnType != void.class) {
7577      *         // the simple thing first:  in (I V A...), drop the I to get V
7578      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
7579      *         // body type signature (V T A...), internal loop types (I V A...)
7580      *         step = swapArguments(body, 0, 1);  // swap V <-> T
7581      *     }
7582      *     if (startIter == null)  startIter = MH_getIter;
7583      *     MethodHandle[]
7584      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
7585      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
7586      *     return loop(iterVar, bodyClause);
7587      * }
7588      * }
7589      *
7590      * @param iterator an optional handle to return the iterator to start the loop.
7591      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
7592      *                 See above for other constraints.
7593      * @param init optional initializer, providing the initial value of the loop variable.
7594      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7595      * @param body body of the loop, which may not be {@code null}.
7596      *             It controls the loop parameters and result type in the standard case (see above for details).
7597      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
7598      *             and may accept any number of additional types.
7599      *             See above for other constraints.
7600      *
7601      * @return a method handle embodying the iteration loop functionality.
7602      * @throws NullPointerException if the {@code body} handle is {@code null}.
7603      * @throws IllegalArgumentException if any argument violates the above requirements.
7604      *
7605      * @since 9
7606      */
7607     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7608         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
7609         Class<?> returnType = body.type().returnType();
7610         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
7611         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
7612         MethodHandle startIter;
7613         MethodHandle nextVal;
7614         {
7615             MethodType iteratorType;
7616             if (iterator == null) {
7617                 // derive argument type from body, if available, else use Iterable
7618                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
7619                 iteratorType = startIter.type().changeParameterType(0, iterableType);
7620             } else {
7621                 // force return type to the internal iterator class
7622                 iteratorType = iterator.type().changeReturnType(Iterator.class);
7623                 startIter = iterator;
7624             }
7625             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7626             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
7627 
7628             // perform the asType transforms under an exception transformer, as per spec.:
7629             try {
7630                 startIter = startIter.asType(iteratorType);
7631                 nextVal = nextRaw.asType(nextValType);
7632             } catch (WrongMethodTypeException ex) {
7633                 throw new IllegalArgumentException(ex);
7634             }
7635         }
7636 
7637         MethodHandle retv = null, step = body;
7638         if (returnType != void.class) {
7639             // the simple thing first:  in (I V A...), drop the I to get V
7640             retv = dropArguments(identity(returnType), 0, Iterator.class);
7641             // body type signature (V T A...), internal loop types (I V A...)
7642             step = swapArguments(body, 0, 1);  // swap V <-> T
7643         }
7644 
7645         MethodHandle[]
7646             iterVar    = { startIter, null, hasNext, retv },
7647             bodyClause = { init, filterArgument(step, 0, nextVal) };
7648         return loop(iterVar, bodyClause);
7649     }
7650 
7651     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7652         Objects.requireNonNull(body);
7653         MethodType bodyType = body.type();
7654         Class<?> returnType = bodyType.returnType();
7655         List<Class<?>> internalParamList = bodyType.parameterList();
7656         // strip leading V value if present
7657         int vsize = (returnType == void.class ? 0 : 1);
7658         if (vsize != 0 && (internalParamList.isEmpty() || internalParamList.get(0) != returnType)) {
7659             // argument list has no "V" => error
7660             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7661             throw misMatchedTypes("body function", bodyType, expected);
7662         } else if (internalParamList.size() <= vsize) {
7663             // missing T type => error
7664             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
7665             throw misMatchedTypes("body function", bodyType, expected);
7666         }
7667         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
7668         Class<?> iterableType = null;
7669         if (iterator != null) {
7670             // special case; if the body handle only declares V and T then
7671             // the external parameter list is obtained from iterator handle
7672             if (externalParamList.isEmpty()) {
7673                 externalParamList = iterator.type().parameterList();
7674             }
7675             MethodType itype = iterator.type();
7676             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
7677                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
7678             }
7679             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
7680                 MethodType expected = methodType(itype.returnType(), externalParamList);
7681                 throw misMatchedTypes("iterator parameters", itype, expected);
7682             }
7683         } else {
7684             if (externalParamList.isEmpty()) {
7685                 // special case; if the iterator handle is null and the body handle
7686                 // only declares V and T then the external parameter list consists
7687                 // of Iterable
7688                 externalParamList = List.of(Iterable.class);
7689                 iterableType = Iterable.class;
7690             } else {
7691                 // special case; if the iterator handle is null and the external
7692                 // parameter list is not empty then the first parameter must be
7693                 // assignable to Iterable
7694                 iterableType = externalParamList.get(0);
7695                 if (!Iterable.class.isAssignableFrom(iterableType)) {
7696                     throw newIllegalArgumentException(
7697                             "inferred first loop argument must inherit from Iterable: " + iterableType);
7698                 }
7699             }
7700         }
7701         if (init != null) {
7702             MethodType initType = init.type();
7703             if (initType.returnType() != returnType ||
7704                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
7705                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
7706             }
7707         }
7708         return iterableType;  // help the caller a bit
7709     }
7710 
7711     /*non-public*/
7712     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
7713         // there should be a better way to uncross my wires
7714         int arity = mh.type().parameterCount();
7715         int[] order = new int[arity];
7716         for (int k = 0; k < arity; k++)  order[k] = k;
7717         order[i] = j; order[j] = i;
7718         Class<?>[] types = mh.type().parameterArray();
7719         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
7720         MethodType swapType = methodType(mh.type().returnType(), types);
7721         return permuteArguments(mh, swapType, order);
7722     }
7723 
7724     /**
7725      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
7726      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
7727      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
7728      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
7729      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
7730      * {@code try-finally} handle.
7731      * <p>
7732      * The {@code cleanup} handle will be passed one or two additional leading arguments.
7733      * The first is the exception thrown during the
7734      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
7735      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
7736      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
7737      * The second argument is not present if the {@code target} handle has a {@code void} return type.
7738      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
7739      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
7740      * <p>
7741      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
7742      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
7743      * two extra leading parameters:<ul>
7744      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
7745      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
7746      * the result from the execution of the {@code target} handle.
7747      * This parameter is not present if the {@code target} returns {@code void}.
7748      * </ul>
7749      * <p>
7750      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
7751      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
7752      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
7753      * the cleanup.
7754      * {@snippet lang="java" :
7755      * V target(A..., B...);
7756      * V cleanup(Throwable, V, A...);
7757      * V adapter(A... a, B... b) {
7758      *   V result = (zero value for V);
7759      *   Throwable throwable = null;
7760      *   try {
7761      *     result = target(a..., b...);
7762      *   } catch (Throwable t) {
7763      *     throwable = t;
7764      *     throw t;
7765      *   } finally {
7766      *     result = cleanup(throwable, result, a...);
7767      *   }
7768      *   return result;
7769      * }
7770      * }
7771      * <p>
7772      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
7773      * be modified by execution of the target, and so are passed unchanged
7774      * from the caller to the cleanup, if it is invoked.
7775      * <p>
7776      * The target and cleanup must return the same type, even if the cleanup
7777      * always throws.
7778      * To create such a throwing cleanup, compose the cleanup logic
7779      * with {@link #throwException throwException},
7780      * in order to create a method handle of the correct return type.
7781      * <p>
7782      * Note that {@code tryFinally} never converts exceptions into normal returns.
7783      * In rare cases where exceptions must be converted in that way, first wrap
7784      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
7785      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
7786      * <p>
7787      * It is recommended that the first parameter type of {@code cleanup} be
7788      * declared {@code Throwable} rather than a narrower subtype.  This ensures
7789      * {@code cleanup} will always be invoked with whatever exception that
7790      * {@code target} throws.  Declaring a narrower type may result in a
7791      * {@code ClassCastException} being thrown by the {@code try-finally}
7792      * handle if the type of the exception thrown by {@code target} is not
7793      * assignable to the first parameter type of {@code cleanup}.  Note that
7794      * various exception types of {@code VirtualMachineError},
7795      * {@code LinkageError}, and {@code RuntimeException} can in principle be
7796      * thrown by almost any kind of Java code, and a finally clause that
7797      * catches (say) only {@code IOException} would mask any of the others
7798      * behind a {@code ClassCastException}.
7799      *
7800      * @param target the handle whose execution is to be wrapped in a {@code try} block.
7801      * @param cleanup the handle that is invoked in the finally block.
7802      *
7803      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
7804      * @throws NullPointerException if any argument is null
7805      * @throws IllegalArgumentException if {@code cleanup} does not accept
7806      *          the required leading arguments, or if the method handle types do
7807      *          not match in their return types and their
7808      *          corresponding trailing parameters
7809      *
7810      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7811      * @since 9
7812      */
7813     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7814         Class<?>[] targetParamTypes = target.type().ptypes();
7815         Class<?> rtype = target.type().returnType();
7816 
7817         tryFinallyChecks(target, cleanup);
7818 
7819         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7820         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7821         // target parameter list.
7822         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0, false);
7823 
7824         // Ensure that the intrinsic type checks the instance thrown by the
7825         // target against the first parameter of cleanup
7826         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7827 
7828         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7829         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7830     }
7831 
7832     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7833         Class<?> rtype = target.type().returnType();
7834         if (rtype != cleanup.type().returnType()) {
7835             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7836         }
7837         MethodType cleanupType = cleanup.type();
7838         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7839             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7840         }
7841         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7842             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7843         }
7844         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7845         // target parameter list.
7846         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7847         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7848             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7849                     cleanup.type(), target.type());
7850         }
7851     }
7852 
7853     /**
7854      * Creates a table switch method handle, which can be used to switch over a set of target
7855      * method handles, based on a given target index, called selector.
7856      * <p>
7857      * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)},
7858      * and where {@code N} is the number of target method handles, the table switch method
7859      * handle will invoke the n-th target method handle from the list of target method handles.
7860      * <p>
7861      * For a selector value that does not fall in the range {@code [0, N)}, the table switch
7862      * method handle will invoke the given fallback method handle.
7863      * <p>
7864      * All method handles passed to this method must have the same type, with the additional
7865      * requirement that the leading parameter be of type {@code int}. The leading parameter
7866      * represents the selector.
7867      * <p>
7868      * Any trailing parameters present in the type will appear on the returned table switch
7869      * method handle as well. Any arguments assigned to these parameters will be forwarded,
7870      * together with the selector value, to the selected method handle when invoking it.
7871      *
7872      * @apiNote Example:
7873      * The cases each drop the {@code selector} value they are given, and take an additional
7874      * {@code String} argument, which is concatenated (using {@link String#concat(String)})
7875      * to a specific constant label string for each case:
7876      * {@snippet lang="java" :
7877      * MethodHandles.Lookup lookup = MethodHandles.lookup();
7878      * MethodHandle caseMh = lookup.findVirtual(String.class, "concat",
7879      *         MethodType.methodType(String.class, String.class));
7880      * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class);
7881      *
7882      * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: ");
7883      * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: ");
7884      * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: ");
7885      *
7886      * MethodHandle mhSwitch = MethodHandles.tableSwitch(
7887      *     caseDefault,
7888      *     case0,
7889      *     case1
7890      * );
7891      *
7892      * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data"));
7893      * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data"));
7894      * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data"));
7895      * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data"));
7896      * }
7897      *
7898      * @param fallback the fallback method handle that is called when the selector is not
7899      *                 within the range {@code [0, N)}.
7900      * @param targets array of target method handles.
7901      * @return the table switch method handle.
7902      * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any
7903      *                              any of the elements of the {@code targets} array are
7904      *                              {@code null}.
7905      * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading
7906      *                                  parameter of the fallback handle or any of the target
7907      *                                  handles is not {@code int}, or if the types of
7908      *                                  the fallback handle and all of target handles are
7909      *                                  not the same.
7910      *
7911      * @since 17
7912      */
7913     public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) {
7914         Objects.requireNonNull(fallback);
7915         Objects.requireNonNull(targets);
7916         targets = targets.clone();
7917         MethodType type = tableSwitchChecks(fallback, targets);
7918         return MethodHandleImpl.makeTableSwitch(type, fallback, targets);
7919     }
7920 
7921     private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) {
7922         if (caseActions.length == 0)
7923             throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions));
7924 
7925         MethodType expectedType = defaultCase.type();
7926 
7927         if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class)
7928             throw new IllegalArgumentException(
7929                 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions));
7930 
7931         for (MethodHandle mh : caseActions) {
7932             Objects.requireNonNull(mh);
7933             if (mh.type() != expectedType)
7934                 throw new IllegalArgumentException(
7935                     "Case actions must have the same type: " + Arrays.toString(caseActions));
7936         }
7937 
7938         return expectedType;
7939     }
7940 
7941     /**
7942      * Adapts a target var handle by pre-processing incoming and outgoing values using a pair of filter functions.
7943      * <p>
7944      * When calling e.g. {@link VarHandle#set(Object...)} on the resulting var handle, the incoming value (of type {@code T}, where
7945      * {@code T} is the <em>last</em> parameter type of the first filter function) is processed using the first filter and then passed
7946      * to the target var handle.
7947      * Conversely, when calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the return value obtained from
7948      * the target var handle (of type {@code T}, where {@code T} is the <em>last</em> parameter type of the second filter function)
7949      * is processed using the second filter and returned to the caller. More advanced access mode types, such as
7950      * {@link VarHandle.AccessMode#COMPARE_AND_EXCHANGE} might apply both filters at the same time.
7951      * <p>
7952      * For the boxing and unboxing filters to be well-formed, their types must be of the form {@code (A... , S) -> T} and
7953      * {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle. If this is the case,
7954      * the resulting var handle will have type {@code S} and will feature the additional coordinates {@code A...} (which
7955      * will be appended to the coordinates of the target var handle).
7956      * <p>
7957      * If the boxing and unboxing filters throw any checked exceptions when invoked, the resulting var handle will
7958      * throw an {@link IllegalStateException}.
7959      * <p>
7960      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7961      * atomic access guarantees as those featured by the target var handle.
7962      *
7963      * @param target the target var handle
7964      * @param filterToTarget a filter to convert some type {@code S} into the type of {@code target}
7965      * @param filterFromTarget a filter to convert the type of {@code target} to some type {@code S}
7966      * @return an adapter var handle which accepts a new type, performing the provided boxing/unboxing conversions.
7967      * @throws IllegalArgumentException if {@code filterFromTarget} and {@code filterToTarget} are not well-formed, that is, they have types
7968      * other than {@code (A... , S) -> T} and {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle,
7969      * or if it's determined that either {@code filterFromTarget} or {@code filterToTarget} throws any checked exceptions.
7970      * @throws NullPointerException if any of the arguments is {@code null}.
7971      * @since 22
7972      */
7973     public static VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
7974         return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
7975     }
7976 
7977     /**
7978      * Adapts a target var handle by pre-processing incoming coordinate values using unary filter functions.
7979      * <p>
7980      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the incoming coordinate values
7981      * starting at position {@code pos} (of type {@code C1, C2 ... Cn}, where {@code C1, C2 ... Cn} are the return types
7982      * of the unary filter functions) are transformed into new values (of type {@code S1, S2 ... Sn}, where {@code S1, S2 ... Sn} are the
7983      * parameter types of the unary filter functions), and then passed (along with any coordinate that was left unaltered
7984      * by the adaptation) to the target var handle.
7985      * <p>
7986      * For the coordinate filters to be well-formed, their types must be of the form {@code S1 -> T1, S2 -> T1 ... Sn -> Tn},
7987      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
7988      * <p>
7989      * If any of the filters throws a checked exception when invoked, the resulting var handle will
7990      * throw an {@link IllegalStateException}.
7991      * <p>
7992      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7993      * atomic access guarantees as those featured by the target var handle.
7994      *
7995      * @param target the target var handle
7996      * @param pos the position of the first coordinate to be transformed
7997      * @param filters the unary functions which are used to transform coordinates starting at position {@code pos}
7998      * @return an adapter var handle which accepts new coordinate types, applying the provided transformation
7999      * to the new coordinate values.
8000      * @throws IllegalArgumentException if the handles in {@code filters} are not well-formed, that is, they have types
8001      * other than {@code S1 -> T1, S2 -> T2, ... Sn -> Tn} where {@code T1, T2 ... Tn} are the coordinate types starting
8002      * at position {@code pos} of the target var handle, if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8003      * or if more filters are provided than the actual number of coordinate types available starting at {@code pos},
8004      * or if it's determined that any of the filters throws any checked exceptions.
8005      * @throws NullPointerException if any of the arguments is {@code null} or {@code filters} contains {@code null}.
8006      * @since 22
8007      */
8008     public static VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
8009         return VarHandles.filterCoordinates(target, pos, filters);
8010     }
8011 
8012     /**
8013      * Provides a target var handle with one or more <em>bound coordinates</em>
8014      * in advance of the var handle's invocation. As a consequence, the resulting var handle will feature less
8015      * coordinate types than the target var handle.
8016      * <p>
8017      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, incoming coordinate values
8018      * are joined with bound coordinate values, and then passed to the target var handle.
8019      * <p>
8020      * For the bound coordinates to be well-formed, their types must be {@code T1, T2 ... Tn },
8021      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
8022      * <p>
8023      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8024      * atomic access guarantees as those featured by the target var handle.
8025      *
8026      * @param target the var handle to invoke after the bound coordinates are inserted
8027      * @param pos the position of the first coordinate to be inserted
8028      * @param values the series of bound coordinates to insert
8029      * @return an adapter var handle which inserts additional coordinates,
8030      *         before calling the target var handle
8031      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8032      * or if more values are provided than the actual number of coordinate types available starting at {@code pos}.
8033      * @throws ClassCastException if the bound coordinates in {@code values} are not well-formed, that is, they have types
8034      * other than {@code T1, T2 ... Tn }, where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos}
8035      * of the target var handle.
8036      * @throws NullPointerException if any of the arguments is {@code null} or {@code values} contains {@code null}.
8037      * @since 22
8038      */
8039     public static VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
8040         return VarHandles.insertCoordinates(target, pos, values);
8041     }
8042 
8043     /**
8044      * Provides a var handle which adapts the coordinate values of the target var handle, by re-arranging them
8045      * so that the new coordinates match the provided ones.
8046      * <p>
8047      * The given array controls the reordering.
8048      * Call {@code #I} the number of incoming coordinates (the value
8049      * {@code newCoordinates.size()}), and call {@code #O} the number
8050      * of outgoing coordinates (the number of coordinates associated with the target var handle).
8051      * Then the length of the reordering array must be {@code #O},
8052      * and each element must be a non-negative number less than {@code #I}.
8053      * For every {@code N} less than {@code #O}, the {@code N}-th
8054      * outgoing coordinate will be taken from the {@code I}-th incoming
8055      * coordinate, where {@code I} is {@code reorder[N]}.
8056      * <p>
8057      * No coordinate value conversions are applied.
8058      * The type of each incoming coordinate, as determined by {@code newCoordinates},
8059      * must be identical to the type of the corresponding outgoing coordinate
8060      * in the target var handle.
8061      * <p>
8062      * The reordering array need not specify an actual permutation.
8063      * An incoming coordinate will be duplicated if its index appears
8064      * more than once in the array, and an incoming coordinate will be dropped
8065      * if its index does not appear in the array.
8066      * <p>
8067      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8068      * atomic access guarantees as those featured by the target var handle.
8069      * @param target the var handle to invoke after the coordinates have been reordered
8070      * @param newCoordinates the new coordinate types
8071      * @param reorder an index array which controls the reordering
8072      * @return an adapter var handle which re-arranges the incoming coordinate values,
8073      * before calling the target var handle
8074      * @throws IllegalArgumentException if the index array length is not equal to
8075      * the number of coordinates of the target var handle, or if any index array element is not a valid index for
8076      * a coordinate of {@code newCoordinates}, or if two corresponding coordinate types in
8077      * the target var handle and in {@code newCoordinates} are not identical.
8078      * @throws NullPointerException if any of the arguments is {@code null} or {@code newCoordinates} contains {@code null}.
8079      * @since 22
8080      */
8081     public static VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
8082         return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
8083     }
8084 
8085     /**
8086      * Adapts a target var handle by pre-processing
8087      * a sub-sequence of its coordinate values with a filter (a method handle).
8088      * The pre-processed coordinates are replaced by the result (if any) of the
8089      * filter function and the target var handle is then called on the modified (usually shortened)
8090      * coordinate list.
8091      * <p>
8092      * If {@code R} is the return type of the filter, then:
8093      * <ul>
8094      * <li>if {@code R} <em>is not</em> {@code void}, the target var handle must have a coordinate of type {@code R} in
8095      * position {@code pos}. The parameter types of the filter will replace the coordinate type at position {@code pos}
8096      * of the target var handle. When the returned var handle is invoked, it will be as if the filter is invoked first,
8097      * and its result is passed in place of the coordinate at position {@code pos} in a downstream invocation of the
8098      * target var handle.</li>
8099      * <li> if {@code R} <em>is</em> {@code void}, the parameter types (if any) of the filter will be inserted in the
8100      * coordinate type list of the target var handle at position {@code pos}. In this case, when the returned var handle
8101      * is invoked, the filter essentially acts as a side effect, consuming some of the coordinate values, before a
8102      * downstream invocation of the target var handle.</li>
8103      * </ul>
8104      * <p>
8105      * If any of the filters throws a checked exception when invoked, the resulting var handle will
8106      * throw an {@link IllegalStateException}.
8107      * <p>
8108      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8109      * atomic access guarantees as those featured by the target var handle.
8110      *
8111      * @param target the var handle to invoke after the coordinates have been filtered
8112      * @param pos the position in the coordinate list of the target var handle where the filter is to be inserted
8113      * @param filter the filter method handle
8114      * @return an adapter var handle which filters the incoming coordinate values,
8115      * before calling the target var handle
8116      * @throws IllegalArgumentException if the return type of {@code filter}
8117      * is not void, and it is not the same as the {@code pos} coordinate of the target var handle,
8118      * if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8119      * if the resulting var handle's type would have <a href="MethodHandle.html#maxarity">too many coordinates</a>,
8120      * or if it's determined that {@code filter} throws any checked exceptions.
8121      * @throws NullPointerException if any of the arguments is {@code null}.
8122      * @since 22
8123      */
8124     public static VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
8125         return VarHandles.collectCoordinates(target, pos, filter);
8126     }
8127 
8128     /**
8129      * Returns a var handle which will discard some dummy coordinates before delegating to the
8130      * target var handle. As a consequence, the resulting var handle will feature more
8131      * coordinate types than the target var handle.
8132      * <p>
8133      * The {@code pos} argument may range between zero and <i>N</i>, where <i>N</i> is the arity of the
8134      * target var handle's coordinate types. If {@code pos} is zero, the dummy coordinates will precede
8135      * the target's real arguments; if {@code pos} is <i>N</i> they will come after.
8136      * <p>
8137      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8138      * atomic access guarantees as those featured by the target var handle.
8139      *
8140      * @param target the var handle to invoke after the dummy coordinates are dropped
8141      * @param pos position of the first coordinate to drop (zero for the leftmost)
8142      * @param valueTypes the type(s) of the coordinate(s) to drop
8143      * @return an adapter var handle which drops some dummy coordinates,
8144      *         before calling the target var handle
8145      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive.
8146      * @throws NullPointerException if any of the arguments is {@code null} or {@code valueTypes} contains {@code null}.
8147      * @since 22
8148      */
8149     public static VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
8150         return VarHandles.dropCoordinates(target, pos, valueTypes);
8151     }
8152 }