1 /*
   2  * Copyright (c) 2008, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.misc.Unsafe;
  30 import jdk.internal.misc.VM;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.CallerSensitiveAdapter;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.util.ClassFileDumper;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import sun.invoke.util.ValueConversions;
  37 import sun.invoke.util.VerifyAccess;
  38 import sun.invoke.util.Wrapper;
  39 import sun.reflect.misc.ReflectUtil;
  40 import sun.security.util.SecurityConstants;
  41 
  42 import java.lang.classfile.ClassModel;
  43 import java.lang.constant.ConstantDescs;
  44 import java.lang.invoke.LambdaForm.BasicType;
  45 import java.lang.invoke.MethodHandleImpl.Intrinsic;
  46 import java.lang.reflect.Constructor;
  47 import java.lang.reflect.Field;
  48 import java.lang.reflect.Member;
  49 import java.lang.reflect.Method;
  50 import java.lang.reflect.Modifier;
  51 import java.nio.ByteOrder;
  52 import java.security.ProtectionDomain;
  53 import java.util.ArrayList;
  54 import java.util.Arrays;
  55 import java.util.BitSet;
  56 import java.util.Comparator;
  57 import java.util.Iterator;
  58 import java.util.List;
  59 import java.util.Objects;
  60 import java.util.Set;
  61 import java.util.concurrent.ConcurrentHashMap;
  62 import java.util.stream.Stream;
  63 
  64 import static java.lang.classfile.ClassFile.*;
  65 import static java.lang.invoke.LambdaForm.BasicType.V_TYPE;
  66 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  67 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  68 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  69 import static java.lang.invoke.MethodHandleStatics.newInternalError;
  70 import static java.lang.invoke.MethodType.methodType;
  71 
  72 /**
  73  * This class consists exclusively of static methods that operate on or return
  74  * method handles. They fall into several categories:
  75  * <ul>
  76  * <li>Lookup methods which help create method handles for methods and fields.
  77  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  78  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  79  * </ul>
  80  * A lookup, combinator, or factory method will fail and throw an
  81  * {@code IllegalArgumentException} if the created method handle's type
  82  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  83  *
  84  * @author John Rose, JSR 292 EG
  85  * @since 1.7
  86  */
  87 public class MethodHandles {
  88 
  89     private MethodHandles() { }  // do not instantiate
  90 
  91     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  92 
  93     // See IMPL_LOOKUP below.
  94 
  95     //--- Method handle creation from ordinary methods.
  96 
  97     /**
  98      * Returns a {@link Lookup lookup object} with
  99      * full capabilities to emulate all supported bytecode behaviors of the caller.
 100      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
 101      * Factory methods on the lookup object can create
 102      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
 103      * for any member that the caller has access to via bytecodes,
 104      * including protected and private fields and methods.
 105      * This lookup object is created by the original lookup class
 106      * and has the {@link Lookup#ORIGINAL ORIGINAL} bit set.
 107      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 108      * Do not store it in place where untrusted code can access it.
 109      * <p>
 110      * This method is caller sensitive, which means that it may return different
 111      * values to different callers.
 112      * In cases where {@code MethodHandles.lookup} is called from a context where
 113      * there is no caller frame on the stack (e.g. when called directly
 114      * from a JNI attached thread), {@code IllegalCallerException} is thrown.
 115      * To obtain a {@link Lookup lookup object} in such a context, use an auxiliary class that will
 116      * implicitly be identified as the caller, or use {@link MethodHandles#publicLookup()}
 117      * to obtain a low-privileged lookup instead.
 118      * @return a lookup object for the caller of this method, with
 119      * {@linkplain Lookup#ORIGINAL original} and
 120      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}.
 121      * @throws IllegalCallerException if there is no caller frame on the stack.
 122      */
 123     @CallerSensitive
 124     @ForceInline // to ensure Reflection.getCallerClass optimization
 125     public static Lookup lookup() {
 126         final Class<?> c = Reflection.getCallerClass();
 127         if (c == null) {
 128             throw new IllegalCallerException("no caller frame");
 129         }
 130         return new Lookup(c);
 131     }
 132 
 133     /**
 134      * This lookup method is the alternate implementation of
 135      * the lookup method with a leading caller class argument which is
 136      * non-caller-sensitive.  This method is only invoked by reflection
 137      * and method handle.
 138      */
 139     @CallerSensitiveAdapter
 140     private static Lookup lookup(Class<?> caller) {
 141         if (caller.getClassLoader() == null) {
 142             throw newInternalError("calling lookup() reflectively is not supported: "+caller);
 143         }
 144         return new Lookup(caller);
 145     }
 146 
 147     /**
 148      * Returns a {@link Lookup lookup object} which is trusted minimally.
 149      * The lookup has the {@code UNCONDITIONAL} mode.
 150      * It can only be used to create method handles to public members of
 151      * public classes in packages that are exported unconditionally.
 152      * <p>
 153      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 154      * of this lookup object will be {@link java.lang.Object}.
 155      *
 156      * @apiNote The use of Object is conventional, and because the lookup modes are
 157      * limited, there is no special access provided to the internals of Object, its package
 158      * or its module.  This public lookup object or other lookup object with
 159      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 160      * is not used to determine the lookup context.
 161      *
 162      * <p style="font-size:smaller;">
 163      * <em>Discussion:</em>
 164      * The lookup class can be changed to any other class {@code C} using an expression of the form
 165      * {@link Lookup#in publicLookup().in(C.class)}.
 166      * A public lookup object is always subject to
 167      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 168      * Also, it cannot access
 169      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 170      * @return a lookup object which is trusted minimally
 171      */
 172     public static Lookup publicLookup() {
 173         return Lookup.PUBLIC_LOOKUP;
 174     }
 175 
 176     /**
 177      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 178      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 179      * The returned lookup object can provide access to classes in modules and packages,
 180      * and members of those classes, outside the normal rules of Java access control,
 181      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 182      * <p>
 183      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 184      * allowed to do deep reflection on module {@code M2} and package of the target class
 185      * if and only if all of the following conditions are {@code true}:
 186      * <ul>
 187      * <li>If there is a security manager, its {@code checkPermission} method is
 188      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 189      * that must return normally.
 190      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 191      * full privilege access}.  Specifically:
 192      *   <ul>
 193      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 194      *         (This is because otherwise there would be no way to ensure the original lookup
 195      *         creator was a member of any particular module, and so any subsequent checks
 196      *         for readability and qualified exports would become ineffective.)
 197      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 198      *         (This is because an application intending to share intra-module access
 199      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 200      *         deep reflection to its own module.)
 201      *   </ul>
 202      * <li>The target class must be a proper class, not a primitive or array class.
 203      * (Thus, {@code M2} is well-defined.)
 204      * <li>If the caller module {@code M1} differs from
 205      * the target module {@code M2} then both of the following must be true:
 206      *   <ul>
 207      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 208      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 209      *         containing the target class to at least {@code M1}.</li>
 210      *   </ul>
 211      * </ul>
 212      * <p>
 213      * If any of the above checks is violated, this method fails with an
 214      * exception.
 215      * <p>
 216      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 217      * returns a {@code Lookup} on {@code targetClass} with
 218      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 219      * with {@code null} previous lookup class.
 220      * <p>
 221      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 222      * returns a {@code Lookup} on {@code targetClass} that records
 223      * the lookup class of the caller as the new previous lookup class with
 224      * {@code PRIVATE} access but no {@code MODULE} access.
 225      * <p>
 226      * The resulting {@code Lookup} object has no {@code ORIGINAL} access.
 227      *
 228      * @apiNote The {@code Lookup} object returned by this method is allowed to
 229      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 230      * of {@code targetClass}. Extreme caution should be taken when opening a package
 231      * to another module as such defined classes have the same full privilege
 232      * access as other members in {@code targetClass}'s module.
 233      *
 234      * @param targetClass the target class
 235      * @param caller the caller lookup object
 236      * @return a lookup object for the target class, with private access
 237      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 238      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 239      * @throws SecurityException if denied by the security manager
 240      * @throws IllegalAccessException if any of the other access checks specified above fails
 241      * @since 9
 242      * @see Lookup#dropLookupMode
 243      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 244      */
 245     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 246         if (caller.allowedModes == Lookup.TRUSTED) {
 247             return new Lookup(targetClass);
 248         }
 249 
 250         @SuppressWarnings("removal")
 251         SecurityManager sm = System.getSecurityManager();
 252         if (sm != null) sm.checkPermission(SecurityConstants.ACCESS_PERMISSION);
 253         if (targetClass.isPrimitive())
 254             throw new IllegalArgumentException(targetClass + " is a primitive class");
 255         if (targetClass.isArray())
 256             throw new IllegalArgumentException(targetClass + " is an array class");
 257         // Ensure that we can reason accurately about private and module access.
 258         int requireAccess = Lookup.PRIVATE|Lookup.MODULE;
 259         if ((caller.lookupModes() & requireAccess) != requireAccess)
 260             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 261 
 262         // previous lookup class is never set if it has MODULE access
 263         assert caller.previousLookupClass() == null;
 264 
 265         Class<?> callerClass = caller.lookupClass();
 266         Module callerModule = callerClass.getModule();  // M1
 267         Module targetModule = targetClass.getModule();  // M2
 268         Class<?> newPreviousClass = null;
 269         int newModes = Lookup.FULL_POWER_MODES & ~Lookup.ORIGINAL;
 270 
 271         if (targetModule != callerModule) {
 272             if (!callerModule.canRead(targetModule))
 273                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 274             if (targetModule.isNamed()) {
 275                 String pn = targetClass.getPackageName();
 276                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 277                 if (!targetModule.isOpen(pn, callerModule))
 278                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 279             }
 280 
 281             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 282             newPreviousClass = callerClass;
 283             newModes &= ~Lookup.MODULE;
 284         }
 285         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 286     }
 287 
 288     /**
 289      * Returns the <em>class data</em> associated with the lookup class
 290      * of the given {@code caller} lookup object, or {@code null}.
 291      *
 292      * <p> A hidden class with class data can be created by calling
 293      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 294      * Lookup::defineHiddenClassWithClassData}.
 295      * This method will cause the static class initializer of the lookup
 296      * class of the given {@code caller} lookup object be executed if
 297      * it has not been initialized.
 298      *
 299      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 300      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 301      * {@code null} is returned if this method is called on the lookup object
 302      * on these classes.
 303      *
 304      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 305      * must have {@linkplain Lookup#ORIGINAL original access}
 306      * in order to retrieve the class data.
 307      *
 308      * @apiNote
 309      * This method can be called as a bootstrap method for a dynamically computed
 310      * constant.  A framework can create a hidden class with class data, for
 311      * example that can be {@code Class} or {@code MethodHandle} object.
 312      * The class data is accessible only to the lookup object
 313      * created by the original caller but inaccessible to other members
 314      * in the same nest.  If a framework passes security sensitive objects
 315      * to a hidden class via class data, it is recommended to load the value
 316      * of class data as a dynamically computed constant instead of storing
 317      * the class data in private static field(s) which are accessible to
 318      * other nestmates.
 319      *
 320      * @param <T> the type to cast the class data object to
 321      * @param caller the lookup context describing the class performing the
 322      * operation (normally stacked by the JVM)
 323      * @param name must be {@link ConstantDescs#DEFAULT_NAME}
 324      *             ({@code "_"})
 325      * @param type the type of the class data
 326      * @return the value of the class data if present in the lookup class;
 327      * otherwise {@code null}
 328      * @throws IllegalArgumentException if name is not {@code "_"}
 329      * @throws IllegalAccessException if the lookup context does not have
 330      * {@linkplain Lookup#ORIGINAL original} access
 331      * @throws ClassCastException if the class data cannot be converted to
 332      * the given {@code type}
 333      * @throws NullPointerException if {@code caller} or {@code type} argument
 334      * is {@code null}
 335      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 336      * @see MethodHandles#classDataAt(Lookup, String, Class, int)
 337      * @since 16
 338      * @jvms 5.5 Initialization
 339      */
 340      public static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException {
 341          Objects.requireNonNull(caller);
 342          Objects.requireNonNull(type);
 343          if (!ConstantDescs.DEFAULT_NAME.equals(name)) {
 344              throw new IllegalArgumentException("name must be \"_\": " + name);
 345          }
 346 
 347          if ((caller.lookupModes() & Lookup.ORIGINAL) != Lookup.ORIGINAL)  {
 348              throw new IllegalAccessException(caller + " does not have ORIGINAL access");
 349          }
 350 
 351          Object classdata = classData(caller.lookupClass());
 352          if (classdata == null) return null;
 353 
 354          try {
 355              return BootstrapMethodInvoker.widenAndCast(classdata, type);
 356          } catch (RuntimeException|Error e) {
 357              throw e; // let CCE and other runtime exceptions through
 358          } catch (Throwable e) {
 359              throw new InternalError(e);
 360          }
 361     }
 362 
 363     /*
 364      * Returns the class data set by the VM in the Class::classData field.
 365      *
 366      * This is also invoked by LambdaForms as it cannot use condy via
 367      * MethodHandles::classData due to bootstrapping issue.
 368      */
 369     static Object classData(Class<?> c) {
 370         UNSAFE.ensureClassInitialized(c);
 371         return SharedSecrets.getJavaLangAccess().classData(c);
 372     }
 373 
 374     /**
 375      * Returns the element at the specified index in the
 376      * {@linkplain #classData(Lookup, String, Class) class data},
 377      * if the class data associated with the lookup class
 378      * of the given {@code caller} lookup object is a {@code List}.
 379      * If the class data is not present in this lookup class, this method
 380      * returns {@code null}.
 381      *
 382      * <p> A hidden class with class data can be created by calling
 383      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 384      * Lookup::defineHiddenClassWithClassData}.
 385      * This method will cause the static class initializer of the lookup
 386      * class of the given {@code caller} lookup object be executed if
 387      * it has not been initialized.
 388      *
 389      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 390      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 391      * {@code null} is returned if this method is called on the lookup object
 392      * on these classes.
 393      *
 394      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 395      * must have {@linkplain Lookup#ORIGINAL original access}
 396      * in order to retrieve the class data.
 397      *
 398      * @apiNote
 399      * This method can be called as a bootstrap method for a dynamically computed
 400      * constant.  A framework can create a hidden class with class data, for
 401      * example that can be {@code List.of(o1, o2, o3....)} containing more than
 402      * one object and use this method to load one element at a specific index.
 403      * The class data is accessible only to the lookup object
 404      * created by the original caller but inaccessible to other members
 405      * in the same nest.  If a framework passes security sensitive objects
 406      * to a hidden class via class data, it is recommended to load the value
 407      * of class data as a dynamically computed constant instead of storing
 408      * the class data in private static field(s) which are accessible to other
 409      * nestmates.
 410      *
 411      * @param <T> the type to cast the result object to
 412      * @param caller the lookup context describing the class performing the
 413      * operation (normally stacked by the JVM)
 414      * @param name must be {@link java.lang.constant.ConstantDescs#DEFAULT_NAME}
 415      *             ({@code "_"})
 416      * @param type the type of the element at the given index in the class data
 417      * @param index index of the element in the class data
 418      * @return the element at the given index in the class data
 419      * if the class data is present; otherwise {@code null}
 420      * @throws IllegalArgumentException if name is not {@code "_"}
 421      * @throws IllegalAccessException if the lookup context does not have
 422      * {@linkplain Lookup#ORIGINAL original} access
 423      * @throws ClassCastException if the class data cannot be converted to {@code List}
 424      * or the element at the specified index cannot be converted to the given type
 425      * @throws IndexOutOfBoundsException if the index is out of range
 426      * @throws NullPointerException if {@code caller} or {@code type} argument is
 427      * {@code null}; or if unboxing operation fails because
 428      * the element at the given index is {@code null}
 429      *
 430      * @since 16
 431      * @see #classData(Lookup, String, Class)
 432      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 433      */
 434     public static <T> T classDataAt(Lookup caller, String name, Class<T> type, int index)
 435             throws IllegalAccessException
 436     {
 437         @SuppressWarnings("unchecked")
 438         List<Object> classdata = (List<Object>)classData(caller, name, List.class);
 439         if (classdata == null) return null;
 440 
 441         try {
 442             Object element = classdata.get(index);
 443             return BootstrapMethodInvoker.widenAndCast(element, type);
 444         } catch (RuntimeException|Error e) {
 445             throw e; // let specified exceptions and other runtime exceptions/errors through
 446         } catch (Throwable e) {
 447             throw new InternalError(e);
 448         }
 449     }
 450 
 451     /**
 452      * Performs an unchecked "crack" of a
 453      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 454      * The result is as if the user had obtained a lookup object capable enough
 455      * to crack the target method handle, called
 456      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 457      * on the target to obtain its symbolic reference, and then called
 458      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 459      * to resolve the symbolic reference to a member.
 460      * <p>
 461      * If there is a security manager, its {@code checkPermission} method
 462      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 463      * @param <T> the desired type of the result, either {@link Member} or a subtype
 464      * @param target a direct method handle to crack into symbolic reference components
 465      * @param expected a class object representing the desired result type {@code T}
 466      * @return a reference to the method, constructor, or field object
 467      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 468      * @throws    NullPointerException if either argument is {@code null}
 469      * @throws    IllegalArgumentException if the target is not a direct method handle
 470      * @throws    ClassCastException if the member is not of the expected type
 471      * @since 1.8
 472      */
 473     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 474         @SuppressWarnings("removal")
 475         SecurityManager smgr = System.getSecurityManager();
 476         if (smgr != null)  smgr.checkPermission(SecurityConstants.ACCESS_PERMISSION);
 477         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 478         return lookup.revealDirect(target).reflectAs(expected, lookup);
 479     }
 480 
 481     /**
 482      * A <em>lookup object</em> is a factory for creating method handles,
 483      * when the creation requires access checking.
 484      * Method handles do not perform
 485      * access checks when they are called, but rather when they are created.
 486      * Therefore, method handle access
 487      * restrictions must be enforced when a method handle is created.
 488      * The caller class against which those restrictions are enforced
 489      * is known as the {@linkplain #lookupClass() lookup class}.
 490      * <p>
 491      * A lookup class which needs to create method handles will call
 492      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 493      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 494      * determined, and securely stored in the {@code Lookup} object.
 495      * The lookup class (or its delegates) may then use factory methods
 496      * on the {@code Lookup} object to create method handles for access-checked members.
 497      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 498      * even private ones.
 499      *
 500      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 501      * The factory methods on a {@code Lookup} object correspond to all major
 502      * use cases for methods, constructors, and fields.
 503      * Each method handle created by a factory method is the functional
 504      * equivalent of a particular <em>bytecode behavior</em>.
 505      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
 506      * the Java Virtual Machine Specification.)
 507      * Here is a summary of the correspondence between these factory methods and
 508      * the behavior of the resulting method handles:
 509      * <table class="striped">
 510      * <caption style="display:none">lookup method behaviors</caption>
 511      * <thead>
 512      * <tr>
 513      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 514      *     <th scope="col">member</th>
 515      *     <th scope="col">bytecode behavior</th>
 516      * </tr>
 517      * </thead>
 518      * <tbody>
 519      * <tr>
 520      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 521      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 522      * </tr>
 523      * <tr>
 524      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 525      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 526      * </tr>
 527      * <tr>
 528      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 529      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 530      * </tr>
 531      * <tr>
 532      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 533      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 534      * </tr>
 535      * <tr>
 536      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 537      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 538      * </tr>
 539      * <tr>
 540      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 541      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 542      * </tr>
 543      * <tr>
 544      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 545      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 546      * </tr>
 547      * <tr>
 548      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 549      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 550      * </tr>
 551      * <tr>
 552      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 553      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 554      * </tr>
 555      * <tr>
 556      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 557      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 558      * </tr>
 559      * <tr>
 560      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 561      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 562      * </tr>
 563      * <tr>
 564      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 565      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 566      * </tr>
 567      * <tr>
 568      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 569      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 570      * </tr>
 571      * <tr>
 572      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 573      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 574      * </tr>
 575      * </tbody>
 576      * </table>
 577      *
 578      * Here, the type {@code C} is the class or interface being searched for a member,
 579      * documented as a parameter named {@code refc} in the lookup methods.
 580      * The method type {@code MT} is composed from the return type {@code T}
 581      * and the sequence of argument types {@code A*}.
 582      * The constructor also has a sequence of argument types {@code A*} and
 583      * is deemed to return the newly-created object of type {@code C}.
 584      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 585      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 586      * if it is present, it is always the leading argument to the method handle invocation.
 587      * (In the case of some {@code protected} members, {@code this} may be
 588      * restricted in type to the lookup class; see below.)
 589      * The name {@code arg} stands for all the other method handle arguments.
 590      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 591      * stands for a null reference if the accessed method or field is static,
 592      * and {@code this} otherwise.
 593      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 594      * for reflective objects corresponding to the given members declared in type {@code C}.
 595      * <p>
 596      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 597      * as if by {@code ldc CONSTANT_Class}.
 598      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 599      * <p>
 600      * In cases where the given member is of variable arity (i.e., a method or constructor)
 601      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 602      * In all other cases, the returned method handle will be of fixed arity.
 603      * <p style="font-size:smaller;">
 604      * <em>Discussion:</em>
 605      * The equivalence between looked-up method handles and underlying
 606      * class members and bytecode behaviors
 607      * can break down in a few ways:
 608      * <ul style="font-size:smaller;">
 609      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 610      * the lookup can still succeed, even when there is no equivalent
 611      * Java expression or bytecoded constant.
 612      * <li>Likewise, if {@code T} or {@code MT}
 613      * is not symbolically accessible from the lookup class's loader,
 614      * the lookup can still succeed.
 615      * For example, lookups for {@code MethodHandle.invokeExact} and
 616      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 617      * <li>If there is a security manager installed, it can forbid the lookup
 618      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 619      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 620      * constant is not subject to security manager checks.
 621      * <li>If the looked-up method has a
 622      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 623      * the method handle creation may fail with an
 624      * {@code IllegalArgumentException}, due to the method handle type having
 625      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 626      * </ul>
 627      *
 628      * <h2><a id="access"></a>Access checking</h2>
 629      * Access checks are applied in the factory methods of {@code Lookup},
 630      * when a method handle is created.
 631      * This is a key difference from the Core Reflection API, since
 632      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 633      * performs access checking against every caller, on every call.
 634      * <p>
 635      * All access checks start from a {@code Lookup} object, which
 636      * compares its recorded lookup class against all requests to
 637      * create method handles.
 638      * A single {@code Lookup} object can be used to create any number
 639      * of access-checked method handles, all checked against a single
 640      * lookup class.
 641      * <p>
 642      * A {@code Lookup} object can be shared with other trusted code,
 643      * such as a metaobject protocol.
 644      * A shared {@code Lookup} object delegates the capability
 645      * to create method handles on private members of the lookup class.
 646      * Even if privileged code uses the {@code Lookup} object,
 647      * the access checking is confined to the privileges of the
 648      * original lookup class.
 649      * <p>
 650      * A lookup can fail, because
 651      * the containing class is not accessible to the lookup class, or
 652      * because the desired class member is missing, or because the
 653      * desired class member is not accessible to the lookup class, or
 654      * because the lookup object is not trusted enough to access the member.
 655      * In the case of a field setter function on a {@code final} field,
 656      * finality enforcement is treated as a kind of access control,
 657      * and the lookup will fail, except in special cases of
 658      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 659      * In any of these cases, a {@code ReflectiveOperationException} will be
 660      * thrown from the attempted lookup.  The exact class will be one of
 661      * the following:
 662      * <ul>
 663      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 664      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 665      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 666      * </ul>
 667      * <p>
 668      * In general, the conditions under which a method handle may be
 669      * looked up for a method {@code M} are no more restrictive than the conditions
 670      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 671      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 672      * a method handle lookup will generally raise a corresponding
 673      * checked exception, such as {@code NoSuchMethodException}.
 674      * And the effect of invoking the method handle resulting from the lookup
 675      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 676      * to executing the compiled, verified, and resolved call to {@code M}.
 677      * The same point is true of fields and constructors.
 678      * <p style="font-size:smaller;">
 679      * <em>Discussion:</em>
 680      * Access checks only apply to named and reflected methods,
 681      * constructors, and fields.
 682      * Other method handle creation methods, such as
 683      * {@link MethodHandle#asType MethodHandle.asType},
 684      * do not require any access checks, and are used
 685      * independently of any {@code Lookup} object.
 686      * <p>
 687      * If the desired member is {@code protected}, the usual JVM rules apply,
 688      * including the requirement that the lookup class must either be in the
 689      * same package as the desired member, or must inherit that member.
 690      * (See the Java Virtual Machine Specification, sections {@jvms
 691      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 692      * In addition, if the desired member is a non-static field or method
 693      * in a different package, the resulting method handle may only be applied
 694      * to objects of the lookup class or one of its subclasses.
 695      * This requirement is enforced by narrowing the type of the leading
 696      * {@code this} parameter from {@code C}
 697      * (which will necessarily be a superclass of the lookup class)
 698      * to the lookup class itself.
 699      * <p>
 700      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 701      * that the receiver argument must match both the resolved method <em>and</em>
 702      * the current class.  Again, this requirement is enforced by narrowing the
 703      * type of the leading parameter to the resulting method handle.
 704      * (See the Java Virtual Machine Specification, section {@jvms 4.10.1.9}.)
 705      * <p>
 706      * The JVM represents constructors and static initializer blocks as internal methods
 707      * with special names ({@value ConstantDescs#INIT_NAME} and {@value
 708      * ConstantDescs#CLASS_INIT_NAME}).
 709      * The internal syntax of invocation instructions allows them to refer to such internal
 710      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 711      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 712      * <p>
 713      * If the relationship between nested types is expressed directly through the
 714      * {@code NestHost} and {@code NestMembers} attributes
 715      * (see the Java Virtual Machine Specification, sections {@jvms
 716      * 4.7.28} and {@jvms 4.7.29}),
 717      * then the associated {@code Lookup} object provides direct access to
 718      * the lookup class and all of its nestmates
 719      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 720      * Otherwise, access between nested classes is obtained by the Java compiler creating
 721      * a wrapper method to access a private method of another class in the same nest.
 722      * For example, a nested class {@code C.D}
 723      * can access private members within other related classes such as
 724      * {@code C}, {@code C.D.E}, or {@code C.B},
 725      * but the Java compiler may need to generate wrapper methods in
 726      * those related classes.  In such cases, a {@code Lookup} object on
 727      * {@code C.E} would be unable to access those private members.
 728      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 729      * which can transform a lookup on {@code C.E} into one on any of those other
 730      * classes, without special elevation of privilege.
 731      * <p>
 732      * The accesses permitted to a given lookup object may be limited,
 733      * according to its set of {@link #lookupModes lookupModes},
 734      * to a subset of members normally accessible to the lookup class.
 735      * For example, the {@link MethodHandles#publicLookup publicLookup}
 736      * method produces a lookup object which is only allowed to access
 737      * public members in public classes of exported packages.
 738      * The caller sensitive method {@link MethodHandles#lookup lookup}
 739      * produces a lookup object with full capabilities relative to
 740      * its caller class, to emulate all supported bytecode behaviors.
 741      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 742      * with fewer access modes than the original lookup object.
 743      *
 744      * <p style="font-size:smaller;">
 745      * <a id="privacc"></a>
 746      * <em>Discussion of private and module access:</em>
 747      * We say that a lookup has <em>private access</em>
 748      * if its {@linkplain #lookupModes lookup modes}
 749      * include the possibility of accessing {@code private} members
 750      * (which includes the private members of nestmates).
 751      * As documented in the relevant methods elsewhere,
 752      * only lookups with private access possess the following capabilities:
 753      * <ul style="font-size:smaller;">
 754      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 755      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 756      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 757      *     for classes accessible to the lookup class
 758      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 759      *     within the same package member
 760      * </ul>
 761      * <p style="font-size:smaller;">
 762      * Similarly, a lookup with module access ensures that the original lookup creator was
 763      * a member in the same module as the lookup class.
 764      * <p style="font-size:smaller;">
 765      * Private and module access are independently determined modes; a lookup may have
 766      * either or both or neither.  A lookup which possesses both access modes is said to
 767      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.
 768      * <p style="font-size:smaller;">
 769      * A lookup with <em>original access</em> ensures that this lookup is created by
 770      * the original lookup class and the bootstrap method invoked by the VM.
 771      * Such a lookup with original access also has private and module access
 772      * which has the following additional capability:
 773      * <ul style="font-size:smaller;">
 774      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 775      *     such as {@code Class.forName}
 776      * <li>obtain the {@linkplain MethodHandles#classData(Lookup, String, Class)
 777      * class data} associated with the lookup class</li>
 778      * </ul>
 779      * <p style="font-size:smaller;">
 780      * Each of these permissions is a consequence of the fact that a lookup object
 781      * with private access can be securely traced back to an originating class,
 782      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 783      * can be reliably determined and emulated by method handles.
 784      *
 785      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 786      * When a lookup class in one module {@code M1} accesses a class in another module
 787      * {@code M2}, extra access checking is performed beyond the access mode bits.
 788      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 789      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 790      * and when the type is in a package of {@code M2} that is exported to
 791      * at least {@code M1}.
 792      * <p>
 793      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 794      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 795      * MethodHandles.privateLookupIn} methods.
 796      * Teleporting across modules will always record the original lookup class as
 797      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 798      * and drops {@link Lookup#MODULE MODULE} access.
 799      * If the target class is in the same module as the lookup class {@code C},
 800      * then the target class becomes the new lookup class
 801      * and there is no change to the previous lookup class.
 802      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 803      * {@code C} becomes the new previous lookup class
 804      * and the target class becomes the new lookup class.
 805      * In that case, if there was already a previous lookup class in {@code M0},
 806      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 807      * drops all privileges.
 808      * For example,
 809      * {@snippet lang="java" :
 810      * Lookup lookup = MethodHandles.lookup();   // in class C
 811      * Lookup lookup2 = lookup.in(D.class);
 812      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 813      * }
 814      * <p>
 815      * The {@link #lookup()} factory method produces a {@code Lookup} object
 816      * with {@code null} previous lookup class.
 817      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 818      * to class {@code D} without elevation of privileges.
 819      * If {@code C} and {@code D} are in the same module,
 820      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 821      * same previous lookup class as the original {@code lookup}, or
 822      * {@code null} if not present.
 823      * <p>
 824      * When a {@code Lookup} teleports from a class
 825      * in one nest to another nest, {@code PRIVATE} access is dropped.
 826      * When a {@code Lookup} teleports from a class in one package to
 827      * another package, {@code PACKAGE} access is dropped.
 828      * When a {@code Lookup} teleports from a class in one module to another module,
 829      * {@code MODULE} access is dropped.
 830      * Teleporting across modules drops the ability to access non-exported classes
 831      * in both the module of the new lookup class and the module of the old lookup class
 832      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 833      * A {@code Lookup} can teleport back and forth to a class in the module of
 834      * the lookup class and the module of the previous class lookup.
 835      * Teleporting across modules can only decrease access but cannot increase it.
 836      * Teleporting to some third module drops all accesses.
 837      * <p>
 838      * In the above example, if {@code C} and {@code D} are in different modules,
 839      * {@code lookup2} records {@code D} as its lookup class and
 840      * {@code C} as its previous lookup class and {@code lookup2} has only
 841      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 842      * {@code C}'s module and {@code D}'s module.
 843      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 844      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 845      * class {@code D} is recorded as its previous lookup class.
 846      * <p>
 847      * Teleporting across modules restricts access to the public types that
 848      * both the lookup class and the previous lookup class can equally access
 849      * (see below).
 850      * <p>
 851      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 852      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 853      * and produce a new {@code Lookup} with <a href="#privacc">private access</a>
 854      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 855      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 856      * to call {@code privateLookupIn}.
 857      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 858      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 859      * produces a new {@code Lookup} on {@code T} with full capabilities.
 860      * A {@code lookup} on {@code C} is also allowed
 861      * to do deep reflection on {@code T} in another module {@code M2} if
 862      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 863      * the package containing {@code T} to at least {@code M1}.
 864      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 865      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 866      * The resulting {@code Lookup} can be used to do member lookup or teleport
 867      * to another lookup class by calling {@link #in Lookup::in}.  But
 868      * it cannot be used to obtain another private {@code Lookup} by calling
 869      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 870      * because it has no {@code MODULE} access.
 871      * <p>
 872      * The {@code Lookup} object returned by {@code privateLookupIn} is allowed to
 873      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 874      * of {@code T}. Extreme caution should be taken when opening a package
 875      * to another module as such defined classes have the same full privilege
 876      * access as other members in {@code M2}.
 877      *
 878      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 879      *
 880      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 881      * allows cross-module access. The access checking is performed with respect
 882      * to both the lookup class and the previous lookup class if present.
 883      * <p>
 884      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 885      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 886      * exported unconditionally}.
 887      * <p>
 888      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 889      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 890      * that are readable to {@code M1} and the type is in a package that is exported
 891      * at least to {@code M1}.
 892      * <p>
 893      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 894      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 895      * the intersection of all public types that are accessible to {@code M1}
 896      * with all public types that are accessible to {@code M0}. {@code M0}
 897      * reads {@code M1} and hence the set of accessible types includes:
 898      *
 899      * <ul>
 900      * <li>unconditional-exported packages from {@code M1}</li>
 901      * <li>unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</li>
 902      * <li>
 903      *     unconditional-exported packages from a third module {@code M2}if both {@code M0}
 904      *     and {@code M1} read {@code M2}
 905      * </li>
 906      * <li>qualified-exported packages from {@code M1} to {@code M0}</li>
 907      * <li>qualified-exported packages from {@code M0} to {@code M1} if {@code M1} reads {@code M0}</li>
 908      * <li>
 909      *     qualified-exported packages from a third module {@code M2} to both {@code M0} and
 910      *     {@code M1} if both {@code M0} and {@code M1} read {@code M2}
 911      * </li>
 912      * </ul>
 913      *
 914      * <h2><a id="access-modes"></a>Access modes</h2>
 915      *
 916      * The table below shows the access modes of a {@code Lookup} produced by
 917      * any of the following factory or transformation methods:
 918      * <ul>
 919      * <li>{@link #lookup() MethodHandles::lookup}</li>
 920      * <li>{@link #publicLookup() MethodHandles::publicLookup}</li>
 921      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li>
 922      * <li>{@link Lookup#in Lookup::in}</li>
 923      * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li>
 924      * </ul>
 925      *
 926      * <table class="striped">
 927      * <caption style="display:none">
 928      * Access mode summary
 929      * </caption>
 930      * <thead>
 931      * <tr>
 932      * <th scope="col">Lookup object</th>
 933      * <th style="text-align:center">original</th>
 934      * <th style="text-align:center">protected</th>
 935      * <th style="text-align:center">private</th>
 936      * <th style="text-align:center">package</th>
 937      * <th style="text-align:center">module</th>
 938      * <th style="text-align:center">public</th>
 939      * </tr>
 940      * </thead>
 941      * <tbody>
 942      * <tr>
 943      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 944      * <td style="text-align:center">ORI</td>
 945      * <td style="text-align:center">PRO</td>
 946      * <td style="text-align:center">PRI</td>
 947      * <td style="text-align:center">PAC</td>
 948      * <td style="text-align:center">MOD</td>
 949      * <td style="text-align:center">1R</td>
 950      * </tr>
 951      * <tr>
 952      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 953      * <td></td>
 954      * <td></td>
 955      * <td></td>
 956      * <td style="text-align:center">PAC</td>
 957      * <td style="text-align:center">MOD</td>
 958      * <td style="text-align:center">1R</td>
 959      * </tr>
 960      * <tr>
 961      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 962      * <td></td>
 963      * <td></td>
 964      * <td></td>
 965      * <td></td>
 966      * <td style="text-align:center">MOD</td>
 967      * <td style="text-align:center">1R</td>
 968      * </tr>
 969      * <tr>
 970      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 971      * <td></td>
 972      * <td></td>
 973      * <td></td>
 974      * <td></td>
 975      * <td></td>
 976      * <td style="text-align:center">2R</td>
 977      * </tr>
 978      * <tr>
 979      * <th scope="row" style="text-align:left">{@code CL.in(D).in(C)} hop back to module</th>
 980      * <td></td>
 981      * <td></td>
 982      * <td></td>
 983      * <td></td>
 984      * <td></td>
 985      * <td style="text-align:center">2R</td>
 986      * </tr>
 987      * <tr>
 988      * <th scope="row" style="text-align:left">{@code PRI1 = privateLookupIn(C1,CL)}</th>
 989      * <td></td>
 990      * <td style="text-align:center">PRO</td>
 991      * <td style="text-align:center">PRI</td>
 992      * <td style="text-align:center">PAC</td>
 993      * <td style="text-align:center">MOD</td>
 994      * <td style="text-align:center">1R</td>
 995      * </tr>
 996      * <tr>
 997      * <th scope="row" style="text-align:left">{@code PRI1a = privateLookupIn(C,PRI1)}</th>
 998      * <td></td>
 999      * <td style="text-align:center">PRO</td>
1000      * <td style="text-align:center">PRI</td>
1001      * <td style="text-align:center">PAC</td>
1002      * <td style="text-align:center">MOD</td>
1003      * <td style="text-align:center">1R</td>
1004      * </tr>
1005      * <tr>
1006      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} same package</th>
1007      * <td></td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">PAC</td>
1011      * <td style="text-align:center">MOD</td>
1012      * <td style="text-align:center">1R</td>
1013      * </tr>
1014      * <tr>
1015      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} different package</th>
1016      * <td></td>
1017      * <td></td>
1018      * <td></td>
1019      * <td></td>
1020      * <td style="text-align:center">MOD</td>
1021      * <td style="text-align:center">1R</td>
1022      * </tr>
1023      * <tr>
1024      * <th scope="row" style="text-align:left">{@code PRI1.in(D)} different module</th>
1025      * <td></td>
1026      * <td></td>
1027      * <td></td>
1028      * <td></td>
1029      * <td></td>
1030      * <td style="text-align:center">2R</td>
1031      * </tr>
1032      * <tr>
1033      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PROTECTED)}</th>
1034      * <td></td>
1035      * <td></td>
1036      * <td style="text-align:center">PRI</td>
1037      * <td style="text-align:center">PAC</td>
1038      * <td style="text-align:center">MOD</td>
1039      * <td style="text-align:center">1R</td>
1040      * </tr>
1041      * <tr>
1042      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PRIVATE)}</th>
1043      * <td></td>
1044      * <td></td>
1045      * <td></td>
1046      * <td style="text-align:center">PAC</td>
1047      * <td style="text-align:center">MOD</td>
1048      * <td style="text-align:center">1R</td>
1049      * </tr>
1050      * <tr>
1051      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PACKAGE)}</th>
1052      * <td></td>
1053      * <td></td>
1054      * <td></td>
1055      * <td></td>
1056      * <td style="text-align:center">MOD</td>
1057      * <td style="text-align:center">1R</td>
1058      * </tr>
1059      * <tr>
1060      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(MODULE)}</th>
1061      * <td></td>
1062      * <td></td>
1063      * <td></td>
1064      * <td></td>
1065      * <td></td>
1066      * <td style="text-align:center">1R</td>
1067      * </tr>
1068      * <tr>
1069      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PUBLIC)}</th>
1070      * <td></td>
1071      * <td></td>
1072      * <td></td>
1073      * <td></td>
1074      * <td></td>
1075      * <td style="text-align:center">none</td>
1076      * <tr>
1077      * <th scope="row" style="text-align:left">{@code PRI2 = privateLookupIn(D,CL)}</th>
1078      * <td></td>
1079      * <td style="text-align:center">PRO</td>
1080      * <td style="text-align:center">PRI</td>
1081      * <td style="text-align:center">PAC</td>
1082      * <td></td>
1083      * <td style="text-align:center">2R</td>
1084      * </tr>
1085      * <tr>
1086      * <th scope="row" style="text-align:left">{@code privateLookupIn(D,PRI1)}</th>
1087      * <td></td>
1088      * <td style="text-align:center">PRO</td>
1089      * <td style="text-align:center">PRI</td>
1090      * <td style="text-align:center">PAC</td>
1091      * <td></td>
1092      * <td style="text-align:center">2R</td>
1093      * </tr>
1094      * <tr>
1095      * <th scope="row" style="text-align:left">{@code privateLookupIn(C,PRI2)} fails</th>
1096      * <td></td>
1097      * <td></td>
1098      * <td></td>
1099      * <td></td>
1100      * <td></td>
1101      * <td style="text-align:center">IAE</td>
1102      * </tr>
1103      * <tr>
1104      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} same package</th>
1105      * <td></td>
1106      * <td></td>
1107      * <td></td>
1108      * <td style="text-align:center">PAC</td>
1109      * <td></td>
1110      * <td style="text-align:center">2R</td>
1111      * </tr>
1112      * <tr>
1113      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} different package</th>
1114      * <td></td>
1115      * <td></td>
1116      * <td></td>
1117      * <td></td>
1118      * <td></td>
1119      * <td style="text-align:center">2R</td>
1120      * </tr>
1121      * <tr>
1122      * <th scope="row" style="text-align:left">{@code PRI2.in(C1)} hop back to module</th>
1123      * <td></td>
1124      * <td></td>
1125      * <td></td>
1126      * <td></td>
1127      * <td></td>
1128      * <td style="text-align:center">2R</td>
1129      * </tr>
1130      * <tr>
1131      * <th scope="row" style="text-align:left">{@code PRI2.in(E)} hop to third module</th>
1132      * <td></td>
1133      * <td></td>
1134      * <td></td>
1135      * <td></td>
1136      * <td></td>
1137      * <td style="text-align:center">none</td>
1138      * </tr>
1139      * <tr>
1140      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PROTECTED)}</th>
1141      * <td></td>
1142      * <td></td>
1143      * <td style="text-align:center">PRI</td>
1144      * <td style="text-align:center">PAC</td>
1145      * <td></td>
1146      * <td style="text-align:center">2R</td>
1147      * </tr>
1148      * <tr>
1149      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PRIVATE)}</th>
1150      * <td></td>
1151      * <td></td>
1152      * <td></td>
1153      * <td style="text-align:center">PAC</td>
1154      * <td></td>
1155      * <td style="text-align:center">2R</td>
1156      * </tr>
1157      * <tr>
1158      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PACKAGE)}</th>
1159      * <td></td>
1160      * <td></td>
1161      * <td></td>
1162      * <td></td>
1163      * <td></td>
1164      * <td style="text-align:center">2R</td>
1165      * </tr>
1166      * <tr>
1167      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(MODULE)}</th>
1168      * <td></td>
1169      * <td></td>
1170      * <td></td>
1171      * <td></td>
1172      * <td></td>
1173      * <td style="text-align:center">2R</td>
1174      * </tr>
1175      * <tr>
1176      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PUBLIC)}</th>
1177      * <td></td>
1178      * <td></td>
1179      * <td></td>
1180      * <td></td>
1181      * <td></td>
1182      * <td style="text-align:center">none</td>
1183      * </tr>
1184      * <tr>
1185      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PROTECTED)}</th>
1186      * <td></td>
1187      * <td></td>
1188      * <td style="text-align:center">PRI</td>
1189      * <td style="text-align:center">PAC</td>
1190      * <td style="text-align:center">MOD</td>
1191      * <td style="text-align:center">1R</td>
1192      * </tr>
1193      * <tr>
1194      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PRIVATE)}</th>
1195      * <td></td>
1196      * <td></td>
1197      * <td></td>
1198      * <td style="text-align:center">PAC</td>
1199      * <td style="text-align:center">MOD</td>
1200      * <td style="text-align:center">1R</td>
1201      * </tr>
1202      * <tr>
1203      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PACKAGE)}</th>
1204      * <td></td>
1205      * <td></td>
1206      * <td></td>
1207      * <td></td>
1208      * <td style="text-align:center">MOD</td>
1209      * <td style="text-align:center">1R</td>
1210      * </tr>
1211      * <tr>
1212      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(MODULE)}</th>
1213      * <td></td>
1214      * <td></td>
1215      * <td></td>
1216      * <td></td>
1217      * <td></td>
1218      * <td style="text-align:center">1R</td>
1219      * </tr>
1220      * <tr>
1221      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PUBLIC)}</th>
1222      * <td></td>
1223      * <td></td>
1224      * <td></td>
1225      * <td></td>
1226      * <td></td>
1227      * <td style="text-align:center">none</td>
1228      * </tr>
1229      * <tr>
1230      * <th scope="row" style="text-align:left">{@code PUB = publicLookup()}</th>
1231      * <td></td>
1232      * <td></td>
1233      * <td></td>
1234      * <td></td>
1235      * <td></td>
1236      * <td style="text-align:center">U</td>
1237      * </tr>
1238      * <tr>
1239      * <th scope="row" style="text-align:left">{@code PUB.in(D)} different module</th>
1240      * <td></td>
1241      * <td></td>
1242      * <td></td>
1243      * <td></td>
1244      * <td></td>
1245      * <td style="text-align:center">U</td>
1246      * </tr>
1247      * <tr>
1248      * <th scope="row" style="text-align:left">{@code PUB.in(D).in(E)} third module</th>
1249      * <td></td>
1250      * <td></td>
1251      * <td></td>
1252      * <td></td>
1253      * <td></td>
1254      * <td style="text-align:center">U</td>
1255      * </tr>
1256      * <tr>
1257      * <th scope="row" style="text-align:left">{@code PUB.dropLookupMode(UNCONDITIONAL)}</th>
1258      * <td></td>
1259      * <td></td>
1260      * <td></td>
1261      * <td></td>
1262      * <td></td>
1263      * <td style="text-align:center">none</td>
1264      * </tr>
1265      * <tr>
1266      * <th scope="row" style="text-align:left">{@code privateLookupIn(C1,PUB)} fails</th>
1267      * <td></td>
1268      * <td></td>
1269      * <td></td>
1270      * <td></td>
1271      * <td></td>
1272      * <td style="text-align:center">IAE</td>
1273      * </tr>
1274      * <tr>
1275      * <th scope="row" style="text-align:left">{@code ANY.in(X)}, for inaccessible {@code X}</th>
1276      * <td></td>
1277      * <td></td>
1278      * <td></td>
1279      * <td></td>
1280      * <td></td>
1281      * <td style="text-align:center">none</td>
1282      * </tr>
1283      * </tbody>
1284      * </table>
1285      *
1286      * <p>
1287      * Notes:
1288      * <ul>
1289      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1290      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1291      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1292      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1293      * <li>{@code ORI} indicates {@link #ORIGINAL} bit set,
1294      *     {@code PRO} indicates {@link #PROTECTED} bit set,
1295      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1296      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1297      *     {@code MOD} indicates {@link #MODULE} bit set,
1298      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1299      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1300      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1301      * <li>Public access comes in three kinds:
1302      * <ul>
1303      * <li>unconditional ({@code U}): the lookup assumes readability.
1304      *     The lookup has {@code null} previous lookup class.
1305      * <li>one-module-reads ({@code 1R}): the module access checking is
1306      *     performed with respect to the lookup class.  The lookup has {@code null}
1307      *     previous lookup class.
1308      * <li>two-module-reads ({@code 2R}): the module access checking is
1309      *     performed with respect to the lookup class and the previous lookup class.
1310      *     The lookup has a non-null previous lookup class which is in a
1311      *     different module from the current lookup class.
1312      * </ul>
1313      * <li>Any attempt to reach a third module loses all access.</li>
1314      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1315      * all access modes are dropped.</li>
1316      * </ul>
1317      *
1318      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1319      * Although bytecode instructions can only refer to classes in
1320      * a related class loader, this API can search for methods in any
1321      * class, as long as a reference to its {@code Class} object is
1322      * available.  Such cross-loader references are also possible with the
1323      * Core Reflection API, and are impossible to bytecode instructions
1324      * such as {@code invokestatic} or {@code getfield}.
1325      * There is a {@linkplain java.lang.SecurityManager security manager API}
1326      * to allow applications to check such cross-loader references.
1327      * These checks apply to both the {@code MethodHandles.Lookup} API
1328      * and the Core Reflection API
1329      * (as found on {@link java.lang.Class Class}).
1330      * <p>
1331      * If a security manager is present, member and class lookups are subject to
1332      * additional checks.
1333      * From one to three calls are made to the security manager.
1334      * Any of these calls can refuse access by throwing a
1335      * {@link java.lang.SecurityException SecurityException}.
1336      * Define {@code smgr} as the security manager,
1337      * {@code lookc} as the lookup class of the current lookup object,
1338      * {@code refc} as the containing class in which the member
1339      * is being sought, and {@code defc} as the class in which the
1340      * member is actually defined.
1341      * (If a class or other type is being accessed,
1342      * the {@code refc} and {@code defc} values are the class itself.)
1343      * The value {@code lookc} is defined as <em>not present</em>
1344      * if the current lookup object does not have
1345      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1346      * The calls are made according to the following rules:
1347      * <ul>
1348      * <li><b>Step 1:</b>
1349      *     If {@code lookc} is not present, or if its class loader is not
1350      *     the same as or an ancestor of the class loader of {@code refc},
1351      *     then {@link SecurityManager#checkPackageAccess
1352      *     smgr.checkPackageAccess(refcPkg)} is called,
1353      *     where {@code refcPkg} is the package of {@code refc}.
1354      * <li><b>Step 2a:</b>
1355      *     If the retrieved member is not public and
1356      *     {@code lookc} is not present, then
1357      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1358      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1359      * <li><b>Step 2b:</b>
1360      *     If the retrieved class has a {@code null} class loader,
1361      *     and {@code lookc} is not present, then
1362      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1363      *     with {@code RuntimePermission("getClassLoader")} is called.
1364      * <li><b>Step 3:</b>
1365      *     If the retrieved member is not public,
1366      *     and if {@code lookc} is not present,
1367      *     and if {@code defc} and {@code refc} are different,
1368      *     then {@link SecurityManager#checkPackageAccess
1369      *     smgr.checkPackageAccess(defcPkg)} is called,
1370      *     where {@code defcPkg} is the package of {@code defc}.
1371      * </ul>
1372      * Security checks are performed after other access checks have passed.
1373      * Therefore, the above rules presuppose a member or class that is public,
1374      * or else that is being accessed from a lookup class that has
1375      * rights to access the member or class.
1376      * <p>
1377      * If a security manager is present and the current lookup object does not have
1378      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1379      * {@link #defineClass(byte[]) defineClass},
1380      * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass},
1381      * {@link #defineHiddenClassWithClassData(byte[], Object, boolean, ClassOption...)
1382      * defineHiddenClassWithClassData}
1383      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1384      * with {@code RuntimePermission("defineClass")}.
1385      *
1386      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1387      * A small number of Java methods have a special property called caller sensitivity.
1388      * A <em>caller-sensitive</em> method can behave differently depending on the
1389      * identity of its immediate caller.
1390      * <p>
1391      * If a method handle for a caller-sensitive method is requested,
1392      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1393      * but they take account of the lookup class in a special way.
1394      * The resulting method handle behaves as if it were called
1395      * from an instruction contained in the lookup class,
1396      * so that the caller-sensitive method detects the lookup class.
1397      * (By contrast, the invoker of the method handle is disregarded.)
1398      * Thus, in the case of caller-sensitive methods,
1399      * different lookup classes may give rise to
1400      * differently behaving method handles.
1401      * <p>
1402      * In cases where the lookup object is
1403      * {@link MethodHandles#publicLookup() publicLookup()},
1404      * or some other lookup object without the
1405      * {@linkplain #ORIGINAL original access},
1406      * the lookup class is disregarded.
1407      * In such cases, no caller-sensitive method handle can be created,
1408      * access is forbidden, and the lookup fails with an
1409      * {@code IllegalAccessException}.
1410      * <p style="font-size:smaller;">
1411      * <em>Discussion:</em>
1412      * For example, the caller-sensitive method
1413      * {@link java.lang.Class#forName(String) Class.forName(x)}
1414      * can return varying classes or throw varying exceptions,
1415      * depending on the class loader of the class that calls it.
1416      * A public lookup of {@code Class.forName} will fail, because
1417      * there is no reasonable way to determine its bytecode behavior.
1418      * <p style="font-size:smaller;">
1419      * If an application caches method handles for broad sharing,
1420      * it should use {@code publicLookup()} to create them.
1421      * If there is a lookup of {@code Class.forName}, it will fail,
1422      * and the application must take appropriate action in that case.
1423      * It may be that a later lookup, perhaps during the invocation of a
1424      * bootstrap method, can incorporate the specific identity
1425      * of the caller, making the method accessible.
1426      * <p style="font-size:smaller;">
1427      * The function {@code MethodHandles.lookup} is caller sensitive
1428      * so that there can be a secure foundation for lookups.
1429      * Nearly all other methods in the JSR 292 API rely on lookup
1430      * objects to check access requests.
1431      */
1432     public static final
1433     class Lookup {
1434         /** The class on behalf of whom the lookup is being performed. */
1435         private final Class<?> lookupClass;
1436 
1437         /** previous lookup class */
1438         private final Class<?> prevLookupClass;
1439 
1440         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1441         private final int allowedModes;
1442 
1443         static {
1444             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1445         }
1446 
1447         /** A single-bit mask representing {@code public} access,
1448          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1449          *  The value, {@code 0x01}, happens to be the same as the value of the
1450          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1451          *  <p>
1452          *  A {@code Lookup} with this lookup mode performs cross-module access check
1453          *  with respect to the {@linkplain #lookupClass() lookup class} and
1454          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1455          */
1456         public static final int PUBLIC = Modifier.PUBLIC;
1457 
1458         /** A single-bit mask representing {@code private} access,
1459          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1460          *  The value, {@code 0x02}, happens to be the same as the value of the
1461          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1462          */
1463         public static final int PRIVATE = Modifier.PRIVATE;
1464 
1465         /** A single-bit mask representing {@code protected} access,
1466          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1467          *  The value, {@code 0x04}, happens to be the same as the value of the
1468          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1469          */
1470         public static final int PROTECTED = Modifier.PROTECTED;
1471 
1472         /** A single-bit mask representing {@code package} access (default access),
1473          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1474          *  The value is {@code 0x08}, which does not correspond meaningfully to
1475          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1476          */
1477         public static final int PACKAGE = Modifier.STATIC;
1478 
1479         /** A single-bit mask representing {@code module} access,
1480          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1481          *  The value is {@code 0x10}, which does not correspond meaningfully to
1482          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1483          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1484          *  with this lookup mode can access all public types in the module of the
1485          *  lookup class and public types in packages exported by other modules
1486          *  to the module of the lookup class.
1487          *  <p>
1488          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1489          *  previous lookup class} is always {@code null}.
1490          *
1491          *  @since 9
1492          */
1493         public static final int MODULE = PACKAGE << 1;
1494 
1495         /** A single-bit mask representing {@code unconditional} access
1496          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1497          *  The value is {@code 0x20}, which does not correspond meaningfully to
1498          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1499          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1500          *  java.lang.Module#canRead(java.lang.Module) readability}.
1501          *  This lookup mode can access all public members of public types
1502          *  of all modules when the type is in a package that is {@link
1503          *  java.lang.Module#isExported(String) exported unconditionally}.
1504          *
1505          *  <p>
1506          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1507          *  previous lookup class} is always {@code null}.
1508          *
1509          *  @since 9
1510          *  @see #publicLookup()
1511          */
1512         public static final int UNCONDITIONAL = PACKAGE << 2;
1513 
1514         /** A single-bit mask representing {@code original} access
1515          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1516          *  The value is {@code 0x40}, which does not correspond meaningfully to
1517          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1518          *
1519          *  <p>
1520          *  If this lookup mode is set, the {@code Lookup} object must be
1521          *  created by the original lookup class by calling
1522          *  {@link MethodHandles#lookup()} method or by a bootstrap method
1523          *  invoked by the VM.  The {@code Lookup} object with this lookup
1524          *  mode has {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1525          *
1526          *  @since 16
1527          */
1528         public static final int ORIGINAL = PACKAGE << 3;
1529 
1530         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL | ORIGINAL);
1531         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);   // with original access
1532         private static final int TRUSTED   = -1;
1533 
1534         /*
1535          * Adjust PUBLIC => PUBLIC|MODULE|ORIGINAL|UNCONDITIONAL
1536          * Adjust 0 => PACKAGE
1537          */
1538         private static int fixmods(int mods) {
1539             mods &= (ALL_MODES - PACKAGE - MODULE - ORIGINAL - UNCONDITIONAL);
1540             if (Modifier.isPublic(mods))
1541                 mods |= UNCONDITIONAL;
1542             return (mods != 0) ? mods : PACKAGE;
1543         }
1544 
1545         /** Tells which class is performing the lookup.  It is this class against
1546          *  which checks are performed for visibility and access permissions.
1547          *  <p>
1548          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1549          *  access checks are performed against both the lookup class and the previous lookup class.
1550          *  <p>
1551          *  The class implies a maximum level of access permission,
1552          *  but the permissions may be additionally limited by the bitmask
1553          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1554          *  can be accessed.
1555          *  @return the lookup class, on behalf of which this lookup object finds members
1556          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1557          */
1558         public Class<?> lookupClass() {
1559             return lookupClass;
1560         }
1561 
1562         /** Reports a lookup class in another module that this lookup object
1563          * was previously teleported from, or {@code null}.
1564          * <p>
1565          * A {@code Lookup} object produced by the factory methods, such as the
1566          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1567          * has {@code null} previous lookup class.
1568          * A {@code Lookup} object has a non-null previous lookup class
1569          * when this lookup was teleported from an old lookup class
1570          * in one module to a new lookup class in another module.
1571          *
1572          * @return the lookup class in another module that this lookup object was
1573          *         previously teleported from, or {@code null}
1574          * @since 14
1575          * @see #in(Class)
1576          * @see MethodHandles#privateLookupIn(Class, Lookup)
1577          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1578          */
1579         public Class<?> previousLookupClass() {
1580             return prevLookupClass;
1581         }
1582 
1583         // This is just for calling out to MethodHandleImpl.
1584         private Class<?> lookupClassOrNull() {
1585             return (allowedModes == TRUSTED) ? null : lookupClass;
1586         }
1587 
1588         /** Tells which access-protection classes of members this lookup object can produce.
1589          *  The result is a bit-mask of the bits
1590          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1591          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1592          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1593          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1594          *  {@linkplain #MODULE MODULE (0x10)},
1595          *  {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)},
1596          *  and {@linkplain #ORIGINAL ORIGINAL (0x40)}.
1597          *  <p>
1598          *  A freshly-created lookup object
1599          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1600          *  all possible bits set, except {@code UNCONDITIONAL}.
1601          *  A lookup object on a new lookup class
1602          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1603          *  may have some mode bits set to zero.
1604          *  Mode bits can also be
1605          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1606          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1607          *  The purpose of this is to restrict access via the new lookup object,
1608          *  so that it can access only names which can be reached by the original
1609          *  lookup object, and also by the new lookup class.
1610          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1611          *  @see #in
1612          *  @see #dropLookupMode
1613          */
1614         public int lookupModes() {
1615             return allowedModes & ALL_MODES;
1616         }
1617 
1618         /** Embody the current class (the lookupClass) as a lookup class
1619          * for method handle creation.
1620          * Must be called by from a method in this package,
1621          * which in turn is called by a method not in this package.
1622          */
1623         Lookup(Class<?> lookupClass) {
1624             this(lookupClass, null, FULL_POWER_MODES);
1625         }
1626 
1627         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1628             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1629                     && prevLookupClass.getModule() != lookupClass.getModule());
1630             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1631             this.lookupClass = lookupClass;
1632             this.prevLookupClass = prevLookupClass;
1633             this.allowedModes = allowedModes;
1634         }
1635 
1636         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1637             // make sure we haven't accidentally picked up a privileged class:
1638             checkUnprivilegedlookupClass(lookupClass);
1639             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1640         }
1641 
1642         /**
1643          * Creates a lookup on the specified new lookup class.
1644          * The resulting object will report the specified
1645          * class as its own {@link #lookupClass() lookupClass}.
1646          *
1647          * <p>
1648          * However, the resulting {@code Lookup} object is guaranteed
1649          * to have no more access capabilities than the original.
1650          * In particular, access capabilities can be lost as follows:<ul>
1651          * <li>If the new lookup class is different from the old lookup class,
1652          * i.e. {@link #ORIGINAL ORIGINAL} access is lost.
1653          * <li>If the new lookup class is in a different module from the old one,
1654          * i.e. {@link #MODULE MODULE} access is lost.
1655          * <li>If the new lookup class is in a different package
1656          * than the old one, protected and default (package) members will not be accessible,
1657          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1658          * <li>If the new lookup class is not within the same package member
1659          * as the old one, private members will not be accessible, and protected members
1660          * will not be accessible by virtue of inheritance,
1661          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1662          * (Protected members may continue to be accessible because of package sharing.)
1663          * <li>If the new lookup class is not
1664          * {@linkplain #accessClass(Class) accessible} to this lookup,
1665          * then no members, not even public members, will be accessible
1666          * i.e. all access modes are lost.
1667          * <li>If the new lookup class, the old lookup class and the previous lookup class
1668          * are all in different modules i.e. teleporting to a third module,
1669          * all access modes are lost.
1670          * </ul>
1671          * <p>
1672          * The new previous lookup class is chosen as follows:
1673          * <ul>
1674          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1675          * the new previous lookup class is {@code null}.
1676          * <li>If the new lookup class is in the same module as the old lookup class,
1677          * the new previous lookup class is the old previous lookup class.
1678          * <li>If the new lookup class is in a different module from the old lookup class,
1679          * the new previous lookup class is the old lookup class.
1680          *</ul>
1681          * <p>
1682          * The resulting lookup's capabilities for loading classes
1683          * (used during {@link #findClass} invocations)
1684          * are determined by the lookup class' loader,
1685          * which may change due to this operation.
1686          *
1687          * @param requestedLookupClass the desired lookup class for the new lookup object
1688          * @return a lookup object which reports the desired lookup class, or the same object
1689          * if there is no change
1690          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1691          * @throws NullPointerException if the argument is null
1692          *
1693          * @see #accessClass(Class)
1694          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1695          */
1696         public Lookup in(Class<?> requestedLookupClass) {
1697             Objects.requireNonNull(requestedLookupClass);
1698             if (requestedLookupClass.isPrimitive())
1699                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1700             if (requestedLookupClass.isArray())
1701                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1702 
1703             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1704                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1705             if (requestedLookupClass == this.lookupClass)
1706                 return this;  // keep same capabilities
1707             int newModes = (allowedModes & FULL_POWER_MODES) & ~ORIGINAL;
1708             Module fromModule = this.lookupClass.getModule();
1709             Module targetModule = requestedLookupClass.getModule();
1710             Class<?> plc = this.previousLookupClass();
1711             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1712                 assert plc == null;
1713                 newModes = UNCONDITIONAL;
1714             } else if (fromModule != targetModule) {
1715                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1716                     // allow hopping back and forth between fromModule and plc's module
1717                     // but not the third module
1718                     newModes = 0;
1719                 }
1720                 // drop MODULE access
1721                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1722                 // teleport from this lookup class
1723                 plc = this.lookupClass;
1724             }
1725             if ((newModes & PACKAGE) != 0
1726                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1727                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1728             }
1729             // Allow nestmate lookups to be created without special privilege:
1730             if ((newModes & PRIVATE) != 0
1731                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1732                 newModes &= ~(PRIVATE|PROTECTED);
1733             }
1734             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1735                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1736                 // The requested class it not accessible from the lookup class.
1737                 // No permissions.
1738                 newModes = 0;
1739             }
1740             return newLookup(requestedLookupClass, plc, newModes);
1741         }
1742 
1743         /**
1744          * Creates a lookup on the same lookup class which this lookup object
1745          * finds members, but with a lookup mode that has lost the given lookup mode.
1746          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1747          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED},
1748          * {@link #PRIVATE PRIVATE}, {@link #ORIGINAL ORIGINAL}, or
1749          * {@link #UNCONDITIONAL UNCONDITIONAL}.
1750          *
1751          * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup},
1752          * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set.
1753          * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting
1754          * lookup has no access.
1755          *
1756          * <p> If this lookup is not a public lookup, then the following applies
1757          * regardless of its {@linkplain #lookupModes() lookup modes}.
1758          * {@link #PROTECTED PROTECTED} and {@link #ORIGINAL ORIGINAL} are always
1759          * dropped and so the resulting lookup mode will never have these access
1760          * capabilities. When dropping {@code PACKAGE}
1761          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
1762          * access. When dropping {@code MODULE} then the resulting lookup will not
1763          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access.
1764          * When dropping {@code PUBLIC} then the resulting lookup has no access.
1765          *
1766          * @apiNote
1767          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1768          * delegate non-public access within the package of the lookup class without
1769          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1770          * A lookup with {@code MODULE} but not
1771          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1772          * the module of the lookup class without conferring package access.
1773          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1774          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1775          * to public classes accessible to both the module of the lookup class
1776          * and the module of the previous lookup class.
1777          *
1778          * @param modeToDrop the lookup mode to drop
1779          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1780          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1781          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE}, {@code ORIGINAL}
1782          * or {@code UNCONDITIONAL}
1783          * @see MethodHandles#privateLookupIn
1784          * @since 9
1785          */
1786         public Lookup dropLookupMode(int modeToDrop) {
1787             int oldModes = lookupModes();
1788             int newModes = oldModes & ~(modeToDrop | PROTECTED | ORIGINAL);
1789             switch (modeToDrop) {
1790                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1791                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1792                 case PACKAGE: newModes &= ~(PRIVATE); break;
1793                 case PROTECTED:
1794                 case PRIVATE:
1795                 case ORIGINAL:
1796                 case UNCONDITIONAL: break;
1797                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1798             }
1799             if (newModes == oldModes) return this;  // return self if no change
1800             return newLookup(lookupClass(), previousLookupClass(), newModes);
1801         }
1802 
1803         /**
1804          * Creates and links a class or interface from {@code bytes}
1805          * with the same class loader and in the same runtime package and
1806          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1807          * {@linkplain #lookupClass() lookup class} as if calling
1808          * {@link ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1809          * ClassLoader::defineClass}.
1810          *
1811          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1812          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1813          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1814          * that the lookup object was created by a caller in the runtime package (or derived
1815          * from a lookup originally created by suitably privileged code to a target class in
1816          * the runtime package). </p>
1817          *
1818          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1819          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1820          * same package as the lookup class. </p>
1821          *
1822          * <p> This method does not run the class initializer. The class initializer may
1823          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1824          * Specification</em>. </p>
1825          *
1826          * <p> If there is a security manager and this lookup does not have {@linkplain
1827          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1828          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1829          *
1830          * @param bytes the class bytes
1831          * @return the {@code Class} object for the class
1832          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1833          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1834          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1835          * than the lookup class or {@code bytes} is not a class or interface
1836          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1837          * @throws VerifyError if the newly created class cannot be verified
1838          * @throws LinkageError if the newly created class cannot be linked for any other reason
1839          * @throws SecurityException if a security manager is present and it
1840          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1841          * @throws NullPointerException if {@code bytes} is {@code null}
1842          * @since 9
1843          * @see MethodHandles#privateLookupIn
1844          * @see Lookup#dropLookupMode
1845          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1846          */
1847         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1848             ensureDefineClassPermission();
1849             if ((lookupModes() & PACKAGE) == 0)
1850                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1851             return makeClassDefiner(bytes.clone()).defineClass(false);
1852         }
1853 
1854         private void ensureDefineClassPermission() {
1855             if (allowedModes == TRUSTED)  return;
1856 
1857             if (!hasFullPrivilegeAccess()) {
1858                 @SuppressWarnings("removal")
1859                 SecurityManager sm = System.getSecurityManager();
1860                 if (sm != null)
1861                     sm.checkPermission(new RuntimePermission("defineClass"));
1862             }
1863         }
1864 
1865         /**
1866          * The set of class options that specify whether a hidden class created by
1867          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
1868          * Lookup::defineHiddenClass} method is dynamically added as a new member
1869          * to the nest of a lookup class and/or whether a hidden class has
1870          * a strong relationship with the class loader marked as its defining loader.
1871          *
1872          * @since 15
1873          */
1874         public enum ClassOption {
1875             /**
1876              * Specifies that a hidden class be added to {@linkplain Class#getNestHost nest}
1877              * of a lookup class as a nestmate.
1878              *
1879              * <p> A hidden nestmate class has access to the private members of all
1880              * classes and interfaces in the same nest.
1881              *
1882              * @see Class#getNestHost()
1883              */
1884             NESTMATE(NESTMATE_CLASS),
1885 
1886             /**
1887              * Specifies that a hidden class has a <em>strong</em>
1888              * relationship with the class loader marked as its defining loader,
1889              * as a normal class or interface has with its own defining loader.
1890              * This means that the hidden class may be unloaded if and only if
1891              * its defining loader is not reachable and thus may be reclaimed
1892              * by a garbage collector (JLS {@jls 12.7}).
1893              *
1894              * <p> By default, a hidden class or interface may be unloaded
1895              * even if the class loader that is marked as its defining loader is
1896              * <a href="../ref/package-summary.html#reachability">reachable</a>.
1897 
1898              *
1899              * @jls 12.7 Unloading of Classes and Interfaces
1900              */
1901             STRONG(STRONG_LOADER_LINK);
1902 
1903             /* the flag value is used by VM at define class time */
1904             private final int flag;
1905             ClassOption(int flag) {
1906                 this.flag = flag;
1907             }
1908 
1909             static int optionsToFlag(Set<ClassOption> options) {
1910                 int flags = 0;
1911                 for (ClassOption cp : options) {
1912                     flags |= cp.flag;
1913                 }
1914                 return flags;
1915             }
1916         }
1917 
1918         /**
1919          * Creates a <em>hidden</em> class or interface from {@code bytes},
1920          * returning a {@code Lookup} on the newly created class or interface.
1921          *
1922          * <p> Ordinarily, a class or interface {@code C} is created by a class loader,
1923          * which either defines {@code C} directly or delegates to another class loader.
1924          * A class loader defines {@code C} directly by invoking
1925          * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1926          * ClassLoader::defineClass}, which causes the Java Virtual Machine
1927          * to derive {@code C} from a purported representation in {@code class} file format.
1928          * In situations where use of a class loader is undesirable, a class or interface
1929          * {@code C} can be created by this method instead. This method is capable of
1930          * defining {@code C}, and thereby creating it, without invoking
1931          * {@code ClassLoader::defineClass}.
1932          * Instead, this method defines {@code C} as if by arranging for
1933          * the Java Virtual Machine to derive a nonarray class or interface {@code C}
1934          * from a purported representation in {@code class} file format
1935          * using the following rules:
1936          *
1937          * <ol>
1938          * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup}
1939          * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access.
1940          * This level of access is needed to create {@code C} in the module
1941          * of the lookup class of this {@code Lookup}.</li>
1942          *
1943          * <li> The purported representation in {@code bytes} must be a {@code ClassFile}
1944          * structure (JVMS {@jvms 4.1}) of a supported major and minor version.
1945          * The major and minor version may differ from the {@code class} file version
1946          * of the lookup class of this {@code Lookup}.</li>
1947          *
1948          * <li> The value of {@code this_class} must be a valid index in the
1949          * {@code constant_pool} table, and the entry at that index must be a valid
1950          * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name
1951          * encoded in internal form that is specified by this structure. {@code N} must
1952          * denote a class or interface in the same package as the lookup class.</li>
1953          *
1954          * <li> Let {@code CN} be the string {@code N + "." + <suffix>},
1955          * where {@code <suffix>} is an unqualified name.
1956          *
1957          * <p> Let {@code newBytes} be the {@code ClassFile} structure given by
1958          * {@code bytes} with an additional entry in the {@code constant_pool} table,
1959          * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and
1960          * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class}
1961          * refers to the new {@code CONSTANT_Utf8_info} structure.
1962          *
1963          * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}.
1964          *
1965          * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and
1966          * purported representation {@code newBytes} as if by the rules of JVMS {@jvms 5.3.5},
1967          * with the following adjustments:
1968          * <ul>
1969          * <li> The constant indicated by {@code this_class} is permitted to specify a name
1970          * that includes a single {@code "."} character, even though this is not a valid
1971          * binary class or interface name in internal form.</li>
1972          *
1973          * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C},
1974          * but no class loader is recorded as an initiating class loader of {@code C}.</li>
1975          *
1976          * <li> {@code C} is considered to have the same runtime
1977          * {@linkplain Class#getPackage() package}, {@linkplain Class#getModule() module}
1978          * and {@linkplain java.security.ProtectionDomain protection domain}
1979          * as the lookup class of this {@code Lookup}.
1980          * <li> Let {@code GN} be the binary name obtained by taking {@code N}
1981          * (a binary name encoded in internal form) and replacing ASCII forward slashes with
1982          * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C}:
1983          * <ul>
1984          * <li> {@link Class#getName()} returns the string {@code GN + "/" + <suffix>},
1985          *      even though this is not a valid binary class or interface name.</li>
1986          * <li> {@link Class#descriptorString()} returns the string
1987          *      {@code "L" + N + "." + <suffix> + ";"},
1988          *      even though this is not a valid type descriptor name.</li>
1989          * <li> {@link Class#describeConstable()} returns an empty optional as {@code C}
1990          *      cannot be described in {@linkplain java.lang.constant.ClassDesc nominal form}.</li>
1991          * </ul>
1992          * </ul>
1993          * </li>
1994          * </ol>
1995          *
1996          * <p> After {@code C} is derived, it is linked by the Java Virtual Machine.
1997          * Linkage occurs as specified in JVMS {@jvms 5.4.3}, with the following adjustments:
1998          * <ul>
1999          * <li> During verification, whenever it is necessary to load the class named
2000          * {@code CN}, the attempt succeeds, producing class {@code C}. No request is
2001          * made of any class loader.</li>
2002          *
2003          * <li> On any attempt to resolve the entry in the run-time constant pool indicated
2004          * by {@code this_class}, the symbolic reference is considered to be resolved to
2005          * {@code C} and resolution always succeeds immediately.</li>
2006          * </ul>
2007          *
2008          * <p> If the {@code initialize} parameter is {@code true},
2009          * then {@code C} is initialized by the Java Virtual Machine.
2010          *
2011          * <p> The newly created class or interface {@code C} serves as the
2012          * {@linkplain #lookupClass() lookup class} of the {@code Lookup} object
2013          * returned by this method. {@code C} is <em>hidden</em> in the sense that
2014          * no other class or interface can refer to {@code C} via a constant pool entry.
2015          * That is, a hidden class or interface cannot be named as a supertype, a field type,
2016          * a method parameter type, or a method return type by any other class.
2017          * This is because a hidden class or interface does not have a binary name, so
2018          * there is no internal form available to record in any class's constant pool.
2019          * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)},
2020          * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and
2021          * is not {@linkplain java.instrument/java.lang.instrument.Instrumentation#isModifiableClass(Class)
2022          * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html">
2023          * JVM Tool Interface</a>.
2024          *
2025          * <p> A class or interface created by
2026          * {@linkplain ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
2027          * a class loader} has a strong relationship with that class loader.
2028          * That is, every {@code Class} object contains a reference to the {@code ClassLoader}
2029          * that {@linkplain Class#getClassLoader() defined it}.
2030          * This means that a class created by a class loader may be unloaded if and
2031          * only if its defining loader is not reachable and thus may be reclaimed
2032          * by a garbage collector (JLS {@jls 12.7}).
2033          *
2034          * By default, however, a hidden class or interface may be unloaded even if
2035          * the class loader that is marked as its defining loader is
2036          * <a href="../ref/package-summary.html#reachability">reachable</a>.
2037          * This behavior is useful when a hidden class or interface serves multiple
2038          * classes defined by arbitrary class loaders.  In other cases, a hidden
2039          * class or interface may be linked to a single class (or a small number of classes)
2040          * with the same defining loader as the hidden class or interface.
2041          * In such cases, where the hidden class or interface must be coterminous
2042          * with a normal class or interface, the {@link ClassOption#STRONG STRONG}
2043          * option may be passed in {@code options}.
2044          * This arranges for a hidden class to have the same strong relationship
2045          * with the class loader marked as its defining loader,
2046          * as a normal class or interface has with its own defining loader.
2047          *
2048          * If {@code STRONG} is not used, then the invoker of {@code defineHiddenClass}
2049          * may still prevent a hidden class or interface from being
2050          * unloaded by ensuring that the {@code Class} object is reachable.
2051          *
2052          * <p> The unloading characteristics are set for each hidden class when it is
2053          * defined, and cannot be changed later.  An advantage of allowing hidden classes
2054          * to be unloaded independently of the class loader marked as their defining loader
2055          * is that a very large number of hidden classes may be created by an application.
2056          * In contrast, if {@code STRONG} is used, then the JVM may run out of memory,
2057          * just as if normal classes were created by class loaders.
2058          *
2059          * <p> Classes and interfaces in a nest are allowed to have mutual access to
2060          * their private members.  The nest relationship is determined by
2061          * the {@code NestHost} attribute (JVMS {@jvms 4.7.28}) and
2062          * the {@code NestMembers} attribute (JVMS {@jvms 4.7.29}) in a {@code class} file.
2063          * By default, a hidden class belongs to a nest consisting only of itself
2064          * because a hidden class has no binary name.
2065          * The {@link ClassOption#NESTMATE NESTMATE} option can be passed in {@code options}
2066          * to create a hidden class or interface {@code C} as a member of a nest.
2067          * The nest to which {@code C} belongs is not based on any {@code NestHost} attribute
2068          * in the {@code ClassFile} structure from which {@code C} was derived.
2069          * Instead, the following rules determine the nest host of {@code C}:
2070          * <ul>
2071          * <li>If the nest host of the lookup class of this {@code Lookup} has previously
2072          *     been determined, then let {@code H} be the nest host of the lookup class.
2073          *     Otherwise, the nest host of the lookup class is determined using the
2074          *     algorithm in JVMS {@jvms 5.4.4}, yielding {@code H}.</li>
2075          * <li>The nest host of {@code C} is determined to be {@code H},
2076          *     the nest host of the lookup class.</li>
2077          * </ul>
2078          *
2079          * <p> A hidden class or interface may be serializable, but this requires a custom
2080          * serialization mechanism in order to ensure that instances are properly serialized
2081          * and deserialized. The default serialization mechanism supports only classes and
2082          * interfaces that are discoverable by their class name.
2083          *
2084          * @param bytes the bytes that make up the class data,
2085          * in the format of a valid {@code class} file as defined by
2086          * <cite>The Java Virtual Machine Specification</cite>.
2087          * @param initialize if {@code true} the class will be initialized.
2088          * @param options {@linkplain ClassOption class options}
2089          * @return the {@code Lookup} object on the hidden class,
2090          * with {@linkplain #ORIGINAL original} and
2091          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
2092          *
2093          * @throws IllegalAccessException if this {@code Lookup} does not have
2094          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
2095          * @throws SecurityException if a security manager is present and it
2096          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2097          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
2098          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
2099          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
2100          * than the lookup class or {@code bytes} is not a class or interface
2101          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
2102          * @throws IncompatibleClassChangeError if the class or interface named as
2103          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
2104          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2105          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2106          * {@code C} is {@code C} itself
2107          * @throws VerifyError if the newly created class cannot be verified
2108          * @throws LinkageError if the newly created class cannot be linked for any other reason
2109          * @throws NullPointerException if any parameter is {@code null}
2110          *
2111          * @since 15
2112          * @see Class#isHidden()
2113          * @jvms 4.2.1 Binary Class and Interface Names
2114          * @jvms 4.2.2 Unqualified Names
2115          * @jvms 4.7.28 The {@code NestHost} Attribute
2116          * @jvms 4.7.29 The {@code NestMembers} Attribute
2117          * @jvms 5.4.3.1 Class and Interface Resolution
2118          * @jvms 5.4.4 Access Control
2119          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2120          * @jvms 5.4 Linking
2121          * @jvms 5.5 Initialization
2122          * @jls 12.7 Unloading of Classes and Interfaces
2123          */
2124         @SuppressWarnings("doclint:reference") // cross-module links
2125         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
2126                 throws IllegalAccessException
2127         {
2128             Objects.requireNonNull(bytes);
2129             Objects.requireNonNull(options);
2130 
2131             ensureDefineClassPermission();
2132             if (!hasFullPrivilegeAccess()) {
2133                 throw new IllegalAccessException(this + " does not have full privilege access");
2134             }
2135 
2136             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false).defineClassAsLookup(initialize);
2137         }
2138 
2139         /**
2140          * Creates a <em>hidden</em> class or interface from {@code bytes} with associated
2141          * {@linkplain MethodHandles#classData(Lookup, String, Class) class data},
2142          * returning a {@code Lookup} on the newly created class or interface.
2143          *
2144          * <p> This method is equivalent to calling
2145          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)}
2146          * as if the hidden class is injected with a private static final <i>unnamed</i>
2147          * field which is initialized with the given {@code classData} at
2148          * the first instruction of the class initializer.
2149          * The newly created class is linked by the Java Virtual Machine.
2150          *
2151          * <p> The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData}
2152          * and {@link MethodHandles#classDataAt(Lookup, String, Class, int) MethodHandles::classDataAt}
2153          * methods can be used to retrieve the {@code classData}.
2154          *
2155          * @apiNote
2156          * A framework can create a hidden class with class data with one or more
2157          * objects and load the class data as dynamically-computed constant(s)
2158          * via a bootstrap method.  {@link MethodHandles#classData(Lookup, String, Class)
2159          * Class data} is accessible only to the lookup object created by the newly
2160          * defined hidden class but inaccessible to other members in the same nest
2161          * (unlike private static fields that are accessible to nestmates).
2162          * Care should be taken w.r.t. mutability for example when passing
2163          * an array or other mutable structure through the class data.
2164          * Changing any value stored in the class data at runtime may lead to
2165          * unpredictable behavior.
2166          * If the class data is a {@code List}, it is good practice to make it
2167          * unmodifiable for example via {@link List#of List::of}.
2168          *
2169          * @param bytes     the class bytes
2170          * @param classData pre-initialized class data
2171          * @param initialize if {@code true} the class will be initialized.
2172          * @param options   {@linkplain ClassOption class options}
2173          * @return the {@code Lookup} object on the hidden class,
2174          * with {@linkplain #ORIGINAL original} and
2175          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
2176          *
2177          * @throws IllegalAccessException if this {@code Lookup} does not have
2178          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
2179          * @throws SecurityException if a security manager is present and it
2180          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2181          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
2182          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
2183          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
2184          * than the lookup class or {@code bytes} is not a class or interface
2185          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
2186          * @throws IncompatibleClassChangeError if the class or interface named as
2187          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
2188          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2189          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2190          * {@code C} is {@code C} itself
2191          * @throws VerifyError if the newly created class cannot be verified
2192          * @throws LinkageError if the newly created class cannot be linked for any other reason
2193          * @throws NullPointerException if any parameter is {@code null}
2194          *
2195          * @since 16
2196          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
2197          * @see Class#isHidden()
2198          * @see MethodHandles#classData(Lookup, String, Class)
2199          * @see MethodHandles#classDataAt(Lookup, String, Class, int)
2200          * @jvms 4.2.1 Binary Class and Interface Names
2201          * @jvms 4.2.2 Unqualified Names
2202          * @jvms 4.7.28 The {@code NestHost} Attribute
2203          * @jvms 4.7.29 The {@code NestMembers} Attribute
2204          * @jvms 5.4.3.1 Class and Interface Resolution
2205          * @jvms 5.4.4 Access Control
2206          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2207          * @jvms 5.4 Linking
2208          * @jvms 5.5 Initialization
2209          * @jls 12.7 Unloading of Classes and Interface
2210          */
2211         public Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options)
2212                 throws IllegalAccessException
2213         {
2214             Objects.requireNonNull(bytes);
2215             Objects.requireNonNull(classData);
2216             Objects.requireNonNull(options);
2217 
2218             ensureDefineClassPermission();
2219             if (!hasFullPrivilegeAccess()) {
2220                 throw new IllegalAccessException(this + " does not have full privilege access");
2221             }
2222 
2223             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false)
2224                        .defineClassAsLookup(initialize, classData);
2225         }
2226 
2227         // A default dumper for writing class files passed to Lookup::defineClass
2228         // and Lookup::defineHiddenClass to disk for debugging purposes.  To enable,
2229         // set -Djdk.invoke.MethodHandle.dumpHiddenClassFiles or
2230         //     -Djdk.invoke.MethodHandle.dumpHiddenClassFiles=true
2231         //
2232         // This default dumper does not dump hidden classes defined by LambdaMetafactory
2233         // and LambdaForms and method handle internals.  They are dumped via
2234         // different ClassFileDumpers.
2235         private static ClassFileDumper defaultDumper() {
2236             return DEFAULT_DUMPER;
2237         }
2238 
2239         private static final ClassFileDumper DEFAULT_DUMPER = ClassFileDumper.getInstance(
2240                 "jdk.invoke.MethodHandle.dumpClassFiles", "DUMP_CLASS_FILES");
2241 
2242         static class ClassFile {
2243             final String name;  // internal name
2244             final int accessFlags;
2245             final byte[] bytes;
2246             ClassFile(String name, int accessFlags, byte[] bytes) {
2247                 this.name = name;
2248                 this.accessFlags = accessFlags;
2249                 this.bytes = bytes;
2250             }
2251 
2252             static ClassFile newInstanceNoCheck(String name, byte[] bytes) {
2253                 return new ClassFile(name, 0, bytes);
2254             }
2255 
2256             /**
2257              * This method checks the class file version and the structure of `this_class`.
2258              * and checks if the bytes is a class or interface (ACC_MODULE flag not set)
2259              * that is in the named package.
2260              *
2261              * @throws IllegalArgumentException if ACC_MODULE flag is set in access flags
2262              * or the class is not in the given package name.
2263              */
2264             static ClassFile newInstance(byte[] bytes, String pkgName) {
2265                 var cf = readClassFile(bytes);
2266 
2267                 // check if it's in the named package
2268                 int index = cf.name.lastIndexOf('/');
2269                 String pn = (index == -1) ? "" : cf.name.substring(0, index).replace('/', '.');
2270                 if (!pn.equals(pkgName)) {
2271                     throw newIllegalArgumentException(cf.name + " not in same package as lookup class");
2272                 }
2273                 return cf;
2274             }
2275 
2276             private static ClassFile readClassFile(byte[] bytes) {
2277                 int magic = readInt(bytes, 0);
2278                 if (magic != 0xCAFEBABE) {
2279                     throw new ClassFormatError("Incompatible magic value: " + magic);
2280                 }
2281                 int minor = readUnsignedShort(bytes, 4);
2282                 int major = readUnsignedShort(bytes, 6);
2283                 if (!VM.isSupportedClassFileVersion(major, minor)) {
2284                     throw new UnsupportedClassVersionError("Unsupported class file version " + major + "." + minor);
2285                 }
2286 
2287                 String name;
2288                 int accessFlags;
2289                 try {
2290                     ClassModel cm = java.lang.classfile.ClassFile.of().parse(bytes);
2291                     name = cm.thisClass().asInternalName();
2292                     accessFlags = cm.flags().flagsMask();
2293                 } catch (IllegalArgumentException e) {
2294                     ClassFormatError cfe = new ClassFormatError();
2295                     cfe.initCause(e);
2296                     throw cfe;
2297                 }
2298                 // must be a class or interface
2299                 if ((accessFlags & ACC_MODULE) != 0) {
2300                     throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set");
2301                 }
2302                 return new ClassFile(name, accessFlags, bytes);
2303             }
2304 
2305             private static int readInt(byte[] bytes, int offset) {
2306                 if ((offset+4) > bytes.length) {
2307                     throw new ClassFormatError("Invalid ClassFile structure");
2308                 }
2309                 return ((bytes[offset] & 0xFF) << 24)
2310                         | ((bytes[offset + 1] & 0xFF) << 16)
2311                         | ((bytes[offset + 2] & 0xFF) << 8)
2312                         | (bytes[offset + 3] & 0xFF);
2313             }
2314 
2315             private static int readUnsignedShort(byte[] bytes, int offset) {
2316                 if ((offset+2) > bytes.length) {
2317                     throw new ClassFormatError("Invalid ClassFile structure");
2318                 }
2319                 return ((bytes[offset] & 0xFF) << 8) | (bytes[offset + 1] & 0xFF);
2320             }
2321         }
2322 
2323         /*
2324          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2325          * from the given bytes.
2326          *
2327          * Caller should make a defensive copy of the arguments if needed
2328          * before calling this factory method.
2329          *
2330          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2331          * {@code bytes} denotes a class in a different package than the lookup class
2332          */
2333         private ClassDefiner makeClassDefiner(byte[] bytes) {
2334             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2335             return new ClassDefiner(this, cf, STRONG_LOADER_LINK, defaultDumper());
2336         }
2337 
2338         /**
2339          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2340          * from the given bytes.  No package name check on the given bytes.
2341          *
2342          * @param name    internal name
2343          * @param bytes   class bytes
2344          * @param dumper  dumper to write the given bytes to the dumper's output directory
2345          * @return ClassDefiner that defines a normal class of the given bytes.
2346          */
2347         ClassDefiner makeClassDefiner(String name, byte[] bytes, ClassFileDumper dumper) {
2348             // skip package name validation
2349             ClassFile cf = ClassFile.newInstanceNoCheck(name, bytes);
2350             return new ClassDefiner(this, cf, STRONG_LOADER_LINK, dumper);
2351         }
2352 
2353         /**
2354          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2355          * from the given bytes.  The name must be in the same package as the lookup class.
2356          *
2357          * Caller should make a defensive copy of the arguments if needed
2358          * before calling this factory method.
2359          *
2360          * @param bytes   class bytes
2361          * @param dumper dumper to write the given bytes to the dumper's output directory
2362          * @return ClassDefiner that defines a hidden class of the given bytes.
2363          *
2364          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2365          * {@code bytes} denotes a class in a different package than the lookup class
2366          */
2367         ClassDefiner makeHiddenClassDefiner(byte[] bytes, ClassFileDumper dumper) {
2368             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2369             return makeHiddenClassDefiner(cf, Set.of(), false, dumper);
2370         }
2371 
2372         /**
2373          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2374          * from the given bytes and options.
2375          * The name must be in the same package as the lookup class.
2376          *
2377          * Caller should make a defensive copy of the arguments if needed
2378          * before calling this factory method.
2379          *
2380          * @param bytes   class bytes
2381          * @param options class options
2382          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2383          * @return ClassDefiner that defines a hidden class of the given bytes and options
2384          *
2385          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2386          * {@code bytes} denotes a class in a different package than the lookup class
2387          */
2388         private ClassDefiner makeHiddenClassDefiner(byte[] bytes,
2389                                                     Set<ClassOption> options,
2390                                                     boolean accessVmAnnotations) {
2391             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2392             return makeHiddenClassDefiner(cf, options, accessVmAnnotations, defaultDumper());
2393         }
2394 
2395         /**
2396          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2397          * from the given bytes and the given options.  No package name check on the given bytes.
2398          *
2399          * @param name    internal name that specifies the prefix of the hidden class
2400          * @param bytes   class bytes
2401          * @param options class options
2402          * @param dumper  dumper to write the given bytes to the dumper's output directory
2403          * @return ClassDefiner that defines a hidden class of the given bytes and options.
2404          */
2405         ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes, Set<ClassOption> options, ClassFileDumper dumper) {
2406             Objects.requireNonNull(dumper);
2407             // skip name and access flags validation
2408             return makeHiddenClassDefiner(ClassFile.newInstanceNoCheck(name, bytes), options, false, dumper);
2409         }
2410 
2411         /**
2412          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2413          * from the given class file and options.
2414          *
2415          * @param cf ClassFile
2416          * @param options class options
2417          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2418          * @param dumper dumper to write the given bytes to the dumper's output directory
2419          */
2420         private ClassDefiner makeHiddenClassDefiner(ClassFile cf,
2421                                                     Set<ClassOption> options,
2422                                                     boolean accessVmAnnotations,
2423                                                     ClassFileDumper dumper) {
2424             int flags = HIDDEN_CLASS | ClassOption.optionsToFlag(options);
2425             if (accessVmAnnotations | VM.isSystemDomainLoader(lookupClass.getClassLoader())) {
2426                 // jdk.internal.vm.annotations are permitted for classes
2427                 // defined to boot loader and platform loader
2428                 flags |= ACCESS_VM_ANNOTATIONS;
2429             }
2430 
2431             return new ClassDefiner(this, cf, flags, dumper);
2432         }
2433 
2434         static class ClassDefiner {
2435             private final Lookup lookup;
2436             private final String name;  // internal name
2437             private final byte[] bytes;
2438             private final int classFlags;
2439             private final ClassFileDumper dumper;
2440 
2441             private ClassDefiner(Lookup lookup, ClassFile cf, int flags, ClassFileDumper dumper) {
2442                 assert ((flags & HIDDEN_CLASS) != 0 || (flags & STRONG_LOADER_LINK) == STRONG_LOADER_LINK);
2443                 this.lookup = lookup;
2444                 this.bytes = cf.bytes;
2445                 this.name = cf.name;
2446                 this.classFlags = flags;
2447                 this.dumper = dumper;
2448             }
2449 
2450             String internalName() {
2451                 return name;
2452             }
2453 
2454             Class<?> defineClass(boolean initialize) {
2455                 return defineClass(initialize, null);
2456             }
2457 
2458             Lookup defineClassAsLookup(boolean initialize) {
2459                 Class<?> c = defineClass(initialize, null);
2460                 return new Lookup(c, null, FULL_POWER_MODES);
2461             }
2462 
2463             /**
2464              * Defines the class of the given bytes and the given classData.
2465              * If {@code initialize} parameter is true, then the class will be initialized.
2466              *
2467              * @param initialize true if the class to be initialized
2468              * @param classData classData or null
2469              * @return the class
2470              *
2471              * @throws LinkageError linkage error
2472              */
2473             Class<?> defineClass(boolean initialize, Object classData) {
2474                 Class<?> lookupClass = lookup.lookupClass();
2475                 ClassLoader loader = lookupClass.getClassLoader();
2476                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
2477                 Class<?> c = null;
2478                 try {
2479                     c = SharedSecrets.getJavaLangAccess()
2480                             .defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData);
2481                     assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
2482                     return c;
2483                 } finally {
2484                     // dump the classfile for debugging
2485                     if (dumper.isEnabled()) {
2486                         String name = internalName();
2487                         if (c != null) {
2488                             dumper.dumpClass(name, c, bytes);
2489                         } else {
2490                             dumper.dumpFailedClass(name, bytes);
2491                         }
2492                     }
2493                 }
2494             }
2495 
2496             /**
2497              * Defines the class of the given bytes and the given classData.
2498              * If {@code initialize} parameter is true, then the class will be initialized.
2499              *
2500              * @param initialize true if the class to be initialized
2501              * @param classData classData or null
2502              * @return a Lookup for the defined class
2503              *
2504              * @throws LinkageError linkage error
2505              */
2506             Lookup defineClassAsLookup(boolean initialize, Object classData) {
2507                 Class<?> c = defineClass(initialize, classData);
2508                 return new Lookup(c, null, FULL_POWER_MODES);
2509             }
2510 
2511             private boolean isNestmate() {
2512                 return (classFlags & NESTMATE_CLASS) != 0;
2513             }
2514         }
2515 
2516         private ProtectionDomain lookupClassProtectionDomain() {
2517             ProtectionDomain pd = cachedProtectionDomain;
2518             if (pd == null) {
2519                 cachedProtectionDomain = pd = SharedSecrets.getJavaLangAccess().protectionDomain(lookupClass);
2520             }
2521             return pd;
2522         }
2523 
2524         // cached protection domain
2525         private volatile ProtectionDomain cachedProtectionDomain;
2526 
2527         // Make sure outer class is initialized first.
2528         static { IMPL_NAMES.getClass(); }
2529 
2530         /** Package-private version of lookup which is trusted. */
2531         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
2532 
2533         /** Version of lookup which is trusted minimally.
2534          *  It can only be used to create method handles to publicly accessible
2535          *  members in packages that are exported unconditionally.
2536          */
2537         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
2538 
2539         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
2540             String name = lookupClass.getName();
2541             if (name.startsWith("java.lang.invoke."))
2542                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
2543         }
2544 
2545         /**
2546          * Displays the name of the class from which lookups are to be made,
2547          * followed by "/" and the name of the {@linkplain #previousLookupClass()
2548          * previous lookup class} if present.
2549          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
2550          * If there are restrictions on the access permitted to this lookup,
2551          * this is indicated by adding a suffix to the class name, consisting
2552          * of a slash and a keyword.  The keyword represents the strongest
2553          * allowed access, and is chosen as follows:
2554          * <ul>
2555          * <li>If no access is allowed, the suffix is "/noaccess".
2556          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
2557          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
2558          * <li>If only public and module access are allowed, the suffix is "/module".
2559          * <li>If public and package access are allowed, the suffix is "/package".
2560          * <li>If public, package, and private access are allowed, the suffix is "/private".
2561          * </ul>
2562          * If none of the above cases apply, it is the case that
2563          * {@linkplain #hasFullPrivilegeAccess() full privilege access}
2564          * (public, module, package, private, and protected) is allowed.
2565          * In this case, no suffix is added.
2566          * This is true only of an object obtained originally from
2567          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
2568          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
2569          * always have restricted access, and will display a suffix.
2570          * <p>
2571          * (It may seem strange that protected access should be
2572          * stronger than private access.  Viewed independently from
2573          * package access, protected access is the first to be lost,
2574          * because it requires a direct subclass relationship between
2575          * caller and callee.)
2576          * @see #in
2577          */
2578         @Override
2579         public String toString() {
2580             String cname = lookupClass.getName();
2581             if (prevLookupClass != null)
2582                 cname += "/" + prevLookupClass.getName();
2583             switch (allowedModes) {
2584             case 0:  // no privileges
2585                 return cname + "/noaccess";
2586             case UNCONDITIONAL:
2587                 return cname + "/publicLookup";
2588             case PUBLIC:
2589                 return cname + "/public";
2590             case PUBLIC|MODULE:
2591                 return cname + "/module";
2592             case PUBLIC|PACKAGE:
2593             case PUBLIC|MODULE|PACKAGE:
2594                 return cname + "/package";
2595             case PUBLIC|PACKAGE|PRIVATE:
2596             case PUBLIC|MODULE|PACKAGE|PRIVATE:
2597                     return cname + "/private";
2598             case PUBLIC|PACKAGE|PRIVATE|PROTECTED:
2599             case PUBLIC|MODULE|PACKAGE|PRIVATE|PROTECTED:
2600             case FULL_POWER_MODES:
2601                     return cname;
2602             case TRUSTED:
2603                 return "/trusted";  // internal only; not exported
2604             default:  // Should not happen, but it's a bitfield...
2605                 cname = cname + "/" + Integer.toHexString(allowedModes);
2606                 assert(false) : cname;
2607                 return cname;
2608             }
2609         }
2610 
2611         /**
2612          * Produces a method handle for a static method.
2613          * The type of the method handle will be that of the method.
2614          * (Since static methods do not take receivers, there is no
2615          * additional receiver argument inserted into the method handle type,
2616          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
2617          * The method and all its argument types must be accessible to the lookup object.
2618          * <p>
2619          * The returned method handle will have
2620          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2621          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2622          * <p>
2623          * If the returned method handle is invoked, the method's class will
2624          * be initialized, if it has not already been initialized.
2625          * <p><b>Example:</b>
2626          * {@snippet lang="java" :
2627 import static java.lang.invoke.MethodHandles.*;
2628 import static java.lang.invoke.MethodType.*;
2629 ...
2630 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
2631   "asList", methodType(List.class, Object[].class));
2632 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
2633          * }
2634          * @param refc the class from which the method is accessed
2635          * @param name the name of the method
2636          * @param type the type of the method
2637          * @return the desired method handle
2638          * @throws NoSuchMethodException if the method does not exist
2639          * @throws IllegalAccessException if access checking fails,
2640          *                                or if the method is not {@code static},
2641          *                                or if the method's variable arity modifier bit
2642          *                                is set and {@code asVarargsCollector} fails
2643          * @throws    SecurityException if a security manager is present and it
2644          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2645          * @throws NullPointerException if any argument is null
2646          */
2647         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2648             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
2649             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
2650         }
2651 
2652         /**
2653          * Produces a method handle for a virtual method.
2654          * The type of the method handle will be that of the method,
2655          * with the receiver type (usually {@code refc}) prepended.
2656          * The method and all its argument types must be accessible to the lookup object.
2657          * <p>
2658          * When called, the handle will treat the first argument as a receiver
2659          * and, for non-private methods, dispatch on the receiver's type to determine which method
2660          * implementation to enter.
2661          * For private methods the named method in {@code refc} will be invoked on the receiver.
2662          * (The dispatching action is identical with that performed by an
2663          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2664          * <p>
2665          * The first argument will be of type {@code refc} if the lookup
2666          * class has full privileges to access the member.  Otherwise
2667          * the member must be {@code protected} and the first argument
2668          * will be restricted in type to the lookup class.
2669          * <p>
2670          * The returned method handle will have
2671          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2672          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2673          * <p>
2674          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2675          * instructions and method handles produced by {@code findVirtual},
2676          * if the class is {@code MethodHandle} and the name string is
2677          * {@code invokeExact} or {@code invoke}, the resulting
2678          * method handle is equivalent to one produced by
2679          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2680          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2681          * with the same {@code type} argument.
2682          * <p>
2683          * If the class is {@code VarHandle} and the name string corresponds to
2684          * the name of a signature-polymorphic access mode method, the resulting
2685          * method handle is equivalent to one produced by
2686          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2687          * the access mode corresponding to the name string and with the same
2688          * {@code type} arguments.
2689          * <p>
2690          * <b>Example:</b>
2691          * {@snippet lang="java" :
2692 import static java.lang.invoke.MethodHandles.*;
2693 import static java.lang.invoke.MethodType.*;
2694 ...
2695 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2696   "concat", methodType(String.class, String.class));
2697 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2698   "hashCode", methodType(int.class));
2699 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2700   "hashCode", methodType(int.class));
2701 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2702 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2703 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2704 // interface method:
2705 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2706   "subSequence", methodType(CharSequence.class, int.class, int.class));
2707 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2708 // constructor "internal method" must be accessed differently:
2709 MethodType MT_newString = methodType(void.class); //()V for new String()
2710 try { assertEquals("impossible", lookup()
2711         .findVirtual(String.class, "<init>", MT_newString));
2712  } catch (NoSuchMethodException ex) { } // OK
2713 MethodHandle MH_newString = publicLookup()
2714   .findConstructor(String.class, MT_newString);
2715 assertEquals("", (String) MH_newString.invokeExact());
2716          * }
2717          *
2718          * @param refc the class or interface from which the method is accessed
2719          * @param name the name of the method
2720          * @param type the type of the method, with the receiver argument omitted
2721          * @return the desired method handle
2722          * @throws NoSuchMethodException if the method does not exist
2723          * @throws IllegalAccessException if access checking fails,
2724          *                                or if the method is {@code static},
2725          *                                or if the method's variable arity modifier bit
2726          *                                is set and {@code asVarargsCollector} fails
2727          * @throws    SecurityException if a security manager is present and it
2728          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2729          * @throws NullPointerException if any argument is null
2730          */
2731         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2732             if (refc == MethodHandle.class) {
2733                 MethodHandle mh = findVirtualForMH(name, type);
2734                 if (mh != null)  return mh;
2735             } else if (refc == VarHandle.class) {
2736                 MethodHandle mh = findVirtualForVH(name, type);
2737                 if (mh != null)  return mh;
2738             }
2739             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2740             MemberName method = resolveOrFail(refKind, refc, name, type);
2741             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
2742         }
2743         private MethodHandle findVirtualForMH(String name, MethodType type) {
2744             // these names require special lookups because of the implicit MethodType argument
2745             if ("invoke".equals(name))
2746                 return invoker(type);
2747             if ("invokeExact".equals(name))
2748                 return exactInvoker(type);
2749             assert(!MemberName.isMethodHandleInvokeName(name));
2750             return null;
2751         }
2752         private MethodHandle findVirtualForVH(String name, MethodType type) {
2753             try {
2754                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2755             } catch (IllegalArgumentException e) {
2756                 return null;
2757             }
2758         }
2759 
2760         /**
2761          * Produces a method handle which creates an object and initializes it, using
2762          * the constructor of the specified type.
2763          * The parameter types of the method handle will be those of the constructor,
2764          * while the return type will be a reference to the constructor's class.
2765          * The constructor and all its argument types must be accessible to the lookup object.
2766          * <p>
2767          * The requested type must have a return type of {@code void}.
2768          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2769          * <p>
2770          * The returned method handle will have
2771          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2772          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2773          * <p>
2774          * If the returned method handle is invoked, the constructor's class will
2775          * be initialized, if it has not already been initialized.
2776          * <p><b>Example:</b>
2777          * {@snippet lang="java" :
2778 import static java.lang.invoke.MethodHandles.*;
2779 import static java.lang.invoke.MethodType.*;
2780 ...
2781 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2782   ArrayList.class, methodType(void.class, Collection.class));
2783 Collection orig = Arrays.asList("x", "y");
2784 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2785 assert(orig != copy);
2786 assertEquals(orig, copy);
2787 // a variable-arity constructor:
2788 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2789   ProcessBuilder.class, methodType(void.class, String[].class));
2790 ProcessBuilder pb = (ProcessBuilder)
2791   MH_newProcessBuilder.invoke("x", "y", "z");
2792 assertEquals("[x, y, z]", pb.command().toString());
2793          * }
2794          *
2795          *
2796          * @param refc the class or interface from which the method is accessed
2797          * @param type the type of the method, with the receiver argument omitted, and a void return type
2798          * @return the desired method handle
2799          * @throws NoSuchMethodException if the constructor does not exist
2800          * @throws IllegalAccessException if access checking fails
2801          *                                or if the method's variable arity modifier bit
2802          *                                is set and {@code asVarargsCollector} fails
2803          * @throws    SecurityException if a security manager is present and it
2804          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2805          * @throws NullPointerException if any argument is null
2806          */
2807         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2808             if (refc.isArray()) {
2809                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2810             }
2811             if (type.returnType() != void.class) {
2812                 throw new NoSuchMethodException("Constructors must have void return type: " + refc.getName());
2813             }
2814             String name = ConstantDescs.INIT_NAME;
2815             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2816             return getDirectConstructor(refc, ctor);
2817         }
2818 
2819         /**
2820          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
2821          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
2822          * Such a resolution, as specified in JVMS {@jvms 5.4.3.1}, attempts to locate and load the class,
2823          * and then determines whether the class is accessible to this lookup object.
2824          * <p>
2825          * For a class or an interface, the name is the {@linkplain ClassLoader##binary-name binary name}.
2826          * For an array class of {@code n} dimensions, the name begins with {@code n} occurrences
2827          * of {@code '['} and followed by the element type as encoded in the
2828          * {@linkplain Class##nameFormat table} specified in {@link Class#getName}.
2829          * <p>
2830          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
2831          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
2832          *
2833          * @param targetName the {@linkplain ClassLoader##binary-name binary name} of the class
2834          *                   or the string representing an array class
2835          * @return the requested class.
2836          * @throws SecurityException if a security manager is present and it
2837          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2838          * @throws LinkageError if the linkage fails
2839          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2840          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2841          * modes.
2842          * @throws NullPointerException if {@code targetName} is null
2843          * @since 9
2844          * @jvms 5.4.3.1 Class and Interface Resolution
2845          */
2846         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2847             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2848             return accessClass(targetClass);
2849         }
2850 
2851         /**
2852          * Ensures that {@code targetClass} has been initialized. The class
2853          * to be initialized must be {@linkplain #accessClass accessible}
2854          * to this {@code Lookup} object.  This method causes {@code targetClass}
2855          * to be initialized if it has not been already initialized,
2856          * as specified in JVMS {@jvms 5.5}.
2857          *
2858          * <p>
2859          * This method returns when {@code targetClass} is fully initialized, or
2860          * when {@code targetClass} is being initialized by the current thread.
2861          *
2862          * @param <T> the type of the class to be initialized
2863          * @param targetClass the class to be initialized
2864          * @return {@code targetClass} that has been initialized, or that is being
2865          *         initialized by the current thread.
2866          *
2867          * @throws  IllegalArgumentException if {@code targetClass} is a primitive type or {@code void}
2868          *          or array class
2869          * @throws  IllegalAccessException if {@code targetClass} is not
2870          *          {@linkplain #accessClass accessible} to this lookup
2871          * @throws  ExceptionInInitializerError if the class initialization provoked
2872          *          by this method fails
2873          * @throws  SecurityException if a security manager is present and it
2874          *          <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2875          * @since 15
2876          * @jvms 5.5 Initialization
2877          */
2878         public <T> Class<T> ensureInitialized(Class<T> targetClass) throws IllegalAccessException {
2879             if (targetClass.isPrimitive())
2880                 throw new IllegalArgumentException(targetClass + " is a primitive class");
2881             if (targetClass.isArray())
2882                 throw new IllegalArgumentException(targetClass + " is an array class");
2883 
2884             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2885                 throw makeAccessException(targetClass);
2886             }
2887             checkSecurityManager(targetClass);
2888 
2889             // ensure class initialization
2890             Unsafe.getUnsafe().ensureClassInitialized(targetClass);
2891             return targetClass;
2892         }
2893 
2894         /*
2895          * Returns IllegalAccessException due to access violation to the given targetClass.
2896          *
2897          * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized}
2898          * which verifies access to a class rather a member.
2899          */
2900         private IllegalAccessException makeAccessException(Class<?> targetClass) {
2901             String message = "access violation: "+ targetClass;
2902             if (this == MethodHandles.publicLookup()) {
2903                 message += ", from public Lookup";
2904             } else {
2905                 Module m = lookupClass().getModule();
2906                 message += ", from " + lookupClass() + " (" + m + ")";
2907                 if (prevLookupClass != null) {
2908                     message += ", previous lookup " +
2909                             prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")";
2910                 }
2911             }
2912             return new IllegalAccessException(message);
2913         }
2914 
2915         /**
2916          * Determines if a class can be accessed from the lookup context defined by
2917          * this {@code Lookup} object. The static initializer of the class is not run.
2918          * If {@code targetClass} is an array class, {@code targetClass} is accessible
2919          * if the element type of the array class is accessible.  Otherwise,
2920          * {@code targetClass} is determined as accessible as follows.
2921          *
2922          * <p>
2923          * If {@code targetClass} is in the same module as the lookup class,
2924          * the lookup class is {@code LC} in module {@code M1} and
2925          * the previous lookup class is in module {@code M0} or
2926          * {@code null} if not present,
2927          * {@code targetClass} is accessible if and only if one of the following is true:
2928          * <ul>
2929          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2930          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2931          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2932          *     in the same runtime package of {@code LC}.</li>
2933          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2934          *     a public type in {@code M1}.</li>
2935          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2936          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2937          *     if the previous lookup class is present; otherwise, {@code targetClass}
2938          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2939          * </ul>
2940          *
2941          * <p>
2942          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2943          * can access public types in all modules when the type is in a package
2944          * that is exported unconditionally.
2945          * <p>
2946          * Otherwise, {@code targetClass} is in a different module from {@code lookupClass},
2947          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2948          * is inaccessible.
2949          * <p>
2950          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2951          * {@code M1} is the module containing {@code lookupClass} and
2952          * {@code M2} is the module containing {@code targetClass},
2953          * then {@code targetClass} is accessible if and only if
2954          * <ul>
2955          * <li>{@code M1} reads {@code M2}, and
2956          * <li>{@code targetClass} is public and in a package exported by
2957          *     {@code M2} at least to {@code M1}.
2958          * </ul>
2959          * <p>
2960          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2961          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2962          * containing the previous lookup class, then {@code targetClass} is accessible
2963          * if and only if one of the following is true:
2964          * <ul>
2965          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2966          *     {@linkplain Module#reads reads} {@code M0} and the type is
2967          *     in a package that is exported to at least {@code M1}.
2968          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2969          *     {@linkplain Module#reads reads} {@code M1} and the type is
2970          *     in a package that is exported to at least {@code M0}.
2971          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2972          *     and {@code M1} reads {@code M2} and the type is in a package
2973          *     that is exported to at least both {@code M0} and {@code M2}.
2974          * </ul>
2975          * <p>
2976          * Otherwise, {@code targetClass} is not accessible.
2977          *
2978          * @param <T> the type of the class to be access-checked
2979          * @param targetClass the class to be access-checked
2980          * @return {@code targetClass} that has been access-checked
2981          * @throws IllegalAccessException if the class is not accessible from the lookup class
2982          * and previous lookup class, if present, using the allowed access modes.
2983          * @throws SecurityException if a security manager is present and it
2984          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2985          * @throws NullPointerException if {@code targetClass} is {@code null}
2986          * @since 9
2987          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2988          */
2989         public <T> Class<T> accessClass(Class<T> targetClass) throws IllegalAccessException {
2990             if (!isClassAccessible(targetClass)) {
2991                 throw makeAccessException(targetClass);
2992             }
2993             checkSecurityManager(targetClass);
2994             return targetClass;
2995         }
2996 
2997         /**
2998          * Produces an early-bound method handle for a virtual method.
2999          * It will bypass checks for overriding methods on the receiver,
3000          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
3001          * instruction from within the explicitly specified {@code specialCaller}.
3002          * The type of the method handle will be that of the method,
3003          * with a suitably restricted receiver type prepended.
3004          * (The receiver type will be {@code specialCaller} or a subtype.)
3005          * The method and all its argument types must be accessible
3006          * to the lookup object.
3007          * <p>
3008          * Before method resolution,
3009          * if the explicitly specified caller class is not identical with the
3010          * lookup class, or if this lookup object does not have
3011          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3012          * privileges, the access fails.
3013          * <p>
3014          * The returned method handle will have
3015          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3016          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3017          * <p style="font-size:smaller;">
3018          * <em>(Note:  JVM internal methods named {@value ConstantDescs#INIT_NAME}
3019          * are not visible to this API,
3020          * even though the {@code invokespecial} instruction can refer to them
3021          * in special circumstances.  Use {@link #findConstructor findConstructor}
3022          * to access instance initialization methods in a safe manner.)</em>
3023          * <p><b>Example:</b>
3024          * {@snippet lang="java" :
3025 import static java.lang.invoke.MethodHandles.*;
3026 import static java.lang.invoke.MethodType.*;
3027 ...
3028 static class Listie extends ArrayList {
3029   public String toString() { return "[wee Listie]"; }
3030   static Lookup lookup() { return MethodHandles.lookup(); }
3031 }
3032 ...
3033 // no access to constructor via invokeSpecial:
3034 MethodHandle MH_newListie = Listie.lookup()
3035   .findConstructor(Listie.class, methodType(void.class));
3036 Listie l = (Listie) MH_newListie.invokeExact();
3037 try { assertEquals("impossible", Listie.lookup().findSpecial(
3038         Listie.class, "<init>", methodType(void.class), Listie.class));
3039  } catch (NoSuchMethodException ex) { } // OK
3040 // access to super and self methods via invokeSpecial:
3041 MethodHandle MH_super = Listie.lookup().findSpecial(
3042   ArrayList.class, "toString" , methodType(String.class), Listie.class);
3043 MethodHandle MH_this = Listie.lookup().findSpecial(
3044   Listie.class, "toString" , methodType(String.class), Listie.class);
3045 MethodHandle MH_duper = Listie.lookup().findSpecial(
3046   Object.class, "toString" , methodType(String.class), Listie.class);
3047 assertEquals("[]", (String) MH_super.invokeExact(l));
3048 assertEquals(""+l, (String) MH_this.invokeExact(l));
3049 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
3050 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
3051         String.class, "toString", methodType(String.class), Listie.class));
3052  } catch (IllegalAccessException ex) { } // OK
3053 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
3054 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
3055          * }
3056          *
3057          * @param refc the class or interface from which the method is accessed
3058          * @param name the name of the method (which must not be "&lt;init&gt;")
3059          * @param type the type of the method, with the receiver argument omitted
3060          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
3061          * @return the desired method handle
3062          * @throws NoSuchMethodException if the method does not exist
3063          * @throws IllegalAccessException if access checking fails,
3064          *                                or if the method is {@code static},
3065          *                                or if the method's variable arity modifier bit
3066          *                                is set and {@code asVarargsCollector} fails
3067          * @throws    SecurityException if a security manager is present and it
3068          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3069          * @throws NullPointerException if any argument is null
3070          */
3071         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
3072                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
3073             checkSpecialCaller(specialCaller, refc);
3074             Lookup specialLookup = this.in(specialCaller);
3075             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
3076             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
3077         }
3078 
3079         /**
3080          * Produces a method handle giving read access to a non-static field.
3081          * The type of the method handle will have a return type of the field's
3082          * value type.
3083          * The method handle's single argument will be the instance containing
3084          * the field.
3085          * Access checking is performed immediately on behalf of the lookup class.
3086          * @param refc the class or interface from which the method is accessed
3087          * @param name the field's name
3088          * @param type the field's type
3089          * @return a method handle which can load values from the field
3090          * @throws NoSuchFieldException if the field does not exist
3091          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3092          * @throws    SecurityException if a security manager is present and it
3093          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3094          * @throws NullPointerException if any argument is null
3095          * @see #findVarHandle(Class, String, Class)
3096          */
3097         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3098             MemberName field = resolveOrFail(REF_getField, refc, name, type);
3099             return getDirectField(REF_getField, refc, field);
3100         }
3101 
3102         /**
3103          * Produces a method handle giving write access to a non-static field.
3104          * The type of the method handle will have a void return type.
3105          * The method handle will take two arguments, the instance containing
3106          * the field, and the value to be stored.
3107          * The second argument will be of the field's value type.
3108          * Access checking is performed immediately on behalf of the lookup class.
3109          * @param refc the class or interface from which the method is accessed
3110          * @param name the field's name
3111          * @param type the field's type
3112          * @return a method handle which can store values into the field
3113          * @throws NoSuchFieldException if the field does not exist
3114          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3115          *                                or {@code final}
3116          * @throws    SecurityException if a security manager is present and it
3117          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3118          * @throws NullPointerException if any argument is null
3119          * @see #findVarHandle(Class, String, Class)
3120          */
3121         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3122             MemberName field = resolveOrFail(REF_putField, refc, name, type);
3123             return getDirectField(REF_putField, refc, field);
3124         }
3125 
3126         /**
3127          * Produces a VarHandle giving access to a non-static field {@code name}
3128          * of type {@code type} declared in a class of type {@code recv}.
3129          * The VarHandle's variable type is {@code type} and it has one
3130          * coordinate type, {@code recv}.
3131          * <p>
3132          * Access checking is performed immediately on behalf of the lookup
3133          * class.
3134          * <p>
3135          * Certain access modes of the returned VarHandle are unsupported under
3136          * the following conditions:
3137          * <ul>
3138          * <li>if the field is declared {@code final}, then the write, atomic
3139          *     update, numeric atomic update, and bitwise atomic update access
3140          *     modes are unsupported.
3141          * <li>if the field type is anything other than {@code byte},
3142          *     {@code short}, {@code char}, {@code int}, {@code long},
3143          *     {@code float}, or {@code double} then numeric atomic update
3144          *     access modes are unsupported.
3145          * <li>if the field type is anything other than {@code boolean},
3146          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3147          *     {@code long} then bitwise atomic update access modes are
3148          *     unsupported.
3149          * </ul>
3150          * <p>
3151          * If the field is declared {@code volatile} then the returned VarHandle
3152          * will override access to the field (effectively ignore the
3153          * {@code volatile} declaration) in accordance to its specified
3154          * access modes.
3155          * <p>
3156          * If the field type is {@code float} or {@code double} then numeric
3157          * and atomic update access modes compare values using their bitwise
3158          * representation (see {@link Float#floatToRawIntBits} and
3159          * {@link Double#doubleToRawLongBits}, respectively).
3160          * @apiNote
3161          * Bitwise comparison of {@code float} values or {@code double} values,
3162          * as performed by the numeric and atomic update access modes, differ
3163          * from the primitive {@code ==} operator and the {@link Float#equals}
3164          * and {@link Double#equals} methods, specifically with respect to
3165          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3166          * Care should be taken when performing a compare and set or a compare
3167          * and exchange operation with such values since the operation may
3168          * unexpectedly fail.
3169          * There are many possible NaN values that are considered to be
3170          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3171          * provided by Java can distinguish between them.  Operation failure can
3172          * occur if the expected or witness value is a NaN value and it is
3173          * transformed (perhaps in a platform specific manner) into another NaN
3174          * value, and thus has a different bitwise representation (see
3175          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3176          * details).
3177          * The values {@code -0.0} and {@code +0.0} have different bitwise
3178          * representations but are considered equal when using the primitive
3179          * {@code ==} operator.  Operation failure can occur if, for example, a
3180          * numeric algorithm computes an expected value to be say {@code -0.0}
3181          * and previously computed the witness value to be say {@code +0.0}.
3182          * @param recv the receiver class, of type {@code R}, that declares the
3183          * non-static field
3184          * @param name the field's name
3185          * @param type the field's type, of type {@code T}
3186          * @return a VarHandle giving access to non-static fields.
3187          * @throws NoSuchFieldException if the field does not exist
3188          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3189          * @throws    SecurityException if a security manager is present and it
3190          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3191          * @throws NullPointerException if any argument is null
3192          * @since 9
3193          */
3194         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3195             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
3196             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
3197             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
3198         }
3199 
3200         /**
3201          * Produces a method handle giving read access to a static field.
3202          * The type of the method handle will have a return type of the field's
3203          * value type.
3204          * The method handle will take no arguments.
3205          * Access checking is performed immediately on behalf of the lookup class.
3206          * <p>
3207          * If the returned method handle is invoked, the field's class will
3208          * be initialized, if it has not already been initialized.
3209          * @param refc the class or interface from which the method is accessed
3210          * @param name the field's name
3211          * @param type the field's type
3212          * @return a method handle which can load values from the field
3213          * @throws NoSuchFieldException if the field does not exist
3214          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3215          * @throws    SecurityException if a security manager is present and it
3216          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3217          * @throws NullPointerException if any argument is null
3218          */
3219         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3220             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
3221             return getDirectField(REF_getStatic, refc, field);
3222         }
3223 
3224         /**
3225          * Produces a method handle giving write access to a static field.
3226          * The type of the method handle will have a void return type.
3227          * The method handle will take a single
3228          * argument, of the field's value type, the value to be stored.
3229          * Access checking is performed immediately on behalf of the lookup class.
3230          * <p>
3231          * If the returned method handle is invoked, the field's class will
3232          * be initialized, if it has not already been initialized.
3233          * @param refc the class or interface from which the method is accessed
3234          * @param name the field's name
3235          * @param type the field's type
3236          * @return a method handle which can store values into the field
3237          * @throws NoSuchFieldException if the field does not exist
3238          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3239          *                                or is {@code final}
3240          * @throws    SecurityException if a security manager is present and it
3241          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3242          * @throws NullPointerException if any argument is null
3243          */
3244         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3245             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
3246             return getDirectField(REF_putStatic, refc, field);
3247         }
3248 
3249         /**
3250          * Produces a VarHandle giving access to a static field {@code name} of
3251          * type {@code type} declared in a class of type {@code decl}.
3252          * The VarHandle's variable type is {@code type} and it has no
3253          * coordinate types.
3254          * <p>
3255          * Access checking is performed immediately on behalf of the lookup
3256          * class.
3257          * <p>
3258          * If the returned VarHandle is operated on, the declaring class will be
3259          * initialized, if it has not already been initialized.
3260          * <p>
3261          * Certain access modes of the returned VarHandle are unsupported under
3262          * the following conditions:
3263          * <ul>
3264          * <li>if the field is declared {@code final}, then the write, atomic
3265          *     update, numeric atomic update, and bitwise atomic update access
3266          *     modes are unsupported.
3267          * <li>if the field type is anything other than {@code byte},
3268          *     {@code short}, {@code char}, {@code int}, {@code long},
3269          *     {@code float}, or {@code double}, then numeric atomic update
3270          *     access modes are unsupported.
3271          * <li>if the field type is anything other than {@code boolean},
3272          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3273          *     {@code long} then bitwise atomic update access modes are
3274          *     unsupported.
3275          * </ul>
3276          * <p>
3277          * If the field is declared {@code volatile} then the returned VarHandle
3278          * will override access to the field (effectively ignore the
3279          * {@code volatile} declaration) in accordance to its specified
3280          * access modes.
3281          * <p>
3282          * If the field type is {@code float} or {@code double} then numeric
3283          * and atomic update access modes compare values using their bitwise
3284          * representation (see {@link Float#floatToRawIntBits} and
3285          * {@link Double#doubleToRawLongBits}, respectively).
3286          * @apiNote
3287          * Bitwise comparison of {@code float} values or {@code double} values,
3288          * as performed by the numeric and atomic update access modes, differ
3289          * from the primitive {@code ==} operator and the {@link Float#equals}
3290          * and {@link Double#equals} methods, specifically with respect to
3291          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3292          * Care should be taken when performing a compare and set or a compare
3293          * and exchange operation with such values since the operation may
3294          * unexpectedly fail.
3295          * There are many possible NaN values that are considered to be
3296          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3297          * provided by Java can distinguish between them.  Operation failure can
3298          * occur if the expected or witness value is a NaN value and it is
3299          * transformed (perhaps in a platform specific manner) into another NaN
3300          * value, and thus has a different bitwise representation (see
3301          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3302          * details).
3303          * The values {@code -0.0} and {@code +0.0} have different bitwise
3304          * representations but are considered equal when using the primitive
3305          * {@code ==} operator.  Operation failure can occur if, for example, a
3306          * numeric algorithm computes an expected value to be say {@code -0.0}
3307          * and previously computed the witness value to be say {@code +0.0}.
3308          * @param decl the class that declares the static field
3309          * @param name the field's name
3310          * @param type the field's type, of type {@code T}
3311          * @return a VarHandle giving access to a static field
3312          * @throws NoSuchFieldException if the field does not exist
3313          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3314          * @throws    SecurityException if a security manager is present and it
3315          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3316          * @throws NullPointerException if any argument is null
3317          * @since 9
3318          */
3319         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3320             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
3321             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
3322             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
3323         }
3324 
3325         /**
3326          * Produces an early-bound method handle for a non-static method.
3327          * The receiver must have a supertype {@code defc} in which a method
3328          * of the given name and type is accessible to the lookup class.
3329          * The method and all its argument types must be accessible to the lookup object.
3330          * The type of the method handle will be that of the method,
3331          * without any insertion of an additional receiver parameter.
3332          * The given receiver will be bound into the method handle,
3333          * so that every call to the method handle will invoke the
3334          * requested method on the given receiver.
3335          * <p>
3336          * The returned method handle will have
3337          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3338          * the method's variable arity modifier bit ({@code 0x0080}) is set
3339          * <em>and</em> the trailing array argument is not the only argument.
3340          * (If the trailing array argument is the only argument,
3341          * the given receiver value will be bound to it.)
3342          * <p>
3343          * This is almost equivalent to the following code, with some differences noted below:
3344          * {@snippet lang="java" :
3345 import static java.lang.invoke.MethodHandles.*;
3346 import static java.lang.invoke.MethodType.*;
3347 ...
3348 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
3349 MethodHandle mh1 = mh0.bindTo(receiver);
3350 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
3351 return mh1;
3352          * }
3353          * where {@code defc} is either {@code receiver.getClass()} or a super
3354          * type of that class, in which the requested method is accessible
3355          * to the lookup class.
3356          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
3357          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
3358          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
3359          * the receiver is restricted by {@code findVirtual} to the lookup class.)
3360          * @param receiver the object from which the method is accessed
3361          * @param name the name of the method
3362          * @param type the type of the method, with the receiver argument omitted
3363          * @return the desired method handle
3364          * @throws NoSuchMethodException if the method does not exist
3365          * @throws IllegalAccessException if access checking fails
3366          *                                or if the method's variable arity modifier bit
3367          *                                is set and {@code asVarargsCollector} fails
3368          * @throws    SecurityException if a security manager is present and it
3369          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3370          * @throws NullPointerException if any argument is null
3371          * @see MethodHandle#bindTo
3372          * @see #findVirtual
3373          */
3374         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3375             Class<? extends Object> refc = receiver.getClass(); // may get NPE
3376             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
3377             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
3378             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
3379                 throw new IllegalAccessException("The restricted defining class " +
3380                                                  mh.type().leadingReferenceParameter().getName() +
3381                                                  " is not assignable from receiver class " +
3382                                                  receiver.getClass().getName());
3383             }
3384             return mh.bindArgumentL(0, receiver).setVarargs(method);
3385         }
3386 
3387         /**
3388          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3389          * to <i>m</i>, if the lookup class has permission.
3390          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
3391          * If <i>m</i> is virtual, overriding is respected on every call.
3392          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
3393          * The type of the method handle will be that of the method,
3394          * with the receiver type prepended (but only if it is non-static).
3395          * If the method's {@code accessible} flag is not set,
3396          * access checking is performed immediately on behalf of the lookup class.
3397          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
3398          * <p>
3399          * The returned method handle will have
3400          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3401          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3402          * <p>
3403          * If <i>m</i> is static, and
3404          * if the returned method handle is invoked, the method's class will
3405          * be initialized, if it has not already been initialized.
3406          * @param m the reflected method
3407          * @return a method handle which can invoke the reflected method
3408          * @throws IllegalAccessException if access checking fails
3409          *                                or if the method's variable arity modifier bit
3410          *                                is set and {@code asVarargsCollector} fails
3411          * @throws NullPointerException if the argument is null
3412          */
3413         public MethodHandle unreflect(Method m) throws IllegalAccessException {
3414             if (m.getDeclaringClass() == MethodHandle.class) {
3415                 MethodHandle mh = unreflectForMH(m);
3416                 if (mh != null)  return mh;
3417             }
3418             if (m.getDeclaringClass() == VarHandle.class) {
3419                 MethodHandle mh = unreflectForVH(m);
3420                 if (mh != null)  return mh;
3421             }
3422             MemberName method = new MemberName(m);
3423             byte refKind = method.getReferenceKind();
3424             if (refKind == REF_invokeSpecial)
3425                 refKind = REF_invokeVirtual;
3426             assert(method.isMethod());
3427             @SuppressWarnings("deprecation")
3428             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
3429             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3430         }
3431         private MethodHandle unreflectForMH(Method m) {
3432             // these names require special lookups because they throw UnsupportedOperationException
3433             if (MemberName.isMethodHandleInvokeName(m.getName()))
3434                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
3435             return null;
3436         }
3437         private MethodHandle unreflectForVH(Method m) {
3438             // these names require special lookups because they throw UnsupportedOperationException
3439             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
3440                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
3441             return null;
3442         }
3443 
3444         /**
3445          * Produces a method handle for a reflected method.
3446          * It will bypass checks for overriding methods on the receiver,
3447          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
3448          * instruction from within the explicitly specified {@code specialCaller}.
3449          * The type of the method handle will be that of the method,
3450          * with a suitably restricted receiver type prepended.
3451          * (The receiver type will be {@code specialCaller} or a subtype.)
3452          * If the method's {@code accessible} flag is not set,
3453          * access checking is performed immediately on behalf of the lookup class,
3454          * as if {@code invokespecial} instruction were being linked.
3455          * <p>
3456          * Before method resolution,
3457          * if the explicitly specified caller class is not identical with the
3458          * lookup class, or if this lookup object does not have
3459          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3460          * privileges, the access fails.
3461          * <p>
3462          * The returned method handle will have
3463          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3464          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3465          * @param m the reflected method
3466          * @param specialCaller the class nominally calling the method
3467          * @return a method handle which can invoke the reflected method
3468          * @throws IllegalAccessException if access checking fails,
3469          *                                or if the method is {@code static},
3470          *                                or if the method's variable arity modifier bit
3471          *                                is set and {@code asVarargsCollector} fails
3472          * @throws NullPointerException if any argument is null
3473          */
3474         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
3475             checkSpecialCaller(specialCaller, m.getDeclaringClass());
3476             Lookup specialLookup = this.in(specialCaller);
3477             MemberName method = new MemberName(m, true);
3478             assert(method.isMethod());
3479             // ignore m.isAccessible:  this is a new kind of access
3480             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3481         }
3482 
3483         /**
3484          * Produces a method handle for a reflected constructor.
3485          * The type of the method handle will be that of the constructor,
3486          * with the return type changed to the declaring class.
3487          * The method handle will perform a {@code newInstance} operation,
3488          * creating a new instance of the constructor's class on the
3489          * arguments passed to the method handle.
3490          * <p>
3491          * If the constructor's {@code accessible} flag is not set,
3492          * access checking is performed immediately on behalf of the lookup class.
3493          * <p>
3494          * The returned method handle will have
3495          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3496          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
3497          * <p>
3498          * If the returned method handle is invoked, the constructor's class will
3499          * be initialized, if it has not already been initialized.
3500          * @param c the reflected constructor
3501          * @return a method handle which can invoke the reflected constructor
3502          * @throws IllegalAccessException if access checking fails
3503          *                                or if the method's variable arity modifier bit
3504          *                                is set and {@code asVarargsCollector} fails
3505          * @throws NullPointerException if the argument is null
3506          */
3507         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
3508             MemberName ctor = new MemberName(c);
3509             assert(ctor.isConstructor());
3510             @SuppressWarnings("deprecation")
3511             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
3512             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
3513         }
3514 
3515         /*
3516          * Produces a method handle that is capable of creating instances of the given class
3517          * and instantiated by the given constructor.  No security manager check.
3518          *
3519          * This method should only be used by ReflectionFactory::newConstructorForSerialization.
3520          */
3521         /* package-private */ MethodHandle serializableConstructor(Class<?> decl, Constructor<?> c) throws IllegalAccessException {
3522             MemberName ctor = new MemberName(c);
3523             assert(ctor.isConstructor() && constructorInSuperclass(decl, c));
3524             checkAccess(REF_newInvokeSpecial, decl, ctor);
3525             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3526             return DirectMethodHandle.makeAllocator(decl, ctor).setVarargs(ctor);
3527         }
3528 
3529         private static boolean constructorInSuperclass(Class<?> decl, Constructor<?> ctor) {
3530             if (decl == ctor.getDeclaringClass())
3531                 return true;
3532 
3533             Class<?> cl = decl;
3534             while ((cl = cl.getSuperclass()) != null) {
3535                 if (cl == ctor.getDeclaringClass()) {
3536                     return true;
3537                 }
3538             }
3539             return false;
3540         }
3541 
3542         /**
3543          * Produces a method handle giving read access to a reflected field.
3544          * The type of the method handle will have a return type of the field's
3545          * value type.
3546          * If the field is {@code static}, the method handle will take no arguments.
3547          * Otherwise, its single argument will be the instance containing
3548          * the field.
3549          * If the {@code Field} object's {@code accessible} flag is not set,
3550          * access checking is performed immediately on behalf of the lookup class.
3551          * <p>
3552          * If the field is static, and
3553          * if the returned method handle is invoked, the field's class will
3554          * be initialized, if it has not already been initialized.
3555          * @param f the reflected field
3556          * @return a method handle which can load values from the reflected field
3557          * @throws IllegalAccessException if access checking fails
3558          * @throws NullPointerException if the argument is null
3559          */
3560         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
3561             return unreflectField(f, false);
3562         }
3563 
3564         /**
3565          * Produces a method handle giving write access to a reflected field.
3566          * The type of the method handle will have a void return type.
3567          * If the field is {@code static}, the method handle will take a single
3568          * argument, of the field's value type, the value to be stored.
3569          * Otherwise, the two arguments will be the instance containing
3570          * the field, and the value to be stored.
3571          * If the {@code Field} object's {@code accessible} flag is not set,
3572          * access checking is performed immediately on behalf of the lookup class.
3573          * <p>
3574          * If the field is {@code final}, write access will not be
3575          * allowed and access checking will fail, except under certain
3576          * narrow circumstances documented for {@link Field#set Field.set}.
3577          * A method handle is returned only if a corresponding call to
3578          * the {@code Field} object's {@code set} method could return
3579          * normally.  In particular, fields which are both {@code static}
3580          * and {@code final} may never be set.
3581          * <p>
3582          * If the field is {@code static}, and
3583          * if the returned method handle is invoked, the field's class will
3584          * be initialized, if it has not already been initialized.
3585          * @param f the reflected field
3586          * @return a method handle which can store values into the reflected field
3587          * @throws IllegalAccessException if access checking fails,
3588          *         or if the field is {@code final} and write access
3589          *         is not enabled on the {@code Field} object
3590          * @throws NullPointerException if the argument is null
3591          */
3592         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
3593             return unreflectField(f, true);
3594         }
3595 
3596         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
3597             MemberName field = new MemberName(f, isSetter);
3598             if (isSetter && field.isFinal()) {
3599                 if (field.isTrustedFinalField()) {
3600                     String msg = field.isStatic() ? "static final field has no write access"
3601                                                   : "final field has no write access";
3602                     throw field.makeAccessException(msg, this);
3603                 }
3604             }
3605             assert(isSetter
3606                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
3607                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
3608             @SuppressWarnings("deprecation")
3609             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
3610             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
3611         }
3612 
3613         /**
3614          * Produces a VarHandle giving access to a reflected field {@code f}
3615          * of type {@code T} declared in a class of type {@code R}.
3616          * The VarHandle's variable type is {@code T}.
3617          * If the field is non-static the VarHandle has one coordinate type,
3618          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
3619          * coordinate types.
3620          * <p>
3621          * Access checking is performed immediately on behalf of the lookup
3622          * class, regardless of the value of the field's {@code accessible}
3623          * flag.
3624          * <p>
3625          * If the field is static, and if the returned VarHandle is operated
3626          * on, the field's declaring class will be initialized, if it has not
3627          * already been initialized.
3628          * <p>
3629          * Certain access modes of the returned VarHandle are unsupported under
3630          * the following conditions:
3631          * <ul>
3632          * <li>if the field is declared {@code final}, then the write, atomic
3633          *     update, numeric atomic update, and bitwise atomic update access
3634          *     modes are unsupported.
3635          * <li>if the field type is anything other than {@code byte},
3636          *     {@code short}, {@code char}, {@code int}, {@code long},
3637          *     {@code float}, or {@code double} then numeric atomic update
3638          *     access modes are unsupported.
3639          * <li>if the field type is anything other than {@code boolean},
3640          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3641          *     {@code long} then bitwise atomic update access modes are
3642          *     unsupported.
3643          * </ul>
3644          * <p>
3645          * If the field is declared {@code volatile} then the returned VarHandle
3646          * will override access to the field (effectively ignore the
3647          * {@code volatile} declaration) in accordance to its specified
3648          * access modes.
3649          * <p>
3650          * If the field type is {@code float} or {@code double} then numeric
3651          * and atomic update access modes compare values using their bitwise
3652          * representation (see {@link Float#floatToRawIntBits} and
3653          * {@link Double#doubleToRawLongBits}, respectively).
3654          * @apiNote
3655          * Bitwise comparison of {@code float} values or {@code double} values,
3656          * as performed by the numeric and atomic update access modes, differ
3657          * from the primitive {@code ==} operator and the {@link Float#equals}
3658          * and {@link Double#equals} methods, specifically with respect to
3659          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3660          * Care should be taken when performing a compare and set or a compare
3661          * and exchange operation with such values since the operation may
3662          * unexpectedly fail.
3663          * There are many possible NaN values that are considered to be
3664          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3665          * provided by Java can distinguish between them.  Operation failure can
3666          * occur if the expected or witness value is a NaN value and it is
3667          * transformed (perhaps in a platform specific manner) into another NaN
3668          * value, and thus has a different bitwise representation (see
3669          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3670          * details).
3671          * The values {@code -0.0} and {@code +0.0} have different bitwise
3672          * representations but are considered equal when using the primitive
3673          * {@code ==} operator.  Operation failure can occur if, for example, a
3674          * numeric algorithm computes an expected value to be say {@code -0.0}
3675          * and previously computed the witness value to be say {@code +0.0}.
3676          * @param f the reflected field, with a field of type {@code T}, and
3677          * a declaring class of type {@code R}
3678          * @return a VarHandle giving access to non-static fields or a static
3679          * field
3680          * @throws IllegalAccessException if access checking fails
3681          * @throws NullPointerException if the argument is null
3682          * @since 9
3683          */
3684         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
3685             MemberName getField = new MemberName(f, false);
3686             MemberName putField = new MemberName(f, true);
3687             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
3688                                                       f.getDeclaringClass(), getField, putField);
3689         }
3690 
3691         /**
3692          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3693          * created by this lookup object or a similar one.
3694          * Security and access checks are performed to ensure that this lookup object
3695          * is capable of reproducing the target method handle.
3696          * This means that the cracking may fail if target is a direct method handle
3697          * but was created by an unrelated lookup object.
3698          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
3699          * and was created by a lookup object for a different class.
3700          * @param target a direct method handle to crack into symbolic reference components
3701          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
3702          * @throws    SecurityException if a security manager is present and it
3703          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3704          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
3705          * @throws    NullPointerException if the target is {@code null}
3706          * @see MethodHandleInfo
3707          * @since 1.8
3708          */
3709         public MethodHandleInfo revealDirect(MethodHandle target) {
3710             if (!target.isCrackable()) {
3711                 throw newIllegalArgumentException("not a direct method handle");
3712             }
3713             MemberName member = target.internalMemberName();
3714             Class<?> defc = member.getDeclaringClass();
3715             byte refKind = member.getReferenceKind();
3716             assert(MethodHandleNatives.refKindIsValid(refKind));
3717             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
3718                 // Devirtualized method invocation is usually formally virtual.
3719                 // To avoid creating extra MemberName objects for this common case,
3720                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
3721                 refKind = REF_invokeVirtual;
3722             if (refKind == REF_invokeVirtual && defc.isInterface())
3723                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
3724                 refKind = REF_invokeInterface;
3725             // Check SM permissions and member access before cracking.
3726             try {
3727                 checkAccess(refKind, defc, member);
3728                 checkSecurityManager(defc, member);
3729             } catch (IllegalAccessException ex) {
3730                 throw new IllegalArgumentException(ex);
3731             }
3732             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
3733                 Class<?> callerClass = target.internalCallerClass();
3734                 if ((lookupModes() & ORIGINAL) == 0 || callerClass != lookupClass())
3735                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
3736             }
3737             // Produce the handle to the results.
3738             return new InfoFromMemberName(this, member, refKind);
3739         }
3740 
3741         //--- Helper methods, all package-private.
3742 
3743         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3744             checkSymbolicClass(refc);  // do this before attempting to resolve
3745             Objects.requireNonNull(name);
3746             Objects.requireNonNull(type);
3747             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3748                                             NoSuchFieldException.class);
3749         }
3750 
3751         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3752             checkSymbolicClass(refc);  // do this before attempting to resolve
3753             Objects.requireNonNull(type);
3754             checkMethodName(refKind, name);  // implicit null-check of name
3755             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3756                                             NoSuchMethodException.class);
3757         }
3758 
3759         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
3760             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
3761             Objects.requireNonNull(member.getName());
3762             Objects.requireNonNull(member.getType());
3763             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), allowedModes,
3764                                             ReflectiveOperationException.class);
3765         }
3766 
3767         MemberName resolveOrNull(byte refKind, MemberName member) {
3768             // do this before attempting to resolve
3769             if (!isClassAccessible(member.getDeclaringClass())) {
3770                 return null;
3771             }
3772             Objects.requireNonNull(member.getName());
3773             Objects.requireNonNull(member.getType());
3774             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull(), allowedModes);
3775         }
3776 
3777         MemberName resolveOrNull(byte refKind, Class<?> refc, String name, MethodType type) {
3778             // do this before attempting to resolve
3779             if (!isClassAccessible(refc)) {
3780                 return null;
3781             }
3782             Objects.requireNonNull(type);
3783             // implicit null-check of name
3784             if (name.startsWith("<") && refKind != REF_newInvokeSpecial) {
3785                 return null;
3786             }
3787             return IMPL_NAMES.resolveOrNull(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes);
3788         }
3789 
3790         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3791             if (!isClassAccessible(refc)) {
3792                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3793             }
3794         }
3795 
3796         boolean isClassAccessible(Class<?> refc) {
3797             Objects.requireNonNull(refc);
3798             Class<?> caller = lookupClassOrNull();
3799             Class<?> type = refc;
3800             while (type.isArray()) {
3801                 type = type.getComponentType();
3802             }
3803             return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes);
3804         }
3805 
3806         /** Check name for an illegal leading "&lt;" character. */
3807         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3808             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3809                 throw new NoSuchMethodException("illegal method name: "+name);
3810         }
3811 
3812         /**
3813          * Find my trustable caller class if m is a caller sensitive method.
3814          * If this lookup object has original full privilege access, then the caller class is the lookupClass.
3815          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3816          */
3817         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
3818             if (MethodHandleNatives.isCallerSensitive(m) && (lookupModes() & ORIGINAL) == 0) {
3819                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
3820                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3821             }
3822             return this;
3823         }
3824 
3825         /**
3826          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3827          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3828          *
3829          * @deprecated This method was originally designed to test {@code PRIVATE} access
3830          * that implies full privilege access but {@code MODULE} access has since become
3831          * independent of {@code PRIVATE} access.  It is recommended to call
3832          * {@link #hasFullPrivilegeAccess()} instead.
3833          * @since 9
3834          */
3835         @Deprecated(since="14")
3836         public boolean hasPrivateAccess() {
3837             return hasFullPrivilegeAccess();
3838         }
3839 
3840         /**
3841          * Returns {@code true} if this lookup has <em>full privilege access</em>,
3842          * i.e. {@code PRIVATE} and {@code MODULE} access.
3843          * A {@code Lookup} object must have full privilege access in order to
3844          * access all members that are allowed to the
3845          * {@linkplain #lookupClass() lookup class}.
3846          *
3847          * @return {@code true} if this lookup has full privilege access.
3848          * @since 14
3849          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
3850          */
3851         public boolean hasFullPrivilegeAccess() {
3852             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
3853         }
3854 
3855         /**
3856          * Perform steps 1 and 2b <a href="MethodHandles.Lookup.html#secmgr">access checks</a>
3857          * for ensureInitialized, findClass or accessClass.
3858          */
3859         void checkSecurityManager(Class<?> refc) {
3860             if (allowedModes == TRUSTED)  return;
3861 
3862             @SuppressWarnings("removal")
3863             SecurityManager smgr = System.getSecurityManager();
3864             if (smgr == null)  return;
3865 
3866             // Step 1:
3867             boolean fullPrivilegeLookup = hasFullPrivilegeAccess();
3868             if (!fullPrivilegeLookup ||
3869                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3870                 ReflectUtil.checkPackageAccess(refc);
3871             }
3872 
3873             // Step 2b:
3874             if (!fullPrivilegeLookup) {
3875                 smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
3876             }
3877         }
3878 
3879         /**
3880          * Perform steps 1, 2a and 3 <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
3881          * Determines a trustable caller class to compare with refc, the symbolic reference class.
3882          * If this lookup object has full privilege access except original access,
3883          * then the caller class is the lookupClass.
3884          *
3885          * Lookup object created by {@link MethodHandles#privateLookupIn(Class, Lookup)}
3886          * from the same module skips the security permission check.
3887          */
3888         void checkSecurityManager(Class<?> refc, MemberName m) {
3889             Objects.requireNonNull(refc);
3890             Objects.requireNonNull(m);
3891 
3892             if (allowedModes == TRUSTED)  return;
3893 
3894             @SuppressWarnings("removal")
3895             SecurityManager smgr = System.getSecurityManager();
3896             if (smgr == null)  return;
3897 
3898             // Step 1:
3899             boolean fullPrivilegeLookup = hasFullPrivilegeAccess();
3900             if (!fullPrivilegeLookup ||
3901                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3902                 ReflectUtil.checkPackageAccess(refc);
3903             }
3904 
3905             // Step 2a:
3906             if (m.isPublic()) return;
3907             if (!fullPrivilegeLookup) {
3908                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
3909             }
3910 
3911             // Step 3:
3912             Class<?> defc = m.getDeclaringClass();
3913             if (!fullPrivilegeLookup && defc != refc) {
3914                 ReflectUtil.checkPackageAccess(defc);
3915             }
3916         }
3917 
3918         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3919             boolean wantStatic = (refKind == REF_invokeStatic);
3920             String message;
3921             if (m.isConstructor())
3922                 message = "expected a method, not a constructor";
3923             else if (!m.isMethod())
3924                 message = "expected a method";
3925             else if (wantStatic != m.isStatic())
3926                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3927             else
3928                 { checkAccess(refKind, refc, m); return; }
3929             throw m.makeAccessException(message, this);
3930         }
3931 
3932         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3933             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3934             String message;
3935             if (wantStatic != m.isStatic())
3936                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3937             else
3938                 { checkAccess(refKind, refc, m); return; }
3939             throw m.makeAccessException(message, this);
3940         }
3941 
3942         private boolean isArrayClone(byte refKind, Class<?> refc, MemberName m) {
3943             return Modifier.isProtected(m.getModifiers()) &&
3944                     refKind == REF_invokeVirtual &&
3945                     m.getDeclaringClass() == Object.class &&
3946                     m.getName().equals("clone") &&
3947                     refc.isArray();
3948         }
3949 
3950         /** Check public/protected/private bits on the symbolic reference class and its member. */
3951         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3952             assert(m.referenceKindIsConsistentWith(refKind) &&
3953                    MethodHandleNatives.refKindIsValid(refKind) &&
3954                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3955             int allowedModes = this.allowedModes;
3956             if (allowedModes == TRUSTED)  return;
3957             int mods = m.getModifiers();
3958             if (isArrayClone(refKind, refc, m)) {
3959                 // The JVM does this hack also.
3960                 // (See ClassVerifier::verify_invoke_instructions
3961                 // and LinkResolver::check_method_accessability.)
3962                 // Because the JVM does not allow separate methods on array types,
3963                 // there is no separate method for int[].clone.
3964                 // All arrays simply inherit Object.clone.
3965                 // But for access checking logic, we make Object.clone
3966                 // (normally protected) appear to be public.
3967                 // Later on, when the DirectMethodHandle is created,
3968                 // its leading argument will be restricted to the
3969                 // requested array type.
3970                 // N.B. The return type is not adjusted, because
3971                 // that is *not* the bytecode behavior.
3972                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3973             }
3974             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3975                 // cannot "new" a protected ctor in a different package
3976                 mods ^= Modifier.PROTECTED;
3977             }
3978             if (Modifier.isFinal(mods) &&
3979                     MethodHandleNatives.refKindIsSetter(refKind))
3980                 throw m.makeAccessException("unexpected set of a final field", this);
3981             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3982             if ((requestedModes & allowedModes) != 0) {
3983                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3984                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3985                     return;
3986             } else {
3987                 // Protected members can also be checked as if they were package-private.
3988                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3989                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3990                     return;
3991             }
3992             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3993         }
3994 
3995         String accessFailedMessage(Class<?> refc, MemberName m) {
3996             Class<?> defc = m.getDeclaringClass();
3997             int mods = m.getModifiers();
3998             // check the class first:
3999             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
4000                                (defc == refc ||
4001                                 Modifier.isPublic(refc.getModifiers())));
4002             if (!classOK && (allowedModes & PACKAGE) != 0) {
4003                 // ignore previous lookup class to check if default package access
4004                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
4005                            (defc == refc ||
4006                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
4007             }
4008             if (!classOK)
4009                 return "class is not public";
4010             if (Modifier.isPublic(mods))
4011                 return "access to public member failed";  // (how?, module not readable?)
4012             if (Modifier.isPrivate(mods))
4013                 return "member is private";
4014             if (Modifier.isProtected(mods))
4015                 return "member is protected";
4016             return "member is private to package";
4017         }
4018 
4019         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
4020             int allowedModes = this.allowedModes;
4021             if (allowedModes == TRUSTED)  return;
4022             if ((lookupModes() & PRIVATE) == 0
4023                 || (specialCaller != lookupClass()
4024                        // ensure non-abstract methods in superinterfaces can be special-invoked
4025                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
4026                 throw new MemberName(specialCaller).
4027                     makeAccessException("no private access for invokespecial", this);
4028         }
4029 
4030         private boolean restrictProtectedReceiver(MemberName method) {
4031             // The accessing class only has the right to use a protected member
4032             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
4033             if (!method.isProtected() || method.isStatic()
4034                 || allowedModes == TRUSTED
4035                 || method.getDeclaringClass() == lookupClass()
4036                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
4037                 return false;
4038             return true;
4039         }
4040         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
4041             assert(!method.isStatic());
4042             // receiver type of mh is too wide; narrow to caller
4043             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
4044                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
4045             }
4046             MethodType rawType = mh.type();
4047             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
4048             MethodType narrowType = rawType.changeParameterType(0, caller);
4049             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
4050             assert(mh.viewAsTypeChecks(narrowType, true));
4051             return mh.copyWith(narrowType, mh.form);
4052         }
4053 
4054         /** Check access and get the requested method. */
4055         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4056             final boolean doRestrict    = true;
4057             final boolean checkSecurity = true;
4058             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
4059         }
4060         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
4061         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4062             final boolean doRestrict    = false;
4063             final boolean checkSecurity = true;
4064             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
4065         }
4066         /** Check access and get the requested method, eliding security manager checks. */
4067         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
4068             final boolean doRestrict    = true;
4069             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4070             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
4071         }
4072         /** Common code for all methods; do not call directly except from immediately above. */
4073         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
4074                                                    boolean checkSecurity,
4075                                                    boolean doRestrict,
4076                                                    Lookup boundCaller) throws IllegalAccessException {
4077             checkMethod(refKind, refc, method);
4078             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4079             if (checkSecurity)
4080                 checkSecurityManager(refc, method);
4081             assert(!method.isMethodHandleInvoke());
4082             if (refKind == REF_invokeSpecial &&
4083                 refc != lookupClass() &&
4084                 !refc.isInterface() && !lookupClass().isInterface() &&
4085                 refc != lookupClass().getSuperclass() &&
4086                 refc.isAssignableFrom(lookupClass())) {
4087                 assert(!method.getName().equals(ConstantDescs.INIT_NAME));  // not this code path
4088 
4089                 // Per JVMS 6.5, desc. of invokespecial instruction:
4090                 // If the method is in a superclass of the LC,
4091                 // and if our original search was above LC.super,
4092                 // repeat the search (symbolic lookup) from LC.super
4093                 // and continue with the direct superclass of that class,
4094                 // and so forth, until a match is found or no further superclasses exist.
4095                 // FIXME: MemberName.resolve should handle this instead.
4096                 Class<?> refcAsSuper = lookupClass();
4097                 MemberName m2;
4098                 do {
4099                     refcAsSuper = refcAsSuper.getSuperclass();
4100                     m2 = new MemberName(refcAsSuper,
4101                                         method.getName(),
4102                                         method.getMethodType(),
4103                                         REF_invokeSpecial);
4104                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull(), allowedModes);
4105                 } while (m2 == null &&         // no method is found yet
4106                          refc != refcAsSuper); // search up to refc
4107                 if (m2 == null)  throw new InternalError(method.toString());
4108                 method = m2;
4109                 refc = refcAsSuper;
4110                 // redo basic checks
4111                 checkMethod(refKind, refc, method);
4112             }
4113             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
4114             MethodHandle mh = dmh;
4115             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
4116             if ((doRestrict && refKind == REF_invokeSpecial) ||
4117                     (MethodHandleNatives.refKindHasReceiver(refKind) &&
4118                             restrictProtectedReceiver(method) &&
4119                             // All arrays simply inherit the protected Object.clone method.
4120                             // The leading argument is already restricted to the requested
4121                             // array type (not the lookup class).
4122                             !isArrayClone(refKind, refc, method))) {
4123                 mh = restrictReceiver(method, dmh, lookupClass());
4124             }
4125             mh = maybeBindCaller(method, mh, boundCaller);
4126             mh = mh.setVarargs(method);
4127             return mh;
4128         }
4129         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
4130                                              throws IllegalAccessException {
4131             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
4132                 return mh;
4133 
4134             // boundCaller must have full privilege access.
4135             // It should have been checked by findBoundCallerLookup. Safe to check this again.
4136             if ((boundCaller.lookupModes() & ORIGINAL) == 0)
4137                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
4138 
4139             assert boundCaller.hasFullPrivilegeAccess();
4140 
4141             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
4142             // Note: caller will apply varargs after this step happens.
4143             return cbmh;
4144         }
4145 
4146         /** Check access and get the requested field. */
4147         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
4148             final boolean checkSecurity = true;
4149             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
4150         }
4151         /** Check access and get the requested field, eliding security manager checks. */
4152         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
4153             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4154             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
4155         }
4156         /** Common code for all fields; do not call directly except from immediately above. */
4157         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
4158                                                   boolean checkSecurity) throws IllegalAccessException {
4159             checkField(refKind, refc, field);
4160             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4161             if (checkSecurity)
4162                 checkSecurityManager(refc, field);
4163             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
4164             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
4165                                     restrictProtectedReceiver(field));
4166             if (doRestrict)
4167                 return restrictReceiver(field, dmh, lookupClass());
4168             return dmh;
4169         }
4170         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
4171                                             Class<?> refc, MemberName getField, MemberName putField)
4172                 throws IllegalAccessException {
4173             final boolean checkSecurity = true;
4174             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
4175         }
4176         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
4177                                                              Class<?> refc, MemberName getField, MemberName putField)
4178                 throws IllegalAccessException {
4179             final boolean checkSecurity = false;
4180             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
4181         }
4182         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
4183                                                   Class<?> refc, MemberName getField, MemberName putField,
4184                                                   boolean checkSecurity) throws IllegalAccessException {
4185             assert getField.isStatic() == putField.isStatic();
4186             assert getField.isGetter() && putField.isSetter();
4187             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
4188             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
4189 
4190             checkField(getRefKind, refc, getField);
4191             if (checkSecurity)
4192                 checkSecurityManager(refc, getField);
4193 
4194             if (!putField.isFinal()) {
4195                 // A VarHandle does not support updates to final fields, any
4196                 // such VarHandle to a final field will be read-only and
4197                 // therefore the following write-based accessibility checks are
4198                 // only required for non-final fields
4199                 checkField(putRefKind, refc, putField);
4200                 if (checkSecurity)
4201                     checkSecurityManager(refc, putField);
4202             }
4203 
4204             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
4205                                   restrictProtectedReceiver(getField));
4206             if (doRestrict) {
4207                 assert !getField.isStatic();
4208                 // receiver type of VarHandle is too wide; narrow to caller
4209                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
4210                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
4211                 }
4212                 refc = lookupClass();
4213             }
4214             return VarHandles.makeFieldHandle(getField, refc,
4215                                               this.allowedModes == TRUSTED && !getField.isTrustedFinalField());
4216         }
4217         /** Check access and get the requested constructor. */
4218         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
4219             final boolean checkSecurity = true;
4220             return getDirectConstructorCommon(refc, ctor, checkSecurity);
4221         }
4222         /** Check access and get the requested constructor, eliding security manager checks. */
4223         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
4224             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
4225             return getDirectConstructorCommon(refc, ctor, checkSecurity);
4226         }
4227         /** Common code for all constructors; do not call directly except from immediately above. */
4228         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
4229                                                   boolean checkSecurity) throws IllegalAccessException {
4230             assert(ctor.isConstructor());
4231             checkAccess(REF_newInvokeSpecial, refc, ctor);
4232             // Optionally check with the security manager; this isn't needed for unreflect* calls.
4233             if (checkSecurity)
4234                 checkSecurityManager(refc, ctor);
4235             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
4236             return DirectMethodHandle.make(ctor).setVarargs(ctor);
4237         }
4238 
4239         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
4240          */
4241         /*non-public*/
4242         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
4243                 throws ReflectiveOperationException {
4244             if (!(type instanceof Class || type instanceof MethodType))
4245                 throw new InternalError("unresolved MemberName");
4246             MemberName member = new MemberName(refKind, defc, name, type);
4247             MethodHandle mh = LOOKASIDE_TABLE.get(member);
4248             if (mh != null) {
4249                 checkSymbolicClass(defc);
4250                 return mh;
4251             }
4252             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
4253                 // Treat MethodHandle.invoke and invokeExact specially.
4254                 mh = findVirtualForMH(member.getName(), member.getMethodType());
4255                 if (mh != null) {
4256                     return mh;
4257                 }
4258             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
4259                 // Treat signature-polymorphic methods on VarHandle specially.
4260                 mh = findVirtualForVH(member.getName(), member.getMethodType());
4261                 if (mh != null) {
4262                     return mh;
4263                 }
4264             }
4265             MemberName resolved = resolveOrFail(refKind, member);
4266             mh = getDirectMethodForConstant(refKind, defc, resolved);
4267             if (mh instanceof DirectMethodHandle dmh
4268                     && canBeCached(refKind, defc, resolved)) {
4269                 MemberName key = mh.internalMemberName();
4270                 if (key != null) {
4271                     key = key.asNormalOriginal();
4272                 }
4273                 if (member.equals(key)) {  // better safe than sorry
4274                     LOOKASIDE_TABLE.put(key, dmh);
4275                 }
4276             }
4277             return mh;
4278         }
4279         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
4280             if (refKind == REF_invokeSpecial) {
4281                 return false;
4282             }
4283             if (!Modifier.isPublic(defc.getModifiers()) ||
4284                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
4285                     !member.isPublic() ||
4286                     member.isCallerSensitive()) {
4287                 return false;
4288             }
4289             ClassLoader loader = defc.getClassLoader();
4290             if (loader != null) {
4291                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
4292                 boolean found = false;
4293                 while (sysl != null) {
4294                     if (loader == sysl) { found = true; break; }
4295                     sysl = sysl.getParent();
4296                 }
4297                 if (!found) {
4298                     return false;
4299                 }
4300             }
4301             try {
4302                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
4303                     new MemberName(refKind, defc, member.getName(), member.getType()));
4304                 if (resolved2 == null) {
4305                     return false;
4306                 }
4307                 checkSecurityManager(defc, resolved2);
4308             } catch (SecurityException ex) {
4309                 return false;
4310             }
4311             return true;
4312         }
4313         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
4314                 throws ReflectiveOperationException {
4315             if (MethodHandleNatives.refKindIsField(refKind)) {
4316                 return getDirectFieldNoSecurityManager(refKind, defc, member);
4317             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
4318                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
4319             } else if (refKind == REF_newInvokeSpecial) {
4320                 return getDirectConstructorNoSecurityManager(defc, member);
4321             }
4322             // oops
4323             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
4324         }
4325 
4326         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
4327     }
4328 
4329     /**
4330      * Produces a method handle constructing arrays of a desired type,
4331      * as if by the {@code anewarray} bytecode.
4332      * The return type of the method handle will be the array type.
4333      * The type of its sole argument will be {@code int}, which specifies the size of the array.
4334      *
4335      * <p> If the returned method handle is invoked with a negative
4336      * array size, a {@code NegativeArraySizeException} will be thrown.
4337      *
4338      * @param arrayClass an array type
4339      * @return a method handle which can create arrays of the given type
4340      * @throws NullPointerException if the argument is {@code null}
4341      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
4342      * @see java.lang.reflect.Array#newInstance(Class, int)
4343      * @jvms 6.5 {@code anewarray} Instruction
4344      * @since 9
4345      */
4346     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
4347         if (!arrayClass.isArray()) {
4348             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
4349         }
4350         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
4351                 bindTo(arrayClass.getComponentType());
4352         return ani.asType(ani.type().changeReturnType(arrayClass));
4353     }
4354 
4355     /**
4356      * Produces a method handle returning the length of an array,
4357      * as if by the {@code arraylength} bytecode.
4358      * The type of the method handle will have {@code int} as return type,
4359      * and its sole argument will be the array type.
4360      *
4361      * <p> If the returned method handle is invoked with a {@code null}
4362      * array reference, a {@code NullPointerException} will be thrown.
4363      *
4364      * @param arrayClass an array type
4365      * @return a method handle which can retrieve the length of an array of the given array type
4366      * @throws NullPointerException if the argument is {@code null}
4367      * @throws IllegalArgumentException if arrayClass is not an array type
4368      * @jvms 6.5 {@code arraylength} Instruction
4369      * @since 9
4370      */
4371     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
4372         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
4373     }
4374 
4375     /**
4376      * Produces a method handle giving read access to elements of an array,
4377      * as if by the {@code aaload} bytecode.
4378      * The type of the method handle will have a return type of the array's
4379      * element type.  Its first argument will be the array type,
4380      * and the second will be {@code int}.
4381      *
4382      * <p> When the returned method handle is invoked,
4383      * the array reference and array index are checked.
4384      * A {@code NullPointerException} will be thrown if the array reference
4385      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4386      * thrown if the index is negative or if it is greater than or equal to
4387      * the length of the array.
4388      *
4389      * @param arrayClass an array type
4390      * @return a method handle which can load values from the given array type
4391      * @throws NullPointerException if the argument is null
4392      * @throws  IllegalArgumentException if arrayClass is not an array type
4393      * @jvms 6.5 {@code aaload} Instruction
4394      */
4395     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
4396         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
4397     }
4398 
4399     /**
4400      * Produces a method handle giving write access to elements of an array,
4401      * as if by the {@code astore} bytecode.
4402      * The type of the method handle will have a void return type.
4403      * Its last argument will be the array's element type.
4404      * The first and second arguments will be the array type and int.
4405      *
4406      * <p> When the returned method handle is invoked,
4407      * the array reference and array index are checked.
4408      * A {@code NullPointerException} will be thrown if the array reference
4409      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4410      * thrown if the index is negative or if it is greater than or equal to
4411      * the length of the array.
4412      *
4413      * @param arrayClass the class of an array
4414      * @return a method handle which can store values into the array type
4415      * @throws NullPointerException if the argument is null
4416      * @throws IllegalArgumentException if arrayClass is not an array type
4417      * @jvms 6.5 {@code aastore} Instruction
4418      */
4419     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
4420         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
4421     }
4422 
4423     /**
4424      * Produces a VarHandle giving access to elements of an array of type
4425      * {@code arrayClass}.  The VarHandle's variable type is the component type
4426      * of {@code arrayClass} and the list of coordinate types is
4427      * {@code (arrayClass, int)}, where the {@code int} coordinate type
4428      * corresponds to an argument that is an index into an array.
4429      * <p>
4430      * Certain access modes of the returned VarHandle are unsupported under
4431      * the following conditions:
4432      * <ul>
4433      * <li>if the component type is anything other than {@code byte},
4434      *     {@code short}, {@code char}, {@code int}, {@code long},
4435      *     {@code float}, or {@code double} then numeric atomic update access
4436      *     modes are unsupported.
4437      * <li>if the component type is anything other than {@code boolean},
4438      *     {@code byte}, {@code short}, {@code char}, {@code int} or
4439      *     {@code long} then bitwise atomic update access modes are
4440      *     unsupported.
4441      * </ul>
4442      * <p>
4443      * If the component type is {@code float} or {@code double} then numeric
4444      * and atomic update access modes compare values using their bitwise
4445      * representation (see {@link Float#floatToRawIntBits} and
4446      * {@link Double#doubleToRawLongBits}, respectively).
4447      *
4448      * <p> When the returned {@code VarHandle} is invoked,
4449      * the array reference and array index are checked.
4450      * A {@code NullPointerException} will be thrown if the array reference
4451      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4452      * thrown if the index is negative or if it is greater than or equal to
4453      * the length of the array.
4454      *
4455      * @apiNote
4456      * Bitwise comparison of {@code float} values or {@code double} values,
4457      * as performed by the numeric and atomic update access modes, differ
4458      * from the primitive {@code ==} operator and the {@link Float#equals}
4459      * and {@link Double#equals} methods, specifically with respect to
4460      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
4461      * Care should be taken when performing a compare and set or a compare
4462      * and exchange operation with such values since the operation may
4463      * unexpectedly fail.
4464      * There are many possible NaN values that are considered to be
4465      * {@code NaN} in Java, although no IEEE 754 floating-point operation
4466      * provided by Java can distinguish between them.  Operation failure can
4467      * occur if the expected or witness value is a NaN value and it is
4468      * transformed (perhaps in a platform specific manner) into another NaN
4469      * value, and thus has a different bitwise representation (see
4470      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
4471      * details).
4472      * The values {@code -0.0} and {@code +0.0} have different bitwise
4473      * representations but are considered equal when using the primitive
4474      * {@code ==} operator.  Operation failure can occur if, for example, a
4475      * numeric algorithm computes an expected value to be say {@code -0.0}
4476      * and previously computed the witness value to be say {@code +0.0}.
4477      * @param arrayClass the class of an array, of type {@code T[]}
4478      * @return a VarHandle giving access to elements of an array
4479      * @throws NullPointerException if the arrayClass is null
4480      * @throws IllegalArgumentException if arrayClass is not an array type
4481      * @since 9
4482      */
4483     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
4484         return VarHandles.makeArrayElementHandle(arrayClass);
4485     }
4486 
4487     /**
4488      * Produces a VarHandle giving access to elements of a {@code byte[]} array
4489      * viewed as if it were a different primitive array type, such as
4490      * {@code int[]} or {@code long[]}.
4491      * The VarHandle's variable type is the component type of
4492      * {@code viewArrayClass} and the list of coordinate types is
4493      * {@code (byte[], int)}, where the {@code int} coordinate type
4494      * corresponds to an argument that is an index into a {@code byte[]} array.
4495      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
4496      * array, composing bytes to or from a value of the component type of
4497      * {@code viewArrayClass} according to the given endianness.
4498      * <p>
4499      * The supported component types (variables types) are {@code short},
4500      * {@code char}, {@code int}, {@code long}, {@code float} and
4501      * {@code double}.
4502      * <p>
4503      * Access of bytes at a given index will result in an
4504      * {@code ArrayIndexOutOfBoundsException} if the index is less than {@code 0}
4505      * or greater than the {@code byte[]} array length minus the size (in bytes)
4506      * of {@code T}.
4507      * <p>
4508      * Only plain {@linkplain VarHandle.AccessMode#GET get} and {@linkplain VarHandle.AccessMode#SET set}
4509      * access modes are supported by the returned var handle. For all other access modes, an
4510      * {@link UnsupportedOperationException} will be thrown.
4511      *
4512      * @apiNote if access modes other than plain access are required, clients should
4513      * consider using off-heap memory through
4514      * {@linkplain java.nio.ByteBuffer#allocateDirect(int) direct byte buffers} or
4515      * off-heap {@linkplain java.lang.foreign.MemorySegment memory segments},
4516      * or memory segments backed by a
4517      * {@linkplain java.lang.foreign.MemorySegment#ofArray(long[]) {@code long[]}},
4518      * for which stronger alignment guarantees can be made.
4519      *
4520      * @param viewArrayClass the view array class, with a component type of
4521      * type {@code T}
4522      * @param byteOrder the endianness of the view array elements, as
4523      * stored in the underlying {@code byte} array
4524      * @return a VarHandle giving access to elements of a {@code byte[]} array
4525      * viewed as if elements corresponding to the components type of the view
4526      * array class
4527      * @throws NullPointerException if viewArrayClass or byteOrder is null
4528      * @throws IllegalArgumentException if viewArrayClass is not an array type
4529      * @throws UnsupportedOperationException if the component type of
4530      * viewArrayClass is not supported as a variable type
4531      * @since 9
4532      */
4533     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
4534                                      ByteOrder byteOrder) throws IllegalArgumentException {
4535         Objects.requireNonNull(byteOrder);
4536         return VarHandles.byteArrayViewHandle(viewArrayClass,
4537                                               byteOrder == ByteOrder.BIG_ENDIAN);
4538     }
4539 
4540     /**
4541      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
4542      * viewed as if it were an array of elements of a different primitive
4543      * component type to that of {@code byte}, such as {@code int[]} or
4544      * {@code long[]}.
4545      * The VarHandle's variable type is the component type of
4546      * {@code viewArrayClass} and the list of coordinate types is
4547      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
4548      * corresponds to an argument that is an index into a {@code byte[]} array.
4549      * The returned VarHandle accesses bytes at an index in a
4550      * {@code ByteBuffer}, composing bytes to or from a value of the component
4551      * type of {@code viewArrayClass} according to the given endianness.
4552      * <p>
4553      * The supported component types (variables types) are {@code short},
4554      * {@code char}, {@code int}, {@code long}, {@code float} and
4555      * {@code double}.
4556      * <p>
4557      * Access will result in a {@code ReadOnlyBufferException} for anything
4558      * other than the read access modes if the {@code ByteBuffer} is read-only.
4559      * <p>
4560      * Access of bytes at a given index will result in an
4561      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4562      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
4563      * {@code T}.
4564      * <p>
4565      * For heap byte buffers, access is always unaligned. As a result, only the plain
4566      * {@linkplain VarHandle.AccessMode#GET get}
4567      * and {@linkplain VarHandle.AccessMode#SET set} access modes are supported by the
4568      * returned var handle. For all other access modes, an {@link IllegalStateException}
4569      * will be thrown.
4570      * <p>
4571      * For direct buffers only, access of bytes at an index may be aligned or misaligned for {@code T},
4572      * with respect to the underlying memory address, {@code A} say, associated
4573      * with the {@code ByteBuffer} and index.
4574      * If access is misaligned then access for anything other than the
4575      * {@code get} and {@code set} access modes will result in an
4576      * {@code IllegalStateException}.  In such cases atomic access is only
4577      * guaranteed with respect to the largest power of two that divides the GCD
4578      * of {@code A} and the size (in bytes) of {@code T}.
4579      * If access is aligned then following access modes are supported and are
4580      * guaranteed to support atomic access:
4581      * <ul>
4582      * <li>read write access modes for all {@code T}, with the exception of
4583      *     access modes {@code get} and {@code set} for {@code long} and
4584      *     {@code double} on 32-bit platforms.
4585      * <li>atomic update access modes for {@code int}, {@code long},
4586      *     {@code float} or {@code double}.
4587      *     (Future major platform releases of the JDK may support additional
4588      *     types for certain currently unsupported access modes.)
4589      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4590      *     (Future major platform releases of the JDK may support additional
4591      *     numeric types for certain currently unsupported access modes.)
4592      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4593      *     (Future major platform releases of the JDK may support additional
4594      *     numeric types for certain currently unsupported access modes.)
4595      * </ul>
4596      * <p>
4597      * Misaligned access, and therefore atomicity guarantees, may be determined
4598      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
4599      * {@code index}, {@code T} and its corresponding boxed type,
4600      * {@code T_BOX}, as follows:
4601      * <pre>{@code
4602      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4603      * ByteBuffer bb = ...
4604      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
4605      * boolean isMisaligned = misalignedAtIndex != 0;
4606      * }</pre>
4607      * <p>
4608      * If the variable type is {@code float} or {@code double} then atomic
4609      * update access modes compare values using their bitwise representation
4610      * (see {@link Float#floatToRawIntBits} and
4611      * {@link Double#doubleToRawLongBits}, respectively).
4612      * @param viewArrayClass the view array class, with a component type of
4613      * type {@code T}
4614      * @param byteOrder the endianness of the view array elements, as
4615      * stored in the underlying {@code ByteBuffer} (Note this overrides the
4616      * endianness of a {@code ByteBuffer})
4617      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
4618      * viewed as if elements corresponding to the components type of the view
4619      * array class
4620      * @throws NullPointerException if viewArrayClass or byteOrder is null
4621      * @throws IllegalArgumentException if viewArrayClass is not an array type
4622      * @throws UnsupportedOperationException if the component type of
4623      * viewArrayClass is not supported as a variable type
4624      * @since 9
4625      */
4626     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
4627                                       ByteOrder byteOrder) throws IllegalArgumentException {
4628         Objects.requireNonNull(byteOrder);
4629         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
4630                                                    byteOrder == ByteOrder.BIG_ENDIAN);
4631     }
4632 
4633 
4634     //--- method handle invocation (reflective style)
4635 
4636     /**
4637      * Produces a method handle which will invoke any method handle of the
4638      * given {@code type}, with a given number of trailing arguments replaced by
4639      * a single trailing {@code Object[]} array.
4640      * The resulting invoker will be a method handle with the following
4641      * arguments:
4642      * <ul>
4643      * <li>a single {@code MethodHandle} target
4644      * <li>zero or more leading values (counted by {@code leadingArgCount})
4645      * <li>an {@code Object[]} array containing trailing arguments
4646      * </ul>
4647      * <p>
4648      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
4649      * the indicated {@code type}.
4650      * That is, if the target is exactly of the given {@code type}, it will behave
4651      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
4652      * is used to convert the target to the required {@code type}.
4653      * <p>
4654      * The type of the returned invoker will not be the given {@code type}, but rather
4655      * will have all parameters except the first {@code leadingArgCount}
4656      * replaced by a single array of type {@code Object[]}, which will be
4657      * the final parameter.
4658      * <p>
4659      * Before invoking its target, the invoker will spread the final array, apply
4660      * reference casts as necessary, and unbox and widen primitive arguments.
4661      * If, when the invoker is called, the supplied array argument does
4662      * not have the correct number of elements, the invoker will throw
4663      * an {@link IllegalArgumentException} instead of invoking the target.
4664      * <p>
4665      * This method is equivalent to the following code (though it may be more efficient):
4666      * {@snippet lang="java" :
4667 MethodHandle invoker = MethodHandles.invoker(type);
4668 int spreadArgCount = type.parameterCount() - leadingArgCount;
4669 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
4670 return invoker;
4671      * }
4672      * This method throws no reflective or security exceptions.
4673      * @param type the desired target type
4674      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
4675      * @return a method handle suitable for invoking any method handle of the given type
4676      * @throws NullPointerException if {@code type} is null
4677      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
4678      *                  the range from 0 to {@code type.parameterCount()} inclusive,
4679      *                  or if the resulting method handle's type would have
4680      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4681      */
4682     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
4683         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
4684             throw newIllegalArgumentException("bad argument count", leadingArgCount);
4685         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
4686         return type.invokers().spreadInvoker(leadingArgCount);
4687     }
4688 
4689     /**
4690      * Produces a special <em>invoker method handle</em> which can be used to
4691      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
4692      * The resulting invoker will have a type which is
4693      * exactly equal to the desired type, except that it will accept
4694      * an additional leading argument of type {@code MethodHandle}.
4695      * <p>
4696      * This method is equivalent to the following code (though it may be more efficient):
4697      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
4698      *
4699      * <p style="font-size:smaller;">
4700      * <em>Discussion:</em>
4701      * Invoker method handles can be useful when working with variable method handles
4702      * of unknown types.
4703      * For example, to emulate an {@code invokeExact} call to a variable method
4704      * handle {@code M}, extract its type {@code T},
4705      * look up the invoker method {@code X} for {@code T},
4706      * and call the invoker method, as {@code X.invoke(T, A...)}.
4707      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
4708      * is unknown.)
4709      * If spreading, collecting, or other argument transformations are required,
4710      * they can be applied once to the invoker {@code X} and reused on many {@code M}
4711      * method handle values, as long as they are compatible with the type of {@code X}.
4712      * <p style="font-size:smaller;">
4713      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4714      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4715      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4716      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4717      * <p>
4718      * This method throws no reflective or security exceptions.
4719      * @param type the desired target type
4720      * @return a method handle suitable for invoking any method handle of the given type
4721      * @throws IllegalArgumentException if the resulting method handle's type would have
4722      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4723      */
4724     public static MethodHandle exactInvoker(MethodType type) {
4725         return type.invokers().exactInvoker();
4726     }
4727 
4728     /**
4729      * Produces a special <em>invoker method handle</em> which can be used to
4730      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
4731      * The resulting invoker will have a type which is
4732      * exactly equal to the desired type, except that it will accept
4733      * an additional leading argument of type {@code MethodHandle}.
4734      * <p>
4735      * Before invoking its target, if the target differs from the expected type,
4736      * the invoker will apply reference casts as
4737      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
4738      * Similarly, the return value will be converted as necessary.
4739      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
4740      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
4741      * <p>
4742      * This method is equivalent to the following code (though it may be more efficient):
4743      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
4744      * <p style="font-size:smaller;">
4745      * <em>Discussion:</em>
4746      * A {@linkplain MethodType#genericMethodType general method type} is one which
4747      * mentions only {@code Object} arguments and return values.
4748      * An invoker for such a type is capable of calling any method handle
4749      * of the same arity as the general type.
4750      * <p style="font-size:smaller;">
4751      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4752      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4753      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4754      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4755      * <p>
4756      * This method throws no reflective or security exceptions.
4757      * @param type the desired target type
4758      * @return a method handle suitable for invoking any method handle convertible to the given type
4759      * @throws IllegalArgumentException if the resulting method handle's type would have
4760      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4761      */
4762     public static MethodHandle invoker(MethodType type) {
4763         return type.invokers().genericInvoker();
4764     }
4765 
4766     /**
4767      * Produces a special <em>invoker method handle</em> which can be used to
4768      * invoke a signature-polymorphic access mode method on any VarHandle whose
4769      * associated access mode type is compatible with the given type.
4770      * The resulting invoker will have a type which is exactly equal to the
4771      * desired given type, except that it will accept an additional leading
4772      * argument of type {@code VarHandle}.
4773      *
4774      * @param accessMode the VarHandle access mode
4775      * @param type the desired target type
4776      * @return a method handle suitable for invoking an access mode method of
4777      *         any VarHandle whose access mode type is of the given type.
4778      * @since 9
4779      */
4780     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4781         return type.invokers().varHandleMethodExactInvoker(accessMode);
4782     }
4783 
4784     /**
4785      * Produces a special <em>invoker method handle</em> which can be used to
4786      * invoke a signature-polymorphic access mode method on any VarHandle whose
4787      * associated access mode type is compatible with the given type.
4788      * The resulting invoker will have a type which is exactly equal to the
4789      * desired given type, except that it will accept an additional leading
4790      * argument of type {@code VarHandle}.
4791      * <p>
4792      * Before invoking its target, if the access mode type differs from the
4793      * desired given type, the invoker will apply reference casts as necessary
4794      * and box, unbox, or widen primitive values, as if by
4795      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4796      * converted as necessary.
4797      * <p>
4798      * This method is equivalent to the following code (though it may be more
4799      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4800      *
4801      * @param accessMode the VarHandle access mode
4802      * @param type the desired target type
4803      * @return a method handle suitable for invoking an access mode method of
4804      *         any VarHandle whose access mode type is convertible to the given
4805      *         type.
4806      * @since 9
4807      */
4808     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4809         return type.invokers().varHandleMethodInvoker(accessMode);
4810     }
4811 
4812     /*non-public*/
4813     static MethodHandle basicInvoker(MethodType type) {
4814         return type.invokers().basicInvoker();
4815     }
4816 
4817      //--- method handle modification (creation from other method handles)
4818 
4819     /**
4820      * Produces a method handle which adapts the type of the
4821      * given method handle to a new type by pairwise argument and return type conversion.
4822      * The original type and new type must have the same number of arguments.
4823      * The resulting method handle is guaranteed to report a type
4824      * which is equal to the desired new type.
4825      * <p>
4826      * If the original type and new type are equal, returns target.
4827      * <p>
4828      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4829      * and some additional conversions are also applied if those conversions fail.
4830      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4831      * if possible, before or instead of any conversions done by {@code asType}:
4832      * <ul>
4833      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4834      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4835      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4836      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4837      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4838      *     (This treatment follows the usage of the bytecode verifier.)
4839      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4840      *     <em>T0</em> is converted to byte via Java casting conversion (JLS {@jls 5.5}),
4841      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4842      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4843      *     then a Java casting conversion (JLS {@jls 5.5}) is applied.
4844      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4845      *     widening and/or narrowing.)
4846      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4847      *     conversion will be applied at runtime, possibly followed
4848      *     by a Java casting conversion (JLS {@jls 5.5}) on the primitive value,
4849      *     possibly followed by a conversion from byte to boolean by testing
4850      *     the low-order bit.
4851      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4852      *     and if the reference is null at runtime, a zero value is introduced.
4853      * </ul>
4854      * @param target the method handle to invoke after arguments are retyped
4855      * @param newType the expected type of the new method handle
4856      * @return a method handle which delegates to the target after performing
4857      *           any necessary argument conversions, and arranges for any
4858      *           necessary return value conversions
4859      * @throws NullPointerException if either argument is null
4860      * @throws WrongMethodTypeException if the conversion cannot be made
4861      * @see MethodHandle#asType
4862      */
4863     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4864         explicitCastArgumentsChecks(target, newType);
4865         // use the asTypeCache when possible:
4866         MethodType oldType = target.type();
4867         if (oldType == newType)  return target;
4868         if (oldType.explicitCastEquivalentToAsType(newType)) {
4869             return target.asFixedArity().asType(newType);
4870         }
4871         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4872     }
4873 
4874     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4875         if (target.type().parameterCount() != newType.parameterCount()) {
4876             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4877         }
4878     }
4879 
4880     /**
4881      * Produces a method handle which adapts the calling sequence of the
4882      * given method handle to a new type, by reordering the arguments.
4883      * The resulting method handle is guaranteed to report a type
4884      * which is equal to the desired new type.
4885      * <p>
4886      * The given array controls the reordering.
4887      * Call {@code #I} the number of incoming parameters (the value
4888      * {@code newType.parameterCount()}, and call {@code #O} the number
4889      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4890      * Then the length of the reordering array must be {@code #O},
4891      * and each element must be a non-negative number less than {@code #I}.
4892      * For every {@code N} less than {@code #O}, the {@code N}-th
4893      * outgoing argument will be taken from the {@code I}-th incoming
4894      * argument, where {@code I} is {@code reorder[N]}.
4895      * <p>
4896      * No argument or return value conversions are applied.
4897      * The type of each incoming argument, as determined by {@code newType},
4898      * must be identical to the type of the corresponding outgoing parameter
4899      * or parameters in the target method handle.
4900      * The return type of {@code newType} must be identical to the return
4901      * type of the original target.
4902      * <p>
4903      * The reordering array need not specify an actual permutation.
4904      * An incoming argument will be duplicated if its index appears
4905      * more than once in the array, and an incoming argument will be dropped
4906      * if its index does not appear in the array.
4907      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4908      * incoming arguments which are not mentioned in the reordering array
4909      * may be of any type, as determined only by {@code newType}.
4910      * {@snippet lang="java" :
4911 import static java.lang.invoke.MethodHandles.*;
4912 import static java.lang.invoke.MethodType.*;
4913 ...
4914 MethodType intfn1 = methodType(int.class, int.class);
4915 MethodType intfn2 = methodType(int.class, int.class, int.class);
4916 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4917 assert(sub.type().equals(intfn2));
4918 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4919 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4920 assert((int)rsub.invokeExact(1, 100) == 99);
4921 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4922 assert(add.type().equals(intfn2));
4923 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4924 assert(twice.type().equals(intfn1));
4925 assert((int)twice.invokeExact(21) == 42);
4926      * }
4927      * <p>
4928      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4929      * variable-arity method handle}, even if the original target method handle was.
4930      * @param target the method handle to invoke after arguments are reordered
4931      * @param newType the expected type of the new method handle
4932      * @param reorder an index array which controls the reordering
4933      * @return a method handle which delegates to the target after it
4934      *           drops unused arguments and moves and/or duplicates the other arguments
4935      * @throws NullPointerException if any argument is null
4936      * @throws IllegalArgumentException if the index array length is not equal to
4937      *                  the arity of the target, or if any index array element
4938      *                  not a valid index for a parameter of {@code newType},
4939      *                  or if two corresponding parameter types in
4940      *                  {@code target.type()} and {@code newType} are not identical,
4941      */
4942     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4943         reorder = reorder.clone();  // get a private copy
4944         MethodType oldType = target.type();
4945         permuteArgumentChecks(reorder, newType, oldType);
4946         // first detect dropped arguments and handle them separately
4947         int[] originalReorder = reorder;
4948         BoundMethodHandle result = target.rebind();
4949         LambdaForm form = result.form;
4950         int newArity = newType.parameterCount();
4951         // Normalize the reordering into a real permutation,
4952         // by removing duplicates and adding dropped elements.
4953         // This somewhat improves lambda form caching, as well
4954         // as simplifying the transform by breaking it up into steps.
4955         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4956             if (ddIdx > 0) {
4957                 // We found a duplicated entry at reorder[ddIdx].
4958                 // Example:  (x,y,z)->asList(x,y,z)
4959                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4960                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4961                 // The starred element corresponds to the argument
4962                 // deleted by the dupArgumentForm transform.
4963                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4964                 boolean killFirst = false;
4965                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4966                     // Set killFirst if the dup is larger than an intervening position.
4967                     // This will remove at least one inversion from the permutation.
4968                     if (dupVal > val) killFirst = true;
4969                 }
4970                 if (!killFirst) {
4971                     srcPos = dstPos;
4972                     dstPos = ddIdx;
4973                 }
4974                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4975                 assert (reorder[srcPos] == reorder[dstPos]);
4976                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4977                 // contract the reordering by removing the element at dstPos
4978                 int tailPos = dstPos + 1;
4979                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4980                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4981             } else {
4982                 int dropVal = ~ddIdx, insPos = 0;
4983                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4984                     // Find first element of reorder larger than dropVal.
4985                     // This is where we will insert the dropVal.
4986                     insPos += 1;
4987                 }
4988                 Class<?> ptype = newType.parameterType(dropVal);
4989                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4990                 oldType = oldType.insertParameterTypes(insPos, ptype);
4991                 // expand the reordering by inserting an element at insPos
4992                 int tailPos = insPos + 1;
4993                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4994                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4995                 reorder[insPos] = dropVal;
4996             }
4997             assert (permuteArgumentChecks(reorder, newType, oldType));
4998         }
4999         assert (reorder.length == newArity);  // a perfect permutation
5000         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
5001         form = form.editor().permuteArgumentsForm(1, reorder);
5002         if (newType == result.type() && form == result.internalForm())
5003             return result;
5004         return result.copyWith(newType, form);
5005     }
5006 
5007     /**
5008      * Return an indication of any duplicate or omission in reorder.
5009      * If the reorder contains a duplicate entry, return the index of the second occurrence.
5010      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
5011      * Otherwise, return zero.
5012      * If an element not in [0..newArity-1] is encountered, return reorder.length.
5013      */
5014     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
5015         final int BIT_LIMIT = 63;  // max number of bits in bit mask
5016         if (newArity < BIT_LIMIT) {
5017             long mask = 0;
5018             for (int i = 0; i < reorder.length; i++) {
5019                 int arg = reorder[i];
5020                 if (arg >= newArity) {
5021                     return reorder.length;
5022                 }
5023                 long bit = 1L << arg;
5024                 if ((mask & bit) != 0) {
5025                     return i;  // >0 indicates a dup
5026                 }
5027                 mask |= bit;
5028             }
5029             if (mask == (1L << newArity) - 1) {
5030                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
5031                 return 0;
5032             }
5033             // find first zero
5034             long zeroBit = Long.lowestOneBit(~mask);
5035             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
5036             assert(zeroPos <= newArity);
5037             if (zeroPos == newArity) {
5038                 return 0;
5039             }
5040             return ~zeroPos;
5041         } else {
5042             // same algorithm, different bit set
5043             BitSet mask = new BitSet(newArity);
5044             for (int i = 0; i < reorder.length; i++) {
5045                 int arg = reorder[i];
5046                 if (arg >= newArity) {
5047                     return reorder.length;
5048                 }
5049                 if (mask.get(arg)) {
5050                     return i;  // >0 indicates a dup
5051                 }
5052                 mask.set(arg);
5053             }
5054             int zeroPos = mask.nextClearBit(0);
5055             assert(zeroPos <= newArity);
5056             if (zeroPos == newArity) {
5057                 return 0;
5058             }
5059             return ~zeroPos;
5060         }
5061     }
5062 
5063     static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
5064         if (newType.returnType() != oldType.returnType())
5065             throw newIllegalArgumentException("return types do not match",
5066                     oldType, newType);
5067         if (reorder.length != oldType.parameterCount())
5068             throw newIllegalArgumentException("old type parameter count and reorder array length do not match",
5069                     oldType, Arrays.toString(reorder));
5070 
5071         int limit = newType.parameterCount();
5072         for (int j = 0; j < reorder.length; j++) {
5073             int i = reorder[j];
5074             if (i < 0 || i >= limit) {
5075                 throw newIllegalArgumentException("index is out of bounds for new type",
5076                         i, newType);
5077             }
5078             Class<?> src = newType.parameterType(i);
5079             Class<?> dst = oldType.parameterType(j);
5080             if (src != dst)
5081                 throw newIllegalArgumentException("parameter types do not match after reorder",
5082                         oldType, newType);
5083         }
5084         return true;
5085     }
5086 
5087     /**
5088      * Produces a method handle of the requested return type which returns the given
5089      * constant value every time it is invoked.
5090      * <p>
5091      * Before the method handle is returned, the passed-in value is converted to the requested type.
5092      * If the requested type is primitive, widening primitive conversions are attempted,
5093      * else reference conversions are attempted.
5094      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
5095      * @param type the return type of the desired method handle
5096      * @param value the value to return
5097      * @return a method handle of the given return type and no arguments, which always returns the given value
5098      * @throws NullPointerException if the {@code type} argument is null
5099      * @throws ClassCastException if the value cannot be converted to the required return type
5100      * @throws IllegalArgumentException if the given type is {@code void.class}
5101      */
5102     public static MethodHandle constant(Class<?> type, Object value) {
5103         if (type.isPrimitive()) {
5104             if (type == void.class)
5105                 throw newIllegalArgumentException("void type");
5106             Wrapper w = Wrapper.forPrimitiveType(type);
5107             value = w.convert(value, type);
5108             if (w.zero().equals(value))
5109                 return zero(w, type);
5110             return insertArguments(identity(type), 0, value);
5111         } else {
5112             if (value == null)
5113                 return zero(Wrapper.OBJECT, type);
5114             return identity(type).bindTo(value);
5115         }
5116     }
5117 
5118     /**
5119      * Produces a method handle which returns its sole argument when invoked.
5120      * @param type the type of the sole parameter and return value of the desired method handle
5121      * @return a unary method handle which accepts and returns the given type
5122      * @throws NullPointerException if the argument is null
5123      * @throws IllegalArgumentException if the given type is {@code void.class}
5124      */
5125     public static MethodHandle identity(Class<?> type) {
5126         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
5127         int pos = btw.ordinal();
5128         MethodHandle ident = IDENTITY_MHS[pos];
5129         if (ident == null) {
5130             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
5131         }
5132         if (ident.type().returnType() == type)
5133             return ident;
5134         // something like identity(Foo.class); do not bother to intern these
5135         assert (btw == Wrapper.OBJECT);
5136         return makeIdentity(type);
5137     }
5138 
5139     /**
5140      * Produces a constant method handle of the requested return type which
5141      * returns the default value for that type every time it is invoked.
5142      * The resulting constant method handle will have no side effects.
5143      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
5144      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
5145      * since {@code explicitCastArguments} converts {@code null} to default values.
5146      * @param type the expected return type of the desired method handle
5147      * @return a constant method handle that takes no arguments
5148      *         and returns the default value of the given type (or void, if the type is void)
5149      * @throws NullPointerException if the argument is null
5150      * @see MethodHandles#constant
5151      * @see MethodHandles#empty
5152      * @see MethodHandles#explicitCastArguments
5153      * @since 9
5154      */
5155     public static MethodHandle zero(Class<?> type) {
5156         Objects.requireNonNull(type);
5157         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
5158     }
5159 
5160     private static MethodHandle identityOrVoid(Class<?> type) {
5161         return type == void.class ? zero(type) : identity(type);
5162     }
5163 
5164     /**
5165      * Produces a method handle of the requested type which ignores any arguments, does nothing,
5166      * and returns a suitable default depending on the return type.
5167      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
5168      * <p>The returned method handle is equivalent to
5169      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
5170      *
5171      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
5172      * {@code guardWithTest(pred, target, empty(target.type())}.
5173      * @param type the type of the desired method handle
5174      * @return a constant method handle of the given type, which returns a default value of the given return type
5175      * @throws NullPointerException if the argument is null
5176      * @see MethodHandles#zero
5177      * @see MethodHandles#constant
5178      * @since 9
5179      */
5180     public static  MethodHandle empty(MethodType type) {
5181         Objects.requireNonNull(type);
5182         return dropArgumentsTrusted(zero(type.returnType()), 0, type.ptypes());
5183     }
5184 
5185     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
5186     private static MethodHandle makeIdentity(Class<?> ptype) {
5187         MethodType mtype = methodType(ptype, ptype);
5188         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
5189         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
5190     }
5191 
5192     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
5193         int pos = btw.ordinal();
5194         MethodHandle zero = ZERO_MHS[pos];
5195         if (zero == null) {
5196             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
5197         }
5198         if (zero.type().returnType() == rtype)
5199             return zero;
5200         assert(btw == Wrapper.OBJECT);
5201         return makeZero(rtype);
5202     }
5203     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
5204     private static MethodHandle makeZero(Class<?> rtype) {
5205         MethodType mtype = methodType(rtype);
5206         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
5207         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
5208     }
5209 
5210     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
5211         // Simulate a CAS, to avoid racy duplication of results.
5212         MethodHandle prev = cache[pos];
5213         if (prev != null) return prev;
5214         return cache[pos] = value;
5215     }
5216 
5217     /**
5218      * Provides a target method handle with one or more <em>bound arguments</em>
5219      * in advance of the method handle's invocation.
5220      * The formal parameters to the target corresponding to the bound
5221      * arguments are called <em>bound parameters</em>.
5222      * Returns a new method handle which saves away the bound arguments.
5223      * When it is invoked, it receives arguments for any non-bound parameters,
5224      * binds the saved arguments to their corresponding parameters,
5225      * and calls the original target.
5226      * <p>
5227      * The type of the new method handle will drop the types for the bound
5228      * parameters from the original target type, since the new method handle
5229      * will no longer require those arguments to be supplied by its callers.
5230      * <p>
5231      * Each given argument object must match the corresponding bound parameter type.
5232      * If a bound parameter type is a primitive, the argument object
5233      * must be a wrapper, and will be unboxed to produce the primitive value.
5234      * <p>
5235      * The {@code pos} argument selects which parameters are to be bound.
5236      * It may range between zero and <i>N-L</i> (inclusively),
5237      * where <i>N</i> is the arity of the target method handle
5238      * and <i>L</i> is the length of the values array.
5239      * <p>
5240      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5241      * variable-arity method handle}, even if the original target method handle was.
5242      * @param target the method handle to invoke after the argument is inserted
5243      * @param pos where to insert the argument (zero for the first)
5244      * @param values the series of arguments to insert
5245      * @return a method handle which inserts an additional argument,
5246      *         before calling the original method handle
5247      * @throws NullPointerException if the target or the {@code values} array is null
5248      * @throws IllegalArgumentException if {@code pos} is less than {@code 0} or greater than
5249      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
5250      *         is the length of the values array.
5251      * @throws ClassCastException if an argument does not match the corresponding bound parameter
5252      *         type.
5253      * @see MethodHandle#bindTo
5254      */
5255     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
5256         int insCount = values.length;
5257         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
5258         if (insCount == 0)  return target;
5259         BoundMethodHandle result = target.rebind();
5260         for (int i = 0; i < insCount; i++) {
5261             Object value = values[i];
5262             Class<?> ptype = ptypes[pos+i];
5263             if (ptype.isPrimitive()) {
5264                 result = insertArgumentPrimitive(result, pos, ptype, value);
5265             } else {
5266                 value = ptype.cast(value);  // throw CCE if needed
5267                 result = result.bindArgumentL(pos, value);
5268             }
5269         }
5270         return result;
5271     }
5272 
5273     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
5274                                                              Class<?> ptype, Object value) {
5275         Wrapper w = Wrapper.forPrimitiveType(ptype);
5276         // perform unboxing and/or primitive conversion
5277         value = w.convert(value, ptype);
5278         return switch (w) {
5279             case INT    -> result.bindArgumentI(pos, (int) value);
5280             case LONG   -> result.bindArgumentJ(pos, (long) value);
5281             case FLOAT  -> result.bindArgumentF(pos, (float) value);
5282             case DOUBLE -> result.bindArgumentD(pos, (double) value);
5283             default -> result.bindArgumentI(pos, ValueConversions.widenSubword(value));
5284         };
5285     }
5286 
5287     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
5288         MethodType oldType = target.type();
5289         int outargs = oldType.parameterCount();
5290         int inargs  = outargs - insCount;
5291         if (inargs < 0)
5292             throw newIllegalArgumentException("too many values to insert");
5293         if (pos < 0 || pos > inargs)
5294             throw newIllegalArgumentException("no argument type to append");
5295         return oldType.ptypes();
5296     }
5297 
5298     /**
5299      * Produces a method handle which will discard some dummy arguments
5300      * before calling some other specified <i>target</i> method handle.
5301      * The type of the new method handle will be the same as the target's type,
5302      * except it will also include the dummy argument types,
5303      * at some given position.
5304      * <p>
5305      * The {@code pos} argument may range between zero and <i>N</i>,
5306      * where <i>N</i> is the arity of the target.
5307      * If {@code pos} is zero, the dummy arguments will precede
5308      * the target's real arguments; if {@code pos} is <i>N</i>
5309      * they will come after.
5310      * <p>
5311      * <b>Example:</b>
5312      * {@snippet lang="java" :
5313 import static java.lang.invoke.MethodHandles.*;
5314 import static java.lang.invoke.MethodType.*;
5315 ...
5316 MethodHandle cat = lookup().findVirtual(String.class,
5317   "concat", methodType(String.class, String.class));
5318 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5319 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
5320 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
5321 assertEquals(bigType, d0.type());
5322 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
5323      * }
5324      * <p>
5325      * This method is also equivalent to the following code:
5326      * <blockquote><pre>
5327      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
5328      * </pre></blockquote>
5329      * @param target the method handle to invoke after the arguments are dropped
5330      * @param pos position of first argument to drop (zero for the leftmost)
5331      * @param valueTypes the type(s) of the argument(s) to drop
5332      * @return a method handle which drops arguments of the given types,
5333      *         before calling the original method handle
5334      * @throws NullPointerException if the target is null,
5335      *                              or if the {@code valueTypes} list or any of its elements is null
5336      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5337      *                  or if {@code pos} is negative or greater than the arity of the target,
5338      *                  or if the new method handle's type would have too many parameters
5339      */
5340     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
5341         return dropArgumentsTrusted(target, pos, valueTypes.toArray(new Class<?>[0]).clone());
5342     }
5343 
5344     static MethodHandle dropArgumentsTrusted(MethodHandle target, int pos, Class<?>[] valueTypes) {
5345         MethodType oldType = target.type();  // get NPE
5346         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
5347         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
5348         if (dropped == 0)  return target;
5349         BoundMethodHandle result = target.rebind();
5350         LambdaForm lform = result.form;
5351         int insertFormArg = 1 + pos;
5352         for (Class<?> ptype : valueTypes) {
5353             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
5354         }
5355         result = result.copyWith(newType, lform);
5356         return result;
5357     }
5358 
5359     private static int dropArgumentChecks(MethodType oldType, int pos, Class<?>[] valueTypes) {
5360         int dropped = valueTypes.length;
5361         MethodType.checkSlotCount(dropped);
5362         int outargs = oldType.parameterCount();
5363         int inargs  = outargs + dropped;
5364         if (pos < 0 || pos > outargs)
5365             throw newIllegalArgumentException("no argument type to remove"
5366                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
5367                     );
5368         return dropped;
5369     }
5370 
5371     /**
5372      * Produces a method handle which will discard some dummy arguments
5373      * before calling some other specified <i>target</i> method handle.
5374      * The type of the new method handle will be the same as the target's type,
5375      * except it will also include the dummy argument types,
5376      * at some given position.
5377      * <p>
5378      * The {@code pos} argument may range between zero and <i>N</i>,
5379      * where <i>N</i> is the arity of the target.
5380      * If {@code pos} is zero, the dummy arguments will precede
5381      * the target's real arguments; if {@code pos} is <i>N</i>
5382      * they will come after.
5383      * @apiNote
5384      * {@snippet lang="java" :
5385 import static java.lang.invoke.MethodHandles.*;
5386 import static java.lang.invoke.MethodType.*;
5387 ...
5388 MethodHandle cat = lookup().findVirtual(String.class,
5389   "concat", methodType(String.class, String.class));
5390 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5391 MethodHandle d0 = dropArguments(cat, 0, String.class);
5392 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
5393 MethodHandle d1 = dropArguments(cat, 1, String.class);
5394 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
5395 MethodHandle d2 = dropArguments(cat, 2, String.class);
5396 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
5397 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
5398 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
5399      * }
5400      * <p>
5401      * This method is also equivalent to the following code:
5402      * <blockquote><pre>
5403      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
5404      * </pre></blockquote>
5405      * @param target the method handle to invoke after the arguments are dropped
5406      * @param pos position of first argument to drop (zero for the leftmost)
5407      * @param valueTypes the type(s) of the argument(s) to drop
5408      * @return a method handle which drops arguments of the given types,
5409      *         before calling the original method handle
5410      * @throws NullPointerException if the target is null,
5411      *                              or if the {@code valueTypes} array or any of its elements is null
5412      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5413      *                  or if {@code pos} is negative or greater than the arity of the target,
5414      *                  or if the new method handle's type would have
5415      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
5416      */
5417     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
5418         return dropArgumentsTrusted(target, pos, valueTypes.clone());
5419     }
5420 
5421     /* Convenience overloads for trusting internal low-arity call-sites */
5422     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1) {
5423         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1 });
5424     }
5425     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1, Class<?> valueType2) {
5426         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1, valueType2 });
5427     }
5428 
5429     // private version which allows caller some freedom with error handling
5430     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, Class<?>[] newTypes, int pos,
5431                                       boolean nullOnFailure) {
5432         Class<?>[] oldTypes = target.type().ptypes();
5433         int match = oldTypes.length;
5434         if (skip != 0) {
5435             if (skip < 0 || skip > match) {
5436                 throw newIllegalArgumentException("illegal skip", skip, target);
5437             }
5438             oldTypes = Arrays.copyOfRange(oldTypes, skip, match);
5439             match -= skip;
5440         }
5441         Class<?>[] addTypes = newTypes;
5442         int add = addTypes.length;
5443         if (pos != 0) {
5444             if (pos < 0 || pos > add) {
5445                 throw newIllegalArgumentException("illegal pos", pos, Arrays.toString(newTypes));
5446             }
5447             addTypes = Arrays.copyOfRange(addTypes, pos, add);
5448             add -= pos;
5449             assert(addTypes.length == add);
5450         }
5451         // Do not add types which already match the existing arguments.
5452         if (match > add || !Arrays.equals(oldTypes, 0, oldTypes.length, addTypes, 0, match)) {
5453             if (nullOnFailure) {
5454                 return null;
5455             }
5456             throw newIllegalArgumentException("argument lists do not match",
5457                 Arrays.toString(oldTypes), Arrays.toString(newTypes));
5458         }
5459         addTypes = Arrays.copyOfRange(addTypes, match, add);
5460         add -= match;
5461         assert(addTypes.length == add);
5462         // newTypes:     (   P*[pos], M*[match], A*[add] )
5463         // target: ( S*[skip],        M*[match]  )
5464         MethodHandle adapter = target;
5465         if (add > 0) {
5466             adapter = dropArgumentsTrusted(adapter, skip+ match, addTypes);
5467         }
5468         // adapter: (S*[skip],        M*[match], A*[add] )
5469         if (pos > 0) {
5470             adapter = dropArgumentsTrusted(adapter, skip, Arrays.copyOfRange(newTypes, 0, pos));
5471         }
5472         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
5473         return adapter;
5474     }
5475 
5476     /**
5477      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
5478      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
5479      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
5480      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
5481      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
5482      * {@link #dropArguments(MethodHandle, int, Class[])}.
5483      * <p>
5484      * The resulting handle will have the same return type as the target handle.
5485      * <p>
5486      * In more formal terms, assume these two type lists:<ul>
5487      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
5488      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
5489      * {@code newTypes}.
5490      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
5491      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
5492      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
5493      * sub-list.
5494      * </ul>
5495      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
5496      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
5497      * {@link #dropArguments(MethodHandle, int, Class[])}.
5498      *
5499      * @apiNote
5500      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
5501      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
5502      * {@snippet lang="java" :
5503 import static java.lang.invoke.MethodHandles.*;
5504 import static java.lang.invoke.MethodType.*;
5505 ...
5506 ...
5507 MethodHandle h0 = constant(boolean.class, true);
5508 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
5509 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
5510 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
5511 if (h1.type().parameterCount() < h2.type().parameterCount())
5512     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
5513 else
5514     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
5515 MethodHandle h3 = guardWithTest(h0, h1, h2);
5516 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
5517      * }
5518      * @param target the method handle to adapt
5519      * @param skip number of targets parameters to disregard (they will be unchanged)
5520      * @param newTypes the list of types to match {@code target}'s parameter type list to
5521      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
5522      * @return a possibly adapted method handle
5523      * @throws NullPointerException if either argument is null
5524      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
5525      *         or if {@code skip} is negative or greater than the arity of the target,
5526      *         or if {@code pos} is negative or greater than the newTypes list size,
5527      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
5528      *         {@code pos}.
5529      * @since 9
5530      */
5531     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
5532         Objects.requireNonNull(target);
5533         Objects.requireNonNull(newTypes);
5534         return dropArgumentsToMatch(target, skip, newTypes.toArray(new Class<?>[0]).clone(), pos, false);
5535     }
5536 
5537     /**
5538      * Drop the return value of the target handle (if any).
5539      * The returned method handle will have a {@code void} return type.
5540      *
5541      * @param target the method handle to adapt
5542      * @return a possibly adapted method handle
5543      * @throws NullPointerException if {@code target} is null
5544      * @since 16
5545      */
5546     public static MethodHandle dropReturn(MethodHandle target) {
5547         Objects.requireNonNull(target);
5548         MethodType oldType = target.type();
5549         Class<?> oldReturnType = oldType.returnType();
5550         if (oldReturnType == void.class)
5551             return target;
5552         MethodType newType = oldType.changeReturnType(void.class);
5553         BoundMethodHandle result = target.rebind();
5554         LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true);
5555         result = result.copyWith(newType, lform);
5556         return result;
5557     }
5558 
5559     /**
5560      * Adapts a target method handle by pre-processing
5561      * one or more of its arguments, each with its own unary filter function,
5562      * and then calling the target with each pre-processed argument
5563      * replaced by the result of its corresponding filter function.
5564      * <p>
5565      * The pre-processing is performed by one or more method handles,
5566      * specified in the elements of the {@code filters} array.
5567      * The first element of the filter array corresponds to the {@code pos}
5568      * argument of the target, and so on in sequence.
5569      * The filter functions are invoked in left to right order.
5570      * <p>
5571      * Null arguments in the array are treated as identity functions,
5572      * and the corresponding arguments left unchanged.
5573      * (If there are no non-null elements in the array, the original target is returned.)
5574      * Each filter is applied to the corresponding argument of the adapter.
5575      * <p>
5576      * If a filter {@code F} applies to the {@code N}th argument of
5577      * the target, then {@code F} must be a method handle which
5578      * takes exactly one argument.  The type of {@code F}'s sole argument
5579      * replaces the corresponding argument type of the target
5580      * in the resulting adapted method handle.
5581      * The return type of {@code F} must be identical to the corresponding
5582      * parameter type of the target.
5583      * <p>
5584      * It is an error if there are elements of {@code filters}
5585      * (null or not)
5586      * which do not correspond to argument positions in the target.
5587      * <p><b>Example:</b>
5588      * {@snippet lang="java" :
5589 import static java.lang.invoke.MethodHandles.*;
5590 import static java.lang.invoke.MethodType.*;
5591 ...
5592 MethodHandle cat = lookup().findVirtual(String.class,
5593   "concat", methodType(String.class, String.class));
5594 MethodHandle upcase = lookup().findVirtual(String.class,
5595   "toUpperCase", methodType(String.class));
5596 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5597 MethodHandle f0 = filterArguments(cat, 0, upcase);
5598 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
5599 MethodHandle f1 = filterArguments(cat, 1, upcase);
5600 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
5601 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
5602 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
5603      * }
5604      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5605      * denotes the return type of both the {@code target} and resulting adapter.
5606      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
5607      * of the parameters and arguments that precede and follow the filter position
5608      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
5609      * values of the filtered parameters and arguments; they also represent the
5610      * return types of the {@code filter[i]} handles. The latter accept arguments
5611      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
5612      * the resulting adapter.
5613      * {@snippet lang="java" :
5614      * T target(P... p, A[i]... a[i], B... b);
5615      * A[i] filter[i](V[i]);
5616      * T adapter(P... p, V[i]... v[i], B... b) {
5617      *   return target(p..., filter[i](v[i])..., b...);
5618      * }
5619      * }
5620      * <p>
5621      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5622      * variable-arity method handle}, even if the original target method handle was.
5623      *
5624      * @param target the method handle to invoke after arguments are filtered
5625      * @param pos the position of the first argument to filter
5626      * @param filters method handles to call initially on filtered arguments
5627      * @return method handle which incorporates the specified argument filtering logic
5628      * @throws NullPointerException if the target is null
5629      *                              or if the {@code filters} array is null
5630      * @throws IllegalArgumentException if a non-null element of {@code filters}
5631      *          does not match a corresponding argument type of target as described above,
5632      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
5633      *          or if the resulting method handle's type would have
5634      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5635      */
5636     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
5637         // In method types arguments start at index 0, while the LF
5638         // editor have the MH receiver at position 0 - adjust appropriately.
5639         final int MH_RECEIVER_OFFSET = 1;
5640         filterArgumentsCheckArity(target, pos, filters);
5641         MethodHandle adapter = target;
5642 
5643         // keep track of currently matched filters, as to optimize repeated filters
5644         int index = 0;
5645         int[] positions = new int[filters.length];
5646         MethodHandle filter = null;
5647 
5648         // process filters in reverse order so that the invocation of
5649         // the resulting adapter will invoke the filters in left-to-right order
5650         for (int i = filters.length - 1; i >= 0; --i) {
5651             MethodHandle newFilter = filters[i];
5652             if (newFilter == null) continue;  // ignore null elements of filters
5653 
5654             // flush changes on update
5655             if (filter != newFilter) {
5656                 if (filter != null) {
5657                     if (index > 1) {
5658                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5659                     } else {
5660                         adapter = filterArgument(adapter, positions[0] - 1, filter);
5661                     }
5662                 }
5663                 filter = newFilter;
5664                 index = 0;
5665             }
5666 
5667             filterArgumentChecks(target, pos + i, newFilter);
5668             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
5669         }
5670         if (index > 1) {
5671             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5672         } else if (index == 1) {
5673             adapter = filterArgument(adapter, positions[0] - 1, filter);
5674         }
5675         return adapter;
5676     }
5677 
5678     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
5679         MethodType targetType = adapter.type();
5680         MethodType filterType = filter.type();
5681         BoundMethodHandle result = adapter.rebind();
5682         Class<?> newParamType = filterType.parameterType(0);
5683 
5684         Class<?>[] ptypes = targetType.ptypes().clone();
5685         for (int pos : positions) {
5686             ptypes[pos - 1] = newParamType;
5687         }
5688         MethodType newType = MethodType.methodType(targetType.rtype(), ptypes, true);
5689 
5690         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
5691         return result.copyWithExtendL(newType, lform, filter);
5692     }
5693 
5694     /*non-public*/
5695     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
5696         filterArgumentChecks(target, pos, filter);
5697         MethodType targetType = target.type();
5698         MethodType filterType = filter.type();
5699         BoundMethodHandle result = target.rebind();
5700         Class<?> newParamType = filterType.parameterType(0);
5701         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
5702         MethodType newType = targetType.changeParameterType(pos, newParamType);
5703         result = result.copyWithExtendL(newType, lform, filter);
5704         return result;
5705     }
5706 
5707     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
5708         MethodType targetType = target.type();
5709         int maxPos = targetType.parameterCount();
5710         if (pos + filters.length > maxPos)
5711             throw newIllegalArgumentException("too many filters");
5712     }
5713 
5714     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5715         MethodType targetType = target.type();
5716         MethodType filterType = filter.type();
5717         if (filterType.parameterCount() != 1
5718             || filterType.returnType() != targetType.parameterType(pos))
5719             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5720     }
5721 
5722     /**
5723      * Adapts a target method handle by pre-processing
5724      * a sub-sequence of its arguments with a filter (another method handle).
5725      * The pre-processed arguments are replaced by the result (if any) of the
5726      * filter function.
5727      * The target is then called on the modified (usually shortened) argument list.
5728      * <p>
5729      * If the filter returns a value, the target must accept that value as
5730      * its argument in position {@code pos}, preceded and/or followed by
5731      * any arguments not passed to the filter.
5732      * If the filter returns void, the target must accept all arguments
5733      * not passed to the filter.
5734      * No arguments are reordered, and a result returned from the filter
5735      * replaces (in order) the whole subsequence of arguments originally
5736      * passed to the adapter.
5737      * <p>
5738      * The argument types (if any) of the filter
5739      * replace zero or one argument types of the target, at position {@code pos},
5740      * in the resulting adapted method handle.
5741      * The return type of the filter (if any) must be identical to the
5742      * argument type of the target at position {@code pos}, and that target argument
5743      * is supplied by the return value of the filter.
5744      * <p>
5745      * In all cases, {@code pos} must be greater than or equal to zero, and
5746      * {@code pos} must also be less than or equal to the target's arity.
5747      * <p><b>Example:</b>
5748      * {@snippet lang="java" :
5749 import static java.lang.invoke.MethodHandles.*;
5750 import static java.lang.invoke.MethodType.*;
5751 ...
5752 MethodHandle deepToString = publicLookup()
5753   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
5754 
5755 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
5756 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
5757 
5758 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
5759 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
5760 
5761 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
5762 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
5763 assertEquals("[top, [up, down], strange]",
5764              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
5765 
5766 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
5767 assertEquals("[top, [up, down], [strange]]",
5768              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
5769 
5770 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
5771 assertEquals("[top, [[up, down, strange], charm], bottom]",
5772              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
5773      * }
5774      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5775      * represents the return type of the {@code target} and resulting adapter.
5776      * {@code V}/{@code v} stand for the return type and value of the
5777      * {@code filter}, which are also found in the signature and arguments of
5778      * the {@code target}, respectively, unless {@code V} is {@code void}.
5779      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
5780      * and values preceding and following the collection position, {@code pos},
5781      * in the {@code target}'s signature. They also turn up in the resulting
5782      * adapter's signature and arguments, where they surround
5783      * {@code B}/{@code b}, which represent the parameter types and arguments
5784      * to the {@code filter} (if any).
5785      * {@snippet lang="java" :
5786      * T target(A...,V,C...);
5787      * V filter(B...);
5788      * T adapter(A... a,B... b,C... c) {
5789      *   V v = filter(b...);
5790      *   return target(a...,v,c...);
5791      * }
5792      * // and if the filter has no arguments:
5793      * T target2(A...,V,C...);
5794      * V filter2();
5795      * T adapter2(A... a,C... c) {
5796      *   V v = filter2();
5797      *   return target2(a...,v,c...);
5798      * }
5799      * // and if the filter has a void return:
5800      * T target3(A...,C...);
5801      * void filter3(B...);
5802      * T adapter3(A... a,B... b,C... c) {
5803      *   filter3(b...);
5804      *   return target3(a...,c...);
5805      * }
5806      * }
5807      * <p>
5808      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5809      * one which first "folds" the affected arguments, and then drops them, in separate
5810      * steps as follows:
5811      * {@snippet lang="java" :
5812      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5813      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5814      * }
5815      * If the target method handle consumes no arguments besides than the result
5816      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5817      * is equivalent to {@code filterReturnValue(coll, mh)}.
5818      * If the filter method handle {@code coll} consumes one argument and produces
5819      * a non-void result, then {@code collectArguments(mh, N, coll)}
5820      * is equivalent to {@code filterArguments(mh, N, coll)}.
5821      * Other equivalences are possible but would require argument permutation.
5822      * <p>
5823      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5824      * variable-arity method handle}, even if the original target method handle was.
5825      *
5826      * @param target the method handle to invoke after filtering the subsequence of arguments
5827      * @param pos the position of the first adapter argument to pass to the filter,
5828      *            and/or the target argument which receives the result of the filter
5829      * @param filter method handle to call on the subsequence of arguments
5830      * @return method handle which incorporates the specified argument subsequence filtering logic
5831      * @throws NullPointerException if either argument is null
5832      * @throws IllegalArgumentException if the return type of {@code filter}
5833      *          is non-void and is not the same as the {@code pos} argument of the target,
5834      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5835      *          or if the resulting method handle's type would have
5836      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5837      * @see MethodHandles#foldArguments
5838      * @see MethodHandles#filterArguments
5839      * @see MethodHandles#filterReturnValue
5840      */
5841     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5842         MethodType newType = collectArgumentsChecks(target, pos, filter);
5843         MethodType collectorType = filter.type();
5844         BoundMethodHandle result = target.rebind();
5845         LambdaForm lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5846         return result.copyWithExtendL(newType, lform, filter);
5847     }
5848 
5849     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5850         MethodType targetType = target.type();
5851         MethodType filterType = filter.type();
5852         Class<?> rtype = filterType.returnType();
5853         Class<?>[] filterArgs = filterType.ptypes();
5854         if (pos < 0 || (rtype == void.class && pos > targetType.parameterCount()) ||
5855                        (rtype != void.class && pos >= targetType.parameterCount())) {
5856             throw newIllegalArgumentException("position is out of range for target", target, pos);
5857         }
5858         if (rtype == void.class) {
5859             return targetType.insertParameterTypes(pos, filterArgs);
5860         }
5861         if (rtype != targetType.parameterType(pos)) {
5862             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5863         }
5864         return targetType.dropParameterTypes(pos, pos + 1).insertParameterTypes(pos, filterArgs);
5865     }
5866 
5867     /**
5868      * Adapts a target method handle by post-processing
5869      * its return value (if any) with a filter (another method handle).
5870      * The result of the filter is returned from the adapter.
5871      * <p>
5872      * If the target returns a value, the filter must accept that value as
5873      * its only argument.
5874      * If the target returns void, the filter must accept no arguments.
5875      * <p>
5876      * The return type of the filter
5877      * replaces the return type of the target
5878      * in the resulting adapted method handle.
5879      * The argument type of the filter (if any) must be identical to the
5880      * return type of the target.
5881      * <p><b>Example:</b>
5882      * {@snippet lang="java" :
5883 import static java.lang.invoke.MethodHandles.*;
5884 import static java.lang.invoke.MethodType.*;
5885 ...
5886 MethodHandle cat = lookup().findVirtual(String.class,
5887   "concat", methodType(String.class, String.class));
5888 MethodHandle length = lookup().findVirtual(String.class,
5889   "length", methodType(int.class));
5890 System.out.println((String) cat.invokeExact("x", "y")); // xy
5891 MethodHandle f0 = filterReturnValue(cat, length);
5892 System.out.println((int) f0.invokeExact("x", "y")); // 2
5893      * }
5894      * <p>Here is pseudocode for the resulting adapter. In the code,
5895      * {@code T}/{@code t} represent the result type and value of the
5896      * {@code target}; {@code V}, the result type of the {@code filter}; and
5897      * {@code A}/{@code a}, the types and values of the parameters and arguments
5898      * of the {@code target} as well as the resulting adapter.
5899      * {@snippet lang="java" :
5900      * T target(A...);
5901      * V filter(T);
5902      * V adapter(A... a) {
5903      *   T t = target(a...);
5904      *   return filter(t);
5905      * }
5906      * // and if the target has a void return:
5907      * void target2(A...);
5908      * V filter2();
5909      * V adapter2(A... a) {
5910      *   target2(a...);
5911      *   return filter2();
5912      * }
5913      * // and if the filter has a void return:
5914      * T target3(A...);
5915      * void filter3(V);
5916      * void adapter3(A... a) {
5917      *   T t = target3(a...);
5918      *   filter3(t);
5919      * }
5920      * }
5921      * <p>
5922      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5923      * variable-arity method handle}, even if the original target method handle was.
5924      * @param target the method handle to invoke before filtering the return value
5925      * @param filter method handle to call on the return value
5926      * @return method handle which incorporates the specified return value filtering logic
5927      * @throws NullPointerException if either argument is null
5928      * @throws IllegalArgumentException if the argument list of {@code filter}
5929      *          does not match the return type of target as described above
5930      */
5931     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5932         MethodType targetType = target.type();
5933         MethodType filterType = filter.type();
5934         filterReturnValueChecks(targetType, filterType);
5935         BoundMethodHandle result = target.rebind();
5936         BasicType rtype = BasicType.basicType(filterType.returnType());
5937         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5938         MethodType newType = targetType.changeReturnType(filterType.returnType());
5939         result = result.copyWithExtendL(newType, lform, filter);
5940         return result;
5941     }
5942 
5943     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5944         Class<?> rtype = targetType.returnType();
5945         int filterValues = filterType.parameterCount();
5946         if (filterValues == 0
5947                 ? (rtype != void.class)
5948                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5949             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5950     }
5951 
5952     /**
5953      * Filter the return value of a target method handle with a filter function. The filter function is
5954      * applied to the return value of the original handle; if the filter specifies more than one parameters,
5955      * then any remaining parameter is appended to the adapter handle. In other words, the adaptation works
5956      * as follows:
5957      * {@snippet lang="java" :
5958      * T target(A...)
5959      * V filter(B... , T)
5960      * V adapter(A... a, B... b) {
5961      *     T t = target(a...);
5962      *     return filter(b..., t);
5963      * }
5964      * }
5965      * <p>
5966      * If the filter handle is a unary function, then this method behaves like {@link #filterReturnValue(MethodHandle, MethodHandle)}.
5967      *
5968      * @param target the target method handle
5969      * @param filter the filter method handle
5970      * @return the adapter method handle
5971      */
5972     /* package */ static MethodHandle collectReturnValue(MethodHandle target, MethodHandle filter) {
5973         MethodType targetType = target.type();
5974         MethodType filterType = filter.type();
5975         BoundMethodHandle result = target.rebind();
5976         LambdaForm lform = result.editor().collectReturnValueForm(filterType.basicType());
5977         MethodType newType = targetType.changeReturnType(filterType.returnType());
5978         if (filterType.parameterCount() > 1) {
5979             for (int i = 0 ; i < filterType.parameterCount() - 1 ; i++) {
5980                 newType = newType.appendParameterTypes(filterType.parameterType(i));
5981             }
5982         }
5983         result = result.copyWithExtendL(newType, lform, filter);
5984         return result;
5985     }
5986 
5987     /**
5988      * Adapts a target method handle by pre-processing
5989      * some of its arguments, and then calling the target with
5990      * the result of the pre-processing, inserted into the original
5991      * sequence of arguments.
5992      * <p>
5993      * The pre-processing is performed by {@code combiner}, a second method handle.
5994      * Of the arguments passed to the adapter, the first {@code N} arguments
5995      * are copied to the combiner, which is then called.
5996      * (Here, {@code N} is defined as the parameter count of the combiner.)
5997      * After this, control passes to the target, with any result
5998      * from the combiner inserted before the original {@code N} incoming
5999      * arguments.
6000      * <p>
6001      * If the combiner returns a value, the first parameter type of the target
6002      * must be identical with the return type of the combiner, and the next
6003      * {@code N} parameter types of the target must exactly match the parameters
6004      * of the combiner.
6005      * <p>
6006      * If the combiner has a void return, no result will be inserted,
6007      * and the first {@code N} parameter types of the target
6008      * must exactly match the parameters of the combiner.
6009      * <p>
6010      * The resulting adapter is the same type as the target, except that the
6011      * first parameter type is dropped,
6012      * if it corresponds to the result of the combiner.
6013      * <p>
6014      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
6015      * that either the combiner or the target does not wish to receive.
6016      * If some of the incoming arguments are destined only for the combiner,
6017      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
6018      * arguments will not need to be live on the stack on entry to the
6019      * target.)
6020      * <p><b>Example:</b>
6021      * {@snippet lang="java" :
6022 import static java.lang.invoke.MethodHandles.*;
6023 import static java.lang.invoke.MethodType.*;
6024 ...
6025 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
6026   "println", methodType(void.class, String.class))
6027     .bindTo(System.out);
6028 MethodHandle cat = lookup().findVirtual(String.class,
6029   "concat", methodType(String.class, String.class));
6030 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
6031 MethodHandle catTrace = foldArguments(cat, trace);
6032 // also prints "boo":
6033 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
6034      * }
6035      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
6036      * represents the result type of the {@code target} and resulting adapter.
6037      * {@code V}/{@code v} represent the type and value of the parameter and argument
6038      * of {@code target} that precedes the folding position; {@code V} also is
6039      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
6040      * types and values of the {@code N} parameters and arguments at the folding
6041      * position. {@code B}/{@code b} represent the types and values of the
6042      * {@code target} parameters and arguments that follow the folded parameters
6043      * and arguments.
6044      * {@snippet lang="java" :
6045      * // there are N arguments in A...
6046      * T target(V, A[N]..., B...);
6047      * V combiner(A...);
6048      * T adapter(A... a, B... b) {
6049      *   V v = combiner(a...);
6050      *   return target(v, a..., b...);
6051      * }
6052      * // and if the combiner has a void return:
6053      * T target2(A[N]..., B...);
6054      * void combiner2(A...);
6055      * T adapter2(A... a, B... b) {
6056      *   combiner2(a...);
6057      *   return target2(a..., b...);
6058      * }
6059      * }
6060      * <p>
6061      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
6062      * variable-arity method handle}, even if the original target method handle was.
6063      * @param target the method handle to invoke after arguments are combined
6064      * @param combiner method handle to call initially on the incoming arguments
6065      * @return method handle which incorporates the specified argument folding logic
6066      * @throws NullPointerException if either argument is null
6067      * @throws IllegalArgumentException if {@code combiner}'s return type
6068      *          is non-void and not the same as the first argument type of
6069      *          the target, or if the initial {@code N} argument types
6070      *          of the target
6071      *          (skipping one matching the {@code combiner}'s return type)
6072      *          are not identical with the argument types of {@code combiner}
6073      */
6074     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
6075         return foldArguments(target, 0, combiner);
6076     }
6077 
6078     /**
6079      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
6080      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
6081      * before the folded arguments.
6082      * <p>
6083      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
6084      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
6085      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
6086      * 0.
6087      *
6088      * @apiNote Example:
6089      * {@snippet lang="java" :
6090     import static java.lang.invoke.MethodHandles.*;
6091     import static java.lang.invoke.MethodType.*;
6092     ...
6093     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
6094     "println", methodType(void.class, String.class))
6095     .bindTo(System.out);
6096     MethodHandle cat = lookup().findVirtual(String.class,
6097     "concat", methodType(String.class, String.class));
6098     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
6099     MethodHandle catTrace = foldArguments(cat, 1, trace);
6100     // also prints "jum":
6101     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
6102      * }
6103      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
6104      * represents the result type of the {@code target} and resulting adapter.
6105      * {@code V}/{@code v} represent the type and value of the parameter and argument
6106      * of {@code target} that precedes the folding position; {@code V} also is
6107      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
6108      * types and values of the {@code N} parameters and arguments at the folding
6109      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
6110      * and values of the {@code target} parameters and arguments that precede and
6111      * follow the folded parameters and arguments starting at {@code pos},
6112      * respectively.
6113      * {@snippet lang="java" :
6114      * // there are N arguments in A...
6115      * T target(Z..., V, A[N]..., B...);
6116      * V combiner(A...);
6117      * T adapter(Z... z, A... a, B... b) {
6118      *   V v = combiner(a...);
6119      *   return target(z..., v, a..., b...);
6120      * }
6121      * // and if the combiner has a void return:
6122      * T target2(Z..., A[N]..., B...);
6123      * void combiner2(A...);
6124      * T adapter2(Z... z, A... a, B... b) {
6125      *   combiner2(a...);
6126      *   return target2(z..., a..., b...);
6127      * }
6128      * }
6129      * <p>
6130      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
6131      * variable-arity method handle}, even if the original target method handle was.
6132      *
6133      * @param target the method handle to invoke after arguments are combined
6134      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
6135      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6136      * @param combiner method handle to call initially on the incoming arguments
6137      * @return method handle which incorporates the specified argument folding logic
6138      * @throws NullPointerException if either argument is null
6139      * @throws IllegalArgumentException if either of the following two conditions holds:
6140      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
6141      *              {@code pos} of the target signature;
6142      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
6143      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
6144      *
6145      * @see #foldArguments(MethodHandle, MethodHandle)
6146      * @since 9
6147      */
6148     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
6149         MethodType targetType = target.type();
6150         MethodType combinerType = combiner.type();
6151         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
6152         BoundMethodHandle result = target.rebind();
6153         boolean dropResult = rtype == void.class;
6154         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
6155         MethodType newType = targetType;
6156         if (!dropResult) {
6157             newType = newType.dropParameterTypes(pos, pos + 1);
6158         }
6159         result = result.copyWithExtendL(newType, lform, combiner);
6160         return result;
6161     }
6162 
6163     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
6164         int foldArgs   = combinerType.parameterCount();
6165         Class<?> rtype = combinerType.returnType();
6166         int foldVals = rtype == void.class ? 0 : 1;
6167         int afterInsertPos = foldPos + foldVals;
6168         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
6169         if (ok) {
6170             for (int i = 0; i < foldArgs; i++) {
6171                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
6172                     ok = false;
6173                     break;
6174                 }
6175             }
6176         }
6177         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
6178             ok = false;
6179         if (!ok)
6180             throw misMatchedTypes("target and combiner types", targetType, combinerType);
6181         return rtype;
6182     }
6183 
6184     /**
6185      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
6186      * of the pre-processing replacing the argument at the given position.
6187      *
6188      * @param target the method handle to invoke after arguments are combined
6189      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
6190      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6191      * @param combiner method handle to call initially on the incoming arguments
6192      * @param argPositions indexes of the target to pick arguments sent to the combiner from
6193      * @return method handle which incorporates the specified argument folding logic
6194      * @throws NullPointerException if either argument is null
6195      * @throws IllegalArgumentException if either of the following two conditions holds:
6196      *          (1) {@code combiner}'s return type is not the same as the argument type at position
6197      *              {@code pos} of the target signature;
6198      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
6199      *              not identical with the argument types of {@code combiner}.
6200      */
6201     /*non-public*/
6202     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6203         return argumentsWithCombiner(true, target, position, combiner, argPositions);
6204     }
6205 
6206     /**
6207      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
6208      * the pre-processing inserted into the original sequence of arguments at the given position.
6209      *
6210      * @param target the method handle to invoke after arguments are combined
6211      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
6212      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
6213      * @param combiner method handle to call initially on the incoming arguments
6214      * @param argPositions indexes of the target to pick arguments sent to the combiner from
6215      * @return method handle which incorporates the specified argument folding logic
6216      * @throws NullPointerException if either argument is null
6217      * @throws IllegalArgumentException if either of the following two conditions holds:
6218      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
6219      *              {@code pos} of the target signature;
6220      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
6221      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
6222      *              with the argument types of {@code combiner}.
6223      */
6224     /*non-public*/
6225     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6226         return argumentsWithCombiner(false, target, position, combiner, argPositions);
6227     }
6228 
6229     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
6230         MethodType targetType = target.type();
6231         MethodType combinerType = combiner.type();
6232         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
6233         BoundMethodHandle result = target.rebind();
6234 
6235         MethodType newType = targetType;
6236         LambdaForm lform;
6237         if (filter) {
6238             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
6239         } else {
6240             boolean dropResult = rtype == void.class;
6241             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
6242             if (!dropResult) {
6243                 newType = newType.dropParameterTypes(position, position + 1);
6244             }
6245         }
6246         result = result.copyWithExtendL(newType, lform, combiner);
6247         return result;
6248     }
6249 
6250     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
6251         int combinerArgs = combinerType.parameterCount();
6252         if (argPos.length != combinerArgs) {
6253             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
6254         }
6255         Class<?> rtype = combinerType.returnType();
6256 
6257         for (int i = 0; i < combinerArgs; i++) {
6258             int arg = argPos[i];
6259             if (arg < 0 || arg > targetType.parameterCount()) {
6260                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
6261             }
6262             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
6263                 throw newIllegalArgumentException("target argument type at position " + arg
6264                         + " must match combiner argument type at index " + i + ": " + targetType
6265                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
6266             }
6267         }
6268         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
6269             throw misMatchedTypes("target and combiner types", targetType, combinerType);
6270         }
6271         return rtype;
6272     }
6273 
6274     /**
6275      * Makes a method handle which adapts a target method handle,
6276      * by guarding it with a test, a boolean-valued method handle.
6277      * If the guard fails, a fallback handle is called instead.
6278      * All three method handles must have the same corresponding
6279      * argument and return types, except that the return type
6280      * of the test must be boolean, and the test is allowed
6281      * to have fewer arguments than the other two method handles.
6282      * <p>
6283      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6284      * represents the uniform result type of the three involved handles;
6285      * {@code A}/{@code a}, the types and values of the {@code target}
6286      * parameters and arguments that are consumed by the {@code test}; and
6287      * {@code B}/{@code b}, those types and values of the {@code target}
6288      * parameters and arguments that are not consumed by the {@code test}.
6289      * {@snippet lang="java" :
6290      * boolean test(A...);
6291      * T target(A...,B...);
6292      * T fallback(A...,B...);
6293      * T adapter(A... a,B... b) {
6294      *   if (test(a...))
6295      *     return target(a..., b...);
6296      *   else
6297      *     return fallback(a..., b...);
6298      * }
6299      * }
6300      * Note that the test arguments ({@code a...} in the pseudocode) cannot
6301      * be modified by execution of the test, and so are passed unchanged
6302      * from the caller to the target or fallback as appropriate.
6303      * @param test method handle used for test, must return boolean
6304      * @param target method handle to call if test passes
6305      * @param fallback method handle to call if test fails
6306      * @return method handle which incorporates the specified if/then/else logic
6307      * @throws NullPointerException if any argument is null
6308      * @throws IllegalArgumentException if {@code test} does not return boolean,
6309      *          or if all three method types do not match (with the return
6310      *          type of {@code test} changed to match that of the target).
6311      */
6312     public static MethodHandle guardWithTest(MethodHandle test,
6313                                MethodHandle target,
6314                                MethodHandle fallback) {
6315         MethodType gtype = test.type();
6316         MethodType ttype = target.type();
6317         MethodType ftype = fallback.type();
6318         if (!ttype.equals(ftype))
6319             throw misMatchedTypes("target and fallback types", ttype, ftype);
6320         if (gtype.returnType() != boolean.class)
6321             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
6322 
6323         test = dropArgumentsToMatch(test, 0, ttype.ptypes(), 0, true);
6324         if (test == null) {
6325             throw misMatchedTypes("target and test types", ttype, gtype);
6326         }
6327         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
6328     }
6329 
6330     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
6331         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
6332     }
6333 
6334     /**
6335      * Makes a method handle which adapts a target method handle,
6336      * by running it inside an exception handler.
6337      * If the target returns normally, the adapter returns that value.
6338      * If an exception matching the specified type is thrown, the fallback
6339      * handle is called instead on the exception, plus the original arguments.
6340      * <p>
6341      * The target and handler must have the same corresponding
6342      * argument and return types, except that handler may omit trailing arguments
6343      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
6344      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
6345      * <p>
6346      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6347      * represents the return type of the {@code target} and {@code handler},
6348      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
6349      * the types and values of arguments to the resulting handle consumed by
6350      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
6351      * resulting handle discarded by {@code handler}.
6352      * {@snippet lang="java" :
6353      * T target(A..., B...);
6354      * T handler(ExType, A...);
6355      * T adapter(A... a, B... b) {
6356      *   try {
6357      *     return target(a..., b...);
6358      *   } catch (ExType ex) {
6359      *     return handler(ex, a...);
6360      *   }
6361      * }
6362      * }
6363      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6364      * be modified by execution of the target, and so are passed unchanged
6365      * from the caller to the handler, if the handler is invoked.
6366      * <p>
6367      * The target and handler must return the same type, even if the handler
6368      * always throws.  (This might happen, for instance, because the handler
6369      * is simulating a {@code finally} clause).
6370      * To create such a throwing handler, compose the handler creation logic
6371      * with {@link #throwException throwException},
6372      * in order to create a method handle of the correct return type.
6373      * @param target method handle to call
6374      * @param exType the type of exception which the handler will catch
6375      * @param handler method handle to call if a matching exception is thrown
6376      * @return method handle which incorporates the specified try/catch logic
6377      * @throws NullPointerException if any argument is null
6378      * @throws IllegalArgumentException if {@code handler} does not accept
6379      *          the given exception type, or if the method handle types do
6380      *          not match in their return types and their
6381      *          corresponding parameters
6382      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
6383      */
6384     public static MethodHandle catchException(MethodHandle target,
6385                                 Class<? extends Throwable> exType,
6386                                 MethodHandle handler) {
6387         MethodType ttype = target.type();
6388         MethodType htype = handler.type();
6389         if (!Throwable.class.isAssignableFrom(exType))
6390             throw new ClassCastException(exType.getName());
6391         if (htype.parameterCount() < 1 ||
6392             !htype.parameterType(0).isAssignableFrom(exType))
6393             throw newIllegalArgumentException("handler does not accept exception type "+exType);
6394         if (htype.returnType() != ttype.returnType())
6395             throw misMatchedTypes("target and handler return types", ttype, htype);
6396         handler = dropArgumentsToMatch(handler, 1, ttype.ptypes(), 0, true);
6397         if (handler == null) {
6398             throw misMatchedTypes("target and handler types", ttype, htype);
6399         }
6400         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
6401     }
6402 
6403     /**
6404      * Produces a method handle which will throw exceptions of the given {@code exType}.
6405      * The method handle will accept a single argument of {@code exType},
6406      * and immediately throw it as an exception.
6407      * The method type will nominally specify a return of {@code returnType}.
6408      * The return type may be anything convenient:  It doesn't matter to the
6409      * method handle's behavior, since it will never return normally.
6410      * @param returnType the return type of the desired method handle
6411      * @param exType the parameter type of the desired method handle
6412      * @return method handle which can throw the given exceptions
6413      * @throws NullPointerException if either argument is null
6414      */
6415     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
6416         if (!Throwable.class.isAssignableFrom(exType))
6417             throw new ClassCastException(exType.getName());
6418         return MethodHandleImpl.throwException(methodType(returnType, exType));
6419     }
6420 
6421     /**
6422      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
6423      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
6424      * delivers the loop's result, which is the return value of the resulting handle.
6425      * <p>
6426      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
6427      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
6428      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
6429      * terms of method handles, each clause will specify up to four independent actions:<ul>
6430      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
6431      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
6432      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
6433      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
6434      * </ul>
6435      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
6436      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
6437      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
6438      * <p>
6439      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
6440      * this case. See below for a detailed description.
6441      * <p>
6442      * <em>Parameters optional everywhere:</em>
6443      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
6444      * As an exception, the init functions cannot take any {@code v} parameters,
6445      * because those values are not yet computed when the init functions are executed.
6446      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
6447      * In fact, any clause function may take no arguments at all.
6448      * <p>
6449      * <em>Loop parameters:</em>
6450      * A clause function may take all the iteration variable values it is entitled to, in which case
6451      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
6452      * with their types and values notated as {@code (A...)} and {@code (a...)}.
6453      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
6454      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
6455      * init function is automatically a loop parameter {@code a}.)
6456      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
6457      * These loop parameters act as loop-invariant values visible across the whole loop.
6458      * <p>
6459      * <em>Parameters visible everywhere:</em>
6460      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
6461      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
6462      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
6463      * Most clause functions will not need all of this information, but they will be formally connected to it
6464      * as if by {@link #dropArguments}.
6465      * <a id="astar"></a>
6466      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
6467      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
6468      * In that notation, the general form of an init function parameter list
6469      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
6470      * <p>
6471      * <em>Checking clause structure:</em>
6472      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
6473      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
6474      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
6475      * met by the inputs to the loop combinator.
6476      * <p>
6477      * <em>Effectively identical sequences:</em>
6478      * <a id="effid"></a>
6479      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
6480      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
6481      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
6482      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
6483      * that longest list.
6484      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
6485      * and the same is true if more sequences of the form {@code (V... A*)} are added.
6486      * <p>
6487      * <em>Step 0: Determine clause structure.</em><ol type="a">
6488      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
6489      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
6490      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
6491      * four. Padding takes place by appending elements to the array.
6492      * <li>Clauses with all {@code null}s are disregarded.
6493      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
6494      * </ol>
6495      * <p>
6496      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
6497      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
6498      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
6499      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
6500      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
6501      * iteration variable type.
6502      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
6503      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
6504      * </ol>
6505      * <p>
6506      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
6507      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
6508      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
6509      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
6510      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
6511      * (These types will be checked in step 2, along with all the clause function types.)
6512      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
6513      * <li>All of the collected parameter lists must be effectively identical.
6514      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
6515      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
6516      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
6517      * the "internal parameter list".
6518      * </ul>
6519      * <p>
6520      * <em>Step 1C: Determine loop return type.</em><ol type="a">
6521      * <li>Examine fini function return types, disregarding omitted fini functions.
6522      * <li>If there are no fini functions, the loop return type is {@code void}.
6523      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
6524      * type.
6525      * </ol>
6526      * <p>
6527      * <em>Step 1D: Check other types.</em><ol type="a">
6528      * <li>There must be at least one non-omitted pred function.
6529      * <li>Every non-omitted pred function must have a {@code boolean} return type.
6530      * </ol>
6531      * <p>
6532      * <em>Step 2: Determine parameter lists.</em><ol type="a">
6533      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
6534      * <li>The parameter list for init functions will be adjusted to the external parameter list.
6535      * (Note that their parameter lists are already effectively identical to this list.)
6536      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
6537      * effectively identical to the internal parameter list {@code (V... A...)}.
6538      * </ol>
6539      * <p>
6540      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
6541      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
6542      * type.
6543      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
6544      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
6545      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
6546      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
6547      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
6548      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
6549      * loop return type.
6550      * </ol>
6551      * <p>
6552      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
6553      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
6554      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
6555      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
6556      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
6557      * pad out the end of the list.
6558      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
6559      * </ol>
6560      * <p>
6561      * <em>Final observations.</em><ol type="a">
6562      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
6563      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
6564      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
6565      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
6566      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
6567      * <li>Each pair of init and step functions agrees in their return type {@code V}.
6568      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
6569      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
6570      * </ol>
6571      * <p>
6572      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
6573      * <ul>
6574      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
6575      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
6576      * (Only one {@code Pn} has to be non-{@code null}.)
6577      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
6578      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
6579      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
6580      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
6581      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
6582      * the resulting loop handle's parameter types {@code (A...)}.
6583      * </ul>
6584      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
6585      * which is natural if most of the loop computation happens in the steps.  For some loops,
6586      * the burden of computation might be heaviest in the pred functions, and so the pred functions
6587      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
6588      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
6589      * where the init functions will need the extra parameters.  For such reasons, the rules for
6590      * determining these parameters are as symmetric as possible, across all clause parts.
6591      * In general, the loop parameters function as common invariant values across the whole
6592      * loop, while the iteration variables function as common variant values, or (if there is
6593      * no step function) as internal loop invariant temporaries.
6594      * <p>
6595      * <em>Loop execution.</em><ol type="a">
6596      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
6597      * every clause function. These locals are loop invariant.
6598      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
6599      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
6600      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
6601      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
6602      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
6603      * (in argument order).
6604      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
6605      * returns {@code false}.
6606      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
6607      * sequence {@code (v...)} of loop variables.
6608      * The updated value is immediately visible to all subsequent function calls.
6609      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
6610      * (of type {@code R}) is returned from the loop as a whole.
6611      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
6612      * except by throwing an exception.
6613      * </ol>
6614      * <p>
6615      * <em>Usage tips.</em>
6616      * <ul>
6617      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
6618      * sometimes a step function only needs to observe the current value of its own variable.
6619      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
6620      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
6621      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
6622      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
6623      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
6624      * <li>If some of the clause functions are virtual methods on an instance, the instance
6625      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
6626      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
6627      * will be the first iteration variable value, and it will be easy to use virtual
6628      * methods as clause parts, since all of them will take a leading instance reference matching that value.
6629      * </ul>
6630      * <p>
6631      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
6632      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
6633      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
6634      * {@snippet lang="java" :
6635      * V... init...(A...);
6636      * boolean pred...(V..., A...);
6637      * V... step...(V..., A...);
6638      * R fini...(V..., A...);
6639      * R loop(A... a) {
6640      *   V... v... = init...(a...);
6641      *   for (;;) {
6642      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
6643      *       v = s(v..., a...);
6644      *       if (!p(v..., a...)) {
6645      *         return f(v..., a...);
6646      *       }
6647      *     }
6648      *   }
6649      * }
6650      * }
6651      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
6652      * to their full length, even though individual clause functions may neglect to take them all.
6653      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
6654      *
6655      * @apiNote Example:
6656      * {@snippet lang="java" :
6657      * // iterative implementation of the factorial function as a loop handle
6658      * static int one(int k) { return 1; }
6659      * static int inc(int i, int acc, int k) { return i + 1; }
6660      * static int mult(int i, int acc, int k) { return i * acc; }
6661      * static boolean pred(int i, int acc, int k) { return i < k; }
6662      * static int fin(int i, int acc, int k) { return acc; }
6663      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6664      * // null initializer for counter, should initialize to 0
6665      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6666      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6667      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6668      * assertEquals(120, loop.invoke(5));
6669      * }
6670      * The same example, dropping arguments and using combinators:
6671      * {@snippet lang="java" :
6672      * // simplified implementation of the factorial function as a loop handle
6673      * static int inc(int i) { return i + 1; } // drop acc, k
6674      * static int mult(int i, int acc) { return i * acc; } //drop k
6675      * static boolean cmp(int i, int k) { return i < k; }
6676      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
6677      * // null initializer for counter, should initialize to 0
6678      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6679      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
6680      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
6681      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6682      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6683      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6684      * assertEquals(720, loop.invoke(6));
6685      * }
6686      * A similar example, using a helper object to hold a loop parameter:
6687      * {@snippet lang="java" :
6688      * // instance-based implementation of the factorial function as a loop handle
6689      * static class FacLoop {
6690      *   final int k;
6691      *   FacLoop(int k) { this.k = k; }
6692      *   int inc(int i) { return i + 1; }
6693      *   int mult(int i, int acc) { return i * acc; }
6694      *   boolean pred(int i) { return i < k; }
6695      *   int fin(int i, int acc) { return acc; }
6696      * }
6697      * // assume MH_FacLoop is a handle to the constructor
6698      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6699      * // null initializer for counter, should initialize to 0
6700      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6701      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
6702      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6703      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6704      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
6705      * assertEquals(5040, loop.invoke(7));
6706      * }
6707      *
6708      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
6709      *
6710      * @return a method handle embodying the looping behavior as defined by the arguments.
6711      *
6712      * @throws IllegalArgumentException in case any of the constraints described above is violated.
6713      *
6714      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
6715      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6716      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
6717      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
6718      * @since 9
6719      */
6720     public static MethodHandle loop(MethodHandle[]... clauses) {
6721         // Step 0: determine clause structure.
6722         loopChecks0(clauses);
6723 
6724         List<MethodHandle> init = new ArrayList<>();
6725         List<MethodHandle> step = new ArrayList<>();
6726         List<MethodHandle> pred = new ArrayList<>();
6727         List<MethodHandle> fini = new ArrayList<>();
6728 
6729         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
6730             init.add(clause[0]); // all clauses have at least length 1
6731             step.add(clause.length <= 1 ? null : clause[1]);
6732             pred.add(clause.length <= 2 ? null : clause[2]);
6733             fini.add(clause.length <= 3 ? null : clause[3]);
6734         });
6735 
6736         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
6737         final int nclauses = init.size();
6738 
6739         // Step 1A: determine iteration variables (V...).
6740         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
6741         for (int i = 0; i < nclauses; ++i) {
6742             MethodHandle in = init.get(i);
6743             MethodHandle st = step.get(i);
6744             if (in == null && st == null) {
6745                 iterationVariableTypes.add(void.class);
6746             } else if (in != null && st != null) {
6747                 loopChecks1a(i, in, st);
6748                 iterationVariableTypes.add(in.type().returnType());
6749             } else {
6750                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
6751             }
6752         }
6753         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).toList();
6754 
6755         // Step 1B: determine loop parameters (A...).
6756         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
6757         loopChecks1b(init, commonSuffix);
6758 
6759         // Step 1C: determine loop return type.
6760         // Step 1D: check other types.
6761         // local variable required here; see JDK-8223553
6762         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
6763                 .map(MethodType::returnType);
6764         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
6765         loopChecks1cd(pred, fini, loopReturnType);
6766 
6767         // Step 2: determine parameter lists.
6768         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
6769         commonParameterSequence.addAll(commonSuffix);
6770         loopChecks2(step, pred, fini, commonParameterSequence);
6771         // Step 3: fill in omitted functions.
6772         for (int i = 0; i < nclauses; ++i) {
6773             Class<?> t = iterationVariableTypes.get(i);
6774             if (init.get(i) == null) {
6775                 init.set(i, empty(methodType(t, commonSuffix)));
6776             }
6777             if (step.get(i) == null) {
6778                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
6779             }
6780             if (pred.get(i) == null) {
6781                 pred.set(i, dropArguments(constant(boolean.class, true), 0, commonParameterSequence));
6782             }
6783             if (fini.get(i) == null) {
6784                 fini.set(i, empty(methodType(t, commonParameterSequence)));
6785             }
6786         }
6787 
6788         // Step 4: fill in missing parameter types.
6789         // Also convert all handles to fixed-arity handles.
6790         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
6791         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
6792         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
6793         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
6794 
6795         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
6796                 allMatch(pl -> pl.equals(commonSuffix));
6797         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
6798                 allMatch(pl -> pl.equals(commonParameterSequence));
6799 
6800         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
6801     }
6802 
6803     private static void loopChecks0(MethodHandle[][] clauses) {
6804         if (clauses == null || clauses.length == 0) {
6805             throw newIllegalArgumentException("null or no clauses passed");
6806         }
6807         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
6808             throw newIllegalArgumentException("null clauses are not allowed");
6809         }
6810         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
6811             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
6812         }
6813     }
6814 
6815     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
6816         if (in.type().returnType() != st.type().returnType()) {
6817             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
6818                     st.type().returnType());
6819         }
6820     }
6821 
6822     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6823         return mhs.filter(Objects::nonNull)
6824                 // take only those that can contribute to a common suffix because they are longer than the prefix
6825                 .map(MethodHandle::type)
6826                 .filter(t -> t.parameterCount() > skipSize)
6827                 .max(Comparator.comparingInt(MethodType::parameterCount))
6828                 .map(methodType -> List.of(Arrays.copyOfRange(methodType.ptypes(), skipSize, methodType.parameterCount())))
6829                 .orElse(List.of());
6830     }
6831 
6832     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6833         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6834         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6835         return longest1.size() >= longest2.size() ? longest1 : longest2;
6836     }
6837 
6838     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6839         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6840                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6841             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6842                     " (common suffix: " + commonSuffix + ")");
6843         }
6844     }
6845 
6846     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6847         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6848                 anyMatch(t -> t != loopReturnType)) {
6849             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6850                     loopReturnType + ")");
6851         }
6852 
6853         if (pred.stream().noneMatch(Objects::nonNull)) {
6854             throw newIllegalArgumentException("no predicate found", pred);
6855         }
6856         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6857                 anyMatch(t -> t != boolean.class)) {
6858             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6859         }
6860     }
6861 
6862     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6863         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6864                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6865             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6866                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6867         }
6868     }
6869 
6870     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6871         return hs.stream().map(h -> {
6872             int pc = h.type().parameterCount();
6873             int tpsize = targetParams.size();
6874             return pc < tpsize ? dropArguments(h, pc, targetParams.subList(pc, tpsize)) : h;
6875         }).toList();
6876     }
6877 
6878     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6879         return hs.stream().map(MethodHandle::asFixedArity).toList();
6880     }
6881 
6882     /**
6883      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6884      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6885      * <p>
6886      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6887      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6888      * evaluates to {@code true}).
6889      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6890      * <p>
6891      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6892      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6893      * and updated with the value returned from its invocation. The result of loop execution will be
6894      * the final value of the additional loop-local variable (if present).
6895      * <p>
6896      * The following rules hold for these argument handles:<ul>
6897      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6898      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6899      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6900      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6901      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6902      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6903      * It will constrain the parameter lists of the other loop parts.
6904      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6905      * list {@code (A...)} is called the <em>external parameter list</em>.
6906      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6907      * additional state variable of the loop.
6908      * The body must both accept and return a value of this type {@code V}.
6909      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6910      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6911      * <a href="MethodHandles.html#effid">effectively identical</a>
6912      * to the external parameter list {@code (A...)}.
6913      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6914      * {@linkplain #empty default value}.
6915      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6916      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6917      * effectively identical to the internal parameter list.
6918      * </ul>
6919      * <p>
6920      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6921      * <li>The loop handle's result type is the result type {@code V} of the body.
6922      * <li>The loop handle's parameter types are the types {@code (A...)},
6923      * from the external parameter list.
6924      * </ul>
6925      * <p>
6926      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6927      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6928      * passed to the loop.
6929      * {@snippet lang="java" :
6930      * V init(A...);
6931      * boolean pred(V, A...);
6932      * V body(V, A...);
6933      * V whileLoop(A... a...) {
6934      *   V v = init(a...);
6935      *   while (pred(v, a...)) {
6936      *     v = body(v, a...);
6937      *   }
6938      *   return v;
6939      * }
6940      * }
6941      *
6942      * @apiNote Example:
6943      * {@snippet lang="java" :
6944      * // implement the zip function for lists as a loop handle
6945      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6946      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6947      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6948      *   zip.add(a.next());
6949      *   zip.add(b.next());
6950      *   return zip;
6951      * }
6952      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6953      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6954      * List<String> a = Arrays.asList("a", "b", "c", "d");
6955      * List<String> b = Arrays.asList("e", "f", "g", "h");
6956      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6957      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6958      * }
6959      *
6960      *
6961      * @apiNote The implementation of this method can be expressed as follows:
6962      * {@snippet lang="java" :
6963      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6964      *     MethodHandle fini = (body.type().returnType() == void.class
6965      *                         ? null : identity(body.type().returnType()));
6966      *     MethodHandle[]
6967      *         checkExit = { null, null, pred, fini },
6968      *         varBody   = { init, body };
6969      *     return loop(checkExit, varBody);
6970      * }
6971      * }
6972      *
6973      * @param init optional initializer, providing the initial value of the loop variable.
6974      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6975      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6976      *             above for other constraints.
6977      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6978      *             See above for other constraints.
6979      *
6980      * @return a method handle implementing the {@code while} loop as described by the arguments.
6981      * @throws IllegalArgumentException if the rules for the arguments are violated.
6982      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6983      *
6984      * @see #loop(MethodHandle[][])
6985      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6986      * @since 9
6987      */
6988     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6989         whileLoopChecks(init, pred, body);
6990         MethodHandle fini = identityOrVoid(body.type().returnType());
6991         MethodHandle[] checkExit = { null, null, pred, fini };
6992         MethodHandle[] varBody = { init, body };
6993         return loop(checkExit, varBody);
6994     }
6995 
6996     /**
6997      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6998      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6999      * <p>
7000      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
7001      * method will, in each iteration, first execute its body and then evaluate the predicate.
7002      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
7003      * <p>
7004      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
7005      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
7006      * and updated with the value returned from its invocation. The result of loop execution will be
7007      * the final value of the additional loop-local variable (if present).
7008      * <p>
7009      * The following rules hold for these argument handles:<ul>
7010      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7011      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
7012      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7013      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
7014      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
7015      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
7016      * It will constrain the parameter lists of the other loop parts.
7017      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
7018      * list {@code (A...)} is called the <em>external parameter list</em>.
7019      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7020      * additional state variable of the loop.
7021      * The body must both accept and return a value of this type {@code V}.
7022      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7023      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7024      * <a href="MethodHandles.html#effid">effectively identical</a>
7025      * to the external parameter list {@code (A...)}.
7026      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7027      * {@linkplain #empty default value}.
7028      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
7029      * Its parameter list (either empty or of the form {@code (V A*)}) must be
7030      * effectively identical to the internal parameter list.
7031      * </ul>
7032      * <p>
7033      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7034      * <li>The loop handle's result type is the result type {@code V} of the body.
7035      * <li>The loop handle's parameter types are the types {@code (A...)},
7036      * from the external parameter list.
7037      * </ul>
7038      * <p>
7039      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7040      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
7041      * passed to the loop.
7042      * {@snippet lang="java" :
7043      * V init(A...);
7044      * boolean pred(V, A...);
7045      * V body(V, A...);
7046      * V doWhileLoop(A... a...) {
7047      *   V v = init(a...);
7048      *   do {
7049      *     v = body(v, a...);
7050      *   } while (pred(v, a...));
7051      *   return v;
7052      * }
7053      * }
7054      *
7055      * @apiNote Example:
7056      * {@snippet lang="java" :
7057      * // int i = 0; while (i < limit) { ++i; } return i; => limit
7058      * static int zero(int limit) { return 0; }
7059      * static int step(int i, int limit) { return i + 1; }
7060      * static boolean pred(int i, int limit) { return i < limit; }
7061      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
7062      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
7063      * assertEquals(23, loop.invoke(23));
7064      * }
7065      *
7066      *
7067      * @apiNote The implementation of this method can be expressed as follows:
7068      * {@snippet lang="java" :
7069      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
7070      *     MethodHandle fini = (body.type().returnType() == void.class
7071      *                         ? null : identity(body.type().returnType()));
7072      *     MethodHandle[] clause = { init, body, pred, fini };
7073      *     return loop(clause);
7074      * }
7075      * }
7076      *
7077      * @param init optional initializer, providing the initial value of the loop variable.
7078      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7079      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
7080      *             See above for other constraints.
7081      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
7082      *             above for other constraints.
7083      *
7084      * @return a method handle implementing the {@code while} loop as described by the arguments.
7085      * @throws IllegalArgumentException if the rules for the arguments are violated.
7086      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
7087      *
7088      * @see #loop(MethodHandle[][])
7089      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
7090      * @since 9
7091      */
7092     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
7093         whileLoopChecks(init, pred, body);
7094         MethodHandle fini = identityOrVoid(body.type().returnType());
7095         MethodHandle[] clause = {init, body, pred, fini };
7096         return loop(clause);
7097     }
7098 
7099     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
7100         Objects.requireNonNull(pred);
7101         Objects.requireNonNull(body);
7102         MethodType bodyType = body.type();
7103         Class<?> returnType = bodyType.returnType();
7104         List<Class<?>> innerList = bodyType.parameterList();
7105         List<Class<?>> outerList = innerList;
7106         if (returnType == void.class) {
7107             // OK
7108         } else if (innerList.isEmpty() || innerList.get(0) != returnType) {
7109             // leading V argument missing => error
7110             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7111             throw misMatchedTypes("body function", bodyType, expected);
7112         } else {
7113             outerList = innerList.subList(1, innerList.size());
7114         }
7115         MethodType predType = pred.type();
7116         if (predType.returnType() != boolean.class ||
7117                 !predType.effectivelyIdenticalParameters(0, innerList)) {
7118             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
7119         }
7120         if (init != null) {
7121             MethodType initType = init.type();
7122             if (initType.returnType() != returnType ||
7123                     !initType.effectivelyIdenticalParameters(0, outerList)) {
7124                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7125             }
7126         }
7127     }
7128 
7129     /**
7130      * Constructs a loop that runs a given number of iterations.
7131      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7132      * <p>
7133      * The number of iterations is determined by the {@code iterations} handle evaluation result.
7134      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
7135      * It will be initialized to 0 and incremented by 1 in each iteration.
7136      * <p>
7137      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7138      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7139      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7140      * <p>
7141      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7142      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7143      * iteration variable.
7144      * The result of the loop handle execution will be the final {@code V} value of that variable
7145      * (or {@code void} if there is no {@code V} variable).
7146      * <p>
7147      * The following rules hold for the argument handles:<ul>
7148      * <li>The {@code iterations} handle must not be {@code null}, and must return
7149      * the type {@code int}, referred to here as {@code I} in parameter type lists.
7150      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7151      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
7152      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7153      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
7154      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
7155      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
7156      * of types called the <em>internal parameter list</em>.
7157      * It will constrain the parameter lists of the other loop parts.
7158      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
7159      * with no additional {@code A} types, then the internal parameter list is extended by
7160      * the argument types {@code A...} of the {@code iterations} handle.
7161      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
7162      * list {@code (A...)} is called the <em>external parameter list</em>.
7163      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7164      * additional state variable of the loop.
7165      * The body must both accept a leading parameter and return a value of this type {@code V}.
7166      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7167      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7168      * <a href="MethodHandles.html#effid">effectively identical</a>
7169      * to the external parameter list {@code (A...)}.
7170      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7171      * {@linkplain #empty default value}.
7172      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
7173      * effectively identical to the external parameter list {@code (A...)}.
7174      * </ul>
7175      * <p>
7176      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7177      * <li>The loop handle's result type is the result type {@code V} of the body.
7178      * <li>The loop handle's parameter types are the types {@code (A...)},
7179      * from the external parameter list.
7180      * </ul>
7181      * <p>
7182      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7183      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
7184      * arguments passed to the loop.
7185      * {@snippet lang="java" :
7186      * int iterations(A...);
7187      * V init(A...);
7188      * V body(V, int, A...);
7189      * V countedLoop(A... a...) {
7190      *   int end = iterations(a...);
7191      *   V v = init(a...);
7192      *   for (int i = 0; i < end; ++i) {
7193      *     v = body(v, i, a...);
7194      *   }
7195      *   return v;
7196      * }
7197      * }
7198      *
7199      * @apiNote Example with a fully conformant body method:
7200      * {@snippet lang="java" :
7201      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
7202      * // => a variation on a well known theme
7203      * static String step(String v, int counter, String init) { return "na " + v; }
7204      * // assume MH_step is a handle to the method above
7205      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
7206      * MethodHandle start = MethodHandles.identity(String.class);
7207      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
7208      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
7209      * }
7210      *
7211      * @apiNote Example with the simplest possible body method type,
7212      * and passing the number of iterations to the loop invocation:
7213      * {@snippet lang="java" :
7214      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
7215      * // => a variation on a well known theme
7216      * static String step(String v, int counter ) { return "na " + v; }
7217      * // assume MH_step is a handle to the method above
7218      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
7219      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
7220      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
7221      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
7222      * }
7223      *
7224      * @apiNote Example that treats the number of iterations, string to append to, and string to append
7225      * as loop parameters:
7226      * {@snippet lang="java" :
7227      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
7228      * // => a variation on a well known theme
7229      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
7230      * // assume MH_step is a handle to the method above
7231      * MethodHandle count = MethodHandles.identity(int.class);
7232      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
7233      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
7234      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
7235      * }
7236      *
7237      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
7238      * to enforce a loop type:
7239      * {@snippet lang="java" :
7240      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
7241      * // => a variation on a well known theme
7242      * static String step(String v, int counter, String pre) { return pre + " " + v; }
7243      * // assume MH_step is a handle to the method above
7244      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
7245      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
7246      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
7247      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
7248      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
7249      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
7250      * }
7251      *
7252      * @apiNote The implementation of this method can be expressed as follows:
7253      * {@snippet lang="java" :
7254      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
7255      *     return countedLoop(empty(iterations.type()), iterations, init, body);
7256      * }
7257      * }
7258      *
7259      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
7260      *                   result type must be {@code int}. See above for other constraints.
7261      * @param init optional initializer, providing the initial value of the loop variable.
7262      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7263      * @param body body of the loop, which may not be {@code null}.
7264      *             It controls the loop parameters and result type in the standard case (see above for details).
7265      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7266      *             and may accept any number of additional types.
7267      *             See above for other constraints.
7268      *
7269      * @return a method handle representing the loop.
7270      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
7271      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7272      *
7273      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
7274      * @since 9
7275      */
7276     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
7277         return countedLoop(empty(iterations.type()), iterations, init, body);
7278     }
7279 
7280     /**
7281      * Constructs a loop that counts over a range of numbers.
7282      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7283      * <p>
7284      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
7285      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
7286      * values of the loop counter.
7287      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
7288      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
7289      * <p>
7290      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7291      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7292      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7293      * <p>
7294      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7295      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7296      * iteration variable.
7297      * The result of the loop handle execution will be the final {@code V} value of that variable
7298      * (or {@code void} if there is no {@code V} variable).
7299      * <p>
7300      * The following rules hold for the argument handles:<ul>
7301      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
7302      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
7303      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7304      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
7305      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7306      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
7307      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
7308      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
7309      * of types called the <em>internal parameter list</em>.
7310      * It will constrain the parameter lists of the other loop parts.
7311      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
7312      * with no additional {@code A} types, then the internal parameter list is extended by
7313      * the argument types {@code A...} of the {@code end} handle.
7314      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
7315      * list {@code (A...)} is called the <em>external parameter list</em>.
7316      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7317      * additional state variable of the loop.
7318      * The body must both accept a leading parameter and return a value of this type {@code V}.
7319      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7320      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7321      * <a href="MethodHandles.html#effid">effectively identical</a>
7322      * to the external parameter list {@code (A...)}.
7323      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7324      * {@linkplain #empty default value}.
7325      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
7326      * effectively identical to the external parameter list {@code (A...)}.
7327      * <li>Likewise, the parameter list of {@code end} must be effectively identical
7328      * to the external parameter list.
7329      * </ul>
7330      * <p>
7331      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7332      * <li>The loop handle's result type is the result type {@code V} of the body.
7333      * <li>The loop handle's parameter types are the types {@code (A...)},
7334      * from the external parameter list.
7335      * </ul>
7336      * <p>
7337      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7338      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
7339      * arguments passed to the loop.
7340      * {@snippet lang="java" :
7341      * int start(A...);
7342      * int end(A...);
7343      * V init(A...);
7344      * V body(V, int, A...);
7345      * V countedLoop(A... a...) {
7346      *   int e = end(a...);
7347      *   int s = start(a...);
7348      *   V v = init(a...);
7349      *   for (int i = s; i < e; ++i) {
7350      *     v = body(v, i, a...);
7351      *   }
7352      *   return v;
7353      * }
7354      * }
7355      *
7356      * @apiNote The implementation of this method can be expressed as follows:
7357      * {@snippet lang="java" :
7358      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7359      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
7360      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
7361      *     // the following semantics:
7362      *     // MH_increment: (int limit, int counter) -> counter + 1
7363      *     // MH_predicate: (int limit, int counter) -> counter < limit
7364      *     Class<?> counterType = start.type().returnType();  // int
7365      *     Class<?> returnType = body.type().returnType();
7366      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
7367      *     if (returnType != void.class) {  // ignore the V variable
7368      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7369      *         pred = dropArguments(pred, 1, returnType);  // ditto
7370      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
7371      *     }
7372      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
7373      *     MethodHandle[]
7374      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7375      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
7376      *         indexVar   = { start, incr };           // i = start(); i = i + 1
7377      *     return loop(loopLimit, bodyClause, indexVar);
7378      * }
7379      * }
7380      *
7381      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
7382      *              See above for other constraints.
7383      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
7384      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
7385      * @param init optional initializer, providing the initial value of the loop variable.
7386      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7387      * @param body body of the loop, which may not be {@code null}.
7388      *             It controls the loop parameters and result type in the standard case (see above for details).
7389      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7390      *             and may accept any number of additional types.
7391      *             See above for other constraints.
7392      *
7393      * @return a method handle representing the loop.
7394      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
7395      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7396      *
7397      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
7398      * @since 9
7399      */
7400     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7401         countedLoopChecks(start, end, init, body);
7402         Class<?> counterType = start.type().returnType();  // int, but who's counting?
7403         Class<?> limitType   = end.type().returnType();    // yes, int again
7404         Class<?> returnType  = body.type().returnType();
7405         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
7406         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
7407         MethodHandle retv = null;
7408         if (returnType != void.class) {
7409             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7410             pred = dropArguments(pred, 1, returnType);  // ditto
7411             retv = dropArguments(identity(returnType), 0, counterType);
7412         }
7413         body = dropArguments(body, 0, counterType);  // ignore the limit variable
7414         MethodHandle[]
7415             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7416             bodyClause = { init, body },            // v = init(); v = body(v, i)
7417             indexVar   = { start, incr };           // i = start(); i = i + 1
7418         return loop(loopLimit, bodyClause, indexVar);
7419     }
7420 
7421     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7422         Objects.requireNonNull(start);
7423         Objects.requireNonNull(end);
7424         Objects.requireNonNull(body);
7425         Class<?> counterType = start.type().returnType();
7426         if (counterType != int.class) {
7427             MethodType expected = start.type().changeReturnType(int.class);
7428             throw misMatchedTypes("start function", start.type(), expected);
7429         } else if (end.type().returnType() != counterType) {
7430             MethodType expected = end.type().changeReturnType(counterType);
7431             throw misMatchedTypes("end function", end.type(), expected);
7432         }
7433         MethodType bodyType = body.type();
7434         Class<?> returnType = bodyType.returnType();
7435         List<Class<?>> innerList = bodyType.parameterList();
7436         // strip leading V value if present
7437         int vsize = (returnType == void.class ? 0 : 1);
7438         if (vsize != 0 && (innerList.isEmpty() || innerList.get(0) != returnType)) {
7439             // argument list has no "V" => error
7440             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7441             throw misMatchedTypes("body function", bodyType, expected);
7442         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
7443             // missing I type => error
7444             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
7445             throw misMatchedTypes("body function", bodyType, expected);
7446         }
7447         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
7448         if (outerList.isEmpty()) {
7449             // special case; take lists from end handle
7450             outerList = end.type().parameterList();
7451             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
7452         }
7453         MethodType expected = methodType(counterType, outerList);
7454         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
7455             throw misMatchedTypes("start parameter types", start.type(), expected);
7456         }
7457         if (end.type() != start.type() &&
7458             !end.type().effectivelyIdenticalParameters(0, outerList)) {
7459             throw misMatchedTypes("end parameter types", end.type(), expected);
7460         }
7461         if (init != null) {
7462             MethodType initType = init.type();
7463             if (initType.returnType() != returnType ||
7464                 !initType.effectivelyIdenticalParameters(0, outerList)) {
7465                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7466             }
7467         }
7468     }
7469 
7470     /**
7471      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
7472      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7473      * <p>
7474      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
7475      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
7476      * <p>
7477      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7478      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7479      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7480      * <p>
7481      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7482      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7483      * iteration variable.
7484      * The result of the loop handle execution will be the final {@code V} value of that variable
7485      * (or {@code void} if there is no {@code V} variable).
7486      * <p>
7487      * The following rules hold for the argument handles:<ul>
7488      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7489      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
7490      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7491      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
7492      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
7493      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
7494      * of types called the <em>internal parameter list</em>.
7495      * It will constrain the parameter lists of the other loop parts.
7496      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
7497      * with no additional {@code A} types, then the internal parameter list is extended by
7498      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
7499      * single type {@code Iterable} is added and constitutes the {@code A...} list.
7500      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
7501      * list {@code (A...)} is called the <em>external parameter list</em>.
7502      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7503      * additional state variable of the loop.
7504      * The body must both accept a leading parameter and return a value of this type {@code V}.
7505      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7506      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7507      * <a href="MethodHandles.html#effid">effectively identical</a>
7508      * to the external parameter list {@code (A...)}.
7509      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7510      * {@linkplain #empty default value}.
7511      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
7512      * type {@code java.util.Iterator} or a subtype thereof.
7513      * The iterator it produces when the loop is executed will be assumed
7514      * to yield values which can be converted to type {@code T}.
7515      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
7516      * effectively identical to the external parameter list {@code (A...)}.
7517      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
7518      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
7519      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
7520      * handle parameter is adjusted to accept the leading {@code A} type, as if by
7521      * the {@link MethodHandle#asType asType} conversion method.
7522      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
7523      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
7524      * </ul>
7525      * <p>
7526      * The type {@code T} may be either a primitive or reference.
7527      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
7528      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
7529      * as if by the {@link MethodHandle#asType asType} conversion method.
7530      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
7531      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
7532      * <p>
7533      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7534      * <li>The loop handle's result type is the result type {@code V} of the body.
7535      * <li>The loop handle's parameter types are the types {@code (A...)},
7536      * from the external parameter list.
7537      * </ul>
7538      * <p>
7539      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7540      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
7541      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
7542      * {@snippet lang="java" :
7543      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
7544      * V init(A...);
7545      * V body(V,T,A...);
7546      * V iteratedLoop(A... a...) {
7547      *   Iterator<T> it = iterator(a...);
7548      *   V v = init(a...);
7549      *   while (it.hasNext()) {
7550      *     T t = it.next();
7551      *     v = body(v, t, a...);
7552      *   }
7553      *   return v;
7554      * }
7555      * }
7556      *
7557      * @apiNote Example:
7558      * {@snippet lang="java" :
7559      * // get an iterator from a list
7560      * static List<String> reverseStep(List<String> r, String e) {
7561      *   r.add(0, e);
7562      *   return r;
7563      * }
7564      * static List<String> newArrayList() { return new ArrayList<>(); }
7565      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
7566      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
7567      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
7568      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
7569      * assertEquals(reversedList, (List<String>) loop.invoke(list));
7570      * }
7571      *
7572      * @apiNote The implementation of this method can be expressed approximately as follows:
7573      * {@snippet lang="java" :
7574      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7575      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
7576      *     Class<?> returnType = body.type().returnType();
7577      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7578      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
7579      *     MethodHandle retv = null, step = body, startIter = iterator;
7580      *     if (returnType != void.class) {
7581      *         // the simple thing first:  in (I V A...), drop the I to get V
7582      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
7583      *         // body type signature (V T A...), internal loop types (I V A...)
7584      *         step = swapArguments(body, 0, 1);  // swap V <-> T
7585      *     }
7586      *     if (startIter == null)  startIter = MH_getIter;
7587      *     MethodHandle[]
7588      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
7589      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
7590      *     return loop(iterVar, bodyClause);
7591      * }
7592      * }
7593      *
7594      * @param iterator an optional handle to return the iterator to start the loop.
7595      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
7596      *                 See above for other constraints.
7597      * @param init optional initializer, providing the initial value of the loop variable.
7598      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7599      * @param body body of the loop, which may not be {@code null}.
7600      *             It controls the loop parameters and result type in the standard case (see above for details).
7601      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
7602      *             and may accept any number of additional types.
7603      *             See above for other constraints.
7604      *
7605      * @return a method handle embodying the iteration loop functionality.
7606      * @throws NullPointerException if the {@code body} handle is {@code null}.
7607      * @throws IllegalArgumentException if any argument violates the above requirements.
7608      *
7609      * @since 9
7610      */
7611     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7612         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
7613         Class<?> returnType = body.type().returnType();
7614         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
7615         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
7616         MethodHandle startIter;
7617         MethodHandle nextVal;
7618         {
7619             MethodType iteratorType;
7620             if (iterator == null) {
7621                 // derive argument type from body, if available, else use Iterable
7622                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
7623                 iteratorType = startIter.type().changeParameterType(0, iterableType);
7624             } else {
7625                 // force return type to the internal iterator class
7626                 iteratorType = iterator.type().changeReturnType(Iterator.class);
7627                 startIter = iterator;
7628             }
7629             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7630             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
7631 
7632             // perform the asType transforms under an exception transformer, as per spec.:
7633             try {
7634                 startIter = startIter.asType(iteratorType);
7635                 nextVal = nextRaw.asType(nextValType);
7636             } catch (WrongMethodTypeException ex) {
7637                 throw new IllegalArgumentException(ex);
7638             }
7639         }
7640 
7641         MethodHandle retv = null, step = body;
7642         if (returnType != void.class) {
7643             // the simple thing first:  in (I V A...), drop the I to get V
7644             retv = dropArguments(identity(returnType), 0, Iterator.class);
7645             // body type signature (V T A...), internal loop types (I V A...)
7646             step = swapArguments(body, 0, 1);  // swap V <-> T
7647         }
7648 
7649         MethodHandle[]
7650             iterVar    = { startIter, null, hasNext, retv },
7651             bodyClause = { init, filterArgument(step, 0, nextVal) };
7652         return loop(iterVar, bodyClause);
7653     }
7654 
7655     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7656         Objects.requireNonNull(body);
7657         MethodType bodyType = body.type();
7658         Class<?> returnType = bodyType.returnType();
7659         List<Class<?>> internalParamList = bodyType.parameterList();
7660         // strip leading V value if present
7661         int vsize = (returnType == void.class ? 0 : 1);
7662         if (vsize != 0 && (internalParamList.isEmpty() || internalParamList.get(0) != returnType)) {
7663             // argument list has no "V" => error
7664             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7665             throw misMatchedTypes("body function", bodyType, expected);
7666         } else if (internalParamList.size() <= vsize) {
7667             // missing T type => error
7668             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
7669             throw misMatchedTypes("body function", bodyType, expected);
7670         }
7671         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
7672         Class<?> iterableType = null;
7673         if (iterator != null) {
7674             // special case; if the body handle only declares V and T then
7675             // the external parameter list is obtained from iterator handle
7676             if (externalParamList.isEmpty()) {
7677                 externalParamList = iterator.type().parameterList();
7678             }
7679             MethodType itype = iterator.type();
7680             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
7681                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
7682             }
7683             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
7684                 MethodType expected = methodType(itype.returnType(), externalParamList);
7685                 throw misMatchedTypes("iterator parameters", itype, expected);
7686             }
7687         } else {
7688             if (externalParamList.isEmpty()) {
7689                 // special case; if the iterator handle is null and the body handle
7690                 // only declares V and T then the external parameter list consists
7691                 // of Iterable
7692                 externalParamList = List.of(Iterable.class);
7693                 iterableType = Iterable.class;
7694             } else {
7695                 // special case; if the iterator handle is null and the external
7696                 // parameter list is not empty then the first parameter must be
7697                 // assignable to Iterable
7698                 iterableType = externalParamList.get(0);
7699                 if (!Iterable.class.isAssignableFrom(iterableType)) {
7700                     throw newIllegalArgumentException(
7701                             "inferred first loop argument must inherit from Iterable: " + iterableType);
7702                 }
7703             }
7704         }
7705         if (init != null) {
7706             MethodType initType = init.type();
7707             if (initType.returnType() != returnType ||
7708                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
7709                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
7710             }
7711         }
7712         return iterableType;  // help the caller a bit
7713     }
7714 
7715     /*non-public*/
7716     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
7717         // there should be a better way to uncross my wires
7718         int arity = mh.type().parameterCount();
7719         int[] order = new int[arity];
7720         for (int k = 0; k < arity; k++)  order[k] = k;
7721         order[i] = j; order[j] = i;
7722         Class<?>[] types = mh.type().parameterArray();
7723         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
7724         MethodType swapType = methodType(mh.type().returnType(), types);
7725         return permuteArguments(mh, swapType, order);
7726     }
7727 
7728     /**
7729      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
7730      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
7731      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
7732      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
7733      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
7734      * {@code try-finally} handle.
7735      * <p>
7736      * The {@code cleanup} handle will be passed one or two additional leading arguments.
7737      * The first is the exception thrown during the
7738      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
7739      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
7740      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
7741      * The second argument is not present if the {@code target} handle has a {@code void} return type.
7742      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
7743      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
7744      * <p>
7745      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
7746      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
7747      * two extra leading parameters:<ul>
7748      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
7749      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
7750      * the result from the execution of the {@code target} handle.
7751      * This parameter is not present if the {@code target} returns {@code void}.
7752      * </ul>
7753      * <p>
7754      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
7755      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
7756      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
7757      * the cleanup.
7758      * {@snippet lang="java" :
7759      * V target(A..., B...);
7760      * V cleanup(Throwable, V, A...);
7761      * V adapter(A... a, B... b) {
7762      *   V result = (zero value for V);
7763      *   Throwable throwable = null;
7764      *   try {
7765      *     result = target(a..., b...);
7766      *   } catch (Throwable t) {
7767      *     throwable = t;
7768      *     throw t;
7769      *   } finally {
7770      *     result = cleanup(throwable, result, a...);
7771      *   }
7772      *   return result;
7773      * }
7774      * }
7775      * <p>
7776      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
7777      * be modified by execution of the target, and so are passed unchanged
7778      * from the caller to the cleanup, if it is invoked.
7779      * <p>
7780      * The target and cleanup must return the same type, even if the cleanup
7781      * always throws.
7782      * To create such a throwing cleanup, compose the cleanup logic
7783      * with {@link #throwException throwException},
7784      * in order to create a method handle of the correct return type.
7785      * <p>
7786      * Note that {@code tryFinally} never converts exceptions into normal returns.
7787      * In rare cases where exceptions must be converted in that way, first wrap
7788      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
7789      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
7790      * <p>
7791      * It is recommended that the first parameter type of {@code cleanup} be
7792      * declared {@code Throwable} rather than a narrower subtype.  This ensures
7793      * {@code cleanup} will always be invoked with whatever exception that
7794      * {@code target} throws.  Declaring a narrower type may result in a
7795      * {@code ClassCastException} being thrown by the {@code try-finally}
7796      * handle if the type of the exception thrown by {@code target} is not
7797      * assignable to the first parameter type of {@code cleanup}.  Note that
7798      * various exception types of {@code VirtualMachineError},
7799      * {@code LinkageError}, and {@code RuntimeException} can in principle be
7800      * thrown by almost any kind of Java code, and a finally clause that
7801      * catches (say) only {@code IOException} would mask any of the others
7802      * behind a {@code ClassCastException}.
7803      *
7804      * @param target the handle whose execution is to be wrapped in a {@code try} block.
7805      * @param cleanup the handle that is invoked in the finally block.
7806      *
7807      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
7808      * @throws NullPointerException if any argument is null
7809      * @throws IllegalArgumentException if {@code cleanup} does not accept
7810      *          the required leading arguments, or if the method handle types do
7811      *          not match in their return types and their
7812      *          corresponding trailing parameters
7813      *
7814      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7815      * @since 9
7816      */
7817     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7818         Class<?>[] targetParamTypes = target.type().ptypes();
7819         Class<?> rtype = target.type().returnType();
7820 
7821         tryFinallyChecks(target, cleanup);
7822 
7823         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7824         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7825         // target parameter list.
7826         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0, false);
7827 
7828         // Ensure that the intrinsic type checks the instance thrown by the
7829         // target against the first parameter of cleanup
7830         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7831 
7832         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7833         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7834     }
7835 
7836     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7837         Class<?> rtype = target.type().returnType();
7838         if (rtype != cleanup.type().returnType()) {
7839             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7840         }
7841         MethodType cleanupType = cleanup.type();
7842         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7843             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7844         }
7845         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7846             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7847         }
7848         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7849         // target parameter list.
7850         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7851         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7852             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7853                     cleanup.type(), target.type());
7854         }
7855     }
7856 
7857     /**
7858      * Creates a table switch method handle, which can be used to switch over a set of target
7859      * method handles, based on a given target index, called selector.
7860      * <p>
7861      * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)},
7862      * and where {@code N} is the number of target method handles, the table switch method
7863      * handle will invoke the n-th target method handle from the list of target method handles.
7864      * <p>
7865      * For a selector value that does not fall in the range {@code [0, N)}, the table switch
7866      * method handle will invoke the given fallback method handle.
7867      * <p>
7868      * All method handles passed to this method must have the same type, with the additional
7869      * requirement that the leading parameter be of type {@code int}. The leading parameter
7870      * represents the selector.
7871      * <p>
7872      * Any trailing parameters present in the type will appear on the returned table switch
7873      * method handle as well. Any arguments assigned to these parameters will be forwarded,
7874      * together with the selector value, to the selected method handle when invoking it.
7875      *
7876      * @apiNote Example:
7877      * The cases each drop the {@code selector} value they are given, and take an additional
7878      * {@code String} argument, which is concatenated (using {@link String#concat(String)})
7879      * to a specific constant label string for each case:
7880      * {@snippet lang="java" :
7881      * MethodHandles.Lookup lookup = MethodHandles.lookup();
7882      * MethodHandle caseMh = lookup.findVirtual(String.class, "concat",
7883      *         MethodType.methodType(String.class, String.class));
7884      * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class);
7885      *
7886      * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: ");
7887      * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: ");
7888      * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: ");
7889      *
7890      * MethodHandle mhSwitch = MethodHandles.tableSwitch(
7891      *     caseDefault,
7892      *     case0,
7893      *     case1
7894      * );
7895      *
7896      * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data"));
7897      * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data"));
7898      * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data"));
7899      * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data"));
7900      * }
7901      *
7902      * @param fallback the fallback method handle that is called when the selector is not
7903      *                 within the range {@code [0, N)}.
7904      * @param targets array of target method handles.
7905      * @return the table switch method handle.
7906      * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any
7907      *                              any of the elements of the {@code targets} array are
7908      *                              {@code null}.
7909      * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading
7910      *                                  parameter of the fallback handle or any of the target
7911      *                                  handles is not {@code int}, or if the types of
7912      *                                  the fallback handle and all of target handles are
7913      *                                  not the same.
7914      *
7915      * @since 17
7916      */
7917     public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) {
7918         Objects.requireNonNull(fallback);
7919         Objects.requireNonNull(targets);
7920         targets = targets.clone();
7921         MethodType type = tableSwitchChecks(fallback, targets);
7922         return MethodHandleImpl.makeTableSwitch(type, fallback, targets);
7923     }
7924 
7925     private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) {
7926         if (caseActions.length == 0)
7927             throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions));
7928 
7929         MethodType expectedType = defaultCase.type();
7930 
7931         if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class)
7932             throw new IllegalArgumentException(
7933                 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions));
7934 
7935         for (MethodHandle mh : caseActions) {
7936             Objects.requireNonNull(mh);
7937             if (mh.type() != expectedType)
7938                 throw new IllegalArgumentException(
7939                     "Case actions must have the same type: " + Arrays.toString(caseActions));
7940         }
7941 
7942         return expectedType;
7943     }
7944 
7945     /**
7946      * Adapts a target var handle by pre-processing incoming and outgoing values using a pair of filter functions.
7947      * <p>
7948      * When calling e.g. {@link VarHandle#set(Object...)} on the resulting var handle, the incoming value (of type {@code T}, where
7949      * {@code T} is the <em>last</em> parameter type of the first filter function) is processed using the first filter and then passed
7950      * to the target var handle.
7951      * Conversely, when calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the return value obtained from
7952      * the target var handle (of type {@code T}, where {@code T} is the <em>last</em> parameter type of the second filter function)
7953      * is processed using the second filter and returned to the caller. More advanced access mode types, such as
7954      * {@link VarHandle.AccessMode#COMPARE_AND_EXCHANGE} might apply both filters at the same time.
7955      * <p>
7956      * For the boxing and unboxing filters to be well-formed, their types must be of the form {@code (A... , S) -> T} and
7957      * {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle. If this is the case,
7958      * the resulting var handle will have type {@code S} and will feature the additional coordinates {@code A...} (which
7959      * will be appended to the coordinates of the target var handle).
7960      * <p>
7961      * If the boxing and unboxing filters throw any checked exceptions when invoked, the resulting var handle will
7962      * throw an {@link IllegalStateException}.
7963      * <p>
7964      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7965      * atomic access guarantees as those featured by the target var handle.
7966      *
7967      * @param target the target var handle
7968      * @param filterToTarget a filter to convert some type {@code S} into the type of {@code target}
7969      * @param filterFromTarget a filter to convert the type of {@code target} to some type {@code S}
7970      * @return an adapter var handle which accepts a new type, performing the provided boxing/unboxing conversions.
7971      * @throws IllegalArgumentException if {@code filterFromTarget} and {@code filterToTarget} are not well-formed, that is, they have types
7972      * other than {@code (A... , S) -> T} and {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle,
7973      * or if it's determined that either {@code filterFromTarget} or {@code filterToTarget} throws any checked exceptions.
7974      * @throws NullPointerException if any of the arguments is {@code null}.
7975      * @since 22
7976      */
7977     public static VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
7978         return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
7979     }
7980 
7981     /**
7982      * Adapts a target var handle by pre-processing incoming coordinate values using unary filter functions.
7983      * <p>
7984      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the incoming coordinate values
7985      * starting at position {@code pos} (of type {@code C1, C2 ... Cn}, where {@code C1, C2 ... Cn} are the return types
7986      * of the unary filter functions) are transformed into new values (of type {@code S1, S2 ... Sn}, where {@code S1, S2 ... Sn} are the
7987      * parameter types of the unary filter functions), and then passed (along with any coordinate that was left unaltered
7988      * by the adaptation) to the target var handle.
7989      * <p>
7990      * For the coordinate filters to be well-formed, their types must be of the form {@code S1 -> T1, S2 -> T1 ... Sn -> Tn},
7991      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
7992      * <p>
7993      * If any of the filters throws a checked exception when invoked, the resulting var handle will
7994      * throw an {@link IllegalStateException}.
7995      * <p>
7996      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7997      * atomic access guarantees as those featured by the target var handle.
7998      *
7999      * @param target the target var handle
8000      * @param pos the position of the first coordinate to be transformed
8001      * @param filters the unary functions which are used to transform coordinates starting at position {@code pos}
8002      * @return an adapter var handle which accepts new coordinate types, applying the provided transformation
8003      * to the new coordinate values.
8004      * @throws IllegalArgumentException if the handles in {@code filters} are not well-formed, that is, they have types
8005      * other than {@code S1 -> T1, S2 -> T2, ... Sn -> Tn} where {@code T1, T2 ... Tn} are the coordinate types starting
8006      * at position {@code pos} of the target var handle, if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8007      * or if more filters are provided than the actual number of coordinate types available starting at {@code pos},
8008      * or if it's determined that any of the filters throws any checked exceptions.
8009      * @throws NullPointerException if any of the arguments is {@code null} or {@code filters} contains {@code null}.
8010      * @since 22
8011      */
8012     public static VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
8013         return VarHandles.filterCoordinates(target, pos, filters);
8014     }
8015 
8016     /**
8017      * Provides a target var handle with one or more <em>bound coordinates</em>
8018      * in advance of the var handle's invocation. As a consequence, the resulting var handle will feature less
8019      * coordinate types than the target var handle.
8020      * <p>
8021      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, incoming coordinate values
8022      * are joined with bound coordinate values, and then passed to the target var handle.
8023      * <p>
8024      * For the bound coordinates to be well-formed, their types must be {@code T1, T2 ... Tn },
8025      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
8026      * <p>
8027      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8028      * atomic access guarantees as those featured by the target var handle.
8029      *
8030      * @param target the var handle to invoke after the bound coordinates are inserted
8031      * @param pos the position of the first coordinate to be inserted
8032      * @param values the series of bound coordinates to insert
8033      * @return an adapter var handle which inserts additional coordinates,
8034      *         before calling the target var handle
8035      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8036      * or if more values are provided than the actual number of coordinate types available starting at {@code pos}.
8037      * @throws ClassCastException if the bound coordinates in {@code values} are not well-formed, that is, they have types
8038      * other than {@code T1, T2 ... Tn }, where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos}
8039      * of the target var handle.
8040      * @throws NullPointerException if any of the arguments is {@code null} or {@code values} contains {@code null}.
8041      * @since 22
8042      */
8043     public static VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
8044         return VarHandles.insertCoordinates(target, pos, values);
8045     }
8046 
8047     /**
8048      * Provides a var handle which adapts the coordinate values of the target var handle, by re-arranging them
8049      * so that the new coordinates match the provided ones.
8050      * <p>
8051      * The given array controls the reordering.
8052      * Call {@code #I} the number of incoming coordinates (the value
8053      * {@code newCoordinates.size()}), and call {@code #O} the number
8054      * of outgoing coordinates (the number of coordinates associated with the target var handle).
8055      * Then the length of the reordering array must be {@code #O},
8056      * and each element must be a non-negative number less than {@code #I}.
8057      * For every {@code N} less than {@code #O}, the {@code N}-th
8058      * outgoing coordinate will be taken from the {@code I}-th incoming
8059      * coordinate, where {@code I} is {@code reorder[N]}.
8060      * <p>
8061      * No coordinate value conversions are applied.
8062      * The type of each incoming coordinate, as determined by {@code newCoordinates},
8063      * must be identical to the type of the corresponding outgoing coordinate
8064      * in the target var handle.
8065      * <p>
8066      * The reordering array need not specify an actual permutation.
8067      * An incoming coordinate will be duplicated if its index appears
8068      * more than once in the array, and an incoming coordinate will be dropped
8069      * if its index does not appear in the array.
8070      * <p>
8071      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8072      * atomic access guarantees as those featured by the target var handle.
8073      * @param target the var handle to invoke after the coordinates have been reordered
8074      * @param newCoordinates the new coordinate types
8075      * @param reorder an index array which controls the reordering
8076      * @return an adapter var handle which re-arranges the incoming coordinate values,
8077      * before calling the target var handle
8078      * @throws IllegalArgumentException if the index array length is not equal to
8079      * the number of coordinates of the target var handle, or if any index array element is not a valid index for
8080      * a coordinate of {@code newCoordinates}, or if two corresponding coordinate types in
8081      * the target var handle and in {@code newCoordinates} are not identical.
8082      * @throws NullPointerException if any of the arguments is {@code null} or {@code newCoordinates} contains {@code null}.
8083      * @since 22
8084      */
8085     public static VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
8086         return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
8087     }
8088 
8089     /**
8090      * Adapts a target var handle by pre-processing
8091      * a sub-sequence of its coordinate values with a filter (a method handle).
8092      * The pre-processed coordinates are replaced by the result (if any) of the
8093      * filter function and the target var handle is then called on the modified (usually shortened)
8094      * coordinate list.
8095      * <p>
8096      * If {@code R} is the return type of the filter, then:
8097      * <ul>
8098      * <li>if {@code R} <em>is not</em> {@code void}, the target var handle must have a coordinate of type {@code R} in
8099      * position {@code pos}. The parameter types of the filter will replace the coordinate type at position {@code pos}
8100      * of the target var handle. When the returned var handle is invoked, it will be as if the filter is invoked first,
8101      * and its result is passed in place of the coordinate at position {@code pos} in a downstream invocation of the
8102      * target var handle.</li>
8103      * <li> if {@code R} <em>is</em> {@code void}, the parameter types (if any) of the filter will be inserted in the
8104      * coordinate type list of the target var handle at position {@code pos}. In this case, when the returned var handle
8105      * is invoked, the filter essentially acts as a side effect, consuming some of the coordinate values, before a
8106      * downstream invocation of the target var handle.</li>
8107      * </ul>
8108      * <p>
8109      * If any of the filters throws a checked exception when invoked, the resulting var handle will
8110      * throw an {@link IllegalStateException}.
8111      * <p>
8112      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8113      * atomic access guarantees as those featured by the target var handle.
8114      *
8115      * @param target the var handle to invoke after the coordinates have been filtered
8116      * @param pos the position in the coordinate list of the target var handle where the filter is to be inserted
8117      * @param filter the filter method handle
8118      * @return an adapter var handle which filters the incoming coordinate values,
8119      * before calling the target var handle
8120      * @throws IllegalArgumentException if the return type of {@code filter}
8121      * is not void, and it is not the same as the {@code pos} coordinate of the target var handle,
8122      * if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
8123      * if the resulting var handle's type would have <a href="MethodHandle.html#maxarity">too many coordinates</a>,
8124      * or if it's determined that {@code filter} throws any checked exceptions.
8125      * @throws NullPointerException if any of the arguments is {@code null}.
8126      * @since 22
8127      */
8128     public static VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
8129         return VarHandles.collectCoordinates(target, pos, filter);
8130     }
8131 
8132     /**
8133      * Returns a var handle which will discard some dummy coordinates before delegating to the
8134      * target var handle. As a consequence, the resulting var handle will feature more
8135      * coordinate types than the target var handle.
8136      * <p>
8137      * The {@code pos} argument may range between zero and <i>N</i>, where <i>N</i> is the arity of the
8138      * target var handle's coordinate types. If {@code pos} is zero, the dummy coordinates will precede
8139      * the target's real arguments; if {@code pos} is <i>N</i> they will come after.
8140      * <p>
8141      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
8142      * atomic access guarantees as those featured by the target var handle.
8143      *
8144      * @param target the var handle to invoke after the dummy coordinates are dropped
8145      * @param pos position of the first coordinate to drop (zero for the leftmost)
8146      * @param valueTypes the type(s) of the coordinate(s) to drop
8147      * @return an adapter var handle which drops some dummy coordinates,
8148      *         before calling the target var handle
8149      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive.
8150      * @throws NullPointerException if any of the arguments is {@code null} or {@code valueTypes} contains {@code null}.
8151      * @since 22
8152      */
8153     public static VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
8154         return VarHandles.dropCoordinates(target, pos, valueTypes);
8155     }
8156 }