1 /*
2 * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.lang.invoke;
27
28 import java.lang.constant.ClassDesc;
29 import java.lang.constant.Constable;
30 import java.lang.constant.ConstantDesc;
31 import java.lang.constant.ConstantDescs;
32 import java.lang.constant.DirectMethodHandleDesc;
33 import java.lang.constant.DynamicConstantDesc;
34 import java.util.List;
35 import java.util.Objects;
36 import java.util.Optional;
37
38 import jdk.internal.vm.annotation.DontInline;
39 import jdk.internal.vm.annotation.ForceInline;
40 import jdk.internal.vm.annotation.IntrinsicCandidate;
41 import jdk.internal.vm.annotation.Stable;
42
43 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
44
45 /**
46 * A VarHandle is a dynamically strongly typed reference to a variable, or to a
47 * parametrically-defined family of variables, including static fields,
48 * non-static fields, array elements, or components of an off-heap data
49 * structure. Access to such variables is supported under various
50 * <em>access modes</em>, including plain read/write access, volatile
51 * read/write access, and compare-and-set.
52 *
53 * <p>VarHandles are immutable and have no visible state. VarHandles cannot be
54 * subclassed by the user.
55 *
56 * <p>A VarHandle has:
57 * <ul>
58 * <li>a {@link #varType variable type} T, the type of every variable referenced
59 * by this VarHandle; and
60 * <li>a list of {@link #coordinateTypes coordinate types}
61 * {@code CT1, CT2, ..., CTn}, the types of <em>coordinate expressions</em> that
62 * jointly locate a variable referenced by this VarHandle.
63 * </ul>
64 * Variable and coordinate types may be primitive or reference, and are
65 * represented by {@code Class} objects. The list of coordinate types may be
66 * empty.
67 *
68 * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
69 * lookup} VarHandle instances document the supported variable type and the list
70 * of coordinate types.
71 *
72 * <p>Each access mode is associated with one <em>access mode method</em>, a
73 * <a href="MethodHandle.html#sigpoly">signature polymorphic</a> method named
74 * for the access mode. When an access mode method is invoked on a VarHandle
75 * instance, the initial arguments to the invocation are coordinate expressions
76 * that indicate in precisely which object the variable is to be accessed.
77 * Trailing arguments to the invocation represent values of importance to the
78 * access mode. For example, the various compare-and-set or compare-and-exchange
79 * access modes require two trailing arguments for the variable's expected value
80 * and new value.
81 *
82 * <p>The arity and types of arguments to the invocation of an access mode
83 * method are not checked statically. Instead, each access mode method
84 * specifies an {@link #accessModeType(AccessMode) access mode type},
85 * represented as an instance of {@link MethodType}, that serves as a kind of
86 * method signature against which the arguments are checked dynamically. An
87 * access mode type gives formal parameter types in terms of the coordinate
88 * types of a VarHandle instance and the types for values of importance to the
89 * access mode. An access mode type also gives a return type, often in terms of
90 * the variable type of a VarHandle instance. When an access mode method is
91 * invoked on a VarHandle instance, the symbolic type descriptor at the
92 * call site, the run time types of arguments to the invocation, and the run
93 * time type of the return value, must <a href="#invoke">match</a> the types
94 * given in the access mode type. A runtime exception will be thrown if the
95 * match fails.
96 *
97 * For example, the access mode method {@link #compareAndSet} specifies that if
98 * its receiver is a VarHandle instance with coordinate types
99 * {@code CT1, ..., CTn} and variable type {@code T}, then its access mode type
100 * is {@code (CT1 c1, ..., CTn cn, T expectedValue, T newValue)boolean}.
101 * Suppose that a VarHandle instance can access array elements, and that its
102 * coordinate types are {@code String[]} and {@code int} while its variable type
103 * is {@code String}. The access mode type for {@code compareAndSet} on this
104 * VarHandle instance would be
105 * {@code (String[] c1, int c2, String expectedValue, String newValue)boolean}.
106 * Such a VarHandle instance may be produced by the
107 * {@link MethodHandles#arrayElementVarHandle(Class) array factory method} and
108 * access array elements as follows:
109 * <pre> {@code
110 * String[] sa = ...
111 * VarHandle avh = MethodHandles.arrayElementVarHandle(String[].class);
112 * boolean r = avh.compareAndSet(sa, 10, "expected", "new");
113 * }</pre>
114 *
115 * <p>Access modes control atomicity and consistency properties.
116 * <em>Plain</em> read ({@code get}) and write ({@code set})
117 * accesses are guaranteed to be bitwise atomic only for references
118 * and for primitive values of at most 32 bits, and impose no observable
119 * ordering constraints with respect to threads other than the
120 * executing thread. <em>Opaque</em> operations are bitwise atomic and
121 * coherently ordered with respect to accesses to the same variable.
122 * In addition to obeying Opaque properties, <em>Acquire</em> mode
123 * reads and their subsequent accesses are ordered after matching
124 * <em>Release</em> mode writes and their previous accesses. In
125 * addition to obeying Acquire and Release properties, all
126 * <em>Volatile</em> operations are totally ordered with respect to
127 * each other.
128 *
129 * <p>Access modes are grouped into the following categories:
130 * <ul>
131 * <li>read access modes that get the value of a variable under specified
132 * memory ordering effects.
133 * The set of corresponding access mode methods belonging to this group
134 * consists of the methods
135 * {@link #get get},
136 * {@link #getVolatile getVolatile},
137 * {@link #getAcquire getAcquire},
138 * {@link #getOpaque getOpaque}.
139 * <li>write access modes that set the value of a variable under specified
140 * memory ordering effects.
141 * The set of corresponding access mode methods belonging to this group
142 * consists of the methods
143 * {@link #set set},
144 * {@link #setVolatile setVolatile},
145 * {@link #setRelease setRelease},
146 * {@link #setOpaque setOpaque}.
147 * <li>atomic update access modes that, for example, atomically compare and set
148 * the value of a variable under specified memory ordering effects.
149 * The set of corresponding access mode methods belonging to this group
150 * consists of the methods
151 * {@link #compareAndSet compareAndSet},
152 * {@link #weakCompareAndSetPlain weakCompareAndSetPlain},
153 * {@link #weakCompareAndSet weakCompareAndSet},
154 * {@link #weakCompareAndSetAcquire weakCompareAndSetAcquire},
155 * {@link #weakCompareAndSetRelease weakCompareAndSetRelease},
156 * {@link #compareAndExchangeAcquire compareAndExchangeAcquire},
157 * {@link #compareAndExchange compareAndExchange},
158 * {@link #compareAndExchangeRelease compareAndExchangeRelease},
159 * {@link #getAndSet getAndSet},
160 * {@link #getAndSetAcquire getAndSetAcquire},
161 * {@link #getAndSetRelease getAndSetRelease}.
162 * <li>numeric atomic update access modes that, for example, atomically get and
163 * set with addition the value of a variable under specified memory ordering
164 * effects.
165 * The set of corresponding access mode methods belonging to this group
166 * consists of the methods
167 * {@link #getAndAdd getAndAdd},
168 * {@link #getAndAddAcquire getAndAddAcquire},
169 * {@link #getAndAddRelease getAndAddRelease},
170 * <li>bitwise atomic update access modes that, for example, atomically get and
171 * bitwise OR the value of a variable under specified memory ordering
172 * effects.
173 * The set of corresponding access mode methods belonging to this group
174 * consists of the methods
175 * {@link #getAndBitwiseOr getAndBitwiseOr},
176 * {@link #getAndBitwiseOrAcquire getAndBitwiseOrAcquire},
177 * {@link #getAndBitwiseOrRelease getAndBitwiseOrRelease},
178 * {@link #getAndBitwiseAnd getAndBitwiseAnd},
179 * {@link #getAndBitwiseAndAcquire getAndBitwiseAndAcquire},
180 * {@link #getAndBitwiseAndRelease getAndBitwiseAndRelease},
181 * {@link #getAndBitwiseXor getAndBitwiseXor},
182 * {@link #getAndBitwiseXorAcquire getAndBitwiseXorAcquire},
183 * {@link #getAndBitwiseXorRelease getAndBitwiseXorRelease}.
184 * </ul>
185 *
186 * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
187 * lookup} VarHandle instances document the set of access modes that are
188 * supported, which may also include documenting restrictions based on the
189 * variable type and whether a variable is read-only. If an access mode is not
190 * supported then the corresponding access mode method will on invocation throw
191 * an {@code UnsupportedOperationException}. Factory methods should document
192 * any additional undeclared exceptions that may be thrown by access mode
193 * methods.
194 * The {@link #get get} access mode is supported for all
195 * VarHandle instances and the corresponding method never throws
196 * {@code UnsupportedOperationException}.
197 * If a VarHandle references a read-only variable (for example a {@code final}
198 * field) then write, atomic update, numeric atomic update, and bitwise atomic
199 * update access modes are not supported and corresponding methods throw
200 * {@code UnsupportedOperationException}.
201 * Read/write access modes (if supported), with the exception of
202 * {@code get} and {@code set}, provide atomic access for
203 * reference types and all primitive types.
204 * Unless stated otherwise in the documentation of a factory method, the access
205 * modes {@code get} and {@code set} (if supported) provide atomic access for
206 * reference types and all primitives types, with the exception of {@code long}
207 * and {@code double} on 32-bit platforms.
208 *
209 * <p>Access modes will override any memory ordering effects specified at
210 * the declaration site of a variable. For example, a VarHandle accessing
211 * a field using the {@code get} access mode will access the field as
212 * specified <em>by its access mode</em> even if that field is declared
213 * {@code volatile}. When mixed access is performed extreme care should be
214 * taken since the Java Memory Model may permit surprising results.
215 *
216 * <p>In addition to supporting access to variables under various access modes,
217 * a set of static methods, referred to as memory fence methods, is also
218 * provided for fine-grained control of memory ordering.
219 *
220 * The Java Language Specification permits other threads to observe operations
221 * as if they were executed in orders different than are apparent in program
222 * source code, subject to constraints arising, for example, from the use of
223 * locks, {@code volatile} fields or VarHandles. The static methods,
224 * {@link #fullFence fullFence}, {@link #acquireFence acquireFence},
225 * {@link #releaseFence releaseFence}, {@link #loadLoadFence loadLoadFence} and
226 * {@link #storeStoreFence storeStoreFence}, can also be used to impose
227 * constraints. Their specifications, as is the case for certain access modes,
228 * are phrased in terms of the lack of "reorderings" -- observable ordering
229 * effects that might otherwise occur if the fence was not present. More
230 * precise phrasing of the specification of access mode methods and memory fence
231 * methods may accompany future updates of the Java Language Specification.
232 *
233 * <h2>Compiling invocation of access mode methods</h2>
234 * A Java method call expression naming an access mode method can invoke a
235 * VarHandle from Java source code. From the viewpoint of source code, these
236 * methods can take any arguments and their polymorphic result (if expressed)
237 * can be cast to any return type. Formally this is accomplished by giving the
238 * access mode methods variable arity {@code Object} arguments and
239 * {@code Object} return types (if the return type is polymorphic), but they
240 * have an additional quality called <em>signature polymorphism</em> which
241 * connects this freedom of invocation directly to the JVM execution stack.
242 * <p>
243 * As is usual with virtual methods, source-level calls to access mode methods
244 * compile to an {@code invokevirtual} instruction. More unusually, the
245 * compiler must record the actual argument types, and may not perform method
246 * invocation conversions on the arguments. Instead, it must generate
247 * instructions to push them on the stack according to their own unconverted
248 * types. The VarHandle object itself will be pushed on the stack before the
249 * arguments. The compiler then generates an {@code invokevirtual} instruction
250 * that invokes the access mode method with a symbolic type descriptor which
251 * describes the argument and return types.
252 * <p>
253 * To issue a complete symbolic type descriptor, the compiler must also
254 * determine the return type (if polymorphic). This is based on a cast on the
255 * method invocation expression, if there is one, or else {@code Object} if the
256 * invocation is an expression, or else {@code void} if the invocation is a
257 * statement. The cast may be to a primitive type (but not {@code void}).
258 * <p>
259 * As a corner case, an uncasted {@code null} argument is given a symbolic type
260 * descriptor of {@code java.lang.Void}. The ambiguity with the type
261 * {@code Void} is harmless, since there are no references of type {@code Void}
262 * except the null reference.
263 *
264 *
265 * <h2><a id="invoke">Performing invocation of access mode methods</a></h2>
266 * The first time an {@code invokevirtual} instruction is executed it is linked
267 * by symbolically resolving the names in the instruction and verifying that
268 * the method call is statically legal. This also holds for calls to access mode
269 * methods. In this case, the symbolic type descriptor emitted by the compiler
270 * is checked for correct syntax, and names it contains are resolved. Thus, an
271 * {@code invokevirtual} instruction which invokes an access mode method will
272 * always link, as long as the symbolic type descriptor is syntactically
273 * well-formed and the types exist.
274 * <p>
275 * When the {@code invokevirtual} is executed after linking, the receiving
276 * VarHandle's access mode type is first checked by the JVM to ensure that it
277 * matches the symbolic type descriptor. If the type
278 * match fails, it means that the access mode method which the caller is
279 * invoking is not present on the individual VarHandle being invoked.
280 *
281 * <p id="invoke-behavior">
282 * Invocation of an access mode method behaves, by default, as if an invocation of
283 * {@link MethodHandle#invoke}, where the receiving method handle accepts the
284 * VarHandle instance as the leading argument. More specifically, the
285 * following, where {@code {access-mode}} corresponds to the access mode method
286 * name:
287 * <pre> {@code
288 * VarHandle vh = ..
289 * R r = (R) vh.{access-mode}(p1, p2, ..., pN);
290 * }</pre>
291 * behaves as if:
292 * <pre> {@code
293 * VarHandle vh = ..
294 * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
295 * MethodHandle mh = MethodHandles.varHandleExactInvoker(
296 * am,
297 * vh.accessModeType(am));
298 *
299 * R r = (R) mh.invoke(vh, p1, p2, ..., pN)
300 * }</pre>
301 * (modulo access mode methods do not declare throwing of {@code Throwable}).
302 * This is equivalent to:
303 * <pre> {@code
304 * MethodHandle mh = MethodHandles.lookup().findVirtual(
305 * VarHandle.class,
306 * "{access-mode}",
307 * MethodType.methodType(R, p1, p2, ..., pN));
308 *
309 * R r = (R) mh.invokeExact(vh, p1, p2, ..., pN)
310 * }</pre>
311 * where the desired method type is the symbolic type descriptor and a
312 * {@link MethodHandle#invokeExact} is performed, since before invocation of the
313 * target, the handle will apply reference casts as necessary and box, unbox, or
314 * widen primitive values, as if by {@link MethodHandle#asType asType} (see also
315 * {@link MethodHandles#varHandleInvoker}).
316 *
317 * More concisely, such behavior is equivalent to:
318 * <pre> {@code
319 * VarHandle vh = ..
320 * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
321 * MethodHandle mh = vh.toMethodHandle(am);
322 *
323 * R r = (R) mh.invoke(p1, p2, ..., pN)
324 * }</pre>
325 * Where, in this case, the method handle is bound to the VarHandle instance.
326 *
327 * <p id="invoke-exact-behavior">
328 * A VarHandle's invocation behavior can be adjusted (see {@link #withInvokeExactBehavior}) such that invocation of
329 * an access mode method behaves as if invocation of {@link MethodHandle#invokeExact},
330 * where the receiving method handle accepts the VarHandle instance as the leading argument.
331 * More specifically, the following, where {@code {access-mode}} corresponds to the access mode method
332 * name:
333 * <pre> {@code
334 * VarHandle vh = ..
335 * R r = (R) vh.{access-mode}(p1, p2, ..., pN);
336 * }</pre>
337 * behaves as if:
338 * <pre> {@code
339 * VarHandle vh = ..
340 * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
341 * MethodHandle mh = MethodHandles.varHandleExactInvoker(
342 * am,
343 * vh.accessModeType(am));
344 *
345 * R r = (R) mh.invokeExact(vh, p1, p2, ..., pN)
346 * }</pre>
347 * (modulo access mode methods do not declare throwing of {@code Throwable}).
348 *
349 * More concisely, such behavior is equivalent to:
350 * <pre> {@code
351 * VarHandle vh = ..
352 * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
353 * MethodHandle mh = vh.toMethodHandle(am);
354 *
355 * R r = (R) mh.invokeExact(p1, p2, ..., pN)
356 * }</pre>
357 * Where, in this case, the method handle is bound to the VarHandle instance.
358 *
359 * <h2>Invocation checking</h2>
360 * In typical programs, VarHandle access mode type matching will usually
361 * succeed. But if a match fails, the JVM will throw a
362 * {@link WrongMethodTypeException}.
363 * <p>
364 * Thus, an access mode type mismatch which might show up as a linkage error
365 * in a statically typed program can show up as a dynamic
366 * {@code WrongMethodTypeException} in a program which uses VarHandles.
367 * <p>
368 * Because access mode types contain "live" {@code Class} objects, method type
369 * matching takes into account both type names and class loaders.
370 * Thus, even if a VarHandle {@code VH} is created in one class loader
371 * {@code L1} and used in another {@code L2}, VarHandle access mode method
372 * calls are type-safe, because the caller's symbolic type descriptor, as
373 * resolved in {@code L2}, is matched against the original callee method's
374 * symbolic type descriptor, as resolved in {@code L1}. The resolution in
375 * {@code L1} happens when {@code VH} is created and its access mode types are
376 * assigned, while the resolution in {@code L2} happens when the
377 * {@code invokevirtual} instruction is linked.
378 * <p>
379 * Apart from type descriptor checks, a VarHandles's capability to
380 * access its variables is unrestricted.
381 * If a VarHandle is formed on a non-public variable by a class that has access
382 * to that variable, the resulting VarHandle can be used in any place by any
383 * caller who receives a reference to it.
384 * <p>
385 * Unlike with the Core Reflection API, where access is checked every time a
386 * reflective method is invoked, VarHandle access checking is performed
387 * <a href="MethodHandles.Lookup.html#access">when the VarHandle is
388 * created</a>.
389 * Thus, VarHandles to non-public variables, or to variables in non-public
390 * classes, should generally be kept secret. They should not be passed to
391 * untrusted code unless their use from the untrusted code would be harmless.
392 *
393 *
394 * <h2>VarHandle creation</h2>
395 * Java code can create a VarHandle that directly accesses any field that is
396 * accessible to that code. This is done via a reflective, capability-based
397 * API called {@link java.lang.invoke.MethodHandles.Lookup
398 * MethodHandles.Lookup}.
399 * For example, a VarHandle for a non-static field can be obtained
400 * from {@link java.lang.invoke.MethodHandles.Lookup#findVarHandle
401 * Lookup.findVarHandle}.
402 * There is also a conversion method from Core Reflection API objects,
403 * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
404 * Lookup.unreflectVarHandle}.
405 * <p>
406 * Access to protected field members is restricted to receivers only of the
407 * accessing class, or one of its subclasses, and the accessing class must in
408 * turn be a subclass (or package sibling) of the protected member's defining
409 * class. If a VarHandle refers to a protected non-static field of a declaring
410 * class outside the current package, the receiver argument will be narrowed to
411 * the type of the accessing class.
412 *
413 * <h2>Interoperation between VarHandles and the Core Reflection API</h2>
414 * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup
415 * Lookup} API, any field represented by a Core Reflection API object
416 * can be converted to a behaviorally equivalent VarHandle.
417 * For example, a reflective {@link java.lang.reflect.Field Field} can
418 * be converted to a VarHandle using
419 * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
420 * Lookup.unreflectVarHandle}.
421 * The resulting VarHandles generally provide more direct and efficient
422 * access to the underlying fields.
423 * <p>
424 * As a special case, when the Core Reflection API is used to view the
425 * signature polymorphic access mode methods in this class, they appear as
426 * ordinary non-polymorphic methods. Their reflective appearance, as viewed by
427 * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
428 * is unaffected by their special status in this API.
429 * For example, {@link java.lang.reflect.Method#getModifiers
430 * Method.getModifiers}
431 * will report exactly those modifier bits required for any similarly
432 * declared method, including in this case {@code native} and {@code varargs}
433 * bits.
434 * <p>
435 * As with any reflected method, these methods (when reflected) may be invoked
436 * directly via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke},
437 * via JNI, or indirectly via
438 * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
439 * However, such reflective calls do not result in access mode method
440 * invocations. Such a call, if passed the required argument (a single one, of
441 * type {@code Object[]}), will ignore the argument and will throw an
442 * {@code UnsupportedOperationException}.
443 * <p>
444 * Since {@code invokevirtual} instructions can natively invoke VarHandle
445 * access mode methods under any symbolic type descriptor, this reflective view
446 * conflicts with the normal presentation of these methods via bytecodes.
447 * Thus, these native methods, when reflectively viewed by
448 * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
449 * <p>
450 * In order to obtain an invoker method for a particular access mode type,
451 * use {@link java.lang.invoke.MethodHandles#varHandleExactInvoker} or
452 * {@link java.lang.invoke.MethodHandles#varHandleInvoker}. The
453 * {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
454 * API is also able to return a method handle to call an access mode method for
455 * any specified access mode type and is equivalent in behavior to
456 * {@link java.lang.invoke.MethodHandles#varHandleInvoker}.
457 *
458 * <h2>Interoperation between VarHandles and Java generics</h2>
459 * A VarHandle can be obtained for a variable, such as a field, which is
460 * declared with Java generic types. As with the Core Reflection API, the
461 * VarHandle's variable type will be constructed from the erasure of the
462 * source-level type. When a VarHandle access mode method is invoked, the
463 * types
464 * of its arguments or the return value cast type may be generic types or type
465 * instances. If this occurs, the compiler will replace those types by their
466 * erasures when it constructs the symbolic type descriptor for the
467 * {@code invokevirtual} instruction.
468 *
469 * @see MethodHandle
470 * @see MethodHandles
471 * @see MethodType
472 * @since 9
473 */
474 public abstract sealed class VarHandle implements Constable
475 permits IndirectVarHandle, LazyInitializingVarHandle, SegmentVarHandle,
476 ArrayVarHandle,
477 VarHandleByteArrayAsChars.ByteArrayViewVarHandle,
478 VarHandleByteArrayAsDoubles.ByteArrayViewVarHandle,
479 VarHandleByteArrayAsFloats.ByteArrayViewVarHandle,
480 VarHandleByteArrayAsInts.ByteArrayViewVarHandle,
481 VarHandleByteArrayAsLongs.ByteArrayViewVarHandle,
482 VarHandleByteArrayAsShorts.ByteArrayViewVarHandle,
483 VarHandleBooleans.Array,
484 VarHandleBooleans.FieldInstanceReadOnly,
485 VarHandleBooleans.FieldStaticReadOnly,
486 VarHandleBytes.Array,
487 VarHandleBytes.FieldInstanceReadOnly,
488 VarHandleBytes.FieldStaticReadOnly,
489 VarHandleChars.Array,
490 VarHandleChars.FieldInstanceReadOnly,
491 VarHandleChars.FieldStaticReadOnly,
492 VarHandleDoubles.Array,
493 VarHandleDoubles.FieldInstanceReadOnly,
494 VarHandleDoubles.FieldStaticReadOnly,
495 VarHandleFloats.Array,
496 VarHandleFloats.FieldInstanceReadOnly,
497 VarHandleFloats.FieldStaticReadOnly,
498 VarHandleInts.Array,
499 VarHandleInts.FieldInstanceReadOnly,
500 VarHandleInts.FieldStaticReadOnly,
501 VarHandleLongs.Array,
502 VarHandleLongs.FieldInstanceReadOnly,
503 VarHandleLongs.FieldStaticReadOnly,
504 VarHandleReferences.FieldInstanceReadOnly,
505 VarHandleReferences.FieldStaticReadOnly,
506 VarHandleShorts.Array,
507 VarHandleShorts.FieldInstanceReadOnly,
508 VarHandleShorts.FieldStaticReadOnly,
509 VarHandleFlatValues.FieldInstanceReadOnly,
510 VarHandleNonAtomicReferences.FieldInstanceReadOnly,
511 VarHandleNonAtomicReferences.FieldStaticReadOnly,
512 VarHandleNonAtomicFlatValues.FieldInstanceReadOnly {
513 final VarForm vform;
514 final boolean exact;
515
516 VarHandle(VarForm vform) {
517 this(vform, false);
518 }
519
520 VarHandle(VarForm vform, boolean exact) {
521 this.vform = vform;
522 this.exact = exact;
523 }
524
525 /**
526 * Returns the target VarHandle. Subclasses may override this method to implement
527 * additional logic for example lazily initializing the declaring class of a static field var handle.
528 */
529 @ForceInline
530 VarHandle target() {
531 return asDirect();
532 }
533
534 /**
535 * Returns the direct target VarHandle. Indirect VarHandle subclasses should implement
536 * this method.
537 *
538 * @see #getMethodHandle(int)
539 * @see #checkAccessModeThenIsDirect(AccessDescriptor)
540 */
541 @ForceInline
542 VarHandle asDirect() {
543 return this;
544 }
545
546 /**
547 * Returns {@code true} if this VarHandle has <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
548 *
549 * @see #withInvokeExactBehavior()
550 * @see #withInvokeBehavior()
551 * @return {@code true} if this VarHandle has <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
552 * @since 16
553 */
554 public boolean hasInvokeExactBehavior() {
555 return exact;
556 }
557
558 // Plain accessors
559
560 /**
561 * Returns the value of a variable, with memory semantics of reading as
562 * if the variable was declared non-{@code volatile}. Commonly referred to
563 * as plain read access.
564 *
565 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
566 *
567 * <p>The symbolic type descriptor at the call site of {@code get}
568 * must match the access mode type that is the result of calling
569 * {@code accessModeType(VarHandle.AccessMode.GET)} on this VarHandle.
570 *
571 * <p>This access mode is supported by all VarHandle instances and never
572 * throws {@code UnsupportedOperationException}.
573 *
574 * @param args the signature-polymorphic parameter list of the form
575 * {@code (CT1 ct1, ..., CTn)}
576 * , statically represented using varargs.
577 * @return the signature-polymorphic result that is the value of the
578 * variable
579 * , statically represented using {@code Object}.
580 * @throws WrongMethodTypeException if the access mode type does not
581 * match the caller's symbolic type descriptor.
582 * @throws ClassCastException if the access mode type matches the caller's
583 * symbolic type descriptor, but a reference cast fails.
584 */
585 public final native
586 @MethodHandle.PolymorphicSignature
587 @IntrinsicCandidate
588 Object get(Object... args);
589
590 /**
591 * Sets the value of a variable to the {@code newValue}, with memory
592 * semantics of setting as if the variable was declared non-{@code volatile}
593 * and non-{@code final}. Commonly referred to as plain write access.
594 *
595 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}
596 *
597 * <p>The symbolic type descriptor at the call site of {@code set}
598 * must match the access mode type that is the result of calling
599 * {@code accessModeType(VarHandle.AccessMode.SET)} on this VarHandle.
600 *
601 * @param args the signature-polymorphic parameter list of the form
602 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
603 * , statically represented using varargs.
604 * @throws UnsupportedOperationException if the access mode is unsupported
605 * for this VarHandle.
606 * @throws WrongMethodTypeException if the access mode type does not
607 * match the caller's symbolic type descriptor.
608 * @throws ClassCastException if the access mode type matches the caller's
609 * symbolic type descriptor, but a reference cast fails.
610 */
611 public final native
612 @MethodHandle.PolymorphicSignature
613 @IntrinsicCandidate
614 void set(Object... args);
615
616
617 // Volatile accessors
618
619 /**
620 * Returns the value of a variable, with memory semantics of reading as if
621 * the variable was declared {@code volatile}.
622 *
623 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
624 *
625 * <p>The symbolic type descriptor at the call site of {@code getVolatile}
626 * must match the access mode type that is the result of calling
627 * {@code accessModeType(VarHandle.AccessMode.GET_VOLATILE)} on this
628 * VarHandle.
629 *
630 * @param args the signature-polymorphic parameter list of the form
631 * {@code (CT1 ct1, ..., CTn ctn)}
632 * , statically represented using varargs.
633 * @return the signature-polymorphic result that is the value of the
634 * variable
635 * , statically represented using {@code Object}.
636 * @throws UnsupportedOperationException if the access mode is unsupported
637 * for this VarHandle.
638 * @throws WrongMethodTypeException if the access mode type does not
639 * match the caller's symbolic type descriptor.
640 * @throws ClassCastException if the access mode type matches the caller's
641 * symbolic type descriptor, but a reference cast fails.
642 */
643 public final native
644 @MethodHandle.PolymorphicSignature
645 @IntrinsicCandidate
646 Object getVolatile(Object... args);
647
648 /**
649 * Sets the value of a variable to the {@code newValue}, with memory
650 * semantics of setting as if the variable was declared {@code volatile}.
651 *
652 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
653 *
654 * <p>The symbolic type descriptor at the call site of {@code setVolatile}
655 * must match the access mode type that is the result of calling
656 * {@code accessModeType(VarHandle.AccessMode.SET_VOLATILE)} on this
657 * VarHandle.
658 *
659 * @apiNote
660 * Ignoring the many semantic differences from C and C++, this method has
661 * memory ordering effects compatible with {@code memory_order_seq_cst}.
662 *
663 * @param args the signature-polymorphic parameter list of the form
664 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
665 * , statically represented using varargs.
666 * @throws UnsupportedOperationException if the access mode is unsupported
667 * for this VarHandle.
668 * @throws WrongMethodTypeException if the access mode type does not
669 * match the caller's symbolic type descriptor.
670 * @throws ClassCastException if the access mode type matches the caller's
671 * symbolic type descriptor, but a reference cast fails.
672 */
673 public final native
674 @MethodHandle.PolymorphicSignature
675 @IntrinsicCandidate
676 void setVolatile(Object... args);
677
678
679 /**
680 * Returns the value of a variable, accessed in program order, but with no
681 * assurance of memory ordering effects with respect to other threads.
682 *
683 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
684 *
685 * <p>The symbolic type descriptor at the call site of {@code getOpaque}
686 * must match the access mode type that is the result of calling
687 * {@code accessModeType(VarHandle.AccessMode.GET_OPAQUE)} on this
688 * VarHandle.
689 *
690 * @param args the signature-polymorphic parameter list of the form
691 * {@code (CT1 ct1, ..., CTn ctn)}
692 * , statically represented using varargs.
693 * @return the signature-polymorphic result that is the value of the
694 * variable
695 * , statically represented using {@code Object}.
696 * @throws UnsupportedOperationException if the access mode is unsupported
697 * for this VarHandle.
698 * @throws WrongMethodTypeException if the access mode type does not
699 * match the caller's symbolic type descriptor.
700 * @throws ClassCastException if the access mode type matches the caller's
701 * symbolic type descriptor, but a reference cast fails.
702 */
703 public final native
704 @MethodHandle.PolymorphicSignature
705 @IntrinsicCandidate
706 Object getOpaque(Object... args);
707
708 /**
709 * Sets the value of a variable to the {@code newValue}, in program order,
710 * but with no assurance of memory ordering effects with respect to other
711 * threads.
712 *
713 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
714 *
715 * <p>The symbolic type descriptor at the call site of {@code setOpaque}
716 * must match the access mode type that is the result of calling
717 * {@code accessModeType(VarHandle.AccessMode.SET_OPAQUE)} on this
718 * VarHandle.
719 *
720 * @param args the signature-polymorphic parameter list of the form
721 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
722 * , statically represented using varargs.
723 * @throws UnsupportedOperationException if the access mode is unsupported
724 * for this VarHandle.
725 * @throws WrongMethodTypeException if the access mode type does not
726 * match the caller's symbolic type descriptor.
727 * @throws ClassCastException if the access mode type matches the caller's
728 * symbolic type descriptor, but a reference cast fails.
729 */
730 public final native
731 @MethodHandle.PolymorphicSignature
732 @IntrinsicCandidate
733 void setOpaque(Object... args);
734
735
736 // Lazy accessors
737
738 /**
739 * Returns the value of a variable, and ensures that subsequent loads and
740 * stores are not reordered before this access.
741 *
742 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
743 *
744 * <p>The symbolic type descriptor at the call site of {@code getAcquire}
745 * must match the access mode type that is the result of calling
746 * {@code accessModeType(VarHandle.AccessMode.GET_ACQUIRE)} on this
747 * VarHandle.
748 *
749 * @apiNote
750 * Ignoring the many semantic differences from C and C++, this method has
751 * memory ordering effects compatible with {@code memory_order_acquire}
752 * ordering.
753 *
754 * @param args the signature-polymorphic parameter list of the form
755 * {@code (CT1 ct1, ..., CTn ctn)}
756 * , statically represented using varargs.
757 * @return the signature-polymorphic result that is the value of the
758 * variable
759 * , statically represented using {@code Object}.
760 * @throws UnsupportedOperationException if the access mode is unsupported
761 * for this VarHandle.
762 * @throws WrongMethodTypeException if the access mode type does not
763 * match the caller's symbolic type descriptor.
764 * @throws ClassCastException if the access mode type matches the caller's
765 * symbolic type descriptor, but a reference cast fails.
766 */
767 public final native
768 @MethodHandle.PolymorphicSignature
769 @IntrinsicCandidate
770 Object getAcquire(Object... args);
771
772 /**
773 * Sets the value of a variable to the {@code newValue}, and ensures that
774 * prior loads and stores are not reordered after this access.
775 *
776 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
777 *
778 * <p>The symbolic type descriptor at the call site of {@code setRelease}
779 * must match the access mode type that is the result of calling
780 * {@code accessModeType(VarHandle.AccessMode.SET_RELEASE)} on this
781 * VarHandle.
782 *
783 * @apiNote
784 * Ignoring the many semantic differences from C and C++, this method has
785 * memory ordering effects compatible with {@code memory_order_release}
786 * ordering.
787 *
788 * @param args the signature-polymorphic parameter list of the form
789 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
790 * , statically represented using varargs.
791 * @throws UnsupportedOperationException if the access mode is unsupported
792 * for this VarHandle.
793 * @throws WrongMethodTypeException if the access mode type does not
794 * match the caller's symbolic type descriptor.
795 * @throws ClassCastException if the access mode type matches the caller's
796 * symbolic type descriptor, but a reference cast fails.
797 */
798 public final native
799 @MethodHandle.PolymorphicSignature
800 @IntrinsicCandidate
801 void setRelease(Object... args);
802
803
804 // Compare and set accessors
805
806 /**
807 * Atomically sets the value of a variable to the {@code newValue} with the
808 * memory semantics of {@link #setVolatile} if the variable's current value,
809 * referred to as the <em>witness value</em>, {@code ==} the
810 * {@code expectedValue}, as accessed with the memory semantics of
811 * {@link #getVolatile}.
812 *
813 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
814 *
815 * <p>The symbolic type descriptor at the call site of {@code
816 * compareAndSet} must match the access mode type that is the result of
817 * calling {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_SET)} on
818 * this VarHandle.
819 *
820 * @param args the signature-polymorphic parameter list of the form
821 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
822 * , statically represented using varargs.
823 * @return {@code true} if successful, otherwise {@code false} if the
824 * <em>witness value</em> was not the same as the {@code expectedValue}.
825 * @throws UnsupportedOperationException if the access mode is unsupported
826 * for this VarHandle.
827 * @throws WrongMethodTypeException if the access mode type does not
828 * match the caller's symbolic type descriptor.
829 * @throws ClassCastException if the access mode type matches the caller's
830 * symbolic type descriptor, but a reference cast fails.
831 * @see #setVolatile(Object...)
832 * @see #getVolatile(Object...)
833 */
834 public final native
835 @MethodHandle.PolymorphicSignature
836 @IntrinsicCandidate
837 boolean compareAndSet(Object... args);
838
839 /**
840 * Atomically sets the value of a variable to the {@code newValue} with the
841 * memory semantics of {@link #setVolatile} if the variable's current value,
842 * referred to as the <em>witness value</em>, {@code ==} the
843 * {@code expectedValue}, as accessed with the memory semantics of
844 * {@link #getVolatile}.
845 *
846 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
847 *
848 * <p>The symbolic type descriptor at the call site of {@code
849 * compareAndExchange}
850 * must match the access mode type that is the result of calling
851 * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE)}
852 * on this VarHandle.
853 *
854 * @param args the signature-polymorphic parameter list of the form
855 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
856 * , statically represented using varargs.
857 * @return the signature-polymorphic result that is the <em>witness value</em>, which
858 * will be the same as the {@code expectedValue} if successful
859 * , statically represented using {@code Object}.
860 * @throws UnsupportedOperationException if the access mode is unsupported
861 * for this VarHandle.
862 * @throws WrongMethodTypeException if the access mode type is not
863 * compatible with the caller's symbolic type descriptor.
864 * @throws ClassCastException if the access mode type is compatible with the
865 * caller's symbolic type descriptor, but a reference cast fails.
866 * @see #setVolatile(Object...)
867 * @see #getVolatile(Object...)
868 */
869 public final native
870 @MethodHandle.PolymorphicSignature
871 @IntrinsicCandidate
872 Object compareAndExchange(Object... args);
873
874 /**
875 * Atomically sets the value of a variable to the {@code newValue} with the
876 * memory semantics of {@link #set} if the variable's current value,
877 * referred to as the <em>witness value</em>, {@code ==} the
878 * {@code expectedValue}, as accessed with the memory semantics of
879 * {@link #getAcquire}.
880 *
881 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
882 *
883 * <p>The symbolic type descriptor at the call site of {@code
884 * compareAndExchangeAcquire}
885 * must match the access mode type that is the result of calling
886 * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_ACQUIRE)} on
887 * this VarHandle.
888 *
889 * @param args the signature-polymorphic parameter list of the form
890 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
891 * , statically represented using varargs.
892 * @return the signature-polymorphic result that is the <em>witness value</em>, which
893 * will be the same as the {@code expectedValue} if successful
894 * , statically represented using {@code Object}.
895 * @throws UnsupportedOperationException if the access mode is unsupported
896 * for this VarHandle.
897 * @throws WrongMethodTypeException if the access mode type does not
898 * match the caller's symbolic type descriptor.
899 * @throws ClassCastException if the access mode type matches the caller's
900 * symbolic type descriptor, but a reference cast fails.
901 * @see #set(Object...)
902 * @see #getAcquire(Object...)
903 */
904 public final native
905 @MethodHandle.PolymorphicSignature
906 @IntrinsicCandidate
907 Object compareAndExchangeAcquire(Object... args);
908
909 /**
910 * Atomically sets the value of a variable to the {@code newValue} with the
911 * memory semantics of {@link #setRelease} if the variable's current value,
912 * referred to as the <em>witness value</em>, {@code ==} the
913 * {@code expectedValue}, as accessed with the memory semantics of
914 * {@link #get}.
915 *
916 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
917 *
918 * <p>The symbolic type descriptor at the call site of {@code
919 * compareAndExchangeRelease}
920 * must match the access mode type that is the result of calling
921 * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_RELEASE)}
922 * on this VarHandle.
923 *
924 * @param args the signature-polymorphic parameter list of the form
925 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
926 * , statically represented using varargs.
927 * @return the signature-polymorphic result that is the <em>witness value</em>, which
928 * will be the same as the {@code expectedValue} if successful
929 * , statically represented using {@code Object}.
930 * @throws UnsupportedOperationException if the access mode is unsupported
931 * for this VarHandle.
932 * @throws WrongMethodTypeException if the access mode type does not
933 * match the caller's symbolic type descriptor.
934 * @throws ClassCastException if the access mode type matches the caller's
935 * symbolic type descriptor, but a reference cast fails.
936 * @see #setRelease(Object...)
937 * @see #get(Object...)
938 */
939 public final native
940 @MethodHandle.PolymorphicSignature
941 @IntrinsicCandidate
942 Object compareAndExchangeRelease(Object... args);
943
944 // Weak (spurious failures allowed)
945
946 /**
947 * Possibly atomically sets the value of a variable to the {@code newValue}
948 * with the semantics of {@link #set} if the variable's current value,
949 * referred to as the <em>witness value</em>, {@code ==} the
950 * {@code expectedValue}, as accessed with the memory semantics of
951 * {@link #get}.
952 *
953 * <p>This operation may fail spuriously (typically, due to memory
954 * contention) even if the <em>witness value</em> does match the expected value.
955 *
956 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
957 *
958 * <p>The symbolic type descriptor at the call site of {@code
959 * weakCompareAndSetPlain} must match the access mode type that is the result of
960 * calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_PLAIN)}
961 * on this VarHandle.
962 *
963 * @param args the signature-polymorphic parameter list of the form
964 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
965 * , statically represented using varargs.
966 * @return {@code true} if successful, otherwise {@code false} if the
967 * <em>witness value</em> was not the same as the {@code expectedValue} or if this
968 * operation spuriously failed.
969 * @throws UnsupportedOperationException if the access mode is unsupported
970 * for this VarHandle.
971 * @throws WrongMethodTypeException if the access mode type does not
972 * match the caller's symbolic type descriptor.
973 * @throws ClassCastException if the access mode type matches the caller's
974 * symbolic type descriptor, but a reference cast fails.
975 * @see #set(Object...)
976 * @see #get(Object...)
977 */
978 public final native
979 @MethodHandle.PolymorphicSignature
980 @IntrinsicCandidate
981 boolean weakCompareAndSetPlain(Object... args);
982
983 /**
984 * Possibly atomically sets the value of a variable to the {@code newValue}
985 * with the memory semantics of {@link #setVolatile} if the variable's
986 * current value, referred to as the <em>witness value</em>, {@code ==} the
987 * {@code expectedValue}, as accessed with the memory semantics of
988 * {@link #getVolatile}.
989 *
990 * <p>This operation may fail spuriously (typically, due to memory
991 * contention) even if the <em>witness value</em> does match the expected value.
992 *
993 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
994 *
995 * <p>The symbolic type descriptor at the call site of {@code
996 * weakCompareAndSet} must match the access mode type that is the
997 * result of calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET)}
998 * on this VarHandle.
999 *
1000 * @param args the signature-polymorphic parameter list of the form
1001 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1002 * , statically represented using varargs.
1003 * @return {@code true} if successful, otherwise {@code false} if the
1004 * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1005 * operation spuriously failed.
1006 * @throws UnsupportedOperationException if the access mode is unsupported
1007 * for this VarHandle.
1008 * @throws WrongMethodTypeException if the access mode type does not
1009 * match the caller's symbolic type descriptor.
1010 * @throws ClassCastException if the access mode type matches the caller's
1011 * symbolic type descriptor, but a reference cast fails.
1012 * @see #setVolatile(Object...)
1013 * @see #getVolatile(Object...)
1014 */
1015 public final native
1016 @MethodHandle.PolymorphicSignature
1017 @IntrinsicCandidate
1018 boolean weakCompareAndSet(Object... args);
1019
1020 /**
1021 * Possibly atomically sets the value of a variable to the {@code newValue}
1022 * with the semantics of {@link #set} if the variable's current value,
1023 * referred to as the <em>witness value</em>, {@code ==} the
1024 * {@code expectedValue}, as accessed with the memory semantics of
1025 * {@link #getAcquire}.
1026 *
1027 * <p>This operation may fail spuriously (typically, due to memory
1028 * contention) even if the <em>witness value</em> does match the expected value.
1029 *
1030 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
1031 *
1032 * <p>The symbolic type descriptor at the call site of {@code
1033 * weakCompareAndSetAcquire}
1034 * must match the access mode type that is the result of calling
1035 * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_ACQUIRE)}
1036 * on this VarHandle.
1037 *
1038 * @param args the signature-polymorphic parameter list of the form
1039 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1040 * , statically represented using varargs.
1041 * @return {@code true} if successful, otherwise {@code false} if the
1042 * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1043 * operation spuriously failed.
1044 * @throws UnsupportedOperationException if the access mode is unsupported
1045 * for this VarHandle.
1046 * @throws WrongMethodTypeException if the access mode type does not
1047 * match the caller's symbolic type descriptor.
1048 * @throws ClassCastException if the access mode type matches the caller's
1049 * symbolic type descriptor, but a reference cast fails.
1050 * @see #set(Object...)
1051 * @see #getAcquire(Object...)
1052 */
1053 public final native
1054 @MethodHandle.PolymorphicSignature
1055 @IntrinsicCandidate
1056 boolean weakCompareAndSetAcquire(Object... args);
1057
1058 /**
1059 * Possibly atomically sets the value of a variable to the {@code newValue}
1060 * with the semantics of {@link #setRelease} if the variable's current
1061 * value, referred to as the <em>witness value</em>, {@code ==} the
1062 * {@code expectedValue}, as accessed with the memory semantics of
1063 * {@link #get}.
1064 *
1065 * <p>This operation may fail spuriously (typically, due to memory
1066 * contention) even if the <em>witness value</em> does match the expected value.
1067 *
1068 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
1069 *
1070 * <p>The symbolic type descriptor at the call site of {@code
1071 * weakCompareAndSetRelease}
1072 * must match the access mode type that is the result of calling
1073 * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_RELEASE)}
1074 * on this VarHandle.
1075 *
1076 * @param args the signature-polymorphic parameter list of the form
1077 * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1078 * , statically represented using varargs.
1079 * @return {@code true} if successful, otherwise {@code false} if the
1080 * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1081 * operation spuriously failed.
1082 * @throws UnsupportedOperationException if the access mode is unsupported
1083 * for this VarHandle.
1084 * @throws WrongMethodTypeException if the access mode type does not
1085 * match the caller's symbolic type descriptor.
1086 * @throws ClassCastException if the access mode type matches the caller's
1087 * symbolic type descriptor, but a reference cast fails.
1088 * @see #setRelease(Object...)
1089 * @see #get(Object...)
1090 */
1091 public final native
1092 @MethodHandle.PolymorphicSignature
1093 @IntrinsicCandidate
1094 boolean weakCompareAndSetRelease(Object... args);
1095
1096 /**
1097 * Atomically sets the value of a variable to the {@code newValue} with the
1098 * memory semantics of {@link #setVolatile} and returns the variable's
1099 * previous value, as accessed with the memory semantics of
1100 * {@link #getVolatile}.
1101 *
1102 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1103 *
1104 * <p>The symbolic type descriptor at the call site of {@code getAndSet}
1105 * must match the access mode type that is the result of calling
1106 * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET)} on this
1107 * VarHandle.
1108 *
1109 * @param args the signature-polymorphic parameter list of the form
1110 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1111 * , statically represented using varargs.
1112 * @return the signature-polymorphic result that is the previous value of
1113 * the variable
1114 * , statically represented using {@code Object}.
1115 * @throws UnsupportedOperationException if the access mode is unsupported
1116 * for this VarHandle.
1117 * @throws WrongMethodTypeException if the access mode type does not
1118 * match the caller's symbolic type descriptor.
1119 * @throws ClassCastException if the access mode type matches the caller's
1120 * symbolic type descriptor, but a reference cast fails.
1121 * @see #setVolatile(Object...)
1122 * @see #getVolatile(Object...)
1123 */
1124 public final native
1125 @MethodHandle.PolymorphicSignature
1126 @IntrinsicCandidate
1127 Object getAndSet(Object... args);
1128
1129 /**
1130 * Atomically sets the value of a variable to the {@code newValue} with the
1131 * memory semantics of {@link #set} and returns the variable's
1132 * previous value, as accessed with the memory semantics of
1133 * {@link #getAcquire}.
1134 *
1135 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1136 *
1137 * <p>The symbolic type descriptor at the call site of {@code getAndSetAcquire}
1138 * must match the access mode type that is the result of calling
1139 * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_ACQUIRE)} on this
1140 * VarHandle.
1141 *
1142 * @param args the signature-polymorphic parameter list of the form
1143 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1144 * , statically represented using varargs.
1145 * @return the signature-polymorphic result that is the previous value of
1146 * the variable
1147 * , statically represented using {@code Object}.
1148 * @throws UnsupportedOperationException if the access mode is unsupported
1149 * for this VarHandle.
1150 * @throws WrongMethodTypeException if the access mode type does not
1151 * match the caller's symbolic type descriptor.
1152 * @throws ClassCastException if the access mode type matches the caller's
1153 * symbolic type descriptor, but a reference cast fails.
1154 * @see #setVolatile(Object...)
1155 * @see #getVolatile(Object...)
1156 */
1157 public final native
1158 @MethodHandle.PolymorphicSignature
1159 @IntrinsicCandidate
1160 Object getAndSetAcquire(Object... args);
1161
1162 /**
1163 * Atomically sets the value of a variable to the {@code newValue} with the
1164 * memory semantics of {@link #setRelease} and returns the variable's
1165 * previous value, as accessed with the memory semantics of
1166 * {@link #get}.
1167 *
1168 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1169 *
1170 * <p>The symbolic type descriptor at the call site of {@code getAndSetRelease}
1171 * must match the access mode type that is the result of calling
1172 * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_RELEASE)} on this
1173 * VarHandle.
1174 *
1175 * @param args the signature-polymorphic parameter list of the form
1176 * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1177 * , statically represented using varargs.
1178 * @return the signature-polymorphic result that is the previous value of
1179 * the variable
1180 * , statically represented using {@code Object}.
1181 * @throws UnsupportedOperationException if the access mode is unsupported
1182 * for this VarHandle.
1183 * @throws WrongMethodTypeException if the access mode type does not
1184 * match the caller's symbolic type descriptor.
1185 * @throws ClassCastException if the access mode type matches the caller's
1186 * symbolic type descriptor, but a reference cast fails.
1187 * @see #setVolatile(Object...)
1188 * @see #getVolatile(Object...)
1189 */
1190 public final native
1191 @MethodHandle.PolymorphicSignature
1192 @IntrinsicCandidate
1193 Object getAndSetRelease(Object... args);
1194
1195 // Primitive adders
1196 // Throw UnsupportedOperationException for refs
1197
1198 /**
1199 * Atomically adds the {@code value} to the current value of a variable with
1200 * the memory semantics of {@link #setVolatile}, and returns the variable's
1201 * previous value, as accessed with the memory semantics of
1202 * {@link #getVolatile}.
1203 *
1204 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1205 *
1206 * <p>The symbolic type descriptor at the call site of {@code getAndAdd}
1207 * must match the access mode type that is the result of calling
1208 * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD)} on this
1209 * VarHandle.
1210 *
1211 * @param args the signature-polymorphic parameter list of the form
1212 * {@code (CT1 ct1, ..., CTn ctn, T value)}
1213 * , statically represented using varargs.
1214 * @return the signature-polymorphic result that is the previous value of
1215 * the variable
1216 * , statically represented using {@code Object}.
1217 * @throws UnsupportedOperationException if the access mode is unsupported
1218 * for this VarHandle.
1219 * @throws WrongMethodTypeException if the access mode type does not
1220 * match the caller's symbolic type descriptor.
1221 * @throws ClassCastException if the access mode type matches the caller's
1222 * symbolic type descriptor, but a reference cast fails.
1223 * @see #setVolatile(Object...)
1224 * @see #getVolatile(Object...)
1225 */
1226 public final native
1227 @MethodHandle.PolymorphicSignature
1228 @IntrinsicCandidate
1229 Object getAndAdd(Object... args);
1230
1231 /**
1232 * Atomically adds the {@code value} to the current value of a variable with
1233 * the memory semantics of {@link #set}, and returns the variable's
1234 * previous value, as accessed with the memory semantics of
1235 * {@link #getAcquire}.
1236 *
1237 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1238 *
1239 * <p>The symbolic type descriptor at the call site of {@code getAndAddAcquire}
1240 * must match the access mode type that is the result of calling
1241 * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_ACQUIRE)} on this
1242 * VarHandle.
1243 *
1244 * @param args the signature-polymorphic parameter list of the form
1245 * {@code (CT1 ct1, ..., CTn ctn, T value)}
1246 * , statically represented using varargs.
1247 * @return the signature-polymorphic result that is the previous value of
1248 * the variable
1249 * , statically represented using {@code Object}.
1250 * @throws UnsupportedOperationException if the access mode is unsupported
1251 * for this VarHandle.
1252 * @throws WrongMethodTypeException if the access mode type does not
1253 * match the caller's symbolic type descriptor.
1254 * @throws ClassCastException if the access mode type matches the caller's
1255 * symbolic type descriptor, but a reference cast fails.
1256 * @see #setVolatile(Object...)
1257 * @see #getVolatile(Object...)
1258 */
1259 public final native
1260 @MethodHandle.PolymorphicSignature
1261 @IntrinsicCandidate
1262 Object getAndAddAcquire(Object... args);
1263
1264 /**
1265 * Atomically adds the {@code value} to the current value of a variable with
1266 * the memory semantics of {@link #setRelease}, and returns the variable's
1267 * previous value, as accessed with the memory semantics of
1268 * {@link #get}.
1269 *
1270 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1271 *
1272 * <p>The symbolic type descriptor at the call site of {@code getAndAddRelease}
1273 * must match the access mode type that is the result of calling
1274 * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_RELEASE)} on this
1275 * VarHandle.
1276 *
1277 * @param args the signature-polymorphic parameter list of the form
1278 * {@code (CT1 ct1, ..., CTn ctn, T value)}
1279 * , statically represented using varargs.
1280 * @return the signature-polymorphic result that is the previous value of
1281 * the variable
1282 * , statically represented using {@code Object}.
1283 * @throws UnsupportedOperationException if the access mode is unsupported
1284 * for this VarHandle.
1285 * @throws WrongMethodTypeException if the access mode type does not
1286 * match the caller's symbolic type descriptor.
1287 * @throws ClassCastException if the access mode type matches the caller's
1288 * symbolic type descriptor, but a reference cast fails.
1289 * @see #setVolatile(Object...)
1290 * @see #getVolatile(Object...)
1291 */
1292 public final native
1293 @MethodHandle.PolymorphicSignature
1294 @IntrinsicCandidate
1295 Object getAndAddRelease(Object... args);
1296
1297
1298 // Bitwise operations
1299 // Throw UnsupportedOperationException for refs
1300
1301 /**
1302 * Atomically sets the value of a variable to the result of
1303 * bitwise OR between the variable's current value and the {@code mask}
1304 * with the memory semantics of {@link #setVolatile} and returns the
1305 * variable's previous value, as accessed with the memory semantics of
1306 * {@link #getVolatile}.
1307 *
1308 * <p>If the variable type is the non-integral {@code boolean} type then a
1309 * logical OR is performed instead of a bitwise OR.
1310 *
1311 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1312 *
1313 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOr}
1314 * must match the access mode type that is the result of calling
1315 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR)} on this
1316 * VarHandle.
1317 *
1318 * @param args the signature-polymorphic parameter list of the form
1319 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1320 * , statically represented using varargs.
1321 * @return the signature-polymorphic result that is the previous value of
1322 * the variable
1323 * , statically represented using {@code Object}.
1324 * @throws UnsupportedOperationException if the access mode is unsupported
1325 * for this VarHandle.
1326 * @throws WrongMethodTypeException if the access mode type does not
1327 * match the caller's symbolic type descriptor.
1328 * @throws ClassCastException if the access mode type matches the caller's
1329 * symbolic type descriptor, but a reference cast fails.
1330 * @see #setVolatile(Object...)
1331 * @see #getVolatile(Object...)
1332 */
1333 public final native
1334 @MethodHandle.PolymorphicSignature
1335 @IntrinsicCandidate
1336 Object getAndBitwiseOr(Object... args);
1337
1338 /**
1339 * Atomically sets the value of a variable to the result of
1340 * bitwise OR between the variable's current value and the {@code mask}
1341 * with the memory semantics of {@link #set} and returns the
1342 * variable's previous value, as accessed with the memory semantics of
1343 * {@link #getAcquire}.
1344 *
1345 * <p>If the variable type is the non-integral {@code boolean} type then a
1346 * logical OR is performed instead of a bitwise OR.
1347 *
1348 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1349 *
1350 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrAcquire}
1351 * must match the access mode type that is the result of calling
1352 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_ACQUIRE)} on this
1353 * VarHandle.
1354 *
1355 * @param args the signature-polymorphic parameter list of the form
1356 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1357 * , statically represented using varargs.
1358 * @return the signature-polymorphic result that is the previous value of
1359 * the variable
1360 * , statically represented using {@code Object}.
1361 * @throws UnsupportedOperationException if the access mode is unsupported
1362 * for this VarHandle.
1363 * @throws WrongMethodTypeException if the access mode type does not
1364 * match the caller's symbolic type descriptor.
1365 * @throws ClassCastException if the access mode type matches the caller's
1366 * symbolic type descriptor, but a reference cast fails.
1367 * @see #set(Object...)
1368 * @see #getAcquire(Object...)
1369 */
1370 public final native
1371 @MethodHandle.PolymorphicSignature
1372 @IntrinsicCandidate
1373 Object getAndBitwiseOrAcquire(Object... args);
1374
1375 /**
1376 * Atomically sets the value of a variable to the result of
1377 * bitwise OR between the variable's current value and the {@code mask}
1378 * with the memory semantics of {@link #setRelease} and returns the
1379 * variable's previous value, as accessed with the memory semantics of
1380 * {@link #get}.
1381 *
1382 * <p>If the variable type is the non-integral {@code boolean} type then a
1383 * logical OR is performed instead of a bitwise OR.
1384 *
1385 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1386 *
1387 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrRelease}
1388 * must match the access mode type that is the result of calling
1389 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_RELEASE)} on this
1390 * VarHandle.
1391 *
1392 * @param args the signature-polymorphic parameter list of the form
1393 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1394 * , statically represented using varargs.
1395 * @return the signature-polymorphic result that is the previous value of
1396 * the variable
1397 * , statically represented using {@code Object}.
1398 * @throws UnsupportedOperationException if the access mode is unsupported
1399 * for this VarHandle.
1400 * @throws WrongMethodTypeException if the access mode type does not
1401 * match the caller's symbolic type descriptor.
1402 * @throws ClassCastException if the access mode type matches the caller's
1403 * symbolic type descriptor, but a reference cast fails.
1404 * @see #setRelease(Object...)
1405 * @see #get(Object...)
1406 */
1407 public final native
1408 @MethodHandle.PolymorphicSignature
1409 @IntrinsicCandidate
1410 Object getAndBitwiseOrRelease(Object... args);
1411
1412 /**
1413 * Atomically sets the value of a variable to the result of
1414 * bitwise AND between the variable's current value and the {@code mask}
1415 * with the memory semantics of {@link #setVolatile} and returns the
1416 * variable's previous value, as accessed with the memory semantics of
1417 * {@link #getVolatile}.
1418 *
1419 * <p>If the variable type is the non-integral {@code boolean} type then a
1420 * logical AND is performed instead of a bitwise AND.
1421 *
1422 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1423 *
1424 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAnd}
1425 * must match the access mode type that is the result of calling
1426 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND)} on this
1427 * VarHandle.
1428 *
1429 * @param args the signature-polymorphic parameter list of the form
1430 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1431 * , statically represented using varargs.
1432 * @return the signature-polymorphic result that is the previous value of
1433 * the variable
1434 * , statically represented using {@code Object}.
1435 * @throws UnsupportedOperationException if the access mode is unsupported
1436 * for this VarHandle.
1437 * @throws WrongMethodTypeException if the access mode type does not
1438 * match the caller's symbolic type descriptor.
1439 * @throws ClassCastException if the access mode type matches the caller's
1440 * symbolic type descriptor, but a reference cast fails.
1441 * @see #setVolatile(Object...)
1442 * @see #getVolatile(Object...)
1443 */
1444 public final native
1445 @MethodHandle.PolymorphicSignature
1446 @IntrinsicCandidate
1447 Object getAndBitwiseAnd(Object... args);
1448
1449 /**
1450 * Atomically sets the value of a variable to the result of
1451 * bitwise AND between the variable's current value and the {@code mask}
1452 * with the memory semantics of {@link #set} and returns the
1453 * variable's previous value, as accessed with the memory semantics of
1454 * {@link #getAcquire}.
1455 *
1456 * <p>If the variable type is the non-integral {@code boolean} type then a
1457 * logical AND is performed instead of a bitwise AND.
1458 *
1459 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1460 *
1461 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndAcquire}
1462 * must match the access mode type that is the result of calling
1463 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_ACQUIRE)} on this
1464 * VarHandle.
1465 *
1466 * @param args the signature-polymorphic parameter list of the form
1467 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1468 * , statically represented using varargs.
1469 * @return the signature-polymorphic result that is the previous value of
1470 * the variable
1471 * , statically represented using {@code Object}.
1472 * @throws UnsupportedOperationException if the access mode is unsupported
1473 * for this VarHandle.
1474 * @throws WrongMethodTypeException if the access mode type does not
1475 * match the caller's symbolic type descriptor.
1476 * @throws ClassCastException if the access mode type matches the caller's
1477 * symbolic type descriptor, but a reference cast fails.
1478 * @see #set(Object...)
1479 * @see #getAcquire(Object...)
1480 */
1481 public final native
1482 @MethodHandle.PolymorphicSignature
1483 @IntrinsicCandidate
1484 Object getAndBitwiseAndAcquire(Object... args);
1485
1486 /**
1487 * Atomically sets the value of a variable to the result of
1488 * bitwise AND between the variable's current value and the {@code mask}
1489 * with the memory semantics of {@link #setRelease} and returns the
1490 * variable's previous value, as accessed with the memory semantics of
1491 * {@link #get}.
1492 *
1493 * <p>If the variable type is the non-integral {@code boolean} type then a
1494 * logical AND is performed instead of a bitwise AND.
1495 *
1496 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1497 *
1498 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndRelease}
1499 * must match the access mode type that is the result of calling
1500 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_RELEASE)} on this
1501 * VarHandle.
1502 *
1503 * @param args the signature-polymorphic parameter list of the form
1504 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1505 * , statically represented using varargs.
1506 * @return the signature-polymorphic result that is the previous value of
1507 * the variable
1508 * , statically represented using {@code Object}.
1509 * @throws UnsupportedOperationException if the access mode is unsupported
1510 * for this VarHandle.
1511 * @throws WrongMethodTypeException if the access mode type does not
1512 * match the caller's symbolic type descriptor.
1513 * @throws ClassCastException if the access mode type matches the caller's
1514 * symbolic type descriptor, but a reference cast fails.
1515 * @see #setRelease(Object...)
1516 * @see #get(Object...)
1517 */
1518 public final native
1519 @MethodHandle.PolymorphicSignature
1520 @IntrinsicCandidate
1521 Object getAndBitwiseAndRelease(Object... args);
1522
1523 /**
1524 * Atomically sets the value of a variable to the result of
1525 * bitwise XOR between the variable's current value and the {@code mask}
1526 * with the memory semantics of {@link #setVolatile} and returns the
1527 * variable's previous value, as accessed with the memory semantics of
1528 * {@link #getVolatile}.
1529 *
1530 * <p>If the variable type is the non-integral {@code boolean} type then a
1531 * logical XOR is performed instead of a bitwise XOR.
1532 *
1533 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1534 *
1535 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXor}
1536 * must match the access mode type that is the result of calling
1537 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR)} on this
1538 * VarHandle.
1539 *
1540 * @param args the signature-polymorphic parameter list of the form
1541 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1542 * , statically represented using varargs.
1543 * @return the signature-polymorphic result that is the previous value of
1544 * the variable
1545 * , statically represented using {@code Object}.
1546 * @throws UnsupportedOperationException if the access mode is unsupported
1547 * for this VarHandle.
1548 * @throws WrongMethodTypeException if the access mode type does not
1549 * match the caller's symbolic type descriptor.
1550 * @throws ClassCastException if the access mode type matches the caller's
1551 * symbolic type descriptor, but a reference cast fails.
1552 * @see #setVolatile(Object...)
1553 * @see #getVolatile(Object...)
1554 */
1555 public final native
1556 @MethodHandle.PolymorphicSignature
1557 @IntrinsicCandidate
1558 Object getAndBitwiseXor(Object... args);
1559
1560 /**
1561 * Atomically sets the value of a variable to the result of
1562 * bitwise XOR between the variable's current value and the {@code mask}
1563 * with the memory semantics of {@link #set} and returns the
1564 * variable's previous value, as accessed with the memory semantics of
1565 * {@link #getAcquire}.
1566 *
1567 * <p>If the variable type is the non-integral {@code boolean} type then a
1568 * logical XOR is performed instead of a bitwise XOR.
1569 *
1570 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1571 *
1572 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorAcquire}
1573 * must match the access mode type that is the result of calling
1574 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_ACQUIRE)} on this
1575 * VarHandle.
1576 *
1577 * @param args the signature-polymorphic parameter list of the form
1578 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1579 * , statically represented using varargs.
1580 * @return the signature-polymorphic result that is the previous value of
1581 * the variable
1582 * , statically represented using {@code Object}.
1583 * @throws UnsupportedOperationException if the access mode is unsupported
1584 * for this VarHandle.
1585 * @throws WrongMethodTypeException if the access mode type does not
1586 * match the caller's symbolic type descriptor.
1587 * @throws ClassCastException if the access mode type matches the caller's
1588 * symbolic type descriptor, but a reference cast fails.
1589 * @see #set(Object...)
1590 * @see #getAcquire(Object...)
1591 */
1592 public final native
1593 @MethodHandle.PolymorphicSignature
1594 @IntrinsicCandidate
1595 Object getAndBitwiseXorAcquire(Object... args);
1596
1597 /**
1598 * Atomically sets the value of a variable to the result of
1599 * bitwise XOR between the variable's current value and the {@code mask}
1600 * with the memory semantics of {@link #setRelease} and returns the
1601 * variable's previous value, as accessed with the memory semantics of
1602 * {@link #get}.
1603 *
1604 * <p>If the variable type is the non-integral {@code boolean} type then a
1605 * logical XOR is performed instead of a bitwise XOR.
1606 *
1607 * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1608 *
1609 * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorRelease}
1610 * must match the access mode type that is the result of calling
1611 * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_RELEASE)} on this
1612 * VarHandle.
1613 *
1614 * @param args the signature-polymorphic parameter list of the form
1615 * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1616 * , statically represented using varargs.
1617 * @return the signature-polymorphic result that is the previous value of
1618 * the variable
1619 * , statically represented using {@code Object}.
1620 * @throws UnsupportedOperationException if the access mode is unsupported
1621 * for this VarHandle.
1622 * @throws WrongMethodTypeException if the access mode type does not
1623 * match the caller's symbolic type descriptor.
1624 * @throws ClassCastException if the access mode type matches the caller's
1625 * symbolic type descriptor, but a reference cast fails.
1626 * @see #setRelease(Object...)
1627 * @see #get(Object...)
1628 */
1629 public final native
1630 @MethodHandle.PolymorphicSignature
1631 @IntrinsicCandidate
1632 Object getAndBitwiseXorRelease(Object... args);
1633
1634 /**
1635 * Returns a VarHandle, with access to the same variable(s) as this VarHandle, but whose
1636 * invocation behavior of access mode methods is adjusted to
1637 * <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
1638 * <p>
1639 * If this VarHandle already has invoke-exact behavior this VarHandle is returned.
1640 * <p>
1641 * Invoking {@link #hasInvokeExactBehavior()} on the returned var handle
1642 * is guaranteed to return {@code true}.
1643 *
1644 * @apiNote
1645 * Invoke-exact behavior guarantees that upon invocation of an access mode method
1646 * the types and arity of the arguments must match the {@link #accessModeType(AccessMode) access mode type},
1647 * otherwise a {@link WrongMethodTypeException} is thrown.
1648 *
1649 * @see #withInvokeBehavior()
1650 * @see #hasInvokeExactBehavior()
1651 * @return a VarHandle with invoke-exact behavior
1652 * @since 16
1653 */
1654 public abstract VarHandle withInvokeExactBehavior();
1655
1656 /**
1657 * Returns a VarHandle, with access to the same variable(s) as this VarHandle, but whose
1658 * invocation behavior of access mode methods is adjusted to
1659 * <a href="#invoke-behavior"><em>invoke behavior</em></a>.
1660 * <p>
1661 * If this VarHandle already has invoke behavior this VarHandle is returned.
1662 * <p>
1663 * Invoking {@link #hasInvokeExactBehavior()} on the returned var handle
1664 * is guaranteed to return {@code false}.
1665 *
1666 * @see #withInvokeExactBehavior()
1667 * @see #hasInvokeExactBehavior()
1668 * @return a VarHandle with invoke behavior
1669 * @since 16
1670 */
1671 public abstract VarHandle withInvokeBehavior();
1672
1673 enum AccessType {
1674 GET(Object.class),
1675 SET(void.class),
1676 COMPARE_AND_SET(boolean.class),
1677 COMPARE_AND_EXCHANGE(Object.class),
1678 GET_AND_UPDATE(Object.class);
1679
1680 static final int COUNT = GET_AND_UPDATE.ordinal() + 1;
1681 static {
1682 assert (COUNT == values().length);
1683 }
1684 final Class<?> returnType;
1685 final boolean isMonomorphicInReturnType;
1686
1687 AccessType(Class<?> returnType) {
1688 this.returnType = returnType;
1689 isMonomorphicInReturnType = returnType != Object.class;
1690 }
1691
1692 MethodType accessModeType(Class<?> receiver, Class<?> value,
1693 Class<?>... intermediate) {
1694 Class<?>[] ps;
1695 int i;
1696 switch (this) {
1697 case GET:
1698 ps = allocateParameters(0, receiver, intermediate);
1699 fillParameters(ps, receiver, intermediate);
1700 return MethodType.methodType(value, ps);
1701 case SET:
1702 ps = allocateParameters(1, receiver, intermediate);
1703 i = fillParameters(ps, receiver, intermediate);
1704 ps[i] = value;
1705 return MethodType.methodType(void.class, ps);
1706 case COMPARE_AND_SET:
1707 ps = allocateParameters(2, receiver, intermediate);
1708 i = fillParameters(ps, receiver, intermediate);
1709 ps[i++] = value;
1710 ps[i] = value;
1711 return MethodType.methodType(boolean.class, ps);
1712 case COMPARE_AND_EXCHANGE:
1713 ps = allocateParameters(2, receiver, intermediate);
1714 i = fillParameters(ps, receiver, intermediate);
1715 ps[i++] = value;
1716 ps[i] = value;
1717 return MethodType.methodType(value, ps);
1718 case GET_AND_UPDATE:
1719 ps = allocateParameters(1, receiver, intermediate);
1720 i = fillParameters(ps, receiver, intermediate);
1721 ps[i] = value;
1722 return MethodType.methodType(value, ps);
1723 default:
1724 throw new InternalError("Unknown AccessType");
1725 }
1726 }
1727
1728 private static Class<?>[] allocateParameters(int values,
1729 Class<?> receiver, Class<?>... intermediate) {
1730 int size = ((receiver != null) ? 1 : 0) + intermediate.length + values;
1731 return new Class<?>[size];
1732 }
1733
1734 private static int fillParameters(Class<?>[] ps,
1735 Class<?> receiver, Class<?>... intermediate) {
1736 int i = 0;
1737 if (receiver != null)
1738 ps[i++] = receiver;
1739 for (int j = 0; j < intermediate.length; j++)
1740 ps[i++] = intermediate[j];
1741 return i;
1742 }
1743 }
1744
1745 /**
1746 * The set of access modes that specify how a variable, referenced by a
1747 * VarHandle, is accessed.
1748 */
1749 public enum AccessMode {
1750 /**
1751 * The access mode whose access is specified by the corresponding
1752 * method
1753 * {@link VarHandle#get VarHandle.get}
1754 */
1755 GET("get", AccessType.GET),
1756 /**
1757 * The access mode whose access is specified by the corresponding
1758 * method
1759 * {@link VarHandle#set VarHandle.set}
1760 */
1761 SET("set", AccessType.SET),
1762 /**
1763 * The access mode whose access is specified by the corresponding
1764 * method
1765 * {@link VarHandle#getVolatile VarHandle.getVolatile}
1766 */
1767 GET_VOLATILE("getVolatile", AccessType.GET),
1768 /**
1769 * The access mode whose access is specified by the corresponding
1770 * method
1771 * {@link VarHandle#setVolatile VarHandle.setVolatile}
1772 */
1773 SET_VOLATILE("setVolatile", AccessType.SET),
1774 /**
1775 * The access mode whose access is specified by the corresponding
1776 * method
1777 * {@link VarHandle#getAcquire VarHandle.getAcquire}
1778 */
1779 GET_ACQUIRE("getAcquire", AccessType.GET),
1780 /**
1781 * The access mode whose access is specified by the corresponding
1782 * method
1783 * {@link VarHandle#setRelease VarHandle.setRelease}
1784 */
1785 SET_RELEASE("setRelease", AccessType.SET),
1786 /**
1787 * The access mode whose access is specified by the corresponding
1788 * method
1789 * {@link VarHandle#getOpaque VarHandle.getOpaque}
1790 */
1791 GET_OPAQUE("getOpaque", AccessType.GET),
1792 /**
1793 * The access mode whose access is specified by the corresponding
1794 * method
1795 * {@link VarHandle#setOpaque VarHandle.setOpaque}
1796 */
1797 SET_OPAQUE("setOpaque", AccessType.SET),
1798 /**
1799 * The access mode whose access is specified by the corresponding
1800 * method
1801 * {@link VarHandle#compareAndSet VarHandle.compareAndSet}
1802 */
1803 COMPARE_AND_SET("compareAndSet", AccessType.COMPARE_AND_SET),
1804 /**
1805 * The access mode whose access is specified by the corresponding
1806 * method
1807 * {@link VarHandle#compareAndExchange VarHandle.compareAndExchange}
1808 */
1809 COMPARE_AND_EXCHANGE("compareAndExchange", AccessType.COMPARE_AND_EXCHANGE),
1810 /**
1811 * The access mode whose access is specified by the corresponding
1812 * method
1813 * {@link VarHandle#compareAndExchangeAcquire VarHandle.compareAndExchangeAcquire}
1814 */
1815 COMPARE_AND_EXCHANGE_ACQUIRE("compareAndExchangeAcquire", AccessType.COMPARE_AND_EXCHANGE),
1816 /**
1817 * The access mode whose access is specified by the corresponding
1818 * method
1819 * {@link VarHandle#compareAndExchangeRelease VarHandle.compareAndExchangeRelease}
1820 */
1821 COMPARE_AND_EXCHANGE_RELEASE("compareAndExchangeRelease", AccessType.COMPARE_AND_EXCHANGE),
1822 /**
1823 * The access mode whose access is specified by the corresponding
1824 * method
1825 * {@link VarHandle#weakCompareAndSetPlain VarHandle.weakCompareAndSetPlain}
1826 */
1827 WEAK_COMPARE_AND_SET_PLAIN("weakCompareAndSetPlain", AccessType.COMPARE_AND_SET),
1828 /**
1829 * The access mode whose access is specified by the corresponding
1830 * method
1831 * {@link VarHandle#weakCompareAndSet VarHandle.weakCompareAndSet}
1832 */
1833 WEAK_COMPARE_AND_SET("weakCompareAndSet", AccessType.COMPARE_AND_SET),
1834 /**
1835 * The access mode whose access is specified by the corresponding
1836 * method
1837 * {@link VarHandle#weakCompareAndSetAcquire VarHandle.weakCompareAndSetAcquire}
1838 */
1839 WEAK_COMPARE_AND_SET_ACQUIRE("weakCompareAndSetAcquire", AccessType.COMPARE_AND_SET),
1840 /**
1841 * The access mode whose access is specified by the corresponding
1842 * method
1843 * {@link VarHandle#weakCompareAndSetRelease VarHandle.weakCompareAndSetRelease}
1844 */
1845 WEAK_COMPARE_AND_SET_RELEASE("weakCompareAndSetRelease", AccessType.COMPARE_AND_SET),
1846 /**
1847 * The access mode whose access is specified by the corresponding
1848 * method
1849 * {@link VarHandle#getAndSet VarHandle.getAndSet}
1850 */
1851 GET_AND_SET("getAndSet", AccessType.GET_AND_UPDATE),
1852 /**
1853 * The access mode whose access is specified by the corresponding
1854 * method
1855 * {@link VarHandle#getAndSetAcquire VarHandle.getAndSetAcquire}
1856 */
1857 GET_AND_SET_ACQUIRE("getAndSetAcquire", AccessType.GET_AND_UPDATE),
1858 /**
1859 * The access mode whose access is specified by the corresponding
1860 * method
1861 * {@link VarHandle#getAndSetRelease VarHandle.getAndSetRelease}
1862 */
1863 GET_AND_SET_RELEASE("getAndSetRelease", AccessType.GET_AND_UPDATE),
1864 /**
1865 * The access mode whose access is specified by the corresponding
1866 * method
1867 * {@link VarHandle#getAndAdd VarHandle.getAndAdd}
1868 */
1869 GET_AND_ADD("getAndAdd", AccessType.GET_AND_UPDATE),
1870 /**
1871 * The access mode whose access is specified by the corresponding
1872 * method
1873 * {@link VarHandle#getAndAddAcquire VarHandle.getAndAddAcquire}
1874 */
1875 GET_AND_ADD_ACQUIRE("getAndAddAcquire", AccessType.GET_AND_UPDATE),
1876 /**
1877 * The access mode whose access is specified by the corresponding
1878 * method
1879 * {@link VarHandle#getAndAddRelease VarHandle.getAndAddRelease}
1880 */
1881 GET_AND_ADD_RELEASE("getAndAddRelease", AccessType.GET_AND_UPDATE),
1882 /**
1883 * The access mode whose access is specified by the corresponding
1884 * method
1885 * {@link VarHandle#getAndBitwiseOr VarHandle.getAndBitwiseOr}
1886 */
1887 GET_AND_BITWISE_OR("getAndBitwiseOr", AccessType.GET_AND_UPDATE),
1888 /**
1889 * The access mode whose access is specified by the corresponding
1890 * method
1891 * {@link VarHandle#getAndBitwiseOrRelease VarHandle.getAndBitwiseOrRelease}
1892 */
1893 GET_AND_BITWISE_OR_RELEASE("getAndBitwiseOrRelease", AccessType.GET_AND_UPDATE),
1894 /**
1895 * The access mode whose access is specified by the corresponding
1896 * method
1897 * {@link VarHandle#getAndBitwiseOrAcquire VarHandle.getAndBitwiseOrAcquire}
1898 */
1899 GET_AND_BITWISE_OR_ACQUIRE("getAndBitwiseOrAcquire", AccessType.GET_AND_UPDATE),
1900 /**
1901 * The access mode whose access is specified by the corresponding
1902 * method
1903 * {@link VarHandle#getAndBitwiseAnd VarHandle.getAndBitwiseAnd}
1904 */
1905 GET_AND_BITWISE_AND("getAndBitwiseAnd", AccessType.GET_AND_UPDATE),
1906 /**
1907 * The access mode whose access is specified by the corresponding
1908 * method
1909 * {@link VarHandle#getAndBitwiseAndRelease VarHandle.getAndBitwiseAndRelease}
1910 */
1911 GET_AND_BITWISE_AND_RELEASE("getAndBitwiseAndRelease", AccessType.GET_AND_UPDATE),
1912 /**
1913 * The access mode whose access is specified by the corresponding
1914 * method
1915 * {@link VarHandle#getAndBitwiseAndAcquire VarHandle.getAndBitwiseAndAcquire}
1916 */
1917 GET_AND_BITWISE_AND_ACQUIRE("getAndBitwiseAndAcquire", AccessType.GET_AND_UPDATE),
1918 /**
1919 * The access mode whose access is specified by the corresponding
1920 * method
1921 * {@link VarHandle#getAndBitwiseXor VarHandle.getAndBitwiseXor}
1922 */
1923 GET_AND_BITWISE_XOR("getAndBitwiseXor", AccessType.GET_AND_UPDATE),
1924 /**
1925 * The access mode whose access is specified by the corresponding
1926 * method
1927 * {@link VarHandle#getAndBitwiseXorRelease VarHandle.getAndBitwiseXorRelease}
1928 */
1929 GET_AND_BITWISE_XOR_RELEASE("getAndBitwiseXorRelease", AccessType.GET_AND_UPDATE),
1930 /**
1931 * The access mode whose access is specified by the corresponding
1932 * method
1933 * {@link VarHandle#getAndBitwiseXorAcquire VarHandle.getAndBitwiseXorAcquire}
1934 */
1935 GET_AND_BITWISE_XOR_ACQUIRE("getAndBitwiseXorAcquire", AccessType.GET_AND_UPDATE),
1936 ;
1937
1938 static final int COUNT = GET_AND_BITWISE_XOR_ACQUIRE.ordinal() + 1;
1939 static {
1940 assert (COUNT == values().length);
1941 }
1942 final String methodName;
1943 final AccessType at;
1944
1945 AccessMode(final String methodName, AccessType at) {
1946 this.methodName = methodName;
1947 this.at = at;
1948 }
1949
1950 /**
1951 * Returns the {@code VarHandle} signature-polymorphic method name
1952 * associated with this {@code AccessMode} value.
1953 *
1954 * @return the signature-polymorphic method name
1955 * @see #valueFromMethodName
1956 */
1957 public String methodName() {
1958 return methodName;
1959 }
1960
1961 /**
1962 * Returns the {@code AccessMode} value associated with the specified
1963 * {@code VarHandle} signature-polymorphic method name.
1964 *
1965 * @param methodName the signature-polymorphic method name
1966 * @return the {@code AccessMode} value
1967 * @throws IllegalArgumentException if there is no {@code AccessMode}
1968 * value associated with method name (indicating the method
1969 * name does not correspond to a {@code VarHandle}
1970 * signature-polymorphic method name).
1971 * @see #methodName()
1972 */
1973 public static AccessMode valueFromMethodName(String methodName) {
1974 return switch (methodName) {
1975 case "get" -> GET;
1976 case "set" -> SET;
1977 case "getVolatile" -> GET_VOLATILE;
1978 case "setVolatile" -> SET_VOLATILE;
1979 case "getAcquire" -> GET_ACQUIRE;
1980 case "setRelease" -> SET_RELEASE;
1981 case "getOpaque" -> GET_OPAQUE;
1982 case "setOpaque" -> SET_OPAQUE;
1983 case "compareAndSet" -> COMPARE_AND_SET;
1984 case "compareAndExchange" -> COMPARE_AND_EXCHANGE;
1985 case "compareAndExchangeAcquire" -> COMPARE_AND_EXCHANGE_ACQUIRE;
1986 case "compareAndExchangeRelease" -> COMPARE_AND_EXCHANGE_RELEASE;
1987 case "weakCompareAndSet" -> WEAK_COMPARE_AND_SET;
1988 case "weakCompareAndSetPlain" -> WEAK_COMPARE_AND_SET_PLAIN;
1989 case "weakCompareAndSetAcquire" -> WEAK_COMPARE_AND_SET_ACQUIRE;
1990 case "weakCompareAndSetRelease" -> WEAK_COMPARE_AND_SET_RELEASE;
1991 case "getAndSet" -> GET_AND_SET;
1992 case "getAndSetAcquire" -> GET_AND_SET_ACQUIRE;
1993 case "getAndSetRelease" -> GET_AND_SET_RELEASE;
1994 case "getAndAdd" -> GET_AND_ADD;
1995 case "getAndAddAcquire" -> GET_AND_ADD_ACQUIRE;
1996 case "getAndAddRelease" -> GET_AND_ADD_RELEASE;
1997 case "getAndBitwiseOr" -> GET_AND_BITWISE_OR;
1998 case "getAndBitwiseOrRelease" -> GET_AND_BITWISE_OR_RELEASE;
1999 case "getAndBitwiseOrAcquire" -> GET_AND_BITWISE_OR_ACQUIRE;
2000 case "getAndBitwiseAnd" -> GET_AND_BITWISE_AND;
2001 case "getAndBitwiseAndRelease" -> GET_AND_BITWISE_AND_RELEASE;
2002 case "getAndBitwiseAndAcquire" -> GET_AND_BITWISE_AND_ACQUIRE;
2003 case "getAndBitwiseXor" -> GET_AND_BITWISE_XOR;
2004 case "getAndBitwiseXorRelease" -> GET_AND_BITWISE_XOR_RELEASE;
2005 case "getAndBitwiseXorAcquire" -> GET_AND_BITWISE_XOR_ACQUIRE;
2006 default -> throw new IllegalArgumentException("No AccessMode value for method name " + methodName);
2007 };
2008 }
2009
2010 private static final @Stable AccessMode[] VALUES = values();
2011 static AccessMode valueFromOrdinal(int mode) {
2012 return VALUES[mode];
2013 }
2014 }
2015
2016 static final class AccessDescriptor {
2017 final MethodType symbolicMethodTypeExact;
2018 final MethodType symbolicMethodTypeErased;
2019 final MethodType symbolicMethodTypeInvoker;
2020 final Class<?> returnType;
2021 final int type;
2022 final int mode;
2023
2024 public AccessDescriptor(MethodType symbolicMethodType, int type, int mode) {
2025 this.symbolicMethodTypeExact = symbolicMethodType;
2026 this.symbolicMethodTypeErased = symbolicMethodType.erase();
2027 this.symbolicMethodTypeInvoker = symbolicMethodType.insertParameterTypes(0, VarHandle.class);
2028 this.returnType = symbolicMethodType.returnType();
2029 this.type = type;
2030 this.mode = mode;
2031 }
2032 }
2033
2034 /**
2035 * Returns a compact textual description of this {@linkplain VarHandle},
2036 * including the type of variable described, and a description of its coordinates.
2037 *
2038 * @return A compact textual description of this {@linkplain VarHandle}
2039 */
2040 @Override
2041 public final String toString() {
2042 return String.format("VarHandle[varType=%s, coord=%s]",
2043 varType().getName(),
2044 coordinateTypes());
2045 }
2046
2047 /**
2048 * Returns the variable type of variables referenced by this VarHandle.
2049 *
2050 * @return the variable type of variables referenced by this VarHandle
2051 */
2052 public Class<?> varType() {
2053 MethodType typeSet = accessModeType(AccessMode.SET);
2054 return typeSet.parameterType(typeSet.parameterCount() - 1);
2055 }
2056
2057 /**
2058 * Returns the coordinate types for this VarHandle.
2059 *
2060 * @return the coordinate types for this VarHandle. The returned
2061 * list is unmodifiable
2062 */
2063 public List<Class<?>> coordinateTypes() {
2064 MethodType typeGet = accessModeType(AccessMode.GET);
2065 return typeGet.parameterList();
2066 }
2067
2068 /**
2069 * Obtains the access mode type for this VarHandle and a given access mode.
2070 *
2071 * <p>The access mode type's parameter types will consist of a prefix that
2072 * is the coordinate types of this VarHandle followed by further
2073 * types as defined by the access mode method.
2074 * The access mode type's return type is defined by the return type of the
2075 * access mode method.
2076 *
2077 * @param accessMode the access mode, corresponding to the
2078 * signature-polymorphic method of the same name
2079 * @return the access mode type for the given access mode
2080 */
2081 public final MethodType accessModeType(AccessMode accessMode) {
2082 return accessModeType(accessMode.at.ordinal());
2083 }
2084
2085 /**
2086 * Validates that the given access descriptors method type matches up with
2087 * the access mode of this VarHandle, then returns if this is direct.
2088 * These operations were grouped together to slightly
2089 * improve efficiency during startup/warmup.
2090 *
2091 * A direct VarHandle's VarForm has implementation MemberNames that can
2092 * be linked directly. If a VarHandle is indirect, it must override
2093 * {@link #isAccessModeSupported} and {@link #getMethodHandleUncached}
2094 * which access MemberNames.
2095 *
2096 * @return true if this is a direct VarHandle, false if it's an indirect
2097 * VarHandle.
2098 * @throws WrongMethodTypeException if there's an access type mismatch
2099 * @see #asDirect()
2100 */
2101 @ForceInline
2102 boolean checkAccessModeThenIsDirect(VarHandle.AccessDescriptor ad) {
2103 if (exact && accessModeType(ad.type) != ad.symbolicMethodTypeExact) {
2104 throwWrongMethodTypeException(ad);
2105 }
2106 // return true unless overridden in an IndirectVarHandle
2107 return true;
2108 }
2109
2110 @DontInline
2111 private final void throwWrongMethodTypeException(VarHandle.AccessDescriptor ad) {
2112 throw new WrongMethodTypeException("handle's method type " + accessModeType(ad.type)
2113 + " but found " + ad.symbolicMethodTypeExact);
2114 }
2115
2116 @ForceInline
2117 final MethodType accessModeType(int accessTypeOrdinal) {
2118 MethodType[] mtTable = methodTypeTable;
2119 if (mtTable == null) {
2120 mtTable = methodTypeTable = new MethodType[VarHandle.AccessType.COUNT];
2121 }
2122 MethodType mt = mtTable[accessTypeOrdinal];
2123 if (mt == null) {
2124 mt = mtTable[accessTypeOrdinal] =
2125 accessModeTypeUncached(accessTypeOrdinal);
2126 }
2127 return mt;
2128 }
2129
2130 final MethodType accessModeTypeUncached(int accessTypeOrdinal) {
2131 return accessModeTypeUncached(AccessType.values()[accessTypeOrdinal]);
2132 }
2133
2134 abstract MethodType accessModeTypeUncached(AccessType accessMode);
2135
2136 /**
2137 * Returns {@code true} if the given access mode is supported, otherwise
2138 * {@code false}.
2139 *
2140 * <p>The return of a {@code false} value for a given access mode indicates
2141 * that an {@code UnsupportedOperationException} is thrown on invocation
2142 * of the corresponding access mode method.
2143 *
2144 * @param accessMode the access mode, corresponding to the
2145 * signature-polymorphic method of the same name
2146 * @return {@code true} if the given access mode is supported, otherwise
2147 * {@code false}.
2148 */
2149 public boolean isAccessModeSupported(AccessMode accessMode) {
2150 return vform.getMemberNameOrNull(accessMode.ordinal()) != null;
2151 }
2152
2153 /**
2154 * Obtains a method handle bound to this VarHandle and the given access
2155 * mode.
2156 *
2157 * @apiNote This method, for a VarHandle {@code vh} and access mode
2158 * {@code {access-mode}}, returns a method handle that is equivalent to
2159 * method handle {@code bmh} in the following code (though it may be more
2160 * efficient):
2161 * <pre>{@code
2162 * MethodHandle mh = MethodHandles.varHandleExactInvoker(
2163 * vh.accessModeType(VarHandle.AccessMode.{access-mode}));
2164 *
2165 * MethodHandle bmh = mh.bindTo(vh);
2166 * }</pre>
2167 *
2168 * @param accessMode the access mode, corresponding to the
2169 * signature-polymorphic method of the same name
2170 * @return a method handle bound to this VarHandle and the given access mode
2171 */
2172 public MethodHandle toMethodHandle(AccessMode accessMode) {
2173 if (isAccessModeSupported(accessMode)) {
2174 MethodHandle mh = getMethodHandle(accessMode.ordinal());
2175 return mh.bindTo(asDirect());
2176 }
2177 else {
2178 // Ensure an UnsupportedOperationException is thrown
2179 return MethodHandles.varHandleInvoker(accessMode, accessModeType(accessMode)).
2180 bindTo(this);
2181 }
2182 }
2183
2184 /**
2185 * Return a nominal descriptor for this instance, if one can be
2186 * constructed, or an empty {@link Optional} if one cannot be.
2187 *
2188 * @return An {@link Optional} containing the resulting nominal descriptor,
2189 * or an empty {@link Optional} if one cannot be constructed.
2190 * @since 12
2191 */
2192 @Override
2193 public Optional<VarHandleDesc> describeConstable() {
2194 // partial function for field and array only
2195 return Optional.empty();
2196 }
2197
2198 @Stable
2199 MethodType[] methodTypeTable;
2200
2201 @Stable
2202 MethodHandle[] methodHandleTable;
2203
2204 @ForceInline
2205 final MethodHandle getMethodHandle(int mode) {
2206 MethodHandle[] mhTable = methodHandleTable;
2207 if (mhTable == null) {
2208 mhTable = methodHandleTable = new MethodHandle[AccessMode.COUNT];
2209 }
2210 MethodHandle mh = mhTable[mode];
2211 if (mh == null) {
2212 mh = mhTable[mode] = getMethodHandleUncached(mode);
2213 }
2214 return mh;
2215 }
2216
2217 /**
2218 * Computes a method handle that can be passed the {@linkplain #asDirect() direct}
2219 * var handle of this var handle with the given access mode. Pre/postprocessing
2220 * such as argument or return value filtering should be done by the returned
2221 * method handle.
2222 *
2223 * @throws UnsupportedOperationException if the access mode is not supported
2224 */
2225 MethodHandle getMethodHandleUncached(int mode) {
2226 MethodType mt = accessModeType(AccessMode.valueFromOrdinal(mode)).
2227 insertParameterTypes(0, VarHandle.class);
2228 MemberName mn = vform.getMemberName(mode);
2229 DirectMethodHandle dmh = DirectMethodHandle.make(mn);
2230 // Such a method handle must not be publicly exposed directly
2231 // otherwise it can be cracked, it must be transformed or rebound
2232 // before exposure
2233 MethodHandle mh = dmh.copyWith(mt, dmh.form);
2234 assert mh.type().erase() == mn.getMethodType().erase();
2235 return mh;
2236 }
2237
2238
2239 /*non-public*/
2240 final void updateVarForm(VarForm newVForm) {
2241 if (vform == newVForm) return;
2242 UNSAFE.putReference(this, VFORM_OFFSET, newVForm);
2243 UNSAFE.fullFence();
2244 }
2245
2246 private static final long VFORM_OFFSET;
2247
2248 static {
2249 VFORM_OFFSET = UNSAFE.objectFieldOffset(VarHandle.class, "vform");
2250
2251 // The VarHandleGuards must be initialized to ensure correct
2252 // compilation of the guard methods
2253 UNSAFE.ensureClassInitialized(VarHandleGuards.class);
2254 }
2255
2256
2257 // Fence methods
2258
2259 /**
2260 * Ensures that loads and stores before the fence will not be reordered
2261 * with
2262 * loads and stores after the fence.
2263 *
2264 * @apiNote Ignoring the many semantic differences from C and C++, this
2265 * method has memory ordering effects compatible with
2266 * {@code atomic_thread_fence(memory_order_seq_cst)}
2267 */
2268 @ForceInline
2269 public static void fullFence() {
2270 UNSAFE.fullFence();
2271 }
2272
2273 /**
2274 * Ensures that loads before the fence will not be reordered with loads and
2275 * stores after the fence.
2276 *
2277 * @apiNote Ignoring the many semantic differences from C and C++, this
2278 * method has memory ordering effects compatible with
2279 * {@code atomic_thread_fence(memory_order_acquire)}
2280 */
2281 @ForceInline
2282 public static void acquireFence() {
2283 UNSAFE.loadFence();
2284 }
2285
2286 /**
2287 * Ensures that loads and stores before the fence will not be
2288 * reordered with stores after the fence.
2289 *
2290 * @apiNote Ignoring the many semantic differences from C and C++, this
2291 * method has memory ordering effects compatible with
2292 * {@code atomic_thread_fence(memory_order_release)}
2293 */
2294 @ForceInline
2295 public static void releaseFence() {
2296 UNSAFE.storeFence();
2297 }
2298
2299 /**
2300 * Ensures that loads before the fence will not be reordered with
2301 * loads after the fence.
2302 */
2303 @ForceInline
2304 public static void loadLoadFence() {
2305 UNSAFE.loadLoadFence();
2306 }
2307
2308 /**
2309 * Ensures that stores before the fence will not be reordered with
2310 * stores after the fence.
2311 */
2312 @ForceInline
2313 public static void storeStoreFence() {
2314 UNSAFE.storeStoreFence();
2315 }
2316
2317 /**
2318 * A <a href="{@docRoot}/java.base/java/lang/constant/package-summary.html#nominal">nominal descriptor</a> for a
2319 * {@link VarHandle} constant.
2320 *
2321 * @since 12
2322 */
2323 public static final class VarHandleDesc extends DynamicConstantDesc<VarHandle> {
2324
2325 /**
2326 * Kinds of variable handle descs
2327 */
2328 private enum Kind {
2329 FIELD(ConstantDescs.BSM_VARHANDLE_FIELD),
2330 STATIC_FIELD(ConstantDescs.BSM_VARHANDLE_STATIC_FIELD),
2331 ARRAY(ConstantDescs.BSM_VARHANDLE_ARRAY);
2332
2333 final DirectMethodHandleDesc bootstrapMethod;
2334
2335 Kind(DirectMethodHandleDesc bootstrapMethod) {
2336 this.bootstrapMethod = bootstrapMethod;
2337 }
2338
2339 ConstantDesc[] toBSMArgs(ClassDesc declaringClass, ClassDesc varType) {
2340 return switch (this) {
2341 case FIELD, STATIC_FIELD -> new ConstantDesc[]{declaringClass, varType};
2342 case ARRAY -> new ConstantDesc[]{declaringClass};
2343 default -> throw new InternalError("Cannot reach here");
2344 };
2345 }
2346 }
2347
2348 private final Kind kind;
2349 private final ClassDesc declaringClass;
2350 private final ClassDesc varType;
2351
2352 /**
2353 * Construct a {@linkplain VarHandleDesc} given a kind, name, and declaring
2354 * class.
2355 *
2356 * @param kind the kind of the var handle
2357 * @param name the unqualified name of the field, for field var handles; otherwise ignored
2358 * @param declaringClass a {@link ClassDesc} describing the declaring class,
2359 * for field var handles
2360 * @param varType a {@link ClassDesc} describing the type of the variable
2361 * @throws NullPointerException if any required argument is null
2362 * @jvms 4.2.2 Unqualified Names
2363 */
2364 private VarHandleDesc(Kind kind, String name, ClassDesc declaringClass, ClassDesc varType) {
2365 super(kind.bootstrapMethod, name,
2366 ConstantDescs.CD_VarHandle,
2367 kind.toBSMArgs(declaringClass, varType));
2368 this.kind = kind;
2369 this.declaringClass = declaringClass;
2370 this.varType = varType;
2371 }
2372
2373 /**
2374 * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2375 * for an instance field.
2376 *
2377 * @param declaringClass a {@link ClassDesc} describing the declaring class,
2378 * for field var handles
2379 * @param name the unqualified name of the field
2380 * @param fieldType a {@link ClassDesc} describing the type of the field
2381 * @return the {@linkplain VarHandleDesc}
2382 * @throws NullPointerException if any of the arguments are null
2383 * @jvms 4.2.2 Unqualified Names
2384 */
2385 public static VarHandleDesc ofField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
2386 Objects.requireNonNull(declaringClass);
2387 Objects.requireNonNull(name);
2388 Objects.requireNonNull(fieldType);
2389 return new VarHandleDesc(Kind.FIELD, name, declaringClass, fieldType);
2390 }
2391
2392 /**
2393 * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2394 * for a static field.
2395 *
2396 * @param declaringClass a {@link ClassDesc} describing the declaring class,
2397 * for field var handles
2398 * @param name the unqualified name of the field
2399 * @param fieldType a {@link ClassDesc} describing the type of the field
2400 * @return the {@linkplain VarHandleDesc}
2401 * @throws NullPointerException if any of the arguments are null
2402 * @jvms 4.2.2 Unqualified Names
2403 */
2404 public static VarHandleDesc ofStaticField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
2405 Objects.requireNonNull(declaringClass);
2406 Objects.requireNonNull(name);
2407 Objects.requireNonNull(fieldType);
2408 return new VarHandleDesc(Kind.STATIC_FIELD, name, declaringClass, fieldType);
2409 }
2410
2411 /**
2412 * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2413 * for an array type.
2414 *
2415 * @param arrayClass a {@link ClassDesc} describing the type of the array
2416 * @return the {@linkplain VarHandleDesc}
2417 * @throws NullPointerException if any of the arguments are null
2418 */
2419 public static VarHandleDesc ofArray(ClassDesc arrayClass) {
2420 Objects.requireNonNull(arrayClass);
2421 if (!arrayClass.isArray())
2422 throw new IllegalArgumentException("Array class argument not an array: " + arrayClass);
2423 return new VarHandleDesc(Kind.ARRAY, ConstantDescs.DEFAULT_NAME, arrayClass, arrayClass.componentType());
2424 }
2425
2426 /**
2427 * Returns a {@link ClassDesc} describing the type of the variable described
2428 * by this descriptor.
2429 *
2430 * @return the variable type
2431 */
2432 public ClassDesc varType() {
2433 return varType;
2434 }
2435
2436 @Override
2437 public VarHandle resolveConstantDesc(MethodHandles.Lookup lookup)
2438 throws ReflectiveOperationException {
2439 return switch (kind) {
2440 case FIELD -> lookup.findVarHandle(declaringClass.resolveConstantDesc(lookup),
2441 constantName(),
2442 varType.resolveConstantDesc(lookup));
2443 case STATIC_FIELD -> lookup.findStaticVarHandle(declaringClass.resolveConstantDesc(lookup),
2444 constantName(),
2445 varType.resolveConstantDesc(lookup));
2446 case ARRAY -> MethodHandles.arrayElementVarHandle(declaringClass.resolveConstantDesc(lookup));
2447 default -> throw new InternalError("Cannot reach here");
2448 };
2449 }
2450
2451 /**
2452 * Returns a compact textual description of this constant description.
2453 * For a field {@linkplain VarHandle}, includes the owner, name, and type
2454 * of the field, and whether it is static; for an array {@linkplain VarHandle},
2455 * the name of the component type.
2456 *
2457 * @return A compact textual description of this descriptor
2458 */
2459 @Override
2460 public String toString() {
2461 return switch (kind) {
2462 case FIELD, STATIC_FIELD -> String.format("VarHandleDesc[%s%s.%s:%s]",
2463 (kind == Kind.STATIC_FIELD) ? "static " : "",
2464 declaringClass.displayName(), constantName(), varType.displayName());
2465 case ARRAY -> String.format("VarHandleDesc[%s[]]", declaringClass.displayName());
2466 default -> throw new InternalError("Cannot reach here");
2467 };
2468 }
2469 }
2470
2471 }