1 /*
   2  * Copyright (c) 2014, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.constant.ClassDesc;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.ConstantDesc;
  31 import java.lang.constant.ConstantDescs;
  32 import java.lang.constant.DirectMethodHandleDesc;
  33 import java.lang.constant.DynamicConstantDesc;
  34 import java.util.List;
  35 import java.util.Objects;
  36 import java.util.Optional;
  37 
  38 import jdk.internal.vm.annotation.DontInline;
  39 import jdk.internal.vm.annotation.ForceInline;
  40 import jdk.internal.vm.annotation.IntrinsicCandidate;
  41 import jdk.internal.vm.annotation.Stable;
  42 
  43 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  44 
  45 /**
  46  * A VarHandle is a dynamically strongly typed reference to a variable, or to a
  47  * parametrically-defined family of variables, including static fields,
  48  * non-static fields, array elements, or components of an off-heap data
  49  * structure.  Access to such variables is supported under various
  50  * <em>access modes</em>, including plain read/write access, volatile
  51  * read/write access, and compare-and-set.
  52  *
  53  * <p>VarHandles are immutable and have no visible state.  VarHandles cannot be
  54  * subclassed by the user.
  55  *
  56  * <p>A VarHandle has:
  57  * <ul>
  58  * <li>a {@link #varType variable type} T, the type of every variable referenced
  59  * by this VarHandle; and
  60  * <li>a list of {@link #coordinateTypes coordinate types}
  61  * {@code CT1, CT2, ..., CTn}, the types of <em>coordinate expressions</em> that
  62  * jointly locate a variable referenced by this VarHandle.
  63  * </ul>
  64  * Variable and coordinate types may be primitive or reference, and are
  65  * represented by {@code Class} objects.  The list of coordinate types may be
  66  * empty.
  67  *
  68  * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
  69  * lookup} VarHandle instances document the supported variable type and the list
  70  * of coordinate types.
  71  *
  72  * <p>Each access mode is associated with one <em>access mode method</em>, a
  73  * <a href="MethodHandle.html#sigpoly">signature polymorphic</a> method named
  74  * for the access mode.  When an access mode method is invoked on a VarHandle
  75  * instance, the initial arguments to the invocation are coordinate expressions
  76  * that indicate in precisely which object the variable is to be accessed.
  77  * Trailing arguments to the invocation represent values of importance to the
  78  * access mode.  For example, the various compare-and-set or compare-and-exchange
  79  * access modes require two trailing arguments for the variable's expected value
  80  * and new value.
  81  *
  82  * <p>The arity and types of arguments to the invocation of an access mode
  83  * method are not checked statically.  Instead, each access mode method
  84  * specifies an {@link #accessModeType(AccessMode) access mode type},
  85  * represented as an instance of {@link MethodType}, that serves as a kind of
  86  * method signature against which the arguments are checked dynamically.  An
  87  * access mode type gives formal parameter types in terms of the coordinate
  88  * types of a VarHandle instance and the types for values of importance to the
  89  * access mode.  An access mode type also gives a return type, often in terms of
  90  * the variable type of a VarHandle instance.  When an access mode method is
  91  * invoked on a VarHandle instance, the symbolic type descriptor at the
  92  * call site, the run time types of arguments to the invocation, and the run
  93  * time type of the return value, must <a href="#invoke">match</a> the types
  94  * given in the access mode type.  A runtime exception will be thrown if the
  95  * match fails.
  96  *
  97  * For example, the access mode method {@link #compareAndSet} specifies that if
  98  * its receiver is a VarHandle instance with coordinate types
  99  * {@code CT1, ..., CTn} and variable type {@code T}, then its access mode type
 100  * is {@code (CT1 c1, ..., CTn cn, T expectedValue, T newValue)boolean}.
 101  * Suppose that a VarHandle instance can access array elements, and that its
 102  * coordinate types are {@code String[]} and {@code int} while its variable type
 103  * is {@code String}.  The access mode type for {@code compareAndSet} on this
 104  * VarHandle instance would be
 105  * {@code (String[] c1, int c2, String expectedValue, String newValue)boolean}.
 106  * Such a VarHandle instance may be produced by the
 107  * {@link MethodHandles#arrayElementVarHandle(Class) array factory method} and
 108  * access array elements as follows:
 109  * <pre> {@code
 110  * String[] sa = ...
 111  * VarHandle avh = MethodHandles.arrayElementVarHandle(String[].class);
 112  * boolean r = avh.compareAndSet(sa, 10, "expected", "new");
 113  * }</pre>
 114  *
 115  * <p>Access modes control atomicity and consistency properties.
 116  * <em>Plain</em> read ({@code get}) and write ({@code set})
 117  * accesses are guaranteed to be bitwise atomic only for references
 118  * and for primitive values of at most 32 bits, and impose no observable
 119  * ordering constraints with respect to threads other than the
 120  * executing thread. <em>Opaque</em> operations are bitwise atomic and
 121  * coherently ordered with respect to accesses to the same variable.
 122  * In addition to obeying Opaque properties, <em>Acquire</em> mode
 123  * reads and their subsequent accesses are ordered after matching
 124  * <em>Release</em> mode writes and their previous accesses.  In
 125  * addition to obeying Acquire and Release properties, all
 126  * <em>Volatile</em> operations are totally ordered with respect to
 127  * each other.
 128  *
 129  * <p>Access modes are grouped into the following categories:
 130  * <ul>
 131  * <li>read access modes that get the value of a variable under specified
 132  * memory ordering effects.
 133  * The set of corresponding access mode methods belonging to this group
 134  * consists of the methods
 135  * {@link #get get},
 136  * {@link #getVolatile getVolatile},
 137  * {@link #getAcquire getAcquire},
 138  * {@link #getOpaque getOpaque}.
 139  * <li>write access modes that set the value of a variable under specified
 140  * memory ordering effects.
 141  * The set of corresponding access mode methods belonging to this group
 142  * consists of the methods
 143  * {@link #set set},
 144  * {@link #setVolatile setVolatile},
 145  * {@link #setRelease setRelease},
 146  * {@link #setOpaque setOpaque}.
 147  * <li>atomic update access modes that, for example, atomically compare and set
 148  * the value of a variable under specified memory ordering effects.
 149  * The set of corresponding access mode methods belonging to this group
 150  * consists of the methods
 151  * {@link #compareAndSet compareAndSet},
 152  * {@link #weakCompareAndSetPlain weakCompareAndSetPlain},
 153  * {@link #weakCompareAndSet weakCompareAndSet},
 154  * {@link #weakCompareAndSetAcquire weakCompareAndSetAcquire},
 155  * {@link #weakCompareAndSetRelease weakCompareAndSetRelease},
 156  * {@link #compareAndExchangeAcquire compareAndExchangeAcquire},
 157  * {@link #compareAndExchange compareAndExchange},
 158  * {@link #compareAndExchangeRelease compareAndExchangeRelease},
 159  * {@link #getAndSet getAndSet},
 160  * {@link #getAndSetAcquire getAndSetAcquire},
 161  * {@link #getAndSetRelease getAndSetRelease}.
 162  * <li>numeric atomic update access modes that, for example, atomically get and
 163  * set with addition the value of a variable under specified memory ordering
 164  * effects.
 165  * The set of corresponding access mode methods belonging to this group
 166  * consists of the methods
 167  * {@link #getAndAdd getAndAdd},
 168  * {@link #getAndAddAcquire getAndAddAcquire},
 169  * {@link #getAndAddRelease getAndAddRelease},
 170  * <li>bitwise atomic update access modes that, for example, atomically get and
 171  * bitwise OR the value of a variable under specified memory ordering
 172  * effects.
 173  * The set of corresponding access mode methods belonging to this group
 174  * consists of the methods
 175  * {@link #getAndBitwiseOr getAndBitwiseOr},
 176  * {@link #getAndBitwiseOrAcquire getAndBitwiseOrAcquire},
 177  * {@link #getAndBitwiseOrRelease getAndBitwiseOrRelease},
 178  * {@link #getAndBitwiseAnd getAndBitwiseAnd},
 179  * {@link #getAndBitwiseAndAcquire getAndBitwiseAndAcquire},
 180  * {@link #getAndBitwiseAndRelease getAndBitwiseAndRelease},
 181  * {@link #getAndBitwiseXor getAndBitwiseXor},
 182  * {@link #getAndBitwiseXorAcquire getAndBitwiseXorAcquire},
 183  * {@link #getAndBitwiseXorRelease getAndBitwiseXorRelease}.
 184  * </ul>
 185  *
 186  * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
 187  * lookup} VarHandle instances document the set of access modes that are
 188  * supported, which may also include documenting restrictions based on the
 189  * variable type and whether a variable is read-only.  If an access mode is not
 190  * supported then the corresponding access mode method will on invocation throw
 191  * an {@code UnsupportedOperationException}.  Factory methods should document
 192  * any additional undeclared exceptions that may be thrown by access mode
 193  * methods.
 194  * The {@link #get get} access mode is supported for all
 195  * VarHandle instances and the corresponding method never throws
 196  * {@code UnsupportedOperationException}.
 197  * If a VarHandle references a read-only variable (for example a {@code final}
 198  * field) then write, atomic update, numeric atomic update, and bitwise atomic
 199  * update access modes are not supported and corresponding methods throw
 200  * {@code UnsupportedOperationException}.
 201  * Read/write access modes (if supported), with the exception of
 202  * {@code get} and {@code set}, provide atomic access for
 203  * reference types and all primitive types.
 204  * Unless stated otherwise in the documentation of a factory method, the access
 205  * modes {@code get} and {@code set} (if supported) provide atomic access for
 206  * reference types and all primitives types, with the exception of {@code long}
 207  * and {@code double} on 32-bit platforms.
 208  *
 209  * <p>Access modes will override any memory ordering effects specified at
 210  * the declaration site of a variable.  For example, a VarHandle accessing
 211  * a field using the {@code get} access mode will access the field as
 212  * specified <em>by its access mode</em> even if that field is declared
 213  * {@code volatile}.  When mixed access is performed extreme care should be
 214  * taken since the Java Memory Model may permit surprising results.
 215  *
 216  * <p>In addition to supporting access to variables under various access modes,
 217  * a set of static methods, referred to as memory fence methods, is also
 218  * provided for fine-grained control of memory ordering.
 219  *
 220  * The Java Language Specification permits other threads to observe operations
 221  * as if they were executed in orders different than are apparent in program
 222  * source code, subject to constraints arising, for example, from the use of
 223  * locks, {@code volatile} fields or VarHandles.  The static methods,
 224  * {@link #fullFence fullFence}, {@link #acquireFence acquireFence},
 225  * {@link #releaseFence releaseFence}, {@link #loadLoadFence loadLoadFence} and
 226  * {@link #storeStoreFence storeStoreFence}, can also be used to impose
 227  * constraints.  Their specifications, as is the case for certain access modes,
 228  * are phrased in terms of the lack of "reorderings" -- observable ordering
 229  * effects that might otherwise occur if the fence was not present.  More
 230  * precise phrasing of the specification of access mode methods and memory fence
 231  * methods may accompany future updates of the Java Language Specification.
 232  *
 233  * <h2>Compiling invocation of access mode methods</h2>
 234  * A Java method call expression naming an access mode method can invoke a
 235  * VarHandle from Java source code.  From the viewpoint of source code, these
 236  * methods can take any arguments and their polymorphic result (if expressed)
 237  * can be cast to any return type.  Formally this is accomplished by giving the
 238  * access mode methods variable arity {@code Object} arguments and
 239  * {@code Object} return types (if the return type is polymorphic), but they
 240  * have an additional quality called <em>signature polymorphism</em> which
 241  * connects this freedom of invocation directly to the JVM execution stack.
 242  * <p>
 243  * As is usual with virtual methods, source-level calls to access mode methods
 244  * compile to an {@code invokevirtual} instruction.  More unusually, the
 245  * compiler must record the actual argument types, and may not perform method
 246  * invocation conversions on the arguments.  Instead, it must generate
 247  * instructions to push them on the stack according to their own unconverted
 248  * types.  The VarHandle object itself will be pushed on the stack before the
 249  * arguments.  The compiler then generates an {@code invokevirtual} instruction
 250  * that invokes the access mode method with a symbolic type descriptor which
 251  * describes the argument and return types.
 252  * <p>
 253  * To issue a complete symbolic type descriptor, the compiler must also
 254  * determine the return type (if polymorphic).  This is based on a cast on the
 255  * method invocation expression, if there is one, or else {@code Object} if the
 256  * invocation is an expression, or else {@code void} if the invocation is a
 257  * statement.  The cast may be to a primitive type (but not {@code void}).
 258  * <p>
 259  * As a corner case, an uncasted {@code null} argument is given a symbolic type
 260  * descriptor of {@code java.lang.Void}.  The ambiguity with the type
 261  * {@code Void} is harmless, since there are no references of type {@code Void}
 262  * except the null reference.
 263  *
 264  *
 265  * <h2><a id="invoke">Performing invocation of access mode methods</a></h2>
 266  * The first time an {@code invokevirtual} instruction is executed it is linked
 267  * by symbolically resolving the names in the instruction and verifying that
 268  * the method call is statically legal.  This also holds for calls to access mode
 269  * methods.  In this case, the symbolic type descriptor emitted by the compiler
 270  * is checked for correct syntax, and names it contains are resolved.  Thus, an
 271  * {@code invokevirtual} instruction which invokes an access mode method will
 272  * always link, as long as the symbolic type descriptor is syntactically
 273  * well-formed and the types exist.
 274  * <p>
 275  * When the {@code invokevirtual} is executed after linking, the receiving
 276  * VarHandle's access mode type is first checked by the JVM to ensure that it
 277  * matches the symbolic type descriptor.  If the type
 278  * match fails, it means that the access mode method which the caller is
 279  * invoking is not present on the individual VarHandle being invoked.
 280  *
 281  * <p id="invoke-behavior">
 282  * Invocation of an access mode method behaves, by default, as if an invocation of
 283  * {@link MethodHandle#invoke}, where the receiving method handle accepts the
 284  * VarHandle instance as the leading argument.  More specifically, the
 285  * following, where {@code {access-mode}} corresponds to the access mode method
 286  * name:
 287  * <pre> {@code
 288  * VarHandle vh = ..
 289  * R r = (R) vh.{access-mode}(p1, p2, ..., pN);
 290  * }</pre>
 291  * behaves as if:
 292  * <pre> {@code
 293  * VarHandle vh = ..
 294  * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
 295  * MethodHandle mh = MethodHandles.varHandleExactInvoker(
 296  *                       am,
 297  *                       vh.accessModeType(am));
 298  *
 299  * R r = (R) mh.invoke(vh, p1, p2, ..., pN)
 300  * }</pre>
 301  * (modulo access mode methods do not declare throwing of {@code Throwable}).
 302  * This is equivalent to:
 303  * <pre> {@code
 304  * MethodHandle mh = MethodHandles.lookup().findVirtual(
 305  *                       VarHandle.class,
 306  *                       "{access-mode}",
 307  *                       MethodType.methodType(R, p1, p2, ..., pN));
 308  *
 309  * R r = (R) mh.invokeExact(vh, p1, p2, ..., pN)
 310  * }</pre>
 311  * where the desired method type is the symbolic type descriptor and a
 312  * {@link MethodHandle#invokeExact} is performed, since before invocation of the
 313  * target, the handle will apply reference casts as necessary and box, unbox, or
 314  * widen primitive values, as if by {@link MethodHandle#asType asType} (see also
 315  * {@link MethodHandles#varHandleInvoker}).
 316  *
 317  * More concisely, such behavior is equivalent to:
 318  * <pre> {@code
 319  * VarHandle vh = ..
 320  * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
 321  * MethodHandle mh = vh.toMethodHandle(am);
 322  *
 323  * R r = (R) mh.invoke(p1, p2, ..., pN)
 324  * }</pre>
 325  * Where, in this case, the method handle is bound to the VarHandle instance.
 326  *
 327  * <p id="invoke-exact-behavior">
 328  * A VarHandle's invocation behavior can be adjusted (see {@link #withInvokeExactBehavior}) such that invocation of
 329  * an access mode method behaves as if invocation of {@link MethodHandle#invokeExact},
 330  * where the receiving method handle accepts the VarHandle instance as the leading argument.
 331  * More specifically, the following, where {@code {access-mode}} corresponds to the access mode method
 332  * name:
 333  * <pre> {@code
 334  * VarHandle vh = ..
 335  * R r = (R) vh.{access-mode}(p1, p2, ..., pN);
 336  * }</pre>
 337  * behaves as if:
 338  * <pre> {@code
 339  * VarHandle vh = ..
 340  * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
 341  * MethodHandle mh = MethodHandles.varHandleExactInvoker(
 342  *                       am,
 343  *                       vh.accessModeType(am));
 344  *
 345  * R r = (R) mh.invokeExact(vh, p1, p2, ..., pN)
 346  * }</pre>
 347  * (modulo access mode methods do not declare throwing of {@code Throwable}).
 348  *
 349  * More concisely, such behavior is equivalent to:
 350  * <pre> {@code
 351  * VarHandle vh = ..
 352  * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
 353  * MethodHandle mh = vh.toMethodHandle(am);
 354  *
 355  * R r = (R) mh.invokeExact(p1, p2, ..., pN)
 356  * }</pre>
 357  * Where, in this case, the method handle is bound to the VarHandle instance.
 358  *
 359  * <h2>Invocation checking</h2>
 360  * In typical programs, VarHandle access mode type matching will usually
 361  * succeed.  But if a match fails, the JVM will throw a
 362  * {@link WrongMethodTypeException}.
 363  * <p>
 364  * Thus, an access mode type mismatch which might show up as a linkage error
 365  * in a statically typed program can show up as a dynamic
 366  * {@code WrongMethodTypeException} in a program which uses VarHandles.
 367  * <p>
 368  * Because access mode types contain "live" {@code Class} objects, method type
 369  * matching takes into account both type names and class loaders.
 370  * Thus, even if a VarHandle {@code VH} is created in one class loader
 371  * {@code L1} and used in another {@code L2}, VarHandle access mode method
 372  * calls are type-safe, because the caller's symbolic type descriptor, as
 373  * resolved in {@code L2}, is matched against the original callee method's
 374  * symbolic type descriptor, as resolved in {@code L1}.  The resolution in
 375  * {@code L1} happens when {@code VH} is created and its access mode types are
 376  * assigned, while the resolution in {@code L2} happens when the
 377  * {@code invokevirtual} instruction is linked.
 378  * <p>
 379  * Apart from type descriptor checks, a VarHandles's capability to
 380  * access its variables is unrestricted.
 381  * If a VarHandle is formed on a non-public variable by a class that has access
 382  * to that variable, the resulting VarHandle can be used in any place by any
 383  * caller who receives a reference to it.
 384  * <p>
 385  * Unlike with the Core Reflection API, where access is checked every time a
 386  * reflective method is invoked, VarHandle access checking is performed
 387  * <a href="MethodHandles.Lookup.html#access">when the VarHandle is
 388  * created</a>.
 389  * Thus, VarHandles to non-public variables, or to variables in non-public
 390  * classes, should generally be kept secret.  They should not be passed to
 391  * untrusted code unless their use from the untrusted code would be harmless.
 392  *
 393  *
 394  * <h2>VarHandle creation</h2>
 395  * Java code can create a VarHandle that directly accesses any field that is
 396  * accessible to that code.  This is done via a reflective, capability-based
 397  * API called {@link java.lang.invoke.MethodHandles.Lookup
 398  * MethodHandles.Lookup}.
 399  * For example, a VarHandle for a non-static field can be obtained
 400  * from {@link java.lang.invoke.MethodHandles.Lookup#findVarHandle
 401  * Lookup.findVarHandle}.
 402  * There is also a conversion method from Core Reflection API objects,
 403  * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
 404  * Lookup.unreflectVarHandle}.
 405  * <p>
 406  * Access to protected field members is restricted to receivers only of the
 407  * accessing class, or one of its subclasses, and the accessing class must in
 408  * turn be a subclass (or package sibling) of the protected member's defining
 409  * class.  If a VarHandle refers to a protected non-static field of a declaring
 410  * class outside the current package, the receiver argument will be narrowed to
 411  * the type of the accessing class.
 412  *
 413  * <h2>Interoperation between VarHandles and the Core Reflection API</h2>
 414  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup
 415  * Lookup} API, any field represented by a Core Reflection API object
 416  * can be converted to a behaviorally equivalent VarHandle.
 417  * For example, a reflective {@link java.lang.reflect.Field Field} can
 418  * be converted to a VarHandle using
 419  * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
 420  * Lookup.unreflectVarHandle}.
 421  * The resulting VarHandles generally provide more direct and efficient
 422  * access to the underlying fields.
 423  * <p>
 424  * As a special case, when the Core Reflection API is used to view the
 425  * signature polymorphic access mode methods in this class, they appear as
 426  * ordinary non-polymorphic methods.  Their reflective appearance, as viewed by
 427  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 428  * is unaffected by their special status in this API.
 429  * For example, {@link java.lang.reflect.Method#getModifiers
 430  * Method.getModifiers}
 431  * will report exactly those modifier bits required for any similarly
 432  * declared method, including in this case {@code native} and {@code varargs}
 433  * bits.
 434  * <p>
 435  * As with any reflected method, these methods (when reflected) may be invoked
 436  * directly via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke},
 437  * via JNI, or indirectly via
 438  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 439  * However, such reflective calls do not result in access mode method
 440  * invocations.  Such a call, if passed the required argument (a single one, of
 441  * type {@code Object[]}), will ignore the argument and will throw an
 442  * {@code UnsupportedOperationException}.
 443  * <p>
 444  * Since {@code invokevirtual} instructions can natively invoke VarHandle
 445  * access mode methods under any symbolic type descriptor, this reflective view
 446  * conflicts with the normal presentation of these methods via bytecodes.
 447  * Thus, these native methods, when reflectively viewed by
 448  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
 449  * <p>
 450  * In order to obtain an invoker method for a particular access mode type,
 451  * use {@link java.lang.invoke.MethodHandles#varHandleExactInvoker} or
 452  * {@link java.lang.invoke.MethodHandles#varHandleInvoker}.  The
 453  * {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
 454  * API is also able to return a method handle to call an access mode method for
 455  * any specified access mode type and is equivalent in behavior to
 456  * {@link java.lang.invoke.MethodHandles#varHandleInvoker}.
 457  *
 458  * <h2>Interoperation between VarHandles and Java generics</h2>
 459  * A VarHandle can be obtained for a variable, such as a field, which is
 460  * declared with Java generic types.  As with the Core Reflection API, the
 461  * VarHandle's variable type will be constructed from the erasure of the
 462  * source-level type.  When a VarHandle access mode method is invoked, the
 463  * types
 464  * of its arguments or the return value cast type may be generic types or type
 465  * instances.  If this occurs, the compiler will replace those types by their
 466  * erasures when it constructs the symbolic type descriptor for the
 467  * {@code invokevirtual} instruction.
 468  *
 469  * @see MethodHandle
 470  * @see MethodHandles
 471  * @see MethodType
 472  * @since 9
 473  */
 474 public abstract sealed class VarHandle implements Constable
 475      permits IndirectVarHandle, LazyInitializingVarHandle, SegmentVarHandle,
 476              VarHandleByteArrayAsChars.ByteArrayViewVarHandle,
 477              VarHandleByteArrayAsDoubles.ByteArrayViewVarHandle,
 478              VarHandleByteArrayAsFloats.ByteArrayViewVarHandle,
 479              VarHandleByteArrayAsInts.ByteArrayViewVarHandle,
 480              VarHandleByteArrayAsLongs.ByteArrayViewVarHandle,
 481              VarHandleByteArrayAsShorts.ByteArrayViewVarHandle,
 482              VarHandleBooleans.Array,
 483              VarHandleBooleans.FieldInstanceReadOnly,
 484              VarHandleBooleans.FieldStaticReadOnly,
 485              VarHandleBytes.Array,
 486              VarHandleBytes.FieldInstanceReadOnly,
 487              VarHandleBytes.FieldStaticReadOnly,
 488              VarHandleChars.Array,
 489              VarHandleChars.FieldInstanceReadOnly,
 490              VarHandleChars.FieldStaticReadOnly,
 491              VarHandleDoubles.Array,
 492              VarHandleDoubles.FieldInstanceReadOnly,
 493              VarHandleDoubles.FieldStaticReadOnly,
 494              VarHandleFloats.Array,
 495              VarHandleFloats.FieldInstanceReadOnly,
 496              VarHandleFloats.FieldStaticReadOnly,
 497              VarHandleInts.Array,
 498              VarHandleInts.FieldInstanceReadOnly,
 499              VarHandleInts.FieldStaticReadOnly,
 500              VarHandleLongs.Array,
 501              VarHandleLongs.FieldInstanceReadOnly,
 502              VarHandleLongs.FieldStaticReadOnly,
 503              VarHandleReferences.Array,
 504              VarHandleReferences.FieldInstanceReadOnly,
 505              VarHandleReferences.FieldStaticReadOnly,
 506              VarHandleShorts.Array,
 507              VarHandleShorts.FieldInstanceReadOnly,
 508              VarHandleShorts.FieldStaticReadOnly,
 509              VarHandleFlatValues.FieldInstanceReadOnly,
 510              VarHandleNonAtomicReferences.Array,
 511              VarHandleNonAtomicReferences.FieldInstanceReadOnly,
 512              VarHandleNonAtomicReferences.FieldStaticReadOnly,
 513              VarHandleNonAtomicFlatValues.FieldInstanceReadOnly {
 514     final VarForm vform;
 515     final boolean exact;
 516 
 517     VarHandle(VarForm vform) {
 518         this(vform, false);
 519     }
 520 
 521     VarHandle(VarForm vform, boolean exact) {
 522         this.vform = vform;
 523         this.exact = exact;
 524     }
 525 
 526     /**
 527      * Returns the target VarHandle.   Subclasses may override this method to implement
 528      * additional logic for example lazily initializing the declaring class of a static field var handle.
 529      */
 530     @ForceInline
 531     VarHandle target() {
 532         return asDirect();
 533     }
 534 
 535     /**
 536      * Returns the direct target VarHandle.   Indirect VarHandle subclasses should implement
 537      * this method.
 538      *
 539      * @see #getMethodHandle(int)
 540      * @see #checkAccessModeThenIsDirect(AccessDescriptor)
 541      */
 542     @ForceInline
 543     VarHandle asDirect() {
 544         return this;
 545     }
 546 
 547     /**
 548      * Returns {@code true} if this VarHandle has <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
 549      *
 550      * @see #withInvokeExactBehavior()
 551      * @see #withInvokeBehavior()
 552      * @return {@code true} if this VarHandle has <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
 553      * @since 16
 554      */
 555     public boolean hasInvokeExactBehavior() {
 556         return exact;
 557     }
 558 
 559     // Plain accessors
 560 
 561     /**
 562      * Returns the value of a variable, with memory semantics of reading as
 563      * if the variable was declared non-{@code volatile}.  Commonly referred to
 564      * as plain read access.
 565      *
 566      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
 567      *
 568      * <p>The symbolic type descriptor at the call site of {@code get}
 569      * must match the access mode type that is the result of calling
 570      * {@code accessModeType(VarHandle.AccessMode.GET)} on this VarHandle.
 571      *
 572      * <p>This access mode is supported by all VarHandle instances and never
 573      * throws {@code UnsupportedOperationException}.
 574      *
 575      * @param args the signature-polymorphic parameter list of the form
 576      * {@code (CT1 ct1, ..., CTn)}
 577      * , statically represented using varargs.
 578      * @return the signature-polymorphic result that is the value of the
 579      * variable
 580      * , statically represented using {@code Object}.
 581      * @throws WrongMethodTypeException if the access mode type does not
 582      * match the caller's symbolic type descriptor.
 583      * @throws ClassCastException if the access mode type matches the caller's
 584      * symbolic type descriptor, but a reference cast fails.
 585      */
 586     public final native
 587     @MethodHandle.PolymorphicSignature
 588     @IntrinsicCandidate
 589     Object get(Object... args);
 590 
 591     /**
 592      * Sets the value of a variable to the {@code newValue}, with memory
 593      * semantics of setting as if the variable was declared non-{@code volatile}
 594      * and non-{@code final}.  Commonly referred to as plain write access.
 595      *
 596      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}
 597      *
 598      * <p>The symbolic type descriptor at the call site of {@code set}
 599      * must match the access mode type that is the result of calling
 600      * {@code accessModeType(VarHandle.AccessMode.SET)} on this VarHandle.
 601      *
 602      * @param args the signature-polymorphic parameter list of the form
 603      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
 604      * , statically represented using varargs.
 605      * @throws UnsupportedOperationException if the access mode is unsupported
 606      * for this VarHandle.
 607      * @throws WrongMethodTypeException if the access mode type does not
 608      * match the caller's symbolic type descriptor.
 609      * @throws ClassCastException if the access mode type matches the caller's
 610      * symbolic type descriptor, but a reference cast fails.
 611      */
 612     public final native
 613     @MethodHandle.PolymorphicSignature
 614     @IntrinsicCandidate
 615     void set(Object... args);
 616 
 617 
 618     // Volatile accessors
 619 
 620     /**
 621      * Returns the value of a variable, with memory semantics of reading as if
 622      * the variable was declared {@code volatile}.
 623      *
 624      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
 625      *
 626      * <p>The symbolic type descriptor at the call site of {@code getVolatile}
 627      * must match the access mode type that is the result of calling
 628      * {@code accessModeType(VarHandle.AccessMode.GET_VOLATILE)} on this
 629      * VarHandle.
 630      *
 631      * @param args the signature-polymorphic parameter list of the form
 632      * {@code (CT1 ct1, ..., CTn ctn)}
 633      * , statically represented using varargs.
 634      * @return the signature-polymorphic result that is the value of the
 635      * variable
 636      * , statically represented using {@code Object}.
 637      * @throws UnsupportedOperationException if the access mode is unsupported
 638      * for this VarHandle.
 639      * @throws WrongMethodTypeException if the access mode type does not
 640      * match the caller's symbolic type descriptor.
 641      * @throws ClassCastException if the access mode type matches the caller's
 642      * symbolic type descriptor, but a reference cast fails.
 643      */
 644     public final native
 645     @MethodHandle.PolymorphicSignature
 646     @IntrinsicCandidate
 647     Object getVolatile(Object... args);
 648 
 649     /**
 650      * Sets the value of a variable to the {@code newValue}, with memory
 651      * semantics of setting as if the variable was declared {@code volatile}.
 652      *
 653      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
 654      *
 655      * <p>The symbolic type descriptor at the call site of {@code setVolatile}
 656      * must match the access mode type that is the result of calling
 657      * {@code accessModeType(VarHandle.AccessMode.SET_VOLATILE)} on this
 658      * VarHandle.
 659      *
 660      * @apiNote
 661      * Ignoring the many semantic differences from C and C++, this method has
 662      * memory ordering effects compatible with {@code memory_order_seq_cst}.
 663      *
 664      * @param args the signature-polymorphic parameter list of the form
 665      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
 666      * , statically represented using varargs.
 667      * @throws UnsupportedOperationException if the access mode is unsupported
 668      * for this VarHandle.
 669      * @throws WrongMethodTypeException if the access mode type does not
 670      * match the caller's symbolic type descriptor.
 671      * @throws ClassCastException if the access mode type matches the caller's
 672      * symbolic type descriptor, but a reference cast fails.
 673      */
 674     public final native
 675     @MethodHandle.PolymorphicSignature
 676     @IntrinsicCandidate
 677     void setVolatile(Object... args);
 678 
 679 
 680     /**
 681      * Returns the value of a variable, accessed in program order, but with no
 682      * assurance of memory ordering effects with respect to other threads.
 683      *
 684      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
 685      *
 686      * <p>The symbolic type descriptor at the call site of {@code getOpaque}
 687      * must match the access mode type that is the result of calling
 688      * {@code accessModeType(VarHandle.AccessMode.GET_OPAQUE)} on this
 689      * VarHandle.
 690      *
 691      * @param args the signature-polymorphic parameter list of the form
 692      * {@code (CT1 ct1, ..., CTn ctn)}
 693      * , statically represented using varargs.
 694      * @return the signature-polymorphic result that is the value of the
 695      * variable
 696      * , statically represented using {@code Object}.
 697      * @throws UnsupportedOperationException if the access mode is unsupported
 698      * for this VarHandle.
 699      * @throws WrongMethodTypeException if the access mode type does not
 700      * match the caller's symbolic type descriptor.
 701      * @throws ClassCastException if the access mode type matches the caller's
 702      * symbolic type descriptor, but a reference cast fails.
 703      */
 704     public final native
 705     @MethodHandle.PolymorphicSignature
 706     @IntrinsicCandidate
 707     Object getOpaque(Object... args);
 708 
 709     /**
 710      * Sets the value of a variable to the {@code newValue}, in program order,
 711      * but with no assurance of memory ordering effects with respect to other
 712      * threads.
 713      *
 714      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
 715      *
 716      * <p>The symbolic type descriptor at the call site of {@code setOpaque}
 717      * must match the access mode type that is the result of calling
 718      * {@code accessModeType(VarHandle.AccessMode.SET_OPAQUE)} on this
 719      * VarHandle.
 720      *
 721      * @param args the signature-polymorphic parameter list of the form
 722      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
 723      * , statically represented using varargs.
 724      * @throws UnsupportedOperationException if the access mode is unsupported
 725      * for this VarHandle.
 726      * @throws WrongMethodTypeException if the access mode type does not
 727      * match the caller's symbolic type descriptor.
 728      * @throws ClassCastException if the access mode type matches the caller's
 729      * symbolic type descriptor, but a reference cast fails.
 730      */
 731     public final native
 732     @MethodHandle.PolymorphicSignature
 733     @IntrinsicCandidate
 734     void setOpaque(Object... args);
 735 
 736 
 737     // Lazy accessors
 738 
 739     /**
 740      * Returns the value of a variable, and ensures that subsequent loads and
 741      * stores are not reordered before this access.
 742      *
 743      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
 744      *
 745      * <p>The symbolic type descriptor at the call site of {@code getAcquire}
 746      * must match the access mode type that is the result of calling
 747      * {@code accessModeType(VarHandle.AccessMode.GET_ACQUIRE)} on this
 748      * VarHandle.
 749      *
 750      * @apiNote
 751      * Ignoring the many semantic differences from C and C++, this method has
 752      * memory ordering effects compatible with {@code memory_order_acquire}
 753      * ordering.
 754      *
 755      * @param args the signature-polymorphic parameter list of the form
 756      * {@code (CT1 ct1, ..., CTn ctn)}
 757      * , statically represented using varargs.
 758      * @return the signature-polymorphic result that is the value of the
 759      * variable
 760      * , statically represented using {@code Object}.
 761      * @throws UnsupportedOperationException if the access mode is unsupported
 762      * for this VarHandle.
 763      * @throws WrongMethodTypeException if the access mode type does not
 764      * match the caller's symbolic type descriptor.
 765      * @throws ClassCastException if the access mode type matches the caller's
 766      * symbolic type descriptor, but a reference cast fails.
 767      */
 768     public final native
 769     @MethodHandle.PolymorphicSignature
 770     @IntrinsicCandidate
 771     Object getAcquire(Object... args);
 772 
 773     /**
 774      * Sets the value of a variable to the {@code newValue}, and ensures that
 775      * prior loads and stores are not reordered after this access.
 776      *
 777      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
 778      *
 779      * <p>The symbolic type descriptor at the call site of {@code setRelease}
 780      * must match the access mode type that is the result of calling
 781      * {@code accessModeType(VarHandle.AccessMode.SET_RELEASE)} on this
 782      * VarHandle.
 783      *
 784      * @apiNote
 785      * Ignoring the many semantic differences from C and C++, this method has
 786      * memory ordering effects compatible with {@code memory_order_release}
 787      * ordering.
 788      *
 789      * @param args the signature-polymorphic parameter list of the form
 790      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
 791      * , statically represented using varargs.
 792      * @throws UnsupportedOperationException if the access mode is unsupported
 793      * for this VarHandle.
 794      * @throws WrongMethodTypeException if the access mode type does not
 795      * match the caller's symbolic type descriptor.
 796      * @throws ClassCastException if the access mode type matches the caller's
 797      * symbolic type descriptor, but a reference cast fails.
 798      */
 799     public final native
 800     @MethodHandle.PolymorphicSignature
 801     @IntrinsicCandidate
 802     void setRelease(Object... args);
 803 
 804 
 805     // Compare and set accessors
 806 
 807     /**
 808      * Atomically sets the value of a variable to the {@code newValue} with the
 809      * memory semantics of {@link #setVolatile} if the variable's current value,
 810      * referred to as the <em>witness value</em>, {@code ==} the
 811      * {@code expectedValue}, as accessed with the memory semantics of
 812      * {@link #getVolatile}.
 813      *
 814      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
 815      *
 816      * <p>The symbolic type descriptor at the call site of {@code
 817      * compareAndSet} must match the access mode type that is the result of
 818      * calling {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_SET)} on
 819      * this VarHandle.
 820      *
 821      * @param args the signature-polymorphic parameter list of the form
 822      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
 823      * , statically represented using varargs.
 824      * @return {@code true} if successful, otherwise {@code false} if the
 825      * <em>witness value</em> was not the same as the {@code expectedValue}.
 826      * @throws UnsupportedOperationException if the access mode is unsupported
 827      * for this VarHandle.
 828      * @throws WrongMethodTypeException if the access mode type does not
 829      * match the caller's symbolic type descriptor.
 830      * @throws ClassCastException if the access mode type matches the caller's
 831      * symbolic type descriptor, but a reference cast fails.
 832      * @see #setVolatile(Object...)
 833      * @see #getVolatile(Object...)
 834      */
 835     public final native
 836     @MethodHandle.PolymorphicSignature
 837     @IntrinsicCandidate
 838     boolean compareAndSet(Object... args);
 839 
 840     /**
 841      * Atomically sets the value of a variable to the {@code newValue} with the
 842      * memory semantics of {@link #setVolatile} if the variable's current value,
 843      * referred to as the <em>witness value</em>, {@code ==} the
 844      * {@code expectedValue}, as accessed with the memory semantics of
 845      * {@link #getVolatile}.
 846      *
 847      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
 848      *
 849      * <p>The symbolic type descriptor at the call site of {@code
 850      * compareAndExchange}
 851      * must match the access mode type that is the result of calling
 852      * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE)}
 853      * on this VarHandle.
 854      *
 855      * @param args the signature-polymorphic parameter list of the form
 856      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
 857      * , statically represented using varargs.
 858      * @return the signature-polymorphic result that is the <em>witness value</em>, which
 859      * will be the same as the {@code expectedValue} if successful
 860      * , statically represented using {@code Object}.
 861      * @throws UnsupportedOperationException if the access mode is unsupported
 862      * for this VarHandle.
 863      * @throws WrongMethodTypeException if the access mode type is not
 864      * compatible with the caller's symbolic type descriptor.
 865      * @throws ClassCastException if the access mode type is compatible with the
 866      * caller's symbolic type descriptor, but a reference cast fails.
 867      * @see #setVolatile(Object...)
 868      * @see #getVolatile(Object...)
 869      */
 870     public final native
 871     @MethodHandle.PolymorphicSignature
 872     @IntrinsicCandidate
 873     Object compareAndExchange(Object... args);
 874 
 875     /**
 876      * Atomically sets the value of a variable to the {@code newValue} with the
 877      * memory semantics of {@link #set} if the variable's current value,
 878      * referred to as the <em>witness value</em>, {@code ==} the
 879      * {@code expectedValue}, as accessed with the memory semantics of
 880      * {@link #getAcquire}.
 881      *
 882      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
 883      *
 884      * <p>The symbolic type descriptor at the call site of {@code
 885      * compareAndExchangeAcquire}
 886      * must match the access mode type that is the result of calling
 887      * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_ACQUIRE)} on
 888      * this VarHandle.
 889      *
 890      * @param args the signature-polymorphic parameter list of the form
 891      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
 892      * , statically represented using varargs.
 893      * @return the signature-polymorphic result that is the <em>witness value</em>, which
 894      * will be the same as the {@code expectedValue} if successful
 895      * , statically represented using {@code Object}.
 896      * @throws UnsupportedOperationException if the access mode is unsupported
 897      * for this VarHandle.
 898      * @throws WrongMethodTypeException if the access mode type does not
 899      * match the caller's symbolic type descriptor.
 900      * @throws ClassCastException if the access mode type matches the caller's
 901      * symbolic type descriptor, but a reference cast fails.
 902      * @see #set(Object...)
 903      * @see #getAcquire(Object...)
 904      */
 905     public final native
 906     @MethodHandle.PolymorphicSignature
 907     @IntrinsicCandidate
 908     Object compareAndExchangeAcquire(Object... args);
 909 
 910     /**
 911      * Atomically sets the value of a variable to the {@code newValue} with the
 912      * memory semantics of {@link #setRelease} if the variable's current value,
 913      * referred to as the <em>witness value</em>, {@code ==} the
 914      * {@code expectedValue}, as accessed with the memory semantics of
 915      * {@link #get}.
 916      *
 917      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
 918      *
 919      * <p>The symbolic type descriptor at the call site of {@code
 920      * compareAndExchangeRelease}
 921      * must match the access mode type that is the result of calling
 922      * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_RELEASE)}
 923      * on this VarHandle.
 924      *
 925      * @param args the signature-polymorphic parameter list of the form
 926      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
 927      * , statically represented using varargs.
 928      * @return the signature-polymorphic result that is the <em>witness value</em>, which
 929      * will be the same as the {@code expectedValue} if successful
 930      * , statically represented using {@code Object}.
 931      * @throws UnsupportedOperationException if the access mode is unsupported
 932      * for this VarHandle.
 933      * @throws WrongMethodTypeException if the access mode type does not
 934      * match the caller's symbolic type descriptor.
 935      * @throws ClassCastException if the access mode type matches the caller's
 936      * symbolic type descriptor, but a reference cast fails.
 937      * @see #setRelease(Object...)
 938      * @see #get(Object...)
 939      */
 940     public final native
 941     @MethodHandle.PolymorphicSignature
 942     @IntrinsicCandidate
 943     Object compareAndExchangeRelease(Object... args);
 944 
 945     // Weak (spurious failures allowed)
 946 
 947     /**
 948      * Possibly atomically sets the value of a variable to the {@code newValue}
 949      * with the semantics of {@link #set} if the variable's current value,
 950      * referred to as the <em>witness value</em>, {@code ==} the
 951      * {@code expectedValue}, as accessed with the memory semantics of
 952      * {@link #get}.
 953      *
 954      * <p>This operation may fail spuriously (typically, due to memory
 955      * contention) even if the <em>witness value</em> does match the expected value.
 956      *
 957      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
 958      *
 959      * <p>The symbolic type descriptor at the call site of {@code
 960      * weakCompareAndSetPlain} must match the access mode type that is the result of
 961      * calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_PLAIN)}
 962      * on this VarHandle.
 963      *
 964      * @param args the signature-polymorphic parameter list of the form
 965      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
 966      * , statically represented using varargs.
 967      * @return {@code true} if successful, otherwise {@code false} if the
 968      * <em>witness value</em> was not the same as the {@code expectedValue} or if this
 969      * operation spuriously failed.
 970      * @throws UnsupportedOperationException if the access mode is unsupported
 971      * for this VarHandle.
 972      * @throws WrongMethodTypeException if the access mode type does not
 973      * match the caller's symbolic type descriptor.
 974      * @throws ClassCastException if the access mode type matches the caller's
 975      * symbolic type descriptor, but a reference cast fails.
 976      * @see #set(Object...)
 977      * @see #get(Object...)
 978      */
 979     public final native
 980     @MethodHandle.PolymorphicSignature
 981     @IntrinsicCandidate
 982     boolean weakCompareAndSetPlain(Object... args);
 983 
 984     /**
 985      * Possibly atomically sets the value of a variable to the {@code newValue}
 986      * with the memory semantics of {@link #setVolatile} if the variable's
 987      * current value, referred to as the <em>witness value</em>, {@code ==} the
 988      * {@code expectedValue}, as accessed with the memory semantics of
 989      * {@link #getVolatile}.
 990      *
 991      * <p>This operation may fail spuriously (typically, due to memory
 992      * contention) even if the <em>witness value</em> does match the expected value.
 993      *
 994      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
 995      *
 996      * <p>The symbolic type descriptor at the call site of {@code
 997      * weakCompareAndSet} must match the access mode type that is the
 998      * result of calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET)}
 999      * on this VarHandle.
1000      *
1001      * @param args the signature-polymorphic parameter list of the form
1002      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1003      * , statically represented using varargs.
1004      * @return {@code true} if successful, otherwise {@code false} if the
1005      * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1006      * operation spuriously failed.
1007      * @throws UnsupportedOperationException if the access mode is unsupported
1008      * for this VarHandle.
1009      * @throws WrongMethodTypeException if the access mode type does not
1010      * match the caller's symbolic type descriptor.
1011      * @throws ClassCastException if the access mode type matches the caller's
1012      * symbolic type descriptor, but a reference cast fails.
1013      * @see #setVolatile(Object...)
1014      * @see #getVolatile(Object...)
1015      */
1016     public final native
1017     @MethodHandle.PolymorphicSignature
1018     @IntrinsicCandidate
1019     boolean weakCompareAndSet(Object... args);
1020 
1021     /**
1022      * Possibly atomically sets the value of a variable to the {@code newValue}
1023      * with the semantics of {@link #set} if the variable's current value,
1024      * referred to as the <em>witness value</em>, {@code ==} the
1025      * {@code expectedValue}, as accessed with the memory semantics of
1026      * {@link #getAcquire}.
1027      *
1028      * <p>This operation may fail spuriously (typically, due to memory
1029      * contention) even if the <em>witness value</em> does match the expected value.
1030      *
1031      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
1032      *
1033      * <p>The symbolic type descriptor at the call site of {@code
1034      * weakCompareAndSetAcquire}
1035      * must match the access mode type that is the result of calling
1036      * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_ACQUIRE)}
1037      * on this VarHandle.
1038      *
1039      * @param args the signature-polymorphic parameter list of the form
1040      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1041      * , statically represented using varargs.
1042      * @return {@code true} if successful, otherwise {@code false} if the
1043      * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1044      * operation spuriously failed.
1045      * @throws UnsupportedOperationException if the access mode is unsupported
1046      * for this VarHandle.
1047      * @throws WrongMethodTypeException if the access mode type does not
1048      * match the caller's symbolic type descriptor.
1049      * @throws ClassCastException if the access mode type matches the caller's
1050      * symbolic type descriptor, but a reference cast fails.
1051      * @see #set(Object...)
1052      * @see #getAcquire(Object...)
1053      */
1054     public final native
1055     @MethodHandle.PolymorphicSignature
1056     @IntrinsicCandidate
1057     boolean weakCompareAndSetAcquire(Object... args);
1058 
1059     /**
1060      * Possibly atomically sets the value of a variable to the {@code newValue}
1061      * with the semantics of {@link #setRelease} if the variable's current
1062      * value, referred to as the <em>witness value</em>, {@code ==} the
1063      * {@code expectedValue}, as accessed with the memory semantics of
1064      * {@link #get}.
1065      *
1066      * <p>This operation may fail spuriously (typically, due to memory
1067      * contention) even if the <em>witness value</em> does match the expected value.
1068      *
1069      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
1070      *
1071      * <p>The symbolic type descriptor at the call site of {@code
1072      * weakCompareAndSetRelease}
1073      * must match the access mode type that is the result of calling
1074      * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_RELEASE)}
1075      * on this VarHandle.
1076      *
1077      * @param args the signature-polymorphic parameter list of the form
1078      * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
1079      * , statically represented using varargs.
1080      * @return {@code true} if successful, otherwise {@code false} if the
1081      * <em>witness value</em> was not the same as the {@code expectedValue} or if this
1082      * operation spuriously failed.
1083      * @throws UnsupportedOperationException if the access mode is unsupported
1084      * for this VarHandle.
1085      * @throws WrongMethodTypeException if the access mode type does not
1086      * match the caller's symbolic type descriptor.
1087      * @throws ClassCastException if the access mode type matches the caller's
1088      * symbolic type descriptor, but a reference cast fails.
1089      * @see #setRelease(Object...)
1090      * @see #get(Object...)
1091      */
1092     public final native
1093     @MethodHandle.PolymorphicSignature
1094     @IntrinsicCandidate
1095     boolean weakCompareAndSetRelease(Object... args);
1096 
1097     /**
1098      * Atomically sets the value of a variable to the {@code newValue} with the
1099      * memory semantics of {@link #setVolatile} and returns the variable's
1100      * previous value, as accessed with the memory semantics of
1101      * {@link #getVolatile}.
1102      *
1103      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1104      *
1105      * <p>The symbolic type descriptor at the call site of {@code getAndSet}
1106      * must match the access mode type that is the result of calling
1107      * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET)} on this
1108      * VarHandle.
1109      *
1110      * @param args the signature-polymorphic parameter list of the form
1111      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1112      * , statically represented using varargs.
1113      * @return the signature-polymorphic result that is the previous value of
1114      * the variable
1115      * , statically represented using {@code Object}.
1116      * @throws UnsupportedOperationException if the access mode is unsupported
1117      * for this VarHandle.
1118      * @throws WrongMethodTypeException if the access mode type does not
1119      * match the caller's symbolic type descriptor.
1120      * @throws ClassCastException if the access mode type matches the caller's
1121      * symbolic type descriptor, but a reference cast fails.
1122      * @see #setVolatile(Object...)
1123      * @see #getVolatile(Object...)
1124      */
1125     public final native
1126     @MethodHandle.PolymorphicSignature
1127     @IntrinsicCandidate
1128     Object getAndSet(Object... args);
1129 
1130     /**
1131      * Atomically sets the value of a variable to the {@code newValue} with the
1132      * memory semantics of {@link #set} and returns the variable's
1133      * previous value, as accessed with the memory semantics of
1134      * {@link #getAcquire}.
1135      *
1136      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1137      *
1138      * <p>The symbolic type descriptor at the call site of {@code getAndSetAcquire}
1139      * must match the access mode type that is the result of calling
1140      * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_ACQUIRE)} on this
1141      * VarHandle.
1142      *
1143      * @param args the signature-polymorphic parameter list of the form
1144      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1145      * , statically represented using varargs.
1146      * @return the signature-polymorphic result that is the previous value of
1147      * the variable
1148      * , statically represented using {@code Object}.
1149      * @throws UnsupportedOperationException if the access mode is unsupported
1150      * for this VarHandle.
1151      * @throws WrongMethodTypeException if the access mode type does not
1152      * match the caller's symbolic type descriptor.
1153      * @throws ClassCastException if the access mode type matches the caller's
1154      * symbolic type descriptor, but a reference cast fails.
1155      * @see #setVolatile(Object...)
1156      * @see #getVolatile(Object...)
1157      */
1158     public final native
1159     @MethodHandle.PolymorphicSignature
1160     @IntrinsicCandidate
1161     Object getAndSetAcquire(Object... args);
1162 
1163     /**
1164      * Atomically sets the value of a variable to the {@code newValue} with the
1165      * memory semantics of {@link #setRelease} and returns the variable's
1166      * previous value, as accessed with the memory semantics of
1167      * {@link #get}.
1168      *
1169      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
1170      *
1171      * <p>The symbolic type descriptor at the call site of {@code getAndSetRelease}
1172      * must match the access mode type that is the result of calling
1173      * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_RELEASE)} on this
1174      * VarHandle.
1175      *
1176      * @param args the signature-polymorphic parameter list of the form
1177      * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
1178      * , statically represented using varargs.
1179      * @return the signature-polymorphic result that is the previous value of
1180      * the variable
1181      * , statically represented using {@code Object}.
1182      * @throws UnsupportedOperationException if the access mode is unsupported
1183      * for this VarHandle.
1184      * @throws WrongMethodTypeException if the access mode type does not
1185      * match the caller's symbolic type descriptor.
1186      * @throws ClassCastException if the access mode type matches the caller's
1187      * symbolic type descriptor, but a reference cast fails.
1188      * @see #setVolatile(Object...)
1189      * @see #getVolatile(Object...)
1190      */
1191     public final native
1192     @MethodHandle.PolymorphicSignature
1193     @IntrinsicCandidate
1194     Object getAndSetRelease(Object... args);
1195 
1196     // Primitive adders
1197     // Throw UnsupportedOperationException for refs
1198 
1199     /**
1200      * Atomically adds the {@code value} to the current value of a variable with
1201      * the memory semantics of {@link #setVolatile}, and returns the variable's
1202      * previous value, as accessed with the memory semantics of
1203      * {@link #getVolatile}.
1204      *
1205      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1206      *
1207      * <p>The symbolic type descriptor at the call site of {@code getAndAdd}
1208      * must match the access mode type that is the result of calling
1209      * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD)} on this
1210      * VarHandle.
1211      *
1212      * @param args the signature-polymorphic parameter list of the form
1213      * {@code (CT1 ct1, ..., CTn ctn, T value)}
1214      * , statically represented using varargs.
1215      * @return the signature-polymorphic result that is the previous value of
1216      * the variable
1217      * , statically represented using {@code Object}.
1218      * @throws UnsupportedOperationException if the access mode is unsupported
1219      * for this VarHandle.
1220      * @throws WrongMethodTypeException if the access mode type does not
1221      * match the caller's symbolic type descriptor.
1222      * @throws ClassCastException if the access mode type matches the caller's
1223      * symbolic type descriptor, but a reference cast fails.
1224      * @see #setVolatile(Object...)
1225      * @see #getVolatile(Object...)
1226      */
1227     public final native
1228     @MethodHandle.PolymorphicSignature
1229     @IntrinsicCandidate
1230     Object getAndAdd(Object... args);
1231 
1232     /**
1233      * Atomically adds the {@code value} to the current value of a variable with
1234      * the memory semantics of {@link #set}, and returns the variable's
1235      * previous value, as accessed with the memory semantics of
1236      * {@link #getAcquire}.
1237      *
1238      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1239      *
1240      * <p>The symbolic type descriptor at the call site of {@code getAndAddAcquire}
1241      * must match the access mode type that is the result of calling
1242      * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_ACQUIRE)} on this
1243      * VarHandle.
1244      *
1245      * @param args the signature-polymorphic parameter list of the form
1246      * {@code (CT1 ct1, ..., CTn ctn, T value)}
1247      * , statically represented using varargs.
1248      * @return the signature-polymorphic result that is the previous value of
1249      * the variable
1250      * , statically represented using {@code Object}.
1251      * @throws UnsupportedOperationException if the access mode is unsupported
1252      * for this VarHandle.
1253      * @throws WrongMethodTypeException if the access mode type does not
1254      * match the caller's symbolic type descriptor.
1255      * @throws ClassCastException if the access mode type matches the caller's
1256      * symbolic type descriptor, but a reference cast fails.
1257      * @see #setVolatile(Object...)
1258      * @see #getVolatile(Object...)
1259      */
1260     public final native
1261     @MethodHandle.PolymorphicSignature
1262     @IntrinsicCandidate
1263     Object getAndAddAcquire(Object... args);
1264 
1265     /**
1266      * Atomically adds the {@code value} to the current value of a variable with
1267      * the memory semantics of {@link #setRelease}, and returns the variable's
1268      * previous value, as accessed with the memory semantics of
1269      * {@link #get}.
1270      *
1271      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
1272      *
1273      * <p>The symbolic type descriptor at the call site of {@code getAndAddRelease}
1274      * must match the access mode type that is the result of calling
1275      * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_RELEASE)} on this
1276      * VarHandle.
1277      *
1278      * @param args the signature-polymorphic parameter list of the form
1279      * {@code (CT1 ct1, ..., CTn ctn, T value)}
1280      * , statically represented using varargs.
1281      * @return the signature-polymorphic result that is the previous value of
1282      * the variable
1283      * , statically represented using {@code Object}.
1284      * @throws UnsupportedOperationException if the access mode is unsupported
1285      * for this VarHandle.
1286      * @throws WrongMethodTypeException if the access mode type does not
1287      * match the caller's symbolic type descriptor.
1288      * @throws ClassCastException if the access mode type matches the caller's
1289      * symbolic type descriptor, but a reference cast fails.
1290      * @see #setVolatile(Object...)
1291      * @see #getVolatile(Object...)
1292      */
1293     public final native
1294     @MethodHandle.PolymorphicSignature
1295     @IntrinsicCandidate
1296     Object getAndAddRelease(Object... args);
1297 
1298 
1299     // Bitwise operations
1300     // Throw UnsupportedOperationException for refs
1301 
1302     /**
1303      * Atomically sets the value of a variable to the result of
1304      * bitwise OR between the variable's current value and the {@code mask}
1305      * with the memory semantics of {@link #setVolatile} and returns the
1306      * variable's previous value, as accessed with the memory semantics of
1307      * {@link #getVolatile}.
1308      *
1309      * <p>If the variable type is the non-integral {@code boolean} type then a
1310      * logical OR is performed instead of a bitwise OR.
1311      *
1312      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1313      *
1314      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOr}
1315      * must match the access mode type that is the result of calling
1316      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR)} on this
1317      * VarHandle.
1318      *
1319      * @param args the signature-polymorphic parameter list of the form
1320      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1321      * , statically represented using varargs.
1322      * @return the signature-polymorphic result that is the previous value of
1323      * the variable
1324      * , statically represented using {@code Object}.
1325      * @throws UnsupportedOperationException if the access mode is unsupported
1326      * for this VarHandle.
1327      * @throws WrongMethodTypeException if the access mode type does not
1328      * match the caller's symbolic type descriptor.
1329      * @throws ClassCastException if the access mode type matches the caller's
1330      * symbolic type descriptor, but a reference cast fails.
1331      * @see #setVolatile(Object...)
1332      * @see #getVolatile(Object...)
1333      */
1334     public final native
1335     @MethodHandle.PolymorphicSignature
1336     @IntrinsicCandidate
1337     Object getAndBitwiseOr(Object... args);
1338 
1339     /**
1340      * Atomically sets the value of a variable to the result of
1341      * bitwise OR between the variable's current value and the {@code mask}
1342      * with the memory semantics of {@link #set} and returns the
1343      * variable's previous value, as accessed with the memory semantics of
1344      * {@link #getAcquire}.
1345      *
1346      * <p>If the variable type is the non-integral {@code boolean} type then a
1347      * logical OR is performed instead of a bitwise OR.
1348      *
1349      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1350      *
1351      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrAcquire}
1352      * must match the access mode type that is the result of calling
1353      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_ACQUIRE)} on this
1354      * VarHandle.
1355      *
1356      * @param args the signature-polymorphic parameter list of the form
1357      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1358      * , statically represented using varargs.
1359      * @return the signature-polymorphic result that is the previous value of
1360      * the variable
1361      * , statically represented using {@code Object}.
1362      * @throws UnsupportedOperationException if the access mode is unsupported
1363      * for this VarHandle.
1364      * @throws WrongMethodTypeException if the access mode type does not
1365      * match the caller's symbolic type descriptor.
1366      * @throws ClassCastException if the access mode type matches the caller's
1367      * symbolic type descriptor, but a reference cast fails.
1368      * @see #set(Object...)
1369      * @see #getAcquire(Object...)
1370      */
1371     public final native
1372     @MethodHandle.PolymorphicSignature
1373     @IntrinsicCandidate
1374     Object getAndBitwiseOrAcquire(Object... args);
1375 
1376     /**
1377      * Atomically sets the value of a variable to the result of
1378      * bitwise OR between the variable's current value and the {@code mask}
1379      * with the memory semantics of {@link #setRelease} and returns the
1380      * variable's previous value, as accessed with the memory semantics of
1381      * {@link #get}.
1382      *
1383      * <p>If the variable type is the non-integral {@code boolean} type then a
1384      * logical OR is performed instead of a bitwise OR.
1385      *
1386      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1387      *
1388      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrRelease}
1389      * must match the access mode type that is the result of calling
1390      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_RELEASE)} on this
1391      * VarHandle.
1392      *
1393      * @param args the signature-polymorphic parameter list of the form
1394      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1395      * , statically represented using varargs.
1396      * @return the signature-polymorphic result that is the previous value of
1397      * the variable
1398      * , statically represented using {@code Object}.
1399      * @throws UnsupportedOperationException if the access mode is unsupported
1400      * for this VarHandle.
1401      * @throws WrongMethodTypeException if the access mode type does not
1402      * match the caller's symbolic type descriptor.
1403      * @throws ClassCastException if the access mode type matches the caller's
1404      * symbolic type descriptor, but a reference cast fails.
1405      * @see #setRelease(Object...)
1406      * @see #get(Object...)
1407      */
1408     public final native
1409     @MethodHandle.PolymorphicSignature
1410     @IntrinsicCandidate
1411     Object getAndBitwiseOrRelease(Object... args);
1412 
1413     /**
1414      * Atomically sets the value of a variable to the result of
1415      * bitwise AND between the variable's current value and the {@code mask}
1416      * with the memory semantics of {@link #setVolatile} and returns the
1417      * variable's previous value, as accessed with the memory semantics of
1418      * {@link #getVolatile}.
1419      *
1420      * <p>If the variable type is the non-integral {@code boolean} type then a
1421      * logical AND is performed instead of a bitwise AND.
1422      *
1423      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1424      *
1425      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAnd}
1426      * must match the access mode type that is the result of calling
1427      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND)} on this
1428      * VarHandle.
1429      *
1430      * @param args the signature-polymorphic parameter list of the form
1431      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1432      * , statically represented using varargs.
1433      * @return the signature-polymorphic result that is the previous value of
1434      * the variable
1435      * , statically represented using {@code Object}.
1436      * @throws UnsupportedOperationException if the access mode is unsupported
1437      * for this VarHandle.
1438      * @throws WrongMethodTypeException if the access mode type does not
1439      * match the caller's symbolic type descriptor.
1440      * @throws ClassCastException if the access mode type matches the caller's
1441      * symbolic type descriptor, but a reference cast fails.
1442      * @see #setVolatile(Object...)
1443      * @see #getVolatile(Object...)
1444      */
1445     public final native
1446     @MethodHandle.PolymorphicSignature
1447     @IntrinsicCandidate
1448     Object getAndBitwiseAnd(Object... args);
1449 
1450     /**
1451      * Atomically sets the value of a variable to the result of
1452      * bitwise AND between the variable's current value and the {@code mask}
1453      * with the memory semantics of {@link #set} and returns the
1454      * variable's previous value, as accessed with the memory semantics of
1455      * {@link #getAcquire}.
1456      *
1457      * <p>If the variable type is the non-integral {@code boolean} type then a
1458      * logical AND is performed instead of a bitwise AND.
1459      *
1460      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1461      *
1462      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndAcquire}
1463      * must match the access mode type that is the result of calling
1464      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_ACQUIRE)} on this
1465      * VarHandle.
1466      *
1467      * @param args the signature-polymorphic parameter list of the form
1468      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1469      * , statically represented using varargs.
1470      * @return the signature-polymorphic result that is the previous value of
1471      * the variable
1472      * , statically represented using {@code Object}.
1473      * @throws UnsupportedOperationException if the access mode is unsupported
1474      * for this VarHandle.
1475      * @throws WrongMethodTypeException if the access mode type does not
1476      * match the caller's symbolic type descriptor.
1477      * @throws ClassCastException if the access mode type matches the caller's
1478      * symbolic type descriptor, but a reference cast fails.
1479      * @see #set(Object...)
1480      * @see #getAcquire(Object...)
1481      */
1482     public final native
1483     @MethodHandle.PolymorphicSignature
1484     @IntrinsicCandidate
1485     Object getAndBitwiseAndAcquire(Object... args);
1486 
1487     /**
1488      * Atomically sets the value of a variable to the result of
1489      * bitwise AND between the variable's current value and the {@code mask}
1490      * with the memory semantics of {@link #setRelease} and returns the
1491      * variable's previous value, as accessed with the memory semantics of
1492      * {@link #get}.
1493      *
1494      * <p>If the variable type is the non-integral {@code boolean} type then a
1495      * logical AND is performed instead of a bitwise AND.
1496      *
1497      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1498      *
1499      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndRelease}
1500      * must match the access mode type that is the result of calling
1501      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_RELEASE)} on this
1502      * VarHandle.
1503      *
1504      * @param args the signature-polymorphic parameter list of the form
1505      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1506      * , statically represented using varargs.
1507      * @return the signature-polymorphic result that is the previous value of
1508      * the variable
1509      * , statically represented using {@code Object}.
1510      * @throws UnsupportedOperationException if the access mode is unsupported
1511      * for this VarHandle.
1512      * @throws WrongMethodTypeException if the access mode type does not
1513      * match the caller's symbolic type descriptor.
1514      * @throws ClassCastException if the access mode type matches the caller's
1515      * symbolic type descriptor, but a reference cast fails.
1516      * @see #setRelease(Object...)
1517      * @see #get(Object...)
1518      */
1519     public final native
1520     @MethodHandle.PolymorphicSignature
1521     @IntrinsicCandidate
1522     Object getAndBitwiseAndRelease(Object... args);
1523 
1524     /**
1525      * Atomically sets the value of a variable to the result of
1526      * bitwise XOR between the variable's current value and the {@code mask}
1527      * with the memory semantics of {@link #setVolatile} and returns the
1528      * variable's previous value, as accessed with the memory semantics of
1529      * {@link #getVolatile}.
1530      *
1531      * <p>If the variable type is the non-integral {@code boolean} type then a
1532      * logical XOR is performed instead of a bitwise XOR.
1533      *
1534      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1535      *
1536      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXor}
1537      * must match the access mode type that is the result of calling
1538      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR)} on this
1539      * VarHandle.
1540      *
1541      * @param args the signature-polymorphic parameter list of the form
1542      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1543      * , statically represented using varargs.
1544      * @return the signature-polymorphic result that is the previous value of
1545      * the variable
1546      * , statically represented using {@code Object}.
1547      * @throws UnsupportedOperationException if the access mode is unsupported
1548      * for this VarHandle.
1549      * @throws WrongMethodTypeException if the access mode type does not
1550      * match the caller's symbolic type descriptor.
1551      * @throws ClassCastException if the access mode type matches the caller's
1552      * symbolic type descriptor, but a reference cast fails.
1553      * @see #setVolatile(Object...)
1554      * @see #getVolatile(Object...)
1555      */
1556     public final native
1557     @MethodHandle.PolymorphicSignature
1558     @IntrinsicCandidate
1559     Object getAndBitwiseXor(Object... args);
1560 
1561     /**
1562      * Atomically sets the value of a variable to the result of
1563      * bitwise XOR between the variable's current value and the {@code mask}
1564      * with the memory semantics of {@link #set} and returns the
1565      * variable's previous value, as accessed with the memory semantics of
1566      * {@link #getAcquire}.
1567      *
1568      * <p>If the variable type is the non-integral {@code boolean} type then a
1569      * logical XOR is performed instead of a bitwise XOR.
1570      *
1571      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1572      *
1573      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorAcquire}
1574      * must match the access mode type that is the result of calling
1575      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_ACQUIRE)} on this
1576      * VarHandle.
1577      *
1578      * @param args the signature-polymorphic parameter list of the form
1579      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1580      * , statically represented using varargs.
1581      * @return the signature-polymorphic result that is the previous value of
1582      * the variable
1583      * , statically represented using {@code Object}.
1584      * @throws UnsupportedOperationException if the access mode is unsupported
1585      * for this VarHandle.
1586      * @throws WrongMethodTypeException if the access mode type does not
1587      * match the caller's symbolic type descriptor.
1588      * @throws ClassCastException if the access mode type matches the caller's
1589      * symbolic type descriptor, but a reference cast fails.
1590      * @see #set(Object...)
1591      * @see #getAcquire(Object...)
1592      */
1593     public final native
1594     @MethodHandle.PolymorphicSignature
1595     @IntrinsicCandidate
1596     Object getAndBitwiseXorAcquire(Object... args);
1597 
1598     /**
1599      * Atomically sets the value of a variable to the result of
1600      * bitwise XOR between the variable's current value and the {@code mask}
1601      * with the memory semantics of {@link #setRelease} and returns the
1602      * variable's previous value, as accessed with the memory semantics of
1603      * {@link #get}.
1604      *
1605      * <p>If the variable type is the non-integral {@code boolean} type then a
1606      * logical XOR is performed instead of a bitwise XOR.
1607      *
1608      * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
1609      *
1610      * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorRelease}
1611      * must match the access mode type that is the result of calling
1612      * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_RELEASE)} on this
1613      * VarHandle.
1614      *
1615      * @param args the signature-polymorphic parameter list of the form
1616      * {@code (CT1 ct1, ..., CTn ctn, T mask)}
1617      * , statically represented using varargs.
1618      * @return the signature-polymorphic result that is the previous value of
1619      * the variable
1620      * , statically represented using {@code Object}.
1621      * @throws UnsupportedOperationException if the access mode is unsupported
1622      * for this VarHandle.
1623      * @throws WrongMethodTypeException if the access mode type does not
1624      * match the caller's symbolic type descriptor.
1625      * @throws ClassCastException if the access mode type matches the caller's
1626      * symbolic type descriptor, but a reference cast fails.
1627      * @see #setRelease(Object...)
1628      * @see #get(Object...)
1629      */
1630     public final native
1631     @MethodHandle.PolymorphicSignature
1632     @IntrinsicCandidate
1633     Object getAndBitwiseXorRelease(Object... args);
1634 
1635     /**
1636      * Returns a VarHandle, with access to the same variable(s) as this VarHandle, but whose
1637      * invocation behavior of access mode methods is adjusted to
1638      * <a href="#invoke-exact-behavior"><em>invoke-exact behavior</em></a>.
1639      * <p>
1640      * If this VarHandle already has invoke-exact behavior this VarHandle is returned.
1641      * <p>
1642      * Invoking {@link #hasInvokeExactBehavior()} on the returned var handle
1643      * is guaranteed to return {@code true}.
1644      *
1645      * @apiNote
1646      * Invoke-exact behavior guarantees that upon invocation of an access mode method
1647      * the types and arity of the arguments must match the {@link #accessModeType(AccessMode) access mode type},
1648      * otherwise a {@link WrongMethodTypeException} is thrown.
1649      *
1650      * @see #withInvokeBehavior()
1651      * @see #hasInvokeExactBehavior()
1652      * @return a VarHandle with invoke-exact behavior
1653      * @since 16
1654      */
1655     public abstract VarHandle withInvokeExactBehavior();
1656 
1657     /**
1658      * Returns a VarHandle, with access to the same variable(s) as this VarHandle, but whose
1659      * invocation behavior of access mode methods is adjusted to
1660      * <a href="#invoke-behavior"><em>invoke behavior</em></a>.
1661      * <p>
1662      * If this VarHandle already has invoke behavior this VarHandle is returned.
1663      * <p>
1664      * Invoking {@link #hasInvokeExactBehavior()} on the returned var handle
1665      * is guaranteed to return {@code false}.
1666      *
1667      * @see #withInvokeExactBehavior()
1668      * @see #hasInvokeExactBehavior()
1669      * @return a VarHandle with invoke behavior
1670      * @since 16
1671      */
1672     public abstract VarHandle withInvokeBehavior();
1673 
1674     enum AccessType {
1675         GET(Object.class),
1676         SET(void.class),
1677         COMPARE_AND_SET(boolean.class),
1678         COMPARE_AND_EXCHANGE(Object.class),
1679         GET_AND_UPDATE(Object.class);
1680 
1681         static final int COUNT = GET_AND_UPDATE.ordinal() + 1;
1682         static {
1683             assert (COUNT == values().length);
1684         }
1685         final Class<?> returnType;
1686         final boolean isMonomorphicInReturnType;
1687 
1688         AccessType(Class<?> returnType) {
1689             this.returnType = returnType;
1690             isMonomorphicInReturnType = returnType != Object.class;
1691         }
1692 
1693         MethodType accessModeType(Class<?> receiver, Class<?> value,
1694                                   Class<?>... intermediate) {
1695             Class<?>[] ps;
1696             int i;
1697             switch (this) {
1698                 case GET:
1699                     ps = allocateParameters(0, receiver, intermediate);
1700                     fillParameters(ps, receiver, intermediate);
1701                     return MethodType.methodType(value, ps);
1702                 case SET:
1703                     ps = allocateParameters(1, receiver, intermediate);
1704                     i = fillParameters(ps, receiver, intermediate);
1705                     ps[i] = value;
1706                     return MethodType.methodType(void.class, ps);
1707                 case COMPARE_AND_SET:
1708                     ps = allocateParameters(2, receiver, intermediate);
1709                     i = fillParameters(ps, receiver, intermediate);
1710                     ps[i++] = value;
1711                     ps[i] = value;
1712                     return MethodType.methodType(boolean.class, ps);
1713                 case COMPARE_AND_EXCHANGE:
1714                     ps = allocateParameters(2, receiver, intermediate);
1715                     i = fillParameters(ps, receiver, intermediate);
1716                     ps[i++] = value;
1717                     ps[i] = value;
1718                     return MethodType.methodType(value, ps);
1719                 case GET_AND_UPDATE:
1720                     ps = allocateParameters(1, receiver, intermediate);
1721                     i = fillParameters(ps, receiver, intermediate);
1722                     ps[i] = value;
1723                     return MethodType.methodType(value, ps);
1724                 default:
1725                     throw new InternalError("Unknown AccessType");
1726             }
1727         }
1728 
1729         private static Class<?>[] allocateParameters(int values,
1730                                                      Class<?> receiver, Class<?>... intermediate) {
1731             int size = ((receiver != null) ? 1 : 0) + intermediate.length + values;
1732             return new Class<?>[size];
1733         }
1734 
1735         private static int fillParameters(Class<?>[] ps,
1736                                           Class<?> receiver, Class<?>... intermediate) {
1737             int i = 0;
1738             if (receiver != null)
1739                 ps[i++] = receiver;
1740             for (int j = 0; j < intermediate.length; j++)
1741                 ps[i++] = intermediate[j];
1742             return i;
1743         }
1744     }
1745 
1746     /**
1747      * The set of access modes that specify how a variable, referenced by a
1748      * VarHandle, is accessed.
1749      */
1750     public enum AccessMode {
1751         /**
1752          * The access mode whose access is specified by the corresponding
1753          * method
1754          * {@link VarHandle#get VarHandle.get}
1755          */
1756         GET("get", AccessType.GET),
1757         /**
1758          * The access mode whose access is specified by the corresponding
1759          * method
1760          * {@link VarHandle#set VarHandle.set}
1761          */
1762         SET("set", AccessType.SET),
1763         /**
1764          * The access mode whose access is specified by the corresponding
1765          * method
1766          * {@link VarHandle#getVolatile VarHandle.getVolatile}
1767          */
1768         GET_VOLATILE("getVolatile", AccessType.GET),
1769         /**
1770          * The access mode whose access is specified by the corresponding
1771          * method
1772          * {@link VarHandle#setVolatile VarHandle.setVolatile}
1773          */
1774         SET_VOLATILE("setVolatile", AccessType.SET),
1775         /**
1776          * The access mode whose access is specified by the corresponding
1777          * method
1778          * {@link VarHandle#getAcquire VarHandle.getAcquire}
1779          */
1780         GET_ACQUIRE("getAcquire", AccessType.GET),
1781         /**
1782          * The access mode whose access is specified by the corresponding
1783          * method
1784          * {@link VarHandle#setRelease VarHandle.setRelease}
1785          */
1786         SET_RELEASE("setRelease", AccessType.SET),
1787         /**
1788          * The access mode whose access is specified by the corresponding
1789          * method
1790          * {@link VarHandle#getOpaque VarHandle.getOpaque}
1791          */
1792         GET_OPAQUE("getOpaque", AccessType.GET),
1793         /**
1794          * The access mode whose access is specified by the corresponding
1795          * method
1796          * {@link VarHandle#setOpaque VarHandle.setOpaque}
1797          */
1798         SET_OPAQUE("setOpaque", AccessType.SET),
1799         /**
1800          * The access mode whose access is specified by the corresponding
1801          * method
1802          * {@link VarHandle#compareAndSet VarHandle.compareAndSet}
1803          */
1804         COMPARE_AND_SET("compareAndSet", AccessType.COMPARE_AND_SET),
1805         /**
1806          * The access mode whose access is specified by the corresponding
1807          * method
1808          * {@link VarHandle#compareAndExchange VarHandle.compareAndExchange}
1809          */
1810         COMPARE_AND_EXCHANGE("compareAndExchange", AccessType.COMPARE_AND_EXCHANGE),
1811         /**
1812          * The access mode whose access is specified by the corresponding
1813          * method
1814          * {@link VarHandle#compareAndExchangeAcquire VarHandle.compareAndExchangeAcquire}
1815          */
1816         COMPARE_AND_EXCHANGE_ACQUIRE("compareAndExchangeAcquire", AccessType.COMPARE_AND_EXCHANGE),
1817         /**
1818          * The access mode whose access is specified by the corresponding
1819          * method
1820          * {@link VarHandle#compareAndExchangeRelease VarHandle.compareAndExchangeRelease}
1821          */
1822         COMPARE_AND_EXCHANGE_RELEASE("compareAndExchangeRelease", AccessType.COMPARE_AND_EXCHANGE),
1823         /**
1824          * The access mode whose access is specified by the corresponding
1825          * method
1826          * {@link VarHandle#weakCompareAndSetPlain VarHandle.weakCompareAndSetPlain}
1827          */
1828         WEAK_COMPARE_AND_SET_PLAIN("weakCompareAndSetPlain", AccessType.COMPARE_AND_SET),
1829         /**
1830          * The access mode whose access is specified by the corresponding
1831          * method
1832          * {@link VarHandle#weakCompareAndSet VarHandle.weakCompareAndSet}
1833          */
1834         WEAK_COMPARE_AND_SET("weakCompareAndSet", AccessType.COMPARE_AND_SET),
1835         /**
1836          * The access mode whose access is specified by the corresponding
1837          * method
1838          * {@link VarHandle#weakCompareAndSetAcquire VarHandle.weakCompareAndSetAcquire}
1839          */
1840         WEAK_COMPARE_AND_SET_ACQUIRE("weakCompareAndSetAcquire", AccessType.COMPARE_AND_SET),
1841         /**
1842          * The access mode whose access is specified by the corresponding
1843          * method
1844          * {@link VarHandle#weakCompareAndSetRelease VarHandle.weakCompareAndSetRelease}
1845          */
1846         WEAK_COMPARE_AND_SET_RELEASE("weakCompareAndSetRelease", AccessType.COMPARE_AND_SET),
1847         /**
1848          * The access mode whose access is specified by the corresponding
1849          * method
1850          * {@link VarHandle#getAndSet VarHandle.getAndSet}
1851          */
1852         GET_AND_SET("getAndSet", AccessType.GET_AND_UPDATE),
1853         /**
1854          * The access mode whose access is specified by the corresponding
1855          * method
1856          * {@link VarHandle#getAndSetAcquire VarHandle.getAndSetAcquire}
1857          */
1858         GET_AND_SET_ACQUIRE("getAndSetAcquire", AccessType.GET_AND_UPDATE),
1859         /**
1860          * The access mode whose access is specified by the corresponding
1861          * method
1862          * {@link VarHandle#getAndSetRelease VarHandle.getAndSetRelease}
1863          */
1864         GET_AND_SET_RELEASE("getAndSetRelease", AccessType.GET_AND_UPDATE),
1865         /**
1866          * The access mode whose access is specified by the corresponding
1867          * method
1868          * {@link VarHandle#getAndAdd VarHandle.getAndAdd}
1869          */
1870         GET_AND_ADD("getAndAdd", AccessType.GET_AND_UPDATE),
1871         /**
1872          * The access mode whose access is specified by the corresponding
1873          * method
1874          * {@link VarHandle#getAndAddAcquire VarHandle.getAndAddAcquire}
1875          */
1876         GET_AND_ADD_ACQUIRE("getAndAddAcquire", AccessType.GET_AND_UPDATE),
1877         /**
1878          * The access mode whose access is specified by the corresponding
1879          * method
1880          * {@link VarHandle#getAndAddRelease VarHandle.getAndAddRelease}
1881          */
1882         GET_AND_ADD_RELEASE("getAndAddRelease", AccessType.GET_AND_UPDATE),
1883         /**
1884          * The access mode whose access is specified by the corresponding
1885          * method
1886          * {@link VarHandle#getAndBitwiseOr VarHandle.getAndBitwiseOr}
1887          */
1888         GET_AND_BITWISE_OR("getAndBitwiseOr", AccessType.GET_AND_UPDATE),
1889         /**
1890          * The access mode whose access is specified by the corresponding
1891          * method
1892          * {@link VarHandle#getAndBitwiseOrRelease VarHandle.getAndBitwiseOrRelease}
1893          */
1894         GET_AND_BITWISE_OR_RELEASE("getAndBitwiseOrRelease", AccessType.GET_AND_UPDATE),
1895         /**
1896          * The access mode whose access is specified by the corresponding
1897          * method
1898          * {@link VarHandle#getAndBitwiseOrAcquire VarHandle.getAndBitwiseOrAcquire}
1899          */
1900         GET_AND_BITWISE_OR_ACQUIRE("getAndBitwiseOrAcquire", AccessType.GET_AND_UPDATE),
1901         /**
1902          * The access mode whose access is specified by the corresponding
1903          * method
1904          * {@link VarHandle#getAndBitwiseAnd VarHandle.getAndBitwiseAnd}
1905          */
1906         GET_AND_BITWISE_AND("getAndBitwiseAnd", AccessType.GET_AND_UPDATE),
1907         /**
1908          * The access mode whose access is specified by the corresponding
1909          * method
1910          * {@link VarHandle#getAndBitwiseAndRelease VarHandle.getAndBitwiseAndRelease}
1911          */
1912         GET_AND_BITWISE_AND_RELEASE("getAndBitwiseAndRelease", AccessType.GET_AND_UPDATE),
1913         /**
1914          * The access mode whose access is specified by the corresponding
1915          * method
1916          * {@link VarHandle#getAndBitwiseAndAcquire VarHandle.getAndBitwiseAndAcquire}
1917          */
1918         GET_AND_BITWISE_AND_ACQUIRE("getAndBitwiseAndAcquire", AccessType.GET_AND_UPDATE),
1919         /**
1920          * The access mode whose access is specified by the corresponding
1921          * method
1922          * {@link VarHandle#getAndBitwiseXor VarHandle.getAndBitwiseXor}
1923          */
1924         GET_AND_BITWISE_XOR("getAndBitwiseXor", AccessType.GET_AND_UPDATE),
1925         /**
1926          * The access mode whose access is specified by the corresponding
1927          * method
1928          * {@link VarHandle#getAndBitwiseXorRelease VarHandle.getAndBitwiseXorRelease}
1929          */
1930         GET_AND_BITWISE_XOR_RELEASE("getAndBitwiseXorRelease", AccessType.GET_AND_UPDATE),
1931         /**
1932          * The access mode whose access is specified by the corresponding
1933          * method
1934          * {@link VarHandle#getAndBitwiseXorAcquire VarHandle.getAndBitwiseXorAcquire}
1935          */
1936         GET_AND_BITWISE_XOR_ACQUIRE("getAndBitwiseXorAcquire", AccessType.GET_AND_UPDATE),
1937         ;
1938 
1939         static final int COUNT = GET_AND_BITWISE_XOR_ACQUIRE.ordinal() + 1;
1940         static {
1941             assert (COUNT == values().length);
1942         }
1943         final String methodName;
1944         final AccessType at;
1945 
1946         AccessMode(final String methodName, AccessType at) {
1947             this.methodName = methodName;
1948             this.at = at;
1949         }
1950 
1951         /**
1952          * Returns the {@code VarHandle} signature-polymorphic method name
1953          * associated with this {@code AccessMode} value.
1954          *
1955          * @return the signature-polymorphic method name
1956          * @see #valueFromMethodName
1957          */
1958         public String methodName() {
1959             return methodName;
1960         }
1961 
1962         /**
1963          * Returns the {@code AccessMode} value associated with the specified
1964          * {@code VarHandle} signature-polymorphic method name.
1965          *
1966          * @param methodName the signature-polymorphic method name
1967          * @return the {@code AccessMode} value
1968          * @throws IllegalArgumentException if there is no {@code AccessMode}
1969          *         value associated with method name (indicating the method
1970          *         name does not correspond to a {@code VarHandle}
1971          *         signature-polymorphic method name).
1972          * @see #methodName()
1973          */
1974         public static AccessMode valueFromMethodName(String methodName) {
1975             return switch (methodName) {
1976                 case "get" -> GET;
1977                 case "set" -> SET;
1978                 case "getVolatile" -> GET_VOLATILE;
1979                 case "setVolatile" -> SET_VOLATILE;
1980                 case "getAcquire" -> GET_ACQUIRE;
1981                 case "setRelease" -> SET_RELEASE;
1982                 case "getOpaque" -> GET_OPAQUE;
1983                 case "setOpaque" -> SET_OPAQUE;
1984                 case "compareAndSet" -> COMPARE_AND_SET;
1985                 case "compareAndExchange" -> COMPARE_AND_EXCHANGE;
1986                 case "compareAndExchangeAcquire" -> COMPARE_AND_EXCHANGE_ACQUIRE;
1987                 case "compareAndExchangeRelease" -> COMPARE_AND_EXCHANGE_RELEASE;
1988                 case "weakCompareAndSet" -> WEAK_COMPARE_AND_SET;
1989                 case "weakCompareAndSetPlain" -> WEAK_COMPARE_AND_SET_PLAIN;
1990                 case "weakCompareAndSetAcquire" -> WEAK_COMPARE_AND_SET_ACQUIRE;
1991                 case "weakCompareAndSetRelease" -> WEAK_COMPARE_AND_SET_RELEASE;
1992                 case "getAndSet" -> GET_AND_SET;
1993                 case "getAndSetAcquire" -> GET_AND_SET_ACQUIRE;
1994                 case "getAndSetRelease" -> GET_AND_SET_RELEASE;
1995                 case "getAndAdd" -> GET_AND_ADD;
1996                 case "getAndAddAcquire" -> GET_AND_ADD_ACQUIRE;
1997                 case "getAndAddRelease" -> GET_AND_ADD_RELEASE;
1998                 case "getAndBitwiseOr" -> GET_AND_BITWISE_OR;
1999                 case "getAndBitwiseOrRelease" -> GET_AND_BITWISE_OR_RELEASE;
2000                 case "getAndBitwiseOrAcquire" -> GET_AND_BITWISE_OR_ACQUIRE;
2001                 case "getAndBitwiseAnd" -> GET_AND_BITWISE_AND;
2002                 case "getAndBitwiseAndRelease" -> GET_AND_BITWISE_AND_RELEASE;
2003                 case "getAndBitwiseAndAcquire" -> GET_AND_BITWISE_AND_ACQUIRE;
2004                 case "getAndBitwiseXor" -> GET_AND_BITWISE_XOR;
2005                 case "getAndBitwiseXorRelease" -> GET_AND_BITWISE_XOR_RELEASE;
2006                 case "getAndBitwiseXorAcquire" -> GET_AND_BITWISE_XOR_ACQUIRE;
2007                 default -> throw new IllegalArgumentException("No AccessMode value for method name " + methodName);
2008             };
2009         }
2010 
2011         private static final @Stable AccessMode[] VALUES = values();
2012         static AccessMode valueFromOrdinal(int mode) {
2013             return VALUES[mode];
2014         }
2015     }
2016 
2017     static final class AccessDescriptor {
2018         final MethodType symbolicMethodTypeExact;
2019         final MethodType symbolicMethodTypeErased;
2020         final MethodType symbolicMethodTypeInvoker;
2021         final Class<?> returnType;
2022         final int type;
2023         final int mode;
2024 
2025         public AccessDescriptor(MethodType symbolicMethodType, int type, int mode) {
2026             this.symbolicMethodTypeExact = symbolicMethodType;
2027             this.symbolicMethodTypeErased = symbolicMethodType.erase();
2028             this.symbolicMethodTypeInvoker = symbolicMethodType.insertParameterTypes(0, VarHandle.class);
2029             this.returnType = symbolicMethodType.returnType();
2030             this.type = type;
2031             this.mode = mode;
2032         }
2033     }
2034 
2035     /**
2036      * Returns a compact textual description of this {@linkplain VarHandle},
2037      * including the type of variable described, and a description of its coordinates.
2038      *
2039      * @return A compact textual description of this {@linkplain VarHandle}
2040      */
2041     @Override
2042     public final String toString() {
2043         return String.format("VarHandle[varType=%s, coord=%s]",
2044                              varType().getName(),
2045                              coordinateTypes());
2046     }
2047 
2048     /**
2049      * Returns the variable type of variables referenced by this VarHandle.
2050      *
2051      * @return the variable type of variables referenced by this VarHandle
2052      */
2053     public Class<?> varType() {
2054         MethodType typeSet = accessModeType(AccessMode.SET);
2055         return typeSet.parameterType(typeSet.parameterCount() - 1);
2056     }
2057 
2058     /**
2059      * Returns the coordinate types for this VarHandle.
2060      *
2061      * @return the coordinate types for this VarHandle. The returned
2062      * list is unmodifiable
2063      */
2064     public List<Class<?>> coordinateTypes() {
2065         MethodType typeGet = accessModeType(AccessMode.GET);
2066         return typeGet.parameterList();
2067     }
2068 
2069     /**
2070      * Obtains the access mode type for this VarHandle and a given access mode.
2071      *
2072      * <p>The access mode type's parameter types will consist of a prefix that
2073      * is the coordinate types of this VarHandle followed by further
2074      * types as defined by the access mode method.
2075      * The access mode type's return type is defined by the return type of the
2076      * access mode method.
2077      *
2078      * @param accessMode the access mode, corresponding to the
2079      * signature-polymorphic method of the same name
2080      * @return the access mode type for the given access mode
2081      */
2082     public final MethodType accessModeType(AccessMode accessMode) {
2083         return accessModeType(accessMode.at.ordinal());
2084     }
2085 
2086     /**
2087      * Validates that the given access descriptors method type matches up with
2088      * the access mode of this VarHandle, then returns if this is direct.
2089      * These operations were grouped together to slightly
2090      * improve efficiency during startup/warmup.
2091      *
2092      * A direct VarHandle's VarForm has implementation MemberNames that can
2093      * be linked directly. If a VarHandle is indirect, it must override
2094      * {@link #isAccessModeSupported} and {@link #getMethodHandleUncached}
2095      * which access MemberNames.
2096      *
2097      * @return true if this is a direct VarHandle, false if it's an indirect
2098      *         VarHandle.
2099      * @throws WrongMethodTypeException if there's an access type mismatch
2100      * @see #asDirect()
2101      */
2102     @ForceInline
2103     boolean checkAccessModeThenIsDirect(VarHandle.AccessDescriptor ad) {
2104         if (exact && accessModeType(ad.type) != ad.symbolicMethodTypeExact) {
2105             throwWrongMethodTypeException(ad);
2106         }
2107         // return true unless overridden in an IndirectVarHandle
2108         return true;
2109     }
2110 
2111     @DontInline
2112     private final void throwWrongMethodTypeException(VarHandle.AccessDescriptor ad) {
2113         throw new WrongMethodTypeException("handle's method type " + accessModeType(ad.type)
2114                 + " but found " + ad.symbolicMethodTypeExact);
2115     }
2116 
2117     @ForceInline
2118     final MethodType accessModeType(int accessTypeOrdinal) {
2119         MethodType[] mtTable = methodTypeTable;
2120         if (mtTable == null) {
2121             mtTable = methodTypeTable = new MethodType[VarHandle.AccessType.COUNT];
2122         }
2123         MethodType mt = mtTable[accessTypeOrdinal];
2124         if (mt == null) {
2125             mt = mtTable[accessTypeOrdinal] =
2126                     accessModeTypeUncached(accessTypeOrdinal);
2127         }
2128         return mt;
2129     }
2130 
2131     final MethodType accessModeTypeUncached(int accessTypeOrdinal) {
2132         return accessModeTypeUncached(AccessType.values()[accessTypeOrdinal]);
2133     }
2134 
2135     abstract MethodType accessModeTypeUncached(AccessType accessMode);
2136 
2137     /**
2138      * Returns {@code true} if the given access mode is supported, otherwise
2139      * {@code false}.
2140      *
2141      * <p>The return of a {@code false} value for a given access mode indicates
2142      * that an {@code UnsupportedOperationException} is thrown on invocation
2143      * of the corresponding access mode method.
2144      *
2145      * @param accessMode the access mode, corresponding to the
2146      * signature-polymorphic method of the same name
2147      * @return {@code true} if the given access mode is supported, otherwise
2148      * {@code false}.
2149      */
2150     public boolean isAccessModeSupported(AccessMode accessMode) {
2151         return vform.getMemberNameOrNull(accessMode.ordinal()) != null;
2152     }
2153 
2154     /**
2155      * Obtains a method handle bound to this VarHandle and the given access
2156      * mode.
2157      *
2158      * @apiNote This method, for a VarHandle {@code vh} and access mode
2159      * {@code {access-mode}}, returns a method handle that is equivalent to
2160      * method handle {@code bmh} in the following code (though it may be more
2161      * efficient):
2162      * <pre>{@code
2163      * MethodHandle mh = MethodHandles.varHandleExactInvoker(
2164      *                       vh.accessModeType(VarHandle.AccessMode.{access-mode}));
2165      *
2166      * MethodHandle bmh = mh.bindTo(vh);
2167      * }</pre>
2168      *
2169      * @param accessMode the access mode, corresponding to the
2170      * signature-polymorphic method of the same name
2171      * @return a method handle bound to this VarHandle and the given access mode
2172      */
2173     public MethodHandle toMethodHandle(AccessMode accessMode) {
2174         if (isAccessModeSupported(accessMode)) {
2175             MethodHandle mh = getMethodHandle(accessMode.ordinal());
2176             return mh.bindTo(asDirect());
2177         }
2178         else {
2179             // Ensure an UnsupportedOperationException is thrown
2180             return MethodHandles.varHandleInvoker(accessMode, accessModeType(accessMode)).
2181                     bindTo(this);
2182         }
2183     }
2184 
2185     /**
2186      * Return a nominal descriptor for this instance, if one can be
2187      * constructed, or an empty {@link Optional} if one cannot be.
2188      *
2189      * @return An {@link Optional} containing the resulting nominal descriptor,
2190      * or an empty {@link Optional} if one cannot be constructed.
2191      * @since 12
2192      */
2193     @Override
2194     public Optional<VarHandleDesc> describeConstable() {
2195         // partial function for field and array only
2196         return Optional.empty();
2197     }
2198 
2199     @Stable
2200     MethodType[] methodTypeTable;
2201 
2202     @Stable
2203     MethodHandle[] methodHandleTable;
2204 
2205     @ForceInline
2206     final MethodHandle getMethodHandle(int mode) {
2207         MethodHandle[] mhTable = methodHandleTable;
2208         if (mhTable == null) {
2209             mhTable = methodHandleTable = new MethodHandle[AccessMode.COUNT];
2210         }
2211         MethodHandle mh = mhTable[mode];
2212         if (mh == null) {
2213             mh = mhTable[mode] = getMethodHandleUncached(mode);
2214         }
2215         return mh;
2216     }
2217 
2218     /**
2219      * Computes a method handle that can be passed the {@linkplain #asDirect() direct}
2220      * var handle of this var handle with the given access mode. Pre/postprocessing
2221      * such as argument or return value filtering should be done by the returned
2222      * method handle.
2223      *
2224      * @throws UnsupportedOperationException if the access mode is not supported
2225      */
2226     MethodHandle getMethodHandleUncached(int mode) {
2227         MethodType mt = accessModeType(AccessMode.valueFromOrdinal(mode)).
2228                 insertParameterTypes(0, VarHandle.class);
2229         MemberName mn = vform.getMemberName(mode);
2230         DirectMethodHandle dmh = DirectMethodHandle.make(mn);
2231         // Such a method handle must not be publicly exposed directly
2232         // otherwise it can be cracked, it must be transformed or rebound
2233         // before exposure
2234         MethodHandle mh = dmh.copyWith(mt, dmh.form);
2235         assert mh.type().erase() == mn.getMethodType().erase();
2236         return mh;
2237     }
2238 
2239 
2240     /*non-public*/
2241     final void updateVarForm(VarForm newVForm) {
2242         if (vform == newVForm) return;
2243         UNSAFE.putReference(this, VFORM_OFFSET, newVForm);
2244         UNSAFE.fullFence();
2245     }
2246 
2247     private static final long VFORM_OFFSET;
2248 
2249     static {
2250         VFORM_OFFSET = UNSAFE.objectFieldOffset(VarHandle.class, "vform");
2251 
2252         // The VarHandleGuards must be initialized to ensure correct
2253         // compilation of the guard methods
2254         UNSAFE.ensureClassInitialized(VarHandleGuards.class);
2255     }
2256 
2257 
2258     // Fence methods
2259 
2260     /**
2261      * Ensures that loads and stores before the fence will not be reordered
2262      * with
2263      * loads and stores after the fence.
2264      *
2265      * @apiNote Ignoring the many semantic differences from C and C++, this
2266      * method has memory ordering effects compatible with
2267      * {@code atomic_thread_fence(memory_order_seq_cst)}
2268      */
2269     @ForceInline
2270     public static void fullFence() {
2271         UNSAFE.fullFence();
2272     }
2273 
2274     /**
2275      * Ensures that loads before the fence will not be reordered with loads and
2276      * stores after the fence.
2277      *
2278      * @apiNote Ignoring the many semantic differences from C and C++, this
2279      * method has memory ordering effects compatible with
2280      * {@code atomic_thread_fence(memory_order_acquire)}
2281      */
2282     @ForceInline
2283     public static void acquireFence() {
2284         UNSAFE.loadFence();
2285     }
2286 
2287     /**
2288      * Ensures that loads and stores before the fence will not be
2289      * reordered with stores after the fence.
2290      *
2291      * @apiNote Ignoring the many semantic differences from C and C++, this
2292      * method has memory ordering effects compatible with
2293      * {@code atomic_thread_fence(memory_order_release)}
2294      */
2295     @ForceInline
2296     public static void releaseFence() {
2297         UNSAFE.storeFence();
2298     }
2299 
2300     /**
2301      * Ensures that loads before the fence will not be reordered with
2302      * loads after the fence.
2303      */
2304     @ForceInline
2305     public static void loadLoadFence() {
2306         UNSAFE.loadLoadFence();
2307     }
2308 
2309     /**
2310      * Ensures that stores before the fence will not be reordered with
2311      * stores after the fence.
2312      */
2313     @ForceInline
2314     public static void storeStoreFence() {
2315         UNSAFE.storeStoreFence();
2316     }
2317 
2318     /**
2319      * A <a href="{@docRoot}/java.base/java/lang/constant/package-summary.html#nominal">nominal descriptor</a> for a
2320      * {@link VarHandle} constant.
2321      *
2322      * @since 12
2323      */
2324     public static final class VarHandleDesc extends DynamicConstantDesc<VarHandle> {
2325 
2326         /**
2327          * Kinds of variable handle descs
2328          */
2329         private enum Kind {
2330             FIELD(ConstantDescs.BSM_VARHANDLE_FIELD),
2331             STATIC_FIELD(ConstantDescs.BSM_VARHANDLE_STATIC_FIELD),
2332             ARRAY(ConstantDescs.BSM_VARHANDLE_ARRAY);
2333 
2334             final DirectMethodHandleDesc bootstrapMethod;
2335 
2336             Kind(DirectMethodHandleDesc bootstrapMethod) {
2337                 this.bootstrapMethod = bootstrapMethod;
2338             }
2339 
2340             ConstantDesc[] toBSMArgs(ClassDesc declaringClass, ClassDesc varType) {
2341                 return switch (this) {
2342                     case FIELD, STATIC_FIELD -> new ConstantDesc[]{declaringClass, varType};
2343                     case ARRAY               -> new ConstantDesc[]{declaringClass};
2344                     default -> throw new InternalError("Cannot reach here");
2345                 };
2346             }
2347         }
2348 
2349         private final Kind kind;
2350         private final ClassDesc declaringClass;
2351         private final ClassDesc varType;
2352 
2353         /**
2354          * Construct a {@linkplain VarHandleDesc} given a kind, name, and declaring
2355          * class.
2356          *
2357          * @param kind the kind of the var handle
2358          * @param name the unqualified name of the field, for field var handles; otherwise ignored
2359          * @param declaringClass a {@link ClassDesc} describing the declaring class,
2360          *                       for field var handles
2361          * @param varType a {@link ClassDesc} describing the type of the variable
2362          * @throws NullPointerException if any required argument is null
2363          * @jvms 4.2.2 Unqualified Names
2364          */
2365         private VarHandleDesc(Kind kind, String name, ClassDesc declaringClass, ClassDesc varType) {
2366             super(kind.bootstrapMethod, name,
2367                   ConstantDescs.CD_VarHandle,
2368                   kind.toBSMArgs(declaringClass, varType));
2369             this.kind = kind;
2370             this.declaringClass = declaringClass;
2371             this.varType = varType;
2372         }
2373 
2374         /**
2375          * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2376          * for an instance field.
2377          *
2378          * @param declaringClass a {@link ClassDesc} describing the declaring class,
2379          *                       for field var handles
2380          * @param name the unqualified name of the field
2381          * @param fieldType a {@link ClassDesc} describing the type of the field
2382          * @return the {@linkplain VarHandleDesc}
2383          * @throws NullPointerException if any of the arguments are null
2384          * @jvms 4.2.2 Unqualified Names
2385          */
2386         public static VarHandleDesc ofField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
2387             Objects.requireNonNull(declaringClass);
2388             Objects.requireNonNull(name);
2389             Objects.requireNonNull(fieldType);
2390             return new VarHandleDesc(Kind.FIELD, name, declaringClass, fieldType);
2391         }
2392 
2393         /**
2394          * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2395          * for a static field.
2396          *
2397          * @param declaringClass a {@link ClassDesc} describing the declaring class,
2398          *                       for field var handles
2399          * @param name the unqualified name of the field
2400          * @param fieldType a {@link ClassDesc} describing the type of the field
2401          * @return the {@linkplain VarHandleDesc}
2402          * @throws NullPointerException if any of the arguments are null
2403          * @jvms 4.2.2 Unqualified Names
2404          */
2405         public static VarHandleDesc ofStaticField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
2406             Objects.requireNonNull(declaringClass);
2407             Objects.requireNonNull(name);
2408             Objects.requireNonNull(fieldType);
2409             return new VarHandleDesc(Kind.STATIC_FIELD, name, declaringClass, fieldType);
2410         }
2411 
2412         /**
2413          * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
2414          * for an array type.
2415          *
2416          * @param arrayClass a {@link ClassDesc} describing the type of the array
2417          * @return the {@linkplain VarHandleDesc}
2418          * @throws NullPointerException if any of the arguments are null
2419          */
2420         public static VarHandleDesc ofArray(ClassDesc arrayClass) {
2421             Objects.requireNonNull(arrayClass);
2422             if (!arrayClass.isArray())
2423                 throw new IllegalArgumentException("Array class argument not an array: " + arrayClass);
2424             return new VarHandleDesc(Kind.ARRAY, ConstantDescs.DEFAULT_NAME, arrayClass, arrayClass.componentType());
2425         }
2426 
2427         /**
2428          * Returns a {@link ClassDesc} describing the type of the variable described
2429          * by this descriptor.
2430          *
2431          * @return the variable type
2432          */
2433         public ClassDesc varType() {
2434             return varType;
2435         }
2436 
2437         @Override
2438         public VarHandle resolveConstantDesc(MethodHandles.Lookup lookup)
2439                 throws ReflectiveOperationException {
2440             return switch (kind) {
2441                 case FIELD        -> lookup.findVarHandle(declaringClass.resolveConstantDesc(lookup),
2442                                                           constantName(),
2443                                                           varType.resolveConstantDesc(lookup));
2444                 case STATIC_FIELD -> lookup.findStaticVarHandle(declaringClass.resolveConstantDesc(lookup),
2445                                                           constantName(),
2446                                                           varType.resolveConstantDesc(lookup));
2447                 case ARRAY        -> MethodHandles.arrayElementVarHandle(declaringClass.resolveConstantDesc(lookup));
2448                 default -> throw new InternalError("Cannot reach here");
2449             };
2450         }
2451 
2452         /**
2453          * Returns a compact textual description of this constant description.
2454          * For a field {@linkplain VarHandle}, includes the owner, name, and type
2455          * of the field, and whether it is static; for an array {@linkplain VarHandle},
2456          * the name of the component type.
2457          *
2458          * @return A compact textual description of this descriptor
2459          */
2460         @Override
2461         public String toString() {
2462             return switch (kind) {
2463                 case FIELD, STATIC_FIELD -> String.format("VarHandleDesc[%s%s.%s:%s]",
2464                                                            (kind == Kind.STATIC_FIELD) ? "static " : "",
2465                                                            declaringClass.displayName(), constantName(), varType.displayName());
2466                 case ARRAY               -> String.format("VarHandleDesc[%s[]]", declaringClass.displayName());
2467                 default -> throw new InternalError("Cannot reach here");
2468             };
2469         }
2470     }
2471 
2472 }