1 /*
  2  * Copyright (c) 2024, 2026, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 package java.lang.runtime;
 26 
 27 /**
 28  * A testing conversion of a value is exact if it yields a result without loss
 29  * of information or throwing an exception. Otherwise, it is inexact. Some
 30  * conversions are always exact regardless of the value. These conversions are
 31  * said to be unconditionally exact.
 32  * <p>
 33  * For example, a conversion from {@code int} to {@code byte} for the value 10
 34  * is exact because the result, 10, is the same as the original value. In
 35  * contrast, if the {@code int} variable {@code i} stores the value 1000 then a
 36  * narrowing primitive conversion to {@code byte} will yield the result -24.
 37  * Loss of information has occurred: both the magnitude and the sign of the
 38  * result are different than those of the original value. As such, a conversion
 39  * from {@code int} to {@code byte} for the value 1000 is inexact. Finally a
 40  * widening primitive conversion from {@code byte} to {@code int} is
 41  * unconditionally exact because it will always succeed with no loss of
 42  * information about the magnitude of the numeric value.
 43  * <p>
 44  * The methods in this class provide the run-time support for the exactness
 45  * checks of testing conversions from a primitive type to primitive type. These
 46  * methods may be used, for example, by Java compiler implementations to
 47  * implement checks for {@code instanceof} and pattern matching runtime
 48  * implementations. Unconditionally exact testing conversions do not require a
 49  * corresponding action at run time and, for this reason, methods corresponding
 50  * to these exactness checks are omitted here.
 51  * <p>
 52  * The run time conversion checks examine whether loss of information would
 53  * occur if a testing conversion would be to be applied. In those cases where a
 54  * floating-point primitive type is involved, and the value of the testing
 55  * conversion is either signed zero, signed infinity or {@code NaN}, these
 56  * methods comply with the following:
 57  *
 58  * <ul>
 59  * <li>Converting a floating-point negative zero to an integer type is considered
 60  *   inexact.</li>
 61  * <li>Converting a floating-point {@code NaN} or infinity to an integer type is
 62  *   considered inexact.</li>
 63  * <li>Converting a floating-point {@code NaN} or infinity or signed zero to another
 64  *   floating-point type is considered exact.</li>
 65  * </ul>
 66  *
 67  * @jls primitive-types-in-patterns-instanceof-switch-5.7.1 Exact Testing Conversions
 68  * @jls primitive-types-in-patterns-instanceof-switch-5.7.2 Unconditionally Exact Testing Conversions
 69  * @jls primitive-types-in-patterns-instanceof-switch-15.20.2 The {@code instanceof} Operator
 70  *
 71  * @implNote Some exactness checks describe a test which can be redirected
 72  * safely through one of the existing methods. Those are omitted too (i.e.,
 73  * {@code byte} to {@code char} can be redirected  to
 74  * {@link ExactConversionsSupport#isIntToCharExact(int)}, {@code short} to
 75  * {@code byte} can be redirected to
 76  * {@link ExactConversionsSupport#isIntToByteExact(int)} and similarly for
 77  * {@code short} to {@code char}, {@code char} to {@code byte} and {@code char}
 78  * to {@code short} to the corresponding methods that take an {@code int}).
 79  *
 80  * @since 23
 81  */
 82 public final class ExactConversionsSupport {
 83 
 84     private ExactConversionsSupport() { }
 85 
 86     /**
 87      * Exactness method from int to byte
 88      * @param n value
 89      * @return true if and only if the passed value can be converted exactly to the target type
 90      */
 91     public static boolean isIntToByteExact(int n)      {return n == (int)(byte)n;}
 92 
 93     /**
 94      * Exactness method from int to short
 95      * @param n value
 96      * @return true if and only if the passed value can be converted exactly to the target type
 97      */
 98     public static boolean isIntToShortExact(int n)     {return n == (int)(short)n;}
 99 
100     /**
101      * Exactness method from int to char
102      * @param n value
103      * @return true if and only if the passed value can be converted exactly to the target type
104      */
105     public static boolean isIntToCharExact(int n)      {return n == (int)(char)n;}
106 
107     /**
108      * Exactness method from int to float
109      * @param n value
110      * @return true if and only if the passed value can be converted exactly to the target type
111      *
112      * @implSpec relies on the notion of representation equivalence defined in the
113      * specification of the {@linkplain Double} class.
114      */
115     public static boolean isIntToFloatExact(int n) {
116         return n == (int)(float)n && n != Integer.MAX_VALUE;
117     }
118     /**
119      * Exactness method from long to byte
120      * @param n value
121      * @return true if and only if the passed value can be converted exactly to the target type
122      */
123     public static boolean isLongToByteExact(long n)    {return n == (long)(byte)n;}
124 
125     /**
126      * Exactness method from long to short
127      * @param n value
128      * @return true if and only if the passed value can be converted exactly to the target type
129      */
130     public static boolean isLongToShortExact(long n)   {return n == (long)(short)n;}
131 
132     /**
133      * Exactness method from long to char
134      * @param n value
135      * @return true if and only if the passed value can be converted exactly to the target type
136      */
137     public static boolean isLongToCharExact(long n)    {return n == (long)(char)n;}
138 
139     /**
140      * Exactness method from long to int
141      * @param n value
142      * @return true if and only if the passed value can be converted exactly to the target type
143      */
144     public static boolean isLongToIntExact(long n)     {return n == (long)(int)n;}
145 
146     /**
147      * Exactness method from long to float
148      * @param n value
149      * @return true if and only if the passed value can be converted exactly to the target type
150      * @implSpec relies on the notion of representation equivalence defined in the
151      * specification of the {@linkplain Double} class.
152      */
153     public static boolean isLongToFloatExact(long n) {
154         return n == (long)(float)n && n != Long.MAX_VALUE;
155     }
156 
157     /**
158      * Exactness method from long to double
159      * @param n value
160      * @return true if and only if the passed value can be converted exactly to the target type
161      * @implSpec relies on the notion of representation equivalence defined in the
162      * specification of the {@linkplain Double} class.
163      */
164     public static boolean isLongToDoubleExact(long n) {
165         return n == (long)(double)n && n != Long.MAX_VALUE;
166     }
167 
168     /**
169      * Exactness method from float to byte
170      * @param n value
171      * @return true if and only if the passed value can be converted exactly to the target type
172      * @implSpec relies on the notion of representation equivalence defined in the
173      * specification of the {@linkplain Double} class.
174      */
175     public static boolean isFloatToByteExact(float n)  {
176         return n == (float)(byte)n && !isNegativeZero(n);
177     }
178 
179     /**
180      * Exactness method from float to short
181      * @param n value
182      * @return true if and only if the passed value can be converted exactly to the target type
183      * @implSpec relies on the notion of representation equivalence defined in the
184      * specification of the {@linkplain Double} class.
185      */
186     public static boolean isFloatToShortExact(float n) {
187         return n == (float)(short)n && !isNegativeZero(n);
188     }
189 
190     /**
191      * Exactness method from float to char
192      * @param n value
193      * @return true if and only if the passed value can be converted exactly to the target type
194      * @implSpec relies on the notion of representation equivalence defined in the
195      * specification of the {@linkplain Double} class.
196      */
197     public static boolean isFloatToCharExact(float n)  {
198         return n == (float)(char)n && !isNegativeZero(n);
199     }
200 
201     /**
202      * Exactness method from float to int
203      * @param n value
204      * @return true if and only if the passed value can be converted exactly to the target type
205      * @implSpec relies on the notion of representation equivalence defined in the
206      * specification of the {@linkplain Double} class.
207      */
208     public static boolean isFloatToIntExact(float n) {
209         return n == (float)(int)n && n != 0x1p31f && !isNegativeZero(n);
210     }
211 
212     /**
213      * Exactness method from float to long
214      * @param n value
215      * @return true if and only if the passed value can be converted exactly to the target type
216      * @implSpec relies on the notion of representation equivalence defined in the
217      * specification of the {@linkplain Double} class.
218      */
219     public static boolean isFloatToLongExact(float n) {
220         return n == (float)(long)n && n != 0x1p63f && !isNegativeZero(n);
221     }
222 
223     /**
224      * Exactness method from double to byte
225      * @param n value
226      * @return true if and only if the passed value can be converted exactly to the target type
227      * @implSpec relies on the notion of representation equivalence defined in the
228      * specification of the {@linkplain Double} class.
229      */
230     public static boolean isDoubleToByteExact(double n) {
231         return n == (double)(byte)n && !isNegativeZero(n);
232     }
233 
234     /**
235      * Exactness method from double to short
236      * @param n value
237      * @return true if and only if the passed value can be converted exactly to the target type
238      * @implSpec relies on the notion of representation equivalence defined in the
239      * specification of the {@linkplain Double} class.
240      */
241     public static boolean isDoubleToShortExact(double n){
242         return n == (double)(short)n && !isNegativeZero(n);
243     }
244 
245     /**
246      * Exactness method from double to char
247      * @param n value
248      * @return true if and only if the passed value can be converted exactly to the target type
249      * @implSpec relies on the notion of representation equivalence defined in the
250      * specification of the {@linkplain Double} class.
251      */
252     public static boolean isDoubleToCharExact(double n) {
253         return n == (double)(char)n && !isNegativeZero(n);
254     }
255 
256     /**
257      * Exactness method from double to int
258      * @param n value
259      * @return true if and only if the passed value can be converted exactly to the target type
260      * @implSpec relies on the notion of representation equivalence defined in the
261      * specification of the {@linkplain Double} class.
262      */
263     public static boolean isDoubleToIntExact(double n)  {
264         return n == (double)(int)n && !isNegativeZero(n);
265     }
266 
267     /**
268      * Exactness method from double to long
269      * @param n value
270      * @return true if and only if the passed value can be converted exactly to the target type
271      * @implSpec relies on the notion of representation equivalence defined in the
272      * specification of the {@linkplain Double} class.
273      */
274     public static boolean isDoubleToLongExact(double n) {
275         return n == (double)(long)n && n != 0x1p63 && !isNegativeZero(n);
276     }
277 
278     /**
279      * Exactness method from double to float
280      * @param n value
281      * @return true if and only if the passed value can be converted exactly to the target type
282      * @implSpec relies on the notion of representation equivalence defined in the
283      * specification of the {@linkplain Double} class.
284      */
285     public static boolean isDoubleToFloatExact(double n) {
286         return n == (double)(float)n || n != n;
287     }
288 
289     private static boolean isNegativeZero(float n) {
290         return Float.floatToRawIntBits(n) == Integer.MIN_VALUE;
291     }
292 
293     private static boolean isNegativeZero(double n) {
294         return Double.doubleToRawLongBits(n) == Long.MIN_VALUE;
295     }
296 }