1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 /* 27 * This file is available under and governed by the GNU General Public 28 * License version 2 only, as published by the Free Software Foundation. 29 * However, the following notice accompanied the original version of this 30 * file: 31 * 32 * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos 33 * 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions are met: 38 * 39 * * Redistributions of source code must retain the above copyright notice, 40 * this list of conditions and the following disclaimer. 41 * 42 * * Redistributions in binary form must reproduce the above copyright notice, 43 * this list of conditions and the following disclaimer in the documentation 44 * and/or other materials provided with the distribution. 45 * 46 * * Neither the name of JSR-310 nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 54 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 55 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 56 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 57 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 58 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 59 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 60 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 61 */ 62 package java.time; 63 64 import static java.time.LocalTime.MICROS_PER_SECOND; 65 import static java.time.LocalTime.MILLIS_PER_SECOND; 66 import static java.time.LocalTime.NANOS_PER_SECOND; 67 import static java.time.LocalTime.SECONDS_PER_DAY; 68 import static java.time.LocalTime.SECONDS_PER_HOUR; 69 import static java.time.LocalTime.SECONDS_PER_MINUTE; 70 import static java.time.temporal.ChronoField.INSTANT_SECONDS; 71 import static java.time.temporal.ChronoField.MICRO_OF_SECOND; 72 import static java.time.temporal.ChronoField.MILLI_OF_SECOND; 73 import static java.time.temporal.ChronoField.NANO_OF_SECOND; 74 import static java.time.temporal.ChronoUnit.DAYS; 75 import static java.time.temporal.ChronoUnit.NANOS; 76 77 import java.io.DataInput; 78 import java.io.DataOutput; 79 import java.io.IOException; 80 import java.io.InvalidObjectException; 81 import java.io.ObjectInputStream; 82 import java.io.Serializable; 83 import java.time.format.DateTimeFormatter; 84 import java.time.format.DateTimeParseException; 85 import java.time.temporal.ChronoField; 86 import java.time.temporal.ChronoUnit; 87 import java.time.temporal.Temporal; 88 import java.time.temporal.TemporalAccessor; 89 import java.time.temporal.TemporalAdjuster; 90 import java.time.temporal.TemporalAmount; 91 import java.time.temporal.TemporalField; 92 import java.time.temporal.TemporalQueries; 93 import java.time.temporal.TemporalQuery; 94 import java.time.temporal.TemporalUnit; 95 import java.time.temporal.UnsupportedTemporalTypeException; 96 import java.time.temporal.ValueRange; 97 import java.util.Objects; 98 99 /** 100 * An instantaneous point on the time-line. 101 * <p> 102 * This class models a single instantaneous point on the time-line. 103 * This might be used to record event time-stamps in the application. 104 * <p> 105 * The range of an instant requires the storage of a number larger than a {@code long}. 106 * To achieve this, the class stores a {@code long} representing epoch-seconds and an 107 * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999. 108 * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z} 109 * where instants after the epoch have positive values, and earlier instants have negative values. 110 * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line 111 * than a smaller value. 112 * 113 * <h2>Time-scale</h2> 114 * <p> 115 * The length of the solar day is the standard way that humans measure time. 116 * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds, 117 * forming a 86400 second day. 118 * <p> 119 * Modern timekeeping is based on atomic clocks which precisely define an SI second 120 * relative to the transitions of a Caesium atom. The length of an SI second was defined 121 * to be very close to the 86400th fraction of a day. 122 * <p> 123 * Unfortunately, as the Earth rotates the length of the day varies. 124 * In addition, over time the average length of the day is getting longer as the Earth slows. 125 * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds. 126 * The actual length of any given day and the amount by which the Earth is slowing 127 * are not predictable and can only be determined by measurement. 128 * The UT1 time-scale captures the accurate length of day, but is only available some 129 * time after the day has completed. 130 * <p> 131 * The UTC time-scale is a standard approach to bundle up all the additional fractions 132 * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>. 133 * A leap-second may be added or removed depending on the Earth's rotational changes. 134 * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where 135 * necessary in order to keep the day aligned with the Sun. 136 * <p> 137 * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds. 138 * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and 139 * alterations to the length of the notional second. As of 2012, discussions are underway 140 * to change the definition of UTC again, with the potential to remove leap seconds or 141 * introduce other changes. 142 * <p> 143 * Given the complexity of accurate timekeeping described above, this Java API defines 144 * its own time-scale, the <i>Java Time-Scale</i>. 145 * <p> 146 * The Java Time-Scale divides each calendar day into exactly 86400 147 * subdivisions, known as seconds. These seconds may differ from the 148 * SI second. It closely matches the de facto international civil time 149 * scale, the definition of which changes from time to time. 150 * <p> 151 * The Java Time-Scale has slightly different definitions for different 152 * segments of the time-line, each based on the consensus international 153 * time scale that is used as the basis for civil time. Whenever the 154 * internationally-agreed time scale is modified or replaced, a new 155 * segment of the Java Time-Scale must be defined for it. Each segment 156 * must meet these requirements: 157 * <ul> 158 * <li>the Java Time-Scale shall closely match the underlying international 159 * civil time scale;</li> 160 * <li>the Java Time-Scale shall exactly match the international civil 161 * time scale at noon each day;</li> 162 * <li>the Java Time-Scale shall have a precisely-defined relationship to 163 * the international civil time scale.</li> 164 * </ul> 165 * There are currently, as of 2013, two segments in the Java time-scale. 166 * <p> 167 * For the segment from 1972-11-03 (exact boundary discussed below) until 168 * further notice, the consensus international time scale is UTC (with 169 * leap seconds). In this segment, the Java Time-Scale is identical to 170 * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>. 171 * This is identical to UTC on days that do not have a leap second. 172 * On days that do have a leap second, the leap second is spread equally 173 * over the last 1000 seconds of the day, maintaining the appearance of 174 * exactly 86400 seconds per day. 175 * <p> 176 * For the segment prior to 1972-11-03, extending back arbitrarily far, 177 * the consensus international time scale is defined to be UT1, applied 178 * proleptically, which is equivalent to the (mean) solar time on the 179 * prime meridian (Greenwich). In this segment, the Java Time-Scale is 180 * identical to the consensus international time scale. The exact 181 * boundary between the two segments is the instant where UT1 = UTC 182 * between 1972-11-03T00:00 and 1972-11-04T12:00. 183 * <p> 184 * Implementations of the Java time-scale using the JSR-310 API are not 185 * required to provide any clock that is sub-second accurate, or that 186 * progresses monotonically or smoothly. Implementations are therefore 187 * not required to actually perform the UTC-SLS slew or to otherwise be 188 * aware of leap seconds. JSR-310 does, however, require that 189 * implementations must document the approach they use when defining a 190 * clock representing the current instant. 191 * See {@link Clock} for details on the available clocks. 192 * <p> 193 * The Java time-scale is used for all date-time classes. 194 * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime}, 195 * {@code ZonedDateTime} and {@code Duration}. 196 * <p> 197 * This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 198 * class; programmers should treat instances that are 199 * {@linkplain #equals(Object) equal} as interchangeable and should not 200 * use instances for synchronization, or unpredictable behavior may 201 * occur. For example, in a future release, synchronization may fail. 202 * The {@code equals} method should be used for comparisons. 203 * 204 * @implSpec 205 * This class is immutable and thread-safe. 206 * 207 * @since 1.8 208 */ 209 @jdk.internal.ValueBased 210 public final class Instant 211 implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable { 212 213 /** 214 * Constant for the 1970-01-01T00:00:00Z epoch instant. 215 */ 216 public static final Instant EPOCH = new Instant(0, 0); 217 /** 218 * The minimum supported epoch second. 219 */ 220 private static final long MIN_SECOND = -31557014167219200L; 221 /** 222 * The maximum supported epoch second. 223 */ 224 private static final long MAX_SECOND = 31556889864403199L; 225 /** 226 * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'. 227 * This could be used by an application as a "far past" instant. 228 * <p> 229 * This is one year earlier than the minimum {@code LocalDateTime}. 230 * This provides sufficient values to handle the range of {@code ZoneOffset} 231 * which affect the instant in addition to the local date-time. 232 * The value is also chosen such that the value of the year fits in 233 * an {@code int}. 234 */ 235 public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0); 236 /** 237 * The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'. 238 * This could be used by an application as a "far future" instant. 239 * <p> 240 * This is one year later than the maximum {@code LocalDateTime}. 241 * This provides sufficient values to handle the range of {@code ZoneOffset} 242 * which affect the instant in addition to the local date-time. 243 * The value is also chosen such that the value of the year fits in 244 * an {@code int}. 245 */ 246 public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999); 247 248 /** 249 * Serialization version. 250 */ 251 @java.io.Serial 252 private static final long serialVersionUID = -665713676816604388L; 253 254 /** 255 * The number of seconds from the epoch of 1970-01-01T00:00:00Z. 256 */ 257 private final long seconds; 258 /** 259 * The number of nanoseconds, later along the time-line, from the seconds field. 260 * This is always positive, and never exceeds 999,999,999. 261 */ 262 private final int nanos; 263 264 //----------------------------------------------------------------------- 265 /** 266 * Obtains the current instant from the system clock. 267 * <p> 268 * This will query the {@link Clock#systemUTC() system UTC clock} to 269 * obtain the current instant. 270 * <p> 271 * Using this method will prevent the ability to use an alternate time-source for 272 * testing because the clock is effectively hard-coded. 273 * 274 * @return the current instant using the system clock, not null 275 */ 276 public static Instant now() { 277 return Clock.currentInstant(); 278 } 279 280 /** 281 * Obtains the current instant from the specified clock. 282 * <p> 283 * This will query the specified clock to obtain the current time. 284 * <p> 285 * Using this method allows the use of an alternate clock for testing. 286 * The alternate clock may be introduced using {@link Clock dependency injection}. 287 * 288 * @param clock the clock to use, not null 289 * @return the current instant, not null 290 */ 291 public static Instant now(Clock clock) { 292 Objects.requireNonNull(clock, "clock"); 293 return clock.instant(); 294 } 295 296 //----------------------------------------------------------------------- 297 /** 298 * Obtains an instance of {@code Instant} using seconds from the 299 * epoch of 1970-01-01T00:00:00Z. 300 * <p> 301 * The nanosecond field is set to zero. 302 * 303 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 304 * @return an instant, not null 305 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 306 */ 307 public static Instant ofEpochSecond(long epochSecond) { 308 return create(epochSecond, 0); 309 } 310 311 /** 312 * Obtains an instance of {@code Instant} using seconds from the 313 * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second. 314 * <p> 315 * This method allows an arbitrary number of nanoseconds to be passed in. 316 * The factory will alter the values of the second and nanosecond in order 317 * to ensure that the stored nanosecond is in the range 0 to 999,999,999. 318 * For example, the following will result in exactly the same instant: 319 * <pre> 320 * Instant.ofEpochSecond(3, 1); 321 * Instant.ofEpochSecond(4, -999_999_999); 322 * Instant.ofEpochSecond(2, 1000_000_001); 323 * </pre> 324 * 325 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 326 * @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative 327 * @return an instant, not null 328 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 329 * @throws ArithmeticException if numeric overflow occurs 330 */ 331 public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) { 332 long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND)); 333 int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND); 334 return create(secs, nos); 335 } 336 337 /** 338 * Obtains an instance of {@code Instant} using milliseconds from the 339 * epoch of 1970-01-01T00:00:00Z. 340 * <p> 341 * The seconds and nanoseconds are extracted from the specified milliseconds. 342 * 343 * @param epochMilli the number of milliseconds from 1970-01-01T00:00:00Z 344 * @return an instant, not null 345 */ 346 public static Instant ofEpochMilli(long epochMilli) { 347 long secs = Math.floorDiv(epochMilli, 1000); 348 int mos = Math.floorMod(epochMilli, 1000); 349 return create(secs, mos * 1000_000); 350 } 351 352 //----------------------------------------------------------------------- 353 /** 354 * Obtains an instance of {@code Instant} from a temporal object. 355 * <p> 356 * This obtains an instant based on the specified temporal. 357 * A {@code TemporalAccessor} represents an arbitrary set of date and time information, 358 * which this factory converts to an instance of {@code Instant}. 359 * <p> 360 * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS} 361 * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields. 362 * <p> 363 * This method matches the signature of the functional interface {@link TemporalQuery} 364 * allowing it to be used as a query via method reference, {@code Instant::from}. 365 * 366 * @param temporal the temporal object to convert, not null 367 * @return the instant, not null 368 * @throws DateTimeException if unable to convert to an {@code Instant} 369 */ 370 public static Instant from(TemporalAccessor temporal) { 371 if (temporal instanceof Instant) { 372 return (Instant) temporal; 373 } 374 Objects.requireNonNull(temporal, "temporal"); 375 try { 376 long instantSecs = temporal.getLong(INSTANT_SECONDS); 377 int nanoOfSecond = temporal.get(NANO_OF_SECOND); 378 return Instant.ofEpochSecond(instantSecs, nanoOfSecond); 379 } catch (DateTimeException ex) { 380 throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " + 381 temporal + " of type " + temporal.getClass().getName(), ex); 382 } 383 } 384 385 //----------------------------------------------------------------------- 386 /** 387 * Obtains an instance of {@code Instant} from a text string such as 388 * {@code 2007-12-03T10:15:30.00Z}. 389 * <p> 390 * The string must represent a valid instant in UTC and is parsed using 391 * {@link DateTimeFormatter#ISO_INSTANT}. 392 * 393 * @param text the text to parse, not null 394 * @return the parsed instant, not null 395 * @throws DateTimeParseException if the text cannot be parsed 396 */ 397 public static Instant parse(final CharSequence text) { 398 return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from); 399 } 400 401 //----------------------------------------------------------------------- 402 /** 403 * Obtains an instance of {@code Instant} using seconds and nanoseconds. 404 * 405 * @param seconds the length of the duration in seconds 406 * @param nanoOfSecond the nano-of-second, from 0 to 999,999,999 407 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 408 */ 409 private static Instant create(long seconds, int nanoOfSecond) { 410 if ((seconds | nanoOfSecond) == 0) { 411 return EPOCH; 412 } 413 if (seconds < MIN_SECOND || seconds > MAX_SECOND) { 414 throw new DateTimeException("Instant exceeds minimum or maximum instant"); 415 } 416 return new Instant(seconds, nanoOfSecond); 417 } 418 419 /** 420 * Constructs an instance of {@code Instant} using seconds from the epoch of 421 * 1970-01-01T00:00:00Z and nanosecond fraction of second. 422 * 423 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 424 * @param nanos the nanoseconds within the second, must be positive 425 */ 426 private Instant(long epochSecond, int nanos) { 427 this.seconds = epochSecond; 428 this.nanos = nanos; 429 } 430 431 //----------------------------------------------------------------------- 432 /** 433 * Checks if the specified field is supported. 434 * <p> 435 * This checks if this instant can be queried for the specified field. 436 * If false, then calling the {@link #range(TemporalField) range}, 437 * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)} 438 * methods will throw an exception. 439 * <p> 440 * If the field is a {@link ChronoField} then the query is implemented here. 441 * The supported fields are: 442 * <ul> 443 * <li>{@code NANO_OF_SECOND} 444 * <li>{@code MICRO_OF_SECOND} 445 * <li>{@code MILLI_OF_SECOND} 446 * <li>{@code INSTANT_SECONDS} 447 * </ul> 448 * All other {@code ChronoField} instances will return false. 449 * <p> 450 * If the field is not a {@code ChronoField}, then the result of this method 451 * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)} 452 * passing {@code this} as the argument. 453 * Whether the field is supported is determined by the field. 454 * 455 * @param field the field to check, null returns false 456 * @return true if the field is supported on this instant, false if not 457 */ 458 @Override 459 public boolean isSupported(TemporalField field) { 460 if (field instanceof ChronoField) { 461 return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND; 462 } 463 return field != null && field.isSupportedBy(this); 464 } 465 466 /** 467 * Checks if the specified unit is supported. 468 * <p> 469 * This checks if the specified unit can be added to, or subtracted from, this date-time. 470 * If false, then calling the {@link #plus(long, TemporalUnit)} and 471 * {@link #minus(long, TemporalUnit) minus} methods will throw an exception. 472 * <p> 473 * If the unit is a {@link ChronoUnit} then the query is implemented here. 474 * The supported units are: 475 * <ul> 476 * <li>{@code NANOS} 477 * <li>{@code MICROS} 478 * <li>{@code MILLIS} 479 * <li>{@code SECONDS} 480 * <li>{@code MINUTES} 481 * <li>{@code HOURS} 482 * <li>{@code HALF_DAYS} 483 * <li>{@code DAYS} 484 * </ul> 485 * All other {@code ChronoUnit} instances will return false. 486 * <p> 487 * If the unit is not a {@code ChronoUnit}, then the result of this method 488 * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)} 489 * passing {@code this} as the argument. 490 * Whether the unit is supported is determined by the unit. 491 * 492 * @param unit the unit to check, null returns false 493 * @return true if the unit can be added/subtracted, false if not 494 */ 495 @Override 496 public boolean isSupported(TemporalUnit unit) { 497 if (unit instanceof ChronoUnit) { 498 return unit.isTimeBased() || unit == DAYS; 499 } 500 return unit != null && unit.isSupportedBy(this); 501 } 502 503 //----------------------------------------------------------------------- 504 /** 505 * Gets the range of valid values for the specified field. 506 * <p> 507 * The range object expresses the minimum and maximum valid values for a field. 508 * This instant is used to enhance the accuracy of the returned range. 509 * If it is not possible to return the range, because the field is not supported 510 * or for some other reason, an exception is thrown. 511 * <p> 512 * If the field is a {@link ChronoField} then the query is implemented here. 513 * The {@link #isSupported(TemporalField) supported fields} will return 514 * appropriate range instances. 515 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 516 * <p> 517 * If the field is not a {@code ChronoField}, then the result of this method 518 * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)} 519 * passing {@code this} as the argument. 520 * Whether the range can be obtained is determined by the field. 521 * 522 * @param field the field to query the range for, not null 523 * @return the range of valid values for the field, not null 524 * @throws DateTimeException if the range for the field cannot be obtained 525 * @throws UnsupportedTemporalTypeException if the field is not supported 526 */ 527 @Override // override for Javadoc 528 public ValueRange range(TemporalField field) { 529 return Temporal.super.range(field); 530 } 531 532 /** 533 * Gets the value of the specified field from this instant as an {@code int}. 534 * <p> 535 * This queries this instant for the value of the specified field. 536 * The returned value will always be within the valid range of values for the field. 537 * If it is not possible to return the value, because the field is not supported 538 * or for some other reason, an exception is thrown. 539 * <p> 540 * If the field is a {@link ChronoField} then the query is implemented here. 541 * The {@link #isSupported(TemporalField) supported fields} will return valid 542 * values based on this date-time, except {@code INSTANT_SECONDS} which is too 543 * large to fit in an {@code int} and throws a {@code DateTimeException}. 544 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 545 * <p> 546 * If the field is not a {@code ChronoField}, then the result of this method 547 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} 548 * passing {@code this} as the argument. Whether the value can be obtained, 549 * and what the value represents, is determined by the field. 550 * 551 * @param field the field to get, not null 552 * @return the value for the field 553 * @throws DateTimeException if a value for the field cannot be obtained or 554 * the value is outside the range of valid values for the field 555 * @throws UnsupportedTemporalTypeException if the field is not supported or 556 * the range of values exceeds an {@code int} 557 * @throws ArithmeticException if numeric overflow occurs 558 */ 559 @Override // override for Javadoc and performance 560 public int get(TemporalField field) { 561 if (field instanceof ChronoField chronoField) { 562 return switch (chronoField) { 563 case NANO_OF_SECOND -> nanos; 564 case MICRO_OF_SECOND -> nanos / 1000; 565 case MILLI_OF_SECOND -> nanos / 1000_000; 566 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 567 }; 568 } 569 return range(field).checkValidIntValue(field.getFrom(this), field); 570 } 571 572 /** 573 * Gets the value of the specified field from this instant as a {@code long}. 574 * <p> 575 * This queries this instant for the value of the specified field. 576 * If it is not possible to return the value, because the field is not supported 577 * or for some other reason, an exception is thrown. 578 * <p> 579 * If the field is a {@link ChronoField} then the query is implemented here. 580 * The {@link #isSupported(TemporalField) supported fields} will return valid 581 * values based on this date-time. 582 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 583 * <p> 584 * If the field is not a {@code ChronoField}, then the result of this method 585 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} 586 * passing {@code this} as the argument. Whether the value can be obtained, 587 * and what the value represents, is determined by the field. 588 * 589 * @param field the field to get, not null 590 * @return the value for the field 591 * @throws DateTimeException if a value for the field cannot be obtained 592 * @throws UnsupportedTemporalTypeException if the field is not supported 593 * @throws ArithmeticException if numeric overflow occurs 594 */ 595 @Override 596 public long getLong(TemporalField field) { 597 if (field instanceof ChronoField chronoField) { 598 return switch (chronoField) { 599 case NANO_OF_SECOND -> nanos; 600 case MICRO_OF_SECOND -> nanos / 1000; 601 case MILLI_OF_SECOND -> nanos / 1000_000; 602 case INSTANT_SECONDS -> seconds; 603 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 604 }; 605 } 606 return field.getFrom(this); 607 } 608 609 //----------------------------------------------------------------------- 610 /** 611 * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z. 612 * <p> 613 * The epoch second count is a simple incrementing count of seconds where 614 * second 0 is 1970-01-01T00:00:00Z. 615 * The nanosecond part is returned by {@link #getNano}. 616 * 617 * @return the seconds from the epoch of 1970-01-01T00:00:00Z 618 */ 619 public long getEpochSecond() { 620 return seconds; 621 } 622 623 /** 624 * Gets the number of nanoseconds, later along the time-line, from the start 625 * of the second. 626 * <p> 627 * The nanosecond-of-second value measures the total number of nanoseconds from 628 * the second returned by {@link #getEpochSecond}. 629 * 630 * @return the nanoseconds within the second, always positive, never exceeds 999,999,999 631 */ 632 public int getNano() { 633 return nanos; 634 } 635 636 //------------------------------------------------------------------------- 637 /** 638 * Returns an adjusted copy of this instant. 639 * <p> 640 * This returns an {@code Instant}, based on this one, with the instant adjusted. 641 * The adjustment takes place using the specified adjuster strategy object. 642 * Read the documentation of the adjuster to understand what adjustment will be made. 643 * <p> 644 * The result of this method is obtained by invoking the 645 * {@link TemporalAdjuster#adjustInto(Temporal)} method on the 646 * specified adjuster passing {@code this} as the argument. 647 * <p> 648 * This instance is immutable and unaffected by this method call. 649 * 650 * @param adjuster the adjuster to use, not null 651 * @return an {@code Instant} based on {@code this} with the adjustment made, not null 652 * @throws DateTimeException if the adjustment cannot be made 653 * @throws ArithmeticException if numeric overflow occurs 654 */ 655 @Override 656 public Instant with(TemporalAdjuster adjuster) { 657 return (Instant) adjuster.adjustInto(this); 658 } 659 660 /** 661 * Returns a copy of this instant with the specified field set to a new value. 662 * <p> 663 * This returns an {@code Instant}, based on this one, with the value 664 * for the specified field changed. 665 * If it is not possible to set the value, because the field is not supported or for 666 * some other reason, an exception is thrown. 667 * <p> 668 * If the field is a {@link ChronoField} then the adjustment is implemented here. 669 * The supported fields behave as follows: 670 * <ul> 671 * <li>{@code NANO_OF_SECOND} - 672 * Returns an {@code Instant} with the specified nano-of-second. 673 * The epoch-second will be unchanged. 674 * <li>{@code MICRO_OF_SECOND} - 675 * Returns an {@code Instant} with the nano-of-second replaced by the specified 676 * micro-of-second multiplied by 1,000. The epoch-second will be unchanged. 677 * <li>{@code MILLI_OF_SECOND} - 678 * Returns an {@code Instant} with the nano-of-second replaced by the specified 679 * milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged. 680 * <li>{@code INSTANT_SECONDS} - 681 * Returns an {@code Instant} with the specified epoch-second. 682 * The nano-of-second will be unchanged. 683 * </ul> 684 * <p> 685 * In all cases, if the new value is outside the valid range of values for the field 686 * then a {@code DateTimeException} will be thrown. 687 * <p> 688 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 689 * <p> 690 * If the field is not a {@code ChronoField}, then the result of this method 691 * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)} 692 * passing {@code this} as the argument. In this case, the field determines 693 * whether and how to adjust the instant. 694 * <p> 695 * This instance is immutable and unaffected by this method call. 696 * 697 * @param field the field to set in the result, not null 698 * @param newValue the new value of the field in the result 699 * @return an {@code Instant} based on {@code this} with the specified field set, not null 700 * @throws DateTimeException if the field cannot be set 701 * @throws UnsupportedTemporalTypeException if the field is not supported 702 * @throws ArithmeticException if numeric overflow occurs 703 */ 704 @Override 705 public Instant with(TemporalField field, long newValue) { 706 if (field instanceof ChronoField chronoField) { 707 chronoField.checkValidValue(newValue); 708 return switch (chronoField) { 709 case MILLI_OF_SECOND -> { 710 int nval = (int) newValue * 1000_000; 711 yield nval != nanos ? create(seconds, nval) : this; 712 } 713 case MICRO_OF_SECOND -> { 714 int nval = (int) newValue * 1000; 715 yield nval != nanos ? create(seconds, nval) : this; 716 } 717 case NANO_OF_SECOND -> newValue != nanos ? create(seconds, (int) newValue) : this; 718 case INSTANT_SECONDS -> newValue != seconds ? create(newValue, nanos) : this; 719 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 720 }; 721 } 722 return field.adjustInto(this, newValue); 723 } 724 725 //----------------------------------------------------------------------- 726 /** 727 * Returns a copy of this {@code Instant} truncated to the specified unit. 728 * <p> 729 * Truncating the instant returns a copy of the original with fields 730 * smaller than the specified unit set to zero. 731 * The fields are calculated on the basis of using a UTC offset as seen 732 * in {@code toString}. 733 * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will 734 * round down to the nearest minute, setting the seconds and nanoseconds to zero. 735 * <p> 736 * The unit must have a {@linkplain TemporalUnit#getDuration() duration} 737 * that divides into the length of a standard day without remainder. 738 * This includes all supplied time units on {@link ChronoUnit} and 739 * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception. 740 * <p> 741 * This instance is immutable and unaffected by this method call. 742 * 743 * @param unit the unit to truncate to, not null 744 * @return an {@code Instant} based on this instant with the time truncated, not null 745 * @throws DateTimeException if the unit is invalid for truncation 746 * @throws UnsupportedTemporalTypeException if the unit is not supported 747 */ 748 public Instant truncatedTo(TemporalUnit unit) { 749 if (unit == ChronoUnit.NANOS) { 750 return this; 751 } 752 Duration unitDur = unit.getDuration(); 753 if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) { 754 throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation"); 755 } 756 long dur = unitDur.toNanos(); 757 if ((LocalTime.NANOS_PER_DAY % dur) != 0) { 758 throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder"); 759 } 760 long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos; 761 long result = Math.floorDiv(nod, dur) * dur; 762 return plusNanos(result - nod); 763 } 764 765 //----------------------------------------------------------------------- 766 /** 767 * Returns a copy of this instant with the specified amount added. 768 * <p> 769 * This returns an {@code Instant}, based on this one, with the specified amount added. 770 * The amount is typically {@link Duration} but may be any other type implementing 771 * the {@link TemporalAmount} interface. 772 * <p> 773 * The calculation is delegated to the amount object by calling 774 * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free 775 * to implement the addition in any way it wishes, however it typically 776 * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation 777 * of the amount implementation to determine if it can be successfully added. 778 * <p> 779 * This instance is immutable and unaffected by this method call. 780 * 781 * @param amountToAdd the amount to add, not null 782 * @return an {@code Instant} based on this instant with the addition made, not null 783 * @throws DateTimeException if the addition cannot be made 784 * @throws ArithmeticException if numeric overflow occurs 785 */ 786 @Override 787 public Instant plus(TemporalAmount amountToAdd) { 788 return (Instant) amountToAdd.addTo(this); 789 } 790 791 /** 792 * Returns a copy of this instant with the specified amount added. 793 * <p> 794 * This returns an {@code Instant}, based on this one, with the amount 795 * in terms of the unit added. If it is not possible to add the amount, because the 796 * unit is not supported or for some other reason, an exception is thrown. 797 * <p> 798 * If the field is a {@link ChronoUnit} then the addition is implemented here. 799 * The supported fields behave as follows: 800 * <ul> 801 * <li>{@code NANOS} - 802 * Returns an {@code Instant} with the specified number of nanoseconds added. 803 * This is equivalent to {@link #plusNanos(long)}. 804 * <li>{@code MICROS} - 805 * Returns an {@code Instant} with the specified number of microseconds added. 806 * This is equivalent to {@link #plusNanos(long)} with the amount 807 * multiplied by 1,000. 808 * <li>{@code MILLIS} - 809 * Returns an {@code Instant} with the specified number of milliseconds added. 810 * This is equivalent to {@link #plusNanos(long)} with the amount 811 * multiplied by 1,000,000. 812 * <li>{@code SECONDS} - 813 * Returns an {@code Instant} with the specified number of seconds added. 814 * This is equivalent to {@link #plusSeconds(long)}. 815 * <li>{@code MINUTES} - 816 * Returns an {@code Instant} with the specified number of minutes added. 817 * This is equivalent to {@link #plusSeconds(long)} with the amount 818 * multiplied by 60. 819 * <li>{@code HOURS} - 820 * Returns an {@code Instant} with the specified number of hours added. 821 * This is equivalent to {@link #plusSeconds(long)} with the amount 822 * multiplied by 3,600. 823 * <li>{@code HALF_DAYS} - 824 * Returns an {@code Instant} with the specified number of half-days added. 825 * This is equivalent to {@link #plusSeconds(long)} with the amount 826 * multiplied by 43,200 (12 hours). 827 * <li>{@code DAYS} - 828 * Returns an {@code Instant} with the specified number of days added. 829 * This is equivalent to {@link #plusSeconds(long)} with the amount 830 * multiplied by 86,400 (24 hours). 831 * </ul> 832 * <p> 833 * All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}. 834 * <p> 835 * If the field is not a {@code ChronoUnit}, then the result of this method 836 * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)} 837 * passing {@code this} as the argument. In this case, the unit determines 838 * whether and how to perform the addition. 839 * <p> 840 * This instance is immutable and unaffected by this method call. 841 * 842 * @param amountToAdd the amount of the unit to add to the result, may be negative 843 * @param unit the unit of the amount to add, not null 844 * @return an {@code Instant} based on this instant with the specified amount added, not null 845 * @throws DateTimeException if the addition cannot be made 846 * @throws UnsupportedTemporalTypeException if the unit is not supported 847 * @throws ArithmeticException if numeric overflow occurs 848 */ 849 @Override 850 public Instant plus(long amountToAdd, TemporalUnit unit) { 851 if (unit instanceof ChronoUnit chronoUnit) { 852 return switch (chronoUnit) { 853 case NANOS -> plusNanos(amountToAdd); 854 case MICROS -> plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000); 855 case MILLIS -> plusMillis(amountToAdd); 856 case SECONDS -> plusSeconds(amountToAdd); 857 case MINUTES -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE)); 858 case HOURS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR)); 859 case HALF_DAYS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2)); 860 case DAYS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY)); 861 default -> throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); 862 }; 863 } 864 return unit.addTo(this, amountToAdd); 865 } 866 867 //----------------------------------------------------------------------- 868 /** 869 * Returns a copy of this instant with the specified duration in seconds added. 870 * <p> 871 * This instance is immutable and unaffected by this method call. 872 * 873 * @param secondsToAdd the seconds to add, positive or negative 874 * @return an {@code Instant} based on this instant with the specified seconds added, not null 875 * @throws DateTimeException if the result exceeds the maximum or minimum instant 876 * @throws ArithmeticException if numeric overflow occurs 877 */ 878 public Instant plusSeconds(long secondsToAdd) { 879 if (secondsToAdd == 0) { 880 return this; 881 } 882 long epochSec = Math.addExact(seconds, secondsToAdd); 883 return create(epochSec, nanos); 884 } 885 886 /** 887 * Returns a copy of this instant with the specified duration in milliseconds added. 888 * <p> 889 * This instance is immutable and unaffected by this method call. 890 * 891 * @param millisToAdd the milliseconds to add, positive or negative 892 * @return an {@code Instant} based on this instant with the specified milliseconds added, not null 893 * @throws DateTimeException if the result exceeds the maximum or minimum instant 894 * @throws ArithmeticException if numeric overflow occurs 895 */ 896 public Instant plusMillis(long millisToAdd) { 897 return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000); 898 } 899 900 /** 901 * Returns a copy of this instant with the specified duration in nanoseconds added. 902 * <p> 903 * This instance is immutable and unaffected by this method call. 904 * 905 * @param nanosToAdd the nanoseconds to add, positive or negative 906 * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null 907 * @throws DateTimeException if the result exceeds the maximum or minimum instant 908 * @throws ArithmeticException if numeric overflow occurs 909 */ 910 public Instant plusNanos(long nanosToAdd) { 911 return plus(0, nanosToAdd); 912 } 913 914 /** 915 * Returns a copy of this instant with the specified duration added. 916 * <p> 917 * This instance is immutable and unaffected by this method call. 918 * 919 * @param secondsToAdd the seconds to add, positive or negative 920 * @param nanosToAdd the nanos to add, positive or negative 921 * @return an {@code Instant} based on this instant with the specified seconds added, not null 922 * @throws DateTimeException if the result exceeds the maximum or minimum instant 923 * @throws ArithmeticException if numeric overflow occurs 924 */ 925 private Instant plus(long secondsToAdd, long nanosToAdd) { 926 if ((secondsToAdd | nanosToAdd) == 0) { 927 return this; 928 } 929 long epochSec = Math.addExact(seconds, secondsToAdd); 930 epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND); 931 nanosToAdd = nanosToAdd % NANOS_PER_SECOND; 932 long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND 933 return ofEpochSecond(epochSec, nanoAdjustment); 934 } 935 936 //----------------------------------------------------------------------- 937 /** 938 * Returns a copy of this instant with the specified amount subtracted. 939 * <p> 940 * This returns an {@code Instant}, based on this one, with the specified amount subtracted. 941 * The amount is typically {@link Duration} but may be any other type implementing 942 * the {@link TemporalAmount} interface. 943 * <p> 944 * The calculation is delegated to the amount object by calling 945 * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free 946 * to implement the subtraction in any way it wishes, however it typically 947 * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation 948 * of the amount implementation to determine if it can be successfully subtracted. 949 * <p> 950 * This instance is immutable and unaffected by this method call. 951 * 952 * @param amountToSubtract the amount to subtract, not null 953 * @return an {@code Instant} based on this instant with the subtraction made, not null 954 * @throws DateTimeException if the subtraction cannot be made 955 * @throws ArithmeticException if numeric overflow occurs 956 */ 957 @Override 958 public Instant minus(TemporalAmount amountToSubtract) { 959 return (Instant) amountToSubtract.subtractFrom(this); 960 } 961 962 /** 963 * Returns a copy of this instant with the specified amount subtracted. 964 * <p> 965 * This returns an {@code Instant}, based on this one, with the amount 966 * in terms of the unit subtracted. If it is not possible to subtract the amount, 967 * because the unit is not supported or for some other reason, an exception is thrown. 968 * <p> 969 * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated. 970 * See that method for a full description of how addition, and thus subtraction, works. 971 * <p> 972 * This instance is immutable and unaffected by this method call. 973 * 974 * @param amountToSubtract the amount of the unit to subtract from the result, may be negative 975 * @param unit the unit of the amount to subtract, not null 976 * @return an {@code Instant} based on this instant with the specified amount subtracted, not null 977 * @throws DateTimeException if the subtraction cannot be made 978 * @throws UnsupportedTemporalTypeException if the unit is not supported 979 * @throws ArithmeticException if numeric overflow occurs 980 */ 981 @Override 982 public Instant minus(long amountToSubtract, TemporalUnit unit) { 983 return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit)); 984 } 985 986 //----------------------------------------------------------------------- 987 /** 988 * Returns a copy of this instant with the specified duration in seconds subtracted. 989 * <p> 990 * This instance is immutable and unaffected by this method call. 991 * 992 * @param secondsToSubtract the seconds to subtract, positive or negative 993 * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null 994 * @throws DateTimeException if the result exceeds the maximum or minimum instant 995 * @throws ArithmeticException if numeric overflow occurs 996 */ 997 public Instant minusSeconds(long secondsToSubtract) { 998 if (secondsToSubtract == Long.MIN_VALUE) { 999 return plusSeconds(Long.MAX_VALUE).plusSeconds(1); 1000 } 1001 return plusSeconds(-secondsToSubtract); 1002 } 1003 1004 /** 1005 * Returns a copy of this instant with the specified duration in milliseconds subtracted. 1006 * <p> 1007 * This instance is immutable and unaffected by this method call. 1008 * 1009 * @param millisToSubtract the milliseconds to subtract, positive or negative 1010 * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null 1011 * @throws DateTimeException if the result exceeds the maximum or minimum instant 1012 * @throws ArithmeticException if numeric overflow occurs 1013 */ 1014 public Instant minusMillis(long millisToSubtract) { 1015 if (millisToSubtract == Long.MIN_VALUE) { 1016 return plusMillis(Long.MAX_VALUE).plusMillis(1); 1017 } 1018 return plusMillis(-millisToSubtract); 1019 } 1020 1021 /** 1022 * Returns a copy of this instant with the specified duration in nanoseconds subtracted. 1023 * <p> 1024 * This instance is immutable and unaffected by this method call. 1025 * 1026 * @param nanosToSubtract the nanoseconds to subtract, positive or negative 1027 * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null 1028 * @throws DateTimeException if the result exceeds the maximum or minimum instant 1029 * @throws ArithmeticException if numeric overflow occurs 1030 */ 1031 public Instant minusNanos(long nanosToSubtract) { 1032 if (nanosToSubtract == Long.MIN_VALUE) { 1033 return plusNanos(Long.MAX_VALUE).plusNanos(1); 1034 } 1035 return plusNanos(-nanosToSubtract); 1036 } 1037 1038 //------------------------------------------------------------------------- 1039 /** 1040 * Queries this instant using the specified query. 1041 * <p> 1042 * This queries this instant using the specified query strategy object. 1043 * The {@code TemporalQuery} object defines the logic to be used to 1044 * obtain the result. Read the documentation of the query to understand 1045 * what the result of this method will be. 1046 * <p> 1047 * The result of this method is obtained by invoking the 1048 * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the 1049 * specified query passing {@code this} as the argument. 1050 * 1051 * @param <R> the type of the result 1052 * @param query the query to invoke, not null 1053 * @return the query result, null may be returned (defined by the query) 1054 * @throws DateTimeException if unable to query (defined by the query) 1055 * @throws ArithmeticException if numeric overflow occurs (defined by the query) 1056 */ 1057 @SuppressWarnings("unchecked") 1058 @Override 1059 public <R> R query(TemporalQuery<R> query) { 1060 if (query == TemporalQueries.precision()) { 1061 return (R) NANOS; 1062 } 1063 // inline TemporalAccessor.super.query(query) as an optimization 1064 if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() || 1065 query == TemporalQueries.zone() || query == TemporalQueries.offset() || 1066 query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) { 1067 return null; 1068 } 1069 return query.queryFrom(this); 1070 } 1071 1072 /** 1073 * Adjusts the specified temporal object to have this instant. 1074 * <p> 1075 * This returns a temporal object of the same observable type as the input 1076 * with the instant changed to be the same as this. 1077 * <p> 1078 * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)} 1079 * twice, passing {@link ChronoField#INSTANT_SECONDS} and 1080 * {@link ChronoField#NANO_OF_SECOND} as the fields. 1081 * <p> 1082 * In most cases, it is clearer to reverse the calling pattern by using 1083 * {@link Temporal#with(TemporalAdjuster)}: 1084 * <pre> 1085 * // these two lines are equivalent, but the second approach is recommended 1086 * temporal = thisInstant.adjustInto(temporal); 1087 * temporal = temporal.with(thisInstant); 1088 * </pre> 1089 * <p> 1090 * This instance is immutable and unaffected by this method call. 1091 * 1092 * @param temporal the target object to be adjusted, not null 1093 * @return the adjusted object, not null 1094 * @throws DateTimeException if unable to make the adjustment 1095 * @throws ArithmeticException if numeric overflow occurs 1096 */ 1097 @Override 1098 public Temporal adjustInto(Temporal temporal) { 1099 return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos); 1100 } 1101 1102 /** 1103 * Calculates the amount of time until another instant in terms of the specified unit. 1104 * <p> 1105 * This calculates the amount of time between two {@code Instant} 1106 * objects in terms of a single {@code TemporalUnit}. 1107 * The start and end points are {@code this} and the specified instant. 1108 * The result will be negative if the end is before the start. 1109 * The calculation returns a whole number, representing the number of 1110 * complete units between the two instants. 1111 * The {@code Temporal} passed to this method is converted to a 1112 * {@code Instant} using {@link #from(TemporalAccessor)}. 1113 * For example, the amount in seconds between two dates can be calculated 1114 * using {@code startInstant.until(endInstant, SECONDS)}. 1115 * <p> 1116 * There are two equivalent ways of using this method. 1117 * The first is to invoke this method. 1118 * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}: 1119 * <pre> 1120 * // these two lines are equivalent 1121 * amount = start.until(end, SECONDS); 1122 * amount = SECONDS.between(start, end); 1123 * </pre> 1124 * The choice should be made based on which makes the code more readable. 1125 * <p> 1126 * The calculation is implemented in this method for {@link ChronoUnit}. 1127 * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS}, 1128 * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS} 1129 * are supported. Other {@code ChronoUnit} values will throw an exception. 1130 * <p> 1131 * If the unit is not a {@code ChronoUnit}, then the result of this method 1132 * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)} 1133 * passing {@code this} as the first argument and the converted input temporal 1134 * as the second argument. 1135 * <p> 1136 * This instance is immutable and unaffected by this method call. 1137 * 1138 * @param endExclusive the end date, exclusive, which is converted to an {@code Instant}, not null 1139 * @param unit the unit to measure the amount in, not null 1140 * @return the amount of time between this instant and the end instant 1141 * @throws DateTimeException if the amount cannot be calculated, or the end 1142 * temporal cannot be converted to an {@code Instant} 1143 * @throws UnsupportedTemporalTypeException if the unit is not supported 1144 * @throws ArithmeticException if numeric overflow occurs 1145 */ 1146 @Override 1147 public long until(Temporal endExclusive, TemporalUnit unit) { 1148 Instant end = Instant.from(endExclusive); 1149 if (unit instanceof ChronoUnit chronoUnit) { 1150 return switch (chronoUnit) { 1151 case NANOS -> nanosUntil(end); 1152 case MICROS -> microsUntil(end); 1153 case MILLIS -> millisUntil(end); 1154 case SECONDS -> secondsUntil(end); 1155 case MINUTES -> secondsUntil(end) / SECONDS_PER_MINUTE; 1156 case HOURS -> secondsUntil(end) / SECONDS_PER_HOUR; 1157 case HALF_DAYS -> secondsUntil(end) / (12 * SECONDS_PER_HOUR); 1158 case DAYS -> secondsUntil(end) / (SECONDS_PER_DAY); 1159 default -> throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); 1160 }; 1161 } 1162 return unit.between(this, end); 1163 } 1164 1165 /** 1166 * Calculates the {@code Duration} until another {@code Instant}. 1167 * <p> 1168 * The start and end points are {@code this} and the specified instant. 1169 * The result will be negative if the end is before the start. Calling 1170 * this method is equivalent to 1171 * {@link Duration#between(Temporal, Temporal) Duration.between(this, 1172 * endExclusive)}. 1173 * <p> 1174 * This instance is immutable and unaffected by this method call. 1175 * 1176 * @param endExclusive the end {@code Instant}, exclusive, not null 1177 * @return the {@code Duration} from this {@code Instant} until the 1178 * specified {@code endExclusive} {@code Instant} 1179 * @see Duration#between(Temporal, Temporal) 1180 * @since 23 1181 */ 1182 public Duration until(Instant endExclusive) { 1183 Objects.requireNonNull(endExclusive, "endExclusive"); 1184 long secsDiff = Math.subtractExact(endExclusive.seconds, seconds); 1185 int nanosDiff = endExclusive.nanos - nanos; 1186 return Duration.ofSeconds(secsDiff, nanosDiff); 1187 } 1188 1189 private long nanosUntil(Instant end) { 1190 long secsDiff = Math.subtractExact(end.seconds, seconds); 1191 long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND); 1192 return Math.addExact(totalNanos, end.nanos - nanos); 1193 } 1194 1195 private long microsUntil(Instant end) { 1196 long microsDiff = Math.multiplyExact(end.seconds - seconds, MICROS_PER_SECOND); 1197 int nanosDiff = end.nanos - nanos; 1198 if (microsDiff > 0 && nanosDiff < 0) { 1199 return (microsDiff - 1_000_000) + (nanosDiff + 1_000_000_000) / 1_000; 1200 } else if (microsDiff < 0 && nanosDiff > 0) { 1201 return (microsDiff + 1_000_000) + (nanosDiff - 1_000_000_000) / 1_000; 1202 } 1203 return Math.addExact(microsDiff, nanosDiff / 1_000); 1204 } 1205 1206 private long millisUntil(Instant end) { 1207 long millisDiff = Math.multiplyExact(end.seconds - seconds, MILLIS_PER_SECOND); 1208 int nanosDiff = end.nanos - nanos; 1209 if (millisDiff > 0 && nanosDiff < 0) { 1210 return (millisDiff - 1_000) + (nanosDiff + 1_000_000_000) / 1_000_000; 1211 } else if (millisDiff < 0 && nanosDiff > 0) { 1212 return (millisDiff + 1_000) + (nanosDiff - 1_000_000_000) / 1_000_000; 1213 } 1214 return Math.addExact(millisDiff, nanosDiff / 1_000_000); 1215 } 1216 1217 private long secondsUntil(Instant end) { 1218 long secsDiff = Math.subtractExact(end.seconds, seconds); 1219 int nanosDiff = end.nanos - nanos; 1220 if (secsDiff > 0 && nanosDiff < 0) { 1221 secsDiff--; 1222 } else if (secsDiff < 0 && nanosDiff > 0) { 1223 secsDiff++; 1224 } 1225 return secsDiff; 1226 } 1227 1228 //----------------------------------------------------------------------- 1229 /** 1230 * Combines this instant with an offset to create an {@code OffsetDateTime}. 1231 * <p> 1232 * This returns an {@code OffsetDateTime} formed from this instant at the 1233 * specified offset from UTC/Greenwich. An exception will be thrown if the 1234 * instant is too large to fit into an offset date-time. 1235 * <p> 1236 * This method is equivalent to 1237 * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}. 1238 * 1239 * @param offset the offset to combine with, not null 1240 * @return the offset date-time formed from this instant and the specified offset, not null 1241 * @throws DateTimeException if the result exceeds the supported range 1242 */ 1243 public OffsetDateTime atOffset(ZoneOffset offset) { 1244 return OffsetDateTime.ofInstant(this, offset); 1245 } 1246 1247 /** 1248 * Combines this instant with a time-zone to create a {@code ZonedDateTime}. 1249 * <p> 1250 * This returns an {@code ZonedDateTime} formed from this instant at the 1251 * specified time-zone. An exception will be thrown if the instant is too 1252 * large to fit into a zoned date-time. 1253 * <p> 1254 * This method is equivalent to 1255 * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}. 1256 * 1257 * @param zone the zone to combine with, not null 1258 * @return the zoned date-time formed from this instant and the specified zone, not null 1259 * @throws DateTimeException if the result exceeds the supported range 1260 */ 1261 public ZonedDateTime atZone(ZoneId zone) { 1262 return ZonedDateTime.ofInstant(this, zone); 1263 } 1264 1265 //----------------------------------------------------------------------- 1266 /** 1267 * Converts this instant to the number of milliseconds from the epoch 1268 * of 1970-01-01T00:00:00Z. 1269 * <p> 1270 * If this instant represents a point on the time-line too far in the future 1271 * or past to fit in a {@code long} milliseconds, then an exception is thrown. 1272 * <p> 1273 * If this instant has greater than millisecond precision, then the conversion 1274 * will drop any excess precision information as though the amount in nanoseconds 1275 * was subject to integer division by one million. 1276 * 1277 * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z 1278 * @throws ArithmeticException if numeric overflow occurs 1279 */ 1280 public long toEpochMilli() { 1281 if (seconds < 0 && nanos > 0) { 1282 long millis = Math.multiplyExact(seconds+1, 1000); 1283 long adjustment = nanos / 1000_000 - 1000; 1284 return Math.addExact(millis, adjustment); 1285 } else { 1286 long millis = Math.multiplyExact(seconds, 1000); 1287 return Math.addExact(millis, nanos / 1000_000); 1288 } 1289 } 1290 1291 //----------------------------------------------------------------------- 1292 /** 1293 * Compares this instant to the specified instant. 1294 * <p> 1295 * The comparison is based on the time-line position of the instants. 1296 * It is "consistent with equals", as defined by {@link Comparable}. 1297 * 1298 * @param otherInstant the other instant to compare to, not null 1299 * @return the comparator value, that is less than zero if this instant is before {@code otherInstant}, 1300 * zero if they are equal, or greater than zero if this instant is after {@code otherInstant} 1301 * @throws NullPointerException if otherInstant is null 1302 * @see #isBefore 1303 * @see #isAfter 1304 */ 1305 @Override 1306 public int compareTo(Instant otherInstant) { 1307 int cmp = Long.compare(seconds, otherInstant.seconds); 1308 if (cmp != 0) { 1309 return cmp; 1310 } 1311 return nanos - otherInstant.nanos; 1312 } 1313 1314 /** 1315 * Checks if this instant is after the specified instant. 1316 * <p> 1317 * The comparison is based on the time-line position of the instants. 1318 * 1319 * @param otherInstant the other instant to compare to, not null 1320 * @return true if this instant is after the specified instant 1321 * @throws NullPointerException if otherInstant is null 1322 */ 1323 public boolean isAfter(Instant otherInstant) { 1324 return compareTo(otherInstant) > 0; 1325 } 1326 1327 /** 1328 * Checks if this instant is before the specified instant. 1329 * <p> 1330 * The comparison is based on the time-line position of the instants. 1331 * 1332 * @param otherInstant the other instant to compare to, not null 1333 * @return true if this instant is before the specified instant 1334 * @throws NullPointerException if otherInstant is null 1335 */ 1336 public boolean isBefore(Instant otherInstant) { 1337 return compareTo(otherInstant) < 0; 1338 } 1339 1340 //----------------------------------------------------------------------- 1341 /** 1342 * Checks if this instant is equal to the specified instant. 1343 * <p> 1344 * The comparison is based on the time-line position of the instants. 1345 * 1346 * @param other the other instant, null returns false 1347 * @return true if the other instant is equal to this one 1348 */ 1349 @Override 1350 public boolean equals(Object other) { 1351 if (this == other) { 1352 return true; 1353 } 1354 return (other instanceof Instant otherInstant) 1355 && this.seconds == otherInstant.seconds 1356 && this.nanos == otherInstant.nanos; 1357 } 1358 1359 /** 1360 * Returns a hash code for this instant. 1361 * 1362 * @return a suitable hash code 1363 */ 1364 @Override 1365 public int hashCode() { 1366 return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos; 1367 } 1368 1369 //----------------------------------------------------------------------- 1370 /** 1371 * A string representation of this instant using ISO-8601 representation. 1372 * <p> 1373 * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}. 1374 * 1375 * @return an ISO-8601 representation of this instant, not null 1376 */ 1377 @Override 1378 public String toString() { 1379 return DateTimeFormatter.ISO_INSTANT.format(this); 1380 } 1381 1382 // ----------------------------------------------------------------------- 1383 /** 1384 * Writes the object using a 1385 * <a href="{@docRoot}/serialized-form.html#java.time.Ser">dedicated serialized form</a>. 1386 * @serialData 1387 * <pre> 1388 * out.writeByte(2); // identifies an Instant 1389 * out.writeLong(seconds); 1390 * out.writeInt(nanos); 1391 * </pre> 1392 * 1393 * @return the instance of {@code Ser}, not null 1394 */ 1395 @java.io.Serial 1396 private Object writeReplace() { 1397 return new Ser(Ser.INSTANT_TYPE, this); 1398 } 1399 1400 /** 1401 * Defend against malicious streams. 1402 * 1403 * @param s the stream to read 1404 * @throws InvalidObjectException always 1405 */ 1406 @java.io.Serial 1407 private void readObject(ObjectInputStream s) throws InvalidObjectException { 1408 throw new InvalidObjectException("Deserialization via serialization delegate"); 1409 } 1410 1411 void writeExternal(DataOutput out) throws IOException { 1412 out.writeLong(seconds); 1413 out.writeInt(nanos); 1414 } 1415 1416 static Instant readExternal(DataInput in) throws IOException { 1417 long seconds = in.readLong(); 1418 int nanos = in.readInt(); 1419 return Instant.ofEpochSecond(seconds, nanos); 1420 } 1421 1422 }