1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 /* 27 * This file is available under and governed by the GNU General Public 28 * License version 2 only, as published by the Free Software Foundation. 29 * However, the following notice accompanied the original version of this 30 * file: 31 * 32 * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos 33 * 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions are met: 38 * 39 * * Redistributions of source code must retain the above copyright notice, 40 * this list of conditions and the following disclaimer. 41 * 42 * * Redistributions in binary form must reproduce the above copyright notice, 43 * this list of conditions and the following disclaimer in the documentation 44 * and/or other materials provided with the distribution. 45 * 46 * * Neither the name of JSR-310 nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 54 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 55 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 56 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 57 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 58 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 59 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 60 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 61 */ 62 package java.time; 63 64 import static java.time.LocalTime.MICROS_PER_SECOND; 65 import static java.time.LocalTime.MILLIS_PER_SECOND; 66 import static java.time.LocalTime.NANOS_PER_SECOND; 67 import static java.time.LocalTime.SECONDS_PER_DAY; 68 import static java.time.LocalTime.SECONDS_PER_HOUR; 69 import static java.time.LocalTime.SECONDS_PER_MINUTE; 70 import static java.time.temporal.ChronoField.INSTANT_SECONDS; 71 import static java.time.temporal.ChronoField.MICRO_OF_SECOND; 72 import static java.time.temporal.ChronoField.MILLI_OF_SECOND; 73 import static java.time.temporal.ChronoField.NANO_OF_SECOND; 74 import static java.time.temporal.ChronoUnit.DAYS; 75 import static java.time.temporal.ChronoUnit.NANOS; 76 77 import java.io.DataInput; 78 import java.io.DataOutput; 79 import java.io.IOException; 80 import java.io.InvalidObjectException; 81 import java.io.ObjectInputStream; 82 import java.io.Serializable; 83 import java.time.format.DateTimeFormatter; 84 import java.time.format.DateTimeParseException; 85 import java.time.temporal.ChronoField; 86 import java.time.temporal.ChronoUnit; 87 import java.time.temporal.Temporal; 88 import java.time.temporal.TemporalAccessor; 89 import java.time.temporal.TemporalAdjuster; 90 import java.time.temporal.TemporalAmount; 91 import java.time.temporal.TemporalField; 92 import java.time.temporal.TemporalQueries; 93 import java.time.temporal.TemporalQuery; 94 import java.time.temporal.TemporalUnit; 95 import java.time.temporal.UnsupportedTemporalTypeException; 96 import java.time.temporal.ValueRange; 97 import java.util.Objects; 98 99 /** 100 * An instantaneous point on the time-line. 101 * <p> 102 * This class models a single instantaneous point on the time-line. 103 * This might be used to record event time-stamps in the application. 104 * <p> 105 * The range of an instant requires the storage of a number larger than a {@code long}. 106 * To achieve this, the class stores a {@code long} representing epoch-seconds and an 107 * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999. 108 * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z} 109 * where instants after the epoch have positive values, and earlier instants have negative values. 110 * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line 111 * than a smaller value. 112 * 113 * <h2>Time-scale</h2> 114 * <p> 115 * The length of the solar day is the standard way that humans measure time. 116 * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds, 117 * forming a 86400 second day. 118 * <p> 119 * Modern timekeeping is based on atomic clocks which precisely define an SI second 120 * relative to the transitions of a Caesium atom. The length of an SI second was defined 121 * to be very close to the 86400th fraction of a day. 122 * <p> 123 * Unfortunately, as the Earth rotates the length of the day varies. 124 * In addition, over time the average length of the day is getting longer as the Earth slows. 125 * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds. 126 * The actual length of any given day and the amount by which the Earth is slowing 127 * are not predictable and can only be determined by measurement. 128 * The UT1 time-scale captures the accurate length of day, but is only available some 129 * time after the day has completed. 130 * <p> 131 * The UTC time-scale is a standard approach to bundle up all the additional fractions 132 * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>. 133 * A leap-second may be added or removed depending on the Earth's rotational changes. 134 * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where 135 * necessary in order to keep the day aligned with the Sun. 136 * <p> 137 * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds. 138 * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and 139 * alterations to the length of the notional second. As of 2012, discussions are underway 140 * to change the definition of UTC again, with the potential to remove leap seconds or 141 * introduce other changes. 142 * <p> 143 * Given the complexity of accurate timekeeping described above, this Java API defines 144 * its own time-scale, the <i>Java Time-Scale</i>. 145 * <p> 146 * The Java Time-Scale divides each calendar day into exactly 86400 147 * subdivisions, known as seconds. These seconds may differ from the 148 * SI second. It closely matches the de facto international civil time 149 * scale, the definition of which changes from time to time. 150 * <p> 151 * The Java Time-Scale has slightly different definitions for different 152 * segments of the time-line, each based on the consensus international 153 * time scale that is used as the basis for civil time. Whenever the 154 * internationally-agreed time scale is modified or replaced, a new 155 * segment of the Java Time-Scale must be defined for it. Each segment 156 * must meet these requirements: 157 * <ul> 158 * <li>the Java Time-Scale shall closely match the underlying international 159 * civil time scale;</li> 160 * <li>the Java Time-Scale shall exactly match the international civil 161 * time scale at noon each day;</li> 162 * <li>the Java Time-Scale shall have a precisely-defined relationship to 163 * the international civil time scale.</li> 164 * </ul> 165 * There are currently, as of 2013, two segments in the Java time-scale. 166 * <p> 167 * For the segment from 1972-11-03 (exact boundary discussed below) until 168 * further notice, the consensus international time scale is UTC (with 169 * leap seconds). In this segment, the Java Time-Scale is identical to 170 * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>. 171 * This is identical to UTC on days that do not have a leap second. 172 * On days that do have a leap second, the leap second is spread equally 173 * over the last 1000 seconds of the day, maintaining the appearance of 174 * exactly 86400 seconds per day. 175 * <p> 176 * For the segment prior to 1972-11-03, extending back arbitrarily far, 177 * the consensus international time scale is defined to be UT1, applied 178 * proleptically, which is equivalent to the (mean) solar time on the 179 * prime meridian (Greenwich). In this segment, the Java Time-Scale is 180 * identical to the consensus international time scale. The exact 181 * boundary between the two segments is the instant where UT1 = UTC 182 * between 1972-11-03T00:00 and 1972-11-04T12:00. 183 * <p> 184 * Implementations of the Java time-scale using the JSR-310 API are not 185 * required to provide any clock that is sub-second accurate, or that 186 * progresses monotonically or smoothly. Implementations are therefore 187 * not required to actually perform the UTC-SLS slew or to otherwise be 188 * aware of leap seconds. JSR-310 does, however, require that 189 * implementations must document the approach they use when defining a 190 * clock representing the current instant. 191 * See {@link Clock} for details on the available clocks. 192 * <p> 193 * The Java time-scale is used for all date-time classes. 194 * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime}, 195 * {@code ZonedDateTime} and {@code Duration}. 196 * <p> 197 * This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 198 * class; programmers should treat instances that are 199 * {@linkplain #equals(Object) equal} as interchangeable and should not 200 * use instances for synchronization, or unpredictable behavior may 201 * occur. For example, in a future release, synchronization may fail. 202 * The {@code equals} method should be used for comparisons. 203 * 204 * @implSpec 205 * This class is immutable and thread-safe. 206 * 207 * @since 1.8 208 */ 209 @jdk.internal.ValueBased 210 @jdk.internal.MigratedValueClass 211 public final class Instant 212 implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable { 213 214 /** 215 * Constant for the 1970-01-01T00:00:00Z epoch instant. 216 */ 217 public static final Instant EPOCH = new Instant(0, 0); 218 /** 219 * The minimum supported epoch second. 220 */ 221 private static final long MIN_SECOND = -31557014167219200L; 222 /** 223 * The maximum supported epoch second. 224 */ 225 private static final long MAX_SECOND = 31556889864403199L; 226 /** 227 * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'. 228 * This could be used by an application as a "far past" instant. 229 * <p> 230 * This is one year earlier than the minimum {@code LocalDateTime}. 231 * This provides sufficient values to handle the range of {@code ZoneOffset} 232 * which affect the instant in addition to the local date-time. 233 * The value is also chosen such that the value of the year fits in 234 * an {@code int}. 235 */ 236 public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0); 237 /** 238 * The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'. 239 * This could be used by an application as a "far future" instant. 240 * <p> 241 * This is one year later than the maximum {@code LocalDateTime}. 242 * This provides sufficient values to handle the range of {@code ZoneOffset} 243 * which affect the instant in addition to the local date-time. 244 * The value is also chosen such that the value of the year fits in 245 * an {@code int}. 246 */ 247 public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999); 248 249 /** 250 * Serialization version. 251 */ 252 @java.io.Serial 253 private static final long serialVersionUID = -665713676816604388L; 254 255 /** 256 * The number of seconds from the epoch of 1970-01-01T00:00:00Z. 257 */ 258 private final long seconds; 259 /** 260 * The number of nanoseconds, later along the time-line, from the seconds field. 261 * This is always positive, and never exceeds 999,999,999. 262 */ 263 private final int nanos; 264 265 //----------------------------------------------------------------------- 266 /** 267 * Obtains the current instant from the system clock. 268 * <p> 269 * This will query the {@link Clock#systemUTC() system UTC clock} to 270 * obtain the current instant. 271 * <p> 272 * Using this method will prevent the ability to use an alternate time-source for 273 * testing because the clock is effectively hard-coded. 274 * 275 * @return the current instant using the system clock, not null 276 */ 277 public static Instant now() { 278 return Clock.currentInstant(); 279 } 280 281 /** 282 * Obtains the current instant from the specified clock. 283 * <p> 284 * This will query the specified clock to obtain the current time. 285 * <p> 286 * Using this method allows the use of an alternate clock for testing. 287 * The alternate clock may be introduced using {@link Clock dependency injection}. 288 * 289 * @param clock the clock to use, not null 290 * @return the current instant, not null 291 */ 292 public static Instant now(Clock clock) { 293 Objects.requireNonNull(clock, "clock"); 294 return clock.instant(); 295 } 296 297 //----------------------------------------------------------------------- 298 /** 299 * Obtains an instance of {@code Instant} using seconds from the 300 * epoch of 1970-01-01T00:00:00Z. 301 * <p> 302 * The nanosecond field is set to zero. 303 * 304 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 305 * @return an instant, not null 306 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 307 */ 308 public static Instant ofEpochSecond(long epochSecond) { 309 return create(epochSecond, 0); 310 } 311 312 /** 313 * Obtains an instance of {@code Instant} using seconds from the 314 * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second. 315 * <p> 316 * This method allows an arbitrary number of nanoseconds to be passed in. 317 * The factory will alter the values of the second and nanosecond in order 318 * to ensure that the stored nanosecond is in the range 0 to 999,999,999. 319 * For example, the following will result in exactly the same instant: 320 * <pre> 321 * Instant.ofEpochSecond(3, 1); 322 * Instant.ofEpochSecond(4, -999_999_999); 323 * Instant.ofEpochSecond(2, 1000_000_001); 324 * </pre> 325 * 326 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 327 * @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative 328 * @return an instant, not null 329 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 330 * @throws ArithmeticException if numeric overflow occurs 331 */ 332 public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) { 333 long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND)); 334 int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND); 335 return create(secs, nos); 336 } 337 338 /** 339 * Obtains an instance of {@code Instant} using milliseconds from the 340 * epoch of 1970-01-01T00:00:00Z. 341 * <p> 342 * The seconds and nanoseconds are extracted from the specified milliseconds. 343 * 344 * @param epochMilli the number of milliseconds from 1970-01-01T00:00:00Z 345 * @return an instant, not null 346 */ 347 public static Instant ofEpochMilli(long epochMilli) { 348 long secs = Math.floorDiv(epochMilli, 1000); 349 int mos = Math.floorMod(epochMilli, 1000); 350 return create(secs, mos * 1000_000); 351 } 352 353 //----------------------------------------------------------------------- 354 /** 355 * Obtains an instance of {@code Instant} from a temporal object. 356 * <p> 357 * This obtains an instant based on the specified temporal. 358 * A {@code TemporalAccessor} represents an arbitrary set of date and time information, 359 * which this factory converts to an instance of {@code Instant}. 360 * <p> 361 * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS} 362 * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields. 363 * <p> 364 * This method matches the signature of the functional interface {@link TemporalQuery} 365 * allowing it to be used as a query via method reference, {@code Instant::from}. 366 * 367 * @param temporal the temporal object to convert, not null 368 * @return the instant, not null 369 * @throws DateTimeException if unable to convert to an {@code Instant} 370 */ 371 public static Instant from(TemporalAccessor temporal) { 372 if (temporal instanceof Instant) { 373 return (Instant) temporal; 374 } 375 Objects.requireNonNull(temporal, "temporal"); 376 try { 377 long instantSecs = temporal.getLong(INSTANT_SECONDS); 378 int nanoOfSecond = temporal.get(NANO_OF_SECOND); 379 return Instant.ofEpochSecond(instantSecs, nanoOfSecond); 380 } catch (DateTimeException ex) { 381 throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " + 382 temporal + " of type " + temporal.getClass().getName(), ex); 383 } 384 } 385 386 //----------------------------------------------------------------------- 387 /** 388 * Obtains an instance of {@code Instant} from a text string such as 389 * {@code 2007-12-03T10:15:30.00Z}. 390 * <p> 391 * The string must represent a valid instant in UTC and is parsed using 392 * {@link DateTimeFormatter#ISO_INSTANT}. 393 * 394 * @param text the text to parse, not null 395 * @return the parsed instant, not null 396 * @throws DateTimeParseException if the text cannot be parsed 397 */ 398 public static Instant parse(final CharSequence text) { 399 return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from); 400 } 401 402 //----------------------------------------------------------------------- 403 /** 404 * Obtains an instance of {@code Instant} using seconds and nanoseconds. 405 * 406 * @param seconds the length of the duration in seconds 407 * @param nanoOfSecond the nano-of-second, from 0 to 999,999,999 408 * @throws DateTimeException if the instant exceeds the maximum or minimum instant 409 */ 410 private static Instant create(long seconds, int nanoOfSecond) { 411 if ((seconds | nanoOfSecond) == 0) { 412 return EPOCH; 413 } 414 if (seconds < MIN_SECOND || seconds > MAX_SECOND) { 415 throw new DateTimeException("Instant exceeds minimum or maximum instant"); 416 } 417 return new Instant(seconds, nanoOfSecond); 418 } 419 420 /** 421 * Constructs an instance of {@code Instant} using seconds from the epoch of 422 * 1970-01-01T00:00:00Z and nanosecond fraction of second. 423 * 424 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z 425 * @param nanos the nanoseconds within the second, must be positive 426 */ 427 private Instant(long epochSecond, int nanos) { 428 this.seconds = epochSecond; 429 this.nanos = nanos; 430 } 431 432 //----------------------------------------------------------------------- 433 /** 434 * Checks if the specified field is supported. 435 * <p> 436 * This checks if this instant can be queried for the specified field. 437 * If false, then calling the {@link #range(TemporalField) range}, 438 * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)} 439 * methods will throw an exception. 440 * <p> 441 * If the field is a {@link ChronoField} then the query is implemented here. 442 * The supported fields are: 443 * <ul> 444 * <li>{@code NANO_OF_SECOND} 445 * <li>{@code MICRO_OF_SECOND} 446 * <li>{@code MILLI_OF_SECOND} 447 * <li>{@code INSTANT_SECONDS} 448 * </ul> 449 * All other {@code ChronoField} instances will return false. 450 * <p> 451 * If the field is not a {@code ChronoField}, then the result of this method 452 * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)} 453 * passing {@code this} as the argument. 454 * Whether the field is supported is determined by the field. 455 * 456 * @param field the field to check, null returns false 457 * @return true if the field is supported on this instant, false if not 458 */ 459 @Override 460 public boolean isSupported(TemporalField field) { 461 if (field instanceof ChronoField) { 462 return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND; 463 } 464 return field != null && field.isSupportedBy(this); 465 } 466 467 /** 468 * Checks if the specified unit is supported. 469 * <p> 470 * This checks if the specified unit can be added to, or subtracted from, this date-time. 471 * If false, then calling the {@link #plus(long, TemporalUnit)} and 472 * {@link #minus(long, TemporalUnit) minus} methods will throw an exception. 473 * <p> 474 * If the unit is a {@link ChronoUnit} then the query is implemented here. 475 * The supported units are: 476 * <ul> 477 * <li>{@code NANOS} 478 * <li>{@code MICROS} 479 * <li>{@code MILLIS} 480 * <li>{@code SECONDS} 481 * <li>{@code MINUTES} 482 * <li>{@code HOURS} 483 * <li>{@code HALF_DAYS} 484 * <li>{@code DAYS} 485 * </ul> 486 * All other {@code ChronoUnit} instances will return false. 487 * <p> 488 * If the unit is not a {@code ChronoUnit}, then the result of this method 489 * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)} 490 * passing {@code this} as the argument. 491 * Whether the unit is supported is determined by the unit. 492 * 493 * @param unit the unit to check, null returns false 494 * @return true if the unit can be added/subtracted, false if not 495 */ 496 @Override 497 public boolean isSupported(TemporalUnit unit) { 498 if (unit instanceof ChronoUnit) { 499 return unit.isTimeBased() || unit == DAYS; 500 } 501 return unit != null && unit.isSupportedBy(this); 502 } 503 504 //----------------------------------------------------------------------- 505 /** 506 * Gets the range of valid values for the specified field. 507 * <p> 508 * The range object expresses the minimum and maximum valid values for a field. 509 * This instant is used to enhance the accuracy of the returned range. 510 * If it is not possible to return the range, because the field is not supported 511 * or for some other reason, an exception is thrown. 512 * <p> 513 * If the field is a {@link ChronoField} then the query is implemented here. 514 * The {@link #isSupported(TemporalField) supported fields} will return 515 * appropriate range instances. 516 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 517 * <p> 518 * If the field is not a {@code ChronoField}, then the result of this method 519 * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)} 520 * passing {@code this} as the argument. 521 * Whether the range can be obtained is determined by the field. 522 * 523 * @param field the field to query the range for, not null 524 * @return the range of valid values for the field, not null 525 * @throws DateTimeException if the range for the field cannot be obtained 526 * @throws UnsupportedTemporalTypeException if the field is not supported 527 */ 528 @Override // override for Javadoc 529 public ValueRange range(TemporalField field) { 530 return Temporal.super.range(field); 531 } 532 533 /** 534 * Gets the value of the specified field from this instant as an {@code int}. 535 * <p> 536 * This queries this instant for the value of the specified field. 537 * The returned value will always be within the valid range of values for the field. 538 * If it is not possible to return the value, because the field is not supported 539 * or for some other reason, an exception is thrown. 540 * <p> 541 * If the field is a {@link ChronoField} then the query is implemented here. 542 * The {@link #isSupported(TemporalField) supported fields} will return valid 543 * values based on this date-time, except {@code INSTANT_SECONDS} which is too 544 * large to fit in an {@code int} and throws a {@code DateTimeException}. 545 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 546 * <p> 547 * If the field is not a {@code ChronoField}, then the result of this method 548 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} 549 * passing {@code this} as the argument. Whether the value can be obtained, 550 * and what the value represents, is determined by the field. 551 * 552 * @param field the field to get, not null 553 * @return the value for the field 554 * @throws DateTimeException if a value for the field cannot be obtained or 555 * the value is outside the range of valid values for the field 556 * @throws UnsupportedTemporalTypeException if the field is not supported or 557 * the range of values exceeds an {@code int} 558 * @throws ArithmeticException if numeric overflow occurs 559 */ 560 @Override // override for Javadoc and performance 561 public int get(TemporalField field) { 562 if (field instanceof ChronoField chronoField) { 563 return switch (chronoField) { 564 case NANO_OF_SECOND -> nanos; 565 case MICRO_OF_SECOND -> nanos / 1000; 566 case MILLI_OF_SECOND -> nanos / 1000_000; 567 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 568 }; 569 } 570 return range(field).checkValidIntValue(field.getFrom(this), field); 571 } 572 573 /** 574 * Gets the value of the specified field from this instant as a {@code long}. 575 * <p> 576 * This queries this instant for the value of the specified field. 577 * If it is not possible to return the value, because the field is not supported 578 * or for some other reason, an exception is thrown. 579 * <p> 580 * If the field is a {@link ChronoField} then the query is implemented here. 581 * The {@link #isSupported(TemporalField) supported fields} will return valid 582 * values based on this date-time. 583 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 584 * <p> 585 * If the field is not a {@code ChronoField}, then the result of this method 586 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} 587 * passing {@code this} as the argument. Whether the value can be obtained, 588 * and what the value represents, is determined by the field. 589 * 590 * @param field the field to get, not null 591 * @return the value for the field 592 * @throws DateTimeException if a value for the field cannot be obtained 593 * @throws UnsupportedTemporalTypeException if the field is not supported 594 * @throws ArithmeticException if numeric overflow occurs 595 */ 596 @Override 597 public long getLong(TemporalField field) { 598 if (field instanceof ChronoField chronoField) { 599 return switch (chronoField) { 600 case NANO_OF_SECOND -> nanos; 601 case MICRO_OF_SECOND -> nanos / 1000; 602 case MILLI_OF_SECOND -> nanos / 1000_000; 603 case INSTANT_SECONDS -> seconds; 604 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 605 }; 606 } 607 return field.getFrom(this); 608 } 609 610 //----------------------------------------------------------------------- 611 /** 612 * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z. 613 * <p> 614 * The epoch second count is a simple incrementing count of seconds where 615 * second 0 is 1970-01-01T00:00:00Z. 616 * The nanosecond part is returned by {@link #getNano}. 617 * 618 * @return the seconds from the epoch of 1970-01-01T00:00:00Z 619 */ 620 public long getEpochSecond() { 621 return seconds; 622 } 623 624 /** 625 * Gets the number of nanoseconds, later along the time-line, from the start 626 * of the second. 627 * <p> 628 * The nanosecond-of-second value measures the total number of nanoseconds from 629 * the second returned by {@link #getEpochSecond}. 630 * 631 * @return the nanoseconds within the second, always positive, never exceeds 999,999,999 632 */ 633 public int getNano() { 634 return nanos; 635 } 636 637 //------------------------------------------------------------------------- 638 /** 639 * Returns an adjusted copy of this instant. 640 * <p> 641 * This returns an {@code Instant}, based on this one, with the instant adjusted. 642 * The adjustment takes place using the specified adjuster strategy object. 643 * Read the documentation of the adjuster to understand what adjustment will be made. 644 * <p> 645 * The result of this method is obtained by invoking the 646 * {@link TemporalAdjuster#adjustInto(Temporal)} method on the 647 * specified adjuster passing {@code this} as the argument. 648 * <p> 649 * This instance is immutable and unaffected by this method call. 650 * 651 * @param adjuster the adjuster to use, not null 652 * @return an {@code Instant} based on {@code this} with the adjustment made, not null 653 * @throws DateTimeException if the adjustment cannot be made 654 * @throws ArithmeticException if numeric overflow occurs 655 */ 656 @Override 657 public Instant with(TemporalAdjuster adjuster) { 658 return (Instant) adjuster.adjustInto(this); 659 } 660 661 /** 662 * Returns a copy of this instant with the specified field set to a new value. 663 * <p> 664 * This returns an {@code Instant}, based on this one, with the value 665 * for the specified field changed. 666 * If it is not possible to set the value, because the field is not supported or for 667 * some other reason, an exception is thrown. 668 * <p> 669 * If the field is a {@link ChronoField} then the adjustment is implemented here. 670 * The supported fields behave as follows: 671 * <ul> 672 * <li>{@code NANO_OF_SECOND} - 673 * Returns an {@code Instant} with the specified nano-of-second. 674 * The epoch-second will be unchanged. 675 * <li>{@code MICRO_OF_SECOND} - 676 * Returns an {@code Instant} with the nano-of-second replaced by the specified 677 * micro-of-second multiplied by 1,000. The epoch-second will be unchanged. 678 * <li>{@code MILLI_OF_SECOND} - 679 * Returns an {@code Instant} with the nano-of-second replaced by the specified 680 * milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged. 681 * <li>{@code INSTANT_SECONDS} - 682 * Returns an {@code Instant} with the specified epoch-second. 683 * The nano-of-second will be unchanged. 684 * </ul> 685 * <p> 686 * In all cases, if the new value is outside the valid range of values for the field 687 * then a {@code DateTimeException} will be thrown. 688 * <p> 689 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. 690 * <p> 691 * If the field is not a {@code ChronoField}, then the result of this method 692 * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)} 693 * passing {@code this} as the argument. In this case, the field determines 694 * whether and how to adjust the instant. 695 * <p> 696 * This instance is immutable and unaffected by this method call. 697 * 698 * @param field the field to set in the result, not null 699 * @param newValue the new value of the field in the result 700 * @return an {@code Instant} based on {@code this} with the specified field set, not null 701 * @throws DateTimeException if the field cannot be set 702 * @throws UnsupportedTemporalTypeException if the field is not supported 703 * @throws ArithmeticException if numeric overflow occurs 704 */ 705 @Override 706 public Instant with(TemporalField field, long newValue) { 707 if (field instanceof ChronoField chronoField) { 708 chronoField.checkValidValue(newValue); 709 return switch (chronoField) { 710 case MILLI_OF_SECOND -> { 711 int nval = (int) newValue * 1000_000; 712 yield nval != nanos ? create(seconds, nval) : this; 713 } 714 case MICRO_OF_SECOND -> { 715 int nval = (int) newValue * 1000; 716 yield nval != nanos ? create(seconds, nval) : this; 717 } 718 case NANO_OF_SECOND -> newValue != nanos ? create(seconds, (int) newValue) : this; 719 case INSTANT_SECONDS -> newValue != seconds ? create(newValue, nanos) : this; 720 default -> throw new UnsupportedTemporalTypeException("Unsupported field: " + field); 721 }; 722 } 723 return field.adjustInto(this, newValue); 724 } 725 726 //----------------------------------------------------------------------- 727 /** 728 * Returns a copy of this {@code Instant} truncated to the specified unit. 729 * <p> 730 * Truncating the instant returns a copy of the original with fields 731 * smaller than the specified unit set to zero. 732 * The fields are calculated on the basis of using a UTC offset as seen 733 * in {@code toString}. 734 * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will 735 * round down to the nearest minute, setting the seconds and nanoseconds to zero. 736 * <p> 737 * The unit must have a {@linkplain TemporalUnit#getDuration() duration} 738 * that divides into the length of a standard day without remainder. 739 * This includes all supplied time units on {@link ChronoUnit} and 740 * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception. 741 * <p> 742 * This instance is immutable and unaffected by this method call. 743 * 744 * @param unit the unit to truncate to, not null 745 * @return an {@code Instant} based on this instant with the time truncated, not null 746 * @throws DateTimeException if the unit is invalid for truncation 747 * @throws UnsupportedTemporalTypeException if the unit is not supported 748 */ 749 public Instant truncatedTo(TemporalUnit unit) { 750 if (unit == ChronoUnit.NANOS) { 751 return this; 752 } 753 Duration unitDur = unit.getDuration(); 754 if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) { 755 throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation"); 756 } 757 long dur = unitDur.toNanos(); 758 if ((LocalTime.NANOS_PER_DAY % dur) != 0) { 759 throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder"); 760 } 761 long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos; 762 long result = Math.floorDiv(nod, dur) * dur; 763 return plusNanos(result - nod); 764 } 765 766 //----------------------------------------------------------------------- 767 /** 768 * Returns a copy of this instant with the specified amount added. 769 * <p> 770 * This returns an {@code Instant}, based on this one, with the specified amount added. 771 * The amount is typically {@link Duration} but may be any other type implementing 772 * the {@link TemporalAmount} interface. 773 * <p> 774 * The calculation is delegated to the amount object by calling 775 * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free 776 * to implement the addition in any way it wishes, however it typically 777 * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation 778 * of the amount implementation to determine if it can be successfully added. 779 * <p> 780 * This instance is immutable and unaffected by this method call. 781 * 782 * @param amountToAdd the amount to add, not null 783 * @return an {@code Instant} based on this instant with the addition made, not null 784 * @throws DateTimeException if the addition cannot be made 785 * @throws ArithmeticException if numeric overflow occurs 786 */ 787 @Override 788 public Instant plus(TemporalAmount amountToAdd) { 789 return (Instant) amountToAdd.addTo(this); 790 } 791 792 /** 793 * Returns a copy of this instant with the specified amount added. 794 * <p> 795 * This returns an {@code Instant}, based on this one, with the amount 796 * in terms of the unit added. If it is not possible to add the amount, because the 797 * unit is not supported or for some other reason, an exception is thrown. 798 * <p> 799 * If the field is a {@link ChronoUnit} then the addition is implemented here. 800 * The supported fields behave as follows: 801 * <ul> 802 * <li>{@code NANOS} - 803 * Returns an {@code Instant} with the specified number of nanoseconds added. 804 * This is equivalent to {@link #plusNanos(long)}. 805 * <li>{@code MICROS} - 806 * Returns an {@code Instant} with the specified number of microseconds added. 807 * This is equivalent to {@link #plusNanos(long)} with the amount 808 * multiplied by 1,000. 809 * <li>{@code MILLIS} - 810 * Returns an {@code Instant} with the specified number of milliseconds added. 811 * This is equivalent to {@link #plusNanos(long)} with the amount 812 * multiplied by 1,000,000. 813 * <li>{@code SECONDS} - 814 * Returns an {@code Instant} with the specified number of seconds added. 815 * This is equivalent to {@link #plusSeconds(long)}. 816 * <li>{@code MINUTES} - 817 * Returns an {@code Instant} with the specified number of minutes added. 818 * This is equivalent to {@link #plusSeconds(long)} with the amount 819 * multiplied by 60. 820 * <li>{@code HOURS} - 821 * Returns an {@code Instant} with the specified number of hours added. 822 * This is equivalent to {@link #plusSeconds(long)} with the amount 823 * multiplied by 3,600. 824 * <li>{@code HALF_DAYS} - 825 * Returns an {@code Instant} with the specified number of half-days added. 826 * This is equivalent to {@link #plusSeconds(long)} with the amount 827 * multiplied by 43,200 (12 hours). 828 * <li>{@code DAYS} - 829 * Returns an {@code Instant} with the specified number of days added. 830 * This is equivalent to {@link #plusSeconds(long)} with the amount 831 * multiplied by 86,400 (24 hours). 832 * </ul> 833 * <p> 834 * All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}. 835 * <p> 836 * If the field is not a {@code ChronoUnit}, then the result of this method 837 * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)} 838 * passing {@code this} as the argument. In this case, the unit determines 839 * whether and how to perform the addition. 840 * <p> 841 * This instance is immutable and unaffected by this method call. 842 * 843 * @param amountToAdd the amount of the unit to add to the result, may be negative 844 * @param unit the unit of the amount to add, not null 845 * @return an {@code Instant} based on this instant with the specified amount added, not null 846 * @throws DateTimeException if the addition cannot be made 847 * @throws UnsupportedTemporalTypeException if the unit is not supported 848 * @throws ArithmeticException if numeric overflow occurs 849 */ 850 @Override 851 public Instant plus(long amountToAdd, TemporalUnit unit) { 852 if (unit instanceof ChronoUnit chronoUnit) { 853 return switch (chronoUnit) { 854 case NANOS -> plusNanos(amountToAdd); 855 case MICROS -> plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000); 856 case MILLIS -> plusMillis(amountToAdd); 857 case SECONDS -> plusSeconds(amountToAdd); 858 case MINUTES -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE)); 859 case HOURS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR)); 860 case HALF_DAYS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2)); 861 case DAYS -> plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY)); 862 default -> throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); 863 }; 864 } 865 return unit.addTo(this, amountToAdd); 866 } 867 868 //----------------------------------------------------------------------- 869 /** 870 * Returns a copy of this instant with the specified duration in seconds added. 871 * <p> 872 * This instance is immutable and unaffected by this method call. 873 * 874 * @param secondsToAdd the seconds to add, positive or negative 875 * @return an {@code Instant} based on this instant with the specified seconds added, not null 876 * @throws DateTimeException if the result exceeds the maximum or minimum instant 877 * @throws ArithmeticException if numeric overflow occurs 878 */ 879 public Instant plusSeconds(long secondsToAdd) { 880 if (secondsToAdd == 0) { 881 return this; 882 } 883 long epochSec = Math.addExact(seconds, secondsToAdd); 884 return create(epochSec, nanos); 885 } 886 887 /** 888 * Returns a copy of this instant with the specified duration in milliseconds added. 889 * <p> 890 * This instance is immutable and unaffected by this method call. 891 * 892 * @param millisToAdd the milliseconds to add, positive or negative 893 * @return an {@code Instant} based on this instant with the specified milliseconds added, not null 894 * @throws DateTimeException if the result exceeds the maximum or minimum instant 895 * @throws ArithmeticException if numeric overflow occurs 896 */ 897 public Instant plusMillis(long millisToAdd) { 898 return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000); 899 } 900 901 /** 902 * Returns a copy of this instant with the specified duration in nanoseconds added. 903 * <p> 904 * This instance is immutable and unaffected by this method call. 905 * 906 * @param nanosToAdd the nanoseconds to add, positive or negative 907 * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null 908 * @throws DateTimeException if the result exceeds the maximum or minimum instant 909 * @throws ArithmeticException if numeric overflow occurs 910 */ 911 public Instant plusNanos(long nanosToAdd) { 912 return plus(0, nanosToAdd); 913 } 914 915 /** 916 * Returns a copy of this instant with the specified duration added. 917 * <p> 918 * This instance is immutable and unaffected by this method call. 919 * 920 * @param secondsToAdd the seconds to add, positive or negative 921 * @param nanosToAdd the nanos to add, positive or negative 922 * @return an {@code Instant} based on this instant with the specified seconds added, not null 923 * @throws DateTimeException if the result exceeds the maximum or minimum instant 924 * @throws ArithmeticException if numeric overflow occurs 925 */ 926 private Instant plus(long secondsToAdd, long nanosToAdd) { 927 if ((secondsToAdd | nanosToAdd) == 0) { 928 return this; 929 } 930 long epochSec = Math.addExact(seconds, secondsToAdd); 931 epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND); 932 nanosToAdd = nanosToAdd % NANOS_PER_SECOND; 933 long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND 934 return ofEpochSecond(epochSec, nanoAdjustment); 935 } 936 937 //----------------------------------------------------------------------- 938 /** 939 * Returns a copy of this instant with the specified amount subtracted. 940 * <p> 941 * This returns an {@code Instant}, based on this one, with the specified amount subtracted. 942 * The amount is typically {@link Duration} but may be any other type implementing 943 * the {@link TemporalAmount} interface. 944 * <p> 945 * The calculation is delegated to the amount object by calling 946 * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free 947 * to implement the subtraction in any way it wishes, however it typically 948 * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation 949 * of the amount implementation to determine if it can be successfully subtracted. 950 * <p> 951 * This instance is immutable and unaffected by this method call. 952 * 953 * @param amountToSubtract the amount to subtract, not null 954 * @return an {@code Instant} based on this instant with the subtraction made, not null 955 * @throws DateTimeException if the subtraction cannot be made 956 * @throws ArithmeticException if numeric overflow occurs 957 */ 958 @Override 959 public Instant minus(TemporalAmount amountToSubtract) { 960 return (Instant) amountToSubtract.subtractFrom(this); 961 } 962 963 /** 964 * Returns a copy of this instant with the specified amount subtracted. 965 * <p> 966 * This returns an {@code Instant}, based on this one, with the amount 967 * in terms of the unit subtracted. If it is not possible to subtract the amount, 968 * because the unit is not supported or for some other reason, an exception is thrown. 969 * <p> 970 * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated. 971 * See that method for a full description of how addition, and thus subtraction, works. 972 * <p> 973 * This instance is immutable and unaffected by this method call. 974 * 975 * @param amountToSubtract the amount of the unit to subtract from the result, may be negative 976 * @param unit the unit of the amount to subtract, not null 977 * @return an {@code Instant} based on this instant with the specified amount subtracted, not null 978 * @throws DateTimeException if the subtraction cannot be made 979 * @throws UnsupportedTemporalTypeException if the unit is not supported 980 * @throws ArithmeticException if numeric overflow occurs 981 */ 982 @Override 983 public Instant minus(long amountToSubtract, TemporalUnit unit) { 984 return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit)); 985 } 986 987 //----------------------------------------------------------------------- 988 /** 989 * Returns a copy of this instant with the specified duration in seconds subtracted. 990 * <p> 991 * This instance is immutable and unaffected by this method call. 992 * 993 * @param secondsToSubtract the seconds to subtract, positive or negative 994 * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null 995 * @throws DateTimeException if the result exceeds the maximum or minimum instant 996 * @throws ArithmeticException if numeric overflow occurs 997 */ 998 public Instant minusSeconds(long secondsToSubtract) { 999 if (secondsToSubtract == Long.MIN_VALUE) { 1000 return plusSeconds(Long.MAX_VALUE).plusSeconds(1); 1001 } 1002 return plusSeconds(-secondsToSubtract); 1003 } 1004 1005 /** 1006 * Returns a copy of this instant with the specified duration in milliseconds subtracted. 1007 * <p> 1008 * This instance is immutable and unaffected by this method call. 1009 * 1010 * @param millisToSubtract the milliseconds to subtract, positive or negative 1011 * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null 1012 * @throws DateTimeException if the result exceeds the maximum or minimum instant 1013 * @throws ArithmeticException if numeric overflow occurs 1014 */ 1015 public Instant minusMillis(long millisToSubtract) { 1016 if (millisToSubtract == Long.MIN_VALUE) { 1017 return plusMillis(Long.MAX_VALUE).plusMillis(1); 1018 } 1019 return plusMillis(-millisToSubtract); 1020 } 1021 1022 /** 1023 * Returns a copy of this instant with the specified duration in nanoseconds subtracted. 1024 * <p> 1025 * This instance is immutable and unaffected by this method call. 1026 * 1027 * @param nanosToSubtract the nanoseconds to subtract, positive or negative 1028 * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null 1029 * @throws DateTimeException if the result exceeds the maximum or minimum instant 1030 * @throws ArithmeticException if numeric overflow occurs 1031 */ 1032 public Instant minusNanos(long nanosToSubtract) { 1033 if (nanosToSubtract == Long.MIN_VALUE) { 1034 return plusNanos(Long.MAX_VALUE).plusNanos(1); 1035 } 1036 return plusNanos(-nanosToSubtract); 1037 } 1038 1039 //------------------------------------------------------------------------- 1040 /** 1041 * Queries this instant using the specified query. 1042 * <p> 1043 * This queries this instant using the specified query strategy object. 1044 * The {@code TemporalQuery} object defines the logic to be used to 1045 * obtain the result. Read the documentation of the query to understand 1046 * what the result of this method will be. 1047 * <p> 1048 * The result of this method is obtained by invoking the 1049 * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the 1050 * specified query passing {@code this} as the argument. 1051 * 1052 * @param <R> the type of the result 1053 * @param query the query to invoke, not null 1054 * @return the query result, null may be returned (defined by the query) 1055 * @throws DateTimeException if unable to query (defined by the query) 1056 * @throws ArithmeticException if numeric overflow occurs (defined by the query) 1057 */ 1058 @SuppressWarnings("unchecked") 1059 @Override 1060 public <R> R query(TemporalQuery<R> query) { 1061 if (query == TemporalQueries.precision()) { 1062 return (R) NANOS; 1063 } 1064 // inline TemporalAccessor.super.query(query) as an optimization 1065 if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() || 1066 query == TemporalQueries.zone() || query == TemporalQueries.offset() || 1067 query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) { 1068 return null; 1069 } 1070 return query.queryFrom(this); 1071 } 1072 1073 /** 1074 * Adjusts the specified temporal object to have this instant. 1075 * <p> 1076 * This returns a temporal object of the same observable type as the input 1077 * with the instant changed to be the same as this. 1078 * <p> 1079 * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)} 1080 * twice, passing {@link ChronoField#INSTANT_SECONDS} and 1081 * {@link ChronoField#NANO_OF_SECOND} as the fields. 1082 * <p> 1083 * In most cases, it is clearer to reverse the calling pattern by using 1084 * {@link Temporal#with(TemporalAdjuster)}: 1085 * <pre> 1086 * // these two lines are equivalent, but the second approach is recommended 1087 * temporal = thisInstant.adjustInto(temporal); 1088 * temporal = temporal.with(thisInstant); 1089 * </pre> 1090 * <p> 1091 * This instance is immutable and unaffected by this method call. 1092 * 1093 * @param temporal the target object to be adjusted, not null 1094 * @return the adjusted object, not null 1095 * @throws DateTimeException if unable to make the adjustment 1096 * @throws ArithmeticException if numeric overflow occurs 1097 */ 1098 @Override 1099 public Temporal adjustInto(Temporal temporal) { 1100 return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos); 1101 } 1102 1103 /** 1104 * Calculates the amount of time until another instant in terms of the specified unit. 1105 * <p> 1106 * This calculates the amount of time between two {@code Instant} 1107 * objects in terms of a single {@code TemporalUnit}. 1108 * The start and end points are {@code this} and the specified instant. 1109 * The result will be negative if the end is before the start. 1110 * The calculation returns a whole number, representing the number of 1111 * complete units between the two instants. 1112 * The {@code Temporal} passed to this method is converted to a 1113 * {@code Instant} using {@link #from(TemporalAccessor)}. 1114 * For example, the amount in seconds between two dates can be calculated 1115 * using {@code startInstant.until(endInstant, SECONDS)}. 1116 * <p> 1117 * There are two equivalent ways of using this method. 1118 * The first is to invoke this method. 1119 * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}: 1120 * <pre> 1121 * // these two lines are equivalent 1122 * amount = start.until(end, SECONDS); 1123 * amount = SECONDS.between(start, end); 1124 * </pre> 1125 * The choice should be made based on which makes the code more readable. 1126 * <p> 1127 * The calculation is implemented in this method for {@link ChronoUnit}. 1128 * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS}, 1129 * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS} 1130 * are supported. Other {@code ChronoUnit} values will throw an exception. 1131 * <p> 1132 * If the unit is not a {@code ChronoUnit}, then the result of this method 1133 * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)} 1134 * passing {@code this} as the first argument and the converted input temporal 1135 * as the second argument. 1136 * <p> 1137 * This instance is immutable and unaffected by this method call. 1138 * 1139 * @param endExclusive the end date, exclusive, which is converted to an {@code Instant}, not null 1140 * @param unit the unit to measure the amount in, not null 1141 * @return the amount of time between this instant and the end instant 1142 * @throws DateTimeException if the amount cannot be calculated, or the end 1143 * temporal cannot be converted to an {@code Instant} 1144 * @throws UnsupportedTemporalTypeException if the unit is not supported 1145 * @throws ArithmeticException if numeric overflow occurs 1146 */ 1147 @Override 1148 public long until(Temporal endExclusive, TemporalUnit unit) { 1149 Instant end = Instant.from(endExclusive); 1150 if (unit instanceof ChronoUnit chronoUnit) { 1151 return switch (chronoUnit) { 1152 case NANOS -> nanosUntil(end); 1153 case MICROS -> microsUntil(end); 1154 case MILLIS -> millisUntil(end); 1155 case SECONDS -> secondsUntil(end); 1156 case MINUTES -> secondsUntil(end) / SECONDS_PER_MINUTE; 1157 case HOURS -> secondsUntil(end) / SECONDS_PER_HOUR; 1158 case HALF_DAYS -> secondsUntil(end) / (12 * SECONDS_PER_HOUR); 1159 case DAYS -> secondsUntil(end) / (SECONDS_PER_DAY); 1160 default -> throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); 1161 }; 1162 } 1163 return unit.between(this, end); 1164 } 1165 1166 /** 1167 * Calculates the {@code Duration} until another {@code Instant}. 1168 * <p> 1169 * The start and end points are {@code this} and the specified instant. 1170 * The result will be negative if the end is before the start. Calling 1171 * this method is equivalent to 1172 * {@link Duration#between(Temporal, Temporal) Duration.between(this, 1173 * endExclusive)}. 1174 * <p> 1175 * This instance is immutable and unaffected by this method call. 1176 * 1177 * @param endExclusive the end {@code Instant}, exclusive, not null 1178 * @return the {@code Duration} from this {@code Instant} until the 1179 * specified {@code endExclusive} {@code Instant} 1180 * @see Duration#between(Temporal, Temporal) 1181 * @since 23 1182 */ 1183 public Duration until(Instant endExclusive) { 1184 Objects.requireNonNull(endExclusive, "endExclusive"); 1185 long secsDiff = Math.subtractExact(endExclusive.seconds, seconds); 1186 int nanosDiff = endExclusive.nanos - nanos; 1187 return Duration.ofSeconds(secsDiff, nanosDiff); 1188 } 1189 1190 private long nanosUntil(Instant end) { 1191 long secsDiff = Math.subtractExact(end.seconds, seconds); 1192 long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND); 1193 return Math.addExact(totalNanos, end.nanos - nanos); 1194 } 1195 1196 private long microsUntil(Instant end) { 1197 long microsDiff = Math.multiplyExact(end.seconds - seconds, MICROS_PER_SECOND); 1198 int nanosDiff = end.nanos - nanos; 1199 if (microsDiff > 0 && nanosDiff < 0) { 1200 return (microsDiff - 1_000_000) + (nanosDiff + 1_000_000_000) / 1_000; 1201 } else if (microsDiff < 0 && nanosDiff > 0) { 1202 return (microsDiff + 1_000_000) + (nanosDiff - 1_000_000_000) / 1_000; 1203 } 1204 return Math.addExact(microsDiff, nanosDiff / 1_000); 1205 } 1206 1207 private long millisUntil(Instant end) { 1208 long millisDiff = Math.multiplyExact(end.seconds - seconds, MILLIS_PER_SECOND); 1209 int nanosDiff = end.nanos - nanos; 1210 if (millisDiff > 0 && nanosDiff < 0) { 1211 return (millisDiff - 1_000) + (nanosDiff + 1_000_000_000) / 1_000_000; 1212 } else if (millisDiff < 0 && nanosDiff > 0) { 1213 return (millisDiff + 1_000) + (nanosDiff - 1_000_000_000) / 1_000_000; 1214 } 1215 return Math.addExact(millisDiff, nanosDiff / 1_000_000); 1216 } 1217 1218 private long secondsUntil(Instant end) { 1219 long secsDiff = Math.subtractExact(end.seconds, seconds); 1220 int nanosDiff = end.nanos - nanos; 1221 if (secsDiff > 0 && nanosDiff < 0) { 1222 secsDiff--; 1223 } else if (secsDiff < 0 && nanosDiff > 0) { 1224 secsDiff++; 1225 } 1226 return secsDiff; 1227 } 1228 1229 //----------------------------------------------------------------------- 1230 /** 1231 * Combines this instant with an offset to create an {@code OffsetDateTime}. 1232 * <p> 1233 * This returns an {@code OffsetDateTime} formed from this instant at the 1234 * specified offset from UTC/Greenwich. An exception will be thrown if the 1235 * instant is too large to fit into an offset date-time. 1236 * <p> 1237 * This method is equivalent to 1238 * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}. 1239 * 1240 * @param offset the offset to combine with, not null 1241 * @return the offset date-time formed from this instant and the specified offset, not null 1242 * @throws DateTimeException if the result exceeds the supported range 1243 */ 1244 public OffsetDateTime atOffset(ZoneOffset offset) { 1245 return OffsetDateTime.ofInstant(this, offset); 1246 } 1247 1248 /** 1249 * Combines this instant with a time-zone to create a {@code ZonedDateTime}. 1250 * <p> 1251 * This returns an {@code ZonedDateTime} formed from this instant at the 1252 * specified time-zone. An exception will be thrown if the instant is too 1253 * large to fit into a zoned date-time. 1254 * <p> 1255 * This method is equivalent to 1256 * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}. 1257 * 1258 * @param zone the zone to combine with, not null 1259 * @return the zoned date-time formed from this instant and the specified zone, not null 1260 * @throws DateTimeException if the result exceeds the supported range 1261 */ 1262 public ZonedDateTime atZone(ZoneId zone) { 1263 return ZonedDateTime.ofInstant(this, zone); 1264 } 1265 1266 //----------------------------------------------------------------------- 1267 /** 1268 * Converts this instant to the number of milliseconds from the epoch 1269 * of 1970-01-01T00:00:00Z. 1270 * <p> 1271 * If this instant represents a point on the time-line too far in the future 1272 * or past to fit in a {@code long} milliseconds, then an exception is thrown. 1273 * <p> 1274 * If this instant has greater than millisecond precision, then the conversion 1275 * will drop any excess precision information as though the amount in nanoseconds 1276 * was subject to integer division by one million. 1277 * 1278 * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z 1279 * @throws ArithmeticException if numeric overflow occurs 1280 */ 1281 public long toEpochMilli() { 1282 if (seconds < 0 && nanos > 0) { 1283 long millis = Math.multiplyExact(seconds+1, 1000); 1284 long adjustment = nanos / 1000_000 - 1000; 1285 return Math.addExact(millis, adjustment); 1286 } else { 1287 long millis = Math.multiplyExact(seconds, 1000); 1288 return Math.addExact(millis, nanos / 1000_000); 1289 } 1290 } 1291 1292 //----------------------------------------------------------------------- 1293 /** 1294 * Compares this instant to the specified instant. 1295 * <p> 1296 * The comparison is based on the time-line position of the instants. 1297 * It is "consistent with equals", as defined by {@link Comparable}. 1298 * 1299 * @param otherInstant the other instant to compare to, not null 1300 * @return the comparator value, that is less than zero if this instant is before {@code otherInstant}, 1301 * zero if they are equal, or greater than zero if this instant is after {@code otherInstant} 1302 * @throws NullPointerException if otherInstant is null 1303 * @see #isBefore 1304 * @see #isAfter 1305 */ 1306 @Override 1307 public int compareTo(Instant otherInstant) { 1308 int cmp = Long.compare(seconds, otherInstant.seconds); 1309 if (cmp != 0) { 1310 return cmp; 1311 } 1312 return nanos - otherInstant.nanos; 1313 } 1314 1315 /** 1316 * Checks if this instant is after the specified instant. 1317 * <p> 1318 * The comparison is based on the time-line position of the instants. 1319 * 1320 * @param otherInstant the other instant to compare to, not null 1321 * @return true if this instant is after the specified instant 1322 * @throws NullPointerException if otherInstant is null 1323 */ 1324 public boolean isAfter(Instant otherInstant) { 1325 return compareTo(otherInstant) > 0; 1326 } 1327 1328 /** 1329 * Checks if this instant is before the specified instant. 1330 * <p> 1331 * The comparison is based on the time-line position of the instants. 1332 * 1333 * @param otherInstant the other instant to compare to, not null 1334 * @return true if this instant is before the specified instant 1335 * @throws NullPointerException if otherInstant is null 1336 */ 1337 public boolean isBefore(Instant otherInstant) { 1338 return compareTo(otherInstant) < 0; 1339 } 1340 1341 //----------------------------------------------------------------------- 1342 /** 1343 * Checks if this instant is equal to the specified instant. 1344 * <p> 1345 * The comparison is based on the time-line position of the instants. 1346 * 1347 * @param other the other instant, null returns false 1348 * @return true if the other instant is equal to this one 1349 */ 1350 @Override 1351 public boolean equals(Object other) { 1352 if (this == other) { 1353 return true; 1354 } 1355 return (other instanceof Instant otherInstant) 1356 && this.seconds == otherInstant.seconds 1357 && this.nanos == otherInstant.nanos; 1358 } 1359 1360 /** 1361 * Returns a hash code for this instant. 1362 * 1363 * @return a suitable hash code 1364 */ 1365 @Override 1366 public int hashCode() { 1367 return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos; 1368 } 1369 1370 //----------------------------------------------------------------------- 1371 /** 1372 * A string representation of this instant using ISO-8601 representation. 1373 * <p> 1374 * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}. 1375 * 1376 * @return an ISO-8601 representation of this instant, not null 1377 */ 1378 @Override 1379 public String toString() { 1380 return DateTimeFormatter.ISO_INSTANT.format(this); 1381 } 1382 1383 // ----------------------------------------------------------------------- 1384 /** 1385 * Writes the object using a 1386 * <a href="{@docRoot}/serialized-form.html#java.time.Ser">dedicated serialized form</a>. 1387 * @serialData 1388 * <pre> 1389 * out.writeByte(2); // identifies an Instant 1390 * out.writeLong(seconds); 1391 * out.writeInt(nanos); 1392 * </pre> 1393 * 1394 * @return the instance of {@code Ser}, not null 1395 */ 1396 @java.io.Serial 1397 private Object writeReplace() { 1398 return new Ser(Ser.INSTANT_TYPE, this); 1399 } 1400 1401 /** 1402 * Defend against malicious streams. 1403 * 1404 * @param s the stream to read 1405 * @throws InvalidObjectException always 1406 */ 1407 @java.io.Serial 1408 private void readObject(ObjectInputStream s) throws InvalidObjectException { 1409 throw new InvalidObjectException("Deserialization via serialization delegate"); 1410 } 1411 1412 void writeExternal(DataOutput out) throws IOException { 1413 out.writeLong(seconds); 1414 out.writeInt(nanos); 1415 } 1416 1417 static Instant readExternal(DataInput in) throws IOException { 1418 long seconds = in.readLong(); 1419 int nanos = in.readInt(); 1420 return Instant.ofEpochSecond(seconds, nanos); 1421 } 1422 1423 }