1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.ObjectInputStream;
  31 import java.io.Serializable;
  32 import java.lang.reflect.ParameterizedType;
  33 import java.lang.reflect.Type;
  34 import java.util.function.BiConsumer;
  35 import java.util.function.BiFunction;
  36 import java.util.function.Consumer;
  37 import java.util.function.Function;
  38 import jdk.internal.access.SharedSecrets;
  39 
  40 /**
  41  * Hash table based implementation of the {@code Map} interface.  This
  42  * implementation provides all of the optional map operations, and permits
  43  * {@code null} values and the {@code null} key.  (The {@code HashMap}
  44  * class is roughly equivalent to {@code Hashtable}, except that it is
  45  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  46  * the order of the map; in particular, it does not guarantee that the order
  47  * will remain constant over time.
  48  *
  49  * <p>This implementation provides constant-time performance for the basic
  50  * operations ({@code get} and {@code put}), assuming the hash function
  51  * disperses the elements properly among the buckets.  Iteration over
  52  * collection views requires time proportional to the "capacity" of the
  53  * {@code HashMap} instance (the number of buckets) plus its size (the number
  54  * of key-value mappings).  Thus, it's very important not to set the initial
  55  * capacity too high (or the load factor too low) if iteration performance is
  56  * important.
  57  *
  58  * <p>An instance of {@code HashMap} has two parameters that affect its
  59  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  60  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  61  * capacity is simply the capacity at the time the hash table is created.  The
  62  * <i>load factor</i> is a measure of how full the hash table is allowed to
  63  * get before its capacity is automatically increased.  When the number of
  64  * entries in the hash table exceeds the product of the load factor and the
  65  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  66  * structures are rebuilt) so that the hash table has approximately twice the
  67  * number of buckets.
  68  *
  69  * <p>As a general rule, the default load factor (.75) offers a good
  70  * tradeoff between time and space costs.  Higher values decrease the
  71  * space overhead but increase the lookup cost (reflected in most of
  72  * the operations of the {@code HashMap} class, including
  73  * {@code get} and {@code put}).  The expected number of entries in
  74  * the map and its load factor should be taken into account when
  75  * setting its initial capacity, so as to minimize the number of
  76  * rehash operations.  If the initial capacity is greater than the
  77  * maximum number of entries divided by the load factor, no rehash
  78  * operations will ever occur.
  79  *
  80  * <p>If many mappings are to be stored in a {@code HashMap}
  81  * instance, creating it with a sufficiently large capacity will allow
  82  * the mappings to be stored more efficiently than letting it perform
  83  * automatic rehashing as needed to grow the table.  Note that using
  84  * many keys with the same {@code hashCode()} is a sure way to slow
  85  * down performance of any hash table. To ameliorate impact, when keys
  86  * are {@link Comparable}, this class may use comparison order among
  87  * keys to help break ties.
  88  *
  89  * <p><strong>Note that this implementation is not synchronized.</strong>
  90  * If multiple threads access a hash map concurrently, and at least one of
  91  * the threads modifies the map structurally, it <i>must</i> be
  92  * synchronized externally.  (A structural modification is any operation
  93  * that adds or deletes one or more mappings; merely changing the value
  94  * associated with a key that an instance already contains is not a
  95  * structural modification.)  This is typically accomplished by
  96  * synchronizing on some object that naturally encapsulates the map.
  97  *
  98  * If no such object exists, the map should be "wrapped" using the
  99  * {@link Collections#synchronizedMap Collections.synchronizedMap}
 100  * method.  This is best done at creation time, to prevent accidental
 101  * unsynchronized access to the map:<pre>
 102  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 103  *
 104  * <p>The iterators returned by all of this class's "collection view methods"
 105  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 106  * the iterator is created, in any way except through the iterator's own
 107  * {@code remove} method, the iterator will throw a
 108  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 109  * modification, the iterator fails quickly and cleanly, rather than risking
 110  * arbitrary, non-deterministic behavior at an undetermined time in the
 111  * future.
 112  *
 113  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 114  * as it is, generally speaking, impossible to make any hard guarantees in the
 115  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 116  * throw {@code ConcurrentModificationException} on a best-effort basis.
 117  * Therefore, it would be wrong to write a program that depended on this
 118  * exception for its correctness: <i>the fail-fast behavior of iterators
 119  * should be used only to detect bugs.</i>
 120  *
 121  * <p>This class is a member of the
 122  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 123  * Java Collections Framework</a>.
 124  *
 125  * @param <K> the type of keys maintained by this map
 126  * @param <V> the type of mapped values
 127  *
 128  * @author  Doug Lea
 129  * @author  Josh Bloch
 130  * @author  Arthur van Hoff
 131  * @author  Neal Gafter
 132  * @see     Object#hashCode()
 133  * @see     Collection
 134  * @see     Map
 135  * @see     TreeMap
 136  * @see     Hashtable
 137  * @since   1.2
 138  */
 139 public class HashMap<K,V> extends AbstractMap<K,V>
 140     implements Map<K,V>, Cloneable, Serializable {
 141 
 142     @java.io.Serial
 143     private static final long serialVersionUID = 362498820763181265L;
 144 
 145     /*
 146      * Implementation notes.
 147      *
 148      * This map usually acts as a binned (bucketed) hash table, but
 149      * when bins get too large, they are transformed into bins of
 150      * TreeNodes, each structured similarly to those in
 151      * java.util.TreeMap. Most methods try to use normal bins, but
 152      * relay to TreeNode methods when applicable (simply by checking
 153      * instanceof a node).  Bins of TreeNodes may be traversed and
 154      * used like any others, but additionally support faster lookup
 155      * when overpopulated. However, since the vast majority of bins in
 156      * normal use are not overpopulated, checking for existence of
 157      * tree bins may be delayed in the course of table methods.
 158      *
 159      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 160      * ordered primarily by hashCode, but in the case of ties, if two
 161      * elements are of the same "class C implements Comparable<C>",
 162      * type then their compareTo method is used for ordering. (We
 163      * conservatively check generic types via reflection to validate
 164      * this -- see method comparableClassFor).  The added complexity
 165      * of tree bins is worthwhile in providing worst-case O(log n)
 166      * operations when keys either have distinct hashes or are
 167      * orderable, Thus, performance degrades gracefully under
 168      * accidental or malicious usages in which hashCode() methods
 169      * return values that are poorly distributed, as well as those in
 170      * which many keys share a hashCode, so long as they are also
 171      * Comparable. (If neither of these apply, we may waste about a
 172      * factor of two in time and space compared to taking no
 173      * precautions. But the only known cases stem from poor user
 174      * programming practices that are already so slow that this makes
 175      * little difference.)
 176      *
 177      * Because TreeNodes are about twice the size of regular nodes, we
 178      * use them only when bins contain enough nodes to warrant use
 179      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 180      * removal or resizing) they are converted back to plain bins.  In
 181      * usages with well-distributed user hashCodes, tree bins are
 182      * rarely used.  Ideally, under random hashCodes, the frequency of
 183      * nodes in bins follows a Poisson distribution
 184      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 185      * parameter of about 0.5 on average for the default resizing
 186      * threshold of 0.75, although with a large variance because of
 187      * resizing granularity. Ignoring variance, the expected
 188      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 189      * factorial(k)). The first values are:
 190      *
 191      * 0:    0.60653066
 192      * 1:    0.30326533
 193      * 2:    0.07581633
 194      * 3:    0.01263606
 195      * 4:    0.00157952
 196      * 5:    0.00015795
 197      * 6:    0.00001316
 198      * 7:    0.00000094
 199      * 8:    0.00000006
 200      * more: less than 1 in ten million
 201      *
 202      * The root of a tree bin is normally its first node.  However,
 203      * sometimes (currently only upon Iterator.remove), the root might
 204      * be elsewhere, but can be recovered following parent links
 205      * (method TreeNode.root()).
 206      *
 207      * All applicable internal methods accept a hash code as an
 208      * argument (as normally supplied from a public method), allowing
 209      * them to call each other without recomputing user hashCodes.
 210      * Most internal methods also accept a "tab" argument, that is
 211      * normally the current table, but may be a new or old one when
 212      * resizing or converting.
 213      *
 214      * When bin lists are treeified, split, or untreeified, we keep
 215      * them in the same relative access/traversal order (i.e., field
 216      * Node.next) to better preserve locality, and to slightly
 217      * simplify handling of splits and traversals that invoke
 218      * iterator.remove. When using comparators on insertion, to keep a
 219      * total ordering (or as close as is required here) across
 220      * rebalancings, we compare classes and identityHashCodes as
 221      * tie-breakers.
 222      *
 223      * The use and transitions among plain vs tree modes is
 224      * complicated by the existence of subclass LinkedHashMap. See
 225      * below for hook methods defined to be invoked upon insertion,
 226      * removal and access that allow LinkedHashMap internals to
 227      * otherwise remain independent of these mechanics. (This also
 228      * requires that a map instance be passed to some utility methods
 229      * that may create new nodes.)
 230      *
 231      * The concurrent-programming-like SSA-based coding style helps
 232      * avoid aliasing errors amid all of the twisty pointer operations.
 233      */
 234 
 235     /**
 236      * The default initial capacity - MUST be a power of two.
 237      */
 238     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 239 
 240     /**
 241      * The maximum capacity, used if a higher value is implicitly specified
 242      * by either of the constructors with arguments.
 243      * MUST be a power of two <= 1<<30.
 244      */
 245     static final int MAXIMUM_CAPACITY = 1 << 30;
 246 
 247     /**
 248      * The load factor used when none specified in constructor.
 249      */
 250     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 251 
 252     /**
 253      * The bin count threshold for using a tree rather than list for a
 254      * bin.  Bins are converted to trees when adding an element to a
 255      * bin with at least this many nodes. The value must be greater
 256      * than 2 and should be at least 8 to mesh with assumptions in
 257      * tree removal about conversion back to plain bins upon
 258      * shrinkage.
 259      */
 260     static final int TREEIFY_THRESHOLD = 8;
 261 
 262     /**
 263      * The bin count threshold for untreeifying a (split) bin during a
 264      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 265      * most 6 to mesh with shrinkage detection under removal.
 266      */
 267     static final int UNTREEIFY_THRESHOLD = 6;
 268 
 269     /**
 270      * The smallest table capacity for which bins may be treeified.
 271      * (Otherwise the table is resized if too many nodes in a bin.)
 272      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 273      * between resizing and treeification thresholds.
 274      */
 275     static final int MIN_TREEIFY_CAPACITY = 64;
 276 
 277     /**
 278      * Basic hash bin node, used for most entries.  (See below for
 279      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 280      */
 281     static class Node<K,V> implements Map.Entry<K,V> {
 282         final int hash;
 283         final K key;
 284         V value;
 285         Node<K,V> next;
 286 
 287         Node(int hash, K key, V value, Node<K,V> next) {
 288             this.hash = hash;
 289             this.key = key;
 290             this.value = value;
 291             this.next = next;
 292         }
 293 
 294         public final K getKey()        { return key; }
 295         public final V getValue()      { return value; }
 296         public final String toString() { return key + "=" + value; }
 297 
 298         public final int hashCode() {
 299             return Objects.hashCode(key) ^ Objects.hashCode(value);
 300         }
 301 
 302         public final V setValue(V newValue) {
 303             V oldValue = value;
 304             value = newValue;
 305             return oldValue;
 306         }
 307 
 308         public final boolean equals(Object o) {
 309             if (o == this)
 310                 return true;
 311 
 312             return o instanceof Map.Entry<?, ?> e
 313                     && Objects.equals(key, e.getKey())
 314                     && Objects.equals(value, e.getValue());
 315         }
 316     }
 317 
 318     /* ---------------- Static utilities -------------- */
 319 
 320     /**
 321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 322      * to lower.  Because the table uses power-of-two masking, sets of
 323      * hashes that vary only in bits above the current mask will
 324      * always collide. (Among known examples are sets of Float keys
 325      * holding consecutive whole numbers in small tables.)  So we
 326      * apply a transform that spreads the impact of higher bits
 327      * downward. There is a tradeoff between speed, utility, and
 328      * quality of bit-spreading. Because many common sets of hashes
 329      * are already reasonably distributed (so don't benefit from
 330      * spreading), and because we use trees to handle large sets of
 331      * collisions in bins, we just XOR some shifted bits in the
 332      * cheapest possible way to reduce systematic lossage, as well as
 333      * to incorporate impact of the highest bits that would otherwise
 334      * never be used in index calculations because of table bounds.
 335      */
 336     static final int hash(Object key) {
 337         int h;
 338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 339     }
 340 
 341     /**
 342      * Returns x's Class if it is of the form "class C implements
 343      * Comparable<C>", else null.
 344      */
 345     static Class<?> comparableClassFor(Object x) {
 346         if (x instanceof Comparable) {
 347             Class<?> c; Type[] ts, as; ParameterizedType p;
 348             if ((c = x.getClass()) == String.class) // bypass checks
 349                 return c;
 350             if ((ts = c.getGenericInterfaces()) != null) {
 351                 for (Type t : ts) {
 352                     if ((t instanceof ParameterizedType) &&
 353                         ((p = (ParameterizedType) t).getRawType() ==
 354                          Comparable.class) &&
 355                         (as = p.getActualTypeArguments()) != null &&
 356                         as.length == 1 && as[0] == c) // type arg is c
 357                         return c;
 358                 }
 359             }
 360         }
 361         return null;
 362     }
 363 
 364     /**
 365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 366      * class), else 0.
 367      */
 368     @SuppressWarnings("unchecked") // for cast to Comparable
 369     static int compareComparables(Class<?> kc, Object k, Object x) {
 370         return (x == null || x.getClass() != kc ? 0 :
 371                 ((Comparable)k).compareTo(x));
 372     }
 373 
 374     /**
 375      * Returns a power of two size for the given target capacity.
 376      */
 377     static final int tableSizeFor(int cap) {
 378         int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
 379         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 380     }
 381 
 382     /* ---------------- Fields -------------- */
 383 
 384     /**
 385      * The table, initialized on first use, and resized as
 386      * necessary. When allocated, length is always a power of two.
 387      * (We also tolerate length zero in some operations to allow
 388      * bootstrapping mechanics that are currently not needed.)
 389      */
 390     transient Node<K,V>[] table;
 391 
 392     /**
 393      * Holds cached entrySet(). Note that AbstractMap fields are used
 394      * for keySet() and values().
 395      */
 396     transient Set<Map.Entry<K,V>> entrySet;
 397 
 398     /**
 399      * The number of key-value mappings contained in this map.
 400      */
 401     transient int size;
 402 
 403     /**
 404      * The number of times this HashMap has been structurally modified
 405      * Structural modifications are those that change the number of mappings in
 406      * the HashMap or otherwise modify its internal structure (e.g.,
 407      * rehash).  This field is used to make iterators on Collection-views of
 408      * the HashMap fail-fast.  (See ConcurrentModificationException).
 409      */
 410     transient int modCount;
 411 
 412     /**
 413      * The next size value at which to resize (capacity * load factor).
 414      *
 415      * @serial
 416      */
 417     // (The javadoc description is true upon serialization.
 418     // Additionally, if the table array has not been allocated, this
 419     // field holds the initial array capacity, or zero signifying
 420     // DEFAULT_INITIAL_CAPACITY.)
 421     int threshold;
 422 
 423     /**
 424      * The load factor for the hash table.
 425      *
 426      * @serial
 427      */
 428     final float loadFactor;
 429 
 430     /* ---------------- Public operations -------------- */
 431 
 432     /**
 433      * Constructs an empty {@code HashMap} with the specified initial
 434      * capacity and load factor.
 435      *
 436      * @apiNote
 437      * To create a {@code HashMap} with an initial capacity that accommodates
 438      * an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
 439      *
 440      * @param  initialCapacity the initial capacity
 441      * @param  loadFactor      the load factor
 442      * @throws IllegalArgumentException if the initial capacity is negative
 443      *         or the load factor is nonpositive
 444      */
 445     public HashMap(int initialCapacity, float loadFactor) {
 446         if (initialCapacity < 0)
 447             throw new IllegalArgumentException("Illegal initial capacity: " +
 448                                                initialCapacity);
 449         if (initialCapacity > MAXIMUM_CAPACITY)
 450             initialCapacity = MAXIMUM_CAPACITY;
 451         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 452             throw new IllegalArgumentException("Illegal load factor: " +
 453                                                loadFactor);
 454         this.loadFactor = loadFactor;
 455         this.threshold = tableSizeFor(initialCapacity);
 456     }
 457 
 458     /**
 459      * Constructs an empty {@code HashMap} with the specified initial
 460      * capacity and the default load factor (0.75).
 461      *
 462      * @apiNote
 463      * To create a {@code HashMap} with an initial capacity that accommodates
 464      * an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
 465      *
 466      * @param  initialCapacity the initial capacity.
 467      * @throws IllegalArgumentException if the initial capacity is negative.
 468      */
 469     public HashMap(int initialCapacity) {
 470         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 471     }
 472 
 473     /**
 474      * Constructs an empty {@code HashMap} with the default initial capacity
 475      * (16) and the default load factor (0.75).
 476      */
 477     public HashMap() {
 478         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 479     }
 480 
 481     /**
 482      * Constructs a new {@code HashMap} with the same mappings as the
 483      * specified {@code Map}.  The {@code HashMap} is created with
 484      * default load factor (0.75) and an initial capacity sufficient to
 485      * hold the mappings in the specified {@code Map}.
 486      *
 487      * @param   m the map whose mappings are to be placed in this map
 488      * @throws  NullPointerException if the specified map is null
 489      */
 490     @SuppressWarnings("this-escape")
 491     public HashMap(Map<? extends K, ? extends V> m) {
 492         this.loadFactor = DEFAULT_LOAD_FACTOR;
 493         putMapEntries(m, false);
 494     }
 495 
 496     /**
 497      * Implements Map.putAll and Map constructor.
 498      *
 499      * @param m the map
 500      * @param evict false when initially constructing this map, else
 501      * true (relayed to method afterNodeInsertion).
 502      */
 503     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 504         int s = m.size();
 505         if (s > 0) {
 506             if (table == null) { // pre-size
 507                 double dt = Math.ceil(s / (double)loadFactor);
 508                 int t = ((dt < (double)MAXIMUM_CAPACITY) ?
 509                          (int)dt : MAXIMUM_CAPACITY);
 510                 if (t > threshold)
 511                     threshold = tableSizeFor(t);
 512             } else {
 513                 // Because of linked-list bucket constraints, we cannot
 514                 // expand all at once, but can reduce total resize
 515                 // effort by repeated doubling now vs later
 516                 while (s > threshold && table.length < MAXIMUM_CAPACITY)
 517                     resize();
 518             }
 519 
 520             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 521                 K key = e.getKey();
 522                 V value = e.getValue();
 523                 putVal(hash(key), key, value, false, evict);
 524             }
 525         }
 526     }
 527 
 528     /**
 529      * Returns the number of key-value mappings in this map.
 530      *
 531      * @return the number of key-value mappings in this map
 532      */
 533     public int size() {
 534         return size;
 535     }
 536 
 537     /**
 538      * Returns {@code true} if this map contains no key-value mappings.
 539      *
 540      * @return {@code true} if this map contains no key-value mappings
 541      */
 542     public boolean isEmpty() {
 543         return size == 0;
 544     }
 545 
 546     /**
 547      * Returns the value to which the specified key is mapped,
 548      * or {@code null} if this map contains no mapping for the key.
 549      *
 550      * <p>More formally, if this map contains a mapping from a key
 551      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 552      * key.equals(k))}, then this method returns {@code v}; otherwise
 553      * it returns {@code null}.  (There can be at most one such mapping.)
 554      *
 555      * <p>A return value of {@code null} does not <i>necessarily</i>
 556      * indicate that the map contains no mapping for the key; it's also
 557      * possible that the map explicitly maps the key to {@code null}.
 558      * The {@link #containsKey containsKey} operation may be used to
 559      * distinguish these two cases.
 560      *
 561      * @see #put(Object, Object)
 562      */
 563     public V get(Object key) {
 564         Node<K,V> e;
 565         return (e = getNode(key)) == null ? null : e.value;
 566     }
 567 
 568     /**
 569      * Implements Map.get and related methods.
 570      *
 571      * @param key the key
 572      * @return the node, or null if none
 573      */
 574     final Node<K,V> getNode(Object key) {
 575         Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;
 576         if ((tab = table) != null && (n = tab.length) > 0 &&
 577             (first = tab[(n - 1) & (hash = hash(key))]) != null) {
 578             if (first.hash == hash && // always check first node
 579                 ((k = first.key) == key || (key != null && key.equals(k))))
 580                 return first;
 581             if ((e = first.next) != null) {
 582                 if (first instanceof TreeNode)
 583                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 584                 do {
 585                     if (e.hash == hash &&
 586                         ((k = e.key) == key || (key != null && key.equals(k))))
 587                         return e;
 588                 } while ((e = e.next) != null);
 589             }
 590         }
 591         return null;
 592     }
 593 
 594     /**
 595      * Returns {@code true} if this map contains a mapping for the
 596      * specified key.
 597      *
 598      * @param   key   The key whose presence in this map is to be tested
 599      * @return {@code true} if this map contains a mapping for the specified
 600      * key.
 601      */
 602     public boolean containsKey(Object key) {
 603         return getNode(key) != null;
 604     }
 605 
 606     /**
 607      * Associates the specified value with the specified key in this map.
 608      * If the map previously contained a mapping for the key, the old
 609      * value is replaced.
 610      *
 611      * @param key key with which the specified value is to be associated
 612      * @param value value to be associated with the specified key
 613      * @return the previous value associated with {@code key}, or
 614      *         {@code null} if there was no mapping for {@code key}.
 615      *         (A {@code null} return can also indicate that the map
 616      *         previously associated {@code null} with {@code key}.)
 617      */
 618     public V put(K key, V value) {
 619         return putVal(hash(key), key, value, false, true);
 620     }
 621 
 622     /**
 623      * Implements Map.put and related methods.
 624      *
 625      * @param hash hash for key
 626      * @param key the key
 627      * @param value the value to put
 628      * @param onlyIfAbsent if true, don't change existing value
 629      * @param evict if false, the table is in creation mode.
 630      * @return previous value, or null if none
 631      */
 632     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 633                    boolean evict) {
 634         Node<K,V>[] tab; Node<K,V> p; int n, i;
 635         if ((tab = table) == null || (n = tab.length) == 0)
 636             n = (tab = resize()).length;
 637         if ((p = tab[i = (n - 1) & hash]) == null)
 638             tab[i] = newNode(hash, key, value, null);
 639         else {
 640             Node<K,V> e; K k;
 641             if (p.hash == hash &&
 642                 ((k = p.key) == key || (key != null && key.equals(k))))
 643                 e = p;
 644             else if (p instanceof TreeNode)
 645                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 646             else {
 647                 for (int binCount = 0; ; ++binCount) {
 648                     if ((e = p.next) == null) {
 649                         p.next = newNode(hash, key, value, null);
 650                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 651                             treeifyBin(tab, hash);
 652                         break;
 653                     }
 654                     if (e.hash == hash &&
 655                         ((k = e.key) == key || (key != null && key.equals(k))))
 656                         break;
 657                     p = e;
 658                 }
 659             }
 660             if (e != null) { // existing mapping for key
 661                 V oldValue = e.value;
 662                 if (!onlyIfAbsent || oldValue == null)
 663                     e.value = value;
 664                 afterNodeAccess(e);
 665                 return oldValue;
 666             }
 667         }
 668         ++modCount;
 669         if (++size > threshold)
 670             resize();
 671         afterNodeInsertion(evict);
 672         return null;
 673     }
 674 
 675     /**
 676      * Initializes or doubles table size.  If null, allocates in
 677      * accord with initial capacity target held in field threshold.
 678      * Otherwise, because we are using power-of-two expansion, the
 679      * elements from each bin must either stay at same index, or move
 680      * with a power of two offset in the new table.
 681      *
 682      * @return the table
 683      */
 684     final Node<K,V>[] resize() {
 685         Node<K,V>[] oldTab = table;
 686         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 687         int oldThr = threshold;
 688         int newCap, newThr = 0;
 689         if (oldCap > 0) {
 690             if (oldCap >= MAXIMUM_CAPACITY) {
 691                 threshold = Integer.MAX_VALUE;
 692                 return oldTab;
 693             }
 694             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 695                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 696                 newThr = oldThr << 1; // double threshold
 697         }
 698         else if (oldThr > 0) // initial capacity was placed in threshold
 699             newCap = oldThr;
 700         else {               // zero initial threshold signifies using defaults
 701             newCap = DEFAULT_INITIAL_CAPACITY;
 702             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 703         }
 704         if (newThr == 0) {
 705             float ft = (float)newCap * loadFactor;
 706             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 707                       (int)ft : Integer.MAX_VALUE);
 708         }
 709         threshold = newThr;
 710         @SuppressWarnings({"rawtypes","unchecked"})
 711         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 712         table = newTab;
 713         if (oldTab != null) {
 714             for (int j = 0; j < oldCap; ++j) {
 715                 Node<K,V> e;
 716                 if ((e = oldTab[j]) != null) {
 717                     oldTab[j] = null;
 718                     if (e.next == null)
 719                         newTab[e.hash & (newCap - 1)] = e;
 720                     else if (e instanceof TreeNode)
 721                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 722                     else { // preserve order
 723                         Node<K,V> loHead = null, loTail = null;
 724                         Node<K,V> hiHead = null, hiTail = null;
 725                         Node<K,V> next;
 726                         do {
 727                             next = e.next;
 728                             if ((e.hash & oldCap) == 0) {
 729                                 if (loTail == null)
 730                                     loHead = e;
 731                                 else
 732                                     loTail.next = e;
 733                                 loTail = e;
 734                             }
 735                             else {
 736                                 if (hiTail == null)
 737                                     hiHead = e;
 738                                 else
 739                                     hiTail.next = e;
 740                                 hiTail = e;
 741                             }
 742                         } while ((e = next) != null);
 743                         if (loTail != null) {
 744                             loTail.next = null;
 745                             newTab[j] = loHead;
 746                         }
 747                         if (hiTail != null) {
 748                             hiTail.next = null;
 749                             newTab[j + oldCap] = hiHead;
 750                         }
 751                     }
 752                 }
 753             }
 754         }
 755         return newTab;
 756     }
 757 
 758     /**
 759      * Replaces all linked nodes in bin at index for given hash unless
 760      * table is too small, in which case resizes instead.
 761      */
 762     final void treeifyBin(Node<K,V>[] tab, int hash) {
 763         int n, index; Node<K,V> e;
 764         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 765             resize();
 766         else if ((e = tab[index = (n - 1) & hash]) != null) {
 767             TreeNode<K,V> hd = null, tl = null;
 768             do {
 769                 TreeNode<K,V> p = replacementTreeNode(e, null);
 770                 if (tl == null)
 771                     hd = p;
 772                 else {
 773                     p.prev = tl;
 774                     tl.next = p;
 775                 }
 776                 tl = p;
 777             } while ((e = e.next) != null);
 778             if ((tab[index] = hd) != null)
 779                 hd.treeify(tab);
 780         }
 781     }
 782 
 783     /**
 784      * Copies all of the mappings from the specified map to this map.
 785      * These mappings will replace any mappings that this map had for
 786      * any of the keys currently in the specified map.
 787      *
 788      * @param m mappings to be stored in this map
 789      * @throws NullPointerException if the specified map is null
 790      */
 791     public void putAll(Map<? extends K, ? extends V> m) {
 792         putMapEntries(m, true);
 793     }
 794 
 795     /**
 796      * Removes the mapping for the specified key from this map if present.
 797      *
 798      * @param  key key whose mapping is to be removed from the map
 799      * @return the previous value associated with {@code key}, or
 800      *         {@code null} if there was no mapping for {@code key}.
 801      *         (A {@code null} return can also indicate that the map
 802      *         previously associated {@code null} with {@code key}.)
 803      */
 804     public V remove(Object key) {
 805         Node<K,V> e;
 806         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 807             null : e.value;
 808     }
 809 
 810     /**
 811      * Implements Map.remove and related methods.
 812      *
 813      * @param hash hash for key
 814      * @param key the key
 815      * @param value the value to match if matchValue, else ignored
 816      * @param matchValue if true only remove if value is equal
 817      * @param movable if false do not move other nodes while removing
 818      * @return the node, or null if none
 819      */
 820     final Node<K,V> removeNode(int hash, Object key, Object value,
 821                                boolean matchValue, boolean movable) {
 822         Node<K,V>[] tab; Node<K,V> p; int n, index;
 823         if ((tab = table) != null && (n = tab.length) > 0 &&
 824             (p = tab[index = (n - 1) & hash]) != null) {
 825             Node<K,V> node = null, e; K k; V v;
 826             if (p.hash == hash &&
 827                 ((k = p.key) == key || (key != null && key.equals(k))))
 828                 node = p;
 829             else if ((e = p.next) != null) {
 830                 if (p instanceof TreeNode)
 831                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 832                 else {
 833                     do {
 834                         if (e.hash == hash &&
 835                             ((k = e.key) == key ||
 836                              (key != null && key.equals(k)))) {
 837                             node = e;
 838                             break;
 839                         }
 840                         p = e;
 841                     } while ((e = e.next) != null);
 842                 }
 843             }
 844             if (node != null && (!matchValue || (v = node.value) == value ||
 845                                  (value != null && value.equals(v)))) {
 846                 if (node instanceof TreeNode)
 847                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 848                 else if (node == p)
 849                     tab[index] = node.next;
 850                 else
 851                     p.next = node.next;
 852                 ++modCount;
 853                 --size;
 854                 afterNodeRemoval(node);
 855                 return node;
 856             }
 857         }
 858         return null;
 859     }
 860 
 861     /**
 862      * Removes all of the mappings from this map.
 863      * The map will be empty after this call returns.
 864      */
 865     public void clear() {
 866         Node<K,V>[] tab;
 867         modCount++;
 868         if ((tab = table) != null && size > 0) {
 869             size = 0;
 870             for (int i = 0; i < tab.length; ++i)
 871                 tab[i] = null;
 872         }
 873     }
 874 
 875     /**
 876      * Returns {@code true} if this map maps one or more keys to the
 877      * specified value.
 878      *
 879      * @param value value whose presence in this map is to be tested
 880      * @return {@code true} if this map maps one or more keys to the
 881      *         specified value
 882      */
 883     public boolean containsValue(Object value) {
 884         Node<K,V>[] tab; V v;
 885         if ((tab = table) != null && size > 0) {
 886             for (Node<K,V> e : tab) {
 887                 for (; e != null; e = e.next) {
 888                     if ((v = e.value) == value ||
 889                         (value != null && value.equals(v)))
 890                         return true;
 891                 }
 892             }
 893         }
 894         return false;
 895     }
 896 
 897     /**
 898      * Returns a {@link Set} view of the keys contained in this map.
 899      * The set is backed by the map, so changes to the map are
 900      * reflected in the set, and vice-versa.  If the map is modified
 901      * while an iteration over the set is in progress (except through
 902      * the iterator's own {@code remove} operation), the results of
 903      * the iteration are undefined.  The set supports element removal,
 904      * which removes the corresponding mapping from the map, via the
 905      * {@code Iterator.remove}, {@code Set.remove},
 906      * {@code removeAll}, {@code retainAll}, and {@code clear}
 907      * operations.  It does not support the {@code add} or {@code addAll}
 908      * operations.
 909      *
 910      * @return a set view of the keys contained in this map
 911      */
 912     public Set<K> keySet() {
 913         Set<K> ks = keySet;
 914         if (ks == null) {
 915             ks = new KeySet();
 916             keySet = ks;
 917         }
 918         return ks;
 919     }
 920 
 921     /**
 922      * Prepares the array for {@link Collection#toArray(Object[])} implementation.
 923      * If supplied array is smaller than this map size, a new array is allocated.
 924      * If supplied array is bigger than this map size, a null is written at size index.
 925      *
 926      * @param a an original array passed to {@code toArray()} method
 927      * @param <T> type of array elements
 928      * @return an array ready to be filled and returned from {@code toArray()} method.
 929      */
 930     @SuppressWarnings("unchecked")
 931     final <T> T[] prepareArray(T[] a) {
 932         int size = this.size;
 933         if (a.length < size) {
 934             return (T[]) java.lang.reflect.Array
 935                     .newInstance(a.getClass().getComponentType(), size);
 936         }
 937         if (a.length > size) {
 938             a[size] = null;
 939         }
 940         return a;
 941     }
 942 
 943     /**
 944      * Fills an array with this map keys and returns it. This method assumes
 945      * that input array is big enough to fit all the keys. Use
 946      * {@link #prepareArray(Object[])} to ensure this.
 947      *
 948      * @param a an array to fill
 949      * @param <T> type of array elements
 950      * @return supplied array
 951      */
 952     <T> T[] keysToArray(T[] a) {
 953         Object[] r = a;
 954         Node<K,V>[] tab;
 955         int idx = 0;
 956         if (size > 0 && (tab = table) != null) {
 957             for (Node<K,V> e : tab) {
 958                 for (; e != null; e = e.next) {
 959                     r[idx++] = e.key;
 960                 }
 961             }
 962         }
 963         return a;
 964     }
 965 
 966     /**
 967      * Fills an array with this map values and returns it. This method assumes
 968      * that input array is big enough to fit all the values. Use
 969      * {@link #prepareArray(Object[])} to ensure this.
 970      *
 971      * @param a an array to fill
 972      * @param <T> type of array elements
 973      * @return supplied array
 974      */
 975     <T> T[] valuesToArray(T[] a) {
 976         Object[] r = a;
 977         Node<K,V>[] tab;
 978         int idx = 0;
 979         if (size > 0 && (tab = table) != null) {
 980             for (Node<K,V> e : tab) {
 981                 for (; e != null; e = e.next) {
 982                     r[idx++] = e.value;
 983                 }
 984             }
 985         }
 986         return a;
 987     }
 988 
 989     final class KeySet extends AbstractSet<K> {
 990         public final int size()                 { return size; }
 991         public final void clear()               { HashMap.this.clear(); }
 992         public final Iterator<K> iterator()     { return new KeyIterator(); }
 993         public final boolean contains(Object o) { return containsKey(o); }
 994         public final boolean remove(Object key) {
 995             return removeNode(hash(key), key, null, false, true) != null;
 996         }
 997         public final Spliterator<K> spliterator() {
 998             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 999         }
1000 
1001         public Object[] toArray() {
1002             return keysToArray(new Object[size]);
1003         }
1004 
1005         public <T> T[] toArray(T[] a) {
1006             return keysToArray(prepareArray(a));
1007         }
1008 
1009         public final void forEach(Consumer<? super K> action) {
1010             Node<K,V>[] tab;
1011             if (action == null)
1012                 throw new NullPointerException();
1013             if (size > 0 && (tab = table) != null) {
1014                 int mc = modCount;
1015                 for (Node<K,V> e : tab) {
1016                     for (; e != null; e = e.next)
1017                         action.accept(e.key);
1018                 }
1019                 if (modCount != mc)
1020                     throw new ConcurrentModificationException();
1021             }
1022         }
1023     }
1024 
1025     /**
1026      * Returns a {@link Collection} view of the values contained in this map.
1027      * The collection is backed by the map, so changes to the map are
1028      * reflected in the collection, and vice-versa.  If the map is
1029      * modified while an iteration over the collection is in progress
1030      * (except through the iterator's own {@code remove} operation),
1031      * the results of the iteration are undefined.  The collection
1032      * supports element removal, which removes the corresponding
1033      * mapping from the map, via the {@code Iterator.remove},
1034      * {@code Collection.remove}, {@code removeAll},
1035      * {@code retainAll} and {@code clear} operations.  It does not
1036      * support the {@code add} or {@code addAll} operations.
1037      *
1038      * @return a view of the values contained in this map
1039      */
1040     public Collection<V> values() {
1041         Collection<V> vs = values;
1042         if (vs == null) {
1043             vs = new Values();
1044             values = vs;
1045         }
1046         return vs;
1047     }
1048 
1049     final class Values extends AbstractCollection<V> {
1050         public final int size()                 { return size; }
1051         public final void clear()               { HashMap.this.clear(); }
1052         public final Iterator<V> iterator()     { return new ValueIterator(); }
1053         public final boolean contains(Object o) { return containsValue(o); }
1054         public final Spliterator<V> spliterator() {
1055             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
1056         }
1057 
1058         public Object[] toArray() {
1059             return valuesToArray(new Object[size]);
1060         }
1061 
1062         public <T> T[] toArray(T[] a) {
1063             return valuesToArray(prepareArray(a));
1064         }
1065 
1066         public final void forEach(Consumer<? super V> action) {
1067             Node<K,V>[] tab;
1068             if (action == null)
1069                 throw new NullPointerException();
1070             if (size > 0 && (tab = table) != null) {
1071                 int mc = modCount;
1072                 for (Node<K,V> e : tab) {
1073                     for (; e != null; e = e.next)
1074                         action.accept(e.value);
1075                 }
1076                 if (modCount != mc)
1077                     throw new ConcurrentModificationException();
1078             }
1079         }
1080     }
1081 
1082     /**
1083      * Returns a {@link Set} view of the mappings contained in this map.
1084      * The set is backed by the map, so changes to the map are
1085      * reflected in the set, and vice-versa.  If the map is modified
1086      * while an iteration over the set is in progress (except through
1087      * the iterator's own {@code remove} operation, or through the
1088      * {@code setValue} operation on a map entry returned by the
1089      * iterator) the results of the iteration are undefined.  The set
1090      * supports element removal, which removes the corresponding
1091      * mapping from the map, via the {@code Iterator.remove},
1092      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1093      * {@code clear} operations.  It does not support the
1094      * {@code add} or {@code addAll} operations.
1095      *
1096      * @return a set view of the mappings contained in this map
1097      */
1098     public Set<Map.Entry<K,V>> entrySet() {
1099         Set<Map.Entry<K,V>> es;
1100         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1101     }
1102 
1103     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1104         public final int size()                 { return size; }
1105         public final void clear()               { HashMap.this.clear(); }
1106         public final Iterator<Map.Entry<K,V>> iterator() {
1107             return new EntryIterator();
1108         }
1109         public final boolean contains(Object o) {
1110             if (!(o instanceof Map.Entry<?, ?> e))
1111                 return false;
1112             Object key = e.getKey();
1113             Node<K,V> candidate = getNode(key);
1114             return candidate != null && candidate.equals(e);
1115         }
1116         public final boolean remove(Object o) {
1117             if (o instanceof Map.Entry<?, ?> e) {
1118                 Object key = e.getKey();
1119                 Object value = e.getValue();
1120                 return removeNode(hash(key), key, value, true, true) != null;
1121             }
1122             return false;
1123         }
1124         public final Spliterator<Map.Entry<K,V>> spliterator() {
1125             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1126         }
1127         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1128             Node<K,V>[] tab;
1129             if (action == null)
1130                 throw new NullPointerException();
1131             if (size > 0 && (tab = table) != null) {
1132                 int mc = modCount;
1133                 for (Node<K,V> e : tab) {
1134                     for (; e != null; e = e.next)
1135                         action.accept(e);
1136                 }
1137                 if (modCount != mc)
1138                     throw new ConcurrentModificationException();
1139             }
1140         }
1141     }
1142 
1143     // Overrides of JDK8 Map extension methods
1144 
1145     @Override
1146     public V getOrDefault(Object key, V defaultValue) {
1147         Node<K,V> e;
1148         return (e = getNode(key)) == null ? defaultValue : e.value;
1149     }
1150 
1151     @Override
1152     public V putIfAbsent(K key, V value) {
1153         return putVal(hash(key), key, value, true, true);
1154     }
1155 
1156     @Override
1157     public boolean remove(Object key, Object value) {
1158         return removeNode(hash(key), key, value, true, true) != null;
1159     }
1160 
1161     @Override
1162     public boolean replace(K key, V oldValue, V newValue) {
1163         Node<K,V> e; V v;
1164         if ((e = getNode(key)) != null &&
1165             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1166             e.value = newValue;
1167             afterNodeAccess(e);
1168             return true;
1169         }
1170         return false;
1171     }
1172 
1173     @Override
1174     public V replace(K key, V value) {
1175         Node<K,V> e;
1176         if ((e = getNode(key)) != null) {
1177             V oldValue = e.value;
1178             e.value = value;
1179             afterNodeAccess(e);
1180             return oldValue;
1181         }
1182         return null;
1183     }
1184 
1185     /**
1186      * {@inheritDoc}
1187      *
1188      * <p>This method will, on a best-effort basis, throw a
1189      * {@link ConcurrentModificationException} if it is detected that the
1190      * mapping function modifies this map during computation.
1191      *
1192      * @throws ConcurrentModificationException if it is detected that the
1193      * mapping function modified this map
1194      */
1195     @Override
1196     public V computeIfAbsent(K key,
1197                              Function<? super K, ? extends V> mappingFunction) {
1198         if (mappingFunction == null)
1199             throw new NullPointerException();
1200         int hash = hash(key);
1201         Node<K,V>[] tab; Node<K,V> first; int n, i;
1202         int binCount = 0;
1203         TreeNode<K,V> t = null;
1204         Node<K,V> old = null;
1205         if (size > threshold || (tab = table) == null ||
1206             (n = tab.length) == 0)
1207             n = (tab = resize()).length;
1208         if ((first = tab[i = (n - 1) & hash]) != null) {
1209             if (first instanceof TreeNode)
1210                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1211             else {
1212                 Node<K,V> e = first; K k;
1213                 do {
1214                     if (e.hash == hash &&
1215                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1216                         old = e;
1217                         break;
1218                     }
1219                     ++binCount;
1220                 } while ((e = e.next) != null);
1221             }
1222             V oldValue;
1223             if (old != null && (oldValue = old.value) != null) {
1224                 afterNodeAccess(old);
1225                 return oldValue;
1226             }
1227         }
1228         int mc = modCount;
1229         V v = mappingFunction.apply(key);
1230         if (mc != modCount) { throw new ConcurrentModificationException(); }
1231         if (v == null) {
1232             return null;
1233         } else if (old != null) {
1234             old.value = v;
1235             afterNodeAccess(old);
1236             return v;
1237         }
1238         else if (t != null)
1239             t.putTreeVal(this, tab, hash, key, v);
1240         else {
1241             tab[i] = newNode(hash, key, v, first);
1242             if (binCount >= TREEIFY_THRESHOLD - 1)
1243                 treeifyBin(tab, hash);
1244         }
1245         modCount = mc + 1;
1246         ++size;
1247         afterNodeInsertion(true);
1248         return v;
1249     }
1250 
1251     /**
1252      * {@inheritDoc}
1253      *
1254      * <p>This method will, on a best-effort basis, throw a
1255      * {@link ConcurrentModificationException} if it is detected that the
1256      * remapping function modifies this map during computation.
1257      *
1258      * @throws ConcurrentModificationException if it is detected that the
1259      * remapping function modified this map
1260      */
1261     @Override
1262     public V computeIfPresent(K key,
1263                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1264         if (remappingFunction == null)
1265             throw new NullPointerException();
1266         Node<K,V> e; V oldValue;
1267         if ((e = getNode(key)) != null &&
1268             (oldValue = e.value) != null) {
1269             int mc = modCount;
1270             V v = remappingFunction.apply(key, oldValue);
1271             if (mc != modCount) { throw new ConcurrentModificationException(); }
1272             if (v != null) {
1273                 e.value = v;
1274                 afterNodeAccess(e);
1275                 return v;
1276             }
1277             else {
1278                 int hash = hash(key);
1279                 removeNode(hash, key, null, false, true);
1280             }
1281         }
1282         return null;
1283     }
1284 
1285     /**
1286      * {@inheritDoc}
1287      *
1288      * <p>This method will, on a best-effort basis, throw a
1289      * {@link ConcurrentModificationException} if it is detected that the
1290      * remapping function modifies this map during computation.
1291      *
1292      * @throws ConcurrentModificationException if it is detected that the
1293      * remapping function modified this map
1294      */
1295     @Override
1296     public V compute(K key,
1297                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1298         if (remappingFunction == null)
1299             throw new NullPointerException();
1300         int hash = hash(key);
1301         Node<K,V>[] tab; Node<K,V> first; int n, i;
1302         int binCount = 0;
1303         TreeNode<K,V> t = null;
1304         Node<K,V> old = null;
1305         if (size > threshold || (tab = table) == null ||
1306             (n = tab.length) == 0)
1307             n = (tab = resize()).length;
1308         if ((first = tab[i = (n - 1) & hash]) != null) {
1309             if (first instanceof TreeNode)
1310                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1311             else {
1312                 Node<K,V> e = first; K k;
1313                 do {
1314                     if (e.hash == hash &&
1315                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1316                         old = e;
1317                         break;
1318                     }
1319                     ++binCount;
1320                 } while ((e = e.next) != null);
1321             }
1322         }
1323         V oldValue = (old == null) ? null : old.value;
1324         int mc = modCount;
1325         V v = remappingFunction.apply(key, oldValue);
1326         if (mc != modCount) { throw new ConcurrentModificationException(); }
1327         if (old != null) {
1328             if (v != null) {
1329                 old.value = v;
1330                 afterNodeAccess(old);
1331             }
1332             else
1333                 removeNode(hash, key, null, false, true);
1334         }
1335         else if (v != null) {
1336             if (t != null)
1337                 t.putTreeVal(this, tab, hash, key, v);
1338             else {
1339                 tab[i] = newNode(hash, key, v, first);
1340                 if (binCount >= TREEIFY_THRESHOLD - 1)
1341                     treeifyBin(tab, hash);
1342             }
1343             modCount = mc + 1;
1344             ++size;
1345             afterNodeInsertion(true);
1346         }
1347         return v;
1348     }
1349 
1350     /**
1351      * {@inheritDoc}
1352      *
1353      * <p>This method will, on a best-effort basis, throw a
1354      * {@link ConcurrentModificationException} if it is detected that the
1355      * remapping function modifies this map during computation.
1356      *
1357      * @throws ConcurrentModificationException if it is detected that the
1358      * remapping function modified this map
1359      */
1360     @Override
1361     public V merge(K key, V value,
1362                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1363         if (value == null || remappingFunction == null)
1364             throw new NullPointerException();
1365         int hash = hash(key);
1366         Node<K,V>[] tab; Node<K,V> first; int n, i;
1367         int binCount = 0;
1368         TreeNode<K,V> t = null;
1369         Node<K,V> old = null;
1370         if (size > threshold || (tab = table) == null ||
1371             (n = tab.length) == 0)
1372             n = (tab = resize()).length;
1373         if ((first = tab[i = (n - 1) & hash]) != null) {
1374             if (first instanceof TreeNode)
1375                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1376             else {
1377                 Node<K,V> e = first; K k;
1378                 do {
1379                     if (e.hash == hash &&
1380                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1381                         old = e;
1382                         break;
1383                     }
1384                     ++binCount;
1385                 } while ((e = e.next) != null);
1386             }
1387         }
1388         if (old != null) {
1389             V v;
1390             if (old.value != null) {
1391                 int mc = modCount;
1392                 v = remappingFunction.apply(old.value, value);
1393                 if (mc != modCount) {
1394                     throw new ConcurrentModificationException();
1395                 }
1396             } else {
1397                 v = value;
1398             }
1399             if (v != null) {
1400                 old.value = v;
1401                 afterNodeAccess(old);
1402             }
1403             else
1404                 removeNode(hash, key, null, false, true);
1405             return v;
1406         } else {
1407             if (t != null)
1408                 t.putTreeVal(this, tab, hash, key, value);
1409             else {
1410                 tab[i] = newNode(hash, key, value, first);
1411                 if (binCount >= TREEIFY_THRESHOLD - 1)
1412                     treeifyBin(tab, hash);
1413             }
1414             ++modCount;
1415             ++size;
1416             afterNodeInsertion(true);
1417             return value;
1418         }
1419     }
1420 
1421     @Override
1422     public void forEach(BiConsumer<? super K, ? super V> action) {
1423         Node<K,V>[] tab;
1424         if (action == null)
1425             throw new NullPointerException();
1426         if (size > 0 && (tab = table) != null) {
1427             int mc = modCount;
1428             for (Node<K,V> e : tab) {
1429                 for (; e != null; e = e.next)
1430                     action.accept(e.key, e.value);
1431             }
1432             if (modCount != mc)
1433                 throw new ConcurrentModificationException();
1434         }
1435     }
1436 
1437     @Override
1438     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1439         Node<K,V>[] tab;
1440         if (function == null)
1441             throw new NullPointerException();
1442         if (size > 0 && (tab = table) != null) {
1443             int mc = modCount;
1444             for (Node<K,V> e : tab) {
1445                 for (; e != null; e = e.next) {
1446                     e.value = function.apply(e.key, e.value);
1447                 }
1448             }
1449             if (modCount != mc)
1450                 throw new ConcurrentModificationException();
1451         }
1452     }
1453 
1454     /* ------------------------------------------------------------ */
1455     // Cloning and serialization
1456 
1457     /**
1458      * Returns a shallow copy of this {@code HashMap} instance: the keys and
1459      * values themselves are not cloned.
1460      *
1461      * @return a shallow copy of this map
1462      */
1463     @SuppressWarnings("unchecked")
1464     @Override
1465     public Object clone() {
1466         HashMap<K,V> result;
1467         try {
1468             result = (HashMap<K,V>)super.clone();
1469         } catch (CloneNotSupportedException e) {
1470             // this shouldn't happen, since we are Cloneable
1471             throw new InternalError(e);
1472         }
1473         result.reinitialize();
1474         result.putMapEntries(this, false);
1475         return result;
1476     }
1477 
1478     // These methods are also used when serializing HashSets
1479     final float loadFactor() { return loadFactor; }
1480     final int capacity() {
1481         return (table != null) ? table.length :
1482             (threshold > 0) ? threshold :
1483             DEFAULT_INITIAL_CAPACITY;
1484     }
1485 
1486     /**
1487      * Saves this map to a stream (that is, serializes it).
1488      *
1489      * @param s the stream
1490      * @throws IOException if an I/O error occurs
1491      * @serialData The <i>capacity</i> of the HashMap (the length of the
1492      *             bucket array) is emitted (int), followed by the
1493      *             <i>size</i> (an int, the number of key-value
1494      *             mappings), followed by the key (Object) and value (Object)
1495      *             for each key-value mapping.  The key-value mappings are
1496      *             emitted in no particular order.
1497      */
1498     @java.io.Serial
1499     private void writeObject(java.io.ObjectOutputStream s)
1500         throws IOException {
1501         int buckets = capacity();
1502         // Write out the threshold, loadfactor, and any hidden stuff
1503         s.defaultWriteObject();
1504         s.writeInt(buckets);
1505         s.writeInt(size);
1506         internalWriteEntries(s);
1507     }
1508 
1509     /**
1510      * Reconstitutes this map from a stream (that is, deserializes it).
1511      * @param s the stream
1512      * @throws ClassNotFoundException if the class of a serialized object
1513      *         could not be found
1514      * @throws IOException if an I/O error occurs
1515      */
1516     @java.io.Serial
1517     private void readObject(ObjectInputStream s)
1518         throws IOException, ClassNotFoundException {
1519 
1520         ObjectInputStream.GetField fields = s.readFields();
1521 
1522         // Read loadFactor (ignore threshold)
1523         float lf = fields.get("loadFactor", 0.75f);
1524         if (lf <= 0 || Float.isNaN(lf))
1525             throw new InvalidObjectException("Illegal load factor: " + lf);
1526 
1527         lf = Math.clamp(lf, 0.25f, 4.0f);
1528         HashMap.UnsafeHolder.putLoadFactor(this, lf);
1529 
1530         reinitialize();
1531 
1532         s.readInt();                // Read and ignore number of buckets
1533         int mappings = s.readInt(); // Read number of mappings (size)
1534         if (mappings < 0) {
1535             throw new InvalidObjectException("Illegal mappings count: " + mappings);
1536         } else if (mappings == 0) {
1537             // use defaults
1538         } else if (mappings > 0) {
1539             double dc = Math.ceil(mappings / (double)lf);
1540             int cap = ((dc < DEFAULT_INITIAL_CAPACITY) ?
1541                        DEFAULT_INITIAL_CAPACITY :
1542                        (dc >= MAXIMUM_CAPACITY) ?
1543                        MAXIMUM_CAPACITY :
1544                        tableSizeFor((int)dc));
1545             float ft = (float)cap * lf;
1546             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1547                          (int)ft : Integer.MAX_VALUE);
1548 
1549             // Check Map.Entry[].class since it's the nearest public type to
1550             // what we're actually creating.
1551             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap);
1552             @SuppressWarnings({"rawtypes","unchecked"})
1553             Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1554             table = tab;
1555 
1556             // Read the keys and values, and put the mappings in the HashMap
1557             for (int i = 0; i < mappings; i++) {
1558                 @SuppressWarnings("unchecked")
1559                     K key = (K) s.readObject();
1560                 @SuppressWarnings("unchecked")
1561                     V value = (V) s.readObject();
1562                 putVal(hash(key), key, value, false, false);
1563             }
1564         }
1565     }
1566 
1567     // Support for resetting final field during deserializing
1568     private static final class UnsafeHolder {
1569         private UnsafeHolder() { throw new InternalError(); }
1570         private static final jdk.internal.misc.Unsafe unsafe
1571                 = jdk.internal.misc.Unsafe.getUnsafe();
1572         private static final long LF_OFFSET
1573                 = unsafe.objectFieldOffset(HashMap.class, "loadFactor");
1574         static void putLoadFactor(HashMap<?, ?> map, float lf) {
1575             unsafe.putFloat(map, LF_OFFSET, lf);
1576         }
1577     }
1578 
1579     /* ------------------------------------------------------------ */
1580     // iterators
1581 
1582     abstract class HashIterator {
1583         Node<K,V> next;        // next entry to return
1584         Node<K,V> current;     // current entry
1585         int expectedModCount;  // for fast-fail
1586         int index;             // current slot
1587 
1588         HashIterator() {
1589             expectedModCount = modCount;
1590             Node<K,V>[] t = table;
1591             current = next = null;
1592             index = 0;
1593             if (t != null && size > 0) { // advance to first entry
1594                 do {} while (index < t.length && (next = t[index++]) == null);
1595             }
1596         }
1597 
1598         public final boolean hasNext() {
1599             return next != null;
1600         }
1601 
1602         final Node<K,V> nextNode() {
1603             Node<K,V>[] t;
1604             Node<K,V> e = next;
1605             if (modCount != expectedModCount)
1606                 throw new ConcurrentModificationException();
1607             if (e == null)
1608                 throw new NoSuchElementException();
1609             if ((next = (current = e).next) == null && (t = table) != null) {
1610                 do {} while (index < t.length && (next = t[index++]) == null);
1611             }
1612             return e;
1613         }
1614 
1615         public final void remove() {
1616             Node<K,V> p = current;
1617             if (p == null)
1618                 throw new IllegalStateException();
1619             if (modCount != expectedModCount)
1620                 throw new ConcurrentModificationException();
1621             current = null;
1622             removeNode(p.hash, p.key, null, false, false);
1623             expectedModCount = modCount;
1624         }
1625     }
1626 
1627     final class KeyIterator extends HashIterator
1628         implements Iterator<K> {
1629         public final K next() { return nextNode().key; }
1630     }
1631 
1632     final class ValueIterator extends HashIterator
1633         implements Iterator<V> {
1634         public final V next() { return nextNode().value; }
1635     }
1636 
1637     final class EntryIterator extends HashIterator
1638         implements Iterator<Map.Entry<K,V>> {
1639         public final Map.Entry<K,V> next() { return nextNode(); }
1640     }
1641 
1642     /* ------------------------------------------------------------ */
1643     // spliterators
1644 
1645     static class HashMapSpliterator<K,V> {
1646         final HashMap<K,V> map;
1647         Node<K,V> current;          // current node
1648         int index;                  // current index, modified on advance/split
1649         int fence;                  // one past last index
1650         int est;                    // size estimate
1651         int expectedModCount;       // for comodification checks
1652 
1653         HashMapSpliterator(HashMap<K,V> m, int origin,
1654                            int fence, int est,
1655                            int expectedModCount) {
1656             this.map = m;
1657             this.index = origin;
1658             this.fence = fence;
1659             this.est = est;
1660             this.expectedModCount = expectedModCount;
1661         }
1662 
1663         final int getFence() { // initialize fence and size on first use
1664             int hi;
1665             if ((hi = fence) < 0) {
1666                 HashMap<K,V> m = map;
1667                 est = m.size;
1668                 expectedModCount = m.modCount;
1669                 Node<K,V>[] tab = m.table;
1670                 hi = fence = (tab == null) ? 0 : tab.length;
1671             }
1672             return hi;
1673         }
1674 
1675         public final long estimateSize() {
1676             getFence(); // force init
1677             return (long) est;
1678         }
1679     }
1680 
1681     static final class KeySpliterator<K,V>
1682         extends HashMapSpliterator<K,V>
1683         implements Spliterator<K> {
1684         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1685                        int expectedModCount) {
1686             super(m, origin, fence, est, expectedModCount);
1687         }
1688 
1689         public KeySpliterator<K,V> trySplit() {
1690             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1691             return (lo >= mid || current != null) ? null :
1692                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1693                                         expectedModCount);
1694         }
1695 
1696         public void forEachRemaining(Consumer<? super K> action) {
1697             int i, hi, mc;
1698             if (action == null)
1699                 throw new NullPointerException();
1700             HashMap<K,V> m = map;
1701             Node<K,V>[] tab = m.table;
1702             if ((hi = fence) < 0) {
1703                 mc = expectedModCount = m.modCount;
1704                 hi = fence = (tab == null) ? 0 : tab.length;
1705             }
1706             else
1707                 mc = expectedModCount;
1708             if (tab != null && tab.length >= hi &&
1709                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1710                 Node<K,V> p = current;
1711                 current = null;
1712                 do {
1713                     if (p == null)
1714                         p = tab[i++];
1715                     else {
1716                         action.accept(p.key);
1717                         p = p.next;
1718                     }
1719                 } while (p != null || i < hi);
1720                 if (m.modCount != mc)
1721                     throw new ConcurrentModificationException();
1722             }
1723         }
1724 
1725         public boolean tryAdvance(Consumer<? super K> action) {
1726             int hi;
1727             if (action == null)
1728                 throw new NullPointerException();
1729             Node<K,V>[] tab = map.table;
1730             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1731                 while (current != null || index < hi) {
1732                     if (current == null)
1733                         current = tab[index++];
1734                     else {
1735                         K k = current.key;
1736                         current = current.next;
1737                         action.accept(k);
1738                         if (map.modCount != expectedModCount)
1739                             throw new ConcurrentModificationException();
1740                         return true;
1741                     }
1742                 }
1743             }
1744             return false;
1745         }
1746 
1747         public int characteristics() {
1748             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1749                 Spliterator.DISTINCT;
1750         }
1751     }
1752 
1753     static final class ValueSpliterator<K,V>
1754         extends HashMapSpliterator<K,V>
1755         implements Spliterator<V> {
1756         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1757                          int expectedModCount) {
1758             super(m, origin, fence, est, expectedModCount);
1759         }
1760 
1761         public ValueSpliterator<K,V> trySplit() {
1762             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1763             return (lo >= mid || current != null) ? null :
1764                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1765                                           expectedModCount);
1766         }
1767 
1768         public void forEachRemaining(Consumer<? super V> action) {
1769             int i, hi, mc;
1770             if (action == null)
1771                 throw new NullPointerException();
1772             HashMap<K,V> m = map;
1773             Node<K,V>[] tab = m.table;
1774             if ((hi = fence) < 0) {
1775                 mc = expectedModCount = m.modCount;
1776                 hi = fence = (tab == null) ? 0 : tab.length;
1777             }
1778             else
1779                 mc = expectedModCount;
1780             if (tab != null && tab.length >= hi &&
1781                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1782                 Node<K,V> p = current;
1783                 current = null;
1784                 do {
1785                     if (p == null)
1786                         p = tab[i++];
1787                     else {
1788                         action.accept(p.value);
1789                         p = p.next;
1790                     }
1791                 } while (p != null || i < hi);
1792                 if (m.modCount != mc)
1793                     throw new ConcurrentModificationException();
1794             }
1795         }
1796 
1797         public boolean tryAdvance(Consumer<? super V> action) {
1798             int hi;
1799             if (action == null)
1800                 throw new NullPointerException();
1801             Node<K,V>[] tab = map.table;
1802             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1803                 while (current != null || index < hi) {
1804                     if (current == null)
1805                         current = tab[index++];
1806                     else {
1807                         V v = current.value;
1808                         current = current.next;
1809                         action.accept(v);
1810                         if (map.modCount != expectedModCount)
1811                             throw new ConcurrentModificationException();
1812                         return true;
1813                     }
1814                 }
1815             }
1816             return false;
1817         }
1818 
1819         public int characteristics() {
1820             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1821         }
1822     }
1823 
1824     static final class EntrySpliterator<K,V>
1825         extends HashMapSpliterator<K,V>
1826         implements Spliterator<Map.Entry<K,V>> {
1827         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1828                          int expectedModCount) {
1829             super(m, origin, fence, est, expectedModCount);
1830         }
1831 
1832         public EntrySpliterator<K,V> trySplit() {
1833             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1834             return (lo >= mid || current != null) ? null :
1835                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1836                                           expectedModCount);
1837         }
1838 
1839         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1840             int i, hi, mc;
1841             if (action == null)
1842                 throw new NullPointerException();
1843             HashMap<K,V> m = map;
1844             Node<K,V>[] tab = m.table;
1845             if ((hi = fence) < 0) {
1846                 mc = expectedModCount = m.modCount;
1847                 hi = fence = (tab == null) ? 0 : tab.length;
1848             }
1849             else
1850                 mc = expectedModCount;
1851             if (tab != null && tab.length >= hi &&
1852                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1853                 Node<K,V> p = current;
1854                 current = null;
1855                 do {
1856                     if (p == null)
1857                         p = tab[i++];
1858                     else {
1859                         action.accept(p);
1860                         p = p.next;
1861                     }
1862                 } while (p != null || i < hi);
1863                 if (m.modCount != mc)
1864                     throw new ConcurrentModificationException();
1865             }
1866         }
1867 
1868         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1869             int hi;
1870             if (action == null)
1871                 throw new NullPointerException();
1872             Node<K,V>[] tab = map.table;
1873             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1874                 while (current != null || index < hi) {
1875                     if (current == null)
1876                         current = tab[index++];
1877                     else {
1878                         Node<K,V> e = current;
1879                         current = current.next;
1880                         action.accept(e);
1881                         if (map.modCount != expectedModCount)
1882                             throw new ConcurrentModificationException();
1883                         return true;
1884                     }
1885                 }
1886             }
1887             return false;
1888         }
1889 
1890         public int characteristics() {
1891             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1892                 Spliterator.DISTINCT;
1893         }
1894     }
1895 
1896     /* ------------------------------------------------------------ */
1897     // LinkedHashMap support
1898 
1899 
1900     /*
1901      * The following package-protected methods are designed to be
1902      * overridden by LinkedHashMap, but not by any other subclass.
1903      * Nearly all other internal methods are also package-protected
1904      * but are declared final, so can be used by LinkedHashMap, view
1905      * classes, and HashSet.
1906      */
1907 
1908     // Create a regular (non-tree) node
1909     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1910         return new Node<>(hash, key, value, next);
1911     }
1912 
1913     // For conversion from TreeNodes to plain nodes
1914     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1915         return new Node<>(p.hash, p.key, p.value, next);
1916     }
1917 
1918     // Create a tree bin node
1919     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1920         return new TreeNode<>(hash, key, value, next);
1921     }
1922 
1923     // For treeifyBin
1924     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1925         return new TreeNode<>(p.hash, p.key, p.value, next);
1926     }
1927 
1928     /**
1929      * Reset to initial default state.  Called by clone and readObject.
1930      */
1931     void reinitialize() {
1932         table = null;
1933         entrySet = null;
1934         keySet = null;
1935         values = null;
1936         modCount = 0;
1937         threshold = 0;
1938         size = 0;
1939     }
1940 
1941     // Callbacks to allow LinkedHashMap post-actions
1942     void afterNodeAccess(Node<K,V> p) { }
1943     void afterNodeInsertion(boolean evict) { }
1944     void afterNodeRemoval(Node<K,V> p) { }
1945 
1946     // Called only from writeObject, to ensure compatible ordering.
1947     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1948         Node<K,V>[] tab;
1949         if (size > 0 && (tab = table) != null) {
1950             for (Node<K,V> e : tab) {
1951                 for (; e != null; e = e.next) {
1952                     s.writeObject(e.key);
1953                     s.writeObject(e.value);
1954                 }
1955             }
1956         }
1957     }
1958 
1959     /* ------------------------------------------------------------ */
1960     // Tree bins
1961 
1962     /**
1963      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1964      * extends Node) so can be used as extension of either regular or
1965      * linked node.
1966      */
1967     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1968         TreeNode<K,V> parent;  // red-black tree links
1969         TreeNode<K,V> left;
1970         TreeNode<K,V> right;
1971         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1972         boolean red;
1973         TreeNode(int hash, K key, V val, Node<K,V> next) {
1974             super(hash, key, val, next);
1975         }
1976 
1977         /**
1978          * Returns root of tree containing this node.
1979          */
1980         final TreeNode<K,V> root() {
1981             for (TreeNode<K,V> r = this, p;;) {
1982                 if ((p = r.parent) == null)
1983                     return r;
1984                 r = p;
1985             }
1986         }
1987 
1988         /**
1989          * Ensures that the given root is the first node of its bin.
1990          */
1991         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1992             int n;
1993             if (root != null && tab != null && (n = tab.length) > 0) {
1994                 int index = (n - 1) & root.hash;
1995                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1996                 if (root != first) {
1997                     Node<K,V> rn;
1998                     tab[index] = root;
1999                     TreeNode<K,V> rp = root.prev;
2000                     if ((rn = root.next) != null)
2001                         ((TreeNode<K,V>)rn).prev = rp;
2002                     if (rp != null)
2003                         rp.next = rn;
2004                     if (first != null)
2005                         first.prev = root;
2006                     root.next = first;
2007                     root.prev = null;
2008                 }
2009                 assert checkInvariants(root);
2010             }
2011         }
2012 
2013         /**
2014          * Finds the node starting at root p with the given hash and key.
2015          * The kc argument caches comparableClassFor(key) upon first use
2016          * comparing keys.
2017          */
2018         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
2019             TreeNode<K,V> p = this;
2020             do {
2021                 int ph, dir; K pk;
2022                 TreeNode<K,V> pl = p.left, pr = p.right, q;
2023                 if ((ph = p.hash) > h)
2024                     p = pl;
2025                 else if (ph < h)
2026                     p = pr;
2027                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2028                     return p;
2029                 else if (pl == null)
2030                     p = pr;
2031                 else if (pr == null)
2032                     p = pl;
2033                 else if ((kc != null ||
2034                           (kc = comparableClassFor(k)) != null) &&
2035                          (dir = compareComparables(kc, k, pk)) != 0)
2036                     p = (dir < 0) ? pl : pr;
2037                 else if ((q = pr.find(h, k, kc)) != null)
2038                     return q;
2039                 else
2040                     p = pl;
2041             } while (p != null);
2042             return null;
2043         }
2044 
2045         /**
2046          * Calls find for root node.
2047          */
2048         final TreeNode<K,V> getTreeNode(int h, Object k) {
2049             return ((parent != null) ? root() : this).find(h, k, null);
2050         }
2051 
2052         /**
2053          * Tie-breaking utility for ordering insertions when equal
2054          * hashCodes and non-comparable. We don't require a total
2055          * order, just a consistent insertion rule to maintain
2056          * equivalence across rebalancings. Tie-breaking further than
2057          * necessary simplifies testing a bit.
2058          */
2059         static int tieBreakOrder(Object a, Object b) {
2060             int d;
2061             if (a == null || b == null ||
2062                 (d = a.getClass().getName().
2063                  compareTo(b.getClass().getName())) == 0)
2064                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2065                      -1 : 1);
2066             return d;
2067         }
2068 
2069         /**
2070          * Forms tree of the nodes linked from this node.
2071          */
2072         final void treeify(Node<K,V>[] tab) {
2073             TreeNode<K,V> root = null;
2074             for (TreeNode<K,V> x = this, next; x != null; x = next) {
2075                 next = (TreeNode<K,V>)x.next;
2076                 x.left = x.right = null;
2077                 if (root == null) {
2078                     x.parent = null;
2079                     x.red = false;
2080                     root = x;
2081                 }
2082                 else {
2083                     K k = x.key;
2084                     int h = x.hash;
2085                     Class<?> kc = null;
2086                     for (TreeNode<K,V> p = root;;) {
2087                         int dir, ph;
2088                         K pk = p.key;
2089                         if ((ph = p.hash) > h)
2090                             dir = -1;
2091                         else if (ph < h)
2092                             dir = 1;
2093                         else if ((kc == null &&
2094                                   (kc = comparableClassFor(k)) == null) ||
2095                                  (dir = compareComparables(kc, k, pk)) == 0)
2096                             dir = tieBreakOrder(k, pk);
2097 
2098                         TreeNode<K,V> xp = p;
2099                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
2100                             x.parent = xp;
2101                             if (dir <= 0)
2102                                 xp.left = x;
2103                             else
2104                                 xp.right = x;
2105                             root = balanceInsertion(root, x);
2106                             break;
2107                         }
2108                     }
2109                 }
2110             }
2111             moveRootToFront(tab, root);
2112         }
2113 
2114         /**
2115          * Returns a list of non-TreeNodes replacing those linked from
2116          * this node.
2117          */
2118         final Node<K,V> untreeify(HashMap<K,V> map) {
2119             Node<K,V> hd = null, tl = null;
2120             for (Node<K,V> q = this; q != null; q = q.next) {
2121                 Node<K,V> p = map.replacementNode(q, null);
2122                 if (tl == null)
2123                     hd = p;
2124                 else
2125                     tl.next = p;
2126                 tl = p;
2127             }
2128             return hd;
2129         }
2130 
2131         /**
2132          * Tree version of putVal.
2133          */
2134         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
2135                                        int h, K k, V v) {
2136             Class<?> kc = null;
2137             boolean searched = false;
2138             TreeNode<K,V> root = (parent != null) ? root() : this;
2139             for (TreeNode<K,V> p = root;;) {
2140                 int dir, ph; K pk;
2141                 if ((ph = p.hash) > h)
2142                     dir = -1;
2143                 else if (ph < h)
2144                     dir = 1;
2145                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2146                     return p;
2147                 else if ((kc == null &&
2148                           (kc = comparableClassFor(k)) == null) ||
2149                          (dir = compareComparables(kc, k, pk)) == 0) {
2150                     if (!searched) {
2151                         TreeNode<K,V> q, ch;
2152                         searched = true;
2153                         if (((ch = p.left) != null &&
2154                              (q = ch.find(h, k, kc)) != null) ||
2155                             ((ch = p.right) != null &&
2156                              (q = ch.find(h, k, kc)) != null))
2157                             return q;
2158                     }
2159                     dir = tieBreakOrder(k, pk);
2160                 }
2161 
2162                 TreeNode<K,V> xp = p;
2163                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2164                     Node<K,V> xpn = xp.next;
2165                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2166                     if (dir <= 0)
2167                         xp.left = x;
2168                     else
2169                         xp.right = x;
2170                     xp.next = x;
2171                     x.parent = x.prev = xp;
2172                     if (xpn != null)
2173                         ((TreeNode<K,V>)xpn).prev = x;
2174                     moveRootToFront(tab, balanceInsertion(root, x));
2175                     return null;
2176                 }
2177             }
2178         }
2179 
2180         /**
2181          * Removes the given node, that must be present before this call.
2182          * This is messier than typical red-black deletion code because we
2183          * cannot swap the contents of an interior node with a leaf
2184          * successor that is pinned by "next" pointers that are accessible
2185          * independently during traversal. So instead we swap the tree
2186          * linkages. If the current tree appears to have too few nodes,
2187          * the bin is converted back to a plain bin. (The test triggers
2188          * somewhere between 2 and 6 nodes, depending on tree structure).
2189          */
2190         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2191                                   boolean movable) {
2192             int n;
2193             if (tab == null || (n = tab.length) == 0)
2194                 return;
2195             int index = (n - 1) & hash;
2196             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2197             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2198             if (pred == null)
2199                 tab[index] = first = succ;
2200             else
2201                 pred.next = succ;
2202             if (succ != null)
2203                 succ.prev = pred;
2204             if (first == null)
2205                 return;
2206             if (root.parent != null)
2207                 root = root.root();
2208             if (root == null
2209                 || (movable
2210                     && (root.right == null
2211                         || (rl = root.left) == null
2212                         || rl.left == null))) {
2213                 tab[index] = first.untreeify(map);  // too small
2214                 return;
2215             }
2216             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2217             if (pl != null && pr != null) {
2218                 TreeNode<K,V> s = pr, sl;
2219                 while ((sl = s.left) != null) // find successor
2220                     s = sl;
2221                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2222                 TreeNode<K,V> sr = s.right;
2223                 TreeNode<K,V> pp = p.parent;
2224                 if (s == pr) { // p was s's direct parent
2225                     p.parent = s;
2226                     s.right = p;
2227                 }
2228                 else {
2229                     TreeNode<K,V> sp = s.parent;
2230                     if ((p.parent = sp) != null) {
2231                         if (s == sp.left)
2232                             sp.left = p;
2233                         else
2234                             sp.right = p;
2235                     }
2236                     if ((s.right = pr) != null)
2237                         pr.parent = s;
2238                 }
2239                 p.left = null;
2240                 if ((p.right = sr) != null)
2241                     sr.parent = p;
2242                 if ((s.left = pl) != null)
2243                     pl.parent = s;
2244                 if ((s.parent = pp) == null)
2245                     root = s;
2246                 else if (p == pp.left)
2247                     pp.left = s;
2248                 else
2249                     pp.right = s;
2250                 if (sr != null)
2251                     replacement = sr;
2252                 else
2253                     replacement = p;
2254             }
2255             else if (pl != null)
2256                 replacement = pl;
2257             else if (pr != null)
2258                 replacement = pr;
2259             else
2260                 replacement = p;
2261             if (replacement != p) {
2262                 TreeNode<K,V> pp = replacement.parent = p.parent;
2263                 if (pp == null)
2264                     (root = replacement).red = false;
2265                 else if (p == pp.left)
2266                     pp.left = replacement;
2267                 else
2268                     pp.right = replacement;
2269                 p.left = p.right = p.parent = null;
2270             }
2271 
2272             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2273 
2274             if (replacement == p) {  // detach
2275                 TreeNode<K,V> pp = p.parent;
2276                 p.parent = null;
2277                 if (pp != null) {
2278                     if (p == pp.left)
2279                         pp.left = null;
2280                     else if (p == pp.right)
2281                         pp.right = null;
2282                 }
2283             }
2284             if (movable)
2285                 moveRootToFront(tab, r);
2286         }
2287 
2288         /**
2289          * Splits nodes in a tree bin into lower and upper tree bins,
2290          * or untreeifies if now too small. Called only from resize;
2291          * see above discussion about split bits and indices.
2292          *
2293          * @param map the map
2294          * @param tab the table for recording bin heads
2295          * @param index the index of the table being split
2296          * @param bit the bit of hash to split on
2297          */
2298         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2299             TreeNode<K,V> b = this;
2300             // Relink into lo and hi lists, preserving order
2301             TreeNode<K,V> loHead = null, loTail = null;
2302             TreeNode<K,V> hiHead = null, hiTail = null;
2303             int lc = 0, hc = 0;
2304             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2305                 next = (TreeNode<K,V>)e.next;
2306                 e.next = null;
2307                 if ((e.hash & bit) == 0) {
2308                     if ((e.prev = loTail) == null)
2309                         loHead = e;
2310                     else
2311                         loTail.next = e;
2312                     loTail = e;
2313                     ++lc;
2314                 }
2315                 else {
2316                     if ((e.prev = hiTail) == null)
2317                         hiHead = e;
2318                     else
2319                         hiTail.next = e;
2320                     hiTail = e;
2321                     ++hc;
2322                 }
2323             }
2324 
2325             if (loHead != null) {
2326                 if (lc <= UNTREEIFY_THRESHOLD)
2327                     tab[index] = loHead.untreeify(map);
2328                 else {
2329                     tab[index] = loHead;
2330                     if (hiHead != null) // (else is already treeified)
2331                         loHead.treeify(tab);
2332                 }
2333             }
2334             if (hiHead != null) {
2335                 if (hc <= UNTREEIFY_THRESHOLD)
2336                     tab[index + bit] = hiHead.untreeify(map);
2337                 else {
2338                     tab[index + bit] = hiHead;
2339                     if (loHead != null)
2340                         hiHead.treeify(tab);
2341                 }
2342             }
2343         }
2344 
2345         /* ------------------------------------------------------------ */
2346         // Red-black tree methods, all adapted from CLR
2347 
2348         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2349                                               TreeNode<K,V> p) {
2350             TreeNode<K,V> r, pp, rl;
2351             if (p != null && (r = p.right) != null) {
2352                 if ((rl = p.right = r.left) != null)
2353                     rl.parent = p;
2354                 if ((pp = r.parent = p.parent) == null)
2355                     (root = r).red = false;
2356                 else if (pp.left == p)
2357                     pp.left = r;
2358                 else
2359                     pp.right = r;
2360                 r.left = p;
2361                 p.parent = r;
2362             }
2363             return root;
2364         }
2365 
2366         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2367                                                TreeNode<K,V> p) {
2368             TreeNode<K,V> l, pp, lr;
2369             if (p != null && (l = p.left) != null) {
2370                 if ((lr = p.left = l.right) != null)
2371                     lr.parent = p;
2372                 if ((pp = l.parent = p.parent) == null)
2373                     (root = l).red = false;
2374                 else if (pp.right == p)
2375                     pp.right = l;
2376                 else
2377                     pp.left = l;
2378                 l.right = p;
2379                 p.parent = l;
2380             }
2381             return root;
2382         }
2383 
2384         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2385                                                     TreeNode<K,V> x) {
2386             x.red = true;
2387             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2388                 if ((xp = x.parent) == null) {
2389                     x.red = false;
2390                     return x;
2391                 }
2392                 else if (!xp.red || (xpp = xp.parent) == null)
2393                     return root;
2394                 if (xp == (xppl = xpp.left)) {
2395                     if ((xppr = xpp.right) != null && xppr.red) {
2396                         xppr.red = false;
2397                         xp.red = false;
2398                         xpp.red = true;
2399                         x = xpp;
2400                     }
2401                     else {
2402                         if (x == xp.right) {
2403                             root = rotateLeft(root, x = xp);
2404                             xpp = (xp = x.parent) == null ? null : xp.parent;
2405                         }
2406                         if (xp != null) {
2407                             xp.red = false;
2408                             if (xpp != null) {
2409                                 xpp.red = true;
2410                                 root = rotateRight(root, xpp);
2411                             }
2412                         }
2413                     }
2414                 }
2415                 else {
2416                     if (xppl != null && xppl.red) {
2417                         xppl.red = false;
2418                         xp.red = false;
2419                         xpp.red = true;
2420                         x = xpp;
2421                     }
2422                     else {
2423                         if (x == xp.left) {
2424                             root = rotateRight(root, x = xp);
2425                             xpp = (xp = x.parent) == null ? null : xp.parent;
2426                         }
2427                         if (xp != null) {
2428                             xp.red = false;
2429                             if (xpp != null) {
2430                                 xpp.red = true;
2431                                 root = rotateLeft(root, xpp);
2432                             }
2433                         }
2434                     }
2435                 }
2436             }
2437         }
2438 
2439         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2440                                                    TreeNode<K,V> x) {
2441             for (TreeNode<K,V> xp, xpl, xpr;;) {
2442                 if (x == null || x == root)
2443                     return root;
2444                 else if ((xp = x.parent) == null) {
2445                     x.red = false;
2446                     return x;
2447                 }
2448                 else if (x.red) {
2449                     x.red = false;
2450                     return root;
2451                 }
2452                 else if ((xpl = xp.left) == x) {
2453                     if ((xpr = xp.right) != null && xpr.red) {
2454                         xpr.red = false;
2455                         xp.red = true;
2456                         root = rotateLeft(root, xp);
2457                         xpr = (xp = x.parent) == null ? null : xp.right;
2458                     }
2459                     if (xpr == null)
2460                         x = xp;
2461                     else {
2462                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2463                         if ((sr == null || !sr.red) &&
2464                             (sl == null || !sl.red)) {
2465                             xpr.red = true;
2466                             x = xp;
2467                         }
2468                         else {
2469                             if (sr == null || !sr.red) {
2470                                 if (sl != null)
2471                                     sl.red = false;
2472                                 xpr.red = true;
2473                                 root = rotateRight(root, xpr);
2474                                 xpr = (xp = x.parent) == null ?
2475                                     null : xp.right;
2476                             }
2477                             if (xpr != null) {
2478                                 xpr.red = (xp == null) ? false : xp.red;
2479                                 if ((sr = xpr.right) != null)
2480                                     sr.red = false;
2481                             }
2482                             if (xp != null) {
2483                                 xp.red = false;
2484                                 root = rotateLeft(root, xp);
2485                             }
2486                             x = root;
2487                         }
2488                     }
2489                 }
2490                 else { // symmetric
2491                     if (xpl != null && xpl.red) {
2492                         xpl.red = false;
2493                         xp.red = true;
2494                         root = rotateRight(root, xp);
2495                         xpl = (xp = x.parent) == null ? null : xp.left;
2496                     }
2497                     if (xpl == null)
2498                         x = xp;
2499                     else {
2500                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2501                         if ((sl == null || !sl.red) &&
2502                             (sr == null || !sr.red)) {
2503                             xpl.red = true;
2504                             x = xp;
2505                         }
2506                         else {
2507                             if (sl == null || !sl.red) {
2508                                 if (sr != null)
2509                                     sr.red = false;
2510                                 xpl.red = true;
2511                                 root = rotateLeft(root, xpl);
2512                                 xpl = (xp = x.parent) == null ?
2513                                     null : xp.left;
2514                             }
2515                             if (xpl != null) {
2516                                 xpl.red = (xp == null) ? false : xp.red;
2517                                 if ((sl = xpl.left) != null)
2518                                     sl.red = false;
2519                             }
2520                             if (xp != null) {
2521                                 xp.red = false;
2522                                 root = rotateRight(root, xp);
2523                             }
2524                             x = root;
2525                         }
2526                     }
2527                 }
2528             }
2529         }
2530 
2531         /**
2532          * Recursive invariant check
2533          */
2534         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2535             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2536                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2537             if (tb != null && tb.next != t)
2538                 return false;
2539             if (tn != null && tn.prev != t)
2540                 return false;
2541             if (tp != null && t != tp.left && t != tp.right)
2542                 return false;
2543             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2544                 return false;
2545             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2546                 return false;
2547             if (t.red && tl != null && tl.red && tr != null && tr.red)
2548                 return false;
2549             if (tl != null && !checkInvariants(tl))
2550                 return false;
2551             if (tr != null && !checkInvariants(tr))
2552                 return false;
2553             return true;
2554         }
2555     }
2556 
2557     /**
2558      * Calculate initial capacity for HashMap based classes, from expected size and default load factor (0.75).
2559      *
2560      * @param numMappings the expected number of mappings
2561      * @return initial capacity for HashMap based classes.
2562      * @since 19
2563      */
2564     static int calculateHashMapCapacity(int numMappings) {
2565         return (int) Math.ceil(numMappings / (double) DEFAULT_LOAD_FACTOR);
2566     }
2567 
2568     /**
2569      * Creates a new, empty HashMap suitable for the expected number of mappings.
2570      * The returned map uses the default load factor of 0.75, and its initial capacity is
2571      * generally large enough so that the expected number of mappings can be added
2572      * without resizing the map.
2573      *
2574      * @param numMappings the expected number of mappings
2575      * @param <K>         the type of keys maintained by the new map
2576      * @param <V>         the type of mapped values
2577      * @return the newly created map
2578      * @throws IllegalArgumentException if numMappings is negative
2579      * @since 19
2580      */
2581     public static <K, V> HashMap<K, V> newHashMap(int numMappings) {
2582         if (numMappings < 0) {
2583             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
2584         }
2585         return new HashMap<>(calculateHashMapCapacity(numMappings));
2586     }
2587 
2588 }