1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.util; 27 28 import java.io.IOException; 29 import java.io.InvalidObjectException; 30 import java.io.ObjectInputStream; 31 import java.io.Serializable; 32 import java.lang.reflect.ParameterizedType; 33 import java.lang.reflect.Type; 34 import java.util.function.BiConsumer; 35 import java.util.function.BiFunction; 36 import java.util.function.Consumer; 37 import java.util.function.Function; 38 import jdk.internal.access.SharedSecrets; 39 40 /** 41 * Hash table based implementation of the {@code Map} interface. This 42 * implementation provides all of the optional map operations, and permits 43 * {@code null} values and the {@code null} key. (The {@code HashMap} 44 * class is roughly equivalent to {@code Hashtable}, except that it is 45 * unsynchronized and permits nulls.) This class makes no guarantees as to 46 * the order of the map; in particular, it does not guarantee that the order 47 * will remain constant over time. 48 * 49 * <p>This implementation provides constant-time performance for the basic 50 * operations ({@code get} and {@code put}), assuming the hash function 51 * disperses the elements properly among the buckets. Iteration over 52 * collection views requires time proportional to the "capacity" of the 53 * {@code HashMap} instance (the number of buckets) plus its size (the number 54 * of key-value mappings). Thus, it's very important not to set the initial 55 * capacity too high (or the load factor too low) if iteration performance is 56 * important. 57 * 58 * <p>An instance of {@code HashMap} has two parameters that affect its 59 * performance: <i>initial capacity</i> and <i>load factor</i>. The 60 * <i>capacity</i> is the number of buckets in the hash table, and the initial 61 * capacity is simply the capacity at the time the hash table is created. The 62 * <i>load factor</i> is a measure of how full the hash table is allowed to 63 * get before its capacity is automatically increased. When the number of 64 * entries in the hash table exceeds the product of the load factor and the 65 * current capacity, the hash table is <i>rehashed</i> (that is, internal data 66 * structures are rebuilt) so that the hash table has approximately twice the 67 * number of buckets. 68 * 69 * <p>As a general rule, the default load factor (.75) offers a good 70 * tradeoff between time and space costs. Higher values decrease the 71 * space overhead but increase the lookup cost (reflected in most of 72 * the operations of the {@code HashMap} class, including 73 * {@code get} and {@code put}). The expected number of entries in 74 * the map and its load factor should be taken into account when 75 * setting its initial capacity, so as to minimize the number of 76 * rehash operations. If the initial capacity is greater than the 77 * maximum number of entries divided by the load factor, no rehash 78 * operations will ever occur. 79 * 80 * <p>If many mappings are to be stored in a {@code HashMap} 81 * instance, creating it with a sufficiently large capacity will allow 82 * the mappings to be stored more efficiently than letting it perform 83 * automatic rehashing as needed to grow the table. Note that using 84 * many keys with the same {@code hashCode()} is a sure way to slow 85 * down performance of any hash table. To ameliorate impact, when keys 86 * are {@link Comparable}, this class may use comparison order among 87 * keys to help break ties. 88 * 89 * <p><strong>Note that this implementation is not synchronized.</strong> 90 * If multiple threads access a hash map concurrently, and at least one of 91 * the threads modifies the map structurally, it <i>must</i> be 92 * synchronized externally. (A structural modification is any operation 93 * that adds or deletes one or more mappings; merely changing the value 94 * associated with a key that an instance already contains is not a 95 * structural modification.) This is typically accomplished by 96 * synchronizing on some object that naturally encapsulates the map. 97 * 98 * If no such object exists, the map should be "wrapped" using the 99 * {@link Collections#synchronizedMap Collections.synchronizedMap} 100 * method. This is best done at creation time, to prevent accidental 101 * unsynchronized access to the map:<pre> 102 * Map m = Collections.synchronizedMap(new HashMap(...));</pre> 103 * 104 * <p>The iterators returned by all of this class's "collection view methods" 105 * are <i>fail-fast</i>: if the map is structurally modified at any time after 106 * the iterator is created, in any way except through the iterator's own 107 * {@code remove} method, the iterator will throw a 108 * {@link ConcurrentModificationException}. Thus, in the face of concurrent 109 * modification, the iterator fails quickly and cleanly, rather than risking 110 * arbitrary, non-deterministic behavior at an undetermined time in the 111 * future. 112 * 113 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed 114 * as it is, generally speaking, impossible to make any hard guarantees in the 115 * presence of unsynchronized concurrent modification. Fail-fast iterators 116 * throw {@code ConcurrentModificationException} on a best-effort basis. 117 * Therefore, it would be wrong to write a program that depended on this 118 * exception for its correctness: <i>the fail-fast behavior of iterators 119 * should be used only to detect bugs.</i> 120 * 121 * <p>This class is a member of the 122 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> 123 * Java Collections Framework</a>. 124 * 125 * @param <K> the type of keys maintained by this map 126 * @param <V> the type of mapped values 127 * 128 * @author Doug Lea 129 * @author Josh Bloch 130 * @author Arthur van Hoff 131 * @author Neal Gafter 132 * @see Object#hashCode() 133 * @see Collection 134 * @see Map 135 * @see TreeMap 136 * @see Hashtable 137 * @since 1.2 138 */ 139 public class HashMap<K,V> extends AbstractMap<K,V> 140 implements Map<K,V>, Cloneable, Serializable { 141 142 @java.io.Serial 143 private static final long serialVersionUID = 362498820763181265L; 144 145 /* 146 * Implementation notes. 147 * 148 * This map usually acts as a binned (bucketed) hash table, but 149 * when bins get too large, they are transformed into bins of 150 * TreeNodes, each structured similarly to those in 151 * java.util.TreeMap. Most methods try to use normal bins, but 152 * relay to TreeNode methods when applicable (simply by checking 153 * instanceof a node). Bins of TreeNodes may be traversed and 154 * used like any others, but additionally support faster lookup 155 * when overpopulated. However, since the vast majority of bins in 156 * normal use are not overpopulated, checking for existence of 157 * tree bins may be delayed in the course of table methods. 158 * 159 * Tree bins (i.e., bins whose elements are all TreeNodes) are 160 * ordered primarily by hashCode, but in the case of ties, if two 161 * elements are of the same "class C implements Comparable<C>", 162 * type then their compareTo method is used for ordering. (We 163 * conservatively check generic types via reflection to validate 164 * this -- see method comparableClassFor). The added complexity 165 * of tree bins is worthwhile in providing worst-case O(log n) 166 * operations when keys either have distinct hashes or are 167 * orderable, Thus, performance degrades gracefully under 168 * accidental or malicious usages in which hashCode() methods 169 * return values that are poorly distributed, as well as those in 170 * which many keys share a hashCode, so long as they are also 171 * Comparable. (If neither of these apply, we may waste about a 172 * factor of two in time and space compared to taking no 173 * precautions. But the only known cases stem from poor user 174 * programming practices that are already so slow that this makes 175 * little difference.) 176 * 177 * Because TreeNodes are about twice the size of regular nodes, we 178 * use them only when bins contain enough nodes to warrant use 179 * (see TREEIFY_THRESHOLD). And when they become too small (due to 180 * removal or resizing) they are converted back to plain bins. In 181 * usages with well-distributed user hashCodes, tree bins are 182 * rarely used. Ideally, under random hashCodes, the frequency of 183 * nodes in bins follows a Poisson distribution 184 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a 185 * parameter of about 0.5 on average for the default resizing 186 * threshold of 0.75, although with a large variance because of 187 * resizing granularity. Ignoring variance, the expected 188 * occurrences of list size k are (exp(-0.5) * pow(0.5, k) / 189 * factorial(k)). The first values are: 190 * 191 * 0: 0.60653066 192 * 1: 0.30326533 193 * 2: 0.07581633 194 * 3: 0.01263606 195 * 4: 0.00157952 196 * 5: 0.00015795 197 * 6: 0.00001316 198 * 7: 0.00000094 199 * 8: 0.00000006 200 * more: less than 1 in ten million 201 * 202 * The root of a tree bin is normally its first node. However, 203 * sometimes (currently only upon Iterator.remove), the root might 204 * be elsewhere, but can be recovered following parent links 205 * (method TreeNode.root()). 206 * 207 * All applicable internal methods accept a hash code as an 208 * argument (as normally supplied from a public method), allowing 209 * them to call each other without recomputing user hashCodes. 210 * Most internal methods also accept a "tab" argument, that is 211 * normally the current table, but may be a new or old one when 212 * resizing or converting. 213 * 214 * When bin lists are treeified, split, or untreeified, we keep 215 * them in the same relative access/traversal order (i.e., field 216 * Node.next) to better preserve locality, and to slightly 217 * simplify handling of splits and traversals that invoke 218 * iterator.remove. When using comparators on insertion, to keep a 219 * total ordering (or as close as is required here) across 220 * rebalancings, we compare classes and identityHashCodes as 221 * tie-breakers. 222 * 223 * The use and transitions among plain vs tree modes is 224 * complicated by the existence of subclass LinkedHashMap. See 225 * below for hook methods defined to be invoked upon insertion, 226 * removal and access that allow LinkedHashMap internals to 227 * otherwise remain independent of these mechanics. (This also 228 * requires that a map instance be passed to some utility methods 229 * that may create new nodes.) 230 * 231 * The concurrent-programming-like SSA-based coding style helps 232 * avoid aliasing errors amid all of the twisty pointer operations. 233 */ 234 235 /** 236 * The default initial capacity - MUST be a power of two. 237 */ 238 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 239 240 /** 241 * The maximum capacity, used if a higher value is implicitly specified 242 * by either of the constructors with arguments. 243 * MUST be a power of two <= 1<<30. 244 */ 245 static final int MAXIMUM_CAPACITY = 1 << 30; 246 247 /** 248 * The load factor used when none specified in constructor. 249 */ 250 static final float DEFAULT_LOAD_FACTOR = 0.75f; 251 252 /** 253 * The bin count threshold for using a tree rather than list for a 254 * bin. Bins are converted to trees when adding an element to a 255 * bin with at least this many nodes. The value must be greater 256 * than 2 and should be at least 8 to mesh with assumptions in 257 * tree removal about conversion back to plain bins upon 258 * shrinkage. 259 */ 260 static final int TREEIFY_THRESHOLD = 8; 261 262 /** 263 * The bin count threshold for untreeifying a (split) bin during a 264 * resize operation. Should be less than TREEIFY_THRESHOLD, and at 265 * most 6 to mesh with shrinkage detection under removal. 266 */ 267 static final int UNTREEIFY_THRESHOLD = 6; 268 269 /** 270 * The smallest table capacity for which bins may be treeified. 271 * (Otherwise the table is resized if too many nodes in a bin.) 272 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts 273 * between resizing and treeification thresholds. 274 */ 275 static final int MIN_TREEIFY_CAPACITY = 64; 276 277 /** 278 * Basic hash bin node, used for most entries. (See below for 279 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) 280 */ 281 static class Node<K,V> implements Map.Entry<K,V> { 282 final int hash; 283 final K key; 284 V value; 285 Node<K,V> next; 286 287 Node(int hash, K key, V value, Node<K,V> next) { 288 this.hash = hash; 289 this.key = key; 290 this.value = value; 291 this.next = next; 292 } 293 294 public final K getKey() { return key; } 295 public final V getValue() { return value; } 296 public final String toString() { return key + "=" + value; } 297 298 public final int hashCode() { 299 return Objects.hashCode(key) ^ Objects.hashCode(value); 300 } 301 302 public final V setValue(V newValue) { 303 V oldValue = value; 304 value = newValue; 305 return oldValue; 306 } 307 308 public final boolean equals(Object o) { 309 if (o == this) 310 return true; 311 312 return o instanceof Map.Entry<?, ?> e 313 && Objects.equals(key, e.getKey()) 314 && Objects.equals(value, e.getValue()); 315 } 316 } 317 318 /* ---------------- Static utilities -------------- */ 319 320 /** 321 * Computes key.hashCode() and spreads (XORs) higher bits of hash 322 * to lower. Because the table uses power-of-two masking, sets of 323 * hashes that vary only in bits above the current mask will 324 * always collide. (Among known examples are sets of Float keys 325 * holding consecutive whole numbers in small tables.) So we 326 * apply a transform that spreads the impact of higher bits 327 * downward. There is a tradeoff between speed, utility, and 328 * quality of bit-spreading. Because many common sets of hashes 329 * are already reasonably distributed (so don't benefit from 330 * spreading), and because we use trees to handle large sets of 331 * collisions in bins, we just XOR some shifted bits in the 332 * cheapest possible way to reduce systematic lossage, as well as 333 * to incorporate impact of the highest bits that would otherwise 334 * never be used in index calculations because of table bounds. 335 */ 336 static final int hash(Object key) { 337 int h; 338 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 339 } 340 341 /** 342 * Returns x's Class if it is of the form "class C implements 343 * Comparable<C>", else null. 344 */ 345 static Class<?> comparableClassFor(Object x) { 346 if (x instanceof Comparable) { 347 Class<?> c; Type[] ts, as; ParameterizedType p; 348 if ((c = x.getClass()) == String.class) // bypass checks 349 return c; 350 if ((ts = c.getGenericInterfaces()) != null) { 351 for (Type t : ts) { 352 if ((t instanceof ParameterizedType) && 353 ((p = (ParameterizedType) t).getRawType() == 354 Comparable.class) && 355 (as = p.getActualTypeArguments()) != null && 356 as.length == 1 && as[0] == c) // type arg is c 357 return c; 358 } 359 } 360 } 361 return null; 362 } 363 364 /** 365 * Returns k.compareTo(x) if x matches kc (k's screened comparable 366 * class), else 0. 367 */ 368 @SuppressWarnings("unchecked") // for cast to Comparable 369 static int compareComparables(Class<?> kc, Object k, Object x) { 370 return (x == null || x.getClass() != kc ? 0 : 371 ((Comparable)k).compareTo(x)); 372 } 373 374 /** 375 * Returns a power of two size for the given target capacity. 376 */ 377 static final int tableSizeFor(int cap) { 378 int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1); 379 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; 380 } 381 382 /* ---------------- Fields -------------- */ 383 384 /** 385 * The table, initialized on first use, and resized as 386 * necessary. When allocated, length is always a power of two. 387 * (We also tolerate length zero in some operations to allow 388 * bootstrapping mechanics that are currently not needed.) 389 */ 390 transient Node<K,V>[] table; 391 392 /** 393 * Holds cached entrySet(). Note that AbstractMap fields are used 394 * for keySet() and values(). 395 */ 396 transient Set<Map.Entry<K,V>> entrySet; 397 398 /** 399 * The number of key-value mappings contained in this map. 400 */ 401 transient int size; 402 403 /** 404 * The number of times this HashMap has been structurally modified 405 * Structural modifications are those that change the number of mappings in 406 * the HashMap or otherwise modify its internal structure (e.g., 407 * rehash). This field is used to make iterators on Collection-views of 408 * the HashMap fail-fast. (See ConcurrentModificationException). 409 */ 410 transient int modCount; 411 412 /** 413 * The next size value at which to resize (capacity * load factor). 414 * 415 * @serial 416 */ 417 // (The javadoc description is true upon serialization. 418 // Additionally, if the table array has not been allocated, this 419 // field holds the initial array capacity, or zero signifying 420 // DEFAULT_INITIAL_CAPACITY.) 421 int threshold; 422 423 /** 424 * The load factor for the hash table. 425 * 426 * @serial 427 */ 428 final float loadFactor; 429 430 /* ---------------- Public operations -------------- */ 431 432 /** 433 * Constructs an empty {@code HashMap} with the specified initial 434 * capacity and load factor. 435 * 436 * @apiNote 437 * To create a {@code HashMap} with an initial capacity that accommodates 438 * an expected number of mappings, use {@link #newHashMap(int) newHashMap}. 439 * 440 * @param initialCapacity the initial capacity 441 * @param loadFactor the load factor 442 * @throws IllegalArgumentException if the initial capacity is negative 443 * or the load factor is nonpositive 444 */ 445 public HashMap(int initialCapacity, float loadFactor) { 446 if (initialCapacity < 0) 447 throw new IllegalArgumentException("Illegal initial capacity: " + 448 initialCapacity); 449 if (initialCapacity > MAXIMUM_CAPACITY) 450 initialCapacity = MAXIMUM_CAPACITY; 451 if (loadFactor <= 0 || Float.isNaN(loadFactor)) 452 throw new IllegalArgumentException("Illegal load factor: " + 453 loadFactor); 454 this.loadFactor = loadFactor; 455 this.threshold = tableSizeFor(initialCapacity); 456 } 457 458 /** 459 * Constructs an empty {@code HashMap} with the specified initial 460 * capacity and the default load factor (0.75). 461 * 462 * @apiNote 463 * To create a {@code HashMap} with an initial capacity that accommodates 464 * an expected number of mappings, use {@link #newHashMap(int) newHashMap}. 465 * 466 * @param initialCapacity the initial capacity. 467 * @throws IllegalArgumentException if the initial capacity is negative. 468 */ 469 public HashMap(int initialCapacity) { 470 this(initialCapacity, DEFAULT_LOAD_FACTOR); 471 } 472 473 /** 474 * Constructs an empty {@code HashMap} with the default initial capacity 475 * (16) and the default load factor (0.75). 476 */ 477 public HashMap() { 478 this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted 479 } 480 481 /** 482 * Constructs a new {@code HashMap} with the same mappings as the 483 * specified {@code Map}. The {@code HashMap} is created with 484 * default load factor (0.75) and an initial capacity sufficient to 485 * hold the mappings in the specified {@code Map}. 486 * 487 * @param m the map whose mappings are to be placed in this map 488 * @throws NullPointerException if the specified map is null 489 */ 490 @SuppressWarnings("this-escape") 491 public HashMap(Map<? extends K, ? extends V> m) { 492 this.loadFactor = DEFAULT_LOAD_FACTOR; 493 putMapEntries(m, false); 494 } 495 496 /** 497 * Implements Map.putAll and Map constructor. 498 * 499 * @param m the map 500 * @param evict false when initially constructing this map, else 501 * true (relayed to method afterNodeInsertion). 502 */ 503 final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { 504 int s = m.size(); 505 if (s > 0) { 506 if (table == null) { // pre-size 507 double dt = Math.ceil(s / (double)loadFactor); 508 int t = ((dt < (double)MAXIMUM_CAPACITY) ? 509 (int)dt : MAXIMUM_CAPACITY); 510 if (t > threshold) 511 threshold = tableSizeFor(t); 512 } else { 513 // Because of linked-list bucket constraints, we cannot 514 // expand all at once, but can reduce total resize 515 // effort by repeated doubling now vs later 516 while (s > threshold && table.length < MAXIMUM_CAPACITY) 517 resize(); 518 } 519 520 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { 521 K key = e.getKey(); 522 V value = e.getValue(); 523 putVal(hash(key), key, value, false, evict); 524 } 525 } 526 } 527 528 /** 529 * Returns the number of key-value mappings in this map. 530 * 531 * @return the number of key-value mappings in this map 532 */ 533 public int size() { 534 return size; 535 } 536 537 /** 538 * Returns {@code true} if this map contains no key-value mappings. 539 * 540 * @return {@code true} if this map contains no key-value mappings 541 */ 542 public boolean isEmpty() { 543 return size == 0; 544 } 545 546 /** 547 * Returns the value to which the specified key is mapped, 548 * or {@code null} if this map contains no mapping for the key. 549 * 550 * <p>More formally, if this map contains a mapping from a key 551 * {@code k} to a value {@code v} such that {@code (key==null ? k==null : 552 * key.equals(k))}, then this method returns {@code v}; otherwise 553 * it returns {@code null}. (There can be at most one such mapping.) 554 * 555 * <p>A return value of {@code null} does not <i>necessarily</i> 556 * indicate that the map contains no mapping for the key; it's also 557 * possible that the map explicitly maps the key to {@code null}. 558 * The {@link #containsKey containsKey} operation may be used to 559 * distinguish these two cases. 560 * 561 * @see #put(Object, Object) 562 */ 563 public V get(Object key) { 564 Node<K,V> e; 565 return (e = getNode(key)) == null ? null : e.value; 566 } 567 568 /** 569 * Implements Map.get and related methods. 570 * 571 * @param key the key 572 * @return the node, or null if none 573 */ 574 final Node<K,V> getNode(Object key) { 575 Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k; 576 if ((tab = table) != null && (n = tab.length) > 0 && 577 (first = tab[(n - 1) & (hash = hash(key))]) != null) { 578 if (first.hash == hash && // always check first node 579 ((k = first.key) == key || (key != null && key.equals(k)))) 580 return first; 581 if ((e = first.next) != null) { 582 if (first instanceof TreeNode) 583 return ((TreeNode<K,V>)first).getTreeNode(hash, key); 584 do { 585 if (e.hash == hash && 586 ((k = e.key) == key || (key != null && key.equals(k)))) 587 return e; 588 } while ((e = e.next) != null); 589 } 590 } 591 return null; 592 } 593 594 /** 595 * Returns {@code true} if this map contains a mapping for the 596 * specified key. 597 * 598 * @param key The key whose presence in this map is to be tested 599 * @return {@code true} if this map contains a mapping for the specified 600 * key. 601 */ 602 public boolean containsKey(Object key) { 603 return getNode(key) != null; 604 } 605 606 /** 607 * Associates the specified value with the specified key in this map. 608 * If the map previously contained a mapping for the key, the old 609 * value is replaced. 610 * 611 * @param key key with which the specified value is to be associated 612 * @param value value to be associated with the specified key 613 * @return the previous value associated with {@code key}, or 614 * {@code null} if there was no mapping for {@code key}. 615 * (A {@code null} return can also indicate that the map 616 * previously associated {@code null} with {@code key}.) 617 */ 618 public V put(K key, V value) { 619 return putVal(hash(key), key, value, false, true); 620 } 621 622 /** 623 * Implements Map.put and related methods. 624 * 625 * @param hash hash for key 626 * @param key the key 627 * @param value the value to put 628 * @param onlyIfAbsent if true, don't change existing value 629 * @param evict if false, the table is in creation mode. 630 * @return previous value, or null if none 631 */ 632 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, 633 boolean evict) { 634 Node<K,V>[] tab; Node<K,V> p; int n, i; 635 if ((tab = table) == null || (n = tab.length) == 0) 636 n = (tab = resize()).length; 637 if ((p = tab[i = (n - 1) & hash]) == null) 638 tab[i] = newNode(hash, key, value, null); 639 else { 640 Node<K,V> e; K k; 641 if (p.hash == hash && 642 ((k = p.key) == key || (key != null && key.equals(k)))) 643 e = p; 644 else if (p instanceof TreeNode) 645 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); 646 else { 647 for (int binCount = 0; ; ++binCount) { 648 if ((e = p.next) == null) { 649 p.next = newNode(hash, key, value, null); 650 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 651 treeifyBin(tab, hash); 652 break; 653 } 654 if (e.hash == hash && 655 ((k = e.key) == key || (key != null && key.equals(k)))) 656 break; 657 p = e; 658 } 659 } 660 if (e != null) { // existing mapping for key 661 V oldValue = e.value; 662 if (!onlyIfAbsent || oldValue == null) 663 e.value = value; 664 afterNodeAccess(e); 665 return oldValue; 666 } 667 } 668 ++modCount; 669 if (++size > threshold) 670 resize(); 671 afterNodeInsertion(evict); 672 return null; 673 } 674 675 /** 676 * Initializes or doubles table size. If null, allocates in 677 * accord with initial capacity target held in field threshold. 678 * Otherwise, because we are using power-of-two expansion, the 679 * elements from each bin must either stay at same index, or move 680 * with a power of two offset in the new table. 681 * 682 * @return the table 683 */ 684 final Node<K,V>[] resize() { 685 Node<K,V>[] oldTab = table; 686 int oldCap = (oldTab == null) ? 0 : oldTab.length; 687 int oldThr = threshold; 688 int newCap, newThr = 0; 689 if (oldCap > 0) { 690 if (oldCap >= MAXIMUM_CAPACITY) { 691 threshold = Integer.MAX_VALUE; 692 return oldTab; 693 } 694 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 695 oldCap >= DEFAULT_INITIAL_CAPACITY) 696 newThr = oldThr << 1; // double threshold 697 } 698 else if (oldThr > 0) // initial capacity was placed in threshold 699 newCap = oldThr; 700 else { // zero initial threshold signifies using defaults 701 newCap = DEFAULT_INITIAL_CAPACITY; 702 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 703 } 704 if (newThr == 0) { 705 float ft = (float)newCap * loadFactor; 706 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 707 (int)ft : Integer.MAX_VALUE); 708 } 709 threshold = newThr; 710 @SuppressWarnings({"rawtypes","unchecked"}) 711 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 712 table = newTab; 713 if (oldTab != null) { 714 for (int j = 0; j < oldCap; ++j) { 715 Node<K,V> e; 716 if ((e = oldTab[j]) != null) { 717 oldTab[j] = null; 718 if (e.next == null) 719 newTab[e.hash & (newCap - 1)] = e; 720 else if (e instanceof TreeNode) 721 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 722 else { // preserve order 723 Node<K,V> loHead = null, loTail = null; 724 Node<K,V> hiHead = null, hiTail = null; 725 Node<K,V> next; 726 do { 727 next = e.next; 728 if ((e.hash & oldCap) == 0) { 729 if (loTail == null) 730 loHead = e; 731 else 732 loTail.next = e; 733 loTail = e; 734 } 735 else { 736 if (hiTail == null) 737 hiHead = e; 738 else 739 hiTail.next = e; 740 hiTail = e; 741 } 742 } while ((e = next) != null); 743 if (loTail != null) { 744 loTail.next = null; 745 newTab[j] = loHead; 746 } 747 if (hiTail != null) { 748 hiTail.next = null; 749 newTab[j + oldCap] = hiHead; 750 } 751 } 752 } 753 } 754 } 755 return newTab; 756 } 757 758 /** 759 * Replaces all linked nodes in bin at index for given hash unless 760 * table is too small, in which case resizes instead. 761 */ 762 final void treeifyBin(Node<K,V>[] tab, int hash) { 763 int n, index; Node<K,V> e; 764 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) 765 resize(); 766 else if ((e = tab[index = (n - 1) & hash]) != null) { 767 TreeNode<K,V> hd = null, tl = null; 768 do { 769 TreeNode<K,V> p = replacementTreeNode(e, null); 770 if (tl == null) 771 hd = p; 772 else { 773 p.prev = tl; 774 tl.next = p; 775 } 776 tl = p; 777 } while ((e = e.next) != null); 778 if ((tab[index] = hd) != null) 779 hd.treeify(tab); 780 } 781 } 782 783 /** 784 * Copies all of the mappings from the specified map to this map. 785 * These mappings will replace any mappings that this map had for 786 * any of the keys currently in the specified map. 787 * 788 * @param m mappings to be stored in this map 789 * @throws NullPointerException if the specified map is null 790 */ 791 public void putAll(Map<? extends K, ? extends V> m) { 792 putMapEntries(m, true); 793 } 794 795 /** 796 * Removes the mapping for the specified key from this map if present. 797 * 798 * @param key key whose mapping is to be removed from the map 799 * @return the previous value associated with {@code key}, or 800 * {@code null} if there was no mapping for {@code key}. 801 * (A {@code null} return can also indicate that the map 802 * previously associated {@code null} with {@code key}.) 803 */ 804 public V remove(Object key) { 805 Node<K,V> e; 806 return (e = removeNode(hash(key), key, null, false, true)) == null ? 807 null : e.value; 808 } 809 810 /** 811 * Implements Map.remove and related methods. 812 * 813 * @param hash hash for key 814 * @param key the key 815 * @param value the value to match if matchValue, else ignored 816 * @param matchValue if true only remove if value is equal 817 * @param movable if false do not move other nodes while removing 818 * @return the node, or null if none 819 */ 820 final Node<K,V> removeNode(int hash, Object key, Object value, 821 boolean matchValue, boolean movable) { 822 Node<K,V>[] tab; Node<K,V> p; int n, index; 823 if ((tab = table) != null && (n = tab.length) > 0 && 824 (p = tab[index = (n - 1) & hash]) != null) { 825 Node<K,V> node = null, e; K k; V v; 826 if (p.hash == hash && 827 ((k = p.key) == key || (key != null && key.equals(k)))) 828 node = p; 829 else if ((e = p.next) != null) { 830 if (p instanceof TreeNode) 831 node = ((TreeNode<K,V>)p).getTreeNode(hash, key); 832 else { 833 do { 834 if (e.hash == hash && 835 ((k = e.key) == key || 836 (key != null && key.equals(k)))) { 837 node = e; 838 break; 839 } 840 p = e; 841 } while ((e = e.next) != null); 842 } 843 } 844 if (node != null && (!matchValue || (v = node.value) == value || 845 (value != null && value.equals(v)))) { 846 if (node instanceof TreeNode) 847 ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); 848 else if (node == p) 849 tab[index] = node.next; 850 else 851 p.next = node.next; 852 ++modCount; 853 --size; 854 afterNodeRemoval(node); 855 return node; 856 } 857 } 858 return null; 859 } 860 861 /** 862 * Removes all of the mappings from this map. 863 * The map will be empty after this call returns. 864 */ 865 public void clear() { 866 Node<K,V>[] tab; 867 modCount++; 868 if ((tab = table) != null && size > 0) { 869 size = 0; 870 for (int i = 0; i < tab.length; ++i) 871 tab[i] = null; 872 } 873 } 874 875 /** 876 * Returns {@code true} if this map maps one or more keys to the 877 * specified value. 878 * 879 * @param value value whose presence in this map is to be tested 880 * @return {@code true} if this map maps one or more keys to the 881 * specified value 882 */ 883 public boolean containsValue(Object value) { 884 Node<K,V>[] tab; V v; 885 if ((tab = table) != null && size > 0) { 886 for (Node<K,V> e : tab) { 887 for (; e != null; e = e.next) { 888 if ((v = e.value) == value || 889 (value != null && value.equals(v))) 890 return true; 891 } 892 } 893 } 894 return false; 895 } 896 897 /** 898 * Returns a {@link Set} view of the keys contained in this map. 899 * The set is backed by the map, so changes to the map are 900 * reflected in the set, and vice-versa. If the map is modified 901 * while an iteration over the set is in progress (except through 902 * the iterator's own {@code remove} operation), the results of 903 * the iteration are undefined. The set supports element removal, 904 * which removes the corresponding mapping from the map, via the 905 * {@code Iterator.remove}, {@code Set.remove}, 906 * {@code removeAll}, {@code retainAll}, and {@code clear} 907 * operations. It does not support the {@code add} or {@code addAll} 908 * operations. 909 * 910 * @return a set view of the keys contained in this map 911 */ 912 public Set<K> keySet() { 913 Set<K> ks = keySet; 914 if (ks == null) { 915 ks = new KeySet(); 916 keySet = ks; 917 } 918 return ks; 919 } 920 921 /** 922 * Prepares the array for {@link Collection#toArray(Object[])} implementation. 923 * If supplied array is smaller than this map size, a new array is allocated. 924 * If supplied array is bigger than this map size, a null is written at size index. 925 * 926 * @param a an original array passed to {@code toArray()} method 927 * @param <T> type of array elements 928 * @return an array ready to be filled and returned from {@code toArray()} method. 929 */ 930 @SuppressWarnings("unchecked") 931 final <T> T[] prepareArray(T[] a) { 932 int size = this.size; 933 if (a.length < size) { 934 return (T[]) java.lang.reflect.Array 935 .newInstance(a.getClass().getComponentType(), size); 936 } 937 if (a.length > size) { 938 a[size] = null; 939 } 940 return a; 941 } 942 943 /** 944 * Fills an array with this map keys and returns it. This method assumes 945 * that input array is big enough to fit all the keys. Use 946 * {@link #prepareArray(Object[])} to ensure this. 947 * 948 * @param a an array to fill 949 * @param <T> type of array elements 950 * @return supplied array 951 */ 952 <T> T[] keysToArray(T[] a) { 953 Object[] r = a; 954 Node<K,V>[] tab; 955 int idx = 0; 956 if (size > 0 && (tab = table) != null) { 957 for (Node<K,V> e : tab) { 958 for (; e != null; e = e.next) { 959 r[idx++] = e.key; 960 } 961 } 962 } 963 return a; 964 } 965 966 /** 967 * Fills an array with this map values and returns it. This method assumes 968 * that input array is big enough to fit all the values. Use 969 * {@link #prepareArray(Object[])} to ensure this. 970 * 971 * @param a an array to fill 972 * @param <T> type of array elements 973 * @return supplied array 974 */ 975 <T> T[] valuesToArray(T[] a) { 976 Object[] r = a; 977 Node<K,V>[] tab; 978 int idx = 0; 979 if (size > 0 && (tab = table) != null) { 980 for (Node<K,V> e : tab) { 981 for (; e != null; e = e.next) { 982 r[idx++] = e.value; 983 } 984 } 985 } 986 return a; 987 } 988 989 final class KeySet extends AbstractSet<K> { 990 public final int size() { return size; } 991 public final void clear() { HashMap.this.clear(); } 992 public final Iterator<K> iterator() { return new KeyIterator(); } 993 public final boolean contains(Object o) { return containsKey(o); } 994 public final boolean remove(Object key) { 995 return removeNode(hash(key), key, null, false, true) != null; 996 } 997 public final Spliterator<K> spliterator() { 998 return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0); 999 } 1000 1001 public Object[] toArray() { 1002 return keysToArray(new Object[size]); 1003 } 1004 1005 public <T> T[] toArray(T[] a) { 1006 return keysToArray(prepareArray(a)); 1007 } 1008 1009 public final void forEach(Consumer<? super K> action) { 1010 Node<K,V>[] tab; 1011 if (action == null) 1012 throw new NullPointerException(); 1013 if (size > 0 && (tab = table) != null) { 1014 int mc = modCount; 1015 for (Node<K,V> e : tab) { 1016 for (; e != null; e = e.next) 1017 action.accept(e.key); 1018 } 1019 if (modCount != mc) 1020 throw new ConcurrentModificationException(); 1021 } 1022 } 1023 } 1024 1025 /** 1026 * Returns a {@link Collection} view of the values contained in this map. 1027 * The collection is backed by the map, so changes to the map are 1028 * reflected in the collection, and vice-versa. If the map is 1029 * modified while an iteration over the collection is in progress 1030 * (except through the iterator's own {@code remove} operation), 1031 * the results of the iteration are undefined. The collection 1032 * supports element removal, which removes the corresponding 1033 * mapping from the map, via the {@code Iterator.remove}, 1034 * {@code Collection.remove}, {@code removeAll}, 1035 * {@code retainAll} and {@code clear} operations. It does not 1036 * support the {@code add} or {@code addAll} operations. 1037 * 1038 * @return a view of the values contained in this map 1039 */ 1040 public Collection<V> values() { 1041 Collection<V> vs = values; 1042 if (vs == null) { 1043 vs = new Values(); 1044 values = vs; 1045 } 1046 return vs; 1047 } 1048 1049 final class Values extends AbstractCollection<V> { 1050 public final int size() { return size; } 1051 public final void clear() { HashMap.this.clear(); } 1052 public final Iterator<V> iterator() { return new ValueIterator(); } 1053 public final boolean contains(Object o) { return containsValue(o); } 1054 public final Spliterator<V> spliterator() { 1055 return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0); 1056 } 1057 1058 public Object[] toArray() { 1059 return valuesToArray(new Object[size]); 1060 } 1061 1062 public <T> T[] toArray(T[] a) { 1063 return valuesToArray(prepareArray(a)); 1064 } 1065 1066 public final void forEach(Consumer<? super V> action) { 1067 Node<K,V>[] tab; 1068 if (action == null) 1069 throw new NullPointerException(); 1070 if (size > 0 && (tab = table) != null) { 1071 int mc = modCount; 1072 for (Node<K,V> e : tab) { 1073 for (; e != null; e = e.next) 1074 action.accept(e.value); 1075 } 1076 if (modCount != mc) 1077 throw new ConcurrentModificationException(); 1078 } 1079 } 1080 } 1081 1082 /** 1083 * Returns a {@link Set} view of the mappings contained in this map. 1084 * The set is backed by the map, so changes to the map are 1085 * reflected in the set, and vice-versa. If the map is modified 1086 * while an iteration over the set is in progress (except through 1087 * the iterator's own {@code remove} operation, or through the 1088 * {@code setValue} operation on a map entry returned by the 1089 * iterator) the results of the iteration are undefined. The set 1090 * supports element removal, which removes the corresponding 1091 * mapping from the map, via the {@code Iterator.remove}, 1092 * {@code Set.remove}, {@code removeAll}, {@code retainAll} and 1093 * {@code clear} operations. It does not support the 1094 * {@code add} or {@code addAll} operations. 1095 * 1096 * @return a set view of the mappings contained in this map 1097 */ 1098 public Set<Map.Entry<K,V>> entrySet() { 1099 Set<Map.Entry<K,V>> es; 1100 return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; 1101 } 1102 1103 final class EntrySet extends AbstractSet<Map.Entry<K,V>> { 1104 public final int size() { return size; } 1105 public final void clear() { HashMap.this.clear(); } 1106 public final Iterator<Map.Entry<K,V>> iterator() { 1107 return new EntryIterator(); 1108 } 1109 public final boolean contains(Object o) { 1110 if (!(o instanceof Map.Entry<?, ?> e)) 1111 return false; 1112 Object key = e.getKey(); 1113 Node<K,V> candidate = getNode(key); 1114 return candidate != null && candidate.equals(e); 1115 } 1116 public final boolean remove(Object o) { 1117 if (o instanceof Map.Entry<?, ?> e) { 1118 Object key = e.getKey(); 1119 Object value = e.getValue(); 1120 return removeNode(hash(key), key, value, true, true) != null; 1121 } 1122 return false; 1123 } 1124 public final Spliterator<Map.Entry<K,V>> spliterator() { 1125 return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0); 1126 } 1127 public final void forEach(Consumer<? super Map.Entry<K,V>> action) { 1128 Node<K,V>[] tab; 1129 if (action == null) 1130 throw new NullPointerException(); 1131 if (size > 0 && (tab = table) != null) { 1132 int mc = modCount; 1133 for (Node<K,V> e : tab) { 1134 for (; e != null; e = e.next) 1135 action.accept(e); 1136 } 1137 if (modCount != mc) 1138 throw new ConcurrentModificationException(); 1139 } 1140 } 1141 } 1142 1143 // Overrides of JDK8 Map extension methods 1144 1145 @Override 1146 public V getOrDefault(Object key, V defaultValue) { 1147 Node<K,V> e; 1148 return (e = getNode(key)) == null ? defaultValue : e.value; 1149 } 1150 1151 @Override 1152 public V putIfAbsent(K key, V value) { 1153 return putVal(hash(key), key, value, true, true); 1154 } 1155 1156 @Override 1157 public boolean remove(Object key, Object value) { 1158 return removeNode(hash(key), key, value, true, true) != null; 1159 } 1160 1161 @Override 1162 public boolean replace(K key, V oldValue, V newValue) { 1163 Node<K,V> e; V v; 1164 if ((e = getNode(key)) != null && 1165 ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) { 1166 e.value = newValue; 1167 afterNodeAccess(e); 1168 return true; 1169 } 1170 return false; 1171 } 1172 1173 @Override 1174 public V replace(K key, V value) { 1175 Node<K,V> e; 1176 if ((e = getNode(key)) != null) { 1177 V oldValue = e.value; 1178 e.value = value; 1179 afterNodeAccess(e); 1180 return oldValue; 1181 } 1182 return null; 1183 } 1184 1185 /** 1186 * {@inheritDoc} 1187 * 1188 * <p>This method will, on a best-effort basis, throw a 1189 * {@link ConcurrentModificationException} if it is detected that the 1190 * mapping function modifies this map during computation. 1191 * 1192 * @throws ConcurrentModificationException if it is detected that the 1193 * mapping function modified this map 1194 */ 1195 @Override 1196 public V computeIfAbsent(K key, 1197 Function<? super K, ? extends V> mappingFunction) { 1198 if (mappingFunction == null) 1199 throw new NullPointerException(); 1200 int hash = hash(key); 1201 Node<K,V>[] tab; Node<K,V> first; int n, i; 1202 int binCount = 0; 1203 TreeNode<K,V> t = null; 1204 Node<K,V> old = null; 1205 if (size > threshold || (tab = table) == null || 1206 (n = tab.length) == 0) 1207 n = (tab = resize()).length; 1208 if ((first = tab[i = (n - 1) & hash]) != null) { 1209 if (first instanceof TreeNode) 1210 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); 1211 else { 1212 Node<K,V> e = first; K k; 1213 do { 1214 if (e.hash == hash && 1215 ((k = e.key) == key || (key != null && key.equals(k)))) { 1216 old = e; 1217 break; 1218 } 1219 ++binCount; 1220 } while ((e = e.next) != null); 1221 } 1222 V oldValue; 1223 if (old != null && (oldValue = old.value) != null) { 1224 afterNodeAccess(old); 1225 return oldValue; 1226 } 1227 } 1228 int mc = modCount; 1229 V v = mappingFunction.apply(key); 1230 if (mc != modCount) { throw new ConcurrentModificationException(); } 1231 if (v == null) { 1232 return null; 1233 } else if (old != null) { 1234 old.value = v; 1235 afterNodeAccess(old); 1236 return v; 1237 } 1238 else if (t != null) 1239 t.putTreeVal(this, tab, hash, key, v); 1240 else { 1241 tab[i] = newNode(hash, key, v, first); 1242 if (binCount >= TREEIFY_THRESHOLD - 1) 1243 treeifyBin(tab, hash); 1244 } 1245 modCount = mc + 1; 1246 ++size; 1247 afterNodeInsertion(true); 1248 return v; 1249 } 1250 1251 /** 1252 * {@inheritDoc} 1253 * 1254 * <p>This method will, on a best-effort basis, throw a 1255 * {@link ConcurrentModificationException} if it is detected that the 1256 * remapping function modifies this map during computation. 1257 * 1258 * @throws ConcurrentModificationException if it is detected that the 1259 * remapping function modified this map 1260 */ 1261 @Override 1262 public V computeIfPresent(K key, 1263 BiFunction<? super K, ? super V, ? extends V> remappingFunction) { 1264 if (remappingFunction == null) 1265 throw new NullPointerException(); 1266 Node<K,V> e; V oldValue; 1267 if ((e = getNode(key)) != null && 1268 (oldValue = e.value) != null) { 1269 int mc = modCount; 1270 V v = remappingFunction.apply(key, oldValue); 1271 if (mc != modCount) { throw new ConcurrentModificationException(); } 1272 if (v != null) { 1273 e.value = v; 1274 afterNodeAccess(e); 1275 return v; 1276 } 1277 else { 1278 int hash = hash(key); 1279 removeNode(hash, key, null, false, true); 1280 } 1281 } 1282 return null; 1283 } 1284 1285 /** 1286 * {@inheritDoc} 1287 * 1288 * <p>This method will, on a best-effort basis, throw a 1289 * {@link ConcurrentModificationException} if it is detected that the 1290 * remapping function modifies this map during computation. 1291 * 1292 * @throws ConcurrentModificationException if it is detected that the 1293 * remapping function modified this map 1294 */ 1295 @Override 1296 public V compute(K key, 1297 BiFunction<? super K, ? super V, ? extends V> remappingFunction) { 1298 if (remappingFunction == null) 1299 throw new NullPointerException(); 1300 int hash = hash(key); 1301 Node<K,V>[] tab; Node<K,V> first; int n, i; 1302 int binCount = 0; 1303 TreeNode<K,V> t = null; 1304 Node<K,V> old = null; 1305 if (size > threshold || (tab = table) == null || 1306 (n = tab.length) == 0) 1307 n = (tab = resize()).length; 1308 if ((first = tab[i = (n - 1) & hash]) != null) { 1309 if (first instanceof TreeNode) 1310 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); 1311 else { 1312 Node<K,V> e = first; K k; 1313 do { 1314 if (e.hash == hash && 1315 ((k = e.key) == key || (key != null && key.equals(k)))) { 1316 old = e; 1317 break; 1318 } 1319 ++binCount; 1320 } while ((e = e.next) != null); 1321 } 1322 } 1323 V oldValue = (old == null) ? null : old.value; 1324 int mc = modCount; 1325 V v = remappingFunction.apply(key, oldValue); 1326 if (mc != modCount) { throw new ConcurrentModificationException(); } 1327 if (old != null) { 1328 if (v != null) { 1329 old.value = v; 1330 afterNodeAccess(old); 1331 } 1332 else 1333 removeNode(hash, key, null, false, true); 1334 } 1335 else if (v != null) { 1336 if (t != null) 1337 t.putTreeVal(this, tab, hash, key, v); 1338 else { 1339 tab[i] = newNode(hash, key, v, first); 1340 if (binCount >= TREEIFY_THRESHOLD - 1) 1341 treeifyBin(tab, hash); 1342 } 1343 modCount = mc + 1; 1344 ++size; 1345 afterNodeInsertion(true); 1346 } 1347 return v; 1348 } 1349 1350 /** 1351 * {@inheritDoc} 1352 * 1353 * <p>This method will, on a best-effort basis, throw a 1354 * {@link ConcurrentModificationException} if it is detected that the 1355 * remapping function modifies this map during computation. 1356 * 1357 * @throws ConcurrentModificationException if it is detected that the 1358 * remapping function modified this map 1359 */ 1360 @Override 1361 public V merge(K key, V value, 1362 BiFunction<? super V, ? super V, ? extends V> remappingFunction) { 1363 if (value == null || remappingFunction == null) 1364 throw new NullPointerException(); 1365 int hash = hash(key); 1366 Node<K,V>[] tab; Node<K,V> first; int n, i; 1367 int binCount = 0; 1368 TreeNode<K,V> t = null; 1369 Node<K,V> old = null; 1370 if (size > threshold || (tab = table) == null || 1371 (n = tab.length) == 0) 1372 n = (tab = resize()).length; 1373 if ((first = tab[i = (n - 1) & hash]) != null) { 1374 if (first instanceof TreeNode) 1375 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); 1376 else { 1377 Node<K,V> e = first; K k; 1378 do { 1379 if (e.hash == hash && 1380 ((k = e.key) == key || (key != null && key.equals(k)))) { 1381 old = e; 1382 break; 1383 } 1384 ++binCount; 1385 } while ((e = e.next) != null); 1386 } 1387 } 1388 if (old != null) { 1389 V v; 1390 if (old.value != null) { 1391 int mc = modCount; 1392 v = remappingFunction.apply(old.value, value); 1393 if (mc != modCount) { 1394 throw new ConcurrentModificationException(); 1395 } 1396 } else { 1397 v = value; 1398 } 1399 if (v != null) { 1400 old.value = v; 1401 afterNodeAccess(old); 1402 } 1403 else 1404 removeNode(hash, key, null, false, true); 1405 return v; 1406 } else { 1407 if (t != null) 1408 t.putTreeVal(this, tab, hash, key, value); 1409 else { 1410 tab[i] = newNode(hash, key, value, first); 1411 if (binCount >= TREEIFY_THRESHOLD - 1) 1412 treeifyBin(tab, hash); 1413 } 1414 ++modCount; 1415 ++size; 1416 afterNodeInsertion(true); 1417 return value; 1418 } 1419 } 1420 1421 @Override 1422 public void forEach(BiConsumer<? super K, ? super V> action) { 1423 Node<K,V>[] tab; 1424 if (action == null) 1425 throw new NullPointerException(); 1426 if (size > 0 && (tab = table) != null) { 1427 int mc = modCount; 1428 for (Node<K,V> e : tab) { 1429 for (; e != null; e = e.next) 1430 action.accept(e.key, e.value); 1431 } 1432 if (modCount != mc) 1433 throw new ConcurrentModificationException(); 1434 } 1435 } 1436 1437 @Override 1438 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { 1439 Node<K,V>[] tab; 1440 if (function == null) 1441 throw new NullPointerException(); 1442 if (size > 0 && (tab = table) != null) { 1443 int mc = modCount; 1444 for (Node<K,V> e : tab) { 1445 for (; e != null; e = e.next) { 1446 e.value = function.apply(e.key, e.value); 1447 } 1448 } 1449 if (modCount != mc) 1450 throw new ConcurrentModificationException(); 1451 } 1452 } 1453 1454 /* ------------------------------------------------------------ */ 1455 // Cloning and serialization 1456 1457 /** 1458 * Returns a shallow copy of this {@code HashMap} instance: the keys and 1459 * values themselves are not cloned. 1460 * 1461 * @return a shallow copy of this map 1462 */ 1463 @SuppressWarnings("unchecked") 1464 @Override 1465 public Object clone() { 1466 HashMap<K,V> result; 1467 try { 1468 result = (HashMap<K,V>)super.clone(); 1469 } catch (CloneNotSupportedException e) { 1470 // this shouldn't happen, since we are Cloneable 1471 throw new InternalError(e); 1472 } 1473 result.reinitialize(); 1474 result.putMapEntries(this, false); 1475 return result; 1476 } 1477 1478 // These methods are also used when serializing HashSets 1479 final float loadFactor() { return loadFactor; } 1480 final int capacity() { 1481 return (table != null) ? table.length : 1482 (threshold > 0) ? threshold : 1483 DEFAULT_INITIAL_CAPACITY; 1484 } 1485 1486 /** 1487 * Saves this map to a stream (that is, serializes it). 1488 * 1489 * @param s the stream 1490 * @throws IOException if an I/O error occurs 1491 * @serialData The <i>capacity</i> of the HashMap (the length of the 1492 * bucket array) is emitted (int), followed by the 1493 * <i>size</i> (an int, the number of key-value 1494 * mappings), followed by the key (Object) and value (Object) 1495 * for each key-value mapping. The key-value mappings are 1496 * emitted in no particular order. 1497 */ 1498 @java.io.Serial 1499 private void writeObject(java.io.ObjectOutputStream s) 1500 throws IOException { 1501 int buckets = capacity(); 1502 // Write out the threshold, loadfactor, and any hidden stuff 1503 s.defaultWriteObject(); 1504 s.writeInt(buckets); 1505 s.writeInt(size); 1506 internalWriteEntries(s); 1507 } 1508 1509 /** 1510 * Reconstitutes this map from a stream (that is, deserializes it). 1511 * @param s the stream 1512 * @throws ClassNotFoundException if the class of a serialized object 1513 * could not be found 1514 * @throws IOException if an I/O error occurs 1515 */ 1516 @java.io.Serial 1517 private void readObject(ObjectInputStream s) 1518 throws IOException, ClassNotFoundException { 1519 1520 ObjectInputStream.GetField fields = s.readFields(); 1521 1522 // Read loadFactor (ignore threshold) 1523 float lf = fields.get("loadFactor", 0.75f); 1524 if (lf <= 0 || Float.isNaN(lf)) 1525 throw new InvalidObjectException("Illegal load factor: " + lf); 1526 1527 lf = Math.clamp(lf, 0.25f, 4.0f); 1528 HashMap.UnsafeHolder.putLoadFactor(this, lf); 1529 1530 reinitialize(); 1531 1532 s.readInt(); // Read and ignore number of buckets 1533 int mappings = s.readInt(); // Read number of mappings (size) 1534 if (mappings < 0) { 1535 throw new InvalidObjectException("Illegal mappings count: " + mappings); 1536 } else if (mappings == 0) { 1537 // use defaults 1538 } else if (mappings > 0) { 1539 double dc = Math.ceil(mappings / (double)lf); 1540 int cap = ((dc < DEFAULT_INITIAL_CAPACITY) ? 1541 DEFAULT_INITIAL_CAPACITY : 1542 (dc >= MAXIMUM_CAPACITY) ? 1543 MAXIMUM_CAPACITY : 1544 tableSizeFor((int)dc)); 1545 float ft = (float)cap * lf; 1546 threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? 1547 (int)ft : Integer.MAX_VALUE); 1548 1549 // Check Map.Entry[].class since it's the nearest public type to 1550 // what we're actually creating. 1551 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap); 1552 @SuppressWarnings({"rawtypes","unchecked"}) 1553 Node<K,V>[] tab = (Node<K,V>[])new Node[cap]; 1554 table = tab; 1555 1556 // Read the keys and values, and put the mappings in the HashMap 1557 for (int i = 0; i < mappings; i++) { 1558 @SuppressWarnings("unchecked") 1559 K key = (K) s.readObject(); 1560 @SuppressWarnings("unchecked") 1561 V value = (V) s.readObject(); 1562 putVal(hash(key), key, value, false, false); 1563 } 1564 } 1565 } 1566 1567 // Support for resetting final field during deserializing 1568 private static final class UnsafeHolder { 1569 private UnsafeHolder() { throw new InternalError(); } 1570 private static final jdk.internal.misc.Unsafe unsafe 1571 = jdk.internal.misc.Unsafe.getUnsafe(); 1572 private static final long LF_OFFSET 1573 = unsafe.objectFieldOffset(HashMap.class, "loadFactor"); 1574 static void putLoadFactor(HashMap<?, ?> map, float lf) { 1575 unsafe.putFloat(map, LF_OFFSET, lf); 1576 } 1577 } 1578 1579 /* ------------------------------------------------------------ */ 1580 // iterators 1581 1582 abstract class HashIterator { 1583 Node<K,V> next; // next entry to return 1584 Node<K,V> current; // current entry 1585 int expectedModCount; // for fast-fail 1586 int index; // current slot 1587 1588 HashIterator() { 1589 expectedModCount = modCount; 1590 Node<K,V>[] t = table; 1591 current = next = null; 1592 index = 0; 1593 if (t != null && size > 0) { // advance to first entry 1594 do {} while (index < t.length && (next = t[index++]) == null); 1595 } 1596 } 1597 1598 public final boolean hasNext() { 1599 return next != null; 1600 } 1601 1602 final Node<K,V> nextNode() { 1603 Node<K,V>[] t; 1604 Node<K,V> e = next; 1605 if (modCount != expectedModCount) 1606 throw new ConcurrentModificationException(); 1607 if (e == null) 1608 throw new NoSuchElementException(); 1609 if ((next = (current = e).next) == null && (t = table) != null) { 1610 do {} while (index < t.length && (next = t[index++]) == null); 1611 } 1612 return e; 1613 } 1614 1615 public final void remove() { 1616 Node<K,V> p = current; 1617 if (p == null) 1618 throw new IllegalStateException(); 1619 if (modCount != expectedModCount) 1620 throw new ConcurrentModificationException(); 1621 current = null; 1622 removeNode(p.hash, p.key, null, false, false); 1623 expectedModCount = modCount; 1624 } 1625 } 1626 1627 final class KeyIterator extends HashIterator 1628 implements Iterator<K> { 1629 public final K next() { return nextNode().key; } 1630 } 1631 1632 final class ValueIterator extends HashIterator 1633 implements Iterator<V> { 1634 public final V next() { return nextNode().value; } 1635 } 1636 1637 final class EntryIterator extends HashIterator 1638 implements Iterator<Map.Entry<K,V>> { 1639 public final Map.Entry<K,V> next() { return nextNode(); } 1640 } 1641 1642 /* ------------------------------------------------------------ */ 1643 // spliterators 1644 1645 static class HashMapSpliterator<K,V> { 1646 final HashMap<K,V> map; 1647 Node<K,V> current; // current node 1648 int index; // current index, modified on advance/split 1649 int fence; // one past last index 1650 int est; // size estimate 1651 int expectedModCount; // for comodification checks 1652 1653 HashMapSpliterator(HashMap<K,V> m, int origin, 1654 int fence, int est, 1655 int expectedModCount) { 1656 this.map = m; 1657 this.index = origin; 1658 this.fence = fence; 1659 this.est = est; 1660 this.expectedModCount = expectedModCount; 1661 } 1662 1663 final int getFence() { // initialize fence and size on first use 1664 int hi; 1665 if ((hi = fence) < 0) { 1666 HashMap<K,V> m = map; 1667 est = m.size; 1668 expectedModCount = m.modCount; 1669 Node<K,V>[] tab = m.table; 1670 hi = fence = (tab == null) ? 0 : tab.length; 1671 } 1672 return hi; 1673 } 1674 1675 public final long estimateSize() { 1676 getFence(); // force init 1677 return (long) est; 1678 } 1679 } 1680 1681 static final class KeySpliterator<K,V> 1682 extends HashMapSpliterator<K,V> 1683 implements Spliterator<K> { 1684 KeySpliterator(HashMap<K,V> m, int origin, int fence, int est, 1685 int expectedModCount) { 1686 super(m, origin, fence, est, expectedModCount); 1687 } 1688 1689 public KeySpliterator<K,V> trySplit() { 1690 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1691 return (lo >= mid || current != null) ? null : 1692 new KeySpliterator<>(map, lo, index = mid, est >>>= 1, 1693 expectedModCount); 1694 } 1695 1696 public void forEachRemaining(Consumer<? super K> action) { 1697 int i, hi, mc; 1698 if (action == null) 1699 throw new NullPointerException(); 1700 HashMap<K,V> m = map; 1701 Node<K,V>[] tab = m.table; 1702 if ((hi = fence) < 0) { 1703 mc = expectedModCount = m.modCount; 1704 hi = fence = (tab == null) ? 0 : tab.length; 1705 } 1706 else 1707 mc = expectedModCount; 1708 if (tab != null && tab.length >= hi && 1709 (i = index) >= 0 && (i < (index = hi) || current != null)) { 1710 Node<K,V> p = current; 1711 current = null; 1712 do { 1713 if (p == null) 1714 p = tab[i++]; 1715 else { 1716 action.accept(p.key); 1717 p = p.next; 1718 } 1719 } while (p != null || i < hi); 1720 if (m.modCount != mc) 1721 throw new ConcurrentModificationException(); 1722 } 1723 } 1724 1725 public boolean tryAdvance(Consumer<? super K> action) { 1726 int hi; 1727 if (action == null) 1728 throw new NullPointerException(); 1729 Node<K,V>[] tab = map.table; 1730 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { 1731 while (current != null || index < hi) { 1732 if (current == null) 1733 current = tab[index++]; 1734 else { 1735 K k = current.key; 1736 current = current.next; 1737 action.accept(k); 1738 if (map.modCount != expectedModCount) 1739 throw new ConcurrentModificationException(); 1740 return true; 1741 } 1742 } 1743 } 1744 return false; 1745 } 1746 1747 public int characteristics() { 1748 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | 1749 Spliterator.DISTINCT; 1750 } 1751 } 1752 1753 static final class ValueSpliterator<K,V> 1754 extends HashMapSpliterator<K,V> 1755 implements Spliterator<V> { 1756 ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est, 1757 int expectedModCount) { 1758 super(m, origin, fence, est, expectedModCount); 1759 } 1760 1761 public ValueSpliterator<K,V> trySplit() { 1762 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1763 return (lo >= mid || current != null) ? null : 1764 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, 1765 expectedModCount); 1766 } 1767 1768 public void forEachRemaining(Consumer<? super V> action) { 1769 int i, hi, mc; 1770 if (action == null) 1771 throw new NullPointerException(); 1772 HashMap<K,V> m = map; 1773 Node<K,V>[] tab = m.table; 1774 if ((hi = fence) < 0) { 1775 mc = expectedModCount = m.modCount; 1776 hi = fence = (tab == null) ? 0 : tab.length; 1777 } 1778 else 1779 mc = expectedModCount; 1780 if (tab != null && tab.length >= hi && 1781 (i = index) >= 0 && (i < (index = hi) || current != null)) { 1782 Node<K,V> p = current; 1783 current = null; 1784 do { 1785 if (p == null) 1786 p = tab[i++]; 1787 else { 1788 action.accept(p.value); 1789 p = p.next; 1790 } 1791 } while (p != null || i < hi); 1792 if (m.modCount != mc) 1793 throw new ConcurrentModificationException(); 1794 } 1795 } 1796 1797 public boolean tryAdvance(Consumer<? super V> action) { 1798 int hi; 1799 if (action == null) 1800 throw new NullPointerException(); 1801 Node<K,V>[] tab = map.table; 1802 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { 1803 while (current != null || index < hi) { 1804 if (current == null) 1805 current = tab[index++]; 1806 else { 1807 V v = current.value; 1808 current = current.next; 1809 action.accept(v); 1810 if (map.modCount != expectedModCount) 1811 throw new ConcurrentModificationException(); 1812 return true; 1813 } 1814 } 1815 } 1816 return false; 1817 } 1818 1819 public int characteristics() { 1820 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0); 1821 } 1822 } 1823 1824 static final class EntrySpliterator<K,V> 1825 extends HashMapSpliterator<K,V> 1826 implements Spliterator<Map.Entry<K,V>> { 1827 EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est, 1828 int expectedModCount) { 1829 super(m, origin, fence, est, expectedModCount); 1830 } 1831 1832 public EntrySpliterator<K,V> trySplit() { 1833 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1834 return (lo >= mid || current != null) ? null : 1835 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, 1836 expectedModCount); 1837 } 1838 1839 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) { 1840 int i, hi, mc; 1841 if (action == null) 1842 throw new NullPointerException(); 1843 HashMap<K,V> m = map; 1844 Node<K,V>[] tab = m.table; 1845 if ((hi = fence) < 0) { 1846 mc = expectedModCount = m.modCount; 1847 hi = fence = (tab == null) ? 0 : tab.length; 1848 } 1849 else 1850 mc = expectedModCount; 1851 if (tab != null && tab.length >= hi && 1852 (i = index) >= 0 && (i < (index = hi) || current != null)) { 1853 Node<K,V> p = current; 1854 current = null; 1855 do { 1856 if (p == null) 1857 p = tab[i++]; 1858 else { 1859 action.accept(p); 1860 p = p.next; 1861 } 1862 } while (p != null || i < hi); 1863 if (m.modCount != mc) 1864 throw new ConcurrentModificationException(); 1865 } 1866 } 1867 1868 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { 1869 int hi; 1870 if (action == null) 1871 throw new NullPointerException(); 1872 Node<K,V>[] tab = map.table; 1873 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { 1874 while (current != null || index < hi) { 1875 if (current == null) 1876 current = tab[index++]; 1877 else { 1878 Node<K,V> e = current; 1879 current = current.next; 1880 action.accept(e); 1881 if (map.modCount != expectedModCount) 1882 throw new ConcurrentModificationException(); 1883 return true; 1884 } 1885 } 1886 } 1887 return false; 1888 } 1889 1890 public int characteristics() { 1891 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | 1892 Spliterator.DISTINCT; 1893 } 1894 } 1895 1896 /* ------------------------------------------------------------ */ 1897 // LinkedHashMap support 1898 1899 1900 /* 1901 * The following package-protected methods are designed to be 1902 * overridden by LinkedHashMap, but not by any other subclass. 1903 * Nearly all other internal methods are also package-protected 1904 * but are declared final, so can be used by LinkedHashMap, view 1905 * classes, and HashSet. 1906 */ 1907 1908 // Create a regular (non-tree) node 1909 Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { 1910 return new Node<>(hash, key, value, next); 1911 } 1912 1913 // For conversion from TreeNodes to plain nodes 1914 Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) { 1915 return new Node<>(p.hash, p.key, p.value, next); 1916 } 1917 1918 // Create a tree bin node 1919 TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) { 1920 return new TreeNode<>(hash, key, value, next); 1921 } 1922 1923 // For treeifyBin 1924 TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) { 1925 return new TreeNode<>(p.hash, p.key, p.value, next); 1926 } 1927 1928 /** 1929 * Reset to initial default state. Called by clone and readObject. 1930 */ 1931 void reinitialize() { 1932 table = null; 1933 entrySet = null; 1934 keySet = null; 1935 values = null; 1936 modCount = 0; 1937 threshold = 0; 1938 size = 0; 1939 } 1940 1941 // Callbacks to allow LinkedHashMap post-actions 1942 void afterNodeAccess(Node<K,V> p) { } 1943 void afterNodeInsertion(boolean evict) { } 1944 void afterNodeRemoval(Node<K,V> p) { } 1945 1946 // Called only from writeObject, to ensure compatible ordering. 1947 void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { 1948 Node<K,V>[] tab; 1949 if (size > 0 && (tab = table) != null) { 1950 for (Node<K,V> e : tab) { 1951 for (; e != null; e = e.next) { 1952 s.writeObject(e.key); 1953 s.writeObject(e.value); 1954 } 1955 } 1956 } 1957 } 1958 1959 /* ------------------------------------------------------------ */ 1960 // Tree bins 1961 1962 /** 1963 * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn 1964 * extends Node) so can be used as extension of either regular or 1965 * linked node. 1966 */ 1967 static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { 1968 TreeNode<K,V> parent; // red-black tree links 1969 TreeNode<K,V> left; 1970 TreeNode<K,V> right; 1971 TreeNode<K,V> prev; // needed to unlink next upon deletion 1972 boolean red; 1973 TreeNode(int hash, K key, V val, Node<K,V> next) { 1974 super(hash, key, val, next); 1975 } 1976 1977 /** 1978 * Returns root of tree containing this node. 1979 */ 1980 final TreeNode<K,V> root() { 1981 for (TreeNode<K,V> r = this, p;;) { 1982 if ((p = r.parent) == null) 1983 return r; 1984 r = p; 1985 } 1986 } 1987 1988 /** 1989 * Ensures that the given root is the first node of its bin. 1990 */ 1991 static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) { 1992 int n; 1993 if (root != null && tab != null && (n = tab.length) > 0) { 1994 int index = (n - 1) & root.hash; 1995 TreeNode<K,V> first = (TreeNode<K,V>)tab[index]; 1996 if (root != first) { 1997 Node<K,V> rn; 1998 tab[index] = root; 1999 TreeNode<K,V> rp = root.prev; 2000 if ((rn = root.next) != null) 2001 ((TreeNode<K,V>)rn).prev = rp; 2002 if (rp != null) 2003 rp.next = rn; 2004 if (first != null) 2005 first.prev = root; 2006 root.next = first; 2007 root.prev = null; 2008 } 2009 assert checkInvariants(root); 2010 } 2011 } 2012 2013 /** 2014 * Finds the node starting at root p with the given hash and key. 2015 * The kc argument caches comparableClassFor(key) upon first use 2016 * comparing keys. 2017 */ 2018 final TreeNode<K,V> find(int h, Object k, Class<?> kc) { 2019 TreeNode<K,V> p = this; 2020 do { 2021 int ph, dir; K pk; 2022 TreeNode<K,V> pl = p.left, pr = p.right, q; 2023 if ((ph = p.hash) > h) 2024 p = pl; 2025 else if (ph < h) 2026 p = pr; 2027 else if ((pk = p.key) == k || (k != null && k.equals(pk))) 2028 return p; 2029 else if (pl == null) 2030 p = pr; 2031 else if (pr == null) 2032 p = pl; 2033 else if ((kc != null || 2034 (kc = comparableClassFor(k)) != null) && 2035 (dir = compareComparables(kc, k, pk)) != 0) 2036 p = (dir < 0) ? pl : pr; 2037 else if ((q = pr.find(h, k, kc)) != null) 2038 return q; 2039 else 2040 p = pl; 2041 } while (p != null); 2042 return null; 2043 } 2044 2045 /** 2046 * Calls find for root node. 2047 */ 2048 final TreeNode<K,V> getTreeNode(int h, Object k) { 2049 return ((parent != null) ? root() : this).find(h, k, null); 2050 } 2051 2052 /** 2053 * Tie-breaking utility for ordering insertions when equal 2054 * hashCodes and non-comparable. We don't require a total 2055 * order, just a consistent insertion rule to maintain 2056 * equivalence across rebalancings. Tie-breaking further than 2057 * necessary simplifies testing a bit. 2058 */ 2059 static int tieBreakOrder(Object a, Object b) { 2060 int d; 2061 if (a == null || b == null || 2062 (d = a.getClass().getName(). 2063 compareTo(b.getClass().getName())) == 0) 2064 d = (System.identityHashCode(a) <= System.identityHashCode(b) ? 2065 -1 : 1); 2066 return d; 2067 } 2068 2069 /** 2070 * Forms tree of the nodes linked from this node. 2071 */ 2072 final void treeify(Node<K,V>[] tab) { 2073 TreeNode<K,V> root = null; 2074 for (TreeNode<K,V> x = this, next; x != null; x = next) { 2075 next = (TreeNode<K,V>)x.next; 2076 x.left = x.right = null; 2077 if (root == null) { 2078 x.parent = null; 2079 x.red = false; 2080 root = x; 2081 } 2082 else { 2083 K k = x.key; 2084 int h = x.hash; 2085 Class<?> kc = null; 2086 for (TreeNode<K,V> p = root;;) { 2087 int dir, ph; 2088 K pk = p.key; 2089 if ((ph = p.hash) > h) 2090 dir = -1; 2091 else if (ph < h) 2092 dir = 1; 2093 else if ((kc == null && 2094 (kc = comparableClassFor(k)) == null) || 2095 (dir = compareComparables(kc, k, pk)) == 0) 2096 dir = tieBreakOrder(k, pk); 2097 2098 TreeNode<K,V> xp = p; 2099 if ((p = (dir <= 0) ? p.left : p.right) == null) { 2100 x.parent = xp; 2101 if (dir <= 0) 2102 xp.left = x; 2103 else 2104 xp.right = x; 2105 root = balanceInsertion(root, x); 2106 break; 2107 } 2108 } 2109 } 2110 } 2111 moveRootToFront(tab, root); 2112 } 2113 2114 /** 2115 * Returns a list of non-TreeNodes replacing those linked from 2116 * this node. 2117 */ 2118 final Node<K,V> untreeify(HashMap<K,V> map) { 2119 Node<K,V> hd = null, tl = null; 2120 for (Node<K,V> q = this; q != null; q = q.next) { 2121 Node<K,V> p = map.replacementNode(q, null); 2122 if (tl == null) 2123 hd = p; 2124 else 2125 tl.next = p; 2126 tl = p; 2127 } 2128 return hd; 2129 } 2130 2131 /** 2132 * Tree version of putVal. 2133 */ 2134 final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, 2135 int h, K k, V v) { 2136 Class<?> kc = null; 2137 boolean searched = false; 2138 TreeNode<K,V> root = (parent != null) ? root() : this; 2139 for (TreeNode<K,V> p = root;;) { 2140 int dir, ph; K pk; 2141 if ((ph = p.hash) > h) 2142 dir = -1; 2143 else if (ph < h) 2144 dir = 1; 2145 else if ((pk = p.key) == k || (k != null && k.equals(pk))) 2146 return p; 2147 else if ((kc == null && 2148 (kc = comparableClassFor(k)) == null) || 2149 (dir = compareComparables(kc, k, pk)) == 0) { 2150 if (!searched) { 2151 TreeNode<K,V> q, ch; 2152 searched = true; 2153 if (((ch = p.left) != null && 2154 (q = ch.find(h, k, kc)) != null) || 2155 ((ch = p.right) != null && 2156 (q = ch.find(h, k, kc)) != null)) 2157 return q; 2158 } 2159 dir = tieBreakOrder(k, pk); 2160 } 2161 2162 TreeNode<K,V> xp = p; 2163 if ((p = (dir <= 0) ? p.left : p.right) == null) { 2164 Node<K,V> xpn = xp.next; 2165 TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); 2166 if (dir <= 0) 2167 xp.left = x; 2168 else 2169 xp.right = x; 2170 xp.next = x; 2171 x.parent = x.prev = xp; 2172 if (xpn != null) 2173 ((TreeNode<K,V>)xpn).prev = x; 2174 moveRootToFront(tab, balanceInsertion(root, x)); 2175 return null; 2176 } 2177 } 2178 } 2179 2180 /** 2181 * Removes the given node, that must be present before this call. 2182 * This is messier than typical red-black deletion code because we 2183 * cannot swap the contents of an interior node with a leaf 2184 * successor that is pinned by "next" pointers that are accessible 2185 * independently during traversal. So instead we swap the tree 2186 * linkages. If the current tree appears to have too few nodes, 2187 * the bin is converted back to a plain bin. (The test triggers 2188 * somewhere between 2 and 6 nodes, depending on tree structure). 2189 */ 2190 final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, 2191 boolean movable) { 2192 int n; 2193 if (tab == null || (n = tab.length) == 0) 2194 return; 2195 int index = (n - 1) & hash; 2196 TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl; 2197 TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev; 2198 if (pred == null) 2199 tab[index] = first = succ; 2200 else 2201 pred.next = succ; 2202 if (succ != null) 2203 succ.prev = pred; 2204 if (first == null) 2205 return; 2206 if (root.parent != null) 2207 root = root.root(); 2208 if (root == null 2209 || (movable 2210 && (root.right == null 2211 || (rl = root.left) == null 2212 || rl.left == null))) { 2213 tab[index] = first.untreeify(map); // too small 2214 return; 2215 } 2216 TreeNode<K,V> p = this, pl = left, pr = right, replacement; 2217 if (pl != null && pr != null) { 2218 TreeNode<K,V> s = pr, sl; 2219 while ((sl = s.left) != null) // find successor 2220 s = sl; 2221 boolean c = s.red; s.red = p.red; p.red = c; // swap colors 2222 TreeNode<K,V> sr = s.right; 2223 TreeNode<K,V> pp = p.parent; 2224 if (s == pr) { // p was s's direct parent 2225 p.parent = s; 2226 s.right = p; 2227 } 2228 else { 2229 TreeNode<K,V> sp = s.parent; 2230 if ((p.parent = sp) != null) { 2231 if (s == sp.left) 2232 sp.left = p; 2233 else 2234 sp.right = p; 2235 } 2236 if ((s.right = pr) != null) 2237 pr.parent = s; 2238 } 2239 p.left = null; 2240 if ((p.right = sr) != null) 2241 sr.parent = p; 2242 if ((s.left = pl) != null) 2243 pl.parent = s; 2244 if ((s.parent = pp) == null) 2245 root = s; 2246 else if (p == pp.left) 2247 pp.left = s; 2248 else 2249 pp.right = s; 2250 if (sr != null) 2251 replacement = sr; 2252 else 2253 replacement = p; 2254 } 2255 else if (pl != null) 2256 replacement = pl; 2257 else if (pr != null) 2258 replacement = pr; 2259 else 2260 replacement = p; 2261 if (replacement != p) { 2262 TreeNode<K,V> pp = replacement.parent = p.parent; 2263 if (pp == null) 2264 (root = replacement).red = false; 2265 else if (p == pp.left) 2266 pp.left = replacement; 2267 else 2268 pp.right = replacement; 2269 p.left = p.right = p.parent = null; 2270 } 2271 2272 TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement); 2273 2274 if (replacement == p) { // detach 2275 TreeNode<K,V> pp = p.parent; 2276 p.parent = null; 2277 if (pp != null) { 2278 if (p == pp.left) 2279 pp.left = null; 2280 else if (p == pp.right) 2281 pp.right = null; 2282 } 2283 } 2284 if (movable) 2285 moveRootToFront(tab, r); 2286 } 2287 2288 /** 2289 * Splits nodes in a tree bin into lower and upper tree bins, 2290 * or untreeifies if now too small. Called only from resize; 2291 * see above discussion about split bits and indices. 2292 * 2293 * @param map the map 2294 * @param tab the table for recording bin heads 2295 * @param index the index of the table being split 2296 * @param bit the bit of hash to split on 2297 */ 2298 final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) { 2299 TreeNode<K,V> b = this; 2300 // Relink into lo and hi lists, preserving order 2301 TreeNode<K,V> loHead = null, loTail = null; 2302 TreeNode<K,V> hiHead = null, hiTail = null; 2303 int lc = 0, hc = 0; 2304 for (TreeNode<K,V> e = b, next; e != null; e = next) { 2305 next = (TreeNode<K,V>)e.next; 2306 e.next = null; 2307 if ((e.hash & bit) == 0) { 2308 if ((e.prev = loTail) == null) 2309 loHead = e; 2310 else 2311 loTail.next = e; 2312 loTail = e; 2313 ++lc; 2314 } 2315 else { 2316 if ((e.prev = hiTail) == null) 2317 hiHead = e; 2318 else 2319 hiTail.next = e; 2320 hiTail = e; 2321 ++hc; 2322 } 2323 } 2324 2325 if (loHead != null) { 2326 if (lc <= UNTREEIFY_THRESHOLD) 2327 tab[index] = loHead.untreeify(map); 2328 else { 2329 tab[index] = loHead; 2330 if (hiHead != null) // (else is already treeified) 2331 loHead.treeify(tab); 2332 } 2333 } 2334 if (hiHead != null) { 2335 if (hc <= UNTREEIFY_THRESHOLD) 2336 tab[index + bit] = hiHead.untreeify(map); 2337 else { 2338 tab[index + bit] = hiHead; 2339 if (loHead != null) 2340 hiHead.treeify(tab); 2341 } 2342 } 2343 } 2344 2345 /* ------------------------------------------------------------ */ 2346 // Red-black tree methods, all adapted from CLR 2347 2348 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, 2349 TreeNode<K,V> p) { 2350 TreeNode<K,V> r, pp, rl; 2351 if (p != null && (r = p.right) != null) { 2352 if ((rl = p.right = r.left) != null) 2353 rl.parent = p; 2354 if ((pp = r.parent = p.parent) == null) 2355 (root = r).red = false; 2356 else if (pp.left == p) 2357 pp.left = r; 2358 else 2359 pp.right = r; 2360 r.left = p; 2361 p.parent = r; 2362 } 2363 return root; 2364 } 2365 2366 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, 2367 TreeNode<K,V> p) { 2368 TreeNode<K,V> l, pp, lr; 2369 if (p != null && (l = p.left) != null) { 2370 if ((lr = p.left = l.right) != null) 2371 lr.parent = p; 2372 if ((pp = l.parent = p.parent) == null) 2373 (root = l).red = false; 2374 else if (pp.right == p) 2375 pp.right = l; 2376 else 2377 pp.left = l; 2378 l.right = p; 2379 p.parent = l; 2380 } 2381 return root; 2382 } 2383 2384 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, 2385 TreeNode<K,V> x) { 2386 x.red = true; 2387 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { 2388 if ((xp = x.parent) == null) { 2389 x.red = false; 2390 return x; 2391 } 2392 else if (!xp.red || (xpp = xp.parent) == null) 2393 return root; 2394 if (xp == (xppl = xpp.left)) { 2395 if ((xppr = xpp.right) != null && xppr.red) { 2396 xppr.red = false; 2397 xp.red = false; 2398 xpp.red = true; 2399 x = xpp; 2400 } 2401 else { 2402 if (x == xp.right) { 2403 root = rotateLeft(root, x = xp); 2404 xpp = (xp = x.parent) == null ? null : xp.parent; 2405 } 2406 if (xp != null) { 2407 xp.red = false; 2408 if (xpp != null) { 2409 xpp.red = true; 2410 root = rotateRight(root, xpp); 2411 } 2412 } 2413 } 2414 } 2415 else { 2416 if (xppl != null && xppl.red) { 2417 xppl.red = false; 2418 xp.red = false; 2419 xpp.red = true; 2420 x = xpp; 2421 } 2422 else { 2423 if (x == xp.left) { 2424 root = rotateRight(root, x = xp); 2425 xpp = (xp = x.parent) == null ? null : xp.parent; 2426 } 2427 if (xp != null) { 2428 xp.red = false; 2429 if (xpp != null) { 2430 xpp.red = true; 2431 root = rotateLeft(root, xpp); 2432 } 2433 } 2434 } 2435 } 2436 } 2437 } 2438 2439 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, 2440 TreeNode<K,V> x) { 2441 for (TreeNode<K,V> xp, xpl, xpr;;) { 2442 if (x == null || x == root) 2443 return root; 2444 else if ((xp = x.parent) == null) { 2445 x.red = false; 2446 return x; 2447 } 2448 else if (x.red) { 2449 x.red = false; 2450 return root; 2451 } 2452 else if ((xpl = xp.left) == x) { 2453 if ((xpr = xp.right) != null && xpr.red) { 2454 xpr.red = false; 2455 xp.red = true; 2456 root = rotateLeft(root, xp); 2457 xpr = (xp = x.parent) == null ? null : xp.right; 2458 } 2459 if (xpr == null) 2460 x = xp; 2461 else { 2462 TreeNode<K,V> sl = xpr.left, sr = xpr.right; 2463 if ((sr == null || !sr.red) && 2464 (sl == null || !sl.red)) { 2465 xpr.red = true; 2466 x = xp; 2467 } 2468 else { 2469 if (sr == null || !sr.red) { 2470 if (sl != null) 2471 sl.red = false; 2472 xpr.red = true; 2473 root = rotateRight(root, xpr); 2474 xpr = (xp = x.parent) == null ? 2475 null : xp.right; 2476 } 2477 if (xpr != null) { 2478 xpr.red = (xp == null) ? false : xp.red; 2479 if ((sr = xpr.right) != null) 2480 sr.red = false; 2481 } 2482 if (xp != null) { 2483 xp.red = false; 2484 root = rotateLeft(root, xp); 2485 } 2486 x = root; 2487 } 2488 } 2489 } 2490 else { // symmetric 2491 if (xpl != null && xpl.red) { 2492 xpl.red = false; 2493 xp.red = true; 2494 root = rotateRight(root, xp); 2495 xpl = (xp = x.parent) == null ? null : xp.left; 2496 } 2497 if (xpl == null) 2498 x = xp; 2499 else { 2500 TreeNode<K,V> sl = xpl.left, sr = xpl.right; 2501 if ((sl == null || !sl.red) && 2502 (sr == null || !sr.red)) { 2503 xpl.red = true; 2504 x = xp; 2505 } 2506 else { 2507 if (sl == null || !sl.red) { 2508 if (sr != null) 2509 sr.red = false; 2510 xpl.red = true; 2511 root = rotateLeft(root, xpl); 2512 xpl = (xp = x.parent) == null ? 2513 null : xp.left; 2514 } 2515 if (xpl != null) { 2516 xpl.red = (xp == null) ? false : xp.red; 2517 if ((sl = xpl.left) != null) 2518 sl.red = false; 2519 } 2520 if (xp != null) { 2521 xp.red = false; 2522 root = rotateRight(root, xp); 2523 } 2524 x = root; 2525 } 2526 } 2527 } 2528 } 2529 } 2530 2531 /** 2532 * Recursive invariant check 2533 */ 2534 static <K,V> boolean checkInvariants(TreeNode<K,V> t) { 2535 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, 2536 tb = t.prev, tn = (TreeNode<K,V>)t.next; 2537 if (tb != null && tb.next != t) 2538 return false; 2539 if (tn != null && tn.prev != t) 2540 return false; 2541 if (tp != null && t != tp.left && t != tp.right) 2542 return false; 2543 if (tl != null && (tl.parent != t || tl.hash > t.hash)) 2544 return false; 2545 if (tr != null && (tr.parent != t || tr.hash < t.hash)) 2546 return false; 2547 if (t.red && tl != null && tl.red && tr != null && tr.red) 2548 return false; 2549 if (tl != null && !checkInvariants(tl)) 2550 return false; 2551 if (tr != null && !checkInvariants(tr)) 2552 return false; 2553 return true; 2554 } 2555 } 2556 2557 /** 2558 * Calculate initial capacity for HashMap based classes, from expected size and default load factor (0.75). 2559 * 2560 * @param numMappings the expected number of mappings 2561 * @return initial capacity for HashMap based classes. 2562 * @since 19 2563 */ 2564 static int calculateHashMapCapacity(int numMappings) { 2565 return (int) Math.ceil(numMappings / (double) DEFAULT_LOAD_FACTOR); 2566 } 2567 2568 /** 2569 * Creates a new, empty HashMap suitable for the expected number of mappings. 2570 * The returned map uses the default load factor of 0.75, and its initial capacity is 2571 * generally large enough so that the expected number of mappings can be added 2572 * without resizing the map. 2573 * 2574 * @param numMappings the expected number of mappings 2575 * @param <K> the type of keys maintained by the new map 2576 * @param <V> the type of mapped values 2577 * @return the newly created map 2578 * @throws IllegalArgumentException if numMappings is negative 2579 * @since 19 2580 */ 2581 public static <K, V> HashMap<K, V> newHashMap(int numMappings) { 2582 if (numMappings < 0) { 2583 throw new IllegalArgumentException("Negative number of mappings: " + numMappings); 2584 } 2585 return new HashMap<>(calculateHashMapCapacity(numMappings)); 2586 } 2587 2588 }