1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.ObjectInputStream;
  31 import java.io.Serializable;
  32 import java.lang.reflect.ParameterizedType;
  33 import java.lang.reflect.Type;
  34 import java.util.function.BiConsumer;
  35 import java.util.function.BiFunction;
  36 import java.util.function.Consumer;
  37 import java.util.function.Function;
  38 import jdk.internal.access.SharedSecrets;
  39 
  40 /**
  41  * Hash table based implementation of the {@code Map} interface.  This
  42  * implementation provides all of the optional map operations, and permits
  43  * {@code null} values and the {@code null} key.  (The {@code HashMap}
  44  * class is roughly equivalent to {@code Hashtable}, except that it is
  45  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  46  * the order of the map; in particular, it does not guarantee that the order
  47  * will remain constant over time.
  48  *
  49  * <p>This implementation provides constant-time performance for the basic
  50  * operations ({@code get} and {@code put}), assuming the hash function
  51  * disperses the elements properly among the buckets.  Iteration over
  52  * collection views requires time proportional to the "capacity" of the
  53  * {@code HashMap} instance (the number of buckets) plus its size (the number
  54  * of key-value mappings).  Thus, it's very important not to set the initial
  55  * capacity too high (or the load factor too low) if iteration performance is
  56  * important.
  57  *
  58  * <p>An instance of {@code HashMap} has two parameters that affect its
  59  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  60  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  61  * capacity is simply the capacity at the time the hash table is created.  The
  62  * <i>load factor</i> is a measure of how full the hash table is allowed to
  63  * get before its capacity is automatically increased.  When the number of
  64  * entries in the hash table exceeds the product of the load factor and the
  65  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  66  * structures are rebuilt) so that the hash table has approximately twice the
  67  * number of buckets.
  68  *
  69  * <p>As a general rule, the default load factor (.75) offers a good
  70  * tradeoff between time and space costs.  Higher values decrease the
  71  * space overhead but increase the lookup cost (reflected in most of
  72  * the operations of the {@code HashMap} class, including
  73  * {@code get} and {@code put}).  The expected number of entries in
  74  * the map and its load factor should be taken into account when
  75  * setting its initial capacity, so as to minimize the number of
  76  * rehash operations.  If the initial capacity is greater than the
  77  * maximum number of entries divided by the load factor, no rehash
  78  * operations will ever occur.
  79  *
  80  * <p>If many mappings are to be stored in a {@code HashMap}
  81  * instance, creating it with a sufficiently large capacity will allow
  82  * the mappings to be stored more efficiently than letting it perform
  83  * automatic rehashing as needed to grow the table.  Note that using
  84  * many keys with the same {@code hashCode()} is a sure way to slow
  85  * down performance of any hash table. To ameliorate impact, when keys
  86  * are {@link Comparable}, this class may use comparison order among
  87  * keys to help break ties.
  88  *
  89  * <p><strong>Note that this implementation is not synchronized.</strong>
  90  * If multiple threads access a hash map concurrently, and at least one of
  91  * the threads modifies the map structurally, it <i>must</i> be
  92  * synchronized externally.  (A structural modification is any operation
  93  * that adds or deletes one or more mappings; merely changing the value
  94  * associated with a key that an instance already contains is not a
  95  * structural modification.)  This is typically accomplished by
  96  * synchronizing on some object that naturally encapsulates the map.
  97  *
  98  * If no such object exists, the map should be "wrapped" using the
  99  * {@link Collections#synchronizedMap Collections.synchronizedMap}
 100  * method.  This is best done at creation time, to prevent accidental
 101  * unsynchronized access to the map:<pre>
 102  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 103  *
 104  * <p>The iterators returned by all of this class's "collection view methods"
 105  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 106  * the iterator is created, in any way except through the iterator's own
 107  * {@code remove} method, the iterator will throw a
 108  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 109  * modification, the iterator fails quickly and cleanly, rather than risking
 110  * arbitrary, non-deterministic behavior at an undetermined time in the
 111  * future.
 112  *
 113  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 114  * as it is, generally speaking, impossible to make any hard guarantees in the
 115  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 116  * throw {@code ConcurrentModificationException} on a best-effort basis.
 117  * Therefore, it would be wrong to write a program that depended on this
 118  * exception for its correctness: <i>the fail-fast behavior of iterators
 119  * should be used only to detect bugs.</i>
 120  *
 121  * <p>This class is a member of the
 122  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 123  * Java Collections Framework</a>.
 124  *
 125  * @param <K> the type of keys maintained by this map
 126  * @param <V> the type of mapped values
 127  *
 128  * @author  Doug Lea
 129  * @author  Josh Bloch
 130  * @author  Arthur van Hoff
 131  * @author  Neal Gafter
 132  * @see     Object#hashCode()
 133  * @see     Collection
 134  * @see     Map
 135  * @see     TreeMap
 136  * @see     Hashtable
 137  * @since   1.2
 138  */
 139 public class HashMap<K,V> extends AbstractMap<K,V>
 140     implements Map<K,V>, Cloneable, Serializable {
 141 
 142     @java.io.Serial
 143     private static final long serialVersionUID = 362498820763181265L;
 144 
 145     /*
 146      * Implementation notes.
 147      *
 148      * This map usually acts as a binned (bucketed) hash table, but
 149      * when bins get too large, they are transformed into bins of
 150      * TreeNodes, each structured similarly to those in
 151      * java.util.TreeMap. Most methods try to use normal bins, but
 152      * relay to TreeNode methods when applicable (simply by checking
 153      * instanceof a node).  Bins of TreeNodes may be traversed and
 154      * used like any others, but additionally support faster lookup
 155      * when overpopulated. However, since the vast majority of bins in
 156      * normal use are not overpopulated, checking for existence of
 157      * tree bins may be delayed in the course of table methods.
 158      *
 159      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 160      * ordered primarily by hashCode, but in the case of ties, if two
 161      * elements are of the same "class C implements Comparable<C>",
 162      * type then their compareTo method is used for ordering. (We
 163      * conservatively check generic types via reflection to validate
 164      * this -- see method comparableClassFor).  The added complexity
 165      * of tree bins is worthwhile in providing worst-case O(log n)
 166      * operations when keys either have distinct hashes or are
 167      * orderable, Thus, performance degrades gracefully under
 168      * accidental or malicious usages in which hashCode() methods
 169      * return values that are poorly distributed, as well as those in
 170      * which many keys share a hashCode, so long as they are also
 171      * Comparable. (If neither of these apply, we may waste about a
 172      * factor of two in time and space compared to taking no
 173      * precautions. But the only known cases stem from poor user
 174      * programming practices that are already so slow that this makes
 175      * little difference.)
 176      *
 177      * Because TreeNodes are about twice the size of regular nodes, we
 178      * use them only when bins contain enough nodes to warrant use
 179      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 180      * removal or resizing) they are converted back to plain bins.  In
 181      * usages with well-distributed user hashCodes, tree bins are
 182      * rarely used.  Ideally, under random hashCodes, the frequency of
 183      * nodes in bins follows a Poisson distribution
 184      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 185      * parameter of about 0.5 on average for the default resizing
 186      * threshold of 0.75, although with a large variance because of
 187      * resizing granularity. Ignoring variance, the expected
 188      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 189      * factorial(k)). The first values are:
 190      *
 191      * 0:    0.60653066
 192      * 1:    0.30326533
 193      * 2:    0.07581633
 194      * 3:    0.01263606
 195      * 4:    0.00157952
 196      * 5:    0.00015795
 197      * 6:    0.00001316
 198      * 7:    0.00000094
 199      * 8:    0.00000006
 200      * more: less than 1 in ten million
 201      *
 202      * The root of a tree bin is normally its first node.  However,
 203      * sometimes (currently only upon Iterator.remove), the root might
 204      * be elsewhere, but can be recovered following parent links
 205      * (method TreeNode.root()).
 206      *
 207      * All applicable internal methods accept a hash code as an
 208      * argument (as normally supplied from a public method), allowing
 209      * them to call each other without recomputing user hashCodes.
 210      * Most internal methods also accept a "tab" argument, that is
 211      * normally the current table, but may be a new or old one when
 212      * resizing or converting.
 213      *
 214      * When bin lists are treeified, split, or untreeified, we keep
 215      * them in the same relative access/traversal order (i.e., field
 216      * Node.next) to better preserve locality, and to slightly
 217      * simplify handling of splits and traversals that invoke
 218      * iterator.remove. When using comparators on insertion, to keep a
 219      * total ordering (or as close as is required here) across
 220      * rebalancings, we compare classes and identityHashCodes as
 221      * tie-breakers.
 222      *
 223      * The use and transitions among plain vs tree modes is
 224      * complicated by the existence of subclass LinkedHashMap. See
 225      * below for hook methods defined to be invoked upon insertion,
 226      * removal and access that allow LinkedHashMap internals to
 227      * otherwise remain independent of these mechanics. (This also
 228      * requires that a map instance be passed to some utility methods
 229      * that may create new nodes.)
 230      *
 231      * The concurrent-programming-like SSA-based coding style helps
 232      * avoid aliasing errors amid all of the twisty pointer operations.
 233      */
 234 
 235     /**
 236      * The default initial capacity - MUST be a power of two.
 237      */
 238     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 239 
 240     /**
 241      * The maximum capacity, used if a higher value is implicitly specified
 242      * by either of the constructors with arguments.
 243      * MUST be a power of two <= 1<<30.
 244      */
 245     static final int MAXIMUM_CAPACITY = 1 << 30;
 246 
 247     /**
 248      * The load factor used when none specified in constructor.
 249      */
 250     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 251 
 252     /**
 253      * The bin count threshold for using a tree rather than list for a
 254      * bin.  Bins are converted to trees when adding an element to a
 255      * bin with at least this many nodes. The value must be greater
 256      * than 2 and should be at least 8 to mesh with assumptions in
 257      * tree removal about conversion back to plain bins upon
 258      * shrinkage.
 259      */
 260     static final int TREEIFY_THRESHOLD = 8;
 261 
 262     /**
 263      * The bin count threshold for untreeifying a (split) bin during a
 264      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 265      * most 6 to mesh with shrinkage detection under removal.
 266      */
 267     static final int UNTREEIFY_THRESHOLD = 6;
 268 
 269     /**
 270      * The smallest table capacity for which bins may be treeified.
 271      * (Otherwise the table is resized if too many nodes in a bin.)
 272      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 273      * between resizing and treeification thresholds.
 274      */
 275     static final int MIN_TREEIFY_CAPACITY = 64;
 276 
 277     /**
 278      * Basic hash bin node, used for most entries.  (See below for
 279      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 280      */
 281     static class Node<K,V> implements Map.Entry<K,V> {
 282         final int hash;
 283         final K key;
 284         V value;
 285         Node<K,V> next;
 286 
 287         Node(int hash, K key, V value, Node<K,V> next) {
 288             this.hash = hash;
 289             this.key = key;
 290             this.value = value;
 291             this.next = next;
 292         }
 293 
 294         public final K getKey()        { return key; }
 295         public final V getValue()      { return value; }
 296         public final String toString() { return key + "=" + value; }
 297 
 298         public final int hashCode() {
 299             return Objects.hashCode(key) ^ Objects.hashCode(value);
 300         }
 301 
 302         public final V setValue(V newValue) {
 303             V oldValue = value;
 304             value = newValue;
 305             return oldValue;
 306         }
 307 
 308         public final boolean equals(Object o) {
 309             if (o == this)
 310                 return true;
 311 
 312             return o instanceof Map.Entry<?, ?> e
 313                     && Objects.equals(key, e.getKey())
 314                     && Objects.equals(value, e.getValue());
 315         }
 316     }
 317 
 318     /* ---------------- Static utilities -------------- */
 319 
 320     /**
 321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 322      * to lower.  Because the table uses power-of-two masking, sets of
 323      * hashes that vary only in bits above the current mask will
 324      * always collide. (Among known examples are sets of Float keys
 325      * holding consecutive whole numbers in small tables.)  So we
 326      * apply a transform that spreads the impact of higher bits
 327      * downward. There is a tradeoff between speed, utility, and
 328      * quality of bit-spreading. Because many common sets of hashes
 329      * are already reasonably distributed (so don't benefit from
 330      * spreading), and because we use trees to handle large sets of
 331      * collisions in bins, we just XOR some shifted bits in the
 332      * cheapest possible way to reduce systematic lossage, as well as
 333      * to incorporate impact of the highest bits that would otherwise
 334      * never be used in index calculations because of table bounds.
 335      */
 336     static final int hash(Object key) {
 337         int h;
 338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 339     }
 340 
 341     /**
 342      * Returns x's Class if it is of the form "class C implements
 343      * Comparable<C>", else null.
 344      */
 345     static Class<?> comparableClassFor(Object x) {
 346         if (x instanceof Comparable) {
 347             Class<?> c; Type[] ts, as; ParameterizedType p;
 348             if ((c = x.getClass()) == String.class) // bypass checks
 349                 return c;
 350             if ((ts = c.getGenericInterfaces()) != null) {
 351                 for (Type t : ts) {
 352                     if ((t instanceof ParameterizedType) &&
 353                         ((p = (ParameterizedType) t).getRawType() ==
 354                          Comparable.class) &&
 355                         (as = p.getActualTypeArguments()) != null &&
 356                         as.length == 1 && as[0] == c) // type arg is c
 357                         return c;
 358                 }
 359             }
 360         }
 361         return null;
 362     }
 363 
 364     /**
 365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 366      * class), else 0.
 367      */
 368     @SuppressWarnings("unchecked") // for cast to Comparable
 369     static int compareComparables(Class<?> kc, Object k, Object x) {
 370         return (x == null || x.getClass() != kc ? 0 :
 371                 ((Comparable)k).compareTo(x));
 372     }
 373 
 374     /**
 375      * Returns a power of two size for the given target capacity.
 376      */
 377     static final int tableSizeFor(int cap) {
 378         int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
 379         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 380     }
 381 
 382     /* ---------------- Fields -------------- */
 383 
 384     /**
 385      * The table, initialized on first use, and resized as
 386      * necessary. When allocated, length is always a power of two.
 387      * (We also tolerate length zero in some operations to allow
 388      * bootstrapping mechanics that are currently not needed.)
 389      */
 390     transient Node<K,V>[] table;
 391 
 392     /**
 393      * Holds cached entrySet(). Note that AbstractMap fields are used
 394      * for keySet() and values().
 395      */
 396     transient Set<Map.Entry<K,V>> entrySet;
 397 
 398     /**
 399      * The number of key-value mappings contained in this map.
 400      */
 401     transient int size;
 402 
 403     /**
 404      * The number of times this HashMap has been structurally modified
 405      * Structural modifications are those that change the number of mappings in
 406      * the HashMap or otherwise modify its internal structure (e.g.,
 407      * rehash).  This field is used to make iterators on Collection-views of
 408      * the HashMap fail-fast.  (See ConcurrentModificationException).
 409      */
 410     transient int modCount;
 411 
 412     /**
 413      * The next size value at which to resize (capacity * load factor).
 414      *
 415      * @serial
 416      */
 417     // (The javadoc description is true upon serialization.
 418     // Additionally, if the table array has not been allocated, this
 419     // field holds the initial array capacity, or zero signifying
 420     // DEFAULT_INITIAL_CAPACITY.)
 421     int threshold;
 422 
 423     /**
 424      * The load factor for the hash table.
 425      *
 426      * @serial
 427      */
 428     final float loadFactor;
 429 
 430     /* ---------------- Public operations -------------- */
 431 
 432     /**
 433      * Constructs an empty {@code HashMap} with the specified initial
 434      * capacity and load factor.
 435      *
 436      * @apiNote
 437      * To create a {@code HashMap} with an initial capacity that accommodates
 438      * an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
 439      *
 440      * @param  initialCapacity the initial capacity
 441      * @param  loadFactor      the load factor
 442      * @throws IllegalArgumentException if the initial capacity is negative
 443      *         or the load factor is nonpositive
 444      */
 445     public HashMap(int initialCapacity, float loadFactor) {
 446         if (initialCapacity < 0)
 447             throw new IllegalArgumentException("Illegal initial capacity: " +
 448                                                initialCapacity);
 449         if (initialCapacity > MAXIMUM_CAPACITY)
 450             initialCapacity = MAXIMUM_CAPACITY;
 451         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 452             throw new IllegalArgumentException("Illegal load factor: " +
 453                                                loadFactor);
 454         this.loadFactor = loadFactor;
 455         this.threshold = tableSizeFor(initialCapacity);
 456     }
 457 
 458     /**
 459      * Constructs an empty {@code HashMap} with the specified initial
 460      * capacity and the default load factor (0.75).
 461      *
 462      * @apiNote
 463      * To create a {@code HashMap} with an initial capacity that accommodates
 464      * an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
 465      *
 466      * @param  initialCapacity the initial capacity.
 467      * @throws IllegalArgumentException if the initial capacity is negative.
 468      */
 469     public HashMap(int initialCapacity) {
 470         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 471     }
 472 
 473     /**
 474      * Constructs an empty {@code HashMap} with the default initial capacity
 475      * (16) and the default load factor (0.75).
 476      */
 477     public HashMap() {
 478         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 479     }
 480 
 481     /**
 482      * Constructs a new {@code HashMap} with the same mappings as the
 483      * specified {@code Map}.  The {@code HashMap} is created with
 484      * default load factor (0.75) and an initial capacity sufficient to
 485      * hold the mappings in the specified {@code Map}.
 486      *
 487      * @param   m the map whose mappings are to be placed in this map
 488      * @throws  NullPointerException if the specified map is null
 489      */
 490     @SuppressWarnings("this-escape")
 491     public HashMap(Map<? extends K, ? extends V> m) {
 492         this.loadFactor = DEFAULT_LOAD_FACTOR;
 493         putMapEntries(m, false);
 494     }
 495 
 496     /**
 497      * Implements Map.putAll and Map constructor.
 498      *
 499      * @param m the map
 500      * @param evict false when initially constructing this map, else
 501      * true (relayed to method afterNodeInsertion).
 502      */
 503     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 504         int s = m.size();
 505         if (s > 0) {
 506             if (table == null) { // pre-size
 507                 double dt = Math.ceil(s / (double)loadFactor);
 508                 int t = ((dt < (double)MAXIMUM_CAPACITY) ?
 509                          (int)dt : MAXIMUM_CAPACITY);
 510                 if (t > threshold)
 511                     threshold = tableSizeFor(t);
 512             } else {
 513                 // Because of linked-list bucket constraints, we cannot
 514                 // expand all at once, but can reduce total resize
 515                 // effort by repeated doubling now vs later
 516                 while (s > threshold && table.length < MAXIMUM_CAPACITY)
 517                     resize();
 518             }
 519 
 520             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 521                 K key = e.getKey();
 522                 V value = e.getValue();
 523                 putVal(hash(key), key, value, false, evict);
 524             }
 525         }
 526     }
 527 
 528     /**
 529      * Returns the number of key-value mappings in this map.
 530      *
 531      * @return the number of key-value mappings in this map
 532      */
 533     public int size() {
 534         return size;
 535     }
 536 
 537     /**
 538      * Returns {@code true} if this map contains no key-value mappings.
 539      *
 540      * @return {@code true} if this map contains no key-value mappings
 541      */
 542     public boolean isEmpty() {
 543         return size == 0;
 544     }
 545 
 546     /**
 547      * Returns the value to which the specified key is mapped,
 548      * or {@code null} if this map contains no mapping for the key.
 549      *
 550      * <p>More formally, if this map contains a mapping from a key
 551      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 552      * key.equals(k))}, then this method returns {@code v}; otherwise
 553      * it returns {@code null}.  (There can be at most one such mapping.)
 554      *
 555      * <p>A return value of {@code null} does not <i>necessarily</i>
 556      * indicate that the map contains no mapping for the key; it's also
 557      * possible that the map explicitly maps the key to {@code null}.
 558      * The {@link #containsKey containsKey} operation may be used to
 559      * distinguish these two cases.
 560      *
 561      * @see #put(Object, Object)
 562      */
 563     public V get(Object key) {
 564         Node<K,V> e;
 565         return (e = getNode(key)) == null ? null : e.value;
 566     }
 567 
 568     /**
 569      * Implements Map.get and related methods.
 570      *
 571      * @param key the key
 572      * @return the node, or null if none
 573      */
 574     final Node<K,V> getNode(Object key) {
 575         Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;
 576         if ((tab = table) != null && (n = tab.length) > 0 &&
 577             (first = tab[(n - 1) & (hash = hash(key))]) != null) {
 578             if (first.hash == hash && // always check first node
 579                     Objects.equals(key, first.key))
 580                 return first;
 581             if ((e = first.next) != null) {
 582                 if (first instanceof TreeNode)
 583                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 584                 do {
 585                     if (e.hash == hash &&
 586                             Objects.equals(key, e.key))
 587                         return e;
 588                 } while ((e = e.next) != null);
 589             }
 590         }
 591         return null;
 592     }
 593 
 594     /**
 595      * Returns {@code true} if this map contains a mapping for the
 596      * specified key.
 597      *
 598      * @param   key   The key whose presence in this map is to be tested
 599      * @return {@code true} if this map contains a mapping for the specified
 600      * key.
 601      */
 602     public boolean containsKey(Object key) {
 603         return getNode(key) != null;
 604     }
 605 
 606     /**
 607      * Associates the specified value with the specified key in this map.
 608      * If the map previously contained a mapping for the key, the old
 609      * value is replaced.
 610      *
 611      * @param key key with which the specified value is to be associated
 612      * @param value value to be associated with the specified key
 613      * @return the previous value associated with {@code key}, or
 614      *         {@code null} if there was no mapping for {@code key}.
 615      *         (A {@code null} return can also indicate that the map
 616      *         previously associated {@code null} with {@code key}.)
 617      */
 618     public V put(K key, V value) {
 619         return putVal(hash(key), key, value, false, true);
 620     }
 621 
 622     /**
 623      * Implements Map.put and related methods.
 624      *
 625      * @param hash hash for key
 626      * @param key the key
 627      * @param value the value to put
 628      * @param onlyIfAbsent if true, don't change existing value
 629      * @param evict if false, the table is in creation mode.
 630      * @return previous value, or null if none
 631      */
 632     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 633                    boolean evict) {
 634         Node<K,V>[] tab; Node<K,V> p; int n, i;
 635         if ((tab = table) == null || (n = tab.length) == 0)
 636             n = (tab = resize()).length;
 637         if ((p = tab[i = (n - 1) & hash]) == null)
 638             tab[i] = newNode(hash, key, value, null);
 639         else {
 640             Node<K,V> e; K k;
 641             if (p.hash == hash &&
 642                     Objects.equals(key, p.key))
 643                 e = p;
 644             else if (p instanceof TreeNode)
 645                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 646             else {
 647                 for (int binCount = 0; ; ++binCount) {
 648                     if ((e = p.next) == null) {
 649                         p.next = newNode(hash, key, value, null);
 650                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 651                             treeifyBin(tab, hash);
 652                         break;
 653                     }
 654                     if (e.hash == hash &&
 655                             Objects.equals(key, e.key))
 656                         break;
 657                     p = e;
 658                 }
 659             }
 660             if (e != null) { // existing mapping for key
 661                 V oldValue = e.value;
 662                 if (!onlyIfAbsent || oldValue == null)
 663                     e.value = value;
 664                 afterNodeAccess(e);
 665                 return oldValue;
 666             }
 667         }
 668         ++modCount;
 669         if (++size > threshold)
 670             resize();
 671         afterNodeInsertion(evict);
 672         return null;
 673     }
 674 
 675     /**
 676      * Initializes or doubles table size.  If null, allocates in
 677      * accord with initial capacity target held in field threshold.
 678      * Otherwise, because we are using power-of-two expansion, the
 679      * elements from each bin must either stay at same index, or move
 680      * with a power of two offset in the new table.
 681      *
 682      * @return the table
 683      */
 684     final Node<K,V>[] resize() {
 685         Node<K,V>[] oldTab = table;
 686         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 687         int oldThr = threshold;
 688         int newCap, newThr = 0;
 689         if (oldCap > 0) {
 690             if (oldCap >= MAXIMUM_CAPACITY) {
 691                 threshold = Integer.MAX_VALUE;
 692                 return oldTab;
 693             }
 694             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 695                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 696                 newThr = oldThr << 1; // double threshold
 697         }
 698         else if (oldThr > 0) // initial capacity was placed in threshold
 699             newCap = oldThr;
 700         else {               // zero initial threshold signifies using defaults
 701             newCap = DEFAULT_INITIAL_CAPACITY;
 702             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 703         }
 704         if (newThr == 0) {
 705             float ft = (float)newCap * loadFactor;
 706             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 707                       (int)ft : Integer.MAX_VALUE);
 708         }
 709         threshold = newThr;
 710         @SuppressWarnings({"rawtypes","unchecked"})
 711         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 712         table = newTab;
 713         if (oldTab != null) {
 714             for (int j = 0; j < oldCap; ++j) {
 715                 Node<K,V> e;
 716                 if ((e = oldTab[j]) != null) {
 717                     oldTab[j] = null;
 718                     if (e.next == null)
 719                         newTab[e.hash & (newCap - 1)] = e;
 720                     else if (e instanceof TreeNode)
 721                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 722                     else { // preserve order
 723                         Node<K,V> loHead = null, loTail = null;
 724                         Node<K,V> hiHead = null, hiTail = null;
 725                         Node<K,V> next;
 726                         do {
 727                             next = e.next;
 728                             if ((e.hash & oldCap) == 0) {
 729                                 if (loTail == null)
 730                                     loHead = e;
 731                                 else
 732                                     loTail.next = e;
 733                                 loTail = e;
 734                             }
 735                             else {
 736                                 if (hiTail == null)
 737                                     hiHead = e;
 738                                 else
 739                                     hiTail.next = e;
 740                                 hiTail = e;
 741                             }
 742                         } while ((e = next) != null);
 743                         if (loTail != null) {
 744                             loTail.next = null;
 745                             newTab[j] = loHead;
 746                         }
 747                         if (hiTail != null) {
 748                             hiTail.next = null;
 749                             newTab[j + oldCap] = hiHead;
 750                         }
 751                     }
 752                 }
 753             }
 754         }
 755         return newTab;
 756     }
 757 
 758     /**
 759      * Replaces all linked nodes in bin at index for given hash unless
 760      * table is too small, in which case resizes instead.
 761      */
 762     final void treeifyBin(Node<K,V>[] tab, int hash) {
 763         int n, index; Node<K,V> e;
 764         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 765             resize();
 766         else if ((e = tab[index = (n - 1) & hash]) != null) {
 767             TreeNode<K,V> hd = null, tl = null;
 768             do {
 769                 TreeNode<K,V> p = replacementTreeNode(e, null);
 770                 if (tl == null)
 771                     hd = p;
 772                 else {
 773                     p.prev = tl;
 774                     tl.next = p;
 775                 }
 776                 tl = p;
 777             } while ((e = e.next) != null);
 778             if ((tab[index] = hd) != null)
 779                 hd.treeify(tab);
 780         }
 781     }
 782 
 783     /**
 784      * Copies all of the mappings from the specified map to this map.
 785      * These mappings will replace any mappings that this map had for
 786      * any of the keys currently in the specified map.
 787      *
 788      * @param m mappings to be stored in this map
 789      * @throws NullPointerException if the specified map is null
 790      */
 791     public void putAll(Map<? extends K, ? extends V> m) {
 792         putMapEntries(m, true);
 793     }
 794 
 795     /**
 796      * Removes the mapping for the specified key from this map if present.
 797      *
 798      * @param  key key whose mapping is to be removed from the map
 799      * @return the previous value associated with {@code key}, or
 800      *         {@code null} if there was no mapping for {@code key}.
 801      *         (A {@code null} return can also indicate that the map
 802      *         previously associated {@code null} with {@code key}.)
 803      */
 804     public V remove(Object key) {
 805         Node<K,V> e;
 806         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 807             null : e.value;
 808     }
 809 
 810     /**
 811      * Implements Map.remove and related methods.
 812      *
 813      * @param hash hash for key
 814      * @param key the key
 815      * @param value the value to match if matchValue, else ignored
 816      * @param matchValue if true only remove if value is equal
 817      * @param movable if false do not move other nodes while removing
 818      * @return the node, or null if none
 819      */
 820     final Node<K,V> removeNode(int hash, Object key, Object value,
 821                                boolean matchValue, boolean movable) {
 822         Node<K,V>[] tab; Node<K,V> p; int n, index;
 823         if ((tab = table) != null && (n = tab.length) > 0 &&
 824             (p = tab[index = (n - 1) & hash]) != null) {
 825             Node<K,V> node = null, e; K k; V v;
 826             if (p.hash == hash &&
 827                     Objects.equals(key, p.key))
 828                 node = p;
 829             else if ((e = p.next) != null) {
 830                 if (p instanceof TreeNode)
 831                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 832                 else {
 833                     do {
 834                         if (e.hash == hash &&
 835                                 Objects.equals(key, e.key)) {
 836                             node = e;
 837                             break;
 838                         }
 839                         p = e;
 840                     } while ((e = e.next) != null);
 841                 }
 842             }
 843             if (node != null && (!matchValue || (v = node.value) == value ||
 844                                  (value != null && value.equals(v)))) {
 845                 if (node instanceof TreeNode)
 846                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 847                 else if (node == p)
 848                     tab[index] = node.next;
 849                 else
 850                     p.next = node.next;
 851                 ++modCount;
 852                 --size;
 853                 afterNodeRemoval(node);
 854                 return node;
 855             }
 856         }
 857         return null;
 858     }
 859 
 860     /**
 861      * Removes all of the mappings from this map.
 862      * The map will be empty after this call returns.
 863      */
 864     public void clear() {
 865         Node<K,V>[] tab;
 866         modCount++;
 867         if ((tab = table) != null && size > 0) {
 868             size = 0;
 869             for (int i = 0; i < tab.length; ++i)
 870                 tab[i] = null;
 871         }
 872     }
 873 
 874     /**
 875      * Returns {@code true} if this map maps one or more keys to the
 876      * specified value.
 877      *
 878      * @param value value whose presence in this map is to be tested
 879      * @return {@code true} if this map maps one or more keys to the
 880      *         specified value
 881      */
 882     public boolean containsValue(Object value) {
 883         Node<K,V>[] tab; V v;
 884         if ((tab = table) != null && size > 0) {
 885             for (Node<K,V> e : tab) {
 886                 for (; e != null; e = e.next) {
 887                     if ((v = e.value) == value ||
 888                         (value != null && value.equals(v)))
 889                         return true;
 890                 }
 891             }
 892         }
 893         return false;
 894     }
 895 
 896     /**
 897      * Returns a {@link Set} view of the keys contained in this map.
 898      * The set is backed by the map, so changes to the map are
 899      * reflected in the set, and vice-versa.  If the map is modified
 900      * while an iteration over the set is in progress (except through
 901      * the iterator's own {@code remove} operation), the results of
 902      * the iteration are undefined.  The set supports element removal,
 903      * which removes the corresponding mapping from the map, via the
 904      * {@code Iterator.remove}, {@code Set.remove},
 905      * {@code removeAll}, {@code retainAll}, and {@code clear}
 906      * operations.  It does not support the {@code add} or {@code addAll}
 907      * operations.
 908      *
 909      * @return a set view of the keys contained in this map
 910      */
 911     public Set<K> keySet() {
 912         Set<K> ks = keySet;
 913         if (ks == null) {
 914             ks = new KeySet();
 915             keySet = ks;
 916         }
 917         return ks;
 918     }
 919 
 920     /**
 921      * Prepares the array for {@link Collection#toArray(Object[])} implementation.
 922      * If supplied array is smaller than this map size, a new array is allocated.
 923      * If supplied array is bigger than this map size, a null is written at size index.
 924      *
 925      * @param a an original array passed to {@code toArray()} method
 926      * @param <T> type of array elements
 927      * @return an array ready to be filled and returned from {@code toArray()} method.
 928      */
 929     @SuppressWarnings("unchecked")
 930     final <T> T[] prepareArray(T[] a) {
 931         int size = this.size;
 932         if (a.length < size) {
 933             return (T[]) java.lang.reflect.Array
 934                     .newInstance(a.getClass().getComponentType(), size);
 935         }
 936         if (a.length > size) {
 937             a[size] = null;
 938         }
 939         return a;
 940     }
 941 
 942     /**
 943      * Fills an array with this map keys and returns it. This method assumes
 944      * that input array is big enough to fit all the keys. Use
 945      * {@link #prepareArray(Object[])} to ensure this.
 946      *
 947      * @param a an array to fill
 948      * @param <T> type of array elements
 949      * @return supplied array
 950      */
 951     <T> T[] keysToArray(T[] a) {
 952         Object[] r = a;
 953         Node<K,V>[] tab;
 954         int idx = 0;
 955         if (size > 0 && (tab = table) != null) {
 956             for (Node<K,V> e : tab) {
 957                 for (; e != null; e = e.next) {
 958                     r[idx++] = e.key;
 959                 }
 960             }
 961         }
 962         return a;
 963     }
 964 
 965     /**
 966      * Fills an array with this map values and returns it. This method assumes
 967      * that input array is big enough to fit all the values. Use
 968      * {@link #prepareArray(Object[])} to ensure this.
 969      *
 970      * @param a an array to fill
 971      * @param <T> type of array elements
 972      * @return supplied array
 973      */
 974     <T> T[] valuesToArray(T[] a) {
 975         Object[] r = a;
 976         Node<K,V>[] tab;
 977         int idx = 0;
 978         if (size > 0 && (tab = table) != null) {
 979             for (Node<K,V> e : tab) {
 980                 for (; e != null; e = e.next) {
 981                     r[idx++] = e.value;
 982                 }
 983             }
 984         }
 985         return a;
 986     }
 987 
 988     final class KeySet extends AbstractSet<K> {
 989         public final int size()                 { return size; }
 990         public final void clear()               { HashMap.this.clear(); }
 991         public final Iterator<K> iterator()     { return new KeyIterator(); }
 992         public final boolean contains(Object o) { return containsKey(o); }
 993         public final boolean remove(Object key) {
 994             return removeNode(hash(key), key, null, false, true) != null;
 995         }
 996         public final Spliterator<K> spliterator() {
 997             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 998         }
 999 
1000         public Object[] toArray() {
1001             return keysToArray(new Object[size]);
1002         }
1003 
1004         public <T> T[] toArray(T[] a) {
1005             return keysToArray(prepareArray(a));
1006         }
1007 
1008         public final void forEach(Consumer<? super K> action) {
1009             Node<K,V>[] tab;
1010             if (action == null)
1011                 throw new NullPointerException();
1012             if (size > 0 && (tab = table) != null) {
1013                 int mc = modCount;
1014                 for (Node<K,V> e : tab) {
1015                     for (; e != null; e = e.next)
1016                         action.accept(e.key);
1017                 }
1018                 if (modCount != mc)
1019                     throw new ConcurrentModificationException();
1020             }
1021         }
1022     }
1023 
1024     /**
1025      * Returns a {@link Collection} view of the values contained in this map.
1026      * The collection is backed by the map, so changes to the map are
1027      * reflected in the collection, and vice-versa.  If the map is
1028      * modified while an iteration over the collection is in progress
1029      * (except through the iterator's own {@code remove} operation),
1030      * the results of the iteration are undefined.  The collection
1031      * supports element removal, which removes the corresponding
1032      * mapping from the map, via the {@code Iterator.remove},
1033      * {@code Collection.remove}, {@code removeAll},
1034      * {@code retainAll} and {@code clear} operations.  It does not
1035      * support the {@code add} or {@code addAll} operations.
1036      *
1037      * @return a view of the values contained in this map
1038      */
1039     public Collection<V> values() {
1040         Collection<V> vs = values;
1041         if (vs == null) {
1042             vs = new Values();
1043             values = vs;
1044         }
1045         return vs;
1046     }
1047 
1048     final class Values extends AbstractCollection<V> {
1049         public final int size()                 { return size; }
1050         public final void clear()               { HashMap.this.clear(); }
1051         public final Iterator<V> iterator()     { return new ValueIterator(); }
1052         public final boolean contains(Object o) { return containsValue(o); }
1053         public final Spliterator<V> spliterator() {
1054             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
1055         }
1056 
1057         public Object[] toArray() {
1058             return valuesToArray(new Object[size]);
1059         }
1060 
1061         public <T> T[] toArray(T[] a) {
1062             return valuesToArray(prepareArray(a));
1063         }
1064 
1065         public final void forEach(Consumer<? super V> action) {
1066             Node<K,V>[] tab;
1067             if (action == null)
1068                 throw new NullPointerException();
1069             if (size > 0 && (tab = table) != null) {
1070                 int mc = modCount;
1071                 for (Node<K,V> e : tab) {
1072                     for (; e != null; e = e.next)
1073                         action.accept(e.value);
1074                 }
1075                 if (modCount != mc)
1076                     throw new ConcurrentModificationException();
1077             }
1078         }
1079     }
1080 
1081     /**
1082      * Returns a {@link Set} view of the mappings contained in this map.
1083      * The set is backed by the map, so changes to the map are
1084      * reflected in the set, and vice-versa.  If the map is modified
1085      * while an iteration over the set is in progress (except through
1086      * the iterator's own {@code remove} operation, or through the
1087      * {@code setValue} operation on a map entry returned by the
1088      * iterator) the results of the iteration are undefined.  The set
1089      * supports element removal, which removes the corresponding
1090      * mapping from the map, via the {@code Iterator.remove},
1091      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1092      * {@code clear} operations.  It does not support the
1093      * {@code add} or {@code addAll} operations.
1094      *
1095      * @return a set view of the mappings contained in this map
1096      */
1097     public Set<Map.Entry<K,V>> entrySet() {
1098         Set<Map.Entry<K,V>> es;
1099         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1100     }
1101 
1102     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1103         public final int size()                 { return size; }
1104         public final void clear()               { HashMap.this.clear(); }
1105         public final Iterator<Map.Entry<K,V>> iterator() {
1106             return new EntryIterator();
1107         }
1108         public final boolean contains(Object o) {
1109             if (!(o instanceof Map.Entry<?, ?> e))
1110                 return false;
1111             Object key = e.getKey();
1112             Node<K,V> candidate = getNode(key);
1113             return candidate != null && candidate.equals(e);
1114         }
1115         public final boolean remove(Object o) {
1116             if (o instanceof Map.Entry<?, ?> e) {
1117                 Object key = e.getKey();
1118                 Object value = e.getValue();
1119                 return removeNode(hash(key), key, value, true, true) != null;
1120             }
1121             return false;
1122         }
1123         public final Spliterator<Map.Entry<K,V>> spliterator() {
1124             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1125         }
1126         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1127             Node<K,V>[] tab;
1128             if (action == null)
1129                 throw new NullPointerException();
1130             if (size > 0 && (tab = table) != null) {
1131                 int mc = modCount;
1132                 for (Node<K,V> e : tab) {
1133                     for (; e != null; e = e.next)
1134                         action.accept(e);
1135                 }
1136                 if (modCount != mc)
1137                     throw new ConcurrentModificationException();
1138             }
1139         }
1140     }
1141 
1142     // Overrides of JDK8 Map extension methods
1143 
1144     @Override
1145     public V getOrDefault(Object key, V defaultValue) {
1146         Node<K,V> e;
1147         return (e = getNode(key)) == null ? defaultValue : e.value;
1148     }
1149 
1150     @Override
1151     public V putIfAbsent(K key, V value) {
1152         return putVal(hash(key), key, value, true, true);
1153     }
1154 
1155     @Override
1156     public boolean remove(Object key, Object value) {
1157         return removeNode(hash(key), key, value, true, true) != null;
1158     }
1159 
1160     @Override
1161     public boolean replace(K key, V oldValue, V newValue) {
1162         Node<K,V> e; V v;
1163         if ((e = getNode(key)) != null &&
1164             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1165             e.value = newValue;
1166             afterNodeAccess(e);
1167             return true;
1168         }
1169         return false;
1170     }
1171 
1172     @Override
1173     public V replace(K key, V value) {
1174         Node<K,V> e;
1175         if ((e = getNode(key)) != null) {
1176             V oldValue = e.value;
1177             e.value = value;
1178             afterNodeAccess(e);
1179             return oldValue;
1180         }
1181         return null;
1182     }
1183 
1184     /**
1185      * {@inheritDoc}
1186      *
1187      * <p>This method will, on a best-effort basis, throw a
1188      * {@link ConcurrentModificationException} if it is detected that the
1189      * mapping function modifies this map during computation.
1190      *
1191      * @throws ConcurrentModificationException if it is detected that the
1192      * mapping function modified this map
1193      */
1194     @Override
1195     public V computeIfAbsent(K key,
1196                              Function<? super K, ? extends V> mappingFunction) {
1197         if (mappingFunction == null)
1198             throw new NullPointerException();
1199         int hash = hash(key);
1200         Node<K,V>[] tab; Node<K,V> first; int n, i;
1201         int binCount = 0;
1202         TreeNode<K,V> t = null;
1203         Node<K,V> old = null;
1204         if (size > threshold || (tab = table) == null ||
1205             (n = tab.length) == 0)
1206             n = (tab = resize()).length;
1207         if ((first = tab[i = (n - 1) & hash]) != null) {
1208             if (first instanceof TreeNode)
1209                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1210             else {
1211                 Node<K,V> e = first; K k;
1212                 do {
1213                     if (e.hash == hash &&
1214                             Objects.equals(key, e.key)) {
1215                         old = e;
1216                         break;
1217                     }
1218                     ++binCount;
1219                 } while ((e = e.next) != null);
1220             }
1221             V oldValue;
1222             if (old != null && (oldValue = old.value) != null) {
1223                 afterNodeAccess(old);
1224                 return oldValue;
1225             }
1226         }
1227         int mc = modCount;
1228         V v = mappingFunction.apply(key);
1229         if (mc != modCount) { throw new ConcurrentModificationException(); }
1230         if (v == null) {
1231             return null;
1232         } else if (old != null) {
1233             old.value = v;
1234             afterNodeAccess(old);
1235             return v;
1236         }
1237         else if (t != null)
1238             t.putTreeVal(this, tab, hash, key, v);
1239         else {
1240             tab[i] = newNode(hash, key, v, first);
1241             if (binCount >= TREEIFY_THRESHOLD - 1)
1242                 treeifyBin(tab, hash);
1243         }
1244         modCount = mc + 1;
1245         ++size;
1246         afterNodeInsertion(true);
1247         return v;
1248     }
1249 
1250     /**
1251      * {@inheritDoc}
1252      *
1253      * <p>This method will, on a best-effort basis, throw a
1254      * {@link ConcurrentModificationException} if it is detected that the
1255      * remapping function modifies this map during computation.
1256      *
1257      * @throws ConcurrentModificationException if it is detected that the
1258      * remapping function modified this map
1259      */
1260     @Override
1261     public V computeIfPresent(K key,
1262                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1263         if (remappingFunction == null)
1264             throw new NullPointerException();
1265         Node<K,V> e; V oldValue;
1266         if ((e = getNode(key)) != null &&
1267             (oldValue = e.value) != null) {
1268             int mc = modCount;
1269             V v = remappingFunction.apply(key, oldValue);
1270             if (mc != modCount) { throw new ConcurrentModificationException(); }
1271             if (v != null) {
1272                 e.value = v;
1273                 afterNodeAccess(e);
1274                 return v;
1275             }
1276             else {
1277                 int hash = hash(key);
1278                 removeNode(hash, key, null, false, true);
1279             }
1280         }
1281         return null;
1282     }
1283 
1284     /**
1285      * {@inheritDoc}
1286      *
1287      * <p>This method will, on a best-effort basis, throw a
1288      * {@link ConcurrentModificationException} if it is detected that the
1289      * remapping function modifies this map during computation.
1290      *
1291      * @throws ConcurrentModificationException if it is detected that the
1292      * remapping function modified this map
1293      */
1294     @Override
1295     public V compute(K key,
1296                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1297         if (remappingFunction == null)
1298             throw new NullPointerException();
1299         int hash = hash(key);
1300         Node<K,V>[] tab; Node<K,V> first; int n, i;
1301         int binCount = 0;
1302         TreeNode<K,V> t = null;
1303         Node<K,V> old = null;
1304         if (size > threshold || (tab = table) == null ||
1305             (n = tab.length) == 0)
1306             n = (tab = resize()).length;
1307         if ((first = tab[i = (n - 1) & hash]) != null) {
1308             if (first instanceof TreeNode)
1309                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1310             else {
1311                 Node<K,V> e = first; K k;
1312                 do {
1313                     if (e.hash == hash &&
1314                             Objects.equals(key, e.key)) {
1315                         old = e;
1316                         break;
1317                     }
1318                     ++binCount;
1319                 } while ((e = e.next) != null);
1320             }
1321         }
1322         V oldValue = (old == null) ? null : old.value;
1323         int mc = modCount;
1324         V v = remappingFunction.apply(key, oldValue);
1325         if (mc != modCount) { throw new ConcurrentModificationException(); }
1326         if (old != null) {
1327             if (v != null) {
1328                 old.value = v;
1329                 afterNodeAccess(old);
1330             }
1331             else
1332                 removeNode(hash, key, null, false, true);
1333         }
1334         else if (v != null) {
1335             if (t != null)
1336                 t.putTreeVal(this, tab, hash, key, v);
1337             else {
1338                 tab[i] = newNode(hash, key, v, first);
1339                 if (binCount >= TREEIFY_THRESHOLD - 1)
1340                     treeifyBin(tab, hash);
1341             }
1342             modCount = mc + 1;
1343             ++size;
1344             afterNodeInsertion(true);
1345         }
1346         return v;
1347     }
1348 
1349     /**
1350      * {@inheritDoc}
1351      *
1352      * <p>This method will, on a best-effort basis, throw a
1353      * {@link ConcurrentModificationException} if it is detected that the
1354      * remapping function modifies this map during computation.
1355      *
1356      * @throws ConcurrentModificationException if it is detected that the
1357      * remapping function modified this map
1358      */
1359     @Override
1360     public V merge(K key, V value,
1361                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1362         if (value == null || remappingFunction == null)
1363             throw new NullPointerException();
1364         int hash = hash(key);
1365         Node<K,V>[] tab; Node<K,V> first; int n, i;
1366         int binCount = 0;
1367         TreeNode<K,V> t = null;
1368         Node<K,V> old = null;
1369         if (size > threshold || (tab = table) == null ||
1370             (n = tab.length) == 0)
1371             n = (tab = resize()).length;
1372         if ((first = tab[i = (n - 1) & hash]) != null) {
1373             if (first instanceof TreeNode)
1374                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1375             else {
1376                 Node<K,V> e = first; K k;
1377                 do {
1378                     if (e.hash == hash &&
1379                             Objects.equals(key, e.key)) {
1380                         old = e;
1381                         break;
1382                     }
1383                     ++binCount;
1384                 } while ((e = e.next) != null);
1385             }
1386         }
1387         if (old != null) {
1388             V v;
1389             if (old.value != null) {
1390                 int mc = modCount;
1391                 v = remappingFunction.apply(old.value, value);
1392                 if (mc != modCount) {
1393                     throw new ConcurrentModificationException();
1394                 }
1395             } else {
1396                 v = value;
1397             }
1398             if (v != null) {
1399                 old.value = v;
1400                 afterNodeAccess(old);
1401             }
1402             else
1403                 removeNode(hash, key, null, false, true);
1404             return v;
1405         } else {
1406             if (t != null)
1407                 t.putTreeVal(this, tab, hash, key, value);
1408             else {
1409                 tab[i] = newNode(hash, key, value, first);
1410                 if (binCount >= TREEIFY_THRESHOLD - 1)
1411                     treeifyBin(tab, hash);
1412             }
1413             ++modCount;
1414             ++size;
1415             afterNodeInsertion(true);
1416             return value;
1417         }
1418     }
1419 
1420     @Override
1421     public void forEach(BiConsumer<? super K, ? super V> action) {
1422         Node<K,V>[] tab;
1423         if (action == null)
1424             throw new NullPointerException();
1425         if (size > 0 && (tab = table) != null) {
1426             int mc = modCount;
1427             for (Node<K,V> e : tab) {
1428                 for (; e != null; e = e.next)
1429                     action.accept(e.key, e.value);
1430             }
1431             if (modCount != mc)
1432                 throw new ConcurrentModificationException();
1433         }
1434     }
1435 
1436     @Override
1437     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1438         Node<K,V>[] tab;
1439         if (function == null)
1440             throw new NullPointerException();
1441         if (size > 0 && (tab = table) != null) {
1442             int mc = modCount;
1443             for (Node<K,V> e : tab) {
1444                 for (; e != null; e = e.next) {
1445                     e.value = function.apply(e.key, e.value);
1446                 }
1447             }
1448             if (modCount != mc)
1449                 throw new ConcurrentModificationException();
1450         }
1451     }
1452 
1453     /* ------------------------------------------------------------ */
1454     // Cloning and serialization
1455 
1456     /**
1457      * Returns a shallow copy of this {@code HashMap} instance: the keys and
1458      * values themselves are not cloned.
1459      *
1460      * @return a shallow copy of this map
1461      */
1462     @SuppressWarnings("unchecked")
1463     @Override
1464     public Object clone() {
1465         HashMap<K,V> result;
1466         try {
1467             result = (HashMap<K,V>)super.clone();
1468         } catch (CloneNotSupportedException e) {
1469             // this shouldn't happen, since we are Cloneable
1470             throw new InternalError(e);
1471         }
1472         result.reinitialize();
1473         result.putMapEntries(this, false);
1474         return result;
1475     }
1476 
1477     // These methods are also used when serializing HashSets
1478     final float loadFactor() { return loadFactor; }
1479     final int capacity() {
1480         return (table != null) ? table.length :
1481             (threshold > 0) ? threshold :
1482             DEFAULT_INITIAL_CAPACITY;
1483     }
1484 
1485     /**
1486      * Saves this map to a stream (that is, serializes it).
1487      *
1488      * @param s the stream
1489      * @throws IOException if an I/O error occurs
1490      * @serialData The <i>capacity</i> of the HashMap (the length of the
1491      *             bucket array) is emitted (int), followed by the
1492      *             <i>size</i> (an int, the number of key-value
1493      *             mappings), followed by the key (Object) and value (Object)
1494      *             for each key-value mapping.  The key-value mappings are
1495      *             emitted in no particular order.
1496      */
1497     @java.io.Serial
1498     private void writeObject(java.io.ObjectOutputStream s)
1499         throws IOException {
1500         int buckets = capacity();
1501         // Write out the threshold, loadfactor, and any hidden stuff
1502         s.defaultWriteObject();
1503         s.writeInt(buckets);
1504         s.writeInt(size);
1505         internalWriteEntries(s);
1506     }
1507 
1508     /**
1509      * Reconstitutes this map from a stream (that is, deserializes it).
1510      * @param s the stream
1511      * @throws ClassNotFoundException if the class of a serialized object
1512      *         could not be found
1513      * @throws IOException if an I/O error occurs
1514      */
1515     @java.io.Serial
1516     private void readObject(ObjectInputStream s)
1517         throws IOException, ClassNotFoundException {
1518 
1519         ObjectInputStream.GetField fields = s.readFields();
1520 
1521         // Read loadFactor (ignore threshold)
1522         float lf = fields.get("loadFactor", 0.75f);
1523         if (lf <= 0 || Float.isNaN(lf))
1524             throw new InvalidObjectException("Illegal load factor: " + lf);
1525 
1526         lf = Math.clamp(lf, 0.25f, 4.0f);
1527         HashMap.UnsafeHolder.putLoadFactor(this, lf);
1528 
1529         reinitialize();
1530 
1531         s.readInt();                // Read and ignore number of buckets
1532         int mappings = s.readInt(); // Read number of mappings (size)
1533         if (mappings < 0) {
1534             throw new InvalidObjectException("Illegal mappings count: " + mappings);
1535         } else if (mappings == 0) {
1536             // use defaults
1537         } else if (mappings > 0) {
1538             double dc = Math.ceil(mappings / (double)lf);
1539             int cap = ((dc < DEFAULT_INITIAL_CAPACITY) ?
1540                        DEFAULT_INITIAL_CAPACITY :
1541                        (dc >= MAXIMUM_CAPACITY) ?
1542                        MAXIMUM_CAPACITY :
1543                        tableSizeFor((int)dc));
1544             float ft = (float)cap * lf;
1545             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1546                          (int)ft : Integer.MAX_VALUE);
1547 
1548             // Check Map.Entry[].class since it's the nearest public type to
1549             // what we're actually creating.
1550             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap);
1551             @SuppressWarnings({"rawtypes","unchecked"})
1552             Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1553             table = tab;
1554 
1555             // Read the keys and values, and put the mappings in the HashMap
1556             for (int i = 0; i < mappings; i++) {
1557                 @SuppressWarnings("unchecked")
1558                     K key = (K) s.readObject();
1559                 @SuppressWarnings("unchecked")
1560                     V value = (V) s.readObject();
1561                 putVal(hash(key), key, value, false, false);
1562             }
1563         }
1564     }
1565 
1566     // Support for resetting final field during deserializing
1567     private static final class UnsafeHolder {
1568         private UnsafeHolder() { throw new InternalError(); }
1569         private static final jdk.internal.misc.Unsafe unsafe
1570                 = jdk.internal.misc.Unsafe.getUnsafe();
1571         private static final long LF_OFFSET
1572                 = unsafe.objectFieldOffset(HashMap.class, "loadFactor");
1573         static void putLoadFactor(HashMap<?, ?> map, float lf) {
1574             unsafe.putFloat(map, LF_OFFSET, lf);
1575         }
1576     }
1577 
1578     /* ------------------------------------------------------------ */
1579     // iterators
1580 
1581     abstract class HashIterator {
1582         Node<K,V> next;        // next entry to return
1583         Node<K,V> current;     // current entry
1584         int expectedModCount;  // for fast-fail
1585         int index;             // current slot
1586 
1587         HashIterator() {
1588             expectedModCount = modCount;
1589             Node<K,V>[] t = table;
1590             current = next = null;
1591             index = 0;
1592             if (t != null && size > 0) { // advance to first entry
1593                 do {} while (index < t.length && (next = t[index++]) == null);
1594             }
1595         }
1596 
1597         public final boolean hasNext() {
1598             return next != null;
1599         }
1600 
1601         final Node<K,V> nextNode() {
1602             Node<K,V>[] t;
1603             Node<K,V> e = next;
1604             if (modCount != expectedModCount)
1605                 throw new ConcurrentModificationException();
1606             if (e == null)
1607                 throw new NoSuchElementException();
1608             if ((next = (current = e).next) == null && (t = table) != null) {
1609                 do {} while (index < t.length && (next = t[index++]) == null);
1610             }
1611             return e;
1612         }
1613 
1614         public final void remove() {
1615             Node<K,V> p = current;
1616             if (p == null)
1617                 throw new IllegalStateException();
1618             if (modCount != expectedModCount)
1619                 throw new ConcurrentModificationException();
1620             current = null;
1621             removeNode(p.hash, p.key, null, false, false);
1622             expectedModCount = modCount;
1623         }
1624     }
1625 
1626     final class KeyIterator extends HashIterator
1627         implements Iterator<K> {
1628         public final K next() { return nextNode().key; }
1629     }
1630 
1631     final class ValueIterator extends HashIterator
1632         implements Iterator<V> {
1633         public final V next() { return nextNode().value; }
1634     }
1635 
1636     final class EntryIterator extends HashIterator
1637         implements Iterator<Map.Entry<K,V>> {
1638         public final Map.Entry<K,V> next() { return nextNode(); }
1639     }
1640 
1641     /* ------------------------------------------------------------ */
1642     // spliterators
1643 
1644     static class HashMapSpliterator<K,V> {
1645         final HashMap<K,V> map;
1646         Node<K,V> current;          // current node
1647         int index;                  // current index, modified on advance/split
1648         int fence;                  // one past last index
1649         int est;                    // size estimate
1650         int expectedModCount;       // for comodification checks
1651 
1652         HashMapSpliterator(HashMap<K,V> m, int origin,
1653                            int fence, int est,
1654                            int expectedModCount) {
1655             this.map = m;
1656             this.index = origin;
1657             this.fence = fence;
1658             this.est = est;
1659             this.expectedModCount = expectedModCount;
1660         }
1661 
1662         final int getFence() { // initialize fence and size on first use
1663             int hi;
1664             if ((hi = fence) < 0) {
1665                 HashMap<K,V> m = map;
1666                 est = m.size;
1667                 expectedModCount = m.modCount;
1668                 Node<K,V>[] tab = m.table;
1669                 hi = fence = (tab == null) ? 0 : tab.length;
1670             }
1671             return hi;
1672         }
1673 
1674         public final long estimateSize() {
1675             getFence(); // force init
1676             return (long) est;
1677         }
1678     }
1679 
1680     static final class KeySpliterator<K,V>
1681         extends HashMapSpliterator<K,V>
1682         implements Spliterator<K> {
1683         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1684                        int expectedModCount) {
1685             super(m, origin, fence, est, expectedModCount);
1686         }
1687 
1688         public KeySpliterator<K,V> trySplit() {
1689             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1690             return (lo >= mid || current != null) ? null :
1691                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1692                                         expectedModCount);
1693         }
1694 
1695         public void forEachRemaining(Consumer<? super K> action) {
1696             int i, hi, mc;
1697             if (action == null)
1698                 throw new NullPointerException();
1699             HashMap<K,V> m = map;
1700             Node<K,V>[] tab = m.table;
1701             if ((hi = fence) < 0) {
1702                 mc = expectedModCount = m.modCount;
1703                 hi = fence = (tab == null) ? 0 : tab.length;
1704             }
1705             else
1706                 mc = expectedModCount;
1707             if (tab != null && tab.length >= hi &&
1708                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1709                 Node<K,V> p = current;
1710                 current = null;
1711                 do {
1712                     if (p == null)
1713                         p = tab[i++];
1714                     else {
1715                         action.accept(p.key);
1716                         p = p.next;
1717                     }
1718                 } while (p != null || i < hi);
1719                 if (m.modCount != mc)
1720                     throw new ConcurrentModificationException();
1721             }
1722         }
1723 
1724         public boolean tryAdvance(Consumer<? super K> action) {
1725             int hi;
1726             if (action == null)
1727                 throw new NullPointerException();
1728             Node<K,V>[] tab = map.table;
1729             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1730                 while (current != null || index < hi) {
1731                     if (current == null)
1732                         current = tab[index++];
1733                     else {
1734                         K k = current.key;
1735                         current = current.next;
1736                         action.accept(k);
1737                         if (map.modCount != expectedModCount)
1738                             throw new ConcurrentModificationException();
1739                         return true;
1740                     }
1741                 }
1742             }
1743             return false;
1744         }
1745 
1746         public int characteristics() {
1747             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1748                 Spliterator.DISTINCT;
1749         }
1750     }
1751 
1752     static final class ValueSpliterator<K,V>
1753         extends HashMapSpliterator<K,V>
1754         implements Spliterator<V> {
1755         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1756                          int expectedModCount) {
1757             super(m, origin, fence, est, expectedModCount);
1758         }
1759 
1760         public ValueSpliterator<K,V> trySplit() {
1761             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1762             return (lo >= mid || current != null) ? null :
1763                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1764                                           expectedModCount);
1765         }
1766 
1767         public void forEachRemaining(Consumer<? super V> action) {
1768             int i, hi, mc;
1769             if (action == null)
1770                 throw new NullPointerException();
1771             HashMap<K,V> m = map;
1772             Node<K,V>[] tab = m.table;
1773             if ((hi = fence) < 0) {
1774                 mc = expectedModCount = m.modCount;
1775                 hi = fence = (tab == null) ? 0 : tab.length;
1776             }
1777             else
1778                 mc = expectedModCount;
1779             if (tab != null && tab.length >= hi &&
1780                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1781                 Node<K,V> p = current;
1782                 current = null;
1783                 do {
1784                     if (p == null)
1785                         p = tab[i++];
1786                     else {
1787                         action.accept(p.value);
1788                         p = p.next;
1789                     }
1790                 } while (p != null || i < hi);
1791                 if (m.modCount != mc)
1792                     throw new ConcurrentModificationException();
1793             }
1794         }
1795 
1796         public boolean tryAdvance(Consumer<? super V> action) {
1797             int hi;
1798             if (action == null)
1799                 throw new NullPointerException();
1800             Node<K,V>[] tab = map.table;
1801             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1802                 while (current != null || index < hi) {
1803                     if (current == null)
1804                         current = tab[index++];
1805                     else {
1806                         V v = current.value;
1807                         current = current.next;
1808                         action.accept(v);
1809                         if (map.modCount != expectedModCount)
1810                             throw new ConcurrentModificationException();
1811                         return true;
1812                     }
1813                 }
1814             }
1815             return false;
1816         }
1817 
1818         public int characteristics() {
1819             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1820         }
1821     }
1822 
1823     static final class EntrySpliterator<K,V>
1824         extends HashMapSpliterator<K,V>
1825         implements Spliterator<Map.Entry<K,V>> {
1826         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1827                          int expectedModCount) {
1828             super(m, origin, fence, est, expectedModCount);
1829         }
1830 
1831         public EntrySpliterator<K,V> trySplit() {
1832             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1833             return (lo >= mid || current != null) ? null :
1834                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1835                                           expectedModCount);
1836         }
1837 
1838         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1839             int i, hi, mc;
1840             if (action == null)
1841                 throw new NullPointerException();
1842             HashMap<K,V> m = map;
1843             Node<K,V>[] tab = m.table;
1844             if ((hi = fence) < 0) {
1845                 mc = expectedModCount = m.modCount;
1846                 hi = fence = (tab == null) ? 0 : tab.length;
1847             }
1848             else
1849                 mc = expectedModCount;
1850             if (tab != null && tab.length >= hi &&
1851                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1852                 Node<K,V> p = current;
1853                 current = null;
1854                 do {
1855                     if (p == null)
1856                         p = tab[i++];
1857                     else {
1858                         action.accept(p);
1859                         p = p.next;
1860                     }
1861                 } while (p != null || i < hi);
1862                 if (m.modCount != mc)
1863                     throw new ConcurrentModificationException();
1864             }
1865         }
1866 
1867         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1868             int hi;
1869             if (action == null)
1870                 throw new NullPointerException();
1871             Node<K,V>[] tab = map.table;
1872             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1873                 while (current != null || index < hi) {
1874                     if (current == null)
1875                         current = tab[index++];
1876                     else {
1877                         Node<K,V> e = current;
1878                         current = current.next;
1879                         action.accept(e);
1880                         if (map.modCount != expectedModCount)
1881                             throw new ConcurrentModificationException();
1882                         return true;
1883                     }
1884                 }
1885             }
1886             return false;
1887         }
1888 
1889         public int characteristics() {
1890             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1891                 Spliterator.DISTINCT;
1892         }
1893     }
1894 
1895     /* ------------------------------------------------------------ */
1896     // LinkedHashMap support
1897 
1898 
1899     /*
1900      * The following package-protected methods are designed to be
1901      * overridden by LinkedHashMap, but not by any other subclass.
1902      * Nearly all other internal methods are also package-protected
1903      * but are declared final, so can be used by LinkedHashMap, view
1904      * classes, and HashSet.
1905      */
1906 
1907     // Create a regular (non-tree) node
1908     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1909         return new Node<>(hash, key, value, next);
1910     }
1911 
1912     // For conversion from TreeNodes to plain nodes
1913     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1914         return new Node<>(p.hash, p.key, p.value, next);
1915     }
1916 
1917     // Create a tree bin node
1918     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1919         return new TreeNode<>(hash, key, value, next);
1920     }
1921 
1922     // For treeifyBin
1923     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1924         return new TreeNode<>(p.hash, p.key, p.value, next);
1925     }
1926 
1927     /**
1928      * Reset to initial default state.  Called by clone and readObject.
1929      */
1930     void reinitialize() {
1931         table = null;
1932         entrySet = null;
1933         keySet = null;
1934         values = null;
1935         modCount = 0;
1936         threshold = 0;
1937         size = 0;
1938     }
1939 
1940     // Callbacks to allow LinkedHashMap post-actions
1941     void afterNodeAccess(Node<K,V> p) { }
1942     void afterNodeInsertion(boolean evict) { }
1943     void afterNodeRemoval(Node<K,V> p) { }
1944 
1945     // Called only from writeObject, to ensure compatible ordering.
1946     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1947         Node<K,V>[] tab;
1948         if (size > 0 && (tab = table) != null) {
1949             for (Node<K,V> e : tab) {
1950                 for (; e != null; e = e.next) {
1951                     s.writeObject(e.key);
1952                     s.writeObject(e.value);
1953                 }
1954             }
1955         }
1956     }
1957 
1958     /* ------------------------------------------------------------ */
1959     // Tree bins
1960 
1961     /**
1962      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1963      * extends Node) so can be used as extension of either regular or
1964      * linked node.
1965      */
1966     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1967         TreeNode<K,V> parent;  // red-black tree links
1968         TreeNode<K,V> left;
1969         TreeNode<K,V> right;
1970         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1971         boolean red;
1972         TreeNode(int hash, K key, V val, Node<K,V> next) {
1973             super(hash, key, val, next);
1974         }
1975 
1976         /**
1977          * Returns root of tree containing this node.
1978          */
1979         final TreeNode<K,V> root() {
1980             for (TreeNode<K,V> r = this, p;;) {
1981                 if ((p = r.parent) == null)
1982                     return r;
1983                 r = p;
1984             }
1985         }
1986 
1987         /**
1988          * Ensures that the given root is the first node of its bin.
1989          */
1990         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1991             int n;
1992             if (root != null && tab != null && (n = tab.length) > 0) {
1993                 int index = (n - 1) & root.hash;
1994                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1995                 if (root != first) {
1996                     Node<K,V> rn;
1997                     tab[index] = root;
1998                     TreeNode<K,V> rp = root.prev;
1999                     if ((rn = root.next) != null)
2000                         ((TreeNode<K,V>)rn).prev = rp;
2001                     if (rp != null)
2002                         rp.next = rn;
2003                     if (first != null)
2004                         first.prev = root;
2005                     root.next = first;
2006                     root.prev = null;
2007                 }
2008                 assert checkInvariants(root);
2009             }
2010         }
2011 
2012         /**
2013          * Finds the node starting at root p with the given hash and key.
2014          * The kc argument caches comparableClassFor(key) upon first use
2015          * comparing keys.
2016          */
2017         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
2018             TreeNode<K,V> p = this;
2019             do {
2020                 int ph, dir; K pk;
2021                 TreeNode<K,V> pl = p.left, pr = p.right, q;
2022                 if ((ph = p.hash) > h)
2023                     p = pl;
2024                 else if (ph < h)
2025                     p = pr;
2026                 else if (Objects.equals(k, (pk = p.key)))
2027                     return p;
2028                 else if (pl == null)
2029                     p = pr;
2030                 else if (pr == null)
2031                     p = pl;
2032                 else if ((kc != null ||
2033                           (kc = comparableClassFor(k)) != null) &&
2034                          (dir = compareComparables(kc, k, pk)) != 0)
2035                     p = (dir < 0) ? pl : pr;
2036                 else if ((q = pr.find(h, k, kc)) != null)
2037                     return q;
2038                 else
2039                     p = pl;
2040             } while (p != null);
2041             return null;
2042         }
2043 
2044         /**
2045          * Calls find for root node.
2046          */
2047         final TreeNode<K,V> getTreeNode(int h, Object k) {
2048             return ((parent != null) ? root() : this).find(h, k, null);
2049         }
2050 
2051         /**
2052          * Tie-breaking utility for ordering insertions when equal
2053          * hashCodes and non-comparable. We don't require a total
2054          * order, just a consistent insertion rule to maintain
2055          * equivalence across rebalancings. Tie-breaking further than
2056          * necessary simplifies testing a bit.
2057          */
2058         static int tieBreakOrder(Object a, Object b) {
2059             int d;
2060             if (a == null || b == null ||
2061                 (d = a.getClass().getName().
2062                  compareTo(b.getClass().getName())) == 0)
2063                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2064                      -1 : 1);
2065             return d;
2066         }
2067 
2068         /**
2069          * Forms tree of the nodes linked from this node.
2070          */
2071         final void treeify(Node<K,V>[] tab) {
2072             TreeNode<K,V> root = null;
2073             for (TreeNode<K,V> x = this, next; x != null; x = next) {
2074                 next = (TreeNode<K,V>)x.next;
2075                 x.left = x.right = null;
2076                 if (root == null) {
2077                     x.parent = null;
2078                     x.red = false;
2079                     root = x;
2080                 }
2081                 else {
2082                     K k = x.key;
2083                     int h = x.hash;
2084                     Class<?> kc = null;
2085                     for (TreeNode<K,V> p = root;;) {
2086                         int dir, ph;
2087                         K pk = p.key;
2088                         if ((ph = p.hash) > h)
2089                             dir = -1;
2090                         else if (ph < h)
2091                             dir = 1;
2092                         else if ((kc == null &&
2093                                   (kc = comparableClassFor(k)) == null) ||
2094                                  (dir = compareComparables(kc, k, pk)) == 0)
2095                             dir = tieBreakOrder(k, pk);
2096 
2097                         TreeNode<K,V> xp = p;
2098                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
2099                             x.parent = xp;
2100                             if (dir <= 0)
2101                                 xp.left = x;
2102                             else
2103                                 xp.right = x;
2104                             root = balanceInsertion(root, x);
2105                             break;
2106                         }
2107                     }
2108                 }
2109             }
2110             moveRootToFront(tab, root);
2111         }
2112 
2113         /**
2114          * Returns a list of non-TreeNodes replacing those linked from
2115          * this node.
2116          */
2117         final Node<K,V> untreeify(HashMap<K,V> map) {
2118             Node<K,V> hd = null, tl = null;
2119             for (Node<K,V> q = this; q != null; q = q.next) {
2120                 Node<K,V> p = map.replacementNode(q, null);
2121                 if (tl == null)
2122                     hd = p;
2123                 else
2124                     tl.next = p;
2125                 tl = p;
2126             }
2127             return hd;
2128         }
2129 
2130         /**
2131          * Tree version of putVal.
2132          */
2133         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
2134                                        int h, K k, V v) {
2135             Class<?> kc = null;
2136             boolean searched = false;
2137             TreeNode<K,V> root = (parent != null) ? root() : this;
2138             for (TreeNode<K,V> p = root;;) {
2139                 int dir, ph; K pk;
2140                 if ((ph = p.hash) > h)
2141                     dir = -1;
2142                 else if (ph < h)
2143                     dir = 1;
2144                 else if (Objects.equals(k, (pk = p.key)))
2145                     return p;
2146                 else if ((kc == null &&
2147                           (kc = comparableClassFor(k)) == null) ||
2148                          (dir = compareComparables(kc, k, pk)) == 0) {
2149                     if (!searched) {
2150                         TreeNode<K,V> q, ch;
2151                         searched = true;
2152                         if (((ch = p.left) != null &&
2153                              (q = ch.find(h, k, kc)) != null) ||
2154                             ((ch = p.right) != null &&
2155                              (q = ch.find(h, k, kc)) != null))
2156                             return q;
2157                     }
2158                     dir = tieBreakOrder(k, pk);
2159                 }
2160 
2161                 TreeNode<K,V> xp = p;
2162                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2163                     Node<K,V> xpn = xp.next;
2164                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2165                     if (dir <= 0)
2166                         xp.left = x;
2167                     else
2168                         xp.right = x;
2169                     xp.next = x;
2170                     x.parent = x.prev = xp;
2171                     if (xpn != null)
2172                         ((TreeNode<K,V>)xpn).prev = x;
2173                     moveRootToFront(tab, balanceInsertion(root, x));
2174                     return null;
2175                 }
2176             }
2177         }
2178 
2179         /**
2180          * Removes the given node, that must be present before this call.
2181          * This is messier than typical red-black deletion code because we
2182          * cannot swap the contents of an interior node with a leaf
2183          * successor that is pinned by "next" pointers that are accessible
2184          * independently during traversal. So instead we swap the tree
2185          * linkages. If the current tree appears to have too few nodes,
2186          * the bin is converted back to a plain bin. (The test triggers
2187          * somewhere between 2 and 6 nodes, depending on tree structure).
2188          */
2189         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2190                                   boolean movable) {
2191             int n;
2192             if (tab == null || (n = tab.length) == 0)
2193                 return;
2194             int index = (n - 1) & hash;
2195             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2196             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2197             if (pred == null)
2198                 tab[index] = first = succ;
2199             else
2200                 pred.next = succ;
2201             if (succ != null)
2202                 succ.prev = pred;
2203             if (first == null)
2204                 return;
2205             if (root.parent != null)
2206                 root = root.root();
2207             if (root == null
2208                 || (movable
2209                     && (root.right == null
2210                         || (rl = root.left) == null
2211                         || rl.left == null))) {
2212                 tab[index] = first.untreeify(map);  // too small
2213                 return;
2214             }
2215             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2216             if (pl != null && pr != null) {
2217                 TreeNode<K,V> s = pr, sl;
2218                 while ((sl = s.left) != null) // find successor
2219                     s = sl;
2220                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2221                 TreeNode<K,V> sr = s.right;
2222                 TreeNode<K,V> pp = p.parent;
2223                 if (s == pr) { // p was s's direct parent
2224                     p.parent = s;
2225                     s.right = p;
2226                 }
2227                 else {
2228                     TreeNode<K,V> sp = s.parent;
2229                     if ((p.parent = sp) != null) {
2230                         if (s == sp.left)
2231                             sp.left = p;
2232                         else
2233                             sp.right = p;
2234                     }
2235                     if ((s.right = pr) != null)
2236                         pr.parent = s;
2237                 }
2238                 p.left = null;
2239                 if ((p.right = sr) != null)
2240                     sr.parent = p;
2241                 if ((s.left = pl) != null)
2242                     pl.parent = s;
2243                 if ((s.parent = pp) == null)
2244                     root = s;
2245                 else if (p == pp.left)
2246                     pp.left = s;
2247                 else
2248                     pp.right = s;
2249                 if (sr != null)
2250                     replacement = sr;
2251                 else
2252                     replacement = p;
2253             }
2254             else if (pl != null)
2255                 replacement = pl;
2256             else if (pr != null)
2257                 replacement = pr;
2258             else
2259                 replacement = p;
2260             if (replacement != p) {
2261                 TreeNode<K,V> pp = replacement.parent = p.parent;
2262                 if (pp == null)
2263                     (root = replacement).red = false;
2264                 else if (p == pp.left)
2265                     pp.left = replacement;
2266                 else
2267                     pp.right = replacement;
2268                 p.left = p.right = p.parent = null;
2269             }
2270 
2271             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2272 
2273             if (replacement == p) {  // detach
2274                 TreeNode<K,V> pp = p.parent;
2275                 p.parent = null;
2276                 if (pp != null) {
2277                     if (p == pp.left)
2278                         pp.left = null;
2279                     else if (p == pp.right)
2280                         pp.right = null;
2281                 }
2282             }
2283             if (movable)
2284                 moveRootToFront(tab, r);
2285         }
2286 
2287         /**
2288          * Splits nodes in a tree bin into lower and upper tree bins,
2289          * or untreeifies if now too small. Called only from resize;
2290          * see above discussion about split bits and indices.
2291          *
2292          * @param map the map
2293          * @param tab the table for recording bin heads
2294          * @param index the index of the table being split
2295          * @param bit the bit of hash to split on
2296          */
2297         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2298             TreeNode<K,V> b = this;
2299             // Relink into lo and hi lists, preserving order
2300             TreeNode<K,V> loHead = null, loTail = null;
2301             TreeNode<K,V> hiHead = null, hiTail = null;
2302             int lc = 0, hc = 0;
2303             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2304                 next = (TreeNode<K,V>)e.next;
2305                 e.next = null;
2306                 if ((e.hash & bit) == 0) {
2307                     if ((e.prev = loTail) == null)
2308                         loHead = e;
2309                     else
2310                         loTail.next = e;
2311                     loTail = e;
2312                     ++lc;
2313                 }
2314                 else {
2315                     if ((e.prev = hiTail) == null)
2316                         hiHead = e;
2317                     else
2318                         hiTail.next = e;
2319                     hiTail = e;
2320                     ++hc;
2321                 }
2322             }
2323 
2324             if (loHead != null) {
2325                 if (lc <= UNTREEIFY_THRESHOLD)
2326                     tab[index] = loHead.untreeify(map);
2327                 else {
2328                     tab[index] = loHead;
2329                     if (hiHead != null) // (else is already treeified)
2330                         loHead.treeify(tab);
2331                 }
2332             }
2333             if (hiHead != null) {
2334                 if (hc <= UNTREEIFY_THRESHOLD)
2335                     tab[index + bit] = hiHead.untreeify(map);
2336                 else {
2337                     tab[index + bit] = hiHead;
2338                     if (loHead != null)
2339                         hiHead.treeify(tab);
2340                 }
2341             }
2342         }
2343 
2344         /* ------------------------------------------------------------ */
2345         // Red-black tree methods, all adapted from CLR
2346 
2347         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2348                                               TreeNode<K,V> p) {
2349             TreeNode<K,V> r, pp, rl;
2350             if (p != null && (r = p.right) != null) {
2351                 if ((rl = p.right = r.left) != null)
2352                     rl.parent = p;
2353                 if ((pp = r.parent = p.parent) == null)
2354                     (root = r).red = false;
2355                 else if (pp.left == p)
2356                     pp.left = r;
2357                 else
2358                     pp.right = r;
2359                 r.left = p;
2360                 p.parent = r;
2361             }
2362             return root;
2363         }
2364 
2365         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2366                                                TreeNode<K,V> p) {
2367             TreeNode<K,V> l, pp, lr;
2368             if (p != null && (l = p.left) != null) {
2369                 if ((lr = p.left = l.right) != null)
2370                     lr.parent = p;
2371                 if ((pp = l.parent = p.parent) == null)
2372                     (root = l).red = false;
2373                 else if (pp.right == p)
2374                     pp.right = l;
2375                 else
2376                     pp.left = l;
2377                 l.right = p;
2378                 p.parent = l;
2379             }
2380             return root;
2381         }
2382 
2383         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2384                                                     TreeNode<K,V> x) {
2385             x.red = true;
2386             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2387                 if ((xp = x.parent) == null) {
2388                     x.red = false;
2389                     return x;
2390                 }
2391                 else if (!xp.red || (xpp = xp.parent) == null)
2392                     return root;
2393                 if (xp == (xppl = xpp.left)) {
2394                     if ((xppr = xpp.right) != null && xppr.red) {
2395                         xppr.red = false;
2396                         xp.red = false;
2397                         xpp.red = true;
2398                         x = xpp;
2399                     }
2400                     else {
2401                         if (x == xp.right) {
2402                             root = rotateLeft(root, x = xp);
2403                             xpp = (xp = x.parent) == null ? null : xp.parent;
2404                         }
2405                         if (xp != null) {
2406                             xp.red = false;
2407                             if (xpp != null) {
2408                                 xpp.red = true;
2409                                 root = rotateRight(root, xpp);
2410                             }
2411                         }
2412                     }
2413                 }
2414                 else {
2415                     if (xppl != null && xppl.red) {
2416                         xppl.red = false;
2417                         xp.red = false;
2418                         xpp.red = true;
2419                         x = xpp;
2420                     }
2421                     else {
2422                         if (x == xp.left) {
2423                             root = rotateRight(root, x = xp);
2424                             xpp = (xp = x.parent) == null ? null : xp.parent;
2425                         }
2426                         if (xp != null) {
2427                             xp.red = false;
2428                             if (xpp != null) {
2429                                 xpp.red = true;
2430                                 root = rotateLeft(root, xpp);
2431                             }
2432                         }
2433                     }
2434                 }
2435             }
2436         }
2437 
2438         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2439                                                    TreeNode<K,V> x) {
2440             for (TreeNode<K,V> xp, xpl, xpr;;) {
2441                 if (x == null || x == root)
2442                     return root;
2443                 else if ((xp = x.parent) == null) {
2444                     x.red = false;
2445                     return x;
2446                 }
2447                 else if (x.red) {
2448                     x.red = false;
2449                     return root;
2450                 }
2451                 else if ((xpl = xp.left) == x) {
2452                     if ((xpr = xp.right) != null && xpr.red) {
2453                         xpr.red = false;
2454                         xp.red = true;
2455                         root = rotateLeft(root, xp);
2456                         xpr = (xp = x.parent) == null ? null : xp.right;
2457                     }
2458                     if (xpr == null)
2459                         x = xp;
2460                     else {
2461                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2462                         if ((sr == null || !sr.red) &&
2463                             (sl == null || !sl.red)) {
2464                             xpr.red = true;
2465                             x = xp;
2466                         }
2467                         else {
2468                             if (sr == null || !sr.red) {
2469                                 if (sl != null)
2470                                     sl.red = false;
2471                                 xpr.red = true;
2472                                 root = rotateRight(root, xpr);
2473                                 xpr = (xp = x.parent) == null ?
2474                                     null : xp.right;
2475                             }
2476                             if (xpr != null) {
2477                                 xpr.red = (xp == null) ? false : xp.red;
2478                                 if ((sr = xpr.right) != null)
2479                                     sr.red = false;
2480                             }
2481                             if (xp != null) {
2482                                 xp.red = false;
2483                                 root = rotateLeft(root, xp);
2484                             }
2485                             x = root;
2486                         }
2487                     }
2488                 }
2489                 else { // symmetric
2490                     if (xpl != null && xpl.red) {
2491                         xpl.red = false;
2492                         xp.red = true;
2493                         root = rotateRight(root, xp);
2494                         xpl = (xp = x.parent) == null ? null : xp.left;
2495                     }
2496                     if (xpl == null)
2497                         x = xp;
2498                     else {
2499                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2500                         if ((sl == null || !sl.red) &&
2501                             (sr == null || !sr.red)) {
2502                             xpl.red = true;
2503                             x = xp;
2504                         }
2505                         else {
2506                             if (sl == null || !sl.red) {
2507                                 if (sr != null)
2508                                     sr.red = false;
2509                                 xpl.red = true;
2510                                 root = rotateLeft(root, xpl);
2511                                 xpl = (xp = x.parent) == null ?
2512                                     null : xp.left;
2513                             }
2514                             if (xpl != null) {
2515                                 xpl.red = (xp == null) ? false : xp.red;
2516                                 if ((sl = xpl.left) != null)
2517                                     sl.red = false;
2518                             }
2519                             if (xp != null) {
2520                                 xp.red = false;
2521                                 root = rotateRight(root, xp);
2522                             }
2523                             x = root;
2524                         }
2525                     }
2526                 }
2527             }
2528         }
2529 
2530         /**
2531          * Recursive invariant check
2532          */
2533         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2534             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2535                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2536             if (tb != null && tb.next != t)
2537                 return false;
2538             if (tn != null && tn.prev != t)
2539                 return false;
2540             if (tp != null && t != tp.left && t != tp.right)
2541                 return false;
2542             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2543                 return false;
2544             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2545                 return false;
2546             if (t.red && tl != null && tl.red && tr != null && tr.red)
2547                 return false;
2548             if (tl != null && !checkInvariants(tl))
2549                 return false;
2550             if (tr != null && !checkInvariants(tr))
2551                 return false;
2552             return true;
2553         }
2554     }
2555 
2556     /**
2557      * Calculate initial capacity for HashMap based classes, from expected size and default load factor (0.75).
2558      *
2559      * @param numMappings the expected number of mappings
2560      * @return initial capacity for HashMap based classes.
2561      * @since 19
2562      */
2563     static int calculateHashMapCapacity(int numMappings) {
2564         return (int) Math.ceil(numMappings / (double) DEFAULT_LOAD_FACTOR);
2565     }
2566 
2567     /**
2568      * Creates a new, empty HashMap suitable for the expected number of mappings.
2569      * The returned map uses the default load factor of 0.75, and its initial capacity is
2570      * generally large enough so that the expected number of mappings can be added
2571      * without resizing the map.
2572      *
2573      * @param numMappings the expected number of mappings
2574      * @param <K>         the type of keys maintained by the new map
2575      * @param <V>         the type of mapped values
2576      * @return the newly created map
2577      * @throws IllegalArgumentException if numMappings is negative
2578      * @since 19
2579      */
2580     public static <K, V> HashMap<K, V> newHashMap(int numMappings) {
2581         if (numMappings < 0) {
2582             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
2583         }
2584         return new HashMap<>(calculateHashMapCapacity(numMappings));
2585     }
2586 
2587 }