1 /*
   2  * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.function.BiConsumer;
  31 import java.util.function.BiFunction;
  32 import java.util.function.Consumer;
  33 
  34 
  35 /**
  36  * Hash table based implementation of the {@code Map} interface, with
  37  * <em>weak keys</em>.
  38  * An entry in a {@code WeakHashMap} will automatically be removed when
  39  * its key is no longer in ordinary use.  More precisely, the presence of a
  40  * mapping for a given key will not prevent the key from being discarded by the
  41  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  42  * When a key has been discarded its entry is effectively removed from the map,
  43  * so this class behaves somewhat differently from other {@code Map}
  44  * implementations.
  45  *
  46  * <p> Both null values and the null key are supported. This class has
  47  * performance characteristics similar to those of the {@code HashMap}
  48  * class, and has the same efficiency parameters of <em>initial capacity</em>
  49  * and <em>load factor</em>.
  50  *
  51  * <p> Like most collection classes, this class is not synchronized.
  52  * A synchronized {@code WeakHashMap} may be constructed using the
  53  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  54  * method.
  55  *
  56  * <p> This class is intended primarily for use with key objects whose
  57  * {@code equals} methods test for object identity using the
  58  * {@code ==} operator.  Once such a key is discarded it can never be
  59  * recreated, so it is impossible to do a lookup of that key in a
  60  * {@code WeakHashMap} at some later time and be surprised that its entry
  61  * has been removed.  This class will work perfectly well with key objects
  62  * whose {@code equals} methods are not based upon object identity, such
  63  * as {@code String} instances.  With such recreatable key objects,
  64  * however, the automatic removal of {@code WeakHashMap} entries whose
  65  * keys have been discarded may prove to be confusing.
  66  *
  67  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  68  * the actions of the garbage collector, so several familiar (though not
  69  * required) {@code Map} invariants do not hold for this class.  Because
  70  * the garbage collector may discard keys at any time, a
  71  * {@code WeakHashMap} may behave as though an unknown thread is silently
  72  * removing entries.  In particular, even if you synchronize on a
  73  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  74  * is possible for the {@code size} method to return smaller values over
  75  * time, for the {@code isEmpty} method to return {@code false} and
  76  * then {@code true}, for the {@code containsKey} method to return
  77  * {@code true} and later {@code false} for a given key, for the
  78  * {@code get} method to return a value for a given key but later return
  79  * {@code null}, for the {@code put} method to return
  80  * {@code null} and the {@code remove} method to return
  81  * {@code false} for a key that previously appeared to be in the map, and
  82  * for successive examinations of the key set, the value collection, and
  83  * the entry set to yield successively smaller numbers of elements.
  84  *
  85  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
  86  * the referent of a weak reference.  Therefore a key will automatically be
  87  * removed only after the weak references to it, both inside and outside of the
  88  * map, have been cleared by the garbage collector.
  89  *
  90  * <p> <strong>Implementation note:</strong> The value objects in a
  91  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
  92  * should be taken to ensure that value objects do not strongly refer to their
  93  * own keys, either directly or indirectly, since that will prevent the keys
  94  * from being discarded.  Note that a value object may refer indirectly to its
  95  * key via the {@code WeakHashMap} itself; that is, a value object may
  96  * strongly refer to some other key object whose associated value object, in
  97  * turn, strongly refers to the key of the first value object.  If the values
  98  * in the map do not rely on the map holding strong references to them, one way
  99  * to deal with this is to wrap values themselves within
 100  * {@code WeakReferences} before
 101  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 102  * and then unwrapping upon each {@code get}.
 103  *
 104  * <p>The iterators returned by the {@code iterator} method of the collections
 105  * returned by all of this class's "collection view methods" are
 106  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 107  * iterator is created, in any way except through the iterator's own
 108  * {@code remove} method, the iterator will throw a {@link
 109  * ConcurrentModificationException}.  Thus, in the face of concurrent
 110  * modification, the iterator fails quickly and cleanly, rather than risking
 111  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 112  *
 113  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 114  * as it is, generally speaking, impossible to make any hard guarantees in the
 115  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 116  * throw {@code ConcurrentModificationException} on a best-effort basis.
 117  * Therefore, it would be wrong to write a program that depended on this
 118  * exception for its correctness:  <i>the fail-fast behavior of iterators
 119  * should be used only to detect bugs.</i>
 120  *
 121  * <p>This class is a member of the
 122  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 123  * Java Collections Framework</a>.
 124  *
 125  * @param <K> the type of keys maintained by this map
 126  * @param <V> the type of mapped values
 127  *
 128  * @author      Doug Lea
 129  * @author      Josh Bloch
 130  * @author      Mark Reinhold
 131  * @since       1.2
 132  * @see         java.util.HashMap
 133  * @see         java.lang.ref.WeakReference
 134  */
 135 public class WeakHashMap<K,V>
 136     extends AbstractMap<K,V>
 137     implements Map<K,V> {
 138 
 139     /**
 140      * The default initial capacity -- MUST be a power of two.
 141      */
 142     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 143 
 144     /**
 145      * The maximum capacity, used if a higher value is implicitly specified
 146      * by either of the constructors with arguments.
 147      * MUST be a power of two <= 1<<30.
 148      */
 149     private static final int MAXIMUM_CAPACITY = 1 << 30;
 150 
 151     /**
 152      * The load factor used when none specified in constructor.
 153      */
 154     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 155 
 156     /**
 157      * The table, resized as necessary. Length MUST Always be a power of two.
 158      */
 159     Entry<K,V>[] table;
 160 
 161     /**
 162      * The number of key-value mappings contained in this weak hash map.
 163      */
 164     private int size;
 165 
 166     /**
 167      * The next size value at which to resize (capacity * load factor).
 168      */
 169     private int threshold;
 170 
 171     /**
 172      * The load factor for the hash table.
 173      */
 174     private final float loadFactor;
 175 
 176     /**
 177      * Reference queue for cleared WeakEntries
 178      */
 179     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 180 
 181     /**
 182      * The number of times this WeakHashMap has been structurally modified.
 183      * Structural modifications are those that change the number of
 184      * mappings in the map or otherwise modify its internal structure
 185      * (e.g., rehash).  This field is used to make iterators on
 186      * Collection-views of the map fail-fast.
 187      *
 188      * @see ConcurrentModificationException
 189      */
 190     int modCount;
 191 
 192     @SuppressWarnings("unchecked")
 193     private Entry<K,V>[] newTable(int n) {
 194         return (Entry<K,V>[]) new Entry<?,?>[n];
 195     }
 196 
 197     /**
 198      * Constructs a new, empty {@code WeakHashMap} with the given initial
 199      * capacity and the given load factor.
 200      *
 201      * @apiNote
 202      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 203      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 204      *
 205      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 206      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 207      * @throws IllegalArgumentException if the initial capacity is negative,
 208      *         or if the load factor is nonpositive.
 209      */
 210     public WeakHashMap(int initialCapacity, float loadFactor) {
 211         if (initialCapacity < 0)
 212             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 213                                                initialCapacity);
 214         if (initialCapacity > MAXIMUM_CAPACITY)
 215             initialCapacity = MAXIMUM_CAPACITY;
 216 
 217         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 218             throw new IllegalArgumentException("Illegal Load factor: "+
 219                                                loadFactor);
 220         int capacity = HashMap.tableSizeFor(initialCapacity);
 221         table = newTable(capacity);
 222         this.loadFactor = loadFactor;
 223         threshold = (int)(capacity * loadFactor);
 224     }
 225 
 226     /**
 227      * Constructs a new, empty {@code WeakHashMap} with the given initial
 228      * capacity and the default load factor (0.75).
 229      *
 230      * @apiNote
 231      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 232      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 233      *
 234      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 235      * @throws IllegalArgumentException if the initial capacity is negative
 236      */
 237     public WeakHashMap(int initialCapacity) {
 238         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 239     }
 240 
 241     /**
 242      * Constructs a new, empty {@code WeakHashMap} with the default initial
 243      * capacity (16) and load factor (0.75).
 244      */
 245     public WeakHashMap() {
 246         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 247     }
 248 
 249     /**
 250      * Constructs a new {@code WeakHashMap} with the same mappings as the
 251      * specified map.  The {@code WeakHashMap} is created with the default
 252      * load factor (0.75) and an initial capacity sufficient to hold the
 253      * mappings in the specified map.
 254      *
 255      * @param   m the map whose mappings are to be placed in this map
 256      * @throws  NullPointerException if the specified map is null
 257      * @since   1.3
 258      */
 259     public WeakHashMap(Map<? extends K, ? extends V> m) {
 260         this(Math.max((int) Math.ceil(m.size() / (double)DEFAULT_LOAD_FACTOR),
 261                 DEFAULT_INITIAL_CAPACITY),
 262              DEFAULT_LOAD_FACTOR);
 263         putAll(m);
 264     }
 265 
 266     // internal utilities
 267 
 268     /**
 269      * Value representing null keys inside tables.
 270      */
 271     private static final Object NULL_KEY = new Object();
 272 
 273     /**
 274      * Use NULL_KEY for key if it is null.
 275      */
 276     private static Object maskNull(Object key) {
 277         return (key == null) ? NULL_KEY : key;
 278     }
 279 
 280     /**
 281      * Returns internal representation of null key back to caller as null.
 282      */
 283     static Object unmaskNull(Object key) {
 284         return (key == NULL_KEY) ? null : key;
 285     }
 286 
 287     /**
 288      * Checks for equality of non-null reference x and possibly-null y.  By
 289      * default uses Object.equals.
 290      */
 291     private boolean matchesKey(Entry<K,V> e, Object key) {
 292         // check if the given entry refers to the given key without
 293         // keeping a strong reference to the entry's referent
 294         if (e.refersTo(key)) return true;
 295 
 296         // then check for equality if the referent is not cleared
 297         Object k = e.get();
 298         return k != null && key.equals(k);
 299     }
 300 
 301     /**
 302      * Retrieve object hash code and applies a supplemental hash function to the
 303      * result hash, which defends against poor quality hash functions.  This is
 304      * critical because HashMap uses power-of-two length hash tables, that
 305      * otherwise encounter collisions for hashCodes that do not differ
 306      * in lower bits.
 307      */
 308     final int hash(Object k) {
 309         int h = k.hashCode();
 310 
 311         // This function ensures that hashCodes that differ only by
 312         // constant multiples at each bit position have a bounded
 313         // number of collisions (approximately 8 at default load factor).
 314         h ^= (h >>> 20) ^ (h >>> 12);
 315         return h ^ (h >>> 7) ^ (h >>> 4);
 316     }
 317 
 318     /**
 319      * Returns index for hash code h.
 320      */
 321     private static int indexFor(int h, int length) {
 322         return h & (length-1);
 323     }
 324 
 325     /**
 326      * Expunges stale entries from the table.
 327      */
 328     private void expungeStaleEntries() {
 329         for (Object x; (x = queue.poll()) != null; ) {
 330             synchronized (queue) {
 331                 @SuppressWarnings("unchecked")
 332                     Entry<K,V> e = (Entry<K,V>) x;
 333                 int i = indexFor(e.hash, table.length);
 334 
 335                 Entry<K,V> prev = table[i];
 336                 Entry<K,V> p = prev;
 337                 while (p != null) {
 338                     Entry<K,V> next = p.next;
 339                     if (p == e) {
 340                         if (prev == e)
 341                             table[i] = next;
 342                         else
 343                             prev.next = next;
 344                         // Must not null out e.next;
 345                         // stale entries may be in use by a HashIterator
 346                         e.value = null; // Help GC
 347                         size--;
 348                         break;
 349                     }
 350                     prev = p;
 351                     p = next;
 352                 }
 353             }
 354         }
 355     }
 356 
 357     /**
 358      * Returns the table after first expunging stale entries.
 359      */
 360     private Entry<K,V>[] getTable() {
 361         expungeStaleEntries();
 362         return table;
 363     }
 364 
 365     /**
 366      * Returns the number of key-value mappings in this map.
 367      * This result is a snapshot, and may not reflect unprocessed
 368      * entries that will be removed before next attempted access
 369      * because they are no longer referenced.
 370      */
 371     public int size() {
 372         if (size == 0)
 373             return 0;
 374         expungeStaleEntries();
 375         return size;
 376     }
 377 
 378     /**
 379      * Returns {@code true} if this map contains no key-value mappings.
 380      * This result is a snapshot, and may not reflect unprocessed
 381      * entries that will be removed before next attempted access
 382      * because they are no longer referenced.
 383      */
 384     public boolean isEmpty() {
 385         return size() == 0;
 386     }
 387 
 388     /**
 389      * Returns the value to which the specified key is mapped,
 390      * or {@code null} if this map contains no mapping for the key.
 391      *
 392      * <p>More formally, if this map contains a mapping from a key
 393      * {@code k} to a value {@code v} such that
 394      * {@code Objects.equals(key, k)},
 395      * then this method returns {@code v}; otherwise
 396      * it returns {@code null}.  (There can be at most one such mapping.)
 397      *
 398      * <p>A return value of {@code null} does not <i>necessarily</i>
 399      * indicate that the map contains no mapping for the key; it's also
 400      * possible that the map explicitly maps the key to {@code null}.
 401      * The {@link #containsKey containsKey} operation may be used to
 402      * distinguish these two cases.
 403      *
 404      * @see #put(Object, Object)
 405      */
 406     public V get(Object key) {
 407         Object k = maskNull(key);
 408         int h = hash(k);
 409         Entry<K,V>[] tab = getTable();
 410         int index = indexFor(h, tab.length);
 411         Entry<K,V> e = tab[index];
 412         while (e != null) {
 413             if (e.hash == h && matchesKey(e, k))
 414                 return e.value;
 415             e = e.next;
 416         }
 417         return null;
 418     }
 419 
 420     /**
 421      * Returns {@code true} if this map contains a mapping for the
 422      * specified key.
 423      *
 424      * @param  key   The key whose presence in this map is to be tested
 425      * @return {@code true} if there is a mapping for {@code key};
 426      *         {@code false} otherwise
 427      */
 428     public boolean containsKey(Object key) {
 429         return getEntry(key) != null;
 430     }
 431 
 432     /**
 433      * Returns the entry associated with the specified key in this map.
 434      * Returns null if the map contains no mapping for this key.
 435      */
 436     Entry<K,V> getEntry(Object key) {
 437         Object k = maskNull(key);
 438         int h = hash(k);
 439         Entry<K,V>[] tab = getTable();
 440         int index = indexFor(h, tab.length);
 441         Entry<K,V> e = tab[index];
 442         while (e != null && !(e.hash == h && matchesKey(e, k)))
 443             e = e.next;
 444         return e;
 445     }
 446 
 447     /**
 448      * Associates the specified value with the specified key in this map.
 449      * If the map previously contained a mapping for this key, the old
 450      * value is replaced.
 451      *
 452      * @param key key with which the specified value is to be associated.
 453      * @param value value to be associated with the specified key.
 454      * @return the previous value associated with {@code key}, or
 455      *         {@code null} if there was no mapping for {@code key}.
 456      *         (A {@code null} return can also indicate that the map
 457      *         previously associated {@code null} with {@code key}.)
 458      */
 459     public V put(K key, V value) {
 460         Object k = maskNull(key);
 461         int h = hash(k);
 462         Entry<K,V>[] tab = getTable();
 463         int i = indexFor(h, tab.length);
 464 
 465         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 466             if (h == e.hash && matchesKey(e, k)) {
 467                 V oldValue = e.value;
 468                 if (value != oldValue)
 469                     e.value = value;
 470                 return oldValue;
 471             }
 472         }
 473 
 474         modCount++;
 475         Entry<K,V> e = tab[i];
 476         tab[i] = new Entry<>(k, value, queue, h, e);
 477         if (++size > threshold)
 478             resize(tab.length * 2);
 479         return null;
 480     }
 481 
 482     /**
 483      * Rehashes the contents of this map into a new array with a
 484      * larger capacity.  This method is called automatically when the
 485      * number of keys in this map reaches its threshold.
 486      *
 487      * If current capacity is MAXIMUM_CAPACITY, this method does not
 488      * resize the map, but sets threshold to Integer.MAX_VALUE.
 489      * This has the effect of preventing future calls.
 490      *
 491      * @param newCapacity the new capacity, MUST be a power of two;
 492      *        must be greater than current capacity unless current
 493      *        capacity is MAXIMUM_CAPACITY (in which case value
 494      *        is irrelevant).
 495      */
 496     void resize(int newCapacity) {
 497         Entry<K,V>[] oldTable = getTable();
 498         int oldCapacity = oldTable.length;
 499         if (oldCapacity == MAXIMUM_CAPACITY) {
 500             threshold = Integer.MAX_VALUE;
 501             return;
 502         }
 503 
 504         Entry<K,V>[] newTable = newTable(newCapacity);
 505         transfer(oldTable, newTable);
 506         table = newTable;
 507 
 508         /*
 509          * If ignoring null elements and processing ref queue caused massive
 510          * shrinkage, then restore old table.  This should be rare, but avoids
 511          * unbounded expansion of garbage-filled tables.
 512          */
 513         if (size >= threshold / 2) {
 514             threshold = (int)(newCapacity * loadFactor);
 515         } else {
 516             expungeStaleEntries();
 517             transfer(newTable, oldTable);
 518             table = oldTable;
 519         }
 520     }
 521 
 522     /** Transfers all entries from src to dest tables */
 523     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 524         for (int j = 0; j < src.length; ++j) {
 525             Entry<K,V> e = src[j];
 526             src[j] = null;
 527             while (e != null) {
 528                 Entry<K,V> next = e.next;
 529                 if (e.refersTo(null)) {
 530                     e.next = null;  // Help GC
 531                     e.value = null; //  "   "
 532                     size--;
 533                 } else {
 534                     int i = indexFor(e.hash, dest.length);
 535                     e.next = dest[i];
 536                     dest[i] = e;
 537                 }
 538                 e = next;
 539             }
 540         }
 541     }
 542 
 543     /**
 544      * Copies all of the mappings from the specified map to this map.
 545      * These mappings will replace any mappings that this map had for any
 546      * of the keys currently in the specified map.
 547      *
 548      * @param m mappings to be stored in this map.
 549      * @throws  NullPointerException if the specified map is null.
 550      */
 551     public void putAll(Map<? extends K, ? extends V> m) {
 552         int numKeysToBeAdded = m.size();
 553         if (numKeysToBeAdded == 0)
 554             return;
 555 
 556         /*
 557          * Expand the map if the map if the number of mappings to be added
 558          * is greater than or equal to threshold.  This is conservative; the
 559          * obvious condition is (m.size() + size) >= threshold, but this
 560          * condition could result in a map with twice the appropriate capacity,
 561          * if the keys to be added overlap with the keys already in this map.
 562          * By using the conservative calculation, we subject ourself
 563          * to at most one extra resize.
 564          */
 565         if (numKeysToBeAdded > threshold) {
 566             int targetCapacity = (int)Math.ceil(numKeysToBeAdded / (double)loadFactor);
 567             if (targetCapacity > MAXIMUM_CAPACITY)
 568                 targetCapacity = MAXIMUM_CAPACITY;
 569             int newCapacity = table.length;
 570             while (newCapacity < targetCapacity)
 571                 newCapacity <<= 1;
 572             if (newCapacity > table.length)
 573                 resize(newCapacity);
 574         }
 575 
 576         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 577             put(e.getKey(), e.getValue());
 578     }
 579 
 580     /**
 581      * Removes the mapping for a key from this weak hash map if it is present.
 582      * More formally, if this map contains a mapping from key {@code k} to
 583      * value {@code v} such that <code>(key==null ?  k==null :
 584      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 585      * at most one such mapping.)
 586      *
 587      * <p>Returns the value to which this map previously associated the key,
 588      * or {@code null} if the map contained no mapping for the key.  A
 589      * return value of {@code null} does not <i>necessarily</i> indicate
 590      * that the map contained no mapping for the key; it's also possible
 591      * that the map explicitly mapped the key to {@code null}.
 592      *
 593      * <p>The map will not contain a mapping for the specified key once the
 594      * call returns.
 595      *
 596      * @param key key whose mapping is to be removed from the map
 597      * @return the previous value associated with {@code key}, or
 598      *         {@code null} if there was no mapping for {@code key}
 599      */
 600     public V remove(Object key) {
 601         Object k = maskNull(key);
 602         int h = hash(k);
 603         Entry<K,V>[] tab = getTable();
 604         int i = indexFor(h, tab.length);
 605         Entry<K,V> prev = tab[i];
 606         Entry<K,V> e = prev;
 607 
 608         while (e != null) {
 609             Entry<K,V> next = e.next;
 610             if (h == e.hash && matchesKey(e, k)) {
 611                 modCount++;
 612                 size--;
 613                 if (prev == e)
 614                     tab[i] = next;
 615                 else
 616                     prev.next = next;
 617                 return e.value;
 618             }
 619             prev = e;
 620             e = next;
 621         }
 622 
 623         return null;
 624     }
 625 
 626     /** Special version of remove needed by Entry set */
 627     boolean removeMapping(Object o) {
 628         if (!(o instanceof Map.Entry<?, ?> entry))
 629             return false;
 630         Entry<K,V>[] tab = getTable();
 631         Object k = maskNull(entry.getKey());
 632         int h = hash(k);
 633         int i = indexFor(h, tab.length);
 634         Entry<K,V> prev = tab[i];
 635         Entry<K,V> e = prev;
 636 
 637         while (e != null) {
 638             Entry<K,V> next = e.next;
 639             if (h == e.hash && e.equals(entry)) {
 640                 modCount++;
 641                 size--;
 642                 if (prev == e)
 643                     tab[i] = next;
 644                 else
 645                     prev.next = next;
 646                 return true;
 647             }
 648             prev = e;
 649             e = next;
 650         }
 651 
 652         return false;
 653     }
 654 
 655     /**
 656      * Removes all of the mappings from this map.
 657      * The map will be empty after this call returns.
 658      */
 659     public void clear() {
 660         // clear out ref queue. We don't need to expunge entries
 661         // since table is getting cleared.
 662         while (queue.poll() != null)
 663             ;
 664 
 665         modCount++;
 666         Arrays.fill(table, null);
 667         size = 0;
 668 
 669         // Allocation of array may have caused GC, which may have caused
 670         // additional entries to go stale.  Removing these entries from the
 671         // reference queue will make them eligible for reclamation.
 672         while (queue.poll() != null)
 673             ;
 674     }
 675 
 676     /**
 677      * Returns {@code true} if this map maps one or more keys to the
 678      * specified value.
 679      *
 680      * @param value value whose presence in this map is to be tested
 681      * @return {@code true} if this map maps one or more keys to the
 682      *         specified value
 683      */
 684     public boolean containsValue(Object value) {
 685         if (value==null)
 686             return containsNullValue();
 687 
 688         Entry<K,V>[] tab = getTable();
 689         for (int i = tab.length; i-- > 0;)
 690             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 691                 if (value.equals(e.value))
 692                     return true;
 693         return false;
 694     }
 695 
 696     /**
 697      * Special-case code for containsValue with null argument
 698      */
 699     private boolean containsNullValue() {
 700         Entry<K,V>[] tab = getTable();
 701         for (int i = tab.length; i-- > 0;)
 702             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 703                 if (e.value==null)
 704                     return true;
 705         return false;
 706     }
 707 
 708     /**
 709      * The entries in this hash table extend WeakReference, using its main ref
 710      * field as the key.
 711      */
 712     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 713         V value;
 714         final int hash;
 715         Entry<K,V> next;
 716 
 717         /**
 718          * Creates new entry.
 719          */
 720         Entry(Object key, V value,
 721               ReferenceQueue<Object> queue,
 722               int hash, Entry<K,V> next) {
 723             super(key, queue);
 724             this.value = value;
 725             this.hash  = hash;
 726             this.next  = next;
 727         }
 728 
 729         @SuppressWarnings("unchecked")
 730         public K getKey() {
 731             return (K) WeakHashMap.unmaskNull(get());
 732         }
 733 
 734         public V getValue() {
 735             return value;
 736         }
 737 
 738         public V setValue(V newValue) {
 739             V oldValue = value;
 740             value = newValue;
 741             return oldValue;
 742         }
 743 
 744         public boolean equals(Object o) {
 745             if (!(o instanceof Map.Entry<?, ?> e))
 746                 return false;
 747             K k1 = getKey();
 748             Object k2 = e.getKey();
 749             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 750                 V v1 = getValue();
 751                 Object v2 = e.getValue();
 752                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 753                     return true;
 754             }
 755             return false;
 756         }
 757 
 758         public int hashCode() {
 759             K k = getKey();
 760             V v = getValue();
 761             return Objects.hashCode(k) ^ Objects.hashCode(v);
 762         }
 763 
 764         public String toString() {
 765             return getKey() + "=" + getValue();
 766         }
 767     }
 768 
 769     private abstract class HashIterator<T> implements Iterator<T> {
 770         private int index;
 771         private Entry<K,V> entry;
 772         private Entry<K,V> lastReturned;
 773         private int expectedModCount = modCount;
 774 
 775         /**
 776          * Strong reference needed to avoid disappearance of key
 777          * between hasNext and next
 778          */
 779         private Object nextKey;
 780 
 781         /**
 782          * Strong reference needed to avoid disappearance of key
 783          * between nextEntry() and any use of the entry
 784          */
 785         private Object currentKey;
 786 
 787         HashIterator() {
 788             index = isEmpty() ? 0 : table.length;
 789         }
 790 
 791         public boolean hasNext() {
 792             Entry<K,V>[] t = table;
 793 
 794             while (nextKey == null) {
 795                 Entry<K,V> e = entry;
 796                 int i = index;
 797                 while (e == null && i > 0)
 798                     e = t[--i];
 799                 entry = e;
 800                 index = i;
 801                 if (e == null) {
 802                     currentKey = null;
 803                     return false;
 804                 }
 805                 nextKey = e.get(); // hold on to key in strong ref
 806                 if (nextKey == null)
 807                     entry = entry.next;
 808             }
 809             return true;
 810         }
 811 
 812         /** The common parts of next() across different types of iterators */
 813         protected Entry<K,V> nextEntry() {
 814             if (modCount != expectedModCount)
 815                 throw new ConcurrentModificationException();
 816             if (nextKey == null && !hasNext())
 817                 throw new NoSuchElementException();
 818 
 819             lastReturned = entry;
 820             entry = entry.next;
 821             currentKey = nextKey;
 822             nextKey = null;
 823             return lastReturned;
 824         }
 825 
 826         public void remove() {
 827             if (lastReturned == null)
 828                 throw new IllegalStateException();
 829             if (modCount != expectedModCount)
 830                 throw new ConcurrentModificationException();
 831 
 832             WeakHashMap.this.remove(currentKey);
 833             expectedModCount = modCount;
 834             lastReturned = null;
 835             currentKey = null;
 836         }
 837 
 838     }
 839 
 840     private class ValueIterator extends HashIterator<V> {
 841         public V next() {
 842             return nextEntry().value;
 843         }
 844     }
 845 
 846     private class KeyIterator extends HashIterator<K> {
 847         public K next() {
 848             return nextEntry().getKey();
 849         }
 850     }
 851 
 852     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 853         public Map.Entry<K,V> next() {
 854             return nextEntry();
 855         }
 856     }
 857 
 858     // Views
 859 
 860     private transient Set<Map.Entry<K,V>> entrySet;
 861 
 862     /**
 863      * Returns a {@link Set} view of the keys contained in this map.
 864      * The set is backed by the map, so changes to the map are
 865      * reflected in the set, and vice-versa.  If the map is modified
 866      * while an iteration over the set is in progress (except through
 867      * the iterator's own {@code remove} operation), the results of
 868      * the iteration are undefined.  The set supports element removal,
 869      * which removes the corresponding mapping from the map, via the
 870      * {@code Iterator.remove}, {@code Set.remove},
 871      * {@code removeAll}, {@code retainAll}, and {@code clear}
 872      * operations.  It does not support the {@code add} or {@code addAll}
 873      * operations.
 874      */
 875     public Set<K> keySet() {
 876         Set<K> ks = keySet;
 877         if (ks == null) {
 878             ks = new KeySet();
 879             keySet = ks;
 880         }
 881         return ks;
 882     }
 883 
 884     private class KeySet extends AbstractSet<K> {
 885         public Iterator<K> iterator() {
 886             return new KeyIterator();
 887         }
 888 
 889         public int size() {
 890             return WeakHashMap.this.size();
 891         }
 892 
 893         public boolean contains(Object o) {
 894             return containsKey(o);
 895         }
 896 
 897         public boolean remove(Object o) {
 898             if (containsKey(o)) {
 899                 WeakHashMap.this.remove(o);
 900                 return true;
 901             }
 902             else
 903                 return false;
 904         }
 905 
 906         public void clear() {
 907             WeakHashMap.this.clear();
 908         }
 909 
 910         public Spliterator<K> spliterator() {
 911             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 912         }
 913     }
 914 
 915     /**
 916      * Returns a {@link Collection} view of the values contained in this map.
 917      * The collection is backed by the map, so changes to the map are
 918      * reflected in the collection, and vice-versa.  If the map is
 919      * modified while an iteration over the collection is in progress
 920      * (except through the iterator's own {@code remove} operation),
 921      * the results of the iteration are undefined.  The collection
 922      * supports element removal, which removes the corresponding
 923      * mapping from the map, via the {@code Iterator.remove},
 924      * {@code Collection.remove}, {@code removeAll},
 925      * {@code retainAll} and {@code clear} operations.  It does not
 926      * support the {@code add} or {@code addAll} operations.
 927      */
 928     public Collection<V> values() {
 929         Collection<V> vs = values;
 930         if (vs == null) {
 931             vs = new Values();
 932             values = vs;
 933         }
 934         return vs;
 935     }
 936 
 937     private class Values extends AbstractCollection<V> {
 938         public Iterator<V> iterator() {
 939             return new ValueIterator();
 940         }
 941 
 942         public int size() {
 943             return WeakHashMap.this.size();
 944         }
 945 
 946         public boolean contains(Object o) {
 947             return containsValue(o);
 948         }
 949 
 950         public void clear() {
 951             WeakHashMap.this.clear();
 952         }
 953 
 954         public Spliterator<V> spliterator() {
 955             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 956         }
 957     }
 958 
 959     /**
 960      * Returns a {@link Set} view of the mappings contained in this map.
 961      * The set is backed by the map, so changes to the map are
 962      * reflected in the set, and vice-versa.  If the map is modified
 963      * while an iteration over the set is in progress (except through
 964      * the iterator's own {@code remove} operation, or through the
 965      * {@code setValue} operation on a map entry returned by the
 966      * iterator) the results of the iteration are undefined.  The set
 967      * supports element removal, which removes the corresponding
 968      * mapping from the map, via the {@code Iterator.remove},
 969      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 970      * {@code clear} operations.  It does not support the
 971      * {@code add} or {@code addAll} operations.
 972      */
 973     public Set<Map.Entry<K,V>> entrySet() {
 974         Set<Map.Entry<K,V>> es = entrySet;
 975         return es != null ? es : (entrySet = new EntrySet());
 976     }
 977 
 978     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 979         public Iterator<Map.Entry<K,V>> iterator() {
 980             return new EntryIterator();
 981         }
 982 
 983         public boolean contains(Object o) {
 984             return o instanceof Map.Entry<?, ?> e
 985                     && getEntry(e.getKey()) != null
 986                     && getEntry(e.getKey()).equals(e);
 987         }
 988 
 989         public boolean remove(Object o) {
 990             return removeMapping(o);
 991         }
 992 
 993         public int size() {
 994             return WeakHashMap.this.size();
 995         }
 996 
 997         public void clear() {
 998             WeakHashMap.this.clear();
 999         }
1000 
1001         private List<Map.Entry<K,V>> deepCopy() {
1002             List<Map.Entry<K,V>> list = new ArrayList<>(size());
1003             for (Map.Entry<K,V> e : this)
1004                 list.add(new AbstractMap.SimpleEntry<>(e));
1005             return list;
1006         }
1007 
1008         public Object[] toArray() {
1009             return deepCopy().toArray();
1010         }
1011 
1012         public <T> T[] toArray(T[] a) {
1013             return deepCopy().toArray(a);
1014         }
1015 
1016         public Spliterator<Map.Entry<K,V>> spliterator() {
1017             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1018         }
1019     }
1020 
1021     @SuppressWarnings("unchecked")
1022     @Override
1023     public void forEach(BiConsumer<? super K, ? super V> action) {
1024         Objects.requireNonNull(action);
1025         int expectedModCount = modCount;
1026 
1027         Entry<K, V>[] tab = getTable();
1028         for (Entry<K, V> entry : tab) {
1029             while (entry != null) {
1030                 Object key = entry.get();
1031                 if (key != null) {
1032                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1033                 }
1034                 entry = entry.next;
1035 
1036                 if (expectedModCount != modCount) {
1037                     throw new ConcurrentModificationException();
1038                 }
1039             }
1040         }
1041     }
1042 
1043     @SuppressWarnings("unchecked")
1044     @Override
1045     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1046         Objects.requireNonNull(function);
1047         int expectedModCount = modCount;
1048 
1049         Entry<K, V>[] tab = getTable();
1050         for (Entry<K, V> entry : tab) {
1051             while (entry != null) {
1052                 Object key = entry.get();
1053                 if (key != null) {
1054                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1055                 }
1056                 entry = entry.next;
1057 
1058                 if (expectedModCount != modCount) {
1059                     throw new ConcurrentModificationException();
1060                 }
1061             }
1062         }
1063     }
1064 
1065     /**
1066      * Similar form as other hash Spliterators, but skips dead
1067      * elements.
1068      */
1069     static class WeakHashMapSpliterator<K,V> {
1070         final WeakHashMap<K,V> map;
1071         WeakHashMap.Entry<K,V> current; // current node
1072         int index;             // current index, modified on advance/split
1073         int fence;             // -1 until first use; then one past last index
1074         int est;               // size estimate
1075         int expectedModCount;  // for comodification checks
1076 
1077         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1078                                int fence, int est,
1079                                int expectedModCount) {
1080             this.map = m;
1081             this.index = origin;
1082             this.fence = fence;
1083             this.est = est;
1084             this.expectedModCount = expectedModCount;
1085         }
1086 
1087         final int getFence() { // initialize fence and size on first use
1088             int hi;
1089             if ((hi = fence) < 0) {
1090                 WeakHashMap<K,V> m = map;
1091                 est = m.size();
1092                 expectedModCount = m.modCount;
1093                 hi = fence = m.table.length;
1094             }
1095             return hi;
1096         }
1097 
1098         public final long estimateSize() {
1099             getFence(); // force init
1100             return (long) est;
1101         }
1102     }
1103 
1104     static final class KeySpliterator<K,V>
1105         extends WeakHashMapSpliterator<K,V>
1106         implements Spliterator<K> {
1107         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1108                        int expectedModCount) {
1109             super(m, origin, fence, est, expectedModCount);
1110         }
1111 
1112         public KeySpliterator<K,V> trySplit() {
1113             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1114             return (lo >= mid) ? null :
1115                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1116                                      expectedModCount);
1117         }
1118 
1119         public void forEachRemaining(Consumer<? super K> action) {
1120             int i, hi, mc;
1121             if (action == null)
1122                 throw new NullPointerException();
1123             WeakHashMap<K,V> m = map;
1124             WeakHashMap.Entry<K,V>[] tab = m.table;
1125             if ((hi = fence) < 0) {
1126                 mc = expectedModCount = m.modCount;
1127                 hi = fence = tab.length;
1128             }
1129             else
1130                 mc = expectedModCount;
1131             if (tab.length >= hi && (i = index) >= 0 &&
1132                 (i < (index = hi) || current != null)) {
1133                 WeakHashMap.Entry<K,V> p = current;
1134                 current = null; // exhaust
1135                 do {
1136                     if (p == null)
1137                         p = tab[i++];
1138                     else {
1139                         Object x = p.get();
1140                         p = p.next;
1141                         if (x != null) {
1142                             @SuppressWarnings("unchecked") K k =
1143                                 (K) WeakHashMap.unmaskNull(x);
1144                             action.accept(k);
1145                         }
1146                     }
1147                 } while (p != null || i < hi);
1148             }
1149             if (m.modCount != mc)
1150                 throw new ConcurrentModificationException();
1151         }
1152 
1153         public boolean tryAdvance(Consumer<? super K> action) {
1154             int hi;
1155             if (action == null)
1156                 throw new NullPointerException();
1157             WeakHashMap.Entry<K,V>[] tab = map.table;
1158             if (tab.length >= (hi = getFence()) && index >= 0) {
1159                 while (current != null || index < hi) {
1160                     if (current == null)
1161                         current = tab[index++];
1162                     else {
1163                         Object x = current.get();
1164                         current = current.next;
1165                         if (x != null) {
1166                             @SuppressWarnings("unchecked") K k =
1167                                 (K) WeakHashMap.unmaskNull(x);
1168                             action.accept(k);
1169                             if (map.modCount != expectedModCount)
1170                                 throw new ConcurrentModificationException();
1171                             return true;
1172                         }
1173                     }
1174                 }
1175             }
1176             return false;
1177         }
1178 
1179         public int characteristics() {
1180             return Spliterator.DISTINCT;
1181         }
1182     }
1183 
1184     static final class ValueSpliterator<K,V>
1185         extends WeakHashMapSpliterator<K,V>
1186         implements Spliterator<V> {
1187         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1188                          int expectedModCount) {
1189             super(m, origin, fence, est, expectedModCount);
1190         }
1191 
1192         public ValueSpliterator<K,V> trySplit() {
1193             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1194             return (lo >= mid) ? null :
1195                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1196                                        expectedModCount);
1197         }
1198 
1199         public void forEachRemaining(Consumer<? super V> action) {
1200             int i, hi, mc;
1201             if (action == null)
1202                 throw new NullPointerException();
1203             WeakHashMap<K,V> m = map;
1204             WeakHashMap.Entry<K,V>[] tab = m.table;
1205             if ((hi = fence) < 0) {
1206                 mc = expectedModCount = m.modCount;
1207                 hi = fence = tab.length;
1208             }
1209             else
1210                 mc = expectedModCount;
1211             if (tab.length >= hi && (i = index) >= 0 &&
1212                 (i < (index = hi) || current != null)) {
1213                 WeakHashMap.Entry<K,V> p = current;
1214                 current = null; // exhaust
1215                 do {
1216                     if (p == null)
1217                         p = tab[i++];
1218                     else {
1219                         Object x = p.get();
1220                         V v = p.value;
1221                         p = p.next;
1222                         if (x != null)
1223                             action.accept(v);
1224                     }
1225                 } while (p != null || i < hi);
1226             }
1227             if (m.modCount != mc)
1228                 throw new ConcurrentModificationException();
1229         }
1230 
1231         public boolean tryAdvance(Consumer<? super V> action) {
1232             int hi;
1233             if (action == null)
1234                 throw new NullPointerException();
1235             WeakHashMap.Entry<K,V>[] tab = map.table;
1236             if (tab.length >= (hi = getFence()) && index >= 0) {
1237                 while (current != null || index < hi) {
1238                     if (current == null)
1239                         current = tab[index++];
1240                     else {
1241                         Object x = current.get();
1242                         V v = current.value;
1243                         current = current.next;
1244                         if (x != null) {
1245                             action.accept(v);
1246                             if (map.modCount != expectedModCount)
1247                                 throw new ConcurrentModificationException();
1248                             return true;
1249                         }
1250                     }
1251                 }
1252             }
1253             return false;
1254         }
1255 
1256         public int characteristics() {
1257             return 0;
1258         }
1259     }
1260 
1261     static final class EntrySpliterator<K,V>
1262         extends WeakHashMapSpliterator<K,V>
1263         implements Spliterator<Map.Entry<K,V>> {
1264         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1265                        int expectedModCount) {
1266             super(m, origin, fence, est, expectedModCount);
1267         }
1268 
1269         public EntrySpliterator<K,V> trySplit() {
1270             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1271             return (lo >= mid) ? null :
1272                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1273                                        expectedModCount);
1274         }
1275 
1276 
1277         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1278             int i, hi, mc;
1279             if (action == null)
1280                 throw new NullPointerException();
1281             WeakHashMap<K,V> m = map;
1282             WeakHashMap.Entry<K,V>[] tab = m.table;
1283             if ((hi = fence) < 0) {
1284                 mc = expectedModCount = m.modCount;
1285                 hi = fence = tab.length;
1286             }
1287             else
1288                 mc = expectedModCount;
1289             if (tab.length >= hi && (i = index) >= 0 &&
1290                 (i < (index = hi) || current != null)) {
1291                 WeakHashMap.Entry<K,V> p = current;
1292                 current = null; // exhaust
1293                 do {
1294                     if (p == null)
1295                         p = tab[i++];
1296                     else {
1297                         Object x = p.get();
1298                         V v = p.value;
1299                         p = p.next;
1300                         if (x != null) {
1301                             @SuppressWarnings("unchecked") K k =
1302                                 (K) WeakHashMap.unmaskNull(x);
1303                             action.accept
1304                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1305                         }
1306                     }
1307                 } while (p != null || i < hi);
1308             }
1309             if (m.modCount != mc)
1310                 throw new ConcurrentModificationException();
1311         }
1312 
1313         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1314             int hi;
1315             if (action == null)
1316                 throw new NullPointerException();
1317             WeakHashMap.Entry<K,V>[] tab = map.table;
1318             if (tab.length >= (hi = getFence()) && index >= 0) {
1319                 while (current != null || index < hi) {
1320                     if (current == null)
1321                         current = tab[index++];
1322                     else {
1323                         Object x = current.get();
1324                         V v = current.value;
1325                         current = current.next;
1326                         if (x != null) {
1327                             @SuppressWarnings("unchecked") K k =
1328                                 (K) WeakHashMap.unmaskNull(x);
1329                             action.accept
1330                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1331                             if (map.modCount != expectedModCount)
1332                                 throw new ConcurrentModificationException();
1333                             return true;
1334                         }
1335                     }
1336                 }
1337             }
1338             return false;
1339         }
1340 
1341         public int characteristics() {
1342             return Spliterator.DISTINCT;
1343         }
1344     }
1345 
1346     /**
1347      * Creates a new, empty WeakHashMap suitable for the expected number of mappings.
1348      * The returned map uses the default load factor of 0.75, and its initial capacity is
1349      * generally large enough so that the expected number of mappings can be added
1350      * without resizing the map.
1351      *
1352      * @param numMappings the expected number of mappings
1353      * @param <K>         the type of keys maintained by the new map
1354      * @param <V>         the type of mapped values
1355      * @return the newly created map
1356      * @throws IllegalArgumentException if numMappings is negative
1357      * @since 19
1358      */
1359     public static <K, V> WeakHashMap<K, V> newWeakHashMap(int numMappings) {
1360         if (numMappings < 0) {
1361             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
1362         }
1363         return new WeakHashMap<>(HashMap.calculateHashMapCapacity(numMappings));
1364     }
1365 
1366 }