1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.ReferenceQueue;
  29 import java.lang.ref.WeakReference;
  30 import java.util.function.BiConsumer;
  31 import java.util.function.BiFunction;
  32 import java.util.function.Consumer;
  33 
  34 
  35 /**
  36  * Hash table based implementation of the {@code Map} interface, with
  37  * <em>weak keys</em>.
  38  * An entry in a {@code WeakHashMap} will automatically be removed when
  39  * its key is no longer in ordinary use.  More precisely, the presence of a
  40  * mapping for a given key will not prevent the key from being discarded by the
  41  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  42  * When a key has been discarded its entry is effectively removed from the map,
  43  * so this class behaves somewhat differently from other {@code Map}
  44  * implementations.
  45  *
  46  * <p> Both null values and the null key are supported. This class has
  47  * performance characteristics similar to those of the {@code HashMap}
  48  * class, and has the same efficiency parameters of <em>initial capacity</em>
  49  * and <em>load factor</em>.
  50  *
  51  * <p> Like most collection classes, this class is not synchronized.
  52  * A synchronized {@code WeakHashMap} may be constructed using the
  53  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  54  * method.
  55  *
  56  * <p> This class is intended primarily for use with key objects whose
  57  * {@code equals} methods test for object identity using the
  58  * {@code ==} operator.  Once such a key is discarded it can never be
  59  * recreated, so it is impossible to do a lookup of that key in a
  60  * {@code WeakHashMap} at some later time and be surprised that its entry
  61  * has been removed.  This class will work perfectly well with key objects
  62  * whose {@code equals} methods are not based upon object identity, such
  63  * as {@code String} instances.  With such recreatable key objects,
  64  * however, the automatic removal of {@code WeakHashMap} entries whose
  65  * keys have been discarded may prove to be confusing.
  66  *
  67  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  68  * the actions of the garbage collector, so several familiar (though not
  69  * required) {@code Map} invariants do not hold for this class.  Because
  70  * the garbage collector may discard keys at any time, a
  71  * {@code WeakHashMap} may behave as though an unknown thread is silently
  72  * removing entries.  In particular, even if you synchronize on a
  73  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  74  * is possible for the {@code size} method to return smaller values over
  75  * time, for the {@code isEmpty} method to return {@code false} and
  76  * then {@code true}, for the {@code containsKey} method to return
  77  * {@code true} and later {@code false} for a given key, for the
  78  * {@code get} method to return a value for a given key but later return
  79  * {@code null}, for the {@code put} method to return
  80  * {@code null} and the {@code remove} method to return
  81  * {@code false} for a key that previously appeared to be in the map, and
  82  * for successive examinations of the key set, the value collection, and
  83  * the entry set to yield successively smaller numbers of elements.
  84  *
  85  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
  86  * the referent of a weak reference.  Therefore a key will automatically be
  87  * removed only after the weak references to it, both inside and outside of the
  88  * map, have been cleared by the garbage collector.
  89  *
  90  * <p> <strong>Implementation note:</strong> The value objects in a
  91  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
  92  * should be taken to ensure that value objects do not strongly refer to their
  93  * own keys, either directly or indirectly, since that will prevent the keys
  94  * from being discarded.  Note that a value object may refer indirectly to its
  95  * key via the {@code WeakHashMap} itself; that is, a value object may
  96  * strongly refer to some other key object whose associated value object, in
  97  * turn, strongly refers to the key of the first value object.  If the values
  98  * in the map do not rely on the map holding strong references to them, one way
  99  * to deal with this is to wrap values themselves within
 100  * {@code WeakReferences} before
 101  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 102  * and then unwrapping upon each {@code get}.
 103  *
 104  * <p>The iterators returned by the {@code iterator} method of the collections
 105  * returned by all of this class's "collection view methods" are
 106  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 107  * iterator is created, in any way except through the iterator's own
 108  * {@code remove} method, the iterator will throw a {@link
 109  * ConcurrentModificationException}.  Thus, in the face of concurrent
 110  * modification, the iterator fails quickly and cleanly, rather than risking
 111  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 112  *
 113  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 114  * as it is, generally speaking, impossible to make any hard guarantees in the
 115  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 116  * throw {@code ConcurrentModificationException} on a best-effort basis.
 117  * Therefore, it would be wrong to write a program that depended on this
 118  * exception for its correctness:  <i>the fail-fast behavior of iterators
 119  * should be used only to detect bugs.</i>
 120  *
 121  * <p>This class is a member of the
 122  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 123  * Java Collections Framework</a>.
 124  *
 125  * @apiNote
 126  * <div class="preview-block">
 127  *      <div class="preview-comment">
 128  *          Objects that are {@linkplain Class#isValue() value objects} do not have identity
 129  *          and can not be used as keys in a {@code WeakHashMap}. {@linkplain java.lang.ref.Reference References}
 130  *          such as {@linkplain WeakReference WeakReference} used by {@code WeakhashMap}
 131  *          to hold the key cannot refer to a value object.
 132  *          Methods such as {@linkplain #get get} or {@linkplain #containsKey containsKey}
 133  *          will always return {@code null} or {@code false} respectively.
 134  *          The methods such as {@linkplain #put put}, {@linkplain #putAll putAll},
 135  *          {@linkplain #compute(Object, BiFunction) compute}, and
 136  *          {@linkplain #computeIfAbsent(Object, Function) computeIfAbsent} or any method putting
 137  *          a value object, as a key, throw {@link IdentityException}.
 138  *      </div>
 139  * </div>
 140  *
 141  * @param <K> the type of keys maintained by this map
 142  * @param <V> the type of mapped values
 143  *
 144  * @author      Doug Lea
 145  * @author      Josh Bloch
 146  * @author      Mark Reinhold
 147  * @since       1.2
 148  * @see         java.util.HashMap
 149  * @see         java.lang.ref.WeakReference
 150  */
 151 public class WeakHashMap<K,V>
 152     extends AbstractMap<K,V>
 153     implements Map<K,V> {
 154 
 155     /**
 156      * The default initial capacity -- MUST be a power of two.
 157      */
 158     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 159 
 160     /**
 161      * The maximum capacity, used if a higher value is implicitly specified
 162      * by either of the constructors with arguments.
 163      * MUST be a power of two <= 1<<30.
 164      */
 165     private static final int MAXIMUM_CAPACITY = 1 << 30;
 166 
 167     /**
 168      * The load factor used when none specified in constructor.
 169      */
 170     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 171 
 172     /**
 173      * The table, resized as necessary. Length MUST Always be a power of two.
 174      */
 175     Entry<K,V>[] table;
 176 
 177     /**
 178      * The number of key-value mappings contained in this weak hash map.
 179      */
 180     private int size;
 181 
 182     /**
 183      * The next size value at which to resize (capacity * load factor).
 184      */
 185     private int threshold;
 186 
 187     /**
 188      * The load factor for the hash table.
 189      */
 190     private final float loadFactor;
 191 
 192     /**
 193      * Reference queue for cleared WeakEntries
 194      */
 195     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 196 
 197     /**
 198      * The number of times this WeakHashMap has been structurally modified.
 199      * Structural modifications are those that change the number of
 200      * mappings in the map or otherwise modify its internal structure
 201      * (e.g., rehash).  This field is used to make iterators on
 202      * Collection-views of the map fail-fast.
 203      *
 204      * @see ConcurrentModificationException
 205      */
 206     int modCount;
 207 
 208     @SuppressWarnings("unchecked")
 209     private Entry<K,V>[] newTable(int n) {
 210         return (Entry<K,V>[]) new Entry<?,?>[n];
 211     }
 212 
 213     /**
 214      * Constructs a new, empty {@code WeakHashMap} with the given initial
 215      * capacity and the given load factor.
 216      *
 217      * @apiNote
 218      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 219      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 220      *
 221      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 222      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 223      * @throws IllegalArgumentException if the initial capacity is negative,
 224      *         or if the load factor is nonpositive.
 225      */
 226     public WeakHashMap(int initialCapacity, float loadFactor) {
 227         if (initialCapacity < 0)
 228             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 229                                                initialCapacity);
 230         if (initialCapacity > MAXIMUM_CAPACITY)
 231             initialCapacity = MAXIMUM_CAPACITY;
 232 
 233         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 234             throw new IllegalArgumentException("Illegal Load factor: "+
 235                                                loadFactor);
 236         int capacity = HashMap.tableSizeFor(initialCapacity);
 237         table = newTable(capacity);
 238         this.loadFactor = loadFactor;
 239         threshold = (int)(capacity * loadFactor);
 240     }
 241 
 242     /**
 243      * Constructs a new, empty {@code WeakHashMap} with the given initial
 244      * capacity and the default load factor (0.75).
 245      *
 246      * @apiNote
 247      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 248      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 249      *
 250      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 251      * @throws IllegalArgumentException if the initial capacity is negative
 252      */
 253     public WeakHashMap(int initialCapacity) {
 254         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 255     }
 256 
 257     /**
 258      * Constructs a new, empty {@code WeakHashMap} with the default initial
 259      * capacity (16) and load factor (0.75).
 260      */
 261     public WeakHashMap() {
 262         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 263     }
 264 
 265     /**
 266      * Constructs a new {@code WeakHashMap} with the same mappings as the
 267      * specified map.  The {@code WeakHashMap} is created with the default
 268      * load factor (0.75) and an initial capacity sufficient to hold the
 269      * mappings in the specified map.
 270      *
 271      * @param   m the map whose mappings are to be placed in this map
 272      * @throws  NullPointerException if the specified map is null
 273      * @since   1.3
 274      */
 275     @SuppressWarnings("this-escape")
 276     public WeakHashMap(Map<? extends K, ? extends V> m) {
 277         this(Math.max((int) Math.ceil(m.size() / (double)DEFAULT_LOAD_FACTOR),
 278                 DEFAULT_INITIAL_CAPACITY),
 279              DEFAULT_LOAD_FACTOR);
 280         putAll(m);
 281     }
 282 
 283     // internal utilities
 284 
 285     /**
 286      * Value representing null keys inside tables.
 287      */
 288     private static final Object NULL_KEY = new Object();
 289 
 290     /**
 291      * Use NULL_KEY for key if it is null.
 292      */
 293     private static Object maskNull(Object key) {
 294         return (key == null) ? NULL_KEY : key;
 295     }
 296 
 297     /**
 298      * Returns internal representation of null key back to caller as null.
 299      */
 300     static Object unmaskNull(Object key) {
 301         return (key == NULL_KEY) ? null : key;
 302     }
 303 
 304     /**
 305      * Checks for equality of non-null reference x and possibly-null y.  By
 306      * default uses Object.equals.
 307      * The key may be a value object, but it will never be equal to the referent
 308      * so does not need a separate Objects.hasIdentity check.
 309      */
 310     private boolean matchesKey(Entry<K,V> e, Object key) {
 311         // check if the given entry refers to the given key without
 312         // keeping a strong reference to the entry's referent
 313         if (e.refersTo(key)) return true;
 314 
 315         // then check for equality if the referent is not cleared
 316         Object k = e.get();
 317         return k != null && key.equals(k);
 318     }
 319 
 320     /**
 321      * Retrieve object hash code and applies a supplemental hash function to the
 322      * result hash, which defends against poor quality hash functions.  This is
 323      * critical because HashMap uses power-of-two length hash tables, that
 324      * otherwise encounter collisions for hashCodes that do not differ
 325      * in lower bits.
 326      */
 327     final int hash(Object k) {
 328         int h = k.hashCode();
 329 
 330         // This function ensures that hashCodes that differ only by
 331         // constant multiples at each bit position have a bounded
 332         // number of collisions (approximately 8 at default load factor).
 333         h ^= (h >>> 20) ^ (h >>> 12);
 334         return h ^ (h >>> 7) ^ (h >>> 4);
 335     }
 336 
 337     /**
 338      * Returns index for hash code h.
 339      */
 340     private static int indexFor(int h, int length) {
 341         return h & (length-1);
 342     }
 343 
 344     /**
 345      * Expunges stale entries from the table.
 346      */
 347     private void expungeStaleEntries() {
 348         for (Object x; (x = queue.poll()) != null; ) {
 349             synchronized (queue) {
 350                 @SuppressWarnings("unchecked")
 351                     Entry<K,V> e = (Entry<K,V>) x;
 352                 int i = indexFor(e.hash, table.length);
 353 
 354                 Entry<K,V> prev = table[i];
 355                 Entry<K,V> p = prev;
 356                 while (p != null) {
 357                     Entry<K,V> next = p.next;
 358                     if (p == e) {
 359                         if (prev == e)
 360                             table[i] = next;
 361                         else
 362                             prev.next = next;
 363                         // Must not null out e.next;
 364                         // stale entries may be in use by a HashIterator
 365                         e.value = null; // Help GC
 366                         size--;
 367                         break;
 368                     }
 369                     prev = p;
 370                     p = next;
 371                 }
 372             }
 373         }
 374     }
 375 
 376     /**
 377      * Returns the table after first expunging stale entries.
 378      */
 379     private Entry<K,V>[] getTable() {
 380         expungeStaleEntries();
 381         return table;
 382     }
 383 
 384     /**
 385      * Returns the number of key-value mappings in this map.
 386      * This result is a snapshot, and may not reflect unprocessed
 387      * entries that will be removed before next attempted access
 388      * because they are no longer referenced.
 389      */
 390     public int size() {
 391         if (size == 0)
 392             return 0;
 393         expungeStaleEntries();
 394         return size;
 395     }
 396 
 397     /**
 398      * Returns {@code true} if this map contains no key-value mappings.
 399      * This result is a snapshot, and may not reflect unprocessed
 400      * entries that will be removed before next attempted access
 401      * because they are no longer referenced.
 402      */
 403     public boolean isEmpty() {
 404         return size() == 0;
 405     }
 406 
 407     /**
 408      * Returns the value to which the specified key is mapped,
 409      * or {@code null} if this map contains no mapping for the key.
 410      *
 411      * <p>More formally, if this map contains a mapping from a key
 412      * {@code k} to a value {@code v} such that
 413      * {@code Objects.equals(key, k)},
 414      * then this method returns {@code v}; otherwise
 415      * it returns {@code null}.  (There can be at most one such mapping.)
 416      *
 417      * <p>A return value of {@code null} does not <i>necessarily</i>
 418      * indicate that the map contains no mapping for the key; it's also
 419      * possible that the map explicitly maps the key to {@code null}.
 420      * The {@link #containsKey containsKey} operation may be used to
 421      * distinguish these two cases.
 422      *
 423      * @see #put(Object, Object)
 424      */
 425     public V get(Object key) {
 426         Object k = maskNull(key);
 427         int h = hash(k);
 428         Entry<K,V>[] tab = getTable();
 429         int index = indexFor(h, tab.length);
 430         Entry<K,V> e = tab[index];
 431         while (e != null) {
 432             if (e.hash == h && matchesKey(e, k))
 433                 return e.value;
 434             e = e.next;
 435         }
 436         return null;
 437     }
 438 
 439     /**
 440      * Returns {@code true} if this map contains a mapping for the
 441      * specified key.
 442      *
 443      * @param  key   The key whose presence in this map is to be tested
 444      * @return {@code true} if there is a mapping for {@code key};
 445      *         {@code false} otherwise
 446      */
 447     public boolean containsKey(Object key) {
 448         return getEntry(key) != null;
 449     }
 450 
 451     /**
 452      * Returns the entry associated with the specified key in this map.
 453      * Returns null if the map contains no mapping for this key.
 454      */
 455     Entry<K,V> getEntry(Object key) {
 456         Object k = maskNull(key);
 457         int h = hash(k);
 458         Entry<K,V>[] tab = getTable();
 459         int index = indexFor(h, tab.length);
 460         Entry<K,V> e = tab[index];
 461         while (e != null && !(e.hash == h && matchesKey(e, k)))
 462             e = e.next;
 463         return e;
 464     }
 465 
 466     /**
 467      * Associates the specified value with the specified key in this map.
 468      * If the map previously contained a mapping for this key, the old
 469      * value is replaced.
 470      *
 471      * @param key key with which the specified value is to be associated.
 472      * @param value value to be associated with the specified key.
 473      * @return the previous value associated with {@code key}, or
 474      *         {@code null} if there was no mapping for {@code key}.
 475      *         (A {@code null} return can also indicate that the map
 476      *         previously associated {@code null} with {@code key}.)
 477      * @throws IdentityException if {@code key} is a value object
 478      */
 479     public V put(K key, V value) {
 480         Object k = maskNull(key);
 481         Objects.requireIdentity(k);
 482         int h = hash(k);
 483         Entry<K,V>[] tab = getTable();
 484         int i = indexFor(h, tab.length);
 485 
 486         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 487             if (h == e.hash && matchesKey(e, k)) {
 488                 V oldValue = e.value;
 489                 if (value != oldValue)
 490                     e.value = value;
 491                 return oldValue;
 492             }
 493         }
 494 
 495         modCount++;
 496         Entry<K,V> e = tab[i];
 497         tab[i] = new Entry<>(k, value, queue, h, e);
 498         if (++size > threshold)
 499             resize(tab.length * 2);
 500         return null;
 501     }
 502 
 503     /**
 504      * Rehashes the contents of this map into a new array with a
 505      * larger capacity.  This method is called automatically when the
 506      * number of keys in this map reaches its threshold.
 507      *
 508      * If current capacity is MAXIMUM_CAPACITY, this method does not
 509      * resize the map, but sets threshold to Integer.MAX_VALUE.
 510      * This has the effect of preventing future calls.
 511      *
 512      * @param newCapacity the new capacity, MUST be a power of two;
 513      *        must be greater than current capacity unless current
 514      *        capacity is MAXIMUM_CAPACITY (in which case value
 515      *        is irrelevant).
 516      */
 517     void resize(int newCapacity) {
 518         Entry<K,V>[] oldTable = getTable();
 519         int oldCapacity = oldTable.length;
 520         if (oldCapacity == MAXIMUM_CAPACITY) {
 521             threshold = Integer.MAX_VALUE;
 522             return;
 523         }
 524 
 525         Entry<K,V>[] newTable = newTable(newCapacity);
 526         transfer(oldTable, newTable);
 527         table = newTable;
 528 
 529         /*
 530          * If ignoring null elements and processing ref queue caused massive
 531          * shrinkage, then restore old table.  This should be rare, but avoids
 532          * unbounded expansion of garbage-filled tables.
 533          */
 534         if (size >= threshold / 2) {
 535             threshold = (int)(newCapacity * loadFactor);
 536         } else {
 537             expungeStaleEntries();
 538             transfer(newTable, oldTable);
 539             table = oldTable;
 540         }
 541     }
 542 
 543     /** Transfers all entries from src to dest tables */
 544     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 545         for (int j = 0; j < src.length; ++j) {
 546             Entry<K,V> e = src[j];
 547             src[j] = null;
 548             while (e != null) {
 549                 Entry<K,V> next = e.next;
 550                 if (e.refersTo(null)) {
 551                     e.next = null;  // Help GC
 552                     e.value = null; //  "   "
 553                     size--;
 554                 } else {
 555                     int i = indexFor(e.hash, dest.length);
 556                     e.next = dest[i];
 557                     dest[i] = e;
 558                 }
 559                 e = next;
 560             }
 561         }
 562     }
 563 
 564     /**
 565      * Copies all of the mappings from the specified map to this map.
 566      * These mappings will replace any mappings that this map had for any
 567      * of the keys currently in the specified map.
 568      *
 569      * @apiNote If the specified map contains keys that are {@linkplain Objects#isValueObject value objects}
 570      * an {@linkplain IdentityException } is thrown when the first value object key is encountered.
 571      * Zero or more mappings may have already been copied to this map.
 572      *
 573      * @param m mappings to be stored in this map.
 574      * @throws  NullPointerException if the specified map is null.
 575      * @throws  IdentityException if any of the {@code keys} is a value object
 576      */
 577     public void putAll(Map<? extends K, ? extends V> m) {
 578         int numKeysToBeAdded = m.size();
 579         if (numKeysToBeAdded == 0)
 580             return;
 581 
 582         /*
 583          * Expand the map if the map if the number of mappings to be added
 584          * is greater than or equal to threshold.  This is conservative; the
 585          * obvious condition is (m.size() + size) >= threshold, but this
 586          * condition could result in a map with twice the appropriate capacity,
 587          * if the keys to be added overlap with the keys already in this map.
 588          * By using the conservative calculation, we subject ourself
 589          * to at most one extra resize.
 590          */
 591         if (numKeysToBeAdded > threshold) {
 592             int targetCapacity = (int)Math.ceil(numKeysToBeAdded / (double)loadFactor);
 593             if (targetCapacity > MAXIMUM_CAPACITY)
 594                 targetCapacity = MAXIMUM_CAPACITY;
 595             int newCapacity = table.length;
 596             while (newCapacity < targetCapacity)
 597                 newCapacity <<= 1;
 598             if (newCapacity > table.length)
 599                 resize(newCapacity);
 600         }
 601 
 602         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 603             put(e.getKey(), e.getValue());
 604     }
 605 
 606     /**
 607      * Removes the mapping for a key from this weak hash map if it is present.
 608      * More formally, if this map contains a mapping from key {@code k} to
 609      * value {@code v} such that <code>(key==null ?  k==null :
 610      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 611      * at most one such mapping.)
 612      *
 613      * <p>Returns the value to which this map previously associated the key,
 614      * or {@code null} if the map contained no mapping for the key.  A
 615      * return value of {@code null} does not <i>necessarily</i> indicate
 616      * that the map contained no mapping for the key; it's also possible
 617      * that the map explicitly mapped the key to {@code null}.
 618      *
 619      * <p>The map will not contain a mapping for the specified key once the
 620      * call returns.
 621      *
 622      * @param key key whose mapping is to be removed from the map
 623      * @return the previous value associated with {@code key}, or
 624      *         {@code null} if there was no mapping for {@code key}
 625      */
 626     public V remove(Object key) {
 627         Object k = maskNull(key);
 628         int h = hash(k);
 629         Entry<K,V>[] tab = getTable();
 630         int i = indexFor(h, tab.length);
 631         Entry<K,V> prev = tab[i];
 632         Entry<K,V> e = prev;
 633 
 634         while (e != null) {
 635             Entry<K,V> next = e.next;
 636             if (h == e.hash && matchesKey(e, k)) {
 637                 modCount++;
 638                 size--;
 639                 if (prev == e)
 640                     tab[i] = next;
 641                 else
 642                     prev.next = next;
 643                 return e.value;
 644             }
 645             prev = e;
 646             e = next;
 647         }
 648 
 649         return null;
 650     }
 651 
 652     /** Special version of remove needed by Entry set */
 653     boolean removeMapping(Object o) {
 654         if (!(o instanceof Map.Entry<?, ?> entry))
 655             return false;
 656         Entry<K,V>[] tab = getTable();
 657         Object k = maskNull(entry.getKey());
 658         int h = hash(k);
 659         int i = indexFor(h, tab.length);
 660         Entry<K,V> prev = tab[i];
 661         Entry<K,V> e = prev;
 662 
 663         while (e != null) {
 664             Entry<K,V> next = e.next;
 665             if (h == e.hash && e.equals(entry)) {
 666                 modCount++;
 667                 size--;
 668                 if (prev == e)
 669                     tab[i] = next;
 670                 else
 671                     prev.next = next;
 672                 return true;
 673             }
 674             prev = e;
 675             e = next;
 676         }
 677 
 678         return false;
 679     }
 680 
 681     /**
 682      * Removes all of the mappings from this map.
 683      * The map will be empty after this call returns.
 684      */
 685     public void clear() {
 686         // clear out ref queue. We don't need to expunge entries
 687         // since table is getting cleared.
 688         while (queue.poll() != null)
 689             ;
 690 
 691         modCount++;
 692         Arrays.fill(table, null);
 693         size = 0;
 694 
 695         // Allocation of array may have caused GC, which may have caused
 696         // additional entries to go stale.  Removing these entries from the
 697         // reference queue will make them eligible for reclamation.
 698         while (queue.poll() != null)
 699             ;
 700     }
 701 
 702     /**
 703      * Returns {@code true} if this map maps one or more keys to the
 704      * specified value.
 705      *
 706      * @param value value whose presence in this map is to be tested
 707      * @return {@code true} if this map maps one or more keys to the
 708      *         specified value
 709      */
 710     public boolean containsValue(Object value) {
 711         if (value==null)
 712             return containsNullValue();
 713 
 714         Entry<K,V>[] tab = getTable();
 715         for (int i = tab.length; i-- > 0;)
 716             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 717                 if (value.equals(e.value))
 718                     return true;
 719         return false;
 720     }
 721 
 722     /**
 723      * Special-case code for containsValue with null argument
 724      */
 725     private boolean containsNullValue() {
 726         Entry<K,V>[] tab = getTable();
 727         for (int i = tab.length; i-- > 0;)
 728             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 729                 if (e.value==null)
 730                     return true;
 731         return false;
 732     }
 733 
 734     /**
 735      * The entries in this hash table extend WeakReference, using its main ref
 736      * field as the key.
 737      */
 738     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 739         V value;
 740         final int hash;
 741         Entry<K,V> next;
 742 
 743         /**
 744          * Creates new entry.
 745          */
 746         Entry(Object key, V value,
 747               ReferenceQueue<Object> queue,
 748               int hash, Entry<K,V> next) {
 749             super(key, queue);
 750             this.value = value;
 751             this.hash  = hash;
 752             this.next  = next;
 753         }
 754 
 755         @SuppressWarnings("unchecked")
 756         public K getKey() {
 757             return (K) WeakHashMap.unmaskNull(get());
 758         }
 759 
 760         public V getValue() {
 761             return value;
 762         }
 763 
 764         public V setValue(V newValue) {
 765             V oldValue = value;
 766             value = newValue;
 767             return oldValue;
 768         }
 769 
 770         public boolean equals(Object o) {
 771             if (!(o instanceof Map.Entry<?, ?> e))
 772                 return false;
 773             K k1 = getKey();
 774             Object k2 = e.getKey();
 775             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 776                 V v1 = getValue();
 777                 Object v2 = e.getValue();
 778                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 779                     return true;
 780             }
 781             return false;
 782         }
 783 
 784         public int hashCode() {
 785             K k = getKey();
 786             V v = getValue();
 787             return Objects.hashCode(k) ^ Objects.hashCode(v);
 788         }
 789 
 790         public String toString() {
 791             return getKey() + "=" + getValue();
 792         }
 793     }
 794 
 795     private abstract class HashIterator<T> implements Iterator<T> {
 796         private int index;
 797         private Entry<K,V> entry;
 798         private Entry<K,V> lastReturned;
 799         private int expectedModCount = modCount;
 800 
 801         /**
 802          * Strong reference needed to avoid disappearance of key
 803          * between hasNext and next
 804          */
 805         private Object nextKey;
 806 
 807         /**
 808          * Strong reference needed to avoid disappearance of key
 809          * between nextEntry() and any use of the entry
 810          */
 811         private Object currentKey;
 812 
 813         HashIterator() {
 814             index = isEmpty() ? 0 : table.length;
 815         }
 816 
 817         public boolean hasNext() {
 818             Entry<K,V>[] t = table;
 819 
 820             while (nextKey == null) {
 821                 Entry<K,V> e = entry;
 822                 int i = index;
 823                 while (e == null && i > 0)
 824                     e = t[--i];
 825                 entry = e;
 826                 index = i;
 827                 if (e == null) {
 828                     currentKey = null;
 829                     return false;
 830                 }
 831                 nextKey = e.get(); // hold on to key in strong ref
 832                 if (nextKey == null)
 833                     entry = entry.next;
 834             }
 835             return true;
 836         }
 837 
 838         /** The common parts of next() across different types of iterators */
 839         protected Entry<K,V> nextEntry() {
 840             if (modCount != expectedModCount)
 841                 throw new ConcurrentModificationException();
 842             if (nextKey == null && !hasNext())
 843                 throw new NoSuchElementException();
 844 
 845             lastReturned = entry;
 846             entry = entry.next;
 847             currentKey = nextKey;
 848             nextKey = null;
 849             return lastReturned;
 850         }
 851 
 852         public void remove() {
 853             if (lastReturned == null)
 854                 throw new IllegalStateException();
 855             if (modCount != expectedModCount)
 856                 throw new ConcurrentModificationException();
 857 
 858             WeakHashMap.this.remove(currentKey);
 859             expectedModCount = modCount;
 860             lastReturned = null;
 861             currentKey = null;
 862         }
 863 
 864     }
 865 
 866     private class ValueIterator extends HashIterator<V> {
 867         public V next() {
 868             return nextEntry().value;
 869         }
 870     }
 871 
 872     private class KeyIterator extends HashIterator<K> {
 873         public K next() {
 874             return nextEntry().getKey();
 875         }
 876     }
 877 
 878     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 879         public Map.Entry<K,V> next() {
 880             return nextEntry();
 881         }
 882     }
 883 
 884     // Views
 885 
 886     private transient Set<Map.Entry<K,V>> entrySet;
 887 
 888     /**
 889      * Returns a {@link Set} view of the keys contained in this map.
 890      * The set is backed by the map, so changes to the map are
 891      * reflected in the set, and vice-versa.  If the map is modified
 892      * while an iteration over the set is in progress (except through
 893      * the iterator's own {@code remove} operation), the results of
 894      * the iteration are undefined.  The set supports element removal,
 895      * which removes the corresponding mapping from the map, via the
 896      * {@code Iterator.remove}, {@code Set.remove},
 897      * {@code removeAll}, {@code retainAll}, and {@code clear}
 898      * operations.  It does not support the {@code add} or {@code addAll}
 899      * operations.
 900      */
 901     public Set<K> keySet() {
 902         Set<K> ks = keySet;
 903         if (ks == null) {
 904             ks = new KeySet();
 905             keySet = ks;
 906         }
 907         return ks;
 908     }
 909 
 910     private class KeySet extends AbstractSet<K> {
 911         public Iterator<K> iterator() {
 912             return new KeyIterator();
 913         }
 914 
 915         public int size() {
 916             return WeakHashMap.this.size();
 917         }
 918 
 919         public boolean contains(Object o) {
 920             return containsKey(o);
 921         }
 922 
 923         public boolean remove(Object o) {
 924             if (containsKey(o)) {
 925                 WeakHashMap.this.remove(o);
 926                 return true;
 927             }
 928             else
 929                 return false;
 930         }
 931 
 932         public void clear() {
 933             WeakHashMap.this.clear();
 934         }
 935 
 936         public Spliterator<K> spliterator() {
 937             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 938         }
 939     }
 940 
 941     /**
 942      * Returns a {@link Collection} view of the values contained in this map.
 943      * The collection is backed by the map, so changes to the map are
 944      * reflected in the collection, and vice-versa.  If the map is
 945      * modified while an iteration over the collection is in progress
 946      * (except through the iterator's own {@code remove} operation),
 947      * the results of the iteration are undefined.  The collection
 948      * supports element removal, which removes the corresponding
 949      * mapping from the map, via the {@code Iterator.remove},
 950      * {@code Collection.remove}, {@code removeAll},
 951      * {@code retainAll} and {@code clear} operations.  It does not
 952      * support the {@code add} or {@code addAll} operations.
 953      */
 954     public Collection<V> values() {
 955         Collection<V> vs = values;
 956         if (vs == null) {
 957             vs = new Values();
 958             values = vs;
 959         }
 960         return vs;
 961     }
 962 
 963     private class Values extends AbstractCollection<V> {
 964         public Iterator<V> iterator() {
 965             return new ValueIterator();
 966         }
 967 
 968         public int size() {
 969             return WeakHashMap.this.size();
 970         }
 971 
 972         public boolean contains(Object o) {
 973             return containsValue(o);
 974         }
 975 
 976         public void clear() {
 977             WeakHashMap.this.clear();
 978         }
 979 
 980         public Spliterator<V> spliterator() {
 981             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 982         }
 983     }
 984 
 985     /**
 986      * Returns a {@link Set} view of the mappings contained in this map.
 987      * The set is backed by the map, so changes to the map are
 988      * reflected in the set, and vice-versa.  If the map is modified
 989      * while an iteration over the set is in progress (except through
 990      * the iterator's own {@code remove} operation, or through the
 991      * {@code setValue} operation on a map entry returned by the
 992      * iterator) the results of the iteration are undefined.  The set
 993      * supports element removal, which removes the corresponding
 994      * mapping from the map, via the {@code Iterator.remove},
 995      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 996      * {@code clear} operations.  It does not support the
 997      * {@code add} or {@code addAll} operations.
 998      */
 999     public Set<Map.Entry<K,V>> entrySet() {
1000         Set<Map.Entry<K,V>> es = entrySet;
1001         return es != null ? es : (entrySet = new EntrySet());
1002     }
1003 
1004     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1005         public Iterator<Map.Entry<K,V>> iterator() {
1006             return new EntryIterator();
1007         }
1008 
1009         public boolean contains(Object o) {
1010             return o instanceof Map.Entry<?, ?> e
1011                     && getEntry(e.getKey()) != null
1012                     && getEntry(e.getKey()).equals(e);
1013         }
1014 
1015         public boolean remove(Object o) {
1016             return removeMapping(o);
1017         }
1018 
1019         public int size() {
1020             return WeakHashMap.this.size();
1021         }
1022 
1023         public void clear() {
1024             WeakHashMap.this.clear();
1025         }
1026 
1027         private List<Map.Entry<K,V>> deepCopy() {
1028             List<Map.Entry<K,V>> list = new ArrayList<>(size());
1029             for (Map.Entry<K,V> e : this)
1030                 list.add(new AbstractMap.SimpleEntry<>(e));
1031             return list;
1032         }
1033 
1034         public Object[] toArray() {
1035             return deepCopy().toArray();
1036         }
1037 
1038         public <T> T[] toArray(T[] a) {
1039             return deepCopy().toArray(a);
1040         }
1041 
1042         public Spliterator<Map.Entry<K,V>> spliterator() {
1043             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1044         }
1045     }
1046 
1047     @SuppressWarnings("unchecked")
1048     @Override
1049     public void forEach(BiConsumer<? super K, ? super V> action) {
1050         Objects.requireNonNull(action);
1051         int expectedModCount = modCount;
1052 
1053         Entry<K, V>[] tab = getTable();
1054         for (Entry<K, V> entry : tab) {
1055             while (entry != null) {
1056                 Object key = entry.get();
1057                 if (key != null) {
1058                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1059                 }
1060                 entry = entry.next;
1061 
1062                 if (expectedModCount != modCount) {
1063                     throw new ConcurrentModificationException();
1064                 }
1065             }
1066         }
1067     }
1068 
1069     @SuppressWarnings("unchecked")
1070     @Override
1071     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1072         Objects.requireNonNull(function);
1073         int expectedModCount = modCount;
1074 
1075         Entry<K, V>[] tab = getTable();
1076         for (Entry<K, V> entry : tab) {
1077             while (entry != null) {
1078                 Object key = entry.get();
1079                 if (key != null) {
1080                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1081                 }
1082                 entry = entry.next;
1083 
1084                 if (expectedModCount != modCount) {
1085                     throw new ConcurrentModificationException();
1086                 }
1087             }
1088         }
1089     }
1090 
1091     /**
1092      * Similar form as other hash Spliterators, but skips dead
1093      * elements.
1094      */
1095     static class WeakHashMapSpliterator<K,V> {
1096         final WeakHashMap<K,V> map;
1097         WeakHashMap.Entry<K,V> current; // current node
1098         int index;             // current index, modified on advance/split
1099         int fence;             // -1 until first use; then one past last index
1100         int est;               // size estimate
1101         int expectedModCount;  // for comodification checks
1102 
1103         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1104                                int fence, int est,
1105                                int expectedModCount) {
1106             this.map = m;
1107             this.index = origin;
1108             this.fence = fence;
1109             this.est = est;
1110             this.expectedModCount = expectedModCount;
1111         }
1112 
1113         final int getFence() { // initialize fence and size on first use
1114             int hi;
1115             if ((hi = fence) < 0) {
1116                 WeakHashMap<K,V> m = map;
1117                 est = m.size();
1118                 expectedModCount = m.modCount;
1119                 hi = fence = m.table.length;
1120             }
1121             return hi;
1122         }
1123 
1124         public final long estimateSize() {
1125             getFence(); // force init
1126             return (long) est;
1127         }
1128     }
1129 
1130     static final class KeySpliterator<K,V>
1131         extends WeakHashMapSpliterator<K,V>
1132         implements Spliterator<K> {
1133         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1134                        int expectedModCount) {
1135             super(m, origin, fence, est, expectedModCount);
1136         }
1137 
1138         public KeySpliterator<K,V> trySplit() {
1139             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1140             return (lo >= mid) ? null :
1141                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1142                                      expectedModCount);
1143         }
1144 
1145         public void forEachRemaining(Consumer<? super K> action) {
1146             int i, hi, mc;
1147             if (action == null)
1148                 throw new NullPointerException();
1149             WeakHashMap<K,V> m = map;
1150             WeakHashMap.Entry<K,V>[] tab = m.table;
1151             if ((hi = fence) < 0) {
1152                 mc = expectedModCount = m.modCount;
1153                 hi = fence = tab.length;
1154             }
1155             else
1156                 mc = expectedModCount;
1157             if (tab.length >= hi && (i = index) >= 0 &&
1158                 (i < (index = hi) || current != null)) {
1159                 WeakHashMap.Entry<K,V> p = current;
1160                 current = null; // exhaust
1161                 do {
1162                     if (p == null)
1163                         p = tab[i++];
1164                     else {
1165                         Object x = p.get();
1166                         p = p.next;
1167                         if (x != null) {
1168                             @SuppressWarnings("unchecked") K k =
1169                                 (K) WeakHashMap.unmaskNull(x);
1170                             action.accept(k);
1171                         }
1172                     }
1173                 } while (p != null || i < hi);
1174             }
1175             if (m.modCount != mc)
1176                 throw new ConcurrentModificationException();
1177         }
1178 
1179         public boolean tryAdvance(Consumer<? super K> action) {
1180             int hi;
1181             if (action == null)
1182                 throw new NullPointerException();
1183             WeakHashMap.Entry<K,V>[] tab = map.table;
1184             if (tab.length >= (hi = getFence()) && index >= 0) {
1185                 while (current != null || index < hi) {
1186                     if (current == null)
1187                         current = tab[index++];
1188                     else {
1189                         Object x = current.get();
1190                         current = current.next;
1191                         if (x != null) {
1192                             @SuppressWarnings("unchecked") K k =
1193                                 (K) WeakHashMap.unmaskNull(x);
1194                             action.accept(k);
1195                             if (map.modCount != expectedModCount)
1196                                 throw new ConcurrentModificationException();
1197                             return true;
1198                         }
1199                     }
1200                 }
1201             }
1202             return false;
1203         }
1204 
1205         public int characteristics() {
1206             return Spliterator.DISTINCT;
1207         }
1208     }
1209 
1210     static final class ValueSpliterator<K,V>
1211         extends WeakHashMapSpliterator<K,V>
1212         implements Spliterator<V> {
1213         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1214                          int expectedModCount) {
1215             super(m, origin, fence, est, expectedModCount);
1216         }
1217 
1218         public ValueSpliterator<K,V> trySplit() {
1219             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1220             return (lo >= mid) ? null :
1221                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1222                                        expectedModCount);
1223         }
1224 
1225         public void forEachRemaining(Consumer<? super V> action) {
1226             int i, hi, mc;
1227             if (action == null)
1228                 throw new NullPointerException();
1229             WeakHashMap<K,V> m = map;
1230             WeakHashMap.Entry<K,V>[] tab = m.table;
1231             if ((hi = fence) < 0) {
1232                 mc = expectedModCount = m.modCount;
1233                 hi = fence = tab.length;
1234             }
1235             else
1236                 mc = expectedModCount;
1237             if (tab.length >= hi && (i = index) >= 0 &&
1238                 (i < (index = hi) || current != null)) {
1239                 WeakHashMap.Entry<K,V> p = current;
1240                 current = null; // exhaust
1241                 do {
1242                     if (p == null)
1243                         p = tab[i++];
1244                     else {
1245                         Object x = p.get();
1246                         V v = p.value;
1247                         p = p.next;
1248                         if (x != null)
1249                             action.accept(v);
1250                     }
1251                 } while (p != null || i < hi);
1252             }
1253             if (m.modCount != mc)
1254                 throw new ConcurrentModificationException();
1255         }
1256 
1257         public boolean tryAdvance(Consumer<? super V> action) {
1258             int hi;
1259             if (action == null)
1260                 throw new NullPointerException();
1261             WeakHashMap.Entry<K,V>[] tab = map.table;
1262             if (tab.length >= (hi = getFence()) && index >= 0) {
1263                 while (current != null || index < hi) {
1264                     if (current == null)
1265                         current = tab[index++];
1266                     else {
1267                         Object x = current.get();
1268                         V v = current.value;
1269                         current = current.next;
1270                         if (x != null) {
1271                             action.accept(v);
1272                             if (map.modCount != expectedModCount)
1273                                 throw new ConcurrentModificationException();
1274                             return true;
1275                         }
1276                     }
1277                 }
1278             }
1279             return false;
1280         }
1281 
1282         public int characteristics() {
1283             return 0;
1284         }
1285     }
1286 
1287     static final class EntrySpliterator<K,V>
1288         extends WeakHashMapSpliterator<K,V>
1289         implements Spliterator<Map.Entry<K,V>> {
1290         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1291                        int expectedModCount) {
1292             super(m, origin, fence, est, expectedModCount);
1293         }
1294 
1295         public EntrySpliterator<K,V> trySplit() {
1296             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1297             return (lo >= mid) ? null :
1298                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1299                                        expectedModCount);
1300         }
1301 
1302 
1303         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1304             int i, hi, mc;
1305             if (action == null)
1306                 throw new NullPointerException();
1307             WeakHashMap<K,V> m = map;
1308             WeakHashMap.Entry<K,V>[] tab = m.table;
1309             if ((hi = fence) < 0) {
1310                 mc = expectedModCount = m.modCount;
1311                 hi = fence = tab.length;
1312             }
1313             else
1314                 mc = expectedModCount;
1315             if (tab.length >= hi && (i = index) >= 0 &&
1316                 (i < (index = hi) || current != null)) {
1317                 WeakHashMap.Entry<K,V> p = current;
1318                 current = null; // exhaust
1319                 do {
1320                     if (p == null)
1321                         p = tab[i++];
1322                     else {
1323                         Object x = p.get();
1324                         V v = p.value;
1325                         p = p.next;
1326                         if (x != null) {
1327                             @SuppressWarnings("unchecked") K k =
1328                                 (K) WeakHashMap.unmaskNull(x);
1329                             action.accept
1330                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1331                         }
1332                     }
1333                 } while (p != null || i < hi);
1334             }
1335             if (m.modCount != mc)
1336                 throw new ConcurrentModificationException();
1337         }
1338 
1339         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1340             int hi;
1341             if (action == null)
1342                 throw new NullPointerException();
1343             WeakHashMap.Entry<K,V>[] tab = map.table;
1344             if (tab.length >= (hi = getFence()) && index >= 0) {
1345                 while (current != null || index < hi) {
1346                     if (current == null)
1347                         current = tab[index++];
1348                     else {
1349                         Object x = current.get();
1350                         V v = current.value;
1351                         current = current.next;
1352                         if (x != null) {
1353                             @SuppressWarnings("unchecked") K k =
1354                                 (K) WeakHashMap.unmaskNull(x);
1355                             action.accept
1356                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1357                             if (map.modCount != expectedModCount)
1358                                 throw new ConcurrentModificationException();
1359                             return true;
1360                         }
1361                     }
1362                 }
1363             }
1364             return false;
1365         }
1366 
1367         public int characteristics() {
1368             return Spliterator.DISTINCT;
1369         }
1370     }
1371 
1372     /**
1373      * Creates a new, empty WeakHashMap suitable for the expected number of mappings.
1374      * The returned map uses the default load factor of 0.75, and its initial capacity is
1375      * generally large enough so that the expected number of mappings can be added
1376      * without resizing the map.
1377      *
1378      * @param numMappings the expected number of mappings
1379      * @param <K>         the type of keys maintained by the new map
1380      * @param <V>         the type of mapped values
1381      * @return the newly created map
1382      * @throws IllegalArgumentException if numMappings is negative
1383      * @since 19
1384      */
1385     public static <K, V> WeakHashMap<K, V> newWeakHashMap(int numMappings) {
1386         if (numMappings < 0) {
1387             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
1388         }
1389         return new WeakHashMap<>(HashMap.calculateHashMapCapacity(numMappings));
1390     }
1391 
1392 }