1 /*
   2  * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import sun.security.action.GetPropertyAction;
  29 
  30 import java.lang.ref.SoftReference;
  31 import java.lang.ref.WeakReference;
  32 import java.lang.ref.ReferenceQueue;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 
  37 
  38 /**
  39  * Hash table based implementation of the {@code Map} interface, with
  40  * <em>weak keys</em>.
  41  * An entry in a {@code WeakHashMap} will automatically be removed when
  42  * its key is no longer in ordinary use.
  43  * More precisely, for keys that are identity objects, the presence of a
  44  * mapping for a given key will not prevent the key from being discarded by the
  45  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  46  * For keys that are {@linkplain Class#isValue() value objects}, the retention of the
  47  * key and value depends on the {@link ValuePolicy} for the {@code WeakHashMap} and
  48  * the garbage collection handling of objects that are linked by {@link SoftReference}.
  49  * When a key has been discarded its entry is effectively removed from the map,
  50  * so this class behaves somewhat differently from other {@code Map}
  51  * implementations.
  52  *
  53  * <p>
  54  * Keys that are {@linkplain Class#isValue() value objects} do not have identity and cannot be
  55  * the referent in any {@link java.lang.ref.Reference} including {@link WeakReference}.
  56  * The retention of entries with keys that are value objects is selected
  57  * using {@link ValuePolicy} when the {@code WeakHashMap} is created.
  58  * The default {@code ValuePolicy} is {@link ValuePolicy#defaultValuePolicy()}.
  59  * The retention modes implemented by {@link #put(Object, Object) WeakHashMap.put(k,v)} are:
  60  * <UL>
  61  *     <LI> {@linkplain ValuePolicy#STRONG SOFT} - entries have a lifetime similar to
  62  *          referents of {@link SoftReference},
  63  *     <LI> {@linkplain ValuePolicy#STRONG STRONG} - entries are retained until removed,
  64  *     <LI> {@linkplain ValuePolicy#STRONG DISCARD} - entries are discarded and not put in the map,
  65  *     <LI> {@linkplain ValuePolicy#STRONG THROW} - entries are not inserted and
  66  *          {@link #put(Object, Object) put(k,v)} throws {@link IdentityException}
  67  * </UL>
  68  *
  69  * <p> Both null values and the null key are supported. This class has
  70  * performance characteristics similar to those of the {@code HashMap}
  71  * class, and has the same efficiency parameters of <em>initial capacity</em>
  72  * and <em>load factor</em>.
  73  *
  74  * <p> Like most collection classes, this class is not synchronized.
  75  * A synchronized {@code WeakHashMap} may be constructed using the
  76  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  77  * method.
  78  *
  79  * <p> <i>Update needed for Value Objects:
  80  * <br>This class is intended primarily for use with key objects whose
  81  * {@code equals} methods test for object identity using the
  82  * {@code ==} operator.  Once such a key is discarded it can never be
  83  * recreated, so it is impossible to do a lookup of that key in a
  84  * {@code WeakHashMap} at some later time and be surprised that its entry
  85  * has been removed.  This class will work perfectly well with key objects
  86  * whose {@code equals} methods are not based upon object identity, such
  87  * as {@code String} instances.  With such recreatable key objects,
  88  * however, the automatic removal of {@code WeakHashMap} entries whose
  89  * keys have been discarded may prove to be confusing.</i>
  90  *
  91  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  92  * the actions of the garbage collector, so several familiar (though not
  93  * required) {@code Map} invariants do not hold for this class.  Because
  94  * the garbage collector may discard keys at any time, a
  95  * {@code WeakHashMap} may behave as though an unknown thread is silently
  96  * removing entries.  In particular, even if you synchronize on a
  97  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  98  * is possible for the {@code size} method to return smaller values over
  99  * time, for the {@code isEmpty} method to return {@code false} and
 100  * then {@code true}, for the {@code containsKey} method to return
 101  * {@code true} and later {@code false} for a given key, for the
 102  * {@code get} method to return a value for a given key but later return
 103  * {@code null}, for the {@code put} method to return
 104  * {@code null} and the {@code remove} method to return
 105  * {@code false} for a key that previously appeared to be in the map, and
 106  * for successive examinations of the key set, the value collection, and
 107  * the entry set to yield successively smaller numbers of elements.
 108  *
 109  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
 110  * the referent of a weak reference.  Therefore a key will automatically be
 111  * removed only after the weak references to it, both inside and outside of the
 112  * map, have been cleared by the garbage collector.
 113  *
 114  * <p> <strong>Implementation note:</strong> The value objects in a
 115  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
 116  * should be taken to ensure that value objects do not strongly refer to their
 117  * own keys, either directly or indirectly, since that will prevent the keys
 118  * from being discarded.  Note that a value object may refer indirectly to its
 119  * key via the {@code WeakHashMap} itself; that is, a value object may
 120  * strongly refer to some other key object whose associated value object, in
 121  * turn, strongly refers to the key of the first value object.  If the values
 122  * in the map do not rely on the map holding strong references to them, one way
 123  * to deal with this is to wrap values themselves within
 124  * {@code WeakReferences} before
 125  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 126  * and then unwrapping upon each {@code get}.
 127  *
 128  * <p>The iterators returned by the {@code iterator} method of the collections
 129  * returned by all of this class's "collection view methods" are
 130  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 131  * iterator is created, in any way except through the iterator's own
 132  * {@code remove} method, the iterator will throw a {@link
 133  * ConcurrentModificationException}.  Thus, in the face of concurrent
 134  * modification, the iterator fails quickly and cleanly, rather than risking
 135  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 136  *
 137  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 138  * as it is, generally speaking, impossible to make any hard guarantees in the
 139  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 140  * throw {@code ConcurrentModificationException} on a best-effort basis.
 141  * Therefore, it would be wrong to write a program that depended on this
 142  * exception for its correctness:  <i>the fail-fast behavior of iterators
 143  * should be used only to detect bugs.</i>
 144  *
 145  * <p>This class is a member of the
 146  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 147  * Java Collections Framework</a>.
 148  *
 149  * @param <K> the type of keys maintained by this map
 150  * @param <V> the type of mapped values
 151  *
 152  * @author      Doug Lea
 153  * @author      Josh Bloch
 154  * @author      Mark Reinhold
 155  * @since       1.2
 156  * @see         java.util.HashMap
 157  * @see         java.lang.ref.WeakReference
 158  */
 159 public class WeakHashMap<K,V>
 160     extends AbstractMap<K,V>
 161     implements Map<K,V> {
 162 
 163     /**
 164      * The default initial capacity -- MUST be a power of two.
 165      */
 166     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 167 
 168     /**
 169      * The maximum capacity, used if a higher value is implicitly specified
 170      * by either of the constructors with arguments.
 171      * MUST be a power of two <= 1<<30.
 172      */
 173     private static final int MAXIMUM_CAPACITY = 1 << 30;
 174 
 175     /**
 176      * The load factor used when none specified in constructor.
 177      */
 178     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 179 
 180     /**
 181      * The table, resized as necessary. Length MUST Always be a power of two.
 182      */
 183     Entry<K,V>[] table;
 184 
 185     /**
 186      * The number of key-value mappings contained in this weak hash map.
 187      */
 188     private int size;
 189 
 190     /**
 191      * The next size value at which to resize (capacity * load factor).
 192      */
 193     private int threshold;
 194 
 195     /**
 196      * The load factor for the hash table.
 197      */
 198     private final float loadFactor;
 199 
 200     /**
 201      * Reference queue for cleared WeakEntries
 202      */
 203     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 204 
 205     /**
 206      * The number of times this WeakHashMap has been structurally modified.
 207      * Structural modifications are those that change the number of
 208      * mappings in the map or otherwise modify its internal structure
 209      * (e.g., rehash).  This field is used to make iterators on
 210      * Collection-views of the map fail-fast.
 211      *
 212      * @see ConcurrentModificationException
 213      */
 214     int modCount;
 215 
 216     // Current policy with regard to keys that are Value classes.
 217     private final ValuePolicy valuePolicy;
 218 
 219     @SuppressWarnings("unchecked")
 220     private Entry<K,V>[] newTable(int n) {
 221         return (Entry<K,V>[]) new Entry<?,?>[n];
 222     }
 223 
 224     /**
 225      * Constructs a new, empty {@code WeakHashMap} with the given initial
 226      * capacity and the given load factor.
 227      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 228      * default policy for value objects}.
 229      *
 230      * @apiNote
 231      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 232      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 233      *
 234      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 235      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 236      * @throws IllegalArgumentException if the initial capacity is negative,
 237      *         or if the load factor is nonpositive.
 238      */
 239     public WeakHashMap(int initialCapacity, float loadFactor) {
 240         this(initialCapacity, loadFactor, ValuePolicy.DEFAULT_VALUE_POLICY);
 241     }
 242 
 243     /**
 244      * Constructs a new, empty {@code WeakHashMap} with the given initial
 245      * capacity, the given load factor, and value policy.
 246      *
 247      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 248      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 249      * @param  valuePolicy     The {@link ValuePolicy} for keys that are value objects
 250      * @throws IllegalArgumentException if the initial capacity is negative,
 251      *         or if the load factor is nonpositive.
 252      * @throws NullPointerException if {@code valuePolicy} is null
 253      */
 254     public WeakHashMap(int initialCapacity, float loadFactor, ValuePolicy valuePolicy) {
 255         if (initialCapacity < 0)
 256             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 257                                                initialCapacity);
 258         if (initialCapacity > MAXIMUM_CAPACITY)
 259             initialCapacity = MAXIMUM_CAPACITY;
 260 
 261         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 262             throw new IllegalArgumentException("Illegal Load factor: "+
 263                                                loadFactor);
 264         this.valuePolicy = Objects.requireNonNull(valuePolicy, "valuePolicy");
 265         int capacity = HashMap.tableSizeFor(initialCapacity);
 266         table = newTable(capacity);
 267         this.loadFactor = loadFactor;
 268         threshold = (int)(capacity * loadFactor);
 269     }
 270 
 271     /**
 272      * Constructs a new, empty {@code WeakHashMap} with the given initial
 273      * capacity and the default load factor (0.75).
 274      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 275      * default policy for value objects}.
 276      *
 277      * @apiNote
 278      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 279      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 280      *
 281      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 282      * @throws IllegalArgumentException if the initial capacity is negative
 283      */
 284     public WeakHashMap(int initialCapacity) {
 285         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 286     }
 287 
 288     /**
 289      * Constructs a new, empty {@code WeakHashMap} with the default initial
 290      * capacity (16) and load factor (0.75).
 291      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 292      * default policy for value objects}.
 293      */
 294     public WeakHashMap() {
 295         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 296     }
 297 
 298     /**
 299      * Constructs a new, empty {@code WeakHashMap} with the {@link ValuePolicy},
 300      * the default initial capacity (16) and load factor (0.75).
 301      *
 302      * @param  valuePolicy     The {@link ValuePolicy} for keys that are value objects; non-null
 303      * @throws NullPointerException if {@code valuePolicy} is null
 304      */
 305     public WeakHashMap(ValuePolicy valuePolicy) {
 306         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, valuePolicy);
 307     }
 308 
 309     /**
 310      * Constructs a new {@code WeakHashMap} with the same mappings as the
 311      * specified map.  The {@code WeakHashMap} is created with the default
 312      * load factor (0.75) and an initial capacity sufficient to hold the
 313      * mappings in the specified map.
 314      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 315      * default policy for value objects}.
 316      *
 317      * @param   m the map whose mappings are to be placed in this map
 318      * @throws  NullPointerException if the specified map is null
 319      * @since   1.3
 320      */
 321     public WeakHashMap(Map<? extends K, ? extends V> m) {
 322         this(Math.max((int) Math.ceil(m.size() / (double)DEFAULT_LOAD_FACTOR),
 323                 DEFAULT_INITIAL_CAPACITY),
 324              DEFAULT_LOAD_FACTOR);
 325         putAll(m);
 326     }
 327 
 328     /**
 329      * {@return the {@link ValuePolicy} for this WeakHashMap.}
 330      */
 331     public ValuePolicy valuePolicy() {
 332         return valuePolicy;
 333     }
 334 
 335     // internal utilities
 336 
 337     /**
 338      * Value representing null keys inside tables.
 339      */
 340     private static final Object NULL_KEY = new Object();
 341 
 342     /**
 343      * Use NULL_KEY for key if it is null.
 344      */
 345     private static Object maskNull(Object key) {
 346         return (key == null) ? NULL_KEY : key;
 347     }
 348 
 349     /**
 350      * Returns internal representation of null key back to caller as null.
 351      */
 352     static Object unmaskNull(Object key) {
 353         return (key == NULL_KEY) ? null : key;
 354     }
 355 
 356     /**
 357      * Checks for equality of non-null reference x and possibly-null y.  By
 358      * default uses Object.equals.
 359      */
 360     private boolean matchesKey(Entry<K,V> e, Object key) {
 361         // check if the given entry refers to the given key without
 362         // keeping a strong reference to the entry's referent
 363         // only identity objects can be compared to a reference
 364         if (Objects.isIdentityObject(key) && e.refersTo(key)) return true;
 365 
 366         // then check for equality if the referent is not cleared
 367         Object k = e.get();
 368         return k != null && key.equals(k);
 369     }
 370 
 371     /**
 372      * Retrieve object hash code and applies a supplemental hash function to the
 373      * result hash, which defends against poor quality hash functions.  This is
 374      * critical because HashMap uses power-of-two length hash tables, that
 375      * otherwise encounter collisions for hashCodes that do not differ
 376      * in lower bits.
 377      */
 378     final int hash(Object k) {
 379         int h = k.hashCode();
 380 
 381         // This function ensures that hashCodes that differ only by
 382         // constant multiples at each bit position have a bounded
 383         // number of collisions (approximately 8 at default load factor).
 384         h ^= (h >>> 20) ^ (h >>> 12);
 385         return h ^ (h >>> 7) ^ (h >>> 4);
 386     }
 387 
 388     /**
 389      * Returns index for hash code h.
 390      */
 391     private static int indexFor(int h, int length) {
 392         return h & (length-1);
 393     }
 394 
 395     /**
 396      * Expunges stale entries from the table.
 397      */
 398     private void expungeStaleEntries() {
 399         for (Object x; (x = queue.poll()) != null; ) {
 400             synchronized (queue) {
 401                 @SuppressWarnings("unchecked")
 402                     Entry<K,V> e = (Entry<K,V>) x;
 403                 int i = indexFor(e.hash, table.length);
 404 
 405                 Entry<K,V> prev = table[i];
 406                 Entry<K,V> p = prev;
 407                 while (p != null) {
 408                     Entry<K,V> next = p.next;
 409                     if (p == e) {
 410                         if (prev == e)
 411                             table[i] = next;
 412                         else
 413                             prev.next = next;
 414                         // Must not null out e.next;
 415                         // stale entries may be in use by a HashIterator
 416                         e.value = null; // Help GC
 417                         size--;
 418                         break;
 419                     }
 420                     prev = p;
 421                     p = next;
 422                 }
 423             }
 424         }
 425     }
 426 
 427     /**
 428      * Returns the table after first expunging stale entries.
 429      */
 430     private Entry<K,V>[] getTable() {
 431         expungeStaleEntries();
 432         return table;
 433     }
 434 
 435     /**
 436      * Returns the number of key-value mappings in this map.
 437      * This result is a snapshot, and may not reflect unprocessed
 438      * entries that will be removed before next attempted access
 439      * because they are no longer referenced.
 440      */
 441     public int size() {
 442         if (size == 0)
 443             return 0;
 444         expungeStaleEntries();
 445         return size;
 446     }
 447 
 448     /**
 449      * Returns {@code true} if this map contains no key-value mappings.
 450      * This result is a snapshot, and may not reflect unprocessed
 451      * entries that will be removed before next attempted access
 452      * because they are no longer referenced.
 453      */
 454     public boolean isEmpty() {
 455         return size() == 0;
 456     }
 457 
 458     /**
 459      * Returns the value to which the specified key is mapped,
 460      * or {@code null} if this map contains no mapping for the key.
 461      *
 462      * <p>More formally, if this map contains a mapping from a key
 463      * {@code k} to a value {@code v} such that
 464      * {@code Objects.equals(key, k)},
 465      * then this method returns {@code v}; otherwise
 466      * it returns {@code null}.  (There can be at most one such mapping.)
 467      *
 468      * <p>A return value of {@code null} does not <i>necessarily</i>
 469      * indicate that the map contains no mapping for the key; it's also
 470      * possible that the map explicitly maps the key to {@code null}.
 471      * The {@link #containsKey containsKey} operation may be used to
 472      * distinguish these two cases.
 473      *
 474      * @see #put(Object, Object)
 475      */
 476     public V get(Object key) {
 477         Object k = maskNull(key);
 478         int h = hash(k);
 479         Entry<K,V>[] tab = getTable();
 480         int index = indexFor(h, tab.length);
 481         Entry<K,V> e = tab[index];
 482         while (e != null) {
 483             if (e.hash == h && matchesKey(e, k))
 484                 return e.value;
 485             e = e.next;
 486         }
 487         return null;
 488     }
 489 
 490     /**
 491      * Returns {@code true} if this map contains a mapping for the
 492      * specified key.
 493      *
 494      * @param  key   The key whose presence in this map is to be tested
 495      * @return {@code true} if there is a mapping for {@code key};
 496      *         {@code false} otherwise
 497      */
 498     public boolean containsKey(Object key) {
 499         return getEntry(key) != null;
 500     }
 501 
 502     /**
 503      * Returns the entry associated with the specified key in this map.
 504      * Returns null if the map contains no mapping for this key.
 505      */
 506     Entry<K,V> getEntry(Object key) {
 507         Object k = maskNull(key);
 508         int h = hash(k);
 509         Entry<K,V>[] tab = getTable();
 510         int index = indexFor(h, tab.length);
 511         Entry<K,V> e = tab[index];
 512         while (e != null && !(e.hash == h && matchesKey(e, k)))
 513             e = e.next;
 514         return e;
 515     }
 516 
 517     /**
 518      * Associates the specified value with the specified key in this map.
 519      * If the map previously contained a mapping for this key, the old
 520      * value is replaced.
 521      *
 522      * @param key key with which the specified value is to be associated.
 523      * @param value value to be associated with the specified key.
 524      * @return the previous value associated with {@code key}, or
 525      *         {@code null} if there was no mapping for {@code key}.
 526      *         (A {@code null} return can also indicate that the map
 527      *         previously associated {@code null} with {@code key}.)
 528      * @throws IdentityException if {@code key} is a value object
 529      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 530      */
 531     public V put(K key, V value) {
 532         Object k = maskNull(key);
 533         final boolean isValue = Objects.isValueObject(k);
 534         if (isValue && valuePolicy == ValuePolicy.DISCARD) {
 535             // put of a value object key with value policy DISCARD is more like remove(key)
 536             return remove(key);
 537         }
 538         int h = hash(k);
 539         Entry<K,V>[] tab = getTable();
 540         int i = indexFor(h, tab.length);
 541 
 542         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 543             if (h == e.hash && matchesKey(e, k)) {
 544                 V oldValue = e.value;
 545                 if (value != oldValue)
 546                     e.value = value;
 547                 return oldValue;
 548             }
 549         }
 550 
 551         Entry<K,V> e = tab[i];
 552         e = (isValue) ? newValueEntry(k, value, queue, h, e) : new Entry<>(k, value, queue, h, e);
 553 
 554         modCount++;
 555         tab[i] = e;
 556         if (++size > threshold)
 557             resize(tab.length * 2);
 558         return null;
 559     }
 560 
 561     /**
 562      * Return a new entry for keys that are value objects.
 563      * The {@link ValuePolicy} for this WeakHashMap determines what entry is returned.
 564      * <ul>
 565      *     <li> THROW - Throws an IdentityException</li>
 566      *     <li> STRONG - a StrongEntry </li>
 567      *     <li> SOFT - a SoftEntry</li>
 568      *     <li> DISCARD - null</li>
 569      * </ul>
 570      *
 571      * @param key key with which the specified value is to be associated; non-null
 572      * @param value value to be associated with the specified key
 573      * @param queue queue
 574      * @param hash hash
 575      * @param next next
 576      * @return a new entry or null to discard
 577      * @throws IdentityException if the valuePolicy is {@link ValuePolicy#THROW}
 578      */
 579     private Entry<K, V> newValueEntry(Object key, V value,
 580                                       ReferenceQueue<Object> queue,
 581                                       int hash, Entry<K,V> next) {
 582         return switch (valuePolicy) {
 583             case THROW -> throw new IdentityException(key.getClass());
 584             case STRONG -> StrongEntry.newStrongEntry(key, value, queue, hash,  next);
 585             case SOFT ->  SoftEntry.newSoftEntry(key, value, queue, hash,  next);
 586             case DISCARD -> null;
 587         };
 588     }
 589 
 590     /**
 591      * Rehashes the contents of this map into a new array with a
 592      * larger capacity.  This method is called automatically when the
 593      * number of keys in this map reaches its threshold.
 594      *
 595      * If current capacity is MAXIMUM_CAPACITY, this method does not
 596      * resize the map, but sets threshold to Integer.MAX_VALUE.
 597      * This has the effect of preventing future calls.
 598      *
 599      * @param newCapacity the new capacity, MUST be a power of two;
 600      *        must be greater than current capacity unless current
 601      *        capacity is MAXIMUM_CAPACITY (in which case value
 602      *        is irrelevant).
 603      */
 604     void resize(int newCapacity) {
 605         Entry<K,V>[] oldTable = getTable();
 606         int oldCapacity = oldTable.length;
 607         if (oldCapacity == MAXIMUM_CAPACITY) {
 608             threshold = Integer.MAX_VALUE;
 609             return;
 610         }
 611 
 612         Entry<K,V>[] newTable = newTable(newCapacity);
 613         transfer(oldTable, newTable);
 614         table = newTable;
 615 
 616         /*
 617          * If ignoring null elements and processing ref queue caused massive
 618          * shrinkage, then restore old table.  This should be rare, but avoids
 619          * unbounded expansion of garbage-filled tables.
 620          */
 621         if (size >= threshold / 2) {
 622             threshold = (int)(newCapacity * loadFactor);
 623         } else {
 624             expungeStaleEntries();
 625             transfer(newTable, oldTable);
 626             table = oldTable;
 627         }
 628     }
 629 
 630     /** Transfers all entries from src to dest tables */
 631     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 632         for (int j = 0; j < src.length; ++j) {
 633             Entry<K,V> e = src[j];
 634             src[j] = null;
 635             while (e != null) {
 636                 Entry<K,V> next = e.next;
 637                 if (e.refersTo(null)) {
 638                     e.next = null;  // Help GC
 639                     e.value = null; //  "   "
 640                     size--;
 641                 } else {
 642                     int i = indexFor(e.hash, dest.length);
 643                     e.next = dest[i];
 644                     dest[i] = e;
 645                 }
 646                 e = next;
 647             }
 648         }
 649     }
 650 
 651     /**
 652      * Copies all of the mappings from the specified map to this map.
 653      * These mappings will replace any mappings that this map had for any
 654      * of the keys currently in the specified map.
 655      *
 656      * @param m mappings to be stored in this map.
 657      * @throws  NullPointerException if the specified map is null.
 658      * @throws  IdentityException if any of the {@code keys} is a value object
 659      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 660      */
 661     public void putAll(Map<? extends K, ? extends V> m) {
 662         int numKeysToBeAdded = m.size();
 663         if (numKeysToBeAdded == 0)
 664             return;
 665 
 666         /*
 667          * Expand the map if the map if the number of mappings to be added
 668          * is greater than or equal to threshold.  This is conservative; the
 669          * obvious condition is (m.size() + size) >= threshold, but this
 670          * condition could result in a map with twice the appropriate capacity,
 671          * if the keys to be added overlap with the keys already in this map.
 672          * By using the conservative calculation, we subject ourself
 673          * to at most one extra resize.
 674          */
 675         if (numKeysToBeAdded > threshold) {
 676             int targetCapacity = (int)Math.ceil(numKeysToBeAdded / (double)loadFactor);
 677             if (targetCapacity > MAXIMUM_CAPACITY)
 678                 targetCapacity = MAXIMUM_CAPACITY;
 679             int newCapacity = table.length;
 680             while (newCapacity < targetCapacity)
 681                 newCapacity <<= 1;
 682             if (newCapacity > table.length)
 683                 resize(newCapacity);
 684         }
 685 
 686         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 687             put(e.getKey(), e.getValue());
 688     }
 689 
 690     /**
 691      * {@inheritDoc}
 692      * @param key {@inheritDoc}
 693      * @param value {@inheritDoc}
 694      * @return {@inheritDoc}
 695      *
 696      * @throws  IdentityException if {@code key} is a value object
 697      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 698      */
 699     public V putIfAbsent(K key, V value) {
 700         V v = get(key);
 701         if (v == null) {
 702             v = put(key, value);
 703         }
 704 
 705         return v;
 706     }
 707 
 708     /**
 709      * Removes the mapping for a key from this weak hash map if it is present.
 710      * More formally, if this map contains a mapping from key {@code k} to
 711      * value {@code v} such that <code>(key==null ?  k==null :
 712      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 713      * at most one such mapping.)
 714      *
 715      * <p>Returns the value to which this map previously associated the key,
 716      * or {@code null} if the map contained no mapping for the key.  A
 717      * return value of {@code null} does not <i>necessarily</i> indicate
 718      * that the map contained no mapping for the key; it's also possible
 719      * that the map explicitly mapped the key to {@code null}.
 720      *
 721      * <p>The map will not contain a mapping for the specified key once the
 722      * call returns.
 723      *
 724      * @param key key whose mapping is to be removed from the map
 725      * @return the previous value associated with {@code key}, or
 726      *         {@code null} if there was no mapping for {@code key}
 727      */
 728     public V remove(Object key) {
 729         Object k = maskNull(key);
 730         int h = hash(k);
 731         Entry<K,V>[] tab = getTable();
 732         int i = indexFor(h, tab.length);
 733         Entry<K,V> prev = tab[i];
 734         Entry<K,V> e = prev;
 735 
 736         while (e != null) {
 737             Entry<K,V> next = e.next;
 738             if (h == e.hash && matchesKey(e, k)) {
 739                 modCount++;
 740                 size--;
 741                 if (prev == e)
 742                     tab[i] = next;
 743                 else
 744                     prev.next = next;
 745                 return e.value;
 746             }
 747             prev = e;
 748             e = next;
 749         }
 750 
 751         return null;
 752     }
 753 
 754     /** Special version of remove needed by Entry set */
 755     boolean removeMapping(Object o) {
 756         if (!(o instanceof Map.Entry<?, ?> entry))
 757             return false;
 758         Entry<K,V>[] tab = getTable();
 759         Object k = maskNull(entry.getKey());
 760         int h = hash(k);
 761         int i = indexFor(h, tab.length);
 762         Entry<K,V> prev = tab[i];
 763         Entry<K,V> e = prev;
 764 
 765         while (e != null) {
 766             Entry<K,V> next = e.next;
 767             if (h == e.hash && e.equals(entry)) {
 768                 modCount++;
 769                 size--;
 770                 if (prev == e)
 771                     tab[i] = next;
 772                 else
 773                     prev.next = next;
 774                 return true;
 775             }
 776             prev = e;
 777             e = next;
 778         }
 779 
 780         return false;
 781     }
 782 
 783     /**
 784      * Removes all of the mappings from this map.
 785      * The map will be empty after this call returns.
 786      */
 787     public void clear() {
 788         // clear out ref queue. We don't need to expunge entries
 789         // since table is getting cleared.
 790         while (queue.poll() != null)
 791             ;
 792 
 793         modCount++;
 794         Arrays.fill(table, null);
 795         size = 0;
 796 
 797         // Allocation of array may have caused GC, which may have caused
 798         // additional entries to go stale.  Removing these entries from the
 799         // reference queue will make them eligible for reclamation.
 800         while (queue.poll() != null)
 801             ;
 802     }
 803 
 804     /**
 805      * Returns {@code true} if this map maps one or more keys to the
 806      * specified value.
 807      *
 808      * @param value value whose presence in this map is to be tested
 809      * @return {@code true} if this map maps one or more keys to the
 810      *         specified value
 811      */
 812     public boolean containsValue(Object value) {
 813         if (value==null)
 814             return containsNullValue();
 815 
 816         Entry<K,V>[] tab = getTable();
 817         for (int i = tab.length; i-- > 0;)
 818             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 819                 if (value.equals(e.value))
 820                     return true;
 821         return false;
 822     }
 823 
 824     /**
 825      * Special-case code for containsValue with null argument
 826      */
 827     private boolean containsNullValue() {
 828         Entry<K,V>[] tab = getTable();
 829         for (int i = tab.length; i-- > 0;)
 830             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 831                 if (e.value==null)
 832                     return true;
 833         return false;
 834     }
 835 
 836     /**
 837      * The entries in this hash table extend WeakReference, using its main ref
 838      * field as the key.
 839      */
 840     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 841         V value;
 842         final int hash;
 843         Entry<K,V> next;
 844 
 845         /**
 846          * Creates new entry.
 847          */
 848         Entry(Object key, V value,
 849               ReferenceQueue<Object> queue,
 850               int hash, Entry<K,V> next) {
 851             super(key, queue);
 852             this.value = value;
 853             this.hash  = hash;
 854             this.next  = next;
 855         }
 856 
 857         @SuppressWarnings("unchecked")
 858         public K getKey() {
 859             return (K) WeakHashMap.unmaskNull(get());
 860         }
 861 
 862         public V getValue() {
 863             return value;
 864         }
 865 
 866         public V setValue(V newValue) {
 867             V oldValue = value;
 868             value = newValue;
 869             return oldValue;
 870         }
 871 
 872         public boolean equals(Object o) {
 873             if (!(o instanceof Map.Entry<?, ?> e))
 874                 return false;
 875             K k1 = getKey();
 876             Object k2 = e.getKey();
 877             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 878                 V v1 = getValue();
 879                 Object v2 = e.getValue();
 880                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 881                     return true;
 882             }
 883             return false;
 884         }
 885 
 886         public int hashCode() {
 887             K k = getKey();
 888             V v = getValue();
 889             return Objects.hashCode(k) ^ Objects.hashCode(v);
 890         }
 891 
 892         public String toString() {
 893             return getKey() + "=" + getValue();
 894         }
 895     }
 896 
 897     /**
 898      * A SoftEntry is used for value class keys in which the entries are retained
 899      * until there is some memory pressure.  An anchor object is used as the referent
 900      * of a SoftReference and also as the referent of the WeakReference.
 901      * After the SoftReference is cleared, due to GC pressure, the WeakReference is cleared too.
 902      *
 903      * @param <K> key
 904      * @param <V> value
 905      */
 906     private static class SoftEntry<K, V> extends Entry<K, V> {
 907         final Object realKey;
 908         // SoftReference to the anchor to keep it alive until GC clears the SoftReference
 909         private final SoftReference<Object> softAnchor;
 910 
 911         static <K, V> SoftEntry<K, V> newSoftEntry(Object key, V value,
 912                                       ReferenceQueue<Object> queue,
 913                                       int hash, Entry<K, V> next) {
 914             // Select a new anchor object; the entry will be retained until the anchor is collected
 915             Object anchor = new Object();
 916             return new SoftEntry<>(anchor, key, value, queue, hash, next);
 917         }
 918 
 919         private SoftEntry(Object anchor, Object key, V value,
 920                     ReferenceQueue<Object> queue,
 921                     int hash, Entry<K,V> next) {
 922             super(anchor, value, queue, hash, next);
 923             this.realKey = key;
 924             this.softAnchor = new SoftReference<>(anchor);
 925         }
 926 
 927         /**
 928          * The real key is not the referent.
 929          * {{@inheritDoc}}
 930          */
 931         @Override
 932         @SuppressWarnings("unchecked")
 933         public K get() {
 934             return (K) realKey;
 935         }
 936 
 937         @SuppressWarnings("unchecked")
 938         public K getKey() {
 939             return (K) realKey;
 940         }
 941     }
 942 
 943     /**
 944      * A StrongEntry is used for value class keys in which the entries are retained
 945      * until removed.  A singleton instance is used as the referent of the WeakReference.
 946      * Since the anchor is never reclaimed, the Entry is retained forever.
 947      *
 948      * @param <K> key
 949      * @param <V> value
 950      */
 951     private static class StrongEntry<K, V> extends Entry<K, V> {
 952         final Object realKey;
 953 
 954         // A permanent strong reference to an Object
 955         private static final Object STRONG_ANCHOR = new Object();
 956 
 957         static <K, V> StrongEntry<K, V> newStrongEntry(Object key, V value,
 958                                       ReferenceQueue<Object> queue,
 959                                       int hash, Entry<K, V> next) {
 960             return new StrongEntry<>(STRONG_ANCHOR, key, value, queue, hash, next);
 961         }
 962 
 963         private StrongEntry(Object anchor, Object key, V value,
 964                     ReferenceQueue<Object> queue,
 965                     int hash, Entry<K,V> next) {
 966             super(anchor, value, queue, hash, next);
 967             this.realKey = key;
 968         }
 969 
 970         /**
 971          * The real key is not the referent.
 972          * {{@inheritDoc}}
 973          */
 974         @Override
 975         @SuppressWarnings("unchecked")
 976         public K get() {
 977             return (K) realKey;
 978         }
 979 
 980 
 981         @SuppressWarnings("unchecked")
 982         public K getKey() {
 983             return (K) realKey;
 984         }
 985     }
 986 
 987     private abstract class HashIterator<T> implements Iterator<T> {
 988         private int index;
 989         private Entry<K,V> entry;
 990         private Entry<K,V> lastReturned;
 991         private int expectedModCount = modCount;
 992 
 993         /**
 994          * Strong reference needed to avoid disappearance of key
 995          * between hasNext and next
 996          */
 997         private Object nextKey;
 998 
 999         /**
1000          * Strong reference needed to avoid disappearance of key
1001          * between nextEntry() and any use of the entry
1002          */
1003         private Object currentKey;
1004 
1005         HashIterator() {
1006             index = isEmpty() ? 0 : table.length;
1007         }
1008 
1009         public boolean hasNext() {
1010             Entry<K,V>[] t = table;
1011 
1012             while (nextKey == null) {
1013                 Entry<K,V> e = entry;
1014                 int i = index;
1015                 while (e == null && i > 0)
1016                     e = t[--i];
1017                 entry = e;
1018                 index = i;
1019                 if (e == null) {
1020                     currentKey = null;
1021                     return false;
1022                 }
1023                 nextKey = e.get(); // hold on to key in strong ref
1024                 if (nextKey == null)
1025                     entry = entry.next;
1026             }
1027             return true;
1028         }
1029 
1030         /** The common parts of next() across different types of iterators */
1031         protected Entry<K,V> nextEntry() {
1032             if (modCount != expectedModCount)
1033                 throw new ConcurrentModificationException();
1034             if (nextKey == null && !hasNext())
1035                 throw new NoSuchElementException();
1036 
1037             lastReturned = entry;
1038             entry = entry.next;
1039             currentKey = nextKey;
1040             nextKey = null;
1041             return lastReturned;
1042         }
1043 
1044         public void remove() {
1045             if (lastReturned == null)
1046                 throw new IllegalStateException();
1047             if (modCount != expectedModCount)
1048                 throw new ConcurrentModificationException();
1049 
1050             WeakHashMap.this.remove(currentKey);
1051             expectedModCount = modCount;
1052             lastReturned = null;
1053             currentKey = null;
1054         }
1055 
1056     }
1057 
1058     private class ValueIterator extends HashIterator<V> {
1059         public V next() {
1060             return nextEntry().value;
1061         }
1062     }
1063 
1064     private class KeyIterator extends HashIterator<K> {
1065         public K next() {
1066             return nextEntry().getKey();
1067         }
1068     }
1069 
1070     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
1071         public Map.Entry<K,V> next() {
1072             return nextEntry();
1073         }
1074     }
1075 
1076     // Views
1077 
1078     private transient Set<Map.Entry<K,V>> entrySet;
1079 
1080     /**
1081      * Returns a {@link Set} view of the keys contained in this map.
1082      * The set is backed by the map, so changes to the map are
1083      * reflected in the set, and vice-versa.  If the map is modified
1084      * while an iteration over the set is in progress (except through
1085      * the iterator's own {@code remove} operation), the results of
1086      * the iteration are undefined.  The set supports element removal,
1087      * which removes the corresponding mapping from the map, via the
1088      * {@code Iterator.remove}, {@code Set.remove},
1089      * {@code removeAll}, {@code retainAll}, and {@code clear}
1090      * operations.  It does not support the {@code add} or {@code addAll}
1091      * operations.
1092      */
1093     public Set<K> keySet() {
1094         Set<K> ks = keySet;
1095         if (ks == null) {
1096             ks = new KeySet();
1097             keySet = ks;
1098         }
1099         return ks;
1100     }
1101 
1102     private class KeySet extends AbstractSet<K> {
1103         public Iterator<K> iterator() {
1104             return new KeyIterator();
1105         }
1106 
1107         public int size() {
1108             return WeakHashMap.this.size();
1109         }
1110 
1111         public boolean contains(Object o) {
1112             return containsKey(o);
1113         }
1114 
1115         public boolean remove(Object o) {
1116             if (containsKey(o)) {
1117                 WeakHashMap.this.remove(o);
1118                 return true;
1119             }
1120             else
1121                 return false;
1122         }
1123 
1124         public void clear() {
1125             WeakHashMap.this.clear();
1126         }
1127 
1128         public Spliterator<K> spliterator() {
1129             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1130         }
1131     }
1132 
1133     /**
1134      * Returns a {@link Collection} view of the values contained in this map.
1135      * The collection is backed by the map, so changes to the map are
1136      * reflected in the collection, and vice-versa.  If the map is
1137      * modified while an iteration over the collection is in progress
1138      * (except through the iterator's own {@code remove} operation),
1139      * the results of the iteration are undefined.  The collection
1140      * supports element removal, which removes the corresponding
1141      * mapping from the map, via the {@code Iterator.remove},
1142      * {@code Collection.remove}, {@code removeAll},
1143      * {@code retainAll} and {@code clear} operations.  It does not
1144      * support the {@code add} or {@code addAll} operations.
1145      */
1146     public Collection<V> values() {
1147         Collection<V> vs = values;
1148         if (vs == null) {
1149             vs = new Values();
1150             values = vs;
1151         }
1152         return vs;
1153     }
1154 
1155     private class Values extends AbstractCollection<V> {
1156         public Iterator<V> iterator() {
1157             return new ValueIterator();
1158         }
1159 
1160         public int size() {
1161             return WeakHashMap.this.size();
1162         }
1163 
1164         public boolean contains(Object o) {
1165             return containsValue(o);
1166         }
1167 
1168         public void clear() {
1169             WeakHashMap.this.clear();
1170         }
1171 
1172         public Spliterator<V> spliterator() {
1173             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1174         }
1175     }
1176 
1177     /**
1178      * Returns a {@link Set} view of the mappings contained in this map.
1179      * The set is backed by the map, so changes to the map are
1180      * reflected in the set, and vice-versa.  If the map is modified
1181      * while an iteration over the set is in progress (except through
1182      * the iterator's own {@code remove} operation, or through the
1183      * {@code setValue} operation on a map entry returned by the
1184      * iterator) the results of the iteration are undefined.  The set
1185      * supports element removal, which removes the corresponding
1186      * mapping from the map, via the {@code Iterator.remove},
1187      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1188      * {@code clear} operations.  It does not support the
1189      * {@code add} or {@code addAll} operations.
1190      */
1191     public Set<Map.Entry<K,V>> entrySet() {
1192         Set<Map.Entry<K,V>> es = entrySet;
1193         return es != null ? es : (entrySet = new EntrySet());
1194     }
1195 
1196     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1197         public Iterator<Map.Entry<K,V>> iterator() {
1198             return new EntryIterator();
1199         }
1200 
1201         public boolean contains(Object o) {
1202             return o instanceof Map.Entry<?, ?> e
1203                     && getEntry(e.getKey()) != null
1204                     && getEntry(e.getKey()).equals(e);
1205         }
1206 
1207         public boolean remove(Object o) {
1208             return removeMapping(o);
1209         }
1210 
1211         public int size() {
1212             return WeakHashMap.this.size();
1213         }
1214 
1215         public void clear() {
1216             WeakHashMap.this.clear();
1217         }
1218 
1219         private List<Map.Entry<K,V>> deepCopy() {
1220             List<Map.Entry<K,V>> list = new ArrayList<>(size());
1221             for (Map.Entry<K,V> e : this)
1222                 list.add(new AbstractMap.SimpleEntry<>(e));
1223             return list;
1224         }
1225 
1226         public Object[] toArray() {
1227             return deepCopy().toArray();
1228         }
1229 
1230         public <T> T[] toArray(T[] a) {
1231             return deepCopy().toArray(a);
1232         }
1233 
1234         public Spliterator<Map.Entry<K,V>> spliterator() {
1235             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1236         }
1237     }
1238 
1239     @SuppressWarnings("unchecked")
1240     @Override
1241     public void forEach(BiConsumer<? super K, ? super V> action) {
1242         Objects.requireNonNull(action);
1243         int expectedModCount = modCount;
1244 
1245         Entry<K, V>[] tab = getTable();
1246         for (Entry<K, V> entry : tab) {
1247             while (entry != null) {
1248                 Object key = entry.get();
1249                 if (key != null) {
1250                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1251                 }
1252                 entry = entry.next;
1253 
1254                 if (expectedModCount != modCount) {
1255                     throw new ConcurrentModificationException();
1256                 }
1257             }
1258         }
1259     }
1260 
1261     @SuppressWarnings("unchecked")
1262     @Override
1263     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1264         Objects.requireNonNull(function);
1265         int expectedModCount = modCount;
1266 
1267         Entry<K, V>[] tab = getTable();
1268         for (Entry<K, V> entry : tab) {
1269             while (entry != null) {
1270                 Object key = entry.get();
1271                 if (key != null) {
1272                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1273                 }
1274                 entry = entry.next;
1275 
1276                 if (expectedModCount != modCount) {
1277                     throw new ConcurrentModificationException();
1278                 }
1279             }
1280         }
1281     }
1282 
1283     /**
1284      * Similar form as other hash Spliterators, but skips dead
1285      * elements.
1286      */
1287     static class WeakHashMapSpliterator<K,V> {
1288         final WeakHashMap<K,V> map;
1289         WeakHashMap.Entry<K,V> current; // current node
1290         int index;             // current index, modified on advance/split
1291         int fence;             // -1 until first use; then one past last index
1292         int est;               // size estimate
1293         int expectedModCount;  // for comodification checks
1294 
1295         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1296                                int fence, int est,
1297                                int expectedModCount) {
1298             this.map = m;
1299             this.index = origin;
1300             this.fence = fence;
1301             this.est = est;
1302             this.expectedModCount = expectedModCount;
1303         }
1304 
1305         final int getFence() { // initialize fence and size on first use
1306             int hi;
1307             if ((hi = fence) < 0) {
1308                 WeakHashMap<K,V> m = map;
1309                 est = m.size();
1310                 expectedModCount = m.modCount;
1311                 hi = fence = m.table.length;
1312             }
1313             return hi;
1314         }
1315 
1316         public final long estimateSize() {
1317             getFence(); // force init
1318             return (long) est;
1319         }
1320     }
1321 
1322     static final class KeySpliterator<K,V>
1323         extends WeakHashMapSpliterator<K,V>
1324         implements Spliterator<K> {
1325         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1326                        int expectedModCount) {
1327             super(m, origin, fence, est, expectedModCount);
1328         }
1329 
1330         public KeySpliterator<K,V> trySplit() {
1331             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1332             return (lo >= mid) ? null :
1333                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1334                                      expectedModCount);
1335         }
1336 
1337         public void forEachRemaining(Consumer<? super K> action) {
1338             int i, hi, mc;
1339             if (action == null)
1340                 throw new NullPointerException();
1341             WeakHashMap<K,V> m = map;
1342             WeakHashMap.Entry<K,V>[] tab = m.table;
1343             if ((hi = fence) < 0) {
1344                 mc = expectedModCount = m.modCount;
1345                 hi = fence = tab.length;
1346             }
1347             else
1348                 mc = expectedModCount;
1349             if (tab.length >= hi && (i = index) >= 0 &&
1350                 (i < (index = hi) || current != null)) {
1351                 WeakHashMap.Entry<K,V> p = current;
1352                 current = null; // exhaust
1353                 do {
1354                     if (p == null)
1355                         p = tab[i++];
1356                     else {
1357                         Object x = p.get();
1358                         p = p.next;
1359                         if (x != null) {
1360                             @SuppressWarnings("unchecked") K k =
1361                                 (K) WeakHashMap.unmaskNull(x);
1362                             action.accept(k);
1363                         }
1364                     }
1365                 } while (p != null || i < hi);
1366             }
1367             if (m.modCount != mc)
1368                 throw new ConcurrentModificationException();
1369         }
1370 
1371         public boolean tryAdvance(Consumer<? super K> action) {
1372             int hi;
1373             if (action == null)
1374                 throw new NullPointerException();
1375             WeakHashMap.Entry<K,V>[] tab = map.table;
1376             if (tab.length >= (hi = getFence()) && index >= 0) {
1377                 while (current != null || index < hi) {
1378                     if (current == null)
1379                         current = tab[index++];
1380                     else {
1381                         Object x = current.get();
1382                         current = current.next;
1383                         if (x != null) {
1384                             @SuppressWarnings("unchecked") K k =
1385                                 (K) WeakHashMap.unmaskNull(x);
1386                             action.accept(k);
1387                             if (map.modCount != expectedModCount)
1388                                 throw new ConcurrentModificationException();
1389                             return true;
1390                         }
1391                     }
1392                 }
1393             }
1394             return false;
1395         }
1396 
1397         public int characteristics() {
1398             return Spliterator.DISTINCT;
1399         }
1400     }
1401 
1402     static final class ValueSpliterator<K,V>
1403         extends WeakHashMapSpliterator<K,V>
1404         implements Spliterator<V> {
1405         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1406                          int expectedModCount) {
1407             super(m, origin, fence, est, expectedModCount);
1408         }
1409 
1410         public ValueSpliterator<K,V> trySplit() {
1411             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1412             return (lo >= mid) ? null :
1413                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1414                                        expectedModCount);
1415         }
1416 
1417         public void forEachRemaining(Consumer<? super V> action) {
1418             int i, hi, mc;
1419             if (action == null)
1420                 throw new NullPointerException();
1421             WeakHashMap<K,V> m = map;
1422             WeakHashMap.Entry<K,V>[] tab = m.table;
1423             if ((hi = fence) < 0) {
1424                 mc = expectedModCount = m.modCount;
1425                 hi = fence = tab.length;
1426             }
1427             else
1428                 mc = expectedModCount;
1429             if (tab.length >= hi && (i = index) >= 0 &&
1430                 (i < (index = hi) || current != null)) {
1431                 WeakHashMap.Entry<K,V> p = current;
1432                 current = null; // exhaust
1433                 do {
1434                     if (p == null)
1435                         p = tab[i++];
1436                     else {
1437                         Object x = p.get();
1438                         V v = p.value;
1439                         p = p.next;
1440                         if (x != null)
1441                             action.accept(v);
1442                     }
1443                 } while (p != null || i < hi);
1444             }
1445             if (m.modCount != mc)
1446                 throw new ConcurrentModificationException();
1447         }
1448 
1449         public boolean tryAdvance(Consumer<? super V> action) {
1450             int hi;
1451             if (action == null)
1452                 throw new NullPointerException();
1453             WeakHashMap.Entry<K,V>[] tab = map.table;
1454             if (tab.length >= (hi = getFence()) && index >= 0) {
1455                 while (current != null || index < hi) {
1456                     if (current == null)
1457                         current = tab[index++];
1458                     else {
1459                         Object x = current.get();
1460                         V v = current.value;
1461                         current = current.next;
1462                         if (x != null) {
1463                             action.accept(v);
1464                             if (map.modCount != expectedModCount)
1465                                 throw new ConcurrentModificationException();
1466                             return true;
1467                         }
1468                     }
1469                 }
1470             }
1471             return false;
1472         }
1473 
1474         public int characteristics() {
1475             return 0;
1476         }
1477     }
1478 
1479     static final class EntrySpliterator<K,V>
1480         extends WeakHashMapSpliterator<K,V>
1481         implements Spliterator<Map.Entry<K,V>> {
1482         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1483                        int expectedModCount) {
1484             super(m, origin, fence, est, expectedModCount);
1485         }
1486 
1487         public EntrySpliterator<K,V> trySplit() {
1488             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1489             return (lo >= mid) ? null :
1490                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1491                                        expectedModCount);
1492         }
1493 
1494 
1495         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1496             int i, hi, mc;
1497             if (action == null)
1498                 throw new NullPointerException();
1499             WeakHashMap<K,V> m = map;
1500             WeakHashMap.Entry<K,V>[] tab = m.table;
1501             if ((hi = fence) < 0) {
1502                 mc = expectedModCount = m.modCount;
1503                 hi = fence = tab.length;
1504             }
1505             else
1506                 mc = expectedModCount;
1507             if (tab.length >= hi && (i = index) >= 0 &&
1508                 (i < (index = hi) || current != null)) {
1509                 WeakHashMap.Entry<K,V> p = current;
1510                 current = null; // exhaust
1511                 do {
1512                     if (p == null)
1513                         p = tab[i++];
1514                     else {
1515                         Object x = p.get();
1516                         V v = p.value;
1517                         p = p.next;
1518                         if (x != null) {
1519                             @SuppressWarnings("unchecked") K k =
1520                                 (K) WeakHashMap.unmaskNull(x);
1521                             action.accept
1522                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1523                         }
1524                     }
1525                 } while (p != null || i < hi);
1526             }
1527             if (m.modCount != mc)
1528                 throw new ConcurrentModificationException();
1529         }
1530 
1531         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1532             int hi;
1533             if (action == null)
1534                 throw new NullPointerException();
1535             WeakHashMap.Entry<K,V>[] tab = map.table;
1536             if (tab.length >= (hi = getFence()) && index >= 0) {
1537                 while (current != null || index < hi) {
1538                     if (current == null)
1539                         current = tab[index++];
1540                     else {
1541                         Object x = current.get();
1542                         V v = current.value;
1543                         current = current.next;
1544                         if (x != null) {
1545                             @SuppressWarnings("unchecked") K k =
1546                                 (K) WeakHashMap.unmaskNull(x);
1547                             action.accept
1548                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1549                             if (map.modCount != expectedModCount)
1550                                 throw new ConcurrentModificationException();
1551                             return true;
1552                         }
1553                     }
1554                 }
1555             }
1556             return false;
1557         }
1558 
1559         public int characteristics() {
1560             return Spliterator.DISTINCT;
1561         }
1562     }
1563 
1564     /**
1565      * Creates a new, empty WeakHashMap suitable for the expected number of mappings.
1566      * The returned map uses the default load factor of 0.75, and its initial capacity is
1567      * generally large enough so that the expected number of mappings can be added
1568      * without resizing the map.
1569      *
1570      * @param numMappings the expected number of mappings
1571      * @param <K>         the type of keys maintained by the new map
1572      * @param <V>         the type of mapped values
1573      * @return the newly created map
1574      * @throws IllegalArgumentException if numMappings is negative
1575      * @since 19
1576      */
1577     public static <K, V> WeakHashMap<K, V> newWeakHashMap(int numMappings) {
1578         if (numMappings < 0) {
1579             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
1580         }
1581         return new WeakHashMap<>(HashMap.calculateHashMapCapacity(numMappings));
1582     }
1583 
1584     /**
1585      * Enum for the ValuePolicy; when putting a key and value into a WeakHashMap
1586      * determines how keys that are value objects are retained (or not).
1587      * The default {@code ValuePolicy} is {@link ValuePolicy#SOFT}.
1588      * @since Valhalla
1589      */
1590     public enum ValuePolicy {
1591         /**
1592          * If the key is a value object, retain the key and value until removed or
1593          * there is memory pressure that causes soft references to be cleared.
1594          */
1595         SOFT,
1596         /**
1597          * If the key is a value object, retain the key and value until removed.
1598          */
1599         STRONG,
1600         /**
1601          * If the key is a value object, discard the key and value immediately;
1602          * such keys and values are not retained.
1603          */
1604         DISCARD,
1605         /**
1606          * If the key is a value object, throw {@link IdentityException};
1607          * such keys and values are not retained.
1608          */
1609         THROW;
1610 
1611         /**
1612          * {@return the default ValuePolicy}
1613          *
1614          * The default {@code ValuePolicy} is {@link ValuePolicy#SOFT} unless overridden by
1615          * the system property {@systemProperty java.util.WeakHashMap.valueKeyRetention}.
1616          * If the property is set to the name of a {@code ValuePolicy} enum,
1617          * the default {@code ValuePolicy} is set using {@link ValuePolicy#valueOf(String)}.
1618          * If the property value is absent or not valid, the policy is set to {@link ValuePolicy#SOFT}.
1619          */
1620         public static ValuePolicy defaultValuePolicy() {
1621             return DEFAULT_VALUE_POLICY;
1622         }
1623 
1624         // System property name for the default ValuePolicy
1625         private static final String WEAK_HASH_MAP_VALUE_KEY_RETENTION =
1626                 "java.util.WeakHashMap.valueKeyRetention";
1627 
1628         // Default WeakHashMap ValuePolicy for keys that are value objects
1629         private static final ValuePolicy DEFAULT_VALUE_POLICY = initDefaultValuePolicy();
1630 
1631         /**
1632          * {@return the default policy for retention of keys that are value classes}
1633          * If the system property "java.util.WeakHashMap.valueKeyRetention"
1634          * is the name of a {@link ValuePolicy} enum return it,
1635          * otherwise return {@link ValuePolicy#SOFT}.
1636          */
1637         private static ValuePolicy initDefaultValuePolicy() {
1638             try {
1639                 String p = GetPropertyAction
1640                         .privilegedGetProperty(WEAK_HASH_MAP_VALUE_KEY_RETENTION);
1641                 if (p != null) {
1642                     return ValuePolicy.valueOf(p);
1643                 }
1644             } catch (IllegalArgumentException ex) {
1645             }
1646 
1647             return SOFT;  // hardcoded default if property not set
1648         }
1649     }
1650 
1651 }