1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.util; 27 28 import java.lang.ref.ReferenceQueue; 29 import java.lang.ref.WeakReference; 30 import java.util.function.BiConsumer; 31 import java.util.function.BiFunction; 32 import java.util.function.Consumer; 33 34 35 /** 36 * Hash table based implementation of the {@code Map} interface, with 37 * <em>weak keys</em>. 38 * An entry in a {@code WeakHashMap} will automatically be removed when 39 * its key is no longer in ordinary use. More precisely, the presence of a 40 * mapping for a given key will not prevent the key from being discarded by the 41 * garbage collector, that is, made finalizable, finalized, and then reclaimed. 42 * When a key has been discarded its entry is effectively removed from the map, 43 * so this class behaves somewhat differently from other {@code Map} 44 * implementations. 45 * 46 * <p> Both null values and the null key are supported. This class has 47 * performance characteristics similar to those of the {@code HashMap} 48 * class, and has the same efficiency parameters of <em>initial capacity</em> 49 * and <em>load factor</em>. 50 * 51 * <p> Like most collection classes, this class is not synchronized. 52 * A synchronized {@code WeakHashMap} may be constructed using the 53 * {@link Collections#synchronizedMap Collections.synchronizedMap} 54 * method. 55 * 56 * <p> This class is intended primarily for use with key objects whose 57 * {@code equals} methods test for object identity using the 58 * {@code ==} operator. Once such a key is discarded it can never be 59 * recreated, so it is impossible to do a lookup of that key in a 60 * {@code WeakHashMap} at some later time and be surprised that its entry 61 * has been removed. This class will work perfectly well with key objects 62 * whose {@code equals} methods are not based upon object identity, such 63 * as {@code String} instances. With such recreatable key objects, 64 * however, the automatic removal of {@code WeakHashMap} entries whose 65 * keys have been discarded may prove to be confusing. 66 * 67 * <p> The behavior of the {@code WeakHashMap} class depends in part upon 68 * the actions of the garbage collector, so several familiar (though not 69 * required) {@code Map} invariants do not hold for this class. Because 70 * the garbage collector may discard keys at any time, a 71 * {@code WeakHashMap} may behave as though an unknown thread is silently 72 * removing entries. In particular, even if you synchronize on a 73 * {@code WeakHashMap} instance and invoke none of its mutator methods, it 74 * is possible for the {@code size} method to return smaller values over 75 * time, for the {@code isEmpty} method to return {@code false} and 76 * then {@code true}, for the {@code containsKey} method to return 77 * {@code true} and later {@code false} for a given key, for the 78 * {@code get} method to return a value for a given key but later return 79 * {@code null}, for the {@code put} method to return 80 * {@code null} and the {@code remove} method to return 81 * {@code false} for a key that previously appeared to be in the map, and 82 * for successive examinations of the key set, the value collection, and 83 * the entry set to yield successively smaller numbers of elements. 84 * 85 * <p> Each key object in a {@code WeakHashMap} is stored indirectly as 86 * the referent of a weak reference. Therefore a key will automatically be 87 * removed only after the weak references to it, both inside and outside of the 88 * map, have been cleared by the garbage collector. 89 * 90 * <p> <strong>Implementation note:</strong> The value objects in a 91 * {@code WeakHashMap} are held by ordinary strong references. Thus care 92 * should be taken to ensure that value objects do not strongly refer to their 93 * own keys, either directly or indirectly, since that will prevent the keys 94 * from being discarded. Note that a value object may refer indirectly to its 95 * key via the {@code WeakHashMap} itself; that is, a value object may 96 * strongly refer to some other key object whose associated value object, in 97 * turn, strongly refers to the key of the first value object. If the values 98 * in the map do not rely on the map holding strong references to them, one way 99 * to deal with this is to wrap values themselves within 100 * {@code WeakReferences} before 101 * inserting, as in: {@code m.put(key, new WeakReference(value))}, 102 * and then unwrapping upon each {@code get}. 103 * 104 * <p>The iterators returned by the {@code iterator} method of the collections 105 * returned by all of this class's "collection view methods" are 106 * <i>fail-fast</i>: if the map is structurally modified at any time after the 107 * iterator is created, in any way except through the iterator's own 108 * {@code remove} method, the iterator will throw a {@link 109 * ConcurrentModificationException}. Thus, in the face of concurrent 110 * modification, the iterator fails quickly and cleanly, rather than risking 111 * arbitrary, non-deterministic behavior at an undetermined time in the future. 112 * 113 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed 114 * as it is, generally speaking, impossible to make any hard guarantees in the 115 * presence of unsynchronized concurrent modification. Fail-fast iterators 116 * throw {@code ConcurrentModificationException} on a best-effort basis. 117 * Therefore, it would be wrong to write a program that depended on this 118 * exception for its correctness: <i>the fail-fast behavior of iterators 119 * should be used only to detect bugs.</i> 120 * 121 * <p>This class is a member of the 122 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> 123 * Java Collections Framework</a>. 124 * 125 * @apiNote 126 * <div class="preview-block"> 127 * <div class="preview-comment"> 128 * Objects that are {@linkplain Class#isValue() value objects} do not have identity 129 * and can not be used as keys in a {@code WeakHashMap}. {@linkplain java.lang.ref.Reference References} 130 * such as {@linkplain WeakReference WeakReference} used by {@code WeakhashMap} 131 * to hold the key cannot refer to a value object. 132 * Methods such as {@linkplain #get get} or {@linkplain #containsKey containsKey} 133 * will always return {@code null} or {@code false} respectively. 134 * The methods such as {@linkplain #put put}, {@linkplain #putAll putAll}, 135 * {@linkplain #compute(Object, BiFunction) compute}, and 136 * {@linkplain #computeIfAbsent(Object, Function) computeIfAbsent} or any method putting 137 * a value object, as a key, throw {@link IdentityException}. 138 * </div> 139 * </div> 140 * 141 * @param <K> the type of keys maintained by this map 142 * @param <V> the type of mapped values 143 * 144 * @author Doug Lea 145 * @author Josh Bloch 146 * @author Mark Reinhold 147 * @since 1.2 148 * @see java.util.HashMap 149 * @see java.lang.ref.WeakReference 150 */ 151 public class WeakHashMap<K,V> 152 extends AbstractMap<K,V> 153 implements Map<K,V> { 154 155 /** 156 * The default initial capacity -- MUST be a power of two. 157 */ 158 private static final int DEFAULT_INITIAL_CAPACITY = 16; 159 160 /** 161 * The maximum capacity, used if a higher value is implicitly specified 162 * by either of the constructors with arguments. 163 * MUST be a power of two <= 1<<30. 164 */ 165 private static final int MAXIMUM_CAPACITY = 1 << 30; 166 167 /** 168 * The load factor used when none specified in constructor. 169 */ 170 private static final float DEFAULT_LOAD_FACTOR = 0.75f; 171 172 /** 173 * The table, resized as necessary. Length MUST Always be a power of two. 174 */ 175 Entry<K,V>[] table; 176 177 /** 178 * The number of key-value mappings contained in this weak hash map. 179 */ 180 private int size; 181 182 /** 183 * The next size value at which to resize (capacity * load factor). 184 */ 185 private int threshold; 186 187 /** 188 * The load factor for the hash table. 189 */ 190 private final float loadFactor; 191 192 /** 193 * Reference queue for cleared WeakEntries 194 */ 195 private final ReferenceQueue<Object> queue = new ReferenceQueue<>(); 196 197 /** 198 * The number of times this WeakHashMap has been structurally modified. 199 * Structural modifications are those that change the number of 200 * mappings in the map or otherwise modify its internal structure 201 * (e.g., rehash). This field is used to make iterators on 202 * Collection-views of the map fail-fast. 203 * 204 * @see ConcurrentModificationException 205 */ 206 int modCount; 207 208 @SuppressWarnings("unchecked") 209 private Entry<K,V>[] newTable(int n) { 210 return (Entry<K,V>[]) new Entry<?,?>[n]; 211 } 212 213 /** 214 * Constructs a new, empty {@code WeakHashMap} with the given initial 215 * capacity and the given load factor. 216 * 217 * @apiNote 218 * To create a {@code WeakHashMap} with an initial capacity that accommodates 219 * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}. 220 * 221 * @param initialCapacity The initial capacity of the {@code WeakHashMap} 222 * @param loadFactor The load factor of the {@code WeakHashMap} 223 * @throws IllegalArgumentException if the initial capacity is negative, 224 * or if the load factor is nonpositive. 225 */ 226 public WeakHashMap(int initialCapacity, float loadFactor) { 227 if (initialCapacity < 0) 228 throw new IllegalArgumentException("Illegal Initial Capacity: "+ 229 initialCapacity); 230 if (initialCapacity > MAXIMUM_CAPACITY) 231 initialCapacity = MAXIMUM_CAPACITY; 232 233 if (loadFactor <= 0 || Float.isNaN(loadFactor)) 234 throw new IllegalArgumentException("Illegal Load factor: "+ 235 loadFactor); 236 int capacity = HashMap.tableSizeFor(initialCapacity); 237 table = newTable(capacity); 238 this.loadFactor = loadFactor; 239 threshold = (int)(capacity * loadFactor); 240 } 241 242 /** 243 * Constructs a new, empty {@code WeakHashMap} with the given initial 244 * capacity and the default load factor (0.75). 245 * 246 * @apiNote 247 * To create a {@code WeakHashMap} with an initial capacity that accommodates 248 * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}. 249 * 250 * @param initialCapacity The initial capacity of the {@code WeakHashMap} 251 * @throws IllegalArgumentException if the initial capacity is negative 252 */ 253 public WeakHashMap(int initialCapacity) { 254 this(initialCapacity, DEFAULT_LOAD_FACTOR); 255 } 256 257 /** 258 * Constructs a new, empty {@code WeakHashMap} with the default initial 259 * capacity (16) and load factor (0.75). 260 */ 261 public WeakHashMap() { 262 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); 263 } 264 265 /** 266 * Constructs a new {@code WeakHashMap} with the same mappings as the 267 * specified map. The {@code WeakHashMap} is created with the default 268 * load factor (0.75) and an initial capacity sufficient to hold the 269 * mappings in the specified map. 270 * 271 * @param m the map whose mappings are to be placed in this map 272 * @throws NullPointerException if the specified map is null 273 * @since 1.3 274 */ 275 @SuppressWarnings("this-escape") 276 public WeakHashMap(Map<? extends K, ? extends V> m) { 277 this(Math.max((int) Math.ceil(m.size() / (double)DEFAULT_LOAD_FACTOR), 278 DEFAULT_INITIAL_CAPACITY), 279 DEFAULT_LOAD_FACTOR); 280 putAll(m); 281 } 282 283 // internal utilities 284 285 /** 286 * Value representing null keys inside tables. 287 */ 288 private static final Object NULL_KEY = new Object(); 289 290 /** 291 * Use NULL_KEY for key if it is null. 292 */ 293 private static Object maskNull(Object key) { 294 return (key == null) ? NULL_KEY : key; 295 } 296 297 /** 298 * Returns internal representation of null key back to caller as null. 299 */ 300 static Object unmaskNull(Object key) { 301 return (key == NULL_KEY) ? null : key; 302 } 303 304 /** 305 * Checks for equality of non-null reference x and possibly-null y. By 306 * default uses Object.equals. 307 * The key may be a value object, but it will never be equal to the referent 308 * so does not need a separate Objects.hasIdentity check. 309 */ 310 private boolean matchesKey(Entry<K,V> e, Object key) { 311 // check if the given entry refers to the given key without 312 // keeping a strong reference to the entry's referent 313 if (e.refersTo(key)) return true; 314 315 // then check for equality if the referent is not cleared 316 Object k = e.get(); 317 return k != null && key.equals(k); 318 } 319 320 /** 321 * Retrieve object hash code and applies a supplemental hash function to the 322 * result hash, which defends against poor quality hash functions. This is 323 * critical because HashMap uses power-of-two length hash tables, that 324 * otherwise encounter collisions for hashCodes that do not differ 325 * in lower bits. 326 */ 327 final int hash(Object k) { 328 int h = k.hashCode(); 329 330 // This function ensures that hashCodes that differ only by 331 // constant multiples at each bit position have a bounded 332 // number of collisions (approximately 8 at default load factor). 333 h ^= (h >>> 20) ^ (h >>> 12); 334 return h ^ (h >>> 7) ^ (h >>> 4); 335 } 336 337 /** 338 * Returns index for hash code h. 339 */ 340 private static int indexFor(int h, int length) { 341 return h & (length-1); 342 } 343 344 /** 345 * Expunges stale entries from the table. 346 */ 347 private void expungeStaleEntries() { 348 for (Object x; (x = queue.poll()) != null; ) { 349 synchronized (queue) { 350 @SuppressWarnings("unchecked") 351 Entry<K,V> e = (Entry<K,V>) x; 352 int i = indexFor(e.hash, table.length); 353 354 Entry<K,V> prev = table[i]; 355 Entry<K,V> p = prev; 356 while (p != null) { 357 Entry<K,V> next = p.next; 358 if (p == e) { 359 if (prev == e) 360 table[i] = next; 361 else 362 prev.next = next; 363 // Must not null out e.next; 364 // stale entries may be in use by a HashIterator 365 e.value = null; // Help GC 366 size--; 367 break; 368 } 369 prev = p; 370 p = next; 371 } 372 } 373 } 374 } 375 376 /** 377 * Returns the table after first expunging stale entries. 378 */ 379 private Entry<K,V>[] getTable() { 380 expungeStaleEntries(); 381 return table; 382 } 383 384 /** 385 * Returns the number of key-value mappings in this map. 386 * This result is a snapshot, and may not reflect unprocessed 387 * entries that will be removed before next attempted access 388 * because they are no longer referenced. 389 */ 390 public int size() { 391 if (size == 0) 392 return 0; 393 expungeStaleEntries(); 394 return size; 395 } 396 397 /** 398 * Returns {@code true} if this map contains no key-value mappings. 399 * This result is a snapshot, and may not reflect unprocessed 400 * entries that will be removed before next attempted access 401 * because they are no longer referenced. 402 */ 403 public boolean isEmpty() { 404 return size() == 0; 405 } 406 407 /** 408 * Returns the value to which the specified key is mapped, 409 * or {@code null} if this map contains no mapping for the key. 410 * 411 * <p>More formally, if this map contains a mapping from a key 412 * {@code k} to a value {@code v} such that 413 * {@code Objects.equals(key, k)}, 414 * then this method returns {@code v}; otherwise 415 * it returns {@code null}. (There can be at most one such mapping.) 416 * 417 * <p>A return value of {@code null} does not <i>necessarily</i> 418 * indicate that the map contains no mapping for the key; it's also 419 * possible that the map explicitly maps the key to {@code null}. 420 * The {@link #containsKey containsKey} operation may be used to 421 * distinguish these two cases. 422 * 423 * @see #put(Object, Object) 424 */ 425 public V get(Object key) { 426 Object k = maskNull(key); 427 int h = hash(k); 428 Entry<K,V>[] tab = getTable(); 429 int index = indexFor(h, tab.length); 430 Entry<K,V> e = tab[index]; 431 while (e != null) { 432 if (e.hash == h && matchesKey(e, k)) 433 return e.value; 434 e = e.next; 435 } 436 return null; 437 } 438 439 /** 440 * Returns {@code true} if this map contains a mapping for the 441 * specified key. 442 * 443 * @param key The key whose presence in this map is to be tested 444 * @return {@code true} if there is a mapping for {@code key}; 445 * {@code false} otherwise 446 */ 447 public boolean containsKey(Object key) { 448 return getEntry(key) != null; 449 } 450 451 /** 452 * Returns the entry associated with the specified key in this map. 453 * Returns null if the map contains no mapping for this key. 454 */ 455 Entry<K,V> getEntry(Object key) { 456 Object k = maskNull(key); 457 int h = hash(k); 458 Entry<K,V>[] tab = getTable(); 459 int index = indexFor(h, tab.length); 460 Entry<K,V> e = tab[index]; 461 while (e != null && !(e.hash == h && matchesKey(e, k))) 462 e = e.next; 463 return e; 464 } 465 466 /** 467 * Associates the specified value with the specified key in this map. 468 * If the map previously contained a mapping for this key, the old 469 * value is replaced. 470 * 471 * @param key key with which the specified value is to be associated. 472 * @param value value to be associated with the specified key. 473 * @return the previous value associated with {@code key}, or 474 * {@code null} if there was no mapping for {@code key}. 475 * (A {@code null} return can also indicate that the map 476 * previously associated {@code null} with {@code key}.) 477 * @throws IdentityException if {@code key} is a value object 478 */ 479 public V put(K key, V value) { 480 Object k = maskNull(key); 481 Objects.requireIdentity(k); 482 int h = hash(k); 483 Entry<K,V>[] tab = getTable(); 484 int i = indexFor(h, tab.length); 485 486 for (Entry<K,V> e = tab[i]; e != null; e = e.next) { 487 if (h == e.hash && matchesKey(e, k)) { 488 V oldValue = e.value; 489 if (value != oldValue) 490 e.value = value; 491 return oldValue; 492 } 493 } 494 495 modCount++; 496 Entry<K,V> e = tab[i]; 497 tab[i] = new Entry<>(k, value, queue, h, e); 498 if (++size > threshold) 499 resize(tab.length * 2); 500 return null; 501 } 502 503 /** 504 * Rehashes the contents of this map into a new array with a 505 * larger capacity. This method is called automatically when the 506 * number of keys in this map reaches its threshold. 507 * 508 * If current capacity is MAXIMUM_CAPACITY, this method does not 509 * resize the map, but sets threshold to Integer.MAX_VALUE. 510 * This has the effect of preventing future calls. 511 * 512 * @param newCapacity the new capacity, MUST be a power of two; 513 * must be greater than current capacity unless current 514 * capacity is MAXIMUM_CAPACITY (in which case value 515 * is irrelevant). 516 */ 517 void resize(int newCapacity) { 518 Entry<K,V>[] oldTable = getTable(); 519 int oldCapacity = oldTable.length; 520 if (oldCapacity == MAXIMUM_CAPACITY) { 521 threshold = Integer.MAX_VALUE; 522 return; 523 } 524 525 Entry<K,V>[] newTable = newTable(newCapacity); 526 transfer(oldTable, newTable); 527 table = newTable; 528 529 /* 530 * If ignoring null elements and processing ref queue caused massive 531 * shrinkage, then restore old table. This should be rare, but avoids 532 * unbounded expansion of garbage-filled tables. 533 */ 534 if (size >= threshold / 2) { 535 threshold = (int)(newCapacity * loadFactor); 536 } else { 537 expungeStaleEntries(); 538 transfer(newTable, oldTable); 539 table = oldTable; 540 } 541 } 542 543 /** Transfers all entries from src to dest tables */ 544 private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) { 545 for (int j = 0; j < src.length; ++j) { 546 Entry<K,V> e = src[j]; 547 src[j] = null; 548 while (e != null) { 549 Entry<K,V> next = e.next; 550 if (e.refersTo(null)) { 551 e.next = null; // Help GC 552 e.value = null; // " " 553 size--; 554 } else { 555 int i = indexFor(e.hash, dest.length); 556 e.next = dest[i]; 557 dest[i] = e; 558 } 559 e = next; 560 } 561 } 562 } 563 564 /** 565 * Copies all of the mappings from the specified map to this map. 566 * These mappings will replace any mappings that this map had for any 567 * of the keys currently in the specified map. 568 * 569 * @apiNote If the specified map contains keys that are {@linkplain Objects#isValueObject value objects} 570 * an {@linkplain IdentityException } is thrown when the first value object key is encountered. 571 * Zero or more mappings may have already been copied to this map. 572 * 573 * @param m mappings to be stored in this map. 574 * @throws NullPointerException if the specified map is null. 575 * @throws IdentityException if any of the {@code keys} is a value object 576 */ 577 public void putAll(Map<? extends K, ? extends V> m) { 578 int numKeysToBeAdded = m.size(); 579 if (numKeysToBeAdded == 0) 580 return; 581 582 /* 583 * Expand the map if the map if the number of mappings to be added 584 * is greater than or equal to threshold. This is conservative; the 585 * obvious condition is (m.size() + size) >= threshold, but this 586 * condition could result in a map with twice the appropriate capacity, 587 * if the keys to be added overlap with the keys already in this map. 588 * By using the conservative calculation, we subject ourself 589 * to at most one extra resize. 590 */ 591 if (numKeysToBeAdded > threshold) { 592 int targetCapacity = (int)Math.ceil(numKeysToBeAdded / (double)loadFactor); 593 if (targetCapacity > MAXIMUM_CAPACITY) 594 targetCapacity = MAXIMUM_CAPACITY; 595 int newCapacity = table.length; 596 while (newCapacity < targetCapacity) 597 newCapacity <<= 1; 598 if (newCapacity > table.length) 599 resize(newCapacity); 600 } 601 602 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) 603 put(e.getKey(), e.getValue()); 604 } 605 606 /** 607 * Removes the mapping for a key from this weak hash map if it is present. 608 * More formally, if this map contains a mapping from key {@code k} to 609 * value {@code v} such that <code>(key==null ? k==null : 610 * key.equals(k))</code>, that mapping is removed. (The map can contain 611 * at most one such mapping.) 612 * 613 * <p>Returns the value to which this map previously associated the key, 614 * or {@code null} if the map contained no mapping for the key. A 615 * return value of {@code null} does not <i>necessarily</i> indicate 616 * that the map contained no mapping for the key; it's also possible 617 * that the map explicitly mapped the key to {@code null}. 618 * 619 * <p>The map will not contain a mapping for the specified key once the 620 * call returns. 621 * 622 * @param key key whose mapping is to be removed from the map 623 * @return the previous value associated with {@code key}, or 624 * {@code null} if there was no mapping for {@code key} 625 */ 626 public V remove(Object key) { 627 Object k = maskNull(key); 628 int h = hash(k); 629 Entry<K,V>[] tab = getTable(); 630 int i = indexFor(h, tab.length); 631 Entry<K,V> prev = tab[i]; 632 Entry<K,V> e = prev; 633 634 while (e != null) { 635 Entry<K,V> next = e.next; 636 if (h == e.hash && matchesKey(e, k)) { 637 modCount++; 638 size--; 639 if (prev == e) 640 tab[i] = next; 641 else 642 prev.next = next; 643 return e.value; 644 } 645 prev = e; 646 e = next; 647 } 648 649 return null; 650 } 651 652 /** Special version of remove needed by Entry set */ 653 boolean removeMapping(Object o) { 654 if (!(o instanceof Map.Entry<?, ?> entry)) 655 return false; 656 Entry<K,V>[] tab = getTable(); 657 Object k = maskNull(entry.getKey()); 658 int h = hash(k); 659 int i = indexFor(h, tab.length); 660 Entry<K,V> prev = tab[i]; 661 Entry<K,V> e = prev; 662 663 while (e != null) { 664 Entry<K,V> next = e.next; 665 if (h == e.hash && e.equals(entry)) { 666 modCount++; 667 size--; 668 if (prev == e) 669 tab[i] = next; 670 else 671 prev.next = next; 672 return true; 673 } 674 prev = e; 675 e = next; 676 } 677 678 return false; 679 } 680 681 /** 682 * Removes all of the mappings from this map. 683 * The map will be empty after this call returns. 684 */ 685 public void clear() { 686 // clear out ref queue. We don't need to expunge entries 687 // since table is getting cleared. 688 while (queue.poll() != null) 689 ; 690 691 modCount++; 692 Arrays.fill(table, null); 693 size = 0; 694 695 // Allocation of array may have caused GC, which may have caused 696 // additional entries to go stale. Removing these entries from the 697 // reference queue will make them eligible for reclamation. 698 while (queue.poll() != null) 699 ; 700 } 701 702 /** 703 * Returns {@code true} if this map maps one or more keys to the 704 * specified value. 705 * 706 * @param value value whose presence in this map is to be tested 707 * @return {@code true} if this map maps one or more keys to the 708 * specified value 709 */ 710 public boolean containsValue(Object value) { 711 if (value==null) 712 return containsNullValue(); 713 714 Entry<K,V>[] tab = getTable(); 715 for (int i = tab.length; i-- > 0;) 716 for (Entry<K,V> e = tab[i]; e != null; e = e.next) 717 if (value.equals(e.value)) 718 return true; 719 return false; 720 } 721 722 /** 723 * Special-case code for containsValue with null argument 724 */ 725 private boolean containsNullValue() { 726 Entry<K,V>[] tab = getTable(); 727 for (int i = tab.length; i-- > 0;) 728 for (Entry<K,V> e = tab[i]; e != null; e = e.next) 729 if (e.value==null) 730 return true; 731 return false; 732 } 733 734 /** 735 * The entries in this hash table extend WeakReference, using its main ref 736 * field as the key. 737 */ 738 private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> { 739 V value; 740 final int hash; 741 Entry<K,V> next; 742 743 /** 744 * Creates new entry. 745 */ 746 Entry(Object key, V value, 747 ReferenceQueue<Object> queue, 748 int hash, Entry<K,V> next) { 749 super(key, queue); 750 this.value = value; 751 this.hash = hash; 752 this.next = next; 753 } 754 755 @SuppressWarnings("unchecked") 756 public K getKey() { 757 return (K) WeakHashMap.unmaskNull(get()); 758 } 759 760 public V getValue() { 761 return value; 762 } 763 764 public V setValue(V newValue) { 765 V oldValue = value; 766 value = newValue; 767 return oldValue; 768 } 769 770 public boolean equals(Object o) { 771 if (!(o instanceof Map.Entry<?, ?> e)) 772 return false; 773 K k1 = getKey(); 774 Object k2 = e.getKey(); 775 if (k1 == k2 || (k1 != null && k1.equals(k2))) { 776 V v1 = getValue(); 777 Object v2 = e.getValue(); 778 if (v1 == v2 || (v1 != null && v1.equals(v2))) 779 return true; 780 } 781 return false; 782 } 783 784 public int hashCode() { 785 K k = getKey(); 786 V v = getValue(); 787 return Objects.hashCode(k) ^ Objects.hashCode(v); 788 } 789 790 public String toString() { 791 return getKey() + "=" + getValue(); 792 } 793 } 794 795 private abstract class HashIterator<T> implements Iterator<T> { 796 private int index; 797 private Entry<K,V> entry; 798 private Entry<K,V> lastReturned; 799 private int expectedModCount = modCount; 800 801 /** 802 * Strong reference needed to avoid disappearance of key 803 * between hasNext and next 804 */ 805 private Object nextKey; 806 807 /** 808 * Strong reference needed to avoid disappearance of key 809 * between nextEntry() and any use of the entry 810 */ 811 private Object currentKey; 812 813 HashIterator() { 814 index = isEmpty() ? 0 : table.length; 815 } 816 817 public boolean hasNext() { 818 Entry<K,V>[] t = table; 819 820 while (nextKey == null) { 821 Entry<K,V> e = entry; 822 int i = index; 823 while (e == null && i > 0) 824 e = t[--i]; 825 entry = e; 826 index = i; 827 if (e == null) { 828 currentKey = null; 829 return false; 830 } 831 nextKey = e.get(); // hold on to key in strong ref 832 if (nextKey == null) 833 entry = entry.next; 834 } 835 return true; 836 } 837 838 /** The common parts of next() across different types of iterators */ 839 protected Entry<K,V> nextEntry() { 840 if (modCount != expectedModCount) 841 throw new ConcurrentModificationException(); 842 if (nextKey == null && !hasNext()) 843 throw new NoSuchElementException(); 844 845 lastReturned = entry; 846 entry = entry.next; 847 currentKey = nextKey; 848 nextKey = null; 849 return lastReturned; 850 } 851 852 public void remove() { 853 if (lastReturned == null) 854 throw new IllegalStateException(); 855 if (modCount != expectedModCount) 856 throw new ConcurrentModificationException(); 857 858 WeakHashMap.this.remove(currentKey); 859 expectedModCount = modCount; 860 lastReturned = null; 861 currentKey = null; 862 } 863 864 } 865 866 private class ValueIterator extends HashIterator<V> { 867 public V next() { 868 return nextEntry().value; 869 } 870 } 871 872 private class KeyIterator extends HashIterator<K> { 873 public K next() { 874 return nextEntry().getKey(); 875 } 876 } 877 878 private class EntryIterator extends HashIterator<Map.Entry<K,V>> { 879 public Map.Entry<K,V> next() { 880 return nextEntry(); 881 } 882 } 883 884 // Views 885 886 private transient Set<Map.Entry<K,V>> entrySet; 887 888 /** 889 * Returns a {@link Set} view of the keys contained in this map. 890 * The set is backed by the map, so changes to the map are 891 * reflected in the set, and vice-versa. If the map is modified 892 * while an iteration over the set is in progress (except through 893 * the iterator's own {@code remove} operation), the results of 894 * the iteration are undefined. The set supports element removal, 895 * which removes the corresponding mapping from the map, via the 896 * {@code Iterator.remove}, {@code Set.remove}, 897 * {@code removeAll}, {@code retainAll}, and {@code clear} 898 * operations. It does not support the {@code add} or {@code addAll} 899 * operations. 900 */ 901 public Set<K> keySet() { 902 Set<K> ks = keySet; 903 if (ks == null) { 904 ks = new KeySet(); 905 keySet = ks; 906 } 907 return ks; 908 } 909 910 private class KeySet extends AbstractSet<K> { 911 public Iterator<K> iterator() { 912 return new KeyIterator(); 913 } 914 915 public int size() { 916 return WeakHashMap.this.size(); 917 } 918 919 public boolean contains(Object o) { 920 return containsKey(o); 921 } 922 923 public boolean remove(Object o) { 924 if (containsKey(o)) { 925 WeakHashMap.this.remove(o); 926 return true; 927 } 928 else 929 return false; 930 } 931 932 public void clear() { 933 WeakHashMap.this.clear(); 934 } 935 936 public Spliterator<K> spliterator() { 937 return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0); 938 } 939 } 940 941 /** 942 * Returns a {@link Collection} view of the values contained in this map. 943 * The collection is backed by the map, so changes to the map are 944 * reflected in the collection, and vice-versa. If the map is 945 * modified while an iteration over the collection is in progress 946 * (except through the iterator's own {@code remove} operation), 947 * the results of the iteration are undefined. The collection 948 * supports element removal, which removes the corresponding 949 * mapping from the map, via the {@code Iterator.remove}, 950 * {@code Collection.remove}, {@code removeAll}, 951 * {@code retainAll} and {@code clear} operations. It does not 952 * support the {@code add} or {@code addAll} operations. 953 */ 954 public Collection<V> values() { 955 Collection<V> vs = values; 956 if (vs == null) { 957 vs = new Values(); 958 values = vs; 959 } 960 return vs; 961 } 962 963 private class Values extends AbstractCollection<V> { 964 public Iterator<V> iterator() { 965 return new ValueIterator(); 966 } 967 968 public int size() { 969 return WeakHashMap.this.size(); 970 } 971 972 public boolean contains(Object o) { 973 return containsValue(o); 974 } 975 976 public void clear() { 977 WeakHashMap.this.clear(); 978 } 979 980 public Spliterator<V> spliterator() { 981 return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0); 982 } 983 } 984 985 /** 986 * Returns a {@link Set} view of the mappings contained in this map. 987 * The set is backed by the map, so changes to the map are 988 * reflected in the set, and vice-versa. If the map is modified 989 * while an iteration over the set is in progress (except through 990 * the iterator's own {@code remove} operation, or through the 991 * {@code setValue} operation on a map entry returned by the 992 * iterator) the results of the iteration are undefined. The set 993 * supports element removal, which removes the corresponding 994 * mapping from the map, via the {@code Iterator.remove}, 995 * {@code Set.remove}, {@code removeAll}, {@code retainAll} and 996 * {@code clear} operations. It does not support the 997 * {@code add} or {@code addAll} operations. 998 */ 999 public Set<Map.Entry<K,V>> entrySet() { 1000 Set<Map.Entry<K,V>> es = entrySet; 1001 return es != null ? es : (entrySet = new EntrySet()); 1002 } 1003 1004 private class EntrySet extends AbstractSet<Map.Entry<K,V>> { 1005 public Iterator<Map.Entry<K,V>> iterator() { 1006 return new EntryIterator(); 1007 } 1008 1009 public boolean contains(Object o) { 1010 return o instanceof Map.Entry<?, ?> e 1011 && getEntry(e.getKey()) != null 1012 && getEntry(e.getKey()).equals(e); 1013 } 1014 1015 public boolean remove(Object o) { 1016 return removeMapping(o); 1017 } 1018 1019 public int size() { 1020 return WeakHashMap.this.size(); 1021 } 1022 1023 public void clear() { 1024 WeakHashMap.this.clear(); 1025 } 1026 1027 private List<Map.Entry<K,V>> deepCopy() { 1028 List<Map.Entry<K,V>> list = new ArrayList<>(size()); 1029 for (Map.Entry<K,V> e : this) 1030 list.add(new AbstractMap.SimpleEntry<>(e)); 1031 return list; 1032 } 1033 1034 public Object[] toArray() { 1035 return deepCopy().toArray(); 1036 } 1037 1038 public <T> T[] toArray(T[] a) { 1039 return deepCopy().toArray(a); 1040 } 1041 1042 public Spliterator<Map.Entry<K,V>> spliterator() { 1043 return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0); 1044 } 1045 } 1046 1047 @SuppressWarnings("unchecked") 1048 @Override 1049 public void forEach(BiConsumer<? super K, ? super V> action) { 1050 Objects.requireNonNull(action); 1051 int expectedModCount = modCount; 1052 1053 Entry<K, V>[] tab = getTable(); 1054 for (Entry<K, V> entry : tab) { 1055 while (entry != null) { 1056 Object key = entry.get(); 1057 if (key != null) { 1058 action.accept((K)WeakHashMap.unmaskNull(key), entry.value); 1059 } 1060 entry = entry.next; 1061 1062 if (expectedModCount != modCount) { 1063 throw new ConcurrentModificationException(); 1064 } 1065 } 1066 } 1067 } 1068 1069 @SuppressWarnings("unchecked") 1070 @Override 1071 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { 1072 Objects.requireNonNull(function); 1073 int expectedModCount = modCount; 1074 1075 Entry<K, V>[] tab = getTable(); 1076 for (Entry<K, V> entry : tab) { 1077 while (entry != null) { 1078 Object key = entry.get(); 1079 if (key != null) { 1080 entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value); 1081 } 1082 entry = entry.next; 1083 1084 if (expectedModCount != modCount) { 1085 throw new ConcurrentModificationException(); 1086 } 1087 } 1088 } 1089 } 1090 1091 /** 1092 * Similar form as other hash Spliterators, but skips dead 1093 * elements. 1094 */ 1095 static class WeakHashMapSpliterator<K,V> { 1096 final WeakHashMap<K,V> map; 1097 WeakHashMap.Entry<K,V> current; // current node 1098 int index; // current index, modified on advance/split 1099 int fence; // -1 until first use; then one past last index 1100 int est; // size estimate 1101 int expectedModCount; // for comodification checks 1102 1103 WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin, 1104 int fence, int est, 1105 int expectedModCount) { 1106 this.map = m; 1107 this.index = origin; 1108 this.fence = fence; 1109 this.est = est; 1110 this.expectedModCount = expectedModCount; 1111 } 1112 1113 final int getFence() { // initialize fence and size on first use 1114 int hi; 1115 if ((hi = fence) < 0) { 1116 WeakHashMap<K,V> m = map; 1117 est = m.size(); 1118 expectedModCount = m.modCount; 1119 hi = fence = m.table.length; 1120 } 1121 return hi; 1122 } 1123 1124 public final long estimateSize() { 1125 getFence(); // force init 1126 return (long) est; 1127 } 1128 } 1129 1130 static final class KeySpliterator<K,V> 1131 extends WeakHashMapSpliterator<K,V> 1132 implements Spliterator<K> { 1133 KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, 1134 int expectedModCount) { 1135 super(m, origin, fence, est, expectedModCount); 1136 } 1137 1138 public KeySpliterator<K,V> trySplit() { 1139 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1140 return (lo >= mid) ? null : 1141 new KeySpliterator<>(map, lo, index = mid, est >>>= 1, 1142 expectedModCount); 1143 } 1144 1145 public void forEachRemaining(Consumer<? super K> action) { 1146 int i, hi, mc; 1147 if (action == null) 1148 throw new NullPointerException(); 1149 WeakHashMap<K,V> m = map; 1150 WeakHashMap.Entry<K,V>[] tab = m.table; 1151 if ((hi = fence) < 0) { 1152 mc = expectedModCount = m.modCount; 1153 hi = fence = tab.length; 1154 } 1155 else 1156 mc = expectedModCount; 1157 if (tab.length >= hi && (i = index) >= 0 && 1158 (i < (index = hi) || current != null)) { 1159 WeakHashMap.Entry<K,V> p = current; 1160 current = null; // exhaust 1161 do { 1162 if (p == null) 1163 p = tab[i++]; 1164 else { 1165 Object x = p.get(); 1166 p = p.next; 1167 if (x != null) { 1168 @SuppressWarnings("unchecked") K k = 1169 (K) WeakHashMap.unmaskNull(x); 1170 action.accept(k); 1171 } 1172 } 1173 } while (p != null || i < hi); 1174 } 1175 if (m.modCount != mc) 1176 throw new ConcurrentModificationException(); 1177 } 1178 1179 public boolean tryAdvance(Consumer<? super K> action) { 1180 int hi; 1181 if (action == null) 1182 throw new NullPointerException(); 1183 WeakHashMap.Entry<K,V>[] tab = map.table; 1184 if (tab.length >= (hi = getFence()) && index >= 0) { 1185 while (current != null || index < hi) { 1186 if (current == null) 1187 current = tab[index++]; 1188 else { 1189 Object x = current.get(); 1190 current = current.next; 1191 if (x != null) { 1192 @SuppressWarnings("unchecked") K k = 1193 (K) WeakHashMap.unmaskNull(x); 1194 action.accept(k); 1195 if (map.modCount != expectedModCount) 1196 throw new ConcurrentModificationException(); 1197 return true; 1198 } 1199 } 1200 } 1201 } 1202 return false; 1203 } 1204 1205 public int characteristics() { 1206 return Spliterator.DISTINCT; 1207 } 1208 } 1209 1210 static final class ValueSpliterator<K,V> 1211 extends WeakHashMapSpliterator<K,V> 1212 implements Spliterator<V> { 1213 ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, 1214 int expectedModCount) { 1215 super(m, origin, fence, est, expectedModCount); 1216 } 1217 1218 public ValueSpliterator<K,V> trySplit() { 1219 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1220 return (lo >= mid) ? null : 1221 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, 1222 expectedModCount); 1223 } 1224 1225 public void forEachRemaining(Consumer<? super V> action) { 1226 int i, hi, mc; 1227 if (action == null) 1228 throw new NullPointerException(); 1229 WeakHashMap<K,V> m = map; 1230 WeakHashMap.Entry<K,V>[] tab = m.table; 1231 if ((hi = fence) < 0) { 1232 mc = expectedModCount = m.modCount; 1233 hi = fence = tab.length; 1234 } 1235 else 1236 mc = expectedModCount; 1237 if (tab.length >= hi && (i = index) >= 0 && 1238 (i < (index = hi) || current != null)) { 1239 WeakHashMap.Entry<K,V> p = current; 1240 current = null; // exhaust 1241 do { 1242 if (p == null) 1243 p = tab[i++]; 1244 else { 1245 Object x = p.get(); 1246 V v = p.value; 1247 p = p.next; 1248 if (x != null) 1249 action.accept(v); 1250 } 1251 } while (p != null || i < hi); 1252 } 1253 if (m.modCount != mc) 1254 throw new ConcurrentModificationException(); 1255 } 1256 1257 public boolean tryAdvance(Consumer<? super V> action) { 1258 int hi; 1259 if (action == null) 1260 throw new NullPointerException(); 1261 WeakHashMap.Entry<K,V>[] tab = map.table; 1262 if (tab.length >= (hi = getFence()) && index >= 0) { 1263 while (current != null || index < hi) { 1264 if (current == null) 1265 current = tab[index++]; 1266 else { 1267 Object x = current.get(); 1268 V v = current.value; 1269 current = current.next; 1270 if (x != null) { 1271 action.accept(v); 1272 if (map.modCount != expectedModCount) 1273 throw new ConcurrentModificationException(); 1274 return true; 1275 } 1276 } 1277 } 1278 } 1279 return false; 1280 } 1281 1282 public int characteristics() { 1283 return 0; 1284 } 1285 } 1286 1287 static final class EntrySpliterator<K,V> 1288 extends WeakHashMapSpliterator<K,V> 1289 implements Spliterator<Map.Entry<K,V>> { 1290 EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, 1291 int expectedModCount) { 1292 super(m, origin, fence, est, expectedModCount); 1293 } 1294 1295 public EntrySpliterator<K,V> trySplit() { 1296 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 1297 return (lo >= mid) ? null : 1298 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, 1299 expectedModCount); 1300 } 1301 1302 1303 public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) { 1304 int i, hi, mc; 1305 if (action == null) 1306 throw new NullPointerException(); 1307 WeakHashMap<K,V> m = map; 1308 WeakHashMap.Entry<K,V>[] tab = m.table; 1309 if ((hi = fence) < 0) { 1310 mc = expectedModCount = m.modCount; 1311 hi = fence = tab.length; 1312 } 1313 else 1314 mc = expectedModCount; 1315 if (tab.length >= hi && (i = index) >= 0 && 1316 (i < (index = hi) || current != null)) { 1317 WeakHashMap.Entry<K,V> p = current; 1318 current = null; // exhaust 1319 do { 1320 if (p == null) 1321 p = tab[i++]; 1322 else { 1323 Object x = p.get(); 1324 V v = p.value; 1325 p = p.next; 1326 if (x != null) { 1327 @SuppressWarnings("unchecked") K k = 1328 (K) WeakHashMap.unmaskNull(x); 1329 action.accept 1330 (new AbstractMap.SimpleImmutableEntry<>(k, v)); 1331 } 1332 } 1333 } while (p != null || i < hi); 1334 } 1335 if (m.modCount != mc) 1336 throw new ConcurrentModificationException(); 1337 } 1338 1339 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { 1340 int hi; 1341 if (action == null) 1342 throw new NullPointerException(); 1343 WeakHashMap.Entry<K,V>[] tab = map.table; 1344 if (tab.length >= (hi = getFence()) && index >= 0) { 1345 while (current != null || index < hi) { 1346 if (current == null) 1347 current = tab[index++]; 1348 else { 1349 Object x = current.get(); 1350 V v = current.value; 1351 current = current.next; 1352 if (x != null) { 1353 @SuppressWarnings("unchecked") K k = 1354 (K) WeakHashMap.unmaskNull(x); 1355 action.accept 1356 (new AbstractMap.SimpleImmutableEntry<>(k, v)); 1357 if (map.modCount != expectedModCount) 1358 throw new ConcurrentModificationException(); 1359 return true; 1360 } 1361 } 1362 } 1363 } 1364 return false; 1365 } 1366 1367 public int characteristics() { 1368 return Spliterator.DISTINCT; 1369 } 1370 } 1371 1372 /** 1373 * Creates a new, empty WeakHashMap suitable for the expected number of mappings. 1374 * The returned map uses the default load factor of 0.75, and its initial capacity is 1375 * generally large enough so that the expected number of mappings can be added 1376 * without resizing the map. 1377 * 1378 * @param numMappings the expected number of mappings 1379 * @param <K> the type of keys maintained by the new map 1380 * @param <V> the type of mapped values 1381 * @return the newly created map 1382 * @throws IllegalArgumentException if numMappings is negative 1383 * @since 19 1384 */ 1385 public static <K, V> WeakHashMap<K, V> newWeakHashMap(int numMappings) { 1386 if (numMappings < 0) { 1387 throw new IllegalArgumentException("Negative number of mappings: " + numMappings); 1388 } 1389 return new WeakHashMap<>(HashMap.calculateHashMapCapacity(numMappings)); 1390 } 1391 1392 }