1 /*
   2  * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import sun.security.action.GetPropertyAction;
  29 
  30 import java.lang.ref.SoftReference;
  31 import java.lang.ref.WeakReference;
  32 import java.lang.ref.ReferenceQueue;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 
  37 
  38 /**
  39  * Hash table based implementation of the {@code Map} interface, with
  40  * <em>weak keys</em>.
  41  * An entry in a {@code WeakHashMap} will automatically be removed when
  42  * its key is no longer in ordinary use.
  43  * More precisely, for keys that are identity objects, the presence of a
  44  * mapping for a given key will not prevent the key from being discarded by the
  45  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  46  * For keys that are {@linkplain Class#isValue() value objects}, the retention of the
  47  * key and value depends on the {@link ValuePolicy} for the {@code WeakHashMap} and
  48  * the garbage collection handling of objects that are linked by {@link SoftReference}.
  49  * When a key has been discarded its entry is effectively removed from the map,
  50  * so this class behaves somewhat differently from other {@code Map}
  51  * implementations.
  52  *
  53  * <p>
  54  * Keys that are {@linkplain Class#isValue() value objects} do not have identity and cannot be
  55  * the referent in any {@link java.lang.ref.Reference} including {@link WeakReference}.
  56  * The retention of entries with keys that are value objects is selected
  57  * using {@link ValuePolicy} when the {@code WeakHashMap} is created.
  58  * The default {@code ValuePolicy} is {@link ValuePolicy#defaultValuePolicy()}.
  59  * The retention modes implemented by {@link #put(Object, Object) WeakHashMap.put(k,v)} are:
  60  * <UL>
  61  *     <LI> {@linkplain ValuePolicy#STRONG SOFT} - entries have a lifetime similar to
  62  *          referents of {@link SoftReference},
  63  *     <LI> {@linkplain ValuePolicy#STRONG STRONG} - entries are retained until removed,
  64  *     <LI> {@linkplain ValuePolicy#STRONG DISCARD} - entries are discarded and not put in the map,
  65  *     <LI> {@linkplain ValuePolicy#STRONG THROW} - entries are not inserted and
  66  *          {@link #put(Object, Object) put(k,v)} throws {@link IdentityException}
  67  * </UL>
  68  *
  69  * <p> Both null values and the null key are supported. This class has
  70  * performance characteristics similar to those of the {@code HashMap}
  71  * class, and has the same efficiency parameters of <em>initial capacity</em>
  72  * and <em>load factor</em>.
  73  *
  74  * <p> Like most collection classes, this class is not synchronized.
  75  * A synchronized {@code WeakHashMap} may be constructed using the
  76  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  77  * method.
  78  *
  79  * <p> <i>Update needed for Value Objects:
  80  * <br>This class is intended primarily for use with key objects whose
  81  * {@code equals} methods test for object identity using the
  82  * {@code ==} operator.  Once such a key is discarded it can never be
  83  * recreated, so it is impossible to do a lookup of that key in a
  84  * {@code WeakHashMap} at some later time and be surprised that its entry
  85  * has been removed.  This class will work perfectly well with key objects
  86  * whose {@code equals} methods are not based upon object identity, such
  87  * as {@code String} instances.  With such recreatable key objects,
  88  * however, the automatic removal of {@code WeakHashMap} entries whose
  89  * keys have been discarded may prove to be confusing.</i>
  90  *
  91  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  92  * the actions of the garbage collector, so several familiar (though not
  93  * required) {@code Map} invariants do not hold for this class.  Because
  94  * the garbage collector may discard keys at any time, a
  95  * {@code WeakHashMap} may behave as though an unknown thread is silently
  96  * removing entries.  In particular, even if you synchronize on a
  97  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  98  * is possible for the {@code size} method to return smaller values over
  99  * time, for the {@code isEmpty} method to return {@code false} and
 100  * then {@code true}, for the {@code containsKey} method to return
 101  * {@code true} and later {@code false} for a given key, for the
 102  * {@code get} method to return a value for a given key but later return
 103  * {@code null}, for the {@code put} method to return
 104  * {@code null} and the {@code remove} method to return
 105  * {@code false} for a key that previously appeared to be in the map, and
 106  * for successive examinations of the key set, the value collection, and
 107  * the entry set to yield successively smaller numbers of elements.
 108  *
 109  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
 110  * the referent of a weak reference.  Therefore a key will automatically be
 111  * removed only after the weak references to it, both inside and outside of the
 112  * map, have been cleared by the garbage collector.
 113  *
 114  * <p> <strong>Implementation note:</strong> The value objects in a
 115  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
 116  * should be taken to ensure that value objects do not strongly refer to their
 117  * own keys, either directly or indirectly, since that will prevent the keys
 118  * from being discarded.  Note that a value object may refer indirectly to its
 119  * key via the {@code WeakHashMap} itself; that is, a value object may
 120  * strongly refer to some other key object whose associated value object, in
 121  * turn, strongly refers to the key of the first value object.  If the values
 122  * in the map do not rely on the map holding strong references to them, one way
 123  * to deal with this is to wrap values themselves within
 124  * {@code WeakReferences} before
 125  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 126  * and then unwrapping upon each {@code get}.
 127  *
 128  * <p>The iterators returned by the {@code iterator} method of the collections
 129  * returned by all of this class's "collection view methods" are
 130  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 131  * iterator is created, in any way except through the iterator's own
 132  * {@code remove} method, the iterator will throw a {@link
 133  * ConcurrentModificationException}.  Thus, in the face of concurrent
 134  * modification, the iterator fails quickly and cleanly, rather than risking
 135  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 136  *
 137  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 138  * as it is, generally speaking, impossible to make any hard guarantees in the
 139  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 140  * throw {@code ConcurrentModificationException} on a best-effort basis.
 141  * Therefore, it would be wrong to write a program that depended on this
 142  * exception for its correctness:  <i>the fail-fast behavior of iterators
 143  * should be used only to detect bugs.</i>
 144  *
 145  * <p>This class is a member of the
 146  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 147  * Java Collections Framework</a>.
 148  *
 149  * @param <K> the type of keys maintained by this map
 150  * @param <V> the type of mapped values
 151  *
 152  * @author      Doug Lea
 153  * @author      Josh Bloch
 154  * @author      Mark Reinhold
 155  * @since       1.2
 156  * @see         java.util.HashMap
 157  * @see         java.lang.ref.WeakReference
 158  */
 159 public class WeakHashMap<K,V>
 160     extends AbstractMap<K,V>
 161     implements Map<K,V> {
 162 
 163     /**
 164      * The default initial capacity -- MUST be a power of two.
 165      */
 166     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 167 
 168     /**
 169      * The maximum capacity, used if a higher value is implicitly specified
 170      * by either of the constructors with arguments.
 171      * MUST be a power of two <= 1<<30.
 172      */
 173     private static final int MAXIMUM_CAPACITY = 1 << 30;
 174 
 175     /**
 176      * The load factor used when none specified in constructor.
 177      */
 178     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 179 
 180     /**
 181      * The table, resized as necessary. Length MUST Always be a power of two.
 182      */
 183     Entry<K,V>[] table;
 184 
 185     /**
 186      * The number of key-value mappings contained in this weak hash map.
 187      */
 188     private int size;
 189 
 190     /**
 191      * The next size value at which to resize (capacity * load factor).
 192      */
 193     private int threshold;
 194 
 195     /**
 196      * The load factor for the hash table.
 197      */
 198     private final float loadFactor;
 199 
 200     /**
 201      * Reference queue for cleared WeakEntries
 202      */
 203     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 204 
 205     /**
 206      * The number of times this WeakHashMap has been structurally modified.
 207      * Structural modifications are those that change the number of
 208      * mappings in the map or otherwise modify its internal structure
 209      * (e.g., rehash).  This field is used to make iterators on
 210      * Collection-views of the map fail-fast.
 211      *
 212      * @see ConcurrentModificationException
 213      */
 214     int modCount;
 215 
 216     // Current policy with regard to keys that are Value classes.
 217     private final ValuePolicy valuePolicy;
 218 
 219     @SuppressWarnings("unchecked")
 220     private Entry<K,V>[] newTable(int n) {
 221         return (Entry<K,V>[]) new Entry<?,?>[n];
 222     }
 223 
 224     /**
 225      * Constructs a new, empty {@code WeakHashMap} with the given initial
 226      * capacity and the given load factor.
 227      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 228      * default policy for value objects}.
 229      *
 230      * @apiNote
 231      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 232      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 233      *
 234      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 235      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 236      * @throws IllegalArgumentException if the initial capacity is negative,
 237      *         or if the load factor is nonpositive.
 238      */
 239     public WeakHashMap(int initialCapacity, float loadFactor) {
 240         this(initialCapacity, loadFactor, ValuePolicy.DEFAULT_VALUE_POLICY);
 241     }
 242 
 243     /**
 244      * Constructs a new, empty {@code WeakHashMap} with the given initial
 245      * capacity, the given load factor, and value policy.
 246      *
 247      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 248      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 249      * @param  valuePolicy     The {@link ValuePolicy} for keys that are value objects
 250      * @throws IllegalArgumentException if the initial capacity is negative,
 251      *         or if the load factor is nonpositive.
 252      * @throws NullPointerException if {@code valuePolicy} is null
 253      * @since Valhalla
 254      */
 255     public WeakHashMap(int initialCapacity, float loadFactor, ValuePolicy valuePolicy) {
 256         if (initialCapacity < 0)
 257             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 258                                                initialCapacity);
 259         if (initialCapacity > MAXIMUM_CAPACITY)
 260             initialCapacity = MAXIMUM_CAPACITY;
 261 
 262         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 263             throw new IllegalArgumentException("Illegal Load factor: "+
 264                                                loadFactor);
 265         this.valuePolicy = Objects.requireNonNull(valuePolicy, "valuePolicy");
 266         int capacity = HashMap.tableSizeFor(initialCapacity);
 267         table = newTable(capacity);
 268         this.loadFactor = loadFactor;
 269         threshold = (int)(capacity * loadFactor);
 270     }
 271 
 272     /**
 273      * Constructs a new, empty {@code WeakHashMap} with the given initial
 274      * capacity and the default load factor (0.75).
 275      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 276      * default policy for value objects}.
 277      *
 278      * @apiNote
 279      * To create a {@code WeakHashMap} with an initial capacity that accommodates
 280      * an expected number of mappings, use {@link #newWeakHashMap(int) newWeakHashMap}.
 281      *
 282      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 283      * @throws IllegalArgumentException if the initial capacity is negative
 284      */
 285     public WeakHashMap(int initialCapacity) {
 286         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 287     }
 288 
 289     /**
 290      * Constructs a new, empty {@code WeakHashMap} with the default initial
 291      * capacity (16) and load factor (0.75).
 292      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 293      * default policy for value objects}.
 294      */
 295     public WeakHashMap() {
 296         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 297     }
 298 
 299     /**
 300      * Constructs a new, empty {@code WeakHashMap} with the {@link ValuePolicy},
 301      * the default initial capacity (16) and load factor (0.75).
 302      *
 303      * @param  valuePolicy     The {@link ValuePolicy} for keys that are value objects; non-null
 304      * @throws NullPointerException if {@code valuePolicy} is null
 305      *
 306      * @since Valhalla
 307      */
 308     public WeakHashMap(ValuePolicy valuePolicy) {
 309         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, valuePolicy);
 310     }
 311 
 312     /**
 313      * Constructs a new {@code WeakHashMap} with the same mappings as the
 314      * specified map.  The {@code WeakHashMap} is created with the default
 315      * load factor (0.75) and an initial capacity sufficient to hold the
 316      * mappings in the specified map.
 317      * The {@code WeakHashMap} is created using the {@linkplain ValuePolicy#defaultValuePolicy()
 318      * default policy for value objects}.
 319      *
 320      * @param   m the map whose mappings are to be placed in this map
 321      * @throws  NullPointerException if the specified map is null
 322      * @since   1.3
 323      */
 324     @SuppressWarnings("this-escape")
 325     public WeakHashMap(Map<? extends K, ? extends V> m) {
 326         this(Math.max((int) Math.ceil(m.size() / (double)DEFAULT_LOAD_FACTOR),
 327                 DEFAULT_INITIAL_CAPACITY),
 328              DEFAULT_LOAD_FACTOR);
 329         putAll(m);
 330     }
 331 
 332     /**
 333      * {@return the {@link ValuePolicy} for this WeakHashMap.}
 334      *
 335      * @since Valhalla
 336      */
 337     public ValuePolicy valuePolicy() {
 338         return valuePolicy;
 339     }
 340 
 341     // internal utilities
 342 
 343     /**
 344      * Value representing null keys inside tables.
 345      */
 346     private static final Object NULL_KEY = new Object();
 347 
 348     /**
 349      * Use NULL_KEY for key if it is null.
 350      */
 351     private static Object maskNull(Object key) {
 352         return (key == null) ? NULL_KEY : key;
 353     }
 354 
 355     /**
 356      * Returns internal representation of null key back to caller as null.
 357      */
 358     static Object unmaskNull(Object key) {
 359         return (key == NULL_KEY) ? null : key;
 360     }
 361 
 362     /**
 363      * Checks for equality of non-null reference x and possibly-null y.  By
 364      * default uses Object.equals.
 365      */
 366     private boolean matchesKey(Entry<K,V> e, Object key) {
 367         // check if the given entry refers to the given key without
 368         // keeping a strong reference to the entry's referent
 369         // only identity objects can be compared to a reference
 370         if (Objects.hasIdentity(key) && e.refersTo(key)) return true;
 371 
 372         // then check for equality if the referent is not cleared
 373         Object k = e.get();
 374         return k != null && key.equals(k);
 375     }
 376 
 377     /**
 378      * Retrieve object hash code and applies a supplemental hash function to the
 379      * result hash, which defends against poor quality hash functions.  This is
 380      * critical because HashMap uses power-of-two length hash tables, that
 381      * otherwise encounter collisions for hashCodes that do not differ
 382      * in lower bits.
 383      */
 384     final int hash(Object k) {
 385         int h = k.hashCode();
 386 
 387         // This function ensures that hashCodes that differ only by
 388         // constant multiples at each bit position have a bounded
 389         // number of collisions (approximately 8 at default load factor).
 390         h ^= (h >>> 20) ^ (h >>> 12);
 391         return h ^ (h >>> 7) ^ (h >>> 4);
 392     }
 393 
 394     /**
 395      * Returns index for hash code h.
 396      */
 397     private static int indexFor(int h, int length) {
 398         return h & (length-1);
 399     }
 400 
 401     /**
 402      * Expunges stale entries from the table.
 403      */
 404     private void expungeStaleEntries() {
 405         for (Object x; (x = queue.poll()) != null; ) {
 406             synchronized (queue) {
 407                 @SuppressWarnings("unchecked")
 408                     Entry<K,V> e = (Entry<K,V>) x;
 409                 int i = indexFor(e.hash, table.length);
 410 
 411                 Entry<K,V> prev = table[i];
 412                 Entry<K,V> p = prev;
 413                 while (p != null) {
 414                     Entry<K,V> next = p.next;
 415                     if (p == e) {
 416                         if (prev == e)
 417                             table[i] = next;
 418                         else
 419                             prev.next = next;
 420                         // Must not null out e.next;
 421                         // stale entries may be in use by a HashIterator
 422                         e.value = null; // Help GC
 423                         size--;
 424                         break;
 425                     }
 426                     prev = p;
 427                     p = next;
 428                 }
 429             }
 430         }
 431     }
 432 
 433     /**
 434      * Returns the table after first expunging stale entries.
 435      */
 436     private Entry<K,V>[] getTable() {
 437         expungeStaleEntries();
 438         return table;
 439     }
 440 
 441     /**
 442      * Returns the number of key-value mappings in this map.
 443      * This result is a snapshot, and may not reflect unprocessed
 444      * entries that will be removed before next attempted access
 445      * because they are no longer referenced.
 446      */
 447     public int size() {
 448         if (size == 0)
 449             return 0;
 450         expungeStaleEntries();
 451         return size;
 452     }
 453 
 454     /**
 455      * Returns {@code true} if this map contains no key-value mappings.
 456      * This result is a snapshot, and may not reflect unprocessed
 457      * entries that will be removed before next attempted access
 458      * because they are no longer referenced.
 459      */
 460     public boolean isEmpty() {
 461         return size() == 0;
 462     }
 463 
 464     /**
 465      * Returns the value to which the specified key is mapped,
 466      * or {@code null} if this map contains no mapping for the key.
 467      *
 468      * <p>More formally, if this map contains a mapping from a key
 469      * {@code k} to a value {@code v} such that
 470      * {@code Objects.equals(key, k)},
 471      * then this method returns {@code v}; otherwise
 472      * it returns {@code null}.  (There can be at most one such mapping.)
 473      *
 474      * <p>A return value of {@code null} does not <i>necessarily</i>
 475      * indicate that the map contains no mapping for the key; it's also
 476      * possible that the map explicitly maps the key to {@code null}.
 477      * The {@link #containsKey containsKey} operation may be used to
 478      * distinguish these two cases.
 479      *
 480      * @see #put(Object, Object)
 481      */
 482     public V get(Object key) {
 483         Object k = maskNull(key);
 484         int h = hash(k);
 485         Entry<K,V>[] tab = getTable();
 486         int index = indexFor(h, tab.length);
 487         Entry<K,V> e = tab[index];
 488         while (e != null) {
 489             if (e.hash == h && matchesKey(e, k))
 490                 return e.value;
 491             e = e.next;
 492         }
 493         return null;
 494     }
 495 
 496     /**
 497      * Returns {@code true} if this map contains a mapping for the
 498      * specified key.
 499      *
 500      * @param  key   The key whose presence in this map is to be tested
 501      * @return {@code true} if there is a mapping for {@code key};
 502      *         {@code false} otherwise
 503      */
 504     public boolean containsKey(Object key) {
 505         return getEntry(key) != null;
 506     }
 507 
 508     /**
 509      * Returns the entry associated with the specified key in this map.
 510      * Returns null if the map contains no mapping for this key.
 511      */
 512     Entry<K,V> getEntry(Object key) {
 513         Object k = maskNull(key);
 514         int h = hash(k);
 515         Entry<K,V>[] tab = getTable();
 516         int index = indexFor(h, tab.length);
 517         Entry<K,V> e = tab[index];
 518         while (e != null && !(e.hash == h && matchesKey(e, k)))
 519             e = e.next;
 520         return e;
 521     }
 522 
 523     /**
 524      * Associates the specified value with the specified key in this map.
 525      * If the map previously contained a mapping for this key, the old
 526      * value is replaced.
 527      *
 528      * @param key key with which the specified value is to be associated.
 529      * @param value value to be associated with the specified key.
 530      * @return the previous value associated with {@code key}, or
 531      *         {@code null} if there was no mapping for {@code key}.
 532      *         (A {@code null} return can also indicate that the map
 533      *         previously associated {@code null} with {@code key}.)
 534      * @throws IdentityException if {@code key} is a value object
 535      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 536      */
 537     public V put(K key, V value) {
 538         Object k = maskNull(key);
 539         final boolean hasIdentity = Objects.hasIdentity(k);
 540         if (!hasIdentity && valuePolicy == ValuePolicy.DISCARD) {
 541             // put of a value object key with value policy DISCARD is more like remove(key)
 542             return remove(key);
 543         }
 544         int h = hash(k);
 545         Entry<K,V>[] tab = getTable();
 546         int i = indexFor(h, tab.length);
 547 
 548         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 549             if (h == e.hash && matchesKey(e, k)) {
 550                 V oldValue = e.value;
 551                 if (value != oldValue)
 552                     e.value = value;
 553                 return oldValue;
 554             }
 555         }
 556 
 557         Entry<K,V> e = tab[i];
 558         e = hasIdentity ? new Entry<>(k, value, queue, h, e) : newValueEntry(k, value, queue, h, e);
 559 
 560         modCount++;
 561         tab[i] = e;
 562         if (++size > threshold)
 563             resize(tab.length * 2);
 564         return null;
 565     }
 566 
 567     /**
 568      * Return a new entry for keys that are value objects.
 569      * The {@link ValuePolicy} for this WeakHashMap determines what entry is returned.
 570      * <ul>
 571      *     <li> THROW - Throws an IdentityException</li>
 572      *     <li> STRONG - a StrongEntry </li>
 573      *     <li> SOFT - a SoftEntry</li>
 574      *     <li> DISCARD - null</li>
 575      * </ul>
 576      *
 577      * @param key key with which the specified value is to be associated; non-null
 578      * @param value value to be associated with the specified key
 579      * @param queue queue
 580      * @param hash hash
 581      * @param next next
 582      * @return a new entry or null to discard
 583      * @throws IdentityException if the valuePolicy is {@link ValuePolicy#THROW}
 584      */
 585     private Entry<K, V> newValueEntry(Object key, V value,
 586                                       ReferenceQueue<Object> queue,
 587                                       int hash, Entry<K,V> next) {
 588         return switch (valuePolicy) {
 589             case THROW -> throw new IdentityException(key.getClass());
 590             case STRONG -> StrongEntry.newStrongEntry(key, value, queue, hash,  next);
 591             case SOFT ->  SoftEntry.newSoftEntry(key, value, queue, hash,  next);
 592             case DISCARD -> null;
 593         };
 594     }
 595 
 596     /**
 597      * Rehashes the contents of this map into a new array with a
 598      * larger capacity.  This method is called automatically when the
 599      * number of keys in this map reaches its threshold.
 600      *
 601      * If current capacity is MAXIMUM_CAPACITY, this method does not
 602      * resize the map, but sets threshold to Integer.MAX_VALUE.
 603      * This has the effect of preventing future calls.
 604      *
 605      * @param newCapacity the new capacity, MUST be a power of two;
 606      *        must be greater than current capacity unless current
 607      *        capacity is MAXIMUM_CAPACITY (in which case value
 608      *        is irrelevant).
 609      */
 610     void resize(int newCapacity) {
 611         Entry<K,V>[] oldTable = getTable();
 612         int oldCapacity = oldTable.length;
 613         if (oldCapacity == MAXIMUM_CAPACITY) {
 614             threshold = Integer.MAX_VALUE;
 615             return;
 616         }
 617 
 618         Entry<K,V>[] newTable = newTable(newCapacity);
 619         transfer(oldTable, newTable);
 620         table = newTable;
 621 
 622         /*
 623          * If ignoring null elements and processing ref queue caused massive
 624          * shrinkage, then restore old table.  This should be rare, but avoids
 625          * unbounded expansion of garbage-filled tables.
 626          */
 627         if (size >= threshold / 2) {
 628             threshold = (int)(newCapacity * loadFactor);
 629         } else {
 630             expungeStaleEntries();
 631             transfer(newTable, oldTable);
 632             table = oldTable;
 633         }
 634     }
 635 
 636     /** Transfers all entries from src to dest tables */
 637     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 638         for (int j = 0; j < src.length; ++j) {
 639             Entry<K,V> e = src[j];
 640             src[j] = null;
 641             while (e != null) {
 642                 Entry<K,V> next = e.next;
 643                 if (e.refersTo(null)) {
 644                     e.next = null;  // Help GC
 645                     e.value = null; //  "   "
 646                     size--;
 647                 } else {
 648                     int i = indexFor(e.hash, dest.length);
 649                     e.next = dest[i];
 650                     dest[i] = e;
 651                 }
 652                 e = next;
 653             }
 654         }
 655     }
 656 
 657     /**
 658      * Copies all of the mappings from the specified map to this map.
 659      * These mappings will replace any mappings that this map had for any
 660      * of the keys currently in the specified map.
 661      *
 662      * @param m mappings to be stored in this map.
 663      * @throws  NullPointerException if the specified map is null.
 664      * @throws  IdentityException if any of the {@code keys} is a value object
 665      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 666      */
 667     public void putAll(Map<? extends K, ? extends V> m) {
 668         int numKeysToBeAdded = m.size();
 669         if (numKeysToBeAdded == 0)
 670             return;
 671 
 672         /*
 673          * Expand the map if the map if the number of mappings to be added
 674          * is greater than or equal to threshold.  This is conservative; the
 675          * obvious condition is (m.size() + size) >= threshold, but this
 676          * condition could result in a map with twice the appropriate capacity,
 677          * if the keys to be added overlap with the keys already in this map.
 678          * By using the conservative calculation, we subject ourself
 679          * to at most one extra resize.
 680          */
 681         if (numKeysToBeAdded > threshold) {
 682             int targetCapacity = (int)Math.ceil(numKeysToBeAdded / (double)loadFactor);
 683             if (targetCapacity > MAXIMUM_CAPACITY)
 684                 targetCapacity = MAXIMUM_CAPACITY;
 685             int newCapacity = table.length;
 686             while (newCapacity < targetCapacity)
 687                 newCapacity <<= 1;
 688             if (newCapacity > table.length)
 689                 resize(newCapacity);
 690         }
 691 
 692         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 693             put(e.getKey(), e.getValue());
 694     }
 695 
 696     /**
 697      * {@inheritDoc}
 698      * @param key {@inheritDoc}
 699      * @param value {@inheritDoc}
 700      * @return {@inheritDoc}
 701      *
 702      * @throws  IdentityException if {@code key} is a value object
 703      *         and the {@link #valuePolicy() valuePolicy} is {@link ValuePolicy#THROW}.
 704      */
 705     public V putIfAbsent(K key, V value) {
 706         V v = get(key);
 707         if (v == null) {
 708             v = put(key, value);
 709         }
 710 
 711         return v;
 712     }
 713 
 714     /**
 715      * Removes the mapping for a key from this weak hash map if it is present.
 716      * More formally, if this map contains a mapping from key {@code k} to
 717      * value {@code v} such that <code>(key==null ?  k==null :
 718      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 719      * at most one such mapping.)
 720      *
 721      * <p>Returns the value to which this map previously associated the key,
 722      * or {@code null} if the map contained no mapping for the key.  A
 723      * return value of {@code null} does not <i>necessarily</i> indicate
 724      * that the map contained no mapping for the key; it's also possible
 725      * that the map explicitly mapped the key to {@code null}.
 726      *
 727      * <p>The map will not contain a mapping for the specified key once the
 728      * call returns.
 729      *
 730      * @param key key whose mapping is to be removed from the map
 731      * @return the previous value associated with {@code key}, or
 732      *         {@code null} if there was no mapping for {@code key}
 733      */
 734     public V remove(Object key) {
 735         Object k = maskNull(key);
 736         int h = hash(k);
 737         Entry<K,V>[] tab = getTable();
 738         int i = indexFor(h, tab.length);
 739         Entry<K,V> prev = tab[i];
 740         Entry<K,V> e = prev;
 741 
 742         while (e != null) {
 743             Entry<K,V> next = e.next;
 744             if (h == e.hash && matchesKey(e, k)) {
 745                 modCount++;
 746                 size--;
 747                 if (prev == e)
 748                     tab[i] = next;
 749                 else
 750                     prev.next = next;
 751                 return e.value;
 752             }
 753             prev = e;
 754             e = next;
 755         }
 756 
 757         return null;
 758     }
 759 
 760     /** Special version of remove needed by Entry set */
 761     boolean removeMapping(Object o) {
 762         if (!(o instanceof Map.Entry<?, ?> entry))
 763             return false;
 764         Entry<K,V>[] tab = getTable();
 765         Object k = maskNull(entry.getKey());
 766         int h = hash(k);
 767         int i = indexFor(h, tab.length);
 768         Entry<K,V> prev = tab[i];
 769         Entry<K,V> e = prev;
 770 
 771         while (e != null) {
 772             Entry<K,V> next = e.next;
 773             if (h == e.hash && e.equals(entry)) {
 774                 modCount++;
 775                 size--;
 776                 if (prev == e)
 777                     tab[i] = next;
 778                 else
 779                     prev.next = next;
 780                 return true;
 781             }
 782             prev = e;
 783             e = next;
 784         }
 785 
 786         return false;
 787     }
 788 
 789     /**
 790      * Removes all of the mappings from this map.
 791      * The map will be empty after this call returns.
 792      */
 793     public void clear() {
 794         // clear out ref queue. We don't need to expunge entries
 795         // since table is getting cleared.
 796         while (queue.poll() != null)
 797             ;
 798 
 799         modCount++;
 800         Arrays.fill(table, null);
 801         size = 0;
 802 
 803         // Allocation of array may have caused GC, which may have caused
 804         // additional entries to go stale.  Removing these entries from the
 805         // reference queue will make them eligible for reclamation.
 806         while (queue.poll() != null)
 807             ;
 808     }
 809 
 810     /**
 811      * Returns {@code true} if this map maps one or more keys to the
 812      * specified value.
 813      *
 814      * @param value value whose presence in this map is to be tested
 815      * @return {@code true} if this map maps one or more keys to the
 816      *         specified value
 817      */
 818     public boolean containsValue(Object value) {
 819         if (value==null)
 820             return containsNullValue();
 821 
 822         Entry<K,V>[] tab = getTable();
 823         for (int i = tab.length; i-- > 0;)
 824             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 825                 if (value.equals(e.value))
 826                     return true;
 827         return false;
 828     }
 829 
 830     /**
 831      * Special-case code for containsValue with null argument
 832      */
 833     private boolean containsNullValue() {
 834         Entry<K,V>[] tab = getTable();
 835         for (int i = tab.length; i-- > 0;)
 836             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 837                 if (e.value==null)
 838                     return true;
 839         return false;
 840     }
 841 
 842     /**
 843      * The entries in this hash table extend WeakReference, using its main ref
 844      * field as the key.
 845      */
 846     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 847         V value;
 848         final int hash;
 849         Entry<K,V> next;
 850 
 851         /**
 852          * Creates new entry.
 853          */
 854         Entry(Object key, V value,
 855               ReferenceQueue<Object> queue,
 856               int hash, Entry<K,V> next) {
 857             super(key, queue);
 858             this.value = value;
 859             this.hash  = hash;
 860             this.next  = next;
 861         }
 862 
 863         @SuppressWarnings("unchecked")
 864         public K getKey() {
 865             return (K) WeakHashMap.unmaskNull(get());
 866         }
 867 
 868         public V getValue() {
 869             return value;
 870         }
 871 
 872         public V setValue(V newValue) {
 873             V oldValue = value;
 874             value = newValue;
 875             return oldValue;
 876         }
 877 
 878         public boolean equals(Object o) {
 879             if (!(o instanceof Map.Entry<?, ?> e))
 880                 return false;
 881             K k1 = getKey();
 882             Object k2 = e.getKey();
 883             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 884                 V v1 = getValue();
 885                 Object v2 = e.getValue();
 886                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 887                     return true;
 888             }
 889             return false;
 890         }
 891 
 892         public int hashCode() {
 893             K k = getKey();
 894             V v = getValue();
 895             return Objects.hashCode(k) ^ Objects.hashCode(v);
 896         }
 897 
 898         public String toString() {
 899             return getKey() + "=" + getValue();
 900         }
 901     }
 902 
 903     /**
 904      * A SoftEntry is used for value class keys in which the entries are retained
 905      * until there is some memory pressure.  An anchor object is used as the referent
 906      * of a SoftReference and also as the referent of the WeakReference.
 907      * After the SoftReference is cleared, due to GC pressure, the WeakReference is cleared too.
 908      *
 909      * @param <K> key
 910      * @param <V> value
 911      */
 912     private static class SoftEntry<K, V> extends Entry<K, V> {
 913         final Object realKey;
 914         // SoftReference to the anchor to keep it alive until GC clears the SoftReference
 915         private final SoftReference<Object> softAnchor;
 916 
 917         static <K, V> SoftEntry<K, V> newSoftEntry(Object key, V value,
 918                                       ReferenceQueue<Object> queue,
 919                                       int hash, Entry<K, V> next) {
 920             // Select a new anchor object; the entry will be retained until the anchor is collected
 921             Object anchor = new Object();
 922             return new SoftEntry<>(anchor, key, value, queue, hash, next);
 923         }
 924 
 925         private SoftEntry(Object anchor, Object key, V value,
 926                     ReferenceQueue<Object> queue,
 927                     int hash, Entry<K,V> next) {
 928             super(anchor, value, queue, hash, next);
 929             this.realKey = key;
 930             this.softAnchor = new SoftReference<>(anchor);
 931         }
 932 
 933         /**
 934          * The real key is not the referent.
 935          * {{@inheritDoc}}
 936          */
 937         @Override
 938         @SuppressWarnings("unchecked")
 939         public K get() {
 940             return (K) realKey;
 941         }
 942 
 943         @SuppressWarnings("unchecked")
 944         public K getKey() {
 945             return (K) realKey;
 946         }
 947     }
 948 
 949     /**
 950      * A StrongEntry is used for value class keys in which the entries are retained
 951      * until removed.  A singleton instance is used as the referent of the WeakReference.
 952      * Since the anchor is never reclaimed, the Entry is retained forever.
 953      *
 954      * @param <K> key
 955      * @param <V> value
 956      */
 957     private static class StrongEntry<K, V> extends Entry<K, V> {
 958         final Object realKey;
 959 
 960         // A permanent strong reference to an Object
 961         private static final Object STRONG_ANCHOR = new Object();
 962 
 963         static <K, V> StrongEntry<K, V> newStrongEntry(Object key, V value,
 964                                       ReferenceQueue<Object> queue,
 965                                       int hash, Entry<K, V> next) {
 966             return new StrongEntry<>(STRONG_ANCHOR, key, value, queue, hash, next);
 967         }
 968 
 969         private StrongEntry(Object anchor, Object key, V value,
 970                     ReferenceQueue<Object> queue,
 971                     int hash, Entry<K,V> next) {
 972             super(anchor, value, queue, hash, next);
 973             this.realKey = key;
 974         }
 975 
 976         /**
 977          * The real key is not the referent.
 978          * {{@inheritDoc}}
 979          */
 980         @Override
 981         @SuppressWarnings("unchecked")
 982         public K get() {
 983             return (K) realKey;
 984         }
 985 
 986 
 987         @SuppressWarnings("unchecked")
 988         public K getKey() {
 989             return (K) realKey;
 990         }
 991     }
 992 
 993     private abstract class HashIterator<T> implements Iterator<T> {
 994         private int index;
 995         private Entry<K,V> entry;
 996         private Entry<K,V> lastReturned;
 997         private int expectedModCount = modCount;
 998 
 999         /**
1000          * Strong reference needed to avoid disappearance of key
1001          * between hasNext and next
1002          */
1003         private Object nextKey;
1004 
1005         /**
1006          * Strong reference needed to avoid disappearance of key
1007          * between nextEntry() and any use of the entry
1008          */
1009         private Object currentKey;
1010 
1011         HashIterator() {
1012             index = isEmpty() ? 0 : table.length;
1013         }
1014 
1015         public boolean hasNext() {
1016             Entry<K,V>[] t = table;
1017 
1018             while (nextKey == null) {
1019                 Entry<K,V> e = entry;
1020                 int i = index;
1021                 while (e == null && i > 0)
1022                     e = t[--i];
1023                 entry = e;
1024                 index = i;
1025                 if (e == null) {
1026                     currentKey = null;
1027                     return false;
1028                 }
1029                 nextKey = e.get(); // hold on to key in strong ref
1030                 if (nextKey == null)
1031                     entry = entry.next;
1032             }
1033             return true;
1034         }
1035 
1036         /** The common parts of next() across different types of iterators */
1037         protected Entry<K,V> nextEntry() {
1038             if (modCount != expectedModCount)
1039                 throw new ConcurrentModificationException();
1040             if (nextKey == null && !hasNext())
1041                 throw new NoSuchElementException();
1042 
1043             lastReturned = entry;
1044             entry = entry.next;
1045             currentKey = nextKey;
1046             nextKey = null;
1047             return lastReturned;
1048         }
1049 
1050         public void remove() {
1051             if (lastReturned == null)
1052                 throw new IllegalStateException();
1053             if (modCount != expectedModCount)
1054                 throw new ConcurrentModificationException();
1055 
1056             WeakHashMap.this.remove(currentKey);
1057             expectedModCount = modCount;
1058             lastReturned = null;
1059             currentKey = null;
1060         }
1061 
1062     }
1063 
1064     private class ValueIterator extends HashIterator<V> {
1065         public V next() {
1066             return nextEntry().value;
1067         }
1068     }
1069 
1070     private class KeyIterator extends HashIterator<K> {
1071         public K next() {
1072             return nextEntry().getKey();
1073         }
1074     }
1075 
1076     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
1077         public Map.Entry<K,V> next() {
1078             return nextEntry();
1079         }
1080     }
1081 
1082     // Views
1083 
1084     private transient Set<Map.Entry<K,V>> entrySet;
1085 
1086     /**
1087      * Returns a {@link Set} view of the keys contained in this map.
1088      * The set is backed by the map, so changes to the map are
1089      * reflected in the set, and vice-versa.  If the map is modified
1090      * while an iteration over the set is in progress (except through
1091      * the iterator's own {@code remove} operation), the results of
1092      * the iteration are undefined.  The set supports element removal,
1093      * which removes the corresponding mapping from the map, via the
1094      * {@code Iterator.remove}, {@code Set.remove},
1095      * {@code removeAll}, {@code retainAll}, and {@code clear}
1096      * operations.  It does not support the {@code add} or {@code addAll}
1097      * operations.
1098      */
1099     public Set<K> keySet() {
1100         Set<K> ks = keySet;
1101         if (ks == null) {
1102             ks = new KeySet();
1103             keySet = ks;
1104         }
1105         return ks;
1106     }
1107 
1108     private class KeySet extends AbstractSet<K> {
1109         public Iterator<K> iterator() {
1110             return new KeyIterator();
1111         }
1112 
1113         public int size() {
1114             return WeakHashMap.this.size();
1115         }
1116 
1117         public boolean contains(Object o) {
1118             return containsKey(o);
1119         }
1120 
1121         public boolean remove(Object o) {
1122             if (containsKey(o)) {
1123                 WeakHashMap.this.remove(o);
1124                 return true;
1125             }
1126             else
1127                 return false;
1128         }
1129 
1130         public void clear() {
1131             WeakHashMap.this.clear();
1132         }
1133 
1134         public Spliterator<K> spliterator() {
1135             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1136         }
1137     }
1138 
1139     /**
1140      * Returns a {@link Collection} view of the values contained in this map.
1141      * The collection is backed by the map, so changes to the map are
1142      * reflected in the collection, and vice-versa.  If the map is
1143      * modified while an iteration over the collection is in progress
1144      * (except through the iterator's own {@code remove} operation),
1145      * the results of the iteration are undefined.  The collection
1146      * supports element removal, which removes the corresponding
1147      * mapping from the map, via the {@code Iterator.remove},
1148      * {@code Collection.remove}, {@code removeAll},
1149      * {@code retainAll} and {@code clear} operations.  It does not
1150      * support the {@code add} or {@code addAll} operations.
1151      */
1152     public Collection<V> values() {
1153         Collection<V> vs = values;
1154         if (vs == null) {
1155             vs = new Values();
1156             values = vs;
1157         }
1158         return vs;
1159     }
1160 
1161     private class Values extends AbstractCollection<V> {
1162         public Iterator<V> iterator() {
1163             return new ValueIterator();
1164         }
1165 
1166         public int size() {
1167             return WeakHashMap.this.size();
1168         }
1169 
1170         public boolean contains(Object o) {
1171             return containsValue(o);
1172         }
1173 
1174         public void clear() {
1175             WeakHashMap.this.clear();
1176         }
1177 
1178         public Spliterator<V> spliterator() {
1179             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1180         }
1181     }
1182 
1183     /**
1184      * Returns a {@link Set} view of the mappings contained in this map.
1185      * The set is backed by the map, so changes to the map are
1186      * reflected in the set, and vice-versa.  If the map is modified
1187      * while an iteration over the set is in progress (except through
1188      * the iterator's own {@code remove} operation, or through the
1189      * {@code setValue} operation on a map entry returned by the
1190      * iterator) the results of the iteration are undefined.  The set
1191      * supports element removal, which removes the corresponding
1192      * mapping from the map, via the {@code Iterator.remove},
1193      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1194      * {@code clear} operations.  It does not support the
1195      * {@code add} or {@code addAll} operations.
1196      */
1197     public Set<Map.Entry<K,V>> entrySet() {
1198         Set<Map.Entry<K,V>> es = entrySet;
1199         return es != null ? es : (entrySet = new EntrySet());
1200     }
1201 
1202     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1203         public Iterator<Map.Entry<K,V>> iterator() {
1204             return new EntryIterator();
1205         }
1206 
1207         public boolean contains(Object o) {
1208             return o instanceof Map.Entry<?, ?> e
1209                     && getEntry(e.getKey()) != null
1210                     && getEntry(e.getKey()).equals(e);
1211         }
1212 
1213         public boolean remove(Object o) {
1214             return removeMapping(o);
1215         }
1216 
1217         public int size() {
1218             return WeakHashMap.this.size();
1219         }
1220 
1221         public void clear() {
1222             WeakHashMap.this.clear();
1223         }
1224 
1225         private List<Map.Entry<K,V>> deepCopy() {
1226             List<Map.Entry<K,V>> list = new ArrayList<>(size());
1227             for (Map.Entry<K,V> e : this)
1228                 list.add(new AbstractMap.SimpleEntry<>(e));
1229             return list;
1230         }
1231 
1232         public Object[] toArray() {
1233             return deepCopy().toArray();
1234         }
1235 
1236         public <T> T[] toArray(T[] a) {
1237             return deepCopy().toArray(a);
1238         }
1239 
1240         public Spliterator<Map.Entry<K,V>> spliterator() {
1241             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1242         }
1243     }
1244 
1245     @SuppressWarnings("unchecked")
1246     @Override
1247     public void forEach(BiConsumer<? super K, ? super V> action) {
1248         Objects.requireNonNull(action);
1249         int expectedModCount = modCount;
1250 
1251         Entry<K, V>[] tab = getTable();
1252         for (Entry<K, V> entry : tab) {
1253             while (entry != null) {
1254                 Object key = entry.get();
1255                 if (key != null) {
1256                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1257                 }
1258                 entry = entry.next;
1259 
1260                 if (expectedModCount != modCount) {
1261                     throw new ConcurrentModificationException();
1262                 }
1263             }
1264         }
1265     }
1266 
1267     @SuppressWarnings("unchecked")
1268     @Override
1269     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1270         Objects.requireNonNull(function);
1271         int expectedModCount = modCount;
1272 
1273         Entry<K, V>[] tab = getTable();
1274         for (Entry<K, V> entry : tab) {
1275             while (entry != null) {
1276                 Object key = entry.get();
1277                 if (key != null) {
1278                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1279                 }
1280                 entry = entry.next;
1281 
1282                 if (expectedModCount != modCount) {
1283                     throw new ConcurrentModificationException();
1284                 }
1285             }
1286         }
1287     }
1288 
1289     /**
1290      * Similar form as other hash Spliterators, but skips dead
1291      * elements.
1292      */
1293     static class WeakHashMapSpliterator<K,V> {
1294         final WeakHashMap<K,V> map;
1295         WeakHashMap.Entry<K,V> current; // current node
1296         int index;             // current index, modified on advance/split
1297         int fence;             // -1 until first use; then one past last index
1298         int est;               // size estimate
1299         int expectedModCount;  // for comodification checks
1300 
1301         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1302                                int fence, int est,
1303                                int expectedModCount) {
1304             this.map = m;
1305             this.index = origin;
1306             this.fence = fence;
1307             this.est = est;
1308             this.expectedModCount = expectedModCount;
1309         }
1310 
1311         final int getFence() { // initialize fence and size on first use
1312             int hi;
1313             if ((hi = fence) < 0) {
1314                 WeakHashMap<K,V> m = map;
1315                 est = m.size();
1316                 expectedModCount = m.modCount;
1317                 hi = fence = m.table.length;
1318             }
1319             return hi;
1320         }
1321 
1322         public final long estimateSize() {
1323             getFence(); // force init
1324             return (long) est;
1325         }
1326     }
1327 
1328     static final class KeySpliterator<K,V>
1329         extends WeakHashMapSpliterator<K,V>
1330         implements Spliterator<K> {
1331         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1332                        int expectedModCount) {
1333             super(m, origin, fence, est, expectedModCount);
1334         }
1335 
1336         public KeySpliterator<K,V> trySplit() {
1337             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1338             return (lo >= mid) ? null :
1339                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1340                                      expectedModCount);
1341         }
1342 
1343         public void forEachRemaining(Consumer<? super K> action) {
1344             int i, hi, mc;
1345             if (action == null)
1346                 throw new NullPointerException();
1347             WeakHashMap<K,V> m = map;
1348             WeakHashMap.Entry<K,V>[] tab = m.table;
1349             if ((hi = fence) < 0) {
1350                 mc = expectedModCount = m.modCount;
1351                 hi = fence = tab.length;
1352             }
1353             else
1354                 mc = expectedModCount;
1355             if (tab.length >= hi && (i = index) >= 0 &&
1356                 (i < (index = hi) || current != null)) {
1357                 WeakHashMap.Entry<K,V> p = current;
1358                 current = null; // exhaust
1359                 do {
1360                     if (p == null)
1361                         p = tab[i++];
1362                     else {
1363                         Object x = p.get();
1364                         p = p.next;
1365                         if (x != null) {
1366                             @SuppressWarnings("unchecked") K k =
1367                                 (K) WeakHashMap.unmaskNull(x);
1368                             action.accept(k);
1369                         }
1370                     }
1371                 } while (p != null || i < hi);
1372             }
1373             if (m.modCount != mc)
1374                 throw new ConcurrentModificationException();
1375         }
1376 
1377         public boolean tryAdvance(Consumer<? super K> action) {
1378             int hi;
1379             if (action == null)
1380                 throw new NullPointerException();
1381             WeakHashMap.Entry<K,V>[] tab = map.table;
1382             if (tab.length >= (hi = getFence()) && index >= 0) {
1383                 while (current != null || index < hi) {
1384                     if (current == null)
1385                         current = tab[index++];
1386                     else {
1387                         Object x = current.get();
1388                         current = current.next;
1389                         if (x != null) {
1390                             @SuppressWarnings("unchecked") K k =
1391                                 (K) WeakHashMap.unmaskNull(x);
1392                             action.accept(k);
1393                             if (map.modCount != expectedModCount)
1394                                 throw new ConcurrentModificationException();
1395                             return true;
1396                         }
1397                     }
1398                 }
1399             }
1400             return false;
1401         }
1402 
1403         public int characteristics() {
1404             return Spliterator.DISTINCT;
1405         }
1406     }
1407 
1408     static final class ValueSpliterator<K,V>
1409         extends WeakHashMapSpliterator<K,V>
1410         implements Spliterator<V> {
1411         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1412                          int expectedModCount) {
1413             super(m, origin, fence, est, expectedModCount);
1414         }
1415 
1416         public ValueSpliterator<K,V> trySplit() {
1417             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1418             return (lo >= mid) ? null :
1419                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1420                                        expectedModCount);
1421         }
1422 
1423         public void forEachRemaining(Consumer<? super V> action) {
1424             int i, hi, mc;
1425             if (action == null)
1426                 throw new NullPointerException();
1427             WeakHashMap<K,V> m = map;
1428             WeakHashMap.Entry<K,V>[] tab = m.table;
1429             if ((hi = fence) < 0) {
1430                 mc = expectedModCount = m.modCount;
1431                 hi = fence = tab.length;
1432             }
1433             else
1434                 mc = expectedModCount;
1435             if (tab.length >= hi && (i = index) >= 0 &&
1436                 (i < (index = hi) || current != null)) {
1437                 WeakHashMap.Entry<K,V> p = current;
1438                 current = null; // exhaust
1439                 do {
1440                     if (p == null)
1441                         p = tab[i++];
1442                     else {
1443                         Object x = p.get();
1444                         V v = p.value;
1445                         p = p.next;
1446                         if (x != null)
1447                             action.accept(v);
1448                     }
1449                 } while (p != null || i < hi);
1450             }
1451             if (m.modCount != mc)
1452                 throw new ConcurrentModificationException();
1453         }
1454 
1455         public boolean tryAdvance(Consumer<? super V> action) {
1456             int hi;
1457             if (action == null)
1458                 throw new NullPointerException();
1459             WeakHashMap.Entry<K,V>[] tab = map.table;
1460             if (tab.length >= (hi = getFence()) && index >= 0) {
1461                 while (current != null || index < hi) {
1462                     if (current == null)
1463                         current = tab[index++];
1464                     else {
1465                         Object x = current.get();
1466                         V v = current.value;
1467                         current = current.next;
1468                         if (x != null) {
1469                             action.accept(v);
1470                             if (map.modCount != expectedModCount)
1471                                 throw new ConcurrentModificationException();
1472                             return true;
1473                         }
1474                     }
1475                 }
1476             }
1477             return false;
1478         }
1479 
1480         public int characteristics() {
1481             return 0;
1482         }
1483     }
1484 
1485     static final class EntrySpliterator<K,V>
1486         extends WeakHashMapSpliterator<K,V>
1487         implements Spliterator<Map.Entry<K,V>> {
1488         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1489                        int expectedModCount) {
1490             super(m, origin, fence, est, expectedModCount);
1491         }
1492 
1493         public EntrySpliterator<K,V> trySplit() {
1494             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1495             return (lo >= mid) ? null :
1496                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1497                                        expectedModCount);
1498         }
1499 
1500 
1501         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1502             int i, hi, mc;
1503             if (action == null)
1504                 throw new NullPointerException();
1505             WeakHashMap<K,V> m = map;
1506             WeakHashMap.Entry<K,V>[] tab = m.table;
1507             if ((hi = fence) < 0) {
1508                 mc = expectedModCount = m.modCount;
1509                 hi = fence = tab.length;
1510             }
1511             else
1512                 mc = expectedModCount;
1513             if (tab.length >= hi && (i = index) >= 0 &&
1514                 (i < (index = hi) || current != null)) {
1515                 WeakHashMap.Entry<K,V> p = current;
1516                 current = null; // exhaust
1517                 do {
1518                     if (p == null)
1519                         p = tab[i++];
1520                     else {
1521                         Object x = p.get();
1522                         V v = p.value;
1523                         p = p.next;
1524                         if (x != null) {
1525                             @SuppressWarnings("unchecked") K k =
1526                                 (K) WeakHashMap.unmaskNull(x);
1527                             action.accept
1528                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1529                         }
1530                     }
1531                 } while (p != null || i < hi);
1532             }
1533             if (m.modCount != mc)
1534                 throw new ConcurrentModificationException();
1535         }
1536 
1537         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1538             int hi;
1539             if (action == null)
1540                 throw new NullPointerException();
1541             WeakHashMap.Entry<K,V>[] tab = map.table;
1542             if (tab.length >= (hi = getFence()) && index >= 0) {
1543                 while (current != null || index < hi) {
1544                     if (current == null)
1545                         current = tab[index++];
1546                     else {
1547                         Object x = current.get();
1548                         V v = current.value;
1549                         current = current.next;
1550                         if (x != null) {
1551                             @SuppressWarnings("unchecked") K k =
1552                                 (K) WeakHashMap.unmaskNull(x);
1553                             action.accept
1554                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1555                             if (map.modCount != expectedModCount)
1556                                 throw new ConcurrentModificationException();
1557                             return true;
1558                         }
1559                     }
1560                 }
1561             }
1562             return false;
1563         }
1564 
1565         public int characteristics() {
1566             return Spliterator.DISTINCT;
1567         }
1568     }
1569 
1570     /**
1571      * Creates a new, empty WeakHashMap suitable for the expected number of mappings.
1572      * The returned map uses the default load factor of 0.75, and its initial capacity is
1573      * generally large enough so that the expected number of mappings can be added
1574      * without resizing the map.
1575      *
1576      * @param numMappings the expected number of mappings
1577      * @param <K>         the type of keys maintained by the new map
1578      * @param <V>         the type of mapped values
1579      * @return the newly created map
1580      * @throws IllegalArgumentException if numMappings is negative
1581      * @since 19
1582      */
1583     public static <K, V> WeakHashMap<K, V> newWeakHashMap(int numMappings) {
1584         if (numMappings < 0) {
1585             throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
1586         }
1587         return new WeakHashMap<>(HashMap.calculateHashMapCapacity(numMappings));
1588     }
1589 
1590     /**
1591      * Enum for the ValuePolicy; when putting a key and value into a WeakHashMap
1592      * determines how keys that are value objects are retained (or not).
1593      * The default {@code ValuePolicy} is {@link ValuePolicy#SOFT}.
1594      * @since Valhalla
1595      */
1596     public enum ValuePolicy {
1597         /**
1598          * If the key is a value object, retain the key and value until removed or
1599          * there is memory pressure that causes soft references to be cleared.
1600          */
1601         SOFT,
1602         /**
1603          * If the key is a value object, retain the key and value until removed.
1604          */
1605         STRONG,
1606         /**
1607          * If the key is a value object, discard the key and value immediately;
1608          * such keys and values are not retained.
1609          */
1610         DISCARD,
1611         /**
1612          * If the key is a value object, throw {@link IdentityException};
1613          * such keys and values are not retained.
1614          */
1615         THROW;
1616 
1617         /**
1618          * {@return the default ValuePolicy}
1619          *
1620          * The default {@code ValuePolicy} is {@link ValuePolicy#SOFT} unless overridden by
1621          * the system property {@systemProperty java.util.WeakHashMap.valueKeyRetention}.
1622          * If the property is set to the name of a {@code ValuePolicy} enum,
1623          * the default {@code ValuePolicy} is set using {@link ValuePolicy#valueOf(String)}.
1624          * If the property value is absent or not valid, the policy is set to {@link ValuePolicy#SOFT}.
1625          */
1626         public static ValuePolicy defaultValuePolicy() {
1627             return DEFAULT_VALUE_POLICY;
1628         }
1629 
1630         // System property name for the default ValuePolicy
1631         private static final String WEAK_HASH_MAP_VALUE_KEY_RETENTION =
1632                 "java.util.WeakHashMap.valueKeyRetention";
1633 
1634         // Default WeakHashMap ValuePolicy for keys that are value objects
1635         private static final ValuePolicy DEFAULT_VALUE_POLICY = initDefaultValuePolicy();
1636 
1637         /**
1638          * {@return the default policy for retention of keys that are value classes}
1639          * If the system property "java.util.WeakHashMap.valueKeyRetention"
1640          * is the name of a {@link ValuePolicy} enum return it,
1641          * otherwise return {@link ValuePolicy#THROW}.
1642          */
1643         private static ValuePolicy initDefaultValuePolicy() {
1644             try {
1645                 String p = GetPropertyAction
1646                         .privilegedGetProperty(WEAK_HASH_MAP_VALUE_KEY_RETENTION);
1647                 if (p != null) {
1648                     return ValuePolicy.valueOf(p);
1649                 }
1650             } catch (IllegalArgumentException ex) {
1651             }
1652 
1653             return THROW;  // hardcoded default if property not set
1654         }
1655     }
1656 
1657 }